
Certification of Nontermination Proofs
Using Strategies and Nonlooping Derivations

Julian Nagele, René Thiemann(B), and Sarah Winkler

Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{julian.nagele,rene.thiemann,sarah.winkler}@uibk.ac.at

Abstract. The development of sophisticated termination criteria for
term rewrite systems has led to powerful and complex tools that pro-
duce (non)termination proofs automatically. While many techniques to
establish termination have already been formalized—thereby allowing
to certify such proofs—this is not the case for nontermination. In par-
ticular, the proof checker CeTA was so far limited to (innermost) loops.
In this paper we present an Isabelle/HOL formalization of an extended
repertoire of nontermination techniques. First, we formalized techniques
for nonlooping nontermination. Second, the available strategies include
(an extended version of) forbidden patterns, which cover in particular
outermost and context-sensitive rewriting. Finally, a mechanism to sup-
port partial nontermination proofs further extends the applicability of
our proof checker.

1 Introduction

Program verification aims to establish certain properties of pieces of software,
such as termination. But in presence of bugs it is often at least as important to
show the negative property by means of a counter-example or, more generally,
a disproof, such as a nontermination argument.

In this paper we consider term rewrite systems (TRSs) which constitute
a powerful means to express functional programs in a compact way, and are
thus a natural input format for program analysis. However, many programming
languages employ particular evaluation strategies that are to be considered in
program analysis. Thus also TRSs have to be analyzed with respect to spe-
cific strategies. In particular, a TRS which is nonterminating when ignoring the
strategy may still be terminating when the evaluation respects the strategy.

Sophisticated techniques to analyze termination of TRSs (under strategies)
have been developed and implemented in tools for automated termination analy-
sis like AProVE [6] and TTT2 [12]. However, these tools are complex and thus one
should not blindly trust them: ever so often some tool delivers an incorrect proof,
which remains undetected unless another prover gives the opposite answer on
the same TRS. Therefore, it is of major importance to independently certify the

This research was supported by the Austrian Science Fund (FWF): P22767 and I963.

c© Springer International Publishing Switzerland 2014
D. Giannakopoulou and D. Kroening (Eds.): VSTTE 2014, LNCS 8471, pp. 216–232, 2014.
DOI: 10.1007/978-3-319-12154-3 14



Certification of Nontermination Proofs 217

generated proofs, which can be done using various certifiers [3,4,21] that rely
on formalizations within some trusted proof assistant. Due to certification, bugs
have been revealed in termination tools that have gone unnoticed for years and
were easily fixed after they have been detected.

Our certifier for nontermination techniques is developed in the proof assistant
Isabelle/HOL [16], and a preliminary version was already described in [23], which
however was quite limited: only looping TRSs R could be treated, i.e., TRSs
which admit derivations of the form t →+

R C[tμ] for some term t, context C, and
substitution μ; and the only supported strategy was innermost. There are even
more severe restrictions for the other certifiers: [3] only supports loops without
strategy, and [4] does not support nontermination proofs at all.

In the meanwhile, we extended our repertoire of formalized nontermina-
tion techniques. It now covers techniques for nonlooping nonterminating TRSs.
Moreover, as strategy specification we now support an extended version of for-
bidden patterns [9], which generalizes many common strategies like (leftmost)-
innermost, (leftmost)-outermost, and context-sensitive rewriting [15]. Finally,
we also integrated a mechanism to support partial nontermination proofs, which
further increases the applicability of our certifier and led to the detection of a
severe soundness bug of AProVE, which has now been fixed.

We consider our contributions threefold. First and foremost, our extensions
significantly increased the number of certifiable nontermination proofs. Second,
on the theory level we could drastically simplify one of the algorithms for check-
ing nontermination using forbidden patterns, and relax the preconditions for
applying the technique of rewriting dependency pairs (cf. Theorem 14). Finally,
we illustrate how termination checkers can benefit from certification: we used
Isabelle’s code generator [10] to integrate the executable functions from our
certifier in TTT2, such that this tool is now able to automatically generate non-
termination proofs involving general forbidden pattern strategies. This nearly
doubled the number of generated nontermination proofs of TTT2.

The remainder is structured as follows. In Sect. 2 we give preliminaries. In
Sect. 3 we explain our formalization of loop detection involving forbidden pat-
terns. Afterwards, Sect. 4 deals with techniques that allow to disprove termi-
nation of nonlooping TRSs, namely the techniques of rewriting and narrowing
dependency pairs [7], the switch between innermost termination and termina-
tion [8], and a direct technique to disprove termination [5]. Experimental data is
provided in Sect. 5 where we also explain how we integrated forbidden patterns
in TTT2, and why and how we added support for partial nontermination proofs
to CeTA. We conclude in Sect. 6.

Our formalization is part of the Isabelle Formalization of Rewriting (IsaFoR)
which also includes our certifier CeTA [21]. Since IsaFoR contains every tiny detail
of each proof, in the paper we just highlight some differences between the formal-
ization and the paper proofs. Both IsaFoR and all details on our experiments are
available at http://cl-informatik.uibk.ac.at/software/ceta/experiments/ntcert/.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/ntcert/


218 J. Nagele et al.

2 Preliminaries

We refer to [2] for the basics of rewriting. We use �, r, s, t, u, w for terms, f , g
for function symbols, x, y for variables, σ, μ, τ , δ for substitutions, i, j, k, n, m
for natural numbers, o, p, q for positions, C, D for contexts, and P, R for TRSs.
Here, substitutions are mappings from variables to terms, and tμ is the term t
where each variable x in t has been replaced by μ(x); contexts are terms which
contain exactly one hole � , t[·]p is the context that is obtained by replacing the
subterm t|p of t at position p by the hole �. The term C[t] is the term where
the hole in C is replaced by t. We write s � t if s = C[t] for some context C and
s � t if s � t and s �= t. A position p is left of q iff p = o i p′, q = o j q′, and i < j.
The set of positions in a term t is written as Pos(t) and ε denotes the empty
position. The set of variables is V, and V(t) are the variables within a term t.

