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Preface

This volume contains the papers presented at the Sixth International Conference on
Verified Software: Theories, Tool and Experiments (VSTTE), which was held in
Vienna, Austria, during July 17–18, 2014, as part of the Vienna Summer of Logic. The
final version of the papers was prepared by the authors after the event took place, which
has permitted them to take feedback received at the meeting into account.

VSTTE has originated from the Verified Software Initiative (VSI), which is an
international initiative directed at the scientific challenges of large-scale software
verification. The inaugural VSTTE conference was held at ETH Zurich in October
2005, and was followed by VSTTE 2008 in Toronto, VSTTE 2010 in Edinburgh,
VSTTE 2012 in Philadelphia, and VSTTE 2013 in Menlo Park. The goal of the VSTTE
conference is to advance the state of the art through the interaction of theory devel-
opment, tool evolution, and experimental validation.

The call for papers for VSTTE 2014 has solicited submissions describing significant
advances in the production of verified software, i.e., software that has been proved to
meet its functional specifications. We are especially interested in submissions
describing large-scale verification efforts that involve collaboration, theory unification,
tool integration, and formalized domain knowledge. We welcome papers describing
novel experiments and case studies evaluating verification techniques and technologies.

There were 34 submissions. Each submission was reviewed by at least two, and on
average 3.3, members of the Program Committee. The committee decided to accept 17
papers. The program has also included two invited talks, given by Orna Grumberg
(Technion) and Michael Whalen (University of Minnesota), and a presentation on the
2014 Verified Software Competition organized by Ernie Cohen, Marcelo Frias, Peter
Mueller, and Natarajan Shankar.

We would like to thank the invited speakers and all submitting authors for their
contributions to the program. We owe a lot to Natarajan Shankar, who took care of all
organization, Elizabeth Polgreen for managing the website and the proceedings, Leo
Freitas (Publicity Chair), and Martina Seidl (CAV Workshop Chair). Finally, we would
like to thank the external reviewers and the Program Committee for their reviews and
for selecting the papers that appear in this volume.

July 2014 Dimitra Giannakopoulou
Daniel Kroening
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A Logical Analysis of Framing for Specifications
with Pure Method Calls

Anindya Banerjee1 and David A. Naumann2(B)

1 IMDEA Software Institute, Madrid, Spain
anindya.banerjee@imdea.org

2 Stevens Institute of Technology, Hoboken, USA
naumann@cs.stevens.edu

Abstract. For specifying and reasoning about object-based programs
it is often attractive for contracts to be expressed using calls to pure
methods. It is useful for pure methods to have contracts, including read
effects to support local reasoning based on frame conditions. This leads
to puzzles such as the use of a pure method in its own contract. These
ideas have been explored in connection with verification tools based on
axiomatic semantics, guided by the need to avoid logical inconsistency,
and focusing on encodings that cater for first order automated provers.
This paper adds pure methods and read effects to region logic, a first-
order program logic that features frame-based local reasoning and a proof
rule for linking of clients with modules to achieve end-to-end correctness
by modular reasoning. Soundness is proved with respect to a conven-
tional operational semantics and using the extensional (i.e., relational)
interpretation of read effects.

1 Introduction

In reasoning about programs, a frame condition is the part of a method’s con-
tract that says what part of the state may be changed by an invocation of the
method. Frame conditions make it possible to retain a global picture while rea-
soning locally: If predicate Q can be asserted at some point in a program where
method m is called, Q still holds after the call provided that the locations on
which Q depends are disjoint from the locations that may be written according
to m’s frame condition. This obvious and familiar idea is remarkably hard to
formalize in a way that is useful for sound reasoning about programs acting on
dynamically allocated mutable objects (even sequential programs, to which we
confine attention here). One challenge is to precisely describe the writable state
in case it involves heap allocated objects. Another challenge is to determine what
part of such state may be read by Q (its ‘footprint’). For reasons of abstraction,
Q may be expressed in terms of named functions. To hide information about

A. Banerjee – Currently on leave at the US National Science Foundation.
D.A. Naumann – Partially supported by US NSF award CNS-1228930.

c© Springer International Publishing Switzerland 2014
D. Giannakopoulou and D. Kroening (Eds.): VSTTE 2014, LNCS 8471, pp. 3–20, 2014.
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4 A. Banerjee and D.A. Naumann

data representation, the function definitions may not be visible in the client pro-
gram where m is called. This paper provides a foundational theory addressing
these and related challenges.

Consider a class Cell with instances holding an integer value, used in the
following client code.

method get(): int
method set(v: int) ensures self.get() = v
var c, d: Cell; c:= new Cell; d:= new Cell; c.set(5); d.set(6); assert c.get() = 5;

Fig. 1. Example: Cell. Type rgn (for ‘region’) means sets of object references and
footp‘any denotes a set of locations, namely all fields of objects in footp.

The goal is to prove the assertion by reasoning that the state read by c.get() is
disjoint from the state written by d.set(6). Suppose the internal representation of
Cell objects consists of an integer field val. The specifications could say set writes
self.val and get reads self.val. Then the frame condition of d.set(6) would allow
the postcondition of the call c.set(5), i.e., the predicate c.get()= 5, to be framed
over the call d.set(6), yielding the assertion. But such specifications expose the
internal representation. It would preclude, for example, an alternative imple-
mentation that uses, instead of integer field val, a pointer to a character string
that represents the number using 0s and 1s.

Better specifications appear in Fig. 1, using ghost state to describe the
‘footprint’ of each cell, and postconditions from which the client can deduce
disjointness of the representations of c and d. Use of ghost state for footprints
is a key part of the ‘dynamic frames’ approach [8], and in addition to explicit
disjointness conditions it supports separation reasoning based on freshness.

The example illustrates another challenging issue: one method (get) is used in
the specification of others (get, set). Here is an example of calling a pure method
in a frame condition: Instead of the ghost field footp one might choose to define
a region-valued method footpm. If footpm is only used in specifications, one may
argue it should be defined as part of the mathematical theory in which reasoning
is carried out (though its read effect would still be useful). But there are practical
benefits to using programmed methods in specifications, which can be justified
provided that they are pure in the sense of having no effects other than reading.

Use of pure methods, especially ones in the program rather than part of the
ambient mathematical theory, poses challenges. One is how to model such speci-
fications without inconsistency. For example, care must be taken for sound treat-
ment of specifications like method f(x: int): int ensures result = f(x)+1. Recursion
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aside, one may also wonder about soundness of using a pure method in its own
postcondition, e.g., get in Fig. 1, or in its own frame condition: e.g., the read effect
of footpm might be footpm()‘any (making it ‘self-framing’). Another issue is that
the specifications of get and set are abstract, in the sense that they are consistent
with many interpretations of the function get (e.g., get could return self.val+7).
Client code should respect the abstraction, i.e., be correct with respect to any
interpretation, whereas the expected implementations of get and set are only
correct with respect to the interpretation that returns self.val.

The issues discussed so far have been addressed in prior work, especially in
the context of verification-condition generation (VC-gen); see Sect. 7. However,
most of the VC-gen work takes axiomatic semantics for granted rather than
defining and proving soundness with respect to operationally grounded program
semantics; the focus is on methodological considerations and on encodings that
work effectively with SMT-based theorem provers. In these works, hypotheses are
encoded as axioms, and linking of separately verified methods is implicit in the
implementation of the VC-gen. The intricacies of dealing with heap structure,
framing, purity, and self-framing frame conditions have led to soundness bugs in
implemented verification systems (see [6]).

This paper provides a foundational account, by way of a conventional logic of
programs that caters for SMT-provers by reasoning about framing using ghost
state and FOL, and that is proved sound with respect to a standard operational
semantics. Our account focuses on a proof rule for linking the implementation
of an interface (i.e., collection of method specifications) with a client that relies
on that interface.

The approach we take is motivated by two additional challenges. The first
is information hiding, in the sense that implementations rely on invariants on
module-internal data structures, but these invariants do not appear in the inter-
face specification [7]. As a contrived example, representing the integer cell using
a string might have the invariant that only 0 and 1 characters appear, without
leading zeros. The invariant might be exploited by a method getAsString, but it
has no place in the interface specification of method get which returns an integer.
An alternative to hiding is to rely on abstraction: a predicate whose definition
is opaque in the interface can be defined internally to be the invariant [9,11,15].

The second additional challenge arises from the practical need to use pro-
grammed methods that are only observationally pure in the sense that they
do have side effects but these effects are benevolent [7] and not observable to
clients. There are many examples, including memoization, lazy initialization,
and path compression in Union-Find structures. These may involve allocation of
fresh objects and mutation of existing ones.

Strong encapsulation is critical both for hiding of invariants [1,7,14] and for
observational purity [13]. Both involve linking a client with the implementation
of a module, where that implementation is verified against specifications different
from those used by clients of the module—hiding invariants and hiding effects. In
prior work we developed region logic (RL), a Hoare logic for sequential object-
based programs, using standard FOL for assertions. By contrast with separation
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logic and permission-based systems, in RL separation is expressed as disjointness
of explicit footprints, following the approach of dynamic frames. A benefit is
that the verifier does not need to support separating conjunction; it comes at
the cost of more verbose specifications. The language features expressions that
denote regions, i.e., sets of object references. The logic provides a frame rule for
local reasoning, based on frame conditions of methods and a subsidiary judgment
for framing of formulas (Fig. 10). In addition to ordinary frame conditions, the
logic formalizes encapsulation boundaries for modules, again in the manner of
dynamic frames. This supports a second-order frame rule for linking method
implementations to clients, hiding invariants [7,14].

In ongoing work, we have extended RL to a relational version, akin to [3,12,
20] but featuring a proof rule for representation independence. We plan to use
this as basis for a proof system that allows use of observationally pure methods
in specifications, which relies on relational consequences of encapsulation [7,13].
The problem is that general relational reasoning depends on read effects in frame
conditions, a non-trivial if not earthshaking extension of RL. It deserves to be
studied and presented in isolation from the complications needed for encapsula-
tion and information hiding.

This paper builds on RLI [2] and RLII [1], extending RL with pure method
calls in specifications and read effects in frame conditions. This involves adding
read effects to frame conditions for commands and for pure and impure methods.