A TRS R is a set of rewrite rules � → r. The rewrite relation of R at position
p is defined by t →R,p s iff t = C[�σ] and s = C[rσ] for some rule � → r ∈ R,
substitution σ, and context C with C|p = � . In this case, the term �σ is called
a redex at position p. The reduction is outermost iff there is no redex above p,
and it is innermost (denoted i→R,p) iff there are no redexes below p. We often
omit p and R in a reduction →R,p, if R is obvious from the context, and if p can
be chosen freely. A TRS is overlay iff all critical pairs of the TRS are due to root
overlaps, i.e., there are no rules �1 → r1 and �2 → r2 such that a non-variable
proper subterm of �1 unifies with �2. A TRS is locally confluent if every critical
pair (s, t) is joinable, i.e., there is some u such that s →∗

R u and t →∗
R u.

We write t →! s if both t →∗ s and s is in normal form w.r.t. →, i.e., there
is no u such that s → u. Strong normalization of → is denoted by SN (→), and
SN →(t) denotes that t admits no infinite derivation w.r.t. →. We sometimes write
SN R(t) instead of SN →R(t). A DP problem is a pair of two TRSs (P,R) where P
is a set of dependency pairs encoding recursive calls, and R is used to evaluate the
arguments between two recursive calls. A (P,R) chain is an infinite derivation of
the form s1σ1 →P,ε t1σ1 →∗

R s2σ2 →P,ε t2σ2 →∗
R . . . where each si → ti ∈ P.

The chain is an innermost chain, iff additionally tiσi
i→!

R si+1σi+1 is satisfied
for all i. A TRS R is (innermost) nonterminating iff SN (→R) (SN ( i→R)) does
not hold. A DP problem (P,R) is (innermost) nonterminating iff it admits an
(innermost) (P,R) chain or if R is (innermost) nonterminating.1

Since the paper describes the formalization on an informal level which does
not require deep knowledge of Isabelle, we omit an introduction to this proof
assistant here. The logic we are using is classical HOL, which is based on simply-
typed lambda-calculus, enriched with a simple form of ML-like polymorphism.

3 Forbidden Patterns

This section deals with checking whether a loop is indeed a loop with respect to
a particular evaluation strategy: Given a certificate containing a TRS R, a loop
1 In the literature (e.g., in [7]) a nonterminating DP problem is also called infinite. This

is the reason why in IsaFoR this property is defined as infinite-dpp.



Certification of Nontermination Proofs 219

and some strategy, our proof checker CeTA can check whether there does indeed
exist an infinite R-rewrite sequence which adheres to this strategy.

To support a broad variety of strategies we consider forbidden pattern rewrit-
ing, which covers for instance innermost, outermost, and context-sensitive rewrit-
ing [9,15]. Hence the formalization of techniques for forbidden pattern strategies
has the significant advantage that a wide range of strategies can be treated by the
same formalism, so CeTA internally converts all outermost and context-sensitive
strategies into forbidden patterns before the certifier for nontermination proofs
is invoked, cf. certify-cert-problem in Proof Checker.thy. We give a motivating
example before recalling some preliminaries on forbidden pattern rewriting.

Example 1. Consider the following applicative TRS which models a buggy imple-
mentation of the map function, where ‘ denotes a binary infix application symbol,
and : the cons operator. In the recursive call one forgot to invoke tl on xs and
hence the TRS does not terminate.

map ‘ f ‘ xs → if ‘ (empty ‘ xs) ‘ nil ‘ (: ‘ (f ‘ (hd ‘ xs)) ‘ (map ‘ f ‘ xs))
hd ‘ (: ‘ x ‘ xs) → x if ‘ true ‘ t ‘ e → t empty ‘ (: ‘ x ‘ xs) → false

tl ‘ (: ‘ x ‘ xs) → xs if ‘ false ‘ t ‘ e → e empty ‘ nil → true

Without strategy there is a loop map ‘ f ‘ nil → C[map ‘ f ‘ nil)] for C = if ‘
(empty ‘ nil) ‘ nil ‘ (: ‘ (f ‘ (hd ‘ nil)) ‘ �) which definitely does not show the real
problem of map to the user: the loop ignores the common evaluation strategy for
if which disallows reductions in the then and else branches. Note that due to the
applicative setting this desired behavior is not expressible by a context-sensitive
strategy, but it can be modeled by a forbidden strategy, as shown in Example 3.

3.1 Background

Using forbidden pattern strategies one can specify that the position of any redex
may not be below (or above) certain patterns. In this way one can express out-
ermost (or innermost) strategies. We consider the following extended definition
of a forbidden pattern which allows for patterns with location R. This admits to
also express strategies like leftmost-outermost with special treatment for if.

Definition 2. A forbidden pattern is a triple (�, o, λ) for a term �, position
o ∈ Pos(�), and λ ∈ {H,A,B,R}. For a set Π of forbidden patterns the rela-
tion Π→ is defined by t Π→p s iff t →p s and there is no pattern (�, o, λ) ∈ Π
such that there exist a position o′ ∈ Pos(t), a substitution σ with t|o′ = �σ, and

• p = o′o if λ = H (here),
• p > o′o if λ = B (below), and

• p < o′o if λ = A (above),
• p is right of o′ if λ = R (right of).

Example 3. For the TRS in Example 1, the forbidden pattern strategy where Π
consists of (if ‘ b ‘ t ‘ e, p, λ) for all p ∈ {12, 2} and λ ∈ {H,B} has the intended
effect that reductions in the then and else branches are not allowed.



220 J. Nagele et al.

A TRS R is forbidden-pattern nonterminating w.r.t. Π iff ¬SN (Π→), which
can be proven via forbidden pattern loops (Π-loops). To succinctly describe infi-
nite derivations that are induced by loops we use context-substitutions.

Definition 4 [22]. A context-substitution is a pair (C, μ) consisting of a context
C and a substitution μ. The n-fold application of (C, μ) to a term t, denoted
t(C, μ)n, is inductively defined as t(C, μ)0 = t and t(C, μ)n+1 = C[t(C, μ)nμ].

Fig. 1. Redexes left of pnq.

As an example for context-substi-
tutions, we refer to Fig. 1 which illus-
trates the term t(C, μ)3.

Context-substitutions allow to con-
cisely write the infinite derivation
induced by a loop t →+ C[tμ] as
t = t(C, μ)0 →+ t(C, μ)1 →+ . . . →+

t(C, μ)n →+ . . ..
To facilitate the certification of

loops under strategies, one needs to
analyze its constituting steps. In the
remainder of this section we will
consider a loop with starting term t,
context C and substitution μ with
C|p = � of the form

t = t(C, μ)0 = t1 →q1 t2 →q2

· · · →qm tm+1 = t(C, μ)1 (1)

A loop of the form (1) is a Π-loop iff the step ti(C, μ)n →pnqi ti+1(C, μ)n

respects the forbidden pattern strategy induced by Π for all i � m and all
n ∈ N. For instance, assuming that one of the loop’s redexes is t|q as illustrated
in Fig. 1, we need to know whether this position remains a redex w.r.t. to the
strategy, no matter how many contexts and substitutions are applied around t.

The problem of whether a loop constitutes a Π-loop is decidable. To this
end, the following notions from innermost and outermost loops are useful.

Definition 5 [20,22]. A matching problem is a pair (u � �, μ). It is solvable iff
there are n and σ such that uμn = �σ. An extended matching problem is a tuple
(D � �, C, t,M, μ) where M = {s1 � �1, . . . , sn � �n}. It is solvable iff there are
m, k, σ, such that D[t(C, μ)m]μk = �σ and siμ

k = �iσ for all i. If M = ∅, we
just omit it.

A set of (extended) matching problems is solvable iff some element is solvable.
Given a loop, in order to decide whether it indeed constitutes a Π-loop one
computes a set of (extended) matching problems which has no solution if and
only if the loop is indeed a Π-loop.



Certification of Nontermination Proofs 221

3.2 From Forbidden Pattern Loops to Matching Problems

A rewrite step is a Π-step iff it adheres to every single pattern π ∈ Π. In fact a
loop (1) is a Π-loop if and only if the following key property holds for all choices
of π ∈ Π, t = ti, t′ = ti+1 and q = qi where 1 � i < m [24]:

Property 6. For a forbidden pattern π = (�, o, λ) and t →q t′ all reductions
t(C, μ)n →pnq t′(C, μ)n are allowed with respect to π, i.e., there are no n, o′,
and σ such that t(C, μ)n|o′ = �σ and pnq = o′o if λ = H, pnq < o′o if λ = A,
pnq > o′o if λ = B, and pnq is right of o′ if λ = R.

This property can be decided by a case analysis on λ, defining suitable sets of
(extended) matching problems for each case. In the following paragraphs we give
these sets for patterns of type (·, ·,R) and (·, ·,B). The other cases are similar,
details can be found in the formalization.

Forbidden Patterns of Type (·, ·,R). For patterns π = (�, o,R), it has to
be checked whether pnq occurs to the right of o′. There are four possibilities,
as illustrated in Fig. 1: (1) o′ ends in t, (2) o′ ends in a term tμk, (3) o′ ends
in a position of Ck, or otherwise (4) o′ ends in a position of Ckμk−1, for some
k � n. Let W(t) =

⋃
k∈N

V(tμk) denote the set of variables introduced by the
substitution μ when applied iteratively. Then each case can be covered by a set
of matching problems as follows:

Definition 7. Let MR,π denote the union of the following four sets:

MR,1 = {(u � �, μ) | q′ ∈ Pos(t), q′is left of q, and u = t|q′}
MR,2 = {(u � �, μ) | q′ ∈ Pos(t), q′is left of q, x ∈ W(t|q′), and u � xμ}
MR,3 = {(u � �, μ) | p′ ∈ Pos(C), p′is left of p, and u = C|p′}
MR,4 = {(u � �, μ) | p′ ∈ Pos(C), p′is left of p, x ∈ W(C|p′), and u � xμ}

For the formalization of patterns (·, ·,R), we first had to incorporate support
for the left-of relation on positions. However, the most effort was spent on the
case analysis, i.e., an induction proof showing that any position in a context-
substitution t(C, μ)n fits into one of the four cases.

Forbidden Patterns of Type (·, ·,B). For patterns π = (�, o,B) the position
o′o has to be strictly above the redex, i.e., pnq > o′o. Here two cases can be
distinguished: o′o may end in t, so o′o � pn, or it may end in some occurrence
of C, so o′o < pn (similar to cases (1) and (3) in Fig. 1).

In case of the former, o′o has finitely many possibilities to hit a position in t
above q. Thus, this case reduces to finitely many (·, ·,H) cases.