Outline and Contributions. Section 2 introduces the programming language and
specifications, as well as the judgment of correctness under hypotheses. The lat-
ter is written Δ � C : P � Q [ε]. It says that under precondition P command
C does not fault; if it terminates its final state satisfies Q and the computa-
tion’s effects are allowed by ε. Moreover this conclusion is under hypothesis Δ,
a list of method specifications. What’s new in this paper is read effects in ε
and Δ, and pure methods used in Δ,P,C,Q, ε, specified in Δ. Section 3 takes
the first step towards defining semantics, sketching two ways to interpret the
hypotheses and pointing out a potential circularity. To dodge this circularity,
semantics of expressions and formulas is parameterized on the interpretation of
pure methods. Section 4 formalizes an extensional semantics of read effects; this
is used to define correct interpretations of pure method specifications and to
define the denotation of impure method specifications. The latter is like a spec-
ification statement, and is used in the operational semantics of programs; its
first order semantics is justified by a closure property that is our first technical
result. Section 5 completes the semantics of the correctness judgment, suitably
instantiating the interpretation of pure methods as motivated by the rule for
linking. For C verified under hypothesis Δ that specifies pure method p called in
C and/or used in the specification of C, linking discharges the hypothesis. If the
specification of p is unsatisfiable, it is not possible to instantiate the interpre-
tation as required by the linking rule. This shows that a separate satisfiability
check is not needed in a tool that correctly verifies the linked program, though
the check maybe be helpful to flag problems early.
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Section 6 gives selected proof rules and states the main result, soundness of
the rules. Proofs and technical details that we gloss over can be found in the
full version of the paper. The proofs are intricate because we work directly with
small-step operational semantics, yet this is essential for the use of dynamic
frames to provide flexible encapsulation of modules in RLII. But the proofs are
elementary and do not involve fixpoints.

Section 7 briefly discusses related work. For future work, the next steps
towards observational purity are (a) to extend the logic with second order fram-
ing, as in RLII but with hiding of effects, and (b) to add weak purity which allows
allocation though not other effects (this is not hard but does add a few compli-
cations). Another step is to add read effects and pure methods to our prototype
SMT-based verifier for RL [16,17], which already provides limited support for
pure function definitions with framing, based on a version of Leino’s Dafny. As
a first step, we have successfully checked versions of the Cell example by manual
encoding in Why3, using SMT-provers only.

2 Programs, Specifications, and Correctness Judgments

Figure 2 illustrates features of our programming and specification notations, by
way of the Composite pattern, a well-known verification challenge problem [4,16].
A Comp is the root of a tree, nodes of which are accessible to clients. Here is an
example client:

Fig. 2. Composite example, adapted from RLI. Ghost code maintains the invariant
that desc is the set of descendants.

var b, c, d: Comp; var i: int; ... i := d.getSize(); b.add(c); assert i = d.getSize();

To prove the assertion we want to frame the formula i = d.getSize() over the call
b.add(c). The frame condition of addChild says it is allowed to write self.children,
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Fig. 3. Programming language, highlighting additions to RLII [1].

x.parent, and the size and desc fields of the ancestors of self. In method set (Fig. 1)
we use ‘any to abstract from field names, but here both size and desc are appro-
priate to make visible in the interface. (See RLI for more discussion of this
facet of information hiding.) The frame condition would be less precise using
ancestors(self)‘any.

In order to reason using the frame rule (Fig. 10), we establish a subsidiary
judgment written � rd i, d, d.size frm i = d.getSize() which says the formula
i = d.getSize() depends only on the values of i, d, and d.size. The rules let us
establish this judgment based on the specification of getSize. The frame rule
also requires us to establish validity of a so-called separator formula . This
formula is determined from the frame of the formula and from the write effect
of addChild. The function ·/. generates the separator formula and is defined by
recursion on syntax.1 In the example, we compute ε ·/. (rd i, d, d.size), where ε
is the write effect of addChild. The formula is the disjointness {d} # ancestors(b),
which says the singleton region {d} is disjoint from the set of ancestors. It needs
to hold following the elided part of the example client. In general, η ·/. ε is a
formula which implies that the locations writable according to ε are disjoint
from the locations readable according to η.

Figure 3 gives the grammar of programs, revised from RLII to allow method
calls in expressions. We assume given a fixed collection of classes. A class has
a name and some typed fields. We do not formalize dynamic dispatch or even
associate methods with classes; so the term ‘method’ is just short for procedure.
For expository clarity methods have exactly one parameter (plus res for pure
methods).

The linking construct let m(x:T, res:U) = C in C ′ designates that m is pure,
with return type U , as indicated by the distinguished variable name res. It binds
x, res, and m in C, and m in C ′. Calls of m are expressions and pass a single
argument. The body C is executed in a state with both x and res, the latter
initialized to the default value for type U . The final value of res is the value of
the call expression. The linking construct let m(x:T ) = C in C ′ designates that
m is impure; command m(y) depicts its call.

1 Please note that ·/. is not syntax in the logic; it’s a function in the metalanguage
that is used to obtain formulas from effects; see Sect. 6.
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Fig. 4. Definedness formulas for expressions and formulas (selected), for swf method
context Δ.

Typing contexts, ranged over by Γ , are finite maps, written in conventional
form. The judgment Γ � E : T means that E is well-formed and has type T .
The typing rules straightforward. A command C is well-formed in context Γ
provided that it is typable, i.e., Γ � C, and in addition method call expressions
m(F ) occur only in assignments x := m(F ) to a simple variable and with F free
of method calls.

Values of type K are references to objects of class K (including the improper
reference null). Value of type rgn are sets of references of any type. If Γ � G : rgn
then Γ � G‘f : rgn for any field name f of region or reference type. In case
f : K, the value of G‘f is the set of f -values of objects in G. In case f : rgn, the
value of G‘f is the union of the f -values. Aside from allocation and dereference
(in the command forms x := y.f and y.f := F ), the only operation on references
is equality test.

The syntax of formulas is standard and unchanged from RLI (Sect. 4.2),
except that now the expressions include method calls, as in the points-to predi-
cate x.f = E and region containment G ⊆ G′.

P ::= E = E | x.f = E | G ⊆ G | (∀x : K ∈ G.P ) | P ∧ P | ¬P

The formula ∀x : K ∈ G.P quantifies over all non-null references of type K in G.
For disjointness of regions it is convenient to write G # H for G ∩ H ⊆ {null}.

Specifications. Effects are given by ε ::= rdx | rdG‘f | wr x | wrG‘f | frG |
ε, ε | (empty). Effects must be syntactically well-formed (swf ) for the con-
text Γ in which they occur: rdx and wr x are swf if x ∈ dom(Γ ); rdG‘f , wrG‘f ,
and frG are swf if G is swf in Γ . In particular, if G is a call m(F ) to a pure
method, then it must be that Γ � m(F ) : rgn. The freshness effect frG says the
value of G in the final state contains only (but not necessarily all) references
that were not allocated in the initial state. Later we use the term ‘well-formed’,
without qualification, to mean in addition that the expressions do not depend
on pure methods invoked outside their preconditions.

Specifications for impure methods take the form (x:T )R � S [η] and for
pure methods the form (x:T, res:U)R � S [η]: x is the parameter (passed by
value), R the precondition, S the postcondition, and η the effects. For these
specifications to be swf in context Γ , η must not include wr x. (This is standard in
Hoare logic; postconditions refer to initial parameter values.) Moreover, R must
be typable in Γ, x:T . Both S and η must be typable in Γ, x:T , for the impure
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form or Γ, x:T, res:U , for the pure form. Finally, for the pure method there can
be no write effects in η. Although the body of a pure method will write res, the
semantics is a return value, not an observable mutation of state. In this paper,
there’s no need for impure methods to have read effects, but they will be needed
for reasoning about data abstraction and observational purity. In any context
Γ , there is a read effect that imposes no restriction: rd vars(Γ ), rd alloc‘any.

A method context Δ is a finite map from method names to specifications.
We are interested in specifications that may refer to global variables declared
in some typing context Γ . Moreover, specifications in Δ are allowed to refer to
any of the pure methods in Δ; the specification of p may have calls to p in its
post-condition and effect, or p and m may refer mutually to each other—subject
to the restriction that calls in preconditions must exhibit acyclic dependency.
To make this restriction precise, we define a relation ≺Δ on method names:
m ≺Δ m′ iff m′ occurs in the precondition of Δ(m). Now we can define what
it means for a context Δ to be swf in Γ . First, the transitive closure, ≺+

Δ, is
irreflexive. Second, the domains of Γ and Δ are disjoint and each specification
is swf in the context vars(Γ ), sigs(Δ). Here sigs extracts the types of methods.
For example, let Δ0 be m : (x:T )R � S [η], p : (y:V, res:U)P � Q [ε]. Then
sigs(Δ0) is m : (x:T ), p : (y:V, res:U). Also vars discards method declarations.

A correctness judgment takes the form Δ �Γ C : P � Q [ε]. It is swf iff
Δ is swf in Γ and C,P,Q, ε are all swf in vars(Γ ), sigs(Δ). We often elide Γ .

Sound proof rules for correctness judgments prevent a pure method from
being applied outside its precondition, to avoid the need to reason about unde-
fined or faulty values. As is common in VC-generation, we use definedness
formulas, see Fig. 4. The idea is that in states where df(P,Δ) holds, evaluation
of P does not depend on values of pure methods outside their preconditions.
Although the clause for df(m(F ),Δ) refers to a method specification that may
refer to another pure method in its precondition, df is well-defined, owing to the
requirement that ≺+

Δ is irreflexive (and domΔ is finite).
An expression or formula will be considered well-formed if its definedness

formula is valid, in addition to it being swf. To define validity, we proceed to
semantics.

3 Semantics of Expressions and Formulas

There are two approaches to semantics of a judgment Δ � C : P � Q [ε].
The first goes by quantifying over all correct implementations of the procedures
specified by Δ. The second goes by using nondeterminacy to represent a ‘worst
implementation’ of each procedure, akin to the ‘specification statement’ used in
axiomatic semantics. The second avoids a quantification and has been found to
be quite effective [1,14]; we use it for impure methods (and in so doing show how
the specification statement can include read effects). However, for pure method
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calls in formulas conventional semantics requires determinate values, so we use
the first approach for pure methods.2

The transition semantics uses an environment for let-bound methods. A call
to such m results in execution of the body found in the method environment.
By contrast, if m is declared in Δ then its call is a single step in accord with its
specification. If m is impure, the step goes to any state allowed by the specifi-
cation Δ(m); we describe this by a relation [[Δ(m)]] (Definition 2). If m is pure,
we need a determinate result value but no change of state. So we use a function
θ(m) to provide this value. The semantics of a correctness judgment (Defini-
tion 5) quantifies over all θ such that θ(m) conforms to the specification Δ(m)
for each m in domΔ (Definition 3). This is similar to an axiomatic semantics
where θ(m) is an uninterpreted function constrained by Δ(m).

To define what it means for θ(m) to conform, and to define [[Δ(m)]], we
need semantics of expressions, formulas, and effects—and these depend on the
meaning of pure method calls. To break this circularity, we define in this section
a notion of candidate interpretation, and define the semantics of formulas and
expressions with respect to any candidate interpretation θ.

We assume given an infinite set Ref of reference values including a distin-
guished ‘improper reference’ null. A Γ -state is comprised of a global heap and
a store. The store is a type-respecting assignment of values to the variables in
Γ and to the variable alloc : rgn which is special. Updates of alloc are built into
the program semantics so that alloc holds the set of all allocated references.We
write σ(x) for the value of variable x in state σ, σ(o.f) to look up field f of
object o in the heap, Dom(σ) for the variables of σ, and [[Γ ]] for the set of Γ -
states. We write [[T ]]σ for the set of values of type T in state σ. Thus [[int]]σ = Z

and [[K]]σ = {null}∪{o|o ∈ σ(alloc) ∧ Type(o, σ) = K}. Besides states, we use
the faulting outcome � for runtime errors (null-dereference), and also to signal
precondition violations as described later.

For a typing context Γ , a candidate Γ -interpretation θ is a mapping from
the pure method names in Γ such that if Γ (m) = (x : T, res : U) then θ(m) is
a function such that for any T -value t and state σ, θ(σ, t) is a U -value or �.
To be precise, θ(m) has the dependent type (σ ∈ [[Γ ]]) × [[T ]]σ → ([[U ]]σ∪{�}).
A candidate Δ-interpretation is just a candidate sigs(Δ)-interpretation.

The denotation of an expression F in candidate Γ -interpretation θ and state
σ is written [[F ]]θσ and defined straightforwardly, see Fig. 5. The second line
in the figure is for application m(F ) of a pure method: evaluate F to get a
value v, then apply the function θ(m) to the pair (σ, v). Using the semantics for
expressions we define the 3-valued semantics of formulas in Fig 6. We also define
σ |=Γ

θ P iff [[P ]]θσ = true. Figure 7 shows that when the definedness formulas
hold, the usual 2-valued clauses hold.
2 This does not preclude nondeterminacy modulo an equivalence relation, which is

especially important for ‘weakly pure’ methods that return freshly allocated refer-
ences [13]. For VCs this is explored in [10].
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Fig. 5. Semantics of selected program and region expressions, for state σ and candidate
interpretation θ. We use the �-strict let-binder, i.e., ‘let v = X in Y ’ denotes � if X
denotes �.

Fig. 6. Formulas: three-valued semantics, [[Γ � P ]]θσ ∈ {true, false, �}. Typing con-
text is elided in most cases.

4 Semantics of Effects and Programs

Effects. A location is either a variable name x or a heap location comprised of
a reference o and field name f . We write o.f for such pairs. Define rlocs(σ, θ, ε),
the locations designated by read effects of ε, in σ, by rlocs(σ, θ, ε) = {x |
ε contains rdx}∪{o.f | ε contains rdG‘f with o ∈ [[G]]θσ}. Define wlocs simi-
larly, for write effects.

Write effects constrain what locations are allowed to change between one
state and another. We say ε allows change from σ to τ under θ, written
σ→τ |=θ ε, provided (a) if y changed value (i.e., τ(y) �= σ(y)) then wr y is in ε;
(b) if o.f changed value then there is wrG‘f in ε such that o ∈ [[G]]θσ; and (c)
if frG is in ε then elements of G in τ are fresh. Reads are ignored, so σ→τ |=θ ε
iff σ→τ |=θ writes(ε). In (b), region expressions G are interpreted in the initial
state because frame conditions need only report writes to fields of pre-existing
objects and not freshly allocated objects.

Read effects constrain what locations an outcome can depend on. Depen-
dency is expressed by considering two initial states that agree on the locations
deemed readable. Agreement needs to take into account variation in alloca-
tion, as two states may have isomorphic pointer structure but differently chosen
references.
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Fig. 7. Two-valued semantics. These clauses hold when σ |=θ df(P, Δ) (Lemma 6).

Let π range over partial bijections on Ref. We write π(p) = p′ to express
that π is defined on p and has value p′. A refperm from σ to σ′ is partial
bijection π such that

– dom(π) ⊆ σ(alloc)∪{null} and rng (π) ⊆ σ′(alloc)∪{null}
– π(null) = null
– π(p) = p′ implies Type(p, σ) = Type(p′, σ′) for all proper references p, p′

Define p
π∼ p′ to mean π(p) = p′. We extend π∼ to a relation on integers by i

π∼ j

iff i = j. For reference sets X,Y we define X
π∼ Y iff π(X) ⊇ Y and X ⊆ π−1(Y )

(where π(X) is the direct image of X). That is, π forms a bijection between X
and Y .

Define freshLocs(σ, τ) = {p.f |p ∈ freshRefs(σ, τ) ∧ f ∈ Fields(Type(p, τ))}
where freshRefs(σ, τ) = τ(alloc)\σ(alloc). For a set W of variables and heap
locations, define Lagree(σ, σ′,W, π) iff ∀x ∈ W.σ(x) π∼ σ′(x) and ∀(o.f) ∈ W.o ∈
dom(π) ∧ σ(o.f) π∼ σ′(π(o).f).

Definition 1 (agreement on read effects). Let ε be an effect that is swf
in Γ . Consider states σ, σ′. Let π be a partial bijection. Let θ be a candidate
interpretation (for some Δ that is swf in Γ ). Say that σ and σ′ agree on ε
modulo π, written Agree(σ, σ′, ε, π, θ), iff Lagree(σ, σ′, rlocs(σ, θ, ε), π). Define
Agree(σ, σ′, ε, θ) = Agree(σ, σ′, ε, π, θ) where π is the identity on σ(alloc) ∩
σ′(alloc).

Programs. In the following we consider a method context Δ that is well-formed
in some typing context Γ (often elided). For substitution we use the notation P x

e .
For clarity we use substitution notation in satisfaction statements, even though
strictly speaking the syntax does not (and should not) include reference literals.
If Γ, x : T � P and σ ∈ [[Γ ]] and v ∈ [[T ]]σ, we may write σ |=Γ

θ P x
v to abbreviate

Extend(σ, x, v) |=Γ,x:T
θ P .

The transition relation depends on a method context Δ. Configurations take
the form 〈C, σ, μ〉 where μ is a method environment. The call of a let-bound
method m executes the body μ(m) with variables renamed to avoid clashes with
the calling context. In case of a pure method the call takes the form y := m(F )
and there is some extra bookkeeping to assign the final value of res (or rather, a
fresh instance thereof) to y.
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Fig. 8. Transition rules for calls of impure and pure procedures in context Δ.

The transition semantics for pure method call y := m(F ) takes a step that
assigns to y the value [[m(F )]]θσ (defined in Fig. 5). The transition semantics of
a call m(z), for impure m in Δ, takes a single step to a final state (or �) that
satisfies the specification Δ(m). Such states are described by the denotation
[[Δ(m)]] of the specification.

Definition 2 (Denotation of impure method spec). Let Δ be swf and let
(x:T )R � S [η] be in Δ. Let θ be a candidate interpretation of Δ and z a
variable name. Then [[(x:T )R � S [η]]](θ, z) is defined as follows, for any Γ1 ⊇ Γ
and Γ1-states σ, τ :

(i) [[(x:T )R � S [η]]](θ, z)σ� iff σ �|= Rx
z

(ii) [[(x:T )R � S [η]]](θ, z)στ iff
(a) σ |=Γ1

θ Rx
z and τ |=Γ1

θ Sx
z and σ→τ |=θ ηx

z and
(b) for all σ′, π, if Agree(σ, σ′, ηx

z , π, θ) and σ′ |=Γ1
θ Rx

z then there are τ ′, ρ
with

– τ ′ |=Γ1
θ Sx

z and – σ′→τ ′ |=θ ηx
z

– ρ ⊇ π and freshRefs(σ′, τ ′) ⊆ ρ(freshRefs(σ, τ))
– Lagree(τ, τ ′,X, ρ) where X = freshLocs(σ, τ)∪wlocs(σ, θ, ηx

z )

It is item (ii)(b) that is new in this paper; the rest is from RLII. Note that X is
defined by interpreting η in the initial state.

A state σ may have no successor because the specification is unsatisfiable
at σ. Unsatisfiability may be due to the postcondition, but it can also hap-
pen that τ satisfies the postcondition but not the read effect. The specification
(x:Cell)true � y = x.val [wr y] is unsatisfiable: y cannot be set to x.val without
reading {x}‘val or having a stronger precondition like y = x.val.

Although specifications include read effects—a relational property— the deno-
tation of a specification need not be defined as an extreme solution to constraints
including that relational property. The elementary definition above has the prop-
erty that any τ ′ that satisfies the conditions in (ii) is a possible successor of σ′,
i.e., the denotation is closed in the sense that it includes the pair σ′, τ ′. This is
made precise in Theorem 9. The condition freshRefs(σ′, τ ′) ⊆ ρ(freshRefs(σ, τ))
in (ii)(b) was not immediately obvious but is crucial for Theorem9.

With all the ingredients in hand, the transition semantics can be defined; see
Fig. 8.
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5 Semantics of Correctness Judgments

To link a client C with implementation B of a method m used by C we want C
to be correct for all interpretations of the method context. But reasoning about
B can use a particular interpretation for m. Such an interpretation might be
provided directly, as a mathematical definition provided by the programmer, or
it might be derived from the code as it is in work on VC generation for pure
methods [5]. Here we treat such interpretations semantically. To that end, we
generalize the correctness judgment form to Δ; θ �Γ C : P � Q [ε]. For this to
be swf, θ should be a candidate interpretation of some subset of Δ, and Δ �Γ C :
P � Q [ε] should be swf as defined in Sect. 2. The original form is essentially the
special case where θ is the empty function. The generalized correctness judgment
is important for the linking rule, which we introduce here in abridged form. We
consider a single method specification Θ ≡ m : (x:T, res:U)Q � Q′, we elide
effects, and the partial interpretation of the ambient library Δ is empty.