In the latter case, o′o is a non-hole position of Cn, i.e., pn > o′o (and hence
p > ε). We consider all possibilities for non-empty subcontexts D, and compute
a number n0 such that it suffices to consider the term t(C, μ)n0 in order to



222 J. Nagele et al.

account for all loop iterations.2 A detailed analysis of these two cases leads to
the following sets of matching problems MB and EB:

Definition 8. The (extended) matching problems MB,π = MB,1 ∪ EB,2 are

MB,1 =
⋃

q̄<q

MH,(�,q̄,H)

EB,2 = {(D � �, Cμ, t(C, μ)n0μ, μ) | � � D � C, D|p′′ = � , p′′pn0 > o}

where MH,(�,q̄,H) refers to the H matching problem for t, q, and (C, μ), and n0

is, dependent on p′′, the minimal number satisfying |p′′| + n0|p| > |o|.
Unsolvability of the respective sets of (extended) matching problems is a

sufficient and necessary condition for Property 6:

Theorem 9 [24]. Let t →q t′ and let (C, μ) be a context-substitution such that
C|p = � . All reductions t(C, μ)n →pnq t′(C, μ)n are allowed with respect to the
pattern π = (�, o, λ) if and only if Mλ,π is not solvable.

As to be expected from the technical definitions, the soundness and complete-
ness results for the respective cases required a considerable amount of reasoning
about contexts and positions. We preferred contexts over positions whenever
possible: position reasoning tends to be tedious because one always needs to
ensure that they are valid in the term where they are to be used. For instance,
IsaFoR internally represents forbidden patterns as triples (�[·]o, �|o, λ) rather than
(�, o, λ) to avoid the obvious side condition o ∈ Pos(�). The amount of bureau-
cracy on valid positions required throughout the formalization was nevertheless
substantial. Apart from this, the proofs for all cases could be formalized along
the lines of the paper proof. For the case of B patterns the results crucially rely
on the new solving procedure for extended matching problems.

3.3 Deciding Solvability of Extended Matching Problems

Solvability of (extended) matching problems is known to be decidable [20,22],
and in [23] we already formalized and simplified the decision procedure for non-
extended matching problems. In the remainder of this section we present our
algorithm to decide solvability of extended matching problems—these problems
originate from the outermost loop checking procedure and are also required in
the case of forbidden patterns, cf. Definition 8.

As in [23], our proofs deviate from the paper proofs considerably and result
in a simplified decision procedure which we also integrated in termination tools.
For example, in AProVE we have been able to delete some sub-algorithms (180
lines) and replace them by a single line of code.

2 More precisely, n0 can be set to 0 if p = ε and to otherwise.



Certification of Nontermination Proofs 223

The decision procedure in [22] works in three phases: first, any extended
matching problem is simplified to solved form; second, from the simplified match-
ing problem a set of (extended) identity problems is generated, and finally, solv-
ability of the identity problems is decided. We followed this general structure
in the formalization, and only report on the first and the third phase, since the
second phase was straightforward.

The algorithm for the first phase consists of a set of strongly normalizing
inference rules. It contains rules for decomposition and symbol clash as in a
standard matching algorithm3, but also incorporates rules to apply a (context-)
substitution in cases where a standard matching algorithm would fail.

Definition 10 [22, Definition 5]. Let MP = (D � �0, C, t,M, μ) be an extended
matching problem where M = {s1 � �1, . . . , sm � �m} and C �= �. Then MP is
in solved form iff each �i is a variable. Let Vincr,μ = {x ∈ V | ∃n : xμn /∈ V} be
the set of increasing variables.

We define a relation ⇒ which simplifies extended matching problems that are
not in solved form, so suppose �j = f(�′

1, . . . , �
′
m′).

(v) MP ⇒ ⊥ if sj ∈ V\Vincr,μ

(vi) MP ⇒ (Dμ � �0, Cμ, tμ, {siμ � �i | 1 � i � m}, μ) if sj ∈ Vincr,μ

(vii) MP ⇒ 	 if j = 0, D = �, and (M ∪ {t � �0}, μ) is solvable
(viii) MP ⇒ (C � �0, Cμ, tμ,M, μ) if j = 0, D = �, and (M ∪ {t � �0}, μ)

is not solvable

As in [23], where we formalized the inference rules for simplifying non-
extended matching problems, we implemented these rules directly as a function
simplify-emp-main using Isabelle’s function package [13]. In this way, we did not
have to formalize confluence of ⇒.

Note that for this function one faces the problem of getting it terminating
and efficient at the same time: if one has to recompute Vincr,μ in every iteration,
the function becomes inefficient; on the other hand, if one passes Vincr,μ using an
additional parameter (e.g., Vi) then the function is not necessarily terminating as
it is not guaranteed that Vi is indeed instantiated by Vincr,μ. To see this, suppose
the simplification algorithm is invoked on the problem (D � �, C, t, {x � c}, μ)
where μ is the empty substitution but Vi a set containing x. Then an application
of Rule (vi) immediately leads to a recursive call with the same arguments.

To solve this problem, in [23] it was proposed to write two functions: The main
soundness result is proven for a terminating but inefficient one where Vincr,μ gets
recomputed in every recursive call. A second, possibly nonterminating function
has Vi as additional argument and is proven to be equivalent to the first function
if invoked with the right arguments, i.e., in this case with Vi = Vincr,μ.

Although this solution leads to an efficient and sound implementation, it
imposes quite some overhead. First, one has to write the simplification algorithm
twice, and second one has to perform an equivalence proof of the two functions.

Therefore we propose a different solution for simplify-emp-main. The simple
idea is to pass the pair (μ, Vi) as an argument to simplify-emp-main, where this
3 Rules (i)–(iv) in [22, Definition 5], which are omitted here for brevity.