Δ,Θ; ∅ � C : P � P ′ Δ,Θ; θ � B : Q � Q′ dom θ = {m} θ |= Δ,Θ

Δ; ∅ � let m(x:T, res:U) = B in C : P � P ′ (1)

A client C is linked with the implementation B of a pure procedure m. The
verification condition for C is under the hypothesis of some specifications Δ,Θ
which include the specification Θ of m. The rule may only be instantiated with
swf judgments, so Δ is swf (as it appears in the conclusion) and the larger
method context Δ,Θ is also swf.

According to the semantics to follow, the judgment for C means that it is
correct with respect to any interpretation ϕ of all the pure procedures in Δ,Θ.
The verification condition for B also has hypothesis Δ,Θ for procedures that may
be called in B or used in its specification, and B must be correct with respect
to any interpretation of the pure procedures in Δ, but fixed interpretation θ
of m. The rule requires that in fact θ is an interpretation of Θ, meaning that
θ(m) satisfies the specification of m. Because this specification may refer to pure
methods in the ambient context Δ, satisfaction is expressed as θ|=Δ,Θ. This is
defined in terms of the following.

Definition 3 (context interpretation). Let Δ be swf in Γ and let θ be
a candidate Δ-interpretation. (Note that dom θ = domΔ.) Say θ is a Δ-
interpretation iff the following holds for each m : (x:T, res:U)P � Q [ε] in
Δ. For any σ ∈ [[Γ ]] and v ∈ [[T ]]σ,

(a) θ(m)(σ, v) = � iff σ �|=θ P x
v

Furthermore, if σ |=θ P x
v then letting w = θ(m)(σ, v) we have

(b) σ |=θ Qx,res
v,w

(c) for any σ′ ∈ [[Γ ]], v′ ∈ [[T ]]σ′ with σ′ |=θ P x
v′ , and any refperm π from σ to

σ′, if v
π∼ v′ and Agree(σ, σ′, ε, π, θ) then w

π∼ w′ where w′ = θ(m)(σ′, v′)
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Definition 4 (partial context interpretation). Let Δ be swf and Δ,Θ be
swf. Let θ be a candidate interpretation of Θ. We say θ is a partial interpre-
tation of Δ,Θ, written θ |= Δ,Θ, provided that for any Δ-interpretation δ, the
candidate δ∪θ is a (Δ,Θ)-interpretation.3

Definition 5 (valid judgment). A swf correctness judgment Δ; θ �Γ C : P �

Q [ε] is valid iff the following conditions hold for all Γ -environments μ, all Δ-
interpretations δ such that θ ⊆ δ, and all states σ such that σ |=Γ,sigs(Δ)

δ P .

(Safety) It is not the case that 〈C, σ, μ〉 Δ,δ�−→∗ �.

(Post) τ |=δ Q for every τ with 〈C, σ, μ〉 Δ,δ�−→∗ 〈skip, τ, μ〉
(Effect) σ→τ |=δ ε for every τ with 〈C, σ, μ〉 Δ,δ�−→∗ 〈skip, τ, μ〉
(Read Effect) for any τ such that 〈C, σ, μ〉 Δ,δ�−→∗ 〈skip, τ, μ〉, and any σ′, π, τ

such that Agree(σ, σ′, ε, π, δ) and σ′ |=Γ
δ P , there are τ ′, ρ such that

〈C, σ′, μ〉 Δ,δ�−→∗〈skip, τ ′, μ〉 and ρ ⊇ π and freshLocs(σ′, τ ′) ⊆ ρ(freshLocs(σ, τ))
and Lagree(τ, τ ′,X, ρ) where X = freshLocs(σ, τ)∪wlocs(σ, δ, ε).

In case Δ(m) is unsatisfiable (except possibly by divergence), no Δ-interpretation
exists. Then the judgment holds but the hypotheses cannot be discharged by
linking because there is no way to instantiate θ in rule (1).

The definitions up to this point apply even if pure methods are called outside
their precondition. For understandable proof rules, and to stay within FOL for
assertions, we will disallow such specifications and correctness judgments.

Lemma 6 (two-valued semantics of formulas). If θ is a Δ-interpretation
and σ |=θ df(P,Δ) then [[P ]]θσ is not �. And for any σ and any Δ-interpretation
θ, if σ |=θ df(P,Δ) then σ |=θ P satisfies the usual defining clause, see Fig. 7.

Definition 7. Let Γ be a typing context and let Δ be a specification context
that is swf in Γ . Let P be a formula that is swf in vars(Γ ), sigs(Δ). Then P is
Δ-valid , written Δ |= P , if and only if σ |=θ P for all Δ-interpretations θ and
all states σ.

Definition 8 (healthy, well-formed). Let Γ and Δ satisfy the conditions of
Definition 7. A formula P that is swf is healthy iff df(P,Δ) is valid. A swf
specification P � Q [η] is healthy (with respect to Γ,Δ) iff the three formu-
las df(P,Δ), P ⇒ df(Q,Δ), and P ⇒ df(η,Δ) are Δ-valid. A swf correctness
judgment Δ; θ �Γ C : P � Q [η] is healthy iff the three formulas df(P,Δ),
P ⇒ df(Q,Δ), and P ⇒ df(η,Δ) are Δ-valid. The term well-formed means
swf and healthy.

The definitions to this point are intricate but elementary; in particular, there
are no fixpoints. But by contrast with axiomatic semantics, correctness is directly
3 Under these conditions, if the specifications in Θ refer to methods in Δ, Θ is not swf

on its own, and then it is not meaningful to call θ a Θ-interpretation.
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grounded in a conventional operational semantics. The one unconventional ele-
ment is that transition semantics depends on method context. The ultimate
confirmation that we are reasoning about program behavior is soundness of the
linking rule, which can be used to discharge all hypotheses.

6 Proof System

The framing judgment has the form P ;Δ � η frm Q and is swf under evident
conditions. It means that in P -states, Q reads within the read effect η. The
judgment is healthy iff the formulas df(P,Δ), P ⇒ df(η,Δ), and P ⇒ df(Q,Δ)
are all Δ-valid. The judgment is valid , written P ;Δ |=Γ η frm Q, iff for all
Γ -states σ, σ′, refperms π, and Δ-interpretations θ, if Agree(σ, σ′, η, π, θ), and
σ |=Γ

θ P ∧ Q, then σ′ |=Γ
θ Q.

A verifier can check framing judgments in terms of the validity property, but
our logic includes rules to derive framing judgments. A basic rule allows to infer,
for atomic formula P , the judgment true;Δ � ftpt(P,Δ) frm P concerning a
precise footprint computed by function ftpt which is defined in Fig. 9. For non-
atomic formulas there are syntax-directed rules, e.g., the rule for conjunction
allows to infer P ;Δ � ε frm Q1 ∧ Q2 from P ;Δ � ε frm Q1 and P ∧ Q1;Δ �
ε frm Q2. There are also subsidiary rules for subsumption of effects and for logical
manipulation of P . These rules are adapted in a straightforward way from RLI
(Sect. 6.1).

The point of establishing P ;Δ � η frm Q is that code that writes outside
η cannot falsify Q. This is expressed in the frame rule by computing, from the
frame η of Q and the frame condition ε of the code, a separator formula
which is a conjunction of region disjointness formulas describing states in which
writes allowed by ε cannot affect the value of a formula with read effect η. We
define the separator formula as η ·/. ε, using function ·/. which recurses on syntax
(see RLI Sect. 6.2). For example, rdG‘f ·/. wrH‘g is true, and rdG‘f ·/. wrH‘f
is the disjointness formula G # H. Also, rdx ·/. wr y is simply false, if x and y
are the same variable, and true otherwise. Writes on the left and reads on the
right are ignored, so η ·/. ε is the same as reads(η) ·/. writes(ε).

The key property of a separator is to establish the agreement to which
frame validity refers. To be precise, suppose σ→τ |=θ ε and σ |=θ η ·/. ε. Then
Agree(σ, τ, η, id, θ), where id is the identity on σ(alloc).

An effect ε is called self-framing in method context Δ provided that for
every rdG‘f or wrG‘f in ε, ftpt(G,Δ) is in ε. Such effects arise, for example,
in case a method refers to itself in its frame condition. So are effects obtained

Fig. 9. Footprints of region expressions and atomic assertions well-formed in Δ.
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Fig. 10. Proof rules for field update, framing, interpreting, pure/impure calls, and
linking.

using the ftpt function and most of the framing rules. For self-framing ε, if
Agree(σ, σ′, ε, π, θ) then [[G]]θσ

π∼ [[G]]θσ′ for any rdG‘f or wrG‘f in ε.

Theorem 9 (denotation closure). Suppose η is self-framing and θ is a Δ-
interpretation. If [[(x:T )R � S [η]]](θ, z)στ then [[(x:T )R � S [η]]](θ, z)σ′τ ′, pro-
vided that σ′, τ ′ satisfy the conditions in Definition 2(ii).

Proof Rules for Correctness Judgments. Figure 10 presents a few proof rules.
They are to be instantiated only with well-formed premises and conclusions
(Definition 8). The first, for field update, is a ‘local axiom’ that precisely describes
the effect; it shows how read effects can easily be incorporated into the rules from
RLI (Sect. 7.1) and RLII (Sect. 7.1). Next is the frame rule, adapted from RLI/II
by adding Δ to the side conditions. Then come rules for impure and pure method
calls. For reasons of parsimony we make self-framing an explicit premise where
needed for soundness. It turns out that in non-trivial provable judgements the
frame conditions in the method context will be self-framing.

We give an illustrative rule for linking a client with a method implementa-
tion. The general rule allows several pure and impure methods that may refer
to each other in their specifications and code (of course, subject to the proviso
concerning ≺+

Δ in the definition of swf method context in Sect. 2). Predicate
terminates(Q,B) says that from any Q-state, B terminates (normally or abnor-
mally). One premise is that partial (Δ,Θ)-interpretation θ is provided; it gives
the chosen interpretation for m, to be used in verifying the body B. By contrast,
the premise for C requires correctness with respect to all interpretations of m.

Theorem 10. Any derivable correctness judgment is valid.
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7 Related Work

We take the Cell example from the most closely related work, [18], where read
effects of pure methods are specified using dynamic frames and methods may be
self-framing. They define (and implement) a VC-generator including VCs that
encode the semantics of read effects, albeit only for a pair of states in succession.
(That avoids the need for refperms, and suffices for framing but not relational
reasoning for data abstraction and encapsulation.) They give a detailed proof of
soundness with respect to transition semantics, by showing that the VCs ensure
a small-step invariant that implies correctness and fault-avoidance. Axioms are
included (and proved sound) to exploit read effects for framing. Different from
our work, the body of a pure method is required to be a single ‘return E’ statement
and E is visible to clients; and pure methods do not have postconditions. (Their
implementation does include such postconditions.) Although VCs are generated
modularly, we do not discern an explicit account of linking, or an easy adaptation
to cater for hiding a pure method body or invariants from clients. As usual in
practical systems, the syntax embeds specifications in programs, as opposed to
judgments that ascribe properties to programs.

A number of earlier works point out the importance of read effects for pure
methods and explore VC-generation, e.g. [5], explore weak purity which allows
allocation, and shows consistency of a system of VCs (but not operational
soundness). The analog of consistency, in our setting, is being able to discharge
hypotheses in the linking rule.

Framing in separation logic encompasses read and write effects, implicitly in
syntax but explicitly in the semantics (safety monotonicity, frame property [14]).
Whereas self-framing is a property of effects, in our setting, it is a property of
formulas in other settings. In separation logic, all assertions are effectively self-
framing. The abstract predicates approach [15] to data abstraction has inspired
several works that cater for SMT provers by using ghost instrumentation to
encode intensional semantics of effects in terms of permissions. One provides
a VC generator and sketches an argument for its operational soundness [6].
Another gives a detailed semantics and soundness proof for VCs that provide
effective reasoning about recursively defined abstract predicates and abstraction
functions [19]. The latter works have extensive pointers to related work.
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Abstract. We propose a methodology for carrying out refinement proofs
across declarative abstract models and concrete implementations in C,
using the VCC verification tool. The main idea is to first perform a system-
atic translation from the top-level abstract model to a ghost implementa-
tion in VCC. Subsequent refinement proofs between successively refined
abstract models and between abstract and concrete implementations are
carried out in VCC. We propose an efficient technique to carry out these
refinement checks inVCC.We illustrate ourmethodologywith a case study
in which we verify a simplified C implementation of an RTOS scheduler,
with respect to its abstract Z specification. Overall, our methodology leads
to efficient and automatic refinement proofs for complex systems that
would typically be beyond the capability of tools such as Z/Eves or Rodin.

1 Introduction

Refinement-based techniques are a well-developed approach to proving func-
tional correctness of software systems. In a correct-by-construction approach
using step-wise refinement, one begins with an abstract specification of the sys-
tem’s functionality, say M1, and successively refines it via some intermediate
models, to a concrete implementation, say P2 in an imperative language. Simi-
larly, in a post-facto proof of correctness, one begins with a concrete implemen-
tation P2, specifies its functionality abstractly in M1, and comes up with the
intermediate models by simultaneously refining M1 towards P2 and abstracting
P2 towards M1. This is depicted in Fig.1(a). We note that it is convenient to have
M1 specified in an abstract modelling language such as Z [16] or Event-B [1],
since this gives us a concise yet readable, and mathematically precise specifi-
cation of the system’s behaviour, which serves as a specification of functional
behaviour for users and clients of the system.

Refinement-based proofs of functional correctness have several advantages
over an approach of directly phrasing and proving pre and post conditions on
methods. To begin with, refinement-based approaches help to break down asser-
tions on complex programs using successive refinement steps, leading to more
modular and transparent proofs. Secondly, they provide a useful framework for
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verifying clients of a library more efficiently. In principle, one could reason about
assertions in a client program C that uses a concrete implementation of a library
P2, by showing that C with a more abstract library M1 satisfies the same asser-
tions. This could lead to considerable reductions in the verification effort as
reported in [9]. In a similar way, if one replaces a library implementation by a
more efficient one, one does not have to reprove certain properties of its possi-
bly numerous clients if one has shown that the new implementation refines the
old one.

There are nevertheless a couple of key difficulties faced in carrying out refine-
ment proofs between the successive models in a refinement-based approach, in
our experience. The first is that performing a refinement proof between the
abstract models (such as a proof that M1 is refined by M2), is challenging
because the level of automation in tools such as Z/Eves [14] and Rodin [2] is
inadequate, and requires non-trivial human effort and expertise in theorem prov-
ing to get the prover to discharge the proof obligations. The second hurdle we
encounter is in showing the refinement between the abstract model M2 and the
imperative language model P1. The problem here is that there is no tool which
understands both the modelling languages of M2 and P1. One way of getting
around this is to “import” the before-after-predicates (BAP’s) from M2 to P1,
by using requires and ensures clauses that are equivalent to formulas in which
the abstract state is existentially quantified away. But there are some disad-
vantages to this approach: (i) existential quantifications are difficult to handle
for the theorem prover and can lead to excessive time requirement or can even
cause the prover to run out of resources, and (ii) can be error-prone, and the
equivalence should ideally be checked using a general-purpose theorem prover
like Isabelle/HOL or PVS.

In this paper we propose a method of performing step-wise refinement and
proving the ensuing refinement conditions, fully within the VCC toolset [6],
with the aim of overcoming some of the hurdles described above. Continuing the
example above, the idea is to first translate the high-level specification M1 into
a model G1 in VCC’s “ghost” modelling language. Next we refine G1 to another
ghost implementation G2 in VCC, which will play the role of M2 subsequently.
How does this help us to get around the problems mentioned above? The first
problem of proving refinement between the abstract models is alleviated as VCC
is typically able to check the refinement between ghost models like G1 and G2

efficiently and automatically. The second problem of moving from an abstract
model to an imperative implementation is also addressed because we now have
both G2 and P1 in a language that VCC understands, and we can then proceed to
phrase and check the refinement conditions (for instance by using a joint version
of G2 and P1 together) within VCC.

Our contributions in this paper are the following. First, we provide a system-
atic and mechanizable translation procedure to translate specifications written
in a subset of the Z modelling language to a ghost specification in VCC. The
fragment of Z we target is chosen to cover the case study we describe next,
and essentially comprises finite sequences and operations on them. There is an
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Translation

Z to VCC

(a) (b)

G2

P1

P2

G1M1

M2

P1

P2

M1

Fig. 1. (a) A typical refinement chain, with M1 and M2 being abstract models in a
language like Z, and P1 and P2 being programs in a language like C. (b) The proposed
translation and refinement chain, with G1 and G2 being “ghost” implementations in
VCC. Dotted arrows denote the “refines” relationship.

inevitable blow-up of around 10x in the number of specification lines while going
from Z to VCC, as VCC does not support many data-types (such as sequences)
and operators that Z supports. While refining one ghost model to another (G1

to G2), the size of the model is not a problem: typically only a few aspects of the
models change in each refinement step.

Secondly, we propose a two-step technique of phrasing the refinement check
between ghost models and C programs in VCC that improves VCC’s efficiency
considerably. A näıve encoding of the refinement conditions can cause VCC to
run out of memory due to the size of the model and complexity of the verification
conditions. Using our two-step refinement check, VCC always terminates and
leads to a reduction of over 90 % in the total time taken by a näıve check, when
evaluated on our case-study.

The notion of refinement, theory and methodology for coming up with inter-
mediate models used in this paper, are all based on the work in [7], where the
functional correctness of a complex existing system—the FreeRTOS open-source
real-time operating system [12]—was specified and verified. Experience with that
case study, where we encountered the problems mentioned above, prompted us
to explore these issues in a simpler setting. In this paper we use a simpler ver-
sion of the FreeRTOS scheduler, which we built ourselves for this verification
exercise. This scheduler, which we call Simp-Sched provides the same task-
related API’s as FreeRTOS (like vtaskCreate and vtaskDelay), but uses a task id
(a number) instead of a full Task Control Block (TCB), and an array-based
list library instead of the more complex circular doubly-linked xList library
used in FreeRTOS. We begin with the Z specification of the scheduler API’s
that we used in [7], and apply the techniques described above to translate the
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initial model to VCC, and then carry out the refinement checks between succes-
sive models completely within the VCC platform. We carry out the refinement
checks using different approaches explained in Sect. 4 and report on the compar-
ative improvements we obtain over other approaches.

2 Preliminaries

In this section we introduce the notion of refinement we will use in this paper
and a running example to illustrate some of the techniques we propose.

Consider a C implementation of a queue Abstract Data Type (ADT) (or
library) shown in Fig. 2, whose functional correctness we want to reason about.
This example is taken from [7]. The library uses an integer array A to store the
elements of the queue. The variables beg and end denote positions in the array
and the elements of the queue are stored starting from beg to end - 1 in the
array, wrapping around to the beginning of the array if necessary. The library
provides the operations init , enq and deq to respectively initialize, enqueue, and
dequeue elements from the list. The enq operation inserts the given element into
the position end in the array, and the deq operation returns the element at the
position beg in the array. Both operations update the len variable and increment
the beg/end pointer modulo MAXLEN.

In a refinement-based approach we would begin by specifying the function-
ality of the queue abstractly. We could do this in the Z specification language
for instance, as shown in Fig. 3. The model specifies the state of the ADT and
how the operations update the state, using the convention that primed variables
denote the post-state of the operation.

We now want to show that the queue implementation refines the abstract Z
specification. Refinement notions are typically specified in terms of a simulation
between the concrete and abstract models. The simulation is witnessed by an
abstraction relation. In this case, a possible abstraction relation ρ we could use
is roughly as follows:

len = #content ∧
(beg < end) =⇒ ∀i ∈ N.((i < end − beg) =⇒ A[beg + i] = content(i)) ∧
(beg > end ∨ (beg = end ∧ len > 0)) =⇒

∀i ∈ N.((i < MAXLEN − beg) =⇒ A[beg + i] = content(i)) ∧
∀i ∈ N.((i < end) =⇒ A[i] = content(MAXLEN − beg + i)).

1: int A[MAXLEN]; 11: void enq(int t) {
2: unsigned beg, end, len; 12: if (len == MAXLEN)

/*noitpecxe*/;)0(tressa:31:3
4: void init() { 14: A[end] = t;
5: beg = 0; 15: if (end < MAXLEN-1)
6: end = 0; 16: end++;
7: len = 0; 17: else
8: } 18: end = 0;
9: 19: len++;
10 int deq() { ... } 20: }

Fig. 2. c-queue: a C implementation of a Queue library.
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z queue
content : seq Z

#content ≤ k

enq
Δz queue
n? : Z

#content < k

content ′ = content � 〈n?〉

init
Δz queue

content ′ = 〈〉

deq
Δz queue
n! : Z

content �= 〈〉
n! = head(content)
content ′ = tail(content)

Fig. 3. A Z specification, z queuek, of a queue library which allows a maximum of k
elements in the Queue. The notation ΔS for a Z schema S expands to the definition of
S with an additional definition S′ representing the post state with primed field names.