224 J. Nagele et al.

pair is encapsulated in a new type with the invariant that Vi = Vincr,μ. Thus, in
the implementation one just has to provide selectors from the new type to both
μ and Vi, where it now suffices to write only one implementation of simplify-
emp-main. Moreover, the whole quotient construction—creation of the new type,
writing the selectors, reasoning about this new type—can conveniently be done
via the lifting and transfer-package of Isabelle [11]. Note that in the meantime
we also rewrote the simplification algorithm for matching problems in [23] using
the same idea, again by using lifting and transfer.

For the third phase where (extended) identity problems are to be solved,
we could of course reuse the algorithm for non-extended identity problems that
has been developed in [23]. However, we did not stick to the complicated algo-
rithm of [22] for extended identity problems, since it requires several auxiliary
algorithms and the soundness proofs are difficult or tedious to formalize. (The
whole description takes 3.5 pages in [22] where these pages do not even cover
all proofs.) Instead, we developed a new, partial algorithm which is easy to
implement and easy to formalize. In detail, we show that all extended iden-
tity problems that are constructed for forbidden patterns via simplify-emp-main
belong to a special class of extended identity problems where the context within
such a problem is large in comparison to the other terms. This class of problems
can easily be translated into non-extended identity problems via the following
mini-algorithm: an extended identity problem (D ≈ s, μ, C, t) is solvable iff the
identity problem (D[t] ≈ s, μ) is solvable, provided there is some i such that
C � sμi. For more details on (extended) identity problems and our new proofs
we refer to [22] and lemmas eident-prob-to-ident-prob and simplify-emp-main-
large-C within the theory Outermost Loops.thy.

4 Nonlooping Nontermination

While in the previous section we restricted ourselves to loops (though for every
forbidden pattern strategy), we now aim at possibly nonlooping nonterminating
TRSs, but only consider innermost strategies. More precisely, we consider the
variant of innermost rewriting which corresponds to Π→ where Π = {(�, ε,A) | � ∈
Q} for some set of terms Q. The corresponding rewrite relation is qrstep within
IsaFoR, and it generalizes rewriting without strategy (Q = ∅) and innermost
rewriting (Q = {� | � → r ∈ R}). To ease the presentation, in the paper
we just consider the special cases →R and i→R in the following. In total, we
discuss three different techniques which can be used to disprove termination
for nonlooping nonterminating TRSs. One disregards the strategy completely
(Sect. 4.1), one performs rewrite steps which may violate the strategy (Sect. 4.2),
and one directly constructs infinite possibly nonlooping derivations (Sect. 4.3).

4.1 Switching Between Innermost Termination and Termination

Example 11. Let R′ be a confluent overlay TRS which encodes a Turing machine
A via innermost rewriting. We assume that the computation starts in a constant



Certification of Nontermination Proofs 225

tminit which represents the initial configuration of A. Now consider the TRS R =
R′ ∪ {run-again(x) → run-again(tminit)} where run-again is some fresh symbol.

Obviously, R is not innermost terminating: if A terminates in some final con-
figuration represented by a term t, then run-again(tminit) i→∗

R run-again(t) i→R
run-again(tminit) is an innermost loop. Otherwise, there is an infinite evaluation
of run-again(tminit) when trying to rewrite the argument tminit to a normal form.

Observe that in the first case, the derivation may be long and thus hard to
find, e.g., A may compute the Ackermann function; and in the latter case, there
might be no looping derivation at all.

However, disproving termination of R is simple when disregarding the strat-
egy: the loop run-again(tminit) →R run-again(tminit) is easily detected. Hence, for
nontermination analysis one tries to get rid of strategy restrictions, and indeed
there are known criteria where SN ( i→R) and SN (→R) coincide: for example,
locally confluent overlay TRSs fall into this class [8]. Thus, the simple loop
above constitutes a valid innermost nontermination proof.

We formalized the criterion of [8], though we did not follow the original proof
structure, but developed a simpler proof via dependency pairs [1]. To this end,
we first integrated a similar theorem for DP problems, as it is utilized in AProVE,
cf. switch-to-innermost-proc in Innermost Switch.thy.

Theorem 12. Let P and R be TRSs such that R is locally confluent and such
that there is no overlap between P and R. Then any (P,R) chain shows the
existence of some innermost (P,R) chain.

Theorem 12 can not only be used on its own—to switch from innermost
termination to termination for DP problems—but it can also be utilized to derive
Gramlich’s result to switch from innermost termination to termination for TRSs.

Theorem 13 [8]. Let R be some finite TRS, let there be infinitely many symbols.
If R is locally confluent and overlay, then ¬SN (→R) =⇒ ¬SN ( i→R).

Proof. Let P be the set of dependency pairs of R. If R is not terminating,
then by soundness of dependency pairs there must be some (P,R) chain. By
Theorem 12 we conclude that there also is some innermost (P,R) chain: R is
locally confluent by assumption and there is no overlap between P and R since
R is an overlay TRS. Finally, by completeness of dependency pairs we conclude
from the innermost chain that R must be innermost nonterminating. ��

The formalization of this proof was straightforward: IsaFoR already contained
the required results on critical pairs, confluence, and dependency pairs [18,21], cf.
switch-to-innermost-locally-confluent-overlay-finite in Innermost Switch.thy.

The formalization also reveals side conditions which one never finds in paper
proofs: Finiteness of R and an unbounded supply of function symbols are taken
for granted, but are crucial to construct fresh function symbols (fresh symbols
are required in order to build the set of dependency pairs). With more bureau-
cracy, one would be able to drop the condition that R is finite—by arguing that



226 J. Nagele et al.

in an infinite reduction only countably many symbols can occur, and by imple-
menting Hilbert’s hotel one can always construct enough fresh symbols—but
since for certification we are only interested in finite TRSs, we did not spend
this additional effort.

In order to guarantee local confluence we had to provide new means for
checking joinability. Whereas in [18] the main algorithm was a comparison of
normal forms of s and t, this is no longer the best solution in our setting, since
R is usually nonterminating. To this end, we now offer a breadth-first-search
algorithm to check joinability. The certificate just has to set a limit on the
search depth which ensures termination of the algorithm.

In total, we can now easily certify innermost nontermination proofs like the
one for Example 11: the certificate just has to contain the looping derivation
run-again(tminit) →R run-again(tminit) and an indication in how many steps each
critical pair of R can be joined.

4.2 Rewriting and Narrowing Dependency Pairs

In this section we consider two techniques of [7] that allow to ignore the strategy
for one step. Given a DP problem (P,R), they replace one of the pairs s → t in
P by new ones which result from rewriting or narrowing s → t.

One advantage over the result from the previous subsection is that we only
need unique normal forms for the usable rules while previously we had to consider
the whole TRS. Here, the usable rules of a term t are any subset U(t) of R such
that whenever tσ i→∗

R s for some σ which instantiates all variables by normal
forms, then in this derivation all applied rules must be from U(t). There are
various estimations of usable rules where the simplest one is provided in [1].
The following theorem already generalizes [7, Theorem 31] which requires non-
overlappingness instead of unique normal forms.

Theorem 14. Let (P{s → t},R) be a DP problem and suppose t →R,p t′ with
rule � → r ∈ R and substitution μ. If for U = U(t|p) the rewrite relation i→U
has unique normal forms and there are only trivial critical pairs between � → r
and U then the following holds: if (P {s → t′},R) is innermost nonterminating
then (P  {s → t},R) is also innermost nonterminating.

In the formalization we closely followed the original paper proof where we
were able to slightly relax the preconditions: it is sufficient to consider the usable
rules with respect to all arguments of t|p instead of t|p itself. To check that U
has unique normal forms we use the following easy but sufficient criterion: if all
critical pairs of U at the root level are trivial then i→U is confluent and thus has
unique normal forms. The following TRS can be shown innermost nonterminat-
ing via Theorem 14, but it requires the more relaxed preconditions.

Example 15. Consider the TRS R consisting of R′ of Example 11 and the rules:

c(x, y) → x c(x, y) → y f(a) → f(c(a, tminit))



Certification of Nontermination Proofs 227

Note that the result from the previous subsection is not applicable, since the
system is not locally confluent. However, since U(a) = ∅ and U(tminit) = R′ is
confluent, we can rewrite the dependency pair f�(a) → f�(c(a, tminit)) to f�(a) →
f�(a) and obtain an obvious loop.

To certify such a nontermination proof, one only has to provide the rewrite
step that is performed and a nontermination proof for the modified problem. All
preconditions are automatically checked by CeTA.

The second technique considers narrowing of dependency pairs, where a rule
s → t ∈ P is first instantiated to sσ → tσ and subsequently tσ gets rewritten to
u, yielding a new rule sσ → u. Since instantiation is obviously correct for nonter-
mination analysis, completeness of narrowing is a straightforward consequence of
the completeness result for rewriting, cf. Rewriting.thy, Instantiation.thy,
and Narrowing.thy.

4.3 Nonterminating Derivations

To finally detect nontermination, one requires a technique which actually finds
infinite derivations. As stated before, one can consider loops t →+ C[tμ], how-
ever, there are also techniques which are able to detect a larger class of nonter-
minating derivations [5,17] which are both available in CeTA.

The idea in [5] is to derive pattern rules of the form s σn τ ↪→ t δn μ which
state that for each n there is a rewrite sequence sσnτ →+ tδnμ. To this end,
there are several inference rules which allow to derive pattern rules, and there is
a sufficient criterion when a pattern rule implies nontermination.

Example 16. Consider the following nonterminating TRS.

s(x) > 0 → true 0 > y → false

s(x) > s(y) → x > y f(true, x, y) → f(x > y, s(x), s(y))

It is nonlooping, as in the infinite derivation

f(true, s2(0), s1(0)) → f(s2(0) > s1(0), s3(0), s2(0))

→2 f(true, s3(0), s2(0)) → f(s3(0) > s2(0), s4(0), s3(0))

→3 f(true, s4(0), s3(0)) → . . .

it takes more and more steps to rewrite sn+1(0) > sn(0) to true when n is
increased. However, using the inference rules, one can first derive the pattern
rule (s(x) > s(y)) {x/s(x), y/s(y)}n {x/s(x), y/0} ↪→ true∅

n
∅ which states that

it is possible to rewrite each term sn+2(x) > sn+1(0) to true (∅ denotes the empty
substitution). And afterwards, it is easy to combine this pattern rule with the
rule for f to detect nontermination, again using the methods of [5].

To be able to certify this kind of nontermination proofs, in Nonloop.thy
we first proved correctness of all inference rules on an abstract level, e.g., where
substitutions are modeled as functions from variables to terms. In order to check



228 J. Nagele et al.

concrete proofs, in Nonloop Impl.thy we then introduced a datatype to repre-
sent proofs, i.e., sequences of inference steps, where also the type of substitutions
was changed from the abstract type to a list based representation.