The direction of simulation varies: a common notion of refinement used in the
literature (for example in Event-B [1], and tools like Resolve [8], Dafny [11], and
Jahob [17]), is to require the abstract to simulate the concrete. In this paper we
use the notion from [7] where we require the concrete to simulate the abstract.
We choose to use this notion as it gives us stronger verification guarantees.
Nonetheless, the results we show in this paper are independent of the direction
of simulation used, and apply for refinement notions with the other direction of
simulation as well. We now briefly outline the notion of refinement used, and
point the reader to [7] for more details.

An ADT type is a finite set N of operation names. Each operation name n in
N has an associated input type In and an output type On, each of which is simply
a set of values. We require that there is a special exceptional value denoted
by e, which belongs to each output type On; and that the set of operations
N includes a designated initialization operation called init . A (deterministic)
ADT of type N is a structure of the form A = (Q,U,E, {opn}n∈N ) where Q
is the set of states of the ADT, U ∈ Q is an arbitrary state in Q used as an
uninitialized state, and E ∈ Q is an exceptional state. Each opn is a realisation
of the operation n given by opn : Q×In → Q×On such that opn(E,−) = (E, e)
and opn(p, a) = (q, e) =⇒ q = E.

Let A = (Q,U,E, {opn}n∈N ) and A′ = (Q′, U ′, E′, {opn}n∈N ) be ADT’s
of type N . We say A′ refines A (written A′ � A), if there exists a relation
ρ ⊆ Q′ × Q such that:

(init) Let a ∈ Iinit and let (qa, b) and (q′
a, b′) be the resultant states and outputs

after an init(a) operation in A and A′ respectively, with b 
= e. Then we
require that b = b′ and (q′

a, qa) ∈ ρ.
(sim) For each n ∈ N , a ∈ In, b ∈ On, and p′ ∈ Q′, with (p′, p) ∈ ρ, whenever

p
(n,a,b)−−−−→ q with b 
= e, then there exists q′ ∈ Q′ such that p′ (n,a,b)−−−−→ q′

with (q′, q) ∈ ρ. This is visualized in Fig. 4.
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=⇒

p

p′

q
(n, a, b)

p

p′

q
(n, a, b)

q′

ρρρ

(n, a, b)

Fig. 4. Illustrating the condition (RC-sim) for refinement.

The notation p
(n,a,b)−−−−→ q denotes the fact that the ADT in state p can allow a

call to operation n with argument a, return a value b, and transition to state q.
We call this condition (RC).

In the rest of the paper we describe our contributions with this background
in mind. Our aim is to carry out the refinement checks across abstract models
and C implementations, fully within the VCC tool, in a way that gets around
some of the problems with checking refinements outlined in the introduction.
In Sect. 3 we explain how we can systematically translate a Z model to a ghost
implementation in VCC. In Sect. 4 we explain different techniques for carrying
out refinement checking in VCC, beginning with the natural approaches, followed
by our more efficient two-step approach. We evaluate our techniques in a case
study involving a simple RTOS scheduler called Simp-Sched, which we introduce
in Sect. 5, and discuss the performance comparison in Sect. 6. Finally we conclude
with some pointers to related work in Sect. 7.

3 Translating Z to VCC

The objective here is to translate an abstract Z model M into a ghost imple-
mentation G in VCC such that G � M. The idea is to translate the state schema
like that of z queue in Fig. 3, comprising fields and invariants, into a structure
in VCC with corresponding fields and invariants. Similarly, for the operations as
well.

We translate each operation schema SM
op of M, corresponding to an opera-

tion op in the library, into function contracts (in terms of requires and ensures
clauses) for the corresponding implementation of the function in VCC, say
funcG

op. In this translation we classify the set of predicates in SM
op into preM

op

(precondition) and BAPM
op (before-after predicates). Here preM

op is the set of pred-
icates defined over the pre-state and input of SM

op , and the remaining predicates
relating the post-state to the pre-state are denoted by BAPM

op .
Table 1 presents a look-up procedure for encoding various Z objects in VCC.

If X is a set then the notation A X denotes an arbitrary subset of X. The Z
objects are encoded in VCC in a way that facilitates easy proofs for the required
verification conditions. This is crucial for scalability.

Figure 5 shows excerpts from the VCC code obtained by translating the Z
schema of Fig. 3.
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Table 1. Table showing the translation of Z objects to VCC objects. It gives a suitable
encoding of Z objects in VCC which enables fast verification. If X is a set then the
notation A X denotes an arbitrary subset of X.

_(ghost int content[\natural]) void enq(int a)
_(ghost \natural contentLen) _(requires contentLen < MAXLEN)
_(invariant contentLen <= MAXLEN) ...
... _(ensures contentLen == \old(contentLen)+1)
void init(void) _(ensures (\forall \natural n; (n < \old(contentLen))
... => content[n] == \old(content[n])))
_(ensures contentLen == 0) {
{ _(ghost content[contentLen] = a)

_(ghost contentLen = 0) _(ghost contentLen = contentLen + 1)
} }

Fig. 5. Part of the translation of the Z specification z queue to a ghost version in VCC.
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In this paper we present only those Z constructs that are used in the Z model
of our case study in Sect. 5. Nevertheless other mathematical objects in Z can
be handled in a similar way.

4 Phrasing Refinement Conditions in VCC

In this section we describe three ways to phrase the refinement condition (RC)
of Sect. 2 as annotations in VCC. The first approach—which we call the “Direct-
Import” approach—is useful when the abstract library is not available as a ghost
model in VCC. Here one directly imports the abstract library as code level
annotations in VCC. The second is the so-called “Combined” approach, which
can be applied when the abstract library is available as a ghost implementation in
VCC. Finally we describe our proposed “Two-Step” approach, which can again
be applied when the abstract library is available as a ghost implementation, but
which VCC discharges far more efficiently.

In each of these approaches we consider the case when the abstract model M
is specified either as a Z specification or as a VCC ghost model, and the concrete
model is given as an implementation in C, say P. For clarity, we focus here only
on the (sim) condition of (RC).

4.1 Direct-Import Approach

This approach is applicable when the abstract model M is specified in a specifica-
tion language like Z. The idea is to existentially quantify away the abstract state
from a glued joint (abstract and concrete) state, and phrase this as pre/post con-
ditions on the concrete methods. The resulting requires and ensures conditions
are independent of the abstract state.

Figure 6 shows a schematic for how one can apply the direct-import method
in VCC. We use s and s′ to denote respectively the pre and post states of the
abstract model, and t and t′ to represent the pre and post states of the concrete
model. For an operation op, preM

op represents the precondition of op in library
M. We use invρ to represent the abstraction relation which relates concrete and
abstract states, and BAP to represent the predicates on pre and post states
describing the transitions in the respective models.

Unfortunately this approach is not feasible in VCC as it is difficult for the
theorem prover to handle the existential quantification. A possible way out is to
transform the annotations to remove the existential quantification, and get an
equivalent condition on the concrete state. For instance, for the queue example
of Sect. 2, we could phrase the directly imported annotations by eliminating the
existential quantification, as shown in Fig. 7 for the deq operation. The before-
after predicates from the z queue model of Fig. 3 are phrased as annotations
over data structures in the C implementation.

This approach has two disadvantages. Firstly, the manual transformation can
be error prone and the equivalence should ideally be checked in a theorem prover
like PVS or Isabelle/HOL. Secondly, the invariants and preconditions need to
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op(Xop x)
(requires ∃ s : preM

op (s) ∧ invρ(t, s))

(ensures ∃ s, s′ : BAPM
op (s, s′) ∧ invρ(s, t)

∧invρ(s
′, t′))

(ensures \result = s′.y) {
// function body

}

Fig. 6. Directly importing abstract
library (M) using code level annota-
tions in VCC.

int deq()
_(requires len != 0)
_(ensures \result == \old(A[\old(beg)])
_(ensures len == \old(len) - 1)
_(ensures \forall unsigned i; (i < len)

==> ((\old(beg) < end) =>
A[beg+i] == \old(A[beg+i]))
...

{
// function body

}

Fig. 7. Manually transforming the directly-
imported before-after-predicates from the Z
specification of Fig. 3 into the queue imple-
mentation of Fig. 2.

struct {
_(ghost int lContent[\natural])
_(ghost \natural lLen)
-(invariant lLen <= l)

_(ghost int kContent[\natural])
_(ghost \natural kLen)

// gluing invariant
_(invariant (lLen == kLen) &&

(\forall \natural i;(i < lLen)
==> (lContent[i] == kContent[i])))

} LK;

Fig. 8. Joint structure combining the
states of Gl and Gk.

void deqCombined()
_(requires LK.lLen != 0)
_(requires (LK.lLen == LK.kLen) &&

(\forall \natural i;(i < LK.lLen)
==> (LK.lContent[i] == LK.kContent[i])))

_(ensures (LK.lLen == LK.kLen) &&
(\forall \natural i; (i < lLen)
==> (LK.lContent[i] == LK.kContent[i])))

_(ensures lOut == kOut) {
// function body of lDeq
// function body of kDeq

}

Fig. 9. Combined function to check
refinement condition.

be specified directly on the concrete state. This can be quite complex for both
the human and the tool, especially in the presence of potentially aliased data
structures.

4.2 Combined Approach

A second technique can be used to prove the refinement between two libraries
when both are available as ghost or concrete implementations in VCC. The
refinement condition (RC) of Sect. 2 can be phrased in VCC by using a combined
function to update the instance of a joint structure which combines the fields
of abstract and concrete libraries. The abstraction relation ρ can be specified as
an invariant in the joint structure which we call a gluing invariant. To illustrate
this on a simple example, consider an abstract ghost implementation Gl of the
queue library (Sect. 2) and another ghost implementation Gk such that k ≥ l,
where the subscript represents the maximum size of the queue. Figure 8 shows
the joint structure to phrase the refinement condition between Gl and Gk and
Fig. 9 shows the combined function to check the refinement between the abstract
and concrete implementation of the deq operation.
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Unfortunately when the concrete model is a C program, this approach could
cause the prover to take lot of time or even run out of resources. In our opinion
this is mainly due to the fact that a large number of extra annotations are
required when reasoning about a joint (abstract and concrete) state that are
both mutable. These annotations are required as loop invariants and as function
contracts, to specify that each ghost object in the system is kept unmodified by
a loop or function to modify the concrete data object. For instance, there should
be a loop invariant in the combined function for updating the array A in the
queue example of Fig. 2, which essentially says that each element in the abstract
map (like lContent above) is kept unchanged. Similar predicates are required
in the function contract if functions are used to update the concrete state. In
our case study (Sect. 5), the number of such annotations required in a loop
or function contract is about twice the number of annotations required in the
proposed Two-Step approach to prove refinement conditions.

4.3 Two-Step Approach

We now propose an efficient approach, which we call the Two-Step approach,
which overcomes some of the difficulties of the previous two approaches. The idea
is to divide the refinement check into two steps. The first step is to prove the
BAPs for the abstract and concrete functions separately by manually supplying
the BAPs. The second step is to prove that the output states as defined by the
BAPs satisfies the gluing invariant. The problem with the combined approach
is avoided as in Step 1, we are interested in proving only the concrete BAP as
the post condition of the concrete function and hence there is no need to specify
the extra set of predicates in loops and concrete function contract to specify
preservation of the abstract state.

Figure 10 illustrates the two steps of our approach. Figure 11 shows the skele-
ton of the function in VCC to prove the abstract BAP for an library operation
op. Here A and B represent the abstract and concrete libraries respectively,
preA represents the abstract precondition (like lLen 
= 0 for deq) and invρ

BAPP
n

ρ

t

s ∈ preM
n

t′

n

ρ

t

s ∈ preM
n

=⇒

(a) Step 1 for concrete
model

BAPP
n

BAPM
n

=⇒ρ

BAPP
n

BAPM
n

ρ

nn

ρ

tt ′ t t′

sss ′s′

(b) Step 2

Fig. 10. Illustrating the conditions checked in the two-step approach.
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opA( )
(requires preA)

(ensures BAPA
op)

{
// body of opA

}

Fig. 11. Step 1 of the two-step app-
roach for proving the abstract BAP.

op( )
(requires preA ∧ invρ)

(decreases 0)

(ensures BAPB
op)

{
// body of opB

}

Fig. 12. Step 1 of the two-step app-
roach for proving the concrete BAP.

Blocked

Delayed

Deleted

Running
Ready but−
not running

Ready

Fig. 13. Task states in FreeR-
TOS/Simp-Sched

listInsertEnd, 
listInsert,
listRemove,
listIsEmpty, ...

listInitialise,
List library

init, taskCreate,
taskStartScheduler, 
taskDelay, taskDelete,
taskBlock, taskUnblock,
taskTickIncrement

task APIs

Simp-Sched architecture

Fig. 14. Components in the scheduler
implementation

represents the gluing invariant. For instance, the BAP of the deq operation
is (ret = \old(content[0]) ∧ (len = old(len) − 1) ∧ (0 ≤ i < len | content[i] =
\old(content[i + 1])). Figure 12 shows the skeleton of the function in VCC to
prove the concrete BAP. The annotation (decreases 0) says that the function
terminates.

The second step of the Two-Step approach is checking the validity of the
following implication and one can use a dummy function in VCC to check its
validity.

preA
op ∧ invρ ∧ BAPA

op ∧ BAPB
op =⇒ inv′

ρ ∧ retA = retB.

5 Case Study: Simp-Sched

Here we describe our experiences with building specifications and a correct-
by-construction implementation of a software system. The system we chose to
work with is the scheduler component of FreeRTOS, which is a popular real-
time operating system (RTOS) that is widely used in the embedded systems
community both in academic settings as well as in industry [3].

The FreeRTOS scheduler API provides operations to create, schedule, and
remove tasks, as well as to delay and resume task operation (see Fig. 13 for
a summary of task states). Application programmers can use these operations
to implement application functionality using these tasks as units of behaviour.
For our case study, we create a simplified version of the FreeRTOS scheduler,
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called Simp-Sched. Our new implementation maintains all key aspects of timing
and scheduling. The simplification is based on two things:

1. Tasks in the FreeRTOS scheduler are maintained in a struct called a task
control block, which includes pointers to function behaviour. In Simp-Sched,
we simply use an integer task ID to represent the TCB of a task.

2. All task lists (ready, delayed, etc.) are maintained in a data structure called
xlist, which is implemented as a circular doubly-linked list. In Simp-Sched,
we replace this data structure with array implementations of the task lists.

All other aspects of the scheduler implementation are maintained. As such,
the stock FreeRTOS scheduler implementation is a refinement of our Simp-Sched
implementation. Given this, one of the key uses of our Simp-Sched implementa-
tion is use in a runtime monitor that can be used to identify potential scheduling
inconsistencies and errors. Each API operation implementation in FreeRTOS can
be instrumented to include a call to the corresponding operation in Simp-Sched,
so that the two scheduler implementations are running in parallel.

The C implementation of Simp-Sched includes 769 lines of C code and 106
lines of comments [15]. The task lists are implemented as a separate library in
which list is implemented using arrays in C. Figure 14 shows the components in
the Simp-Sched implementation with interface operations.

5.1 Refinement Strategy for Simp-Sched

We now describe our methodology for constructing a correct C program from
a mathematical specification of Simp-Sched by applying the refinement theory
from [7]. The methodology involves five stages.

1. We start with a mathematical model in Z which we call M1 capturing the
high-level functionality of Simp-Sched.

2. We apply our mechanizable procedure explained in Sect. 3 to translate M1

to a declarative model in VCC, which we call G1. Note that the translation
guarantees that G1 � M1.

3. We then refine G1 to a more concrete model G2 in VCC to capture some
machine level requirements. For example, the system clock is unbounded in
G1, which is not directly realizable in the C language. In G2 the clock value
cycles in the interval [0, maxNumVal] where maxNumVal is the maximum value
that an unsigned int in C can take. This change has another effect: the
delayed tasks are maintained in a single delayed list in G1, which has to be
broken into two lists in G2 to cope with the bounding of the clock value.
The refinement between G2 and G1 is verified using the combined approach
explained in Sect. 4.2.

4. Next, we refine G2 to P1 where every data object except task lists in G2 is
implemented using executable objects and functions in C. The refinement
between P1 and G2 is verified using the Two-Step approach explained in
Sect. 4.3.
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map based list
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implementation
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lArray − 

Refined VCC

Z model VCC model

implementation
in C

implementation
in C

lMap −

P1

P2

model

abstract

Concrete

M1 G1

G2

Fig. 15. Overview of the construction
of Simp-Sched.

Model LOA LOC Model LOA LOC
M1 222 - G2 � G1 741 3271
G1 1580 1317 P1 � G2 7639 24
G2 2287 1954 L1 � L2 837 20
P1 293 609 L1 602 240
P2 - 769 L2 56 104

Fig. 16. Code metrics and human
effort involved. Here LOA and LOC
respectively represent the number of
Lines Of Annotations and number of
Lines Of Code without comments and
blank lines, L1 and L2 represent lMap
and lArray respectively.

5. Finally we refine P1 to P2 where the map-based abstract implementation of
the list library (lMap) is replaced with an array-based list implementation
(lArray). The refinement between P2 and P1 is verified using the Two-Step
approach explained in Sect. 4.3.

P2 is a C program and we conclude using the transitivity and substitutability
theorems from [7] that P2 � M1. The verification artifacts from this case study
are available at [15] (Fig. 15).

5.2 Code Metrics and Human Effort Involved

We spent two human-months to complete this work. The code metrics are pre-
sented in the table in Fig. 16. Even though there are around 22,500 lines of
code/annotations there is only a small modification required in successive refine-
ments and hence the size of the initial model G1 and L1 model extracted from
G2 are the important parts deciding the human effort required. The models G1

and L1 contain 2,422 lines of annotation in VCC, which is about 3 times the size
of the executable code in P2.

6 Performance Comparison

We report the time taken by VCC to prove the refinement conditions between
different models in the case study. Table 2 shows the time taken under the
three different approaches, namely the Direct-Import, Combined, and Two-Step
approaches described in Sect. 4. Our Two-Step approach takes only 7.4% of the
total time taken by the Direct-Import approach. The time taken by the Combined
approach is much longer than the time taken by the Direct-Import approach.
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Table 2. Time taken by VCC to prove refinement conditions with the different
techniques.

Sl.No. API Time taken by VCC (in seconds)

Direct import Combined Two-step

Step1 Step2 Total

1. init 257.56 89.63 231.01 3.52 234.53

2. taskCreate 357.09 780.88 9.41 4.28 13.69

3. taskStartScheduler 10.36 13.95 5.13 4.55 9.68

4. taskDelay 285.09 18773.61 22.19 8.47 30.66

5. taskDelete 436 18391.04 68.23 7.86 76.09

6. taskBlock 422.7 20699.25 21.64 5.28 26.92

7. taskUnblock 227.06 16838.05 27.44 6.02 33.46

8. listInitialise 2.11 2.7 2.34 1.88 4.22

9. listGetNumberOfElements 2.02 2.19 2.06 1.89 3.95

10. listIsEmpty 1.97 2.34 3.86 2.14 6.00

11. listIsContainedIn 2.31 2.19 2.83 4.44 7.27

12. listGetIDofFirstFIFOtask 3.05 2.3 2.26 2.97 5.23

13. listGetIDofFirstPQtask 1.69 2.59 2.52 4.39 6.91

14. listGetKeyOfFirstPQtask 1.83 3.08 2.36 1.97 4.33

15. listInsertEnd 2.49 2.69 2.19 4.52 6.71

16. listInsert 31.77 8.89 2.77 2.22 4.99

17. listRemove 4447.67 42.7 3.7 2.23 5.39

Total time taken by each technique 6492.77 75658.08 489.94

This is because of the presence of the abstract objects, abstract invariants, glu-
ing relation and abstract function body in addition to the overhead involved in
the Direct-Import approach.

7 Related Work and Conclusion

As already mentioned, the work in this paper uses the foundation laid in [7], in
terms of the theory of refinement and methodology used. There again, VCC is
the main tool used for refinement checking: first for checking the refinement con-
ditions between abstract Z models by translating them to VCC, and secondly for
checking the refinements between the refined Z model and the concrete imple-
mentation. However the Z to VCC translation was partial, as they only needed to
check the refinement between the changed API’s. As a result the approach used
for phrasing the refinement conditions for the abstract to imperative implementa-
tion step was the “Direct-Import” technique described in Sect. 4.1. In contrast,
in this paper we have (a) given a systematic translation from Z to VCC and
(b) proposed a two-step refinement check to phrase the refinement conditions in
VCC that we show leads to significant improvements in our case study.