Using this approach, most of the paper proofs have been easily integrated
into Isabelle. We here only report on some issues we had to solve during the
formalization. To this end, consider the following two inference rules of [5].

s ∅
n

∅ ↪→ t ∅
n

∅

s σn
∅ ↪→ t[z]p (σ ∪ {z/t[z]p})n {z/t|p}

if p ∈ Pos(t), s = t|pσ, z is fresh (III)

s σn
s μs ↪→ t σn

t μt

s (σsρ)n μs ↪→ t (σtρ)n μt

if δρ = ρδ for each δ ∈ {σs, μs, σt, μt} (VII)

One of the small problems we encountered is the underspecification in Rule
(III): the condition “z is fresh” does not contain the information w.r.t. which
other variables z has to be fresh—in the formalization this is clarified, namely
V(s) ∪ V(t) ∪ ⋃

x:σ(x) �=x({x} ∪ V(σ(x))).
Moreover, there have been several operations on substitutions which first had

to be defined, e.g. for domain renamings [5, Definition 3], one defines substitu-
tions like {xρ/sρ | x/s ∈ σ} where ρ has some further properties. Before showing
properties of this substitution, in the formalization we first had to prove that
this substitution is well-defined, i.e., that the properties of ρ ensure that xρ is
always a variable, and that there are no conflicting assignments.

Further operations on substitutions became necessary for certification. For
example, in Rule (VII) one has to check equality of substitutions. Here, it turned
out that checking equality of the lists which represent the substitutions was not
sufficient, as some correct proofs have been rejected by our certifier, e.g., since
[(x, t), (y, s)] �= [(y, s), (x, t), (x, t)], but both lists represent the same substitu-
tion {x/t, y/s}. Instead, we had to implement a function subst-eq which decides
whether two substitutions which are represented by lists are identical.

We finally remark on an extension of the original approach that was required
in the formalization: while the technique in [5] is presented on the level of TRSs,
the implementation in AProVE also applies the method on DP problems, where
in the inference rules one has to distinguish between P- and R-steps. Moreover,
AProVE also uses the following inference rule, which was not described in [5].

s σn
s μs ↪→ t σn

t μt

sσk
s σn

s μs ↪→ tσk
t σn

t μt

X (X)

All these extensions have been integrated in IsaFoR and CeTA.
The technique of [17] is quite similar to [5] in the sense that there are also

derivation patterns which can be derived via some inference rules, until some
pattern is detected which immediately implies nontermination. In fact, [5] is an
extension of [17] as the latter only considers string rewrite systems, i.e., TRSs
with only unary function symbols. But since it is currently unknown whether [5]
can fully simulate [17], we also formalized the technique of [17] directly, which



Certification of Nontermination Proofs 229

was a relatively easy task: since everything in [17] works on strings, there was
no tedious reasoning on substitutions and renamings of variables required, cf.
Nonloop SRS.thy.

For certification we require the full inference tree that derives the final pat-
tern, where in each inference rule all parameters have to be specified. For exam-
ple, for (III) we explicitly require σ, p, and z; and for (VII) the substitution ρ
has to be provided. Moreover, for pretty-printing and early error detection we
require that every derived pattern is explicitly stated within the certificate.

5 Experiments and Partial Nontermination Proofs

We tested our certifier using the TRSs from the termination problem database
(TPDB 8.0.7). To be more precise, we considered all 596 first-order TRSs where
at least one tool in 2013 has generated a nontermination proof. In our experi-
ments, we tested the following termination tools which all print their proofs in
a structured proof format (CPF).

• AProVE’13 and TTT2’13 are the versions of AProVE and TTT2 that participated
in the certified category of the termination competition in 2013. Both tools
are restricted to nontermination techniques of [23].

• AProVE’14 is the current version of AProVE. It can even apply nontermination
techniques that are not supported by CeTA.

• TTT2’14 is the current version of TTT2.

Table 1. Experimental data.

AProVE’13 AProVE’14 TTT2’13 TTT2’14

# successful nontermination proofs 276 575 221 417

# certified proofs 276 563 221 417

# partially certified proofs – 12 – –

Table 1 clearly shows the significance of our formalizations: we doubled the
number of certifiable nontermination proofs for AProVE, and can now certify
98 % of the generated proofs.

Since AProVE’13, TTT2’13, and TTT2’14 use only techniques supported by
CeTA, it comes as no surprise that all these proofs were certified. In contrast, 12
proofs by AProVE’14 were refused as the applied nontermination techniques are
not available in CeTA, e.g., proofs for equational rewrite systems (modulo AC).

To still increase the reliability for these proofs, we added support for partial
proofs in CeTA. To be more precise, we added a proof technique called “unknown
proof” to CPF which logically states that the certifier may assume the impli-
cation ¬SN (a1) ∧ · · · ∧ ¬SN (an) =⇒ ¬SN (a0) where each ai may be some
arbitrary binary relation, including textual descriptions like “equational rewrite



230 J. Nagele et al.

relation of . . . ” which are not formally specified. As a consequence, every tech-
nique that is not supported by CeTA can be exported as an unknown proof, and
then CeTA can still check all the proofs for the subgoals ¬SN (ai) with i > 0.

Using partial certification, CeTA can check in average 70 % of the proof steps
within each of the 12 partial proofs. Interestingly, due to the partial certification
capabilities of CeTA, we could even spot and fix one real soundness bug within
AProVE. In one example a terminating TRS R1 was transformed into a nonter-
minating TRS R2 although it was claimed that the termination behavior of R1

and R2 is equivalent. Since AProVE was not able to finally disprove termination
of R2—and hence there was no complete nontermination proof of R1—this bug
was only discovered due to partial certification, where even for incomplete proofs
every single nontermination technique could be checked by CeTA.

To support partial certification in CeTA, major restructuring was required.
Previously, there was a hierarchical structure of nontermination proofs where
the hierarchy was given by the input: nontermination proofs for DP problems
have been a leaf, proofs for TRSs have been the next layer, and proofs for relative
termination have been at the top of the hierarchy. However, now for every input
there is the “unknown proof” which may contain subproofs for all other inputs.
Therefore, the proof types for every input are modeled via one large mutual
recursive datatype (it is the datatype definition . . . -nontermination-proof at
the beginning of Check Nontermination.thy), which takes considerably more
time to process by Isabelle than the hierarchical sequence of non-mutual recur-
sive datatypes that we had before. Similarly, also all functions and proofs for the
overall certification procedure had to be defined and proven simultaneously for
all inputs. Whereas most of this adaptation was straightforward, we also encoun-
tered problems, that some packages in Isabelle do not support mutual recursion.
For example, in order to define our parser for CPF, we first had to add support
for mutual recursion to the partial functions package of [14]. We refer to [19] for
further details on this extension.

In order to obtain input examples for CeTA’s forbidden pattern loop check,
we integrated support for forbidden pattern loops into TTT2. More precisely, we
added a forbidden pattern loop check to the already present unfold strategy
which searches for loops. To that end, we exported IsaFoR’s loop checking proce-
dure to OCaml using Isabelle’s code generator. Though interfacing IsaFoR’s data
structures required some overhead, this proved to be a fast way to integrate
a reliable implementation in TTT2. Support of forbidden pattern loops allows
TTT2’14 to show nontermination of all those TRSs in our test set of 596 prob-
lems that feature an innermost, outermost, or context-sensitive strategy (197
problems in total), as well as Example 3. In total, by just integrating CeTA’s for-
bidden pattern loop check, we could nearly double the number of nontermination
proofs of TTT2’13: from 221 to 417, cf. Table 1.

6 Conclusion

In summary, we formalized several new nontermination techniques which cover
nonlooping derivations and looping derivations under strategies. In total this



Certification of Nontermination Proofs 231

formalization increased the size of IsaFoR by around 10k lines. Due to our work,
CeTA is now able to certify the vast majority of nontermination proofs that are
generated by automated tools for TRSs.

Acknowledgments. The authors are listed in alphabetical order regardless of indi-
vidual contributions or seniority.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoret.
Comput. Sci. 236, 133–178 (2000)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Blanqui, F., Koprowski, A.: CoLoR: a Coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Math.
Struct. Comput. Sci. 4, 827–859 (2011)

4. Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certified
proofs with CiME3. In: Proceedings of the RTA ’11. LIPIcs, vol. 10, pp. 21–30
(2011)

5. Emmes, F., Enger, T., Giesl, J.: Proving non-looping non-termination automati-
cally. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS(LNAI),
vol. 7364, pp. 225–240. Springer, Heidelberg (2012)

6. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE1.2: automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

7. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)

8. Gramlich, B.: Abstract relations between restricted termination and confluence
properties of rewrite systems. Fund. Inform. 24, 3–23 (1995)

9. Gramlich, B., Schernhammer, F.: Extending context-sensitivity in term rewriting.
In: Proceedings of the WRS ’09. EPTCS, vol. 15, pp. 56–68 (2010)

10. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010)

11. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 131–146. Springer, Heidelberg (2013)

12. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)

13. Krauss, A.: Partial and nested recursive function definitions in higher-order logic.
J. Autom. Reason. 44(4), 303–336 (2010)

14. Krauss, A.: Recursive definitions of monadic functions. In: Proceedings of the PAR
’10. EPTCS, vol. 43, pp. 1–13 (2010)

15. Lucas, S.: Context-sensitive computations in functional and functional logic pro-
grams. J. Funct. Logic Program. 1, 1–61 (1998)

16. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)



232 J. Nagele et al.

17. Oppelt, M.: Automatische Erkennung von Ableitungsmustern in nichtterminieren-
den Wortersetzungssystemen. Diploma thesis, HTWK Leipzik, Germany (2008)

18. Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix
completion. In: Proceedings of the RTA ’13. LIPIcs, vol. 21, pp. 287–302 (2013)

19. Thiemann, R.: Mutually recursive partial functions. Arch. Formal Proofs, February
2014. Formal Proof Development. http://afp.sf.net/entries/Partial Function MR.
shtml

20. Thiemann, R., Giesl, J., Schneider-Kamp, P.: Deciding innermost loops. In:
Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 366–380. Springer, Heidelberg
(2008)

21. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 452–468. Springer, Heidelberg (2009)

22. Thiemann, R., Sternagel, C.: Loops under strategies. In: Treinen, R. (ed.) RTA
2009. LNCS, vol. 5595, pp. 17–31. Springer, Heidelberg (2009)

23. Sternagel, C., Thiemann, R.: Certification of nontermination proofs. In: Beringer,
L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 266–282. Springer, Heidelberg
(2012)

24. Thiemann, R., Sternagel, C., Giesl, J., Schneider-Kamp, P.: Loops under strategies
... continued. In: Proceedings of the IWS ’10, vol. 44, pp. 51–65 (2010)

http://afp.sf.net/entries/Partial_Function_MR.shtml
http://afp.sf.net/entries/Partial_Function_MR.shtml

	Certification of Nontermination Proofs Using Strategies and Nonlooping Derivations
	1 Introduction
	2 Preliminaries
	3 Forbidden Patterns
	3.1 Background
	3.2 From Forbidden Pattern Loops to Matching Problems
	3.3 Deciding Solvability of Extended Matching Problems

	4 Nonlooping Nontermination
	4.1 Switching Between Innermost Termination and Termination
	4.2 Rewriting and Narrowing Dependency Pairs
	4.3 Nonterminating Derivations

	5 Experiments and Partial Nontermination Proofs
	6 Conclusion
	References