VCC was used extensively in the Verisoft XT project [5] at Microsoft, where the
goal was verification of Hyper-V hypervisor [10] and PikeOS [4] operating systems.
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The methodology used there appears to have been to define an abstract specifica-
tion as a ghost model in VCC, and to prove conformance of the C implementation
to this abstract model. However it is not clear if these works make use of a formal
theory of refinement and if so, how the refinement conditions are checked in VCC.

In future work, we plan to automate the Z to VCC translation and expand
the subset of the language we handle. We would also like to explore the further
translation of the VCC ghost model to a simple executable implementation in
C, with the aim of acting as a simulator for the model along the lines of ProZ
animator [13].
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Abstract. A common belief is that formalizing semantics of program-
ming languages requires the use of a proof assistant providing (1) a
specification language with advanced features such as higher-order logic,
inductive definitions, type polymorphism, and (2) a corresponding proof
environment where higher-order and inductive reasoning can be per-
formed, typically with user interaction.

In this paper we show that such a formalization is nowadays pos-
sible inside a mostly-automatic program verification environment. We
substantiate this claim by formalizing several semantics for a simple lan-
guage, and proving their equivalence, inside the Why3 environment.

1 Introduction

Interactive proof environments, also known as proof assistants, are tools of choice
to formalize the semantics of programming languages and, more generally, to
handle abstract syntax. For example, the project CompCert [1], formalizes in
Coq [2] the semantics of a very large subset of the C programming language and
verifies an optimizing compiler. Similarly, the L4.verified project [3] develops a
verified operating system on top of a formalization of C in Isabelle/HOL [4],
ACL2 [5] is used to formalize a Java virtual machine [6], and a complete seman-
tics of JavaScript is formalized using Coq [7].

Typically, the formalization of a programming language makes heavy use of
advanced logic constructs such as algebraic data types (e.g. to represent abstract
syntax trees), inductive definition of predicates (e.g. to encode inference rules
for typing or evaluation judgments), higher-order functions, dependent types,
etc. Proving results on such a formalization (e.g. type soundness) thus typically
involves complex reasoning steps, making use of the interactive tactics that a
proof assistant provides for induction, case analysis, etc.
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Automatic program verifiers aim at providing dedicated environments to ver-
ify behavioral properties of programs written in some specific programming lan-
guage. Examples are Dafny [8], VeriFast [9], Frama-C [10], or SPARK [11]. They
differ from proof assistants in two ways. First, they allow one to verify programs
written in some imperative language whereas proof assistants rely on purely
functional programming. Second, the main technique for proving properties is
via the use of automatic theorem provers, such as SMT solvers. The high level
of proof automation in such environments is possible because the specification
languages they propose are less expressive than those of proof assistants. They
are typically limited to some flavor of first-order logic.

Why3 is a program verifier developed since 2011 [12] that proposes a rich
specification language, which extends first-order logic with type polymorphism,
algebraic data types, and inductive predicates [13]. Recently, it was augmented
with some support for higher-order logic. It is thus a good candidate for exper-
imenting in formalizing semantics using fully automated theorem proving. In
this paper, we report on such an experiment. We consider exercises related to
defunctionalization [14] proposed by O. Danvy at the JFLA’2014 conference.
Along the presentation of our solution, we expose the techniques used inside
Why3 to encode complex logic constructs into the logic of SMT solvers.

This paper is organized as follows. Section 2 defines a direct, big-step style
semantics of a minimal arithmetic language; meanwhile we explain how we deal
with algebraic data types, recursive functions, and pattern matching. Then
Sect. 3 introduces another definition in continuation-passing style (CPS) and
proves it equivalent to the first one; meanwhile we explain how we encode
higher-order logic. Section 4 defunctionalizes the CPS code to get a first-order
interpreter; meanwhile we explain how we deal with inductive predicates and
complex termination proofs.

The complete solution in Why3, including the full source code and a dump of
the proof results, is available at http://toccata.lri.fr/gallery/defunctionalization.
en.html.

2 Direct Semantics

Our running example is a very simple toy language of arithmetic expressions,
limited to literals and subtraction. The grammar for this language is as follows.

n : int integer constants
e : expr expressions
e ::= n | e − e
p : prog programs
p ::= e

Such abstract syntax trees are formalized with recursive algebraic data types. In
Why3 such types are declared using an ML-like syntax:

type expr = Cte int | Sub expr expr

type prog = expr

http://toccata.lri.fr/gallery/defunctionalization.en.html
http://toccata.lri.fr/gallery/defunctionalization.en.html
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1 function eval_0 (e: expr) : int =

2 match e with

3 | Cte n → n

4 | Sub e1 e2 → eval_0 e1 - eval_0 e2

5 end

Fig. 1. Direct, big-step semantics

Constructors Cte and Sub are used as regular function symbols. For instance,
we can define an abstract syntax tree p3 for the expression (7 − 2) − (10 − 6)
as follows:

constant p3: prog = Sub (Sub (Cte 7) (Cte 2)) (Sub (Cte 10) (Cte 6))

This language is given a big-step operational semantics, with inference rules
defining a judgment e ⇒ n meaning that expression e evaluates to the value n.

n ⇒ n

e1 ⇒ n1 e2 ⇒ n2 n1 − n2 = n3

e1 − e2 ⇒ n3

Since this semantics is deterministic and total, the simplest way is to encode
it in Why3 as a logic function, as shown on Fig 1. This definition is recursive
and makes use of pattern matching on its argument e . It is worth pointing out
that, for any logic function definition, Why3 statically checks that it defines a
total function: recursion must be on structurally smaller arguments and pattern
matching must be exhaustive [13].

2.1 Interpreting and Proving

Before doing any proof, we can make some quick tests to check our definitions.
For instance, we can define v3 as the application of eval 0 to p3

constant v3: int = eval_0 p3

and then ask Why3 to evaluate its value:

> why3 defunctionalization.mlw --eval v3

Evaluation of v3: 1

Of course, we can also prove that the value of p3 is 1. We first state it:

goal eval_p3: v3 = 1

Then we ask Why3 to run the Alt-Ergo SMT solver [15] on this goal:

> why3 -P alt-ergo defunctionalization.mlw

defunctionalization.mlw eval_p3 : Valid (0.02s)

It is discharged in no time.
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2.2 Encoding Algebraic Data Types and Pattern Matching

Proving such a lemma with the external provers available within Why3 requires
encoding the constructs of algebraic data types and pattern matching into the
logic of those provers.

The encoding is quite simple: the algebraic type is treated as an abstract type,
and constructor symbols are treated as uninterpreted functions whose seman-
tics is established via a number of axioms. Let us see how the expr type is
transformed. First come the type and the constructors:

type expr

function Cte (n: int) : expr

function Sub (e1 e2: expr) : expr

Then Why3 defines a polymorphic selector function, which will later help us to
encode pattern-matching constructions inside terms:

function match_expr (e: expr) (b1 b2: ’a) : ’a

axiom match_expr_Cte : forall b1 b2: ’a, n: int.

match_expr (Cte n) b1 b2 = b1

axiom match_expr_Sub : forall b1 b2: ’a, e1 e2: expr.

match_expr (Sub e1 e2) b1 b2 = b2

Here, ’a denotes a type variable which can be instantiated with any type. Why3
natively supports ML-style prenex polymorphism and employs monomorphic
instantiation with symbol discrimination, preservation of interpreted types, and
lightweight polymorphism encodings [16,17] to efficiently translate polymorphic
formulas for provers supporting only multi-sorted or mono-sorted logic.

The definition of match expr suffices to prove that the ranges of Cte and Sub
are disjoint. However, most SMT solvers will not deduce this fact automatically,
which is why we also define an index function:

function index_expr (e: expr) : int

axiom index_expr_Cte : forall n: int [Cte n].

index_expr (Cte n) = 0

axiom index_expr_Sub : forall e1 e2: expr [Sub e1 e2].

index_expr (Sub e1 e2) = 1

The terms in square brackets that appear before the quantified expressions in
these axioms are instantiation patterns, also known as triggers. First-order SMT
solvers accept triggers as hints to control instantiation of universally quantified
premises. A trigger prescribes to an SMT solver to produce a new instance
whenever a term that matches the trigger occurs in the set of currently assumed
facts. The precise semantics of triggers varies among solvers; in particular, a
solver may ignore the patterns given by a user, invent its own triggers, or use an
instantiation method not based on triggers, e.g. paramodulation.
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In the definition of index expr, the triggers are given to force the index
calculation for every occurrence of a constructor, which is enough to deduce
that no application of Cte can be equal to an application of Sub, provided that
the prover supports integers and knows that 0 is not equal to 1. If we target a
prover that has no support for integer arithmetic, Why3 does not generate the
index expr function and produces instead the axioms of pairwise dis-equality
of constructors:

axiom Cte_Sub : forall n: int [Cte n]. forall e1 e2: expr [Sub e1 e2].

Cte n �= Sub e1 e2

The index function is preferable, however, because an axiom like Cte Sub would
be instantiated for any two occurrences of constructors, producing a quadratic
number of instances.

Then we introduce constructor elimination functions, or projections:

function Cte_proj_1 (e: expr) : int

function Sub_proj_1 (e: expr) : expr

function Sub_proj_2 (e: expr) : expr

axiom Cte_proj_1_def : forall n: int. Cte_proj_1 (Cte n) = n

axiom Sub_proj_1_def : forall e1 e2: expr. Sub_proj_1 (Sub e1 e2) = e1

axiom Sub_proj_2_def : forall e1 e2: expr. Sub_proj_2 (Sub e1 e2) = e2

And finally, we close the expr type with the inversion axiom:

axiom expr_inversion : forall e: expr.

e = Cte (Cte_proj_1 e) ∨ e = Sub (Sub_proj_1 e) (Sub_proj_2 e)

Notice that this translation is not complete. Indeed, we do not state (nor can
we in a first-order language) that expr is the least fixed point of constructor
application: our translation could be applied to a co-inductive type just as well.
This is not an important shortcoming, since the automated provers we target
do not perform reasoning by induction, and therefore do not need this property.
We will see below how proofs by induction can be constructed directly in Why3.

Now, let us show how pattern-matching expressions are translated. In sim-
ple cases, such as function definition by pattern matching, Why3 just splits the
premise into several instances. Thus, the definition of eval 0 turns into the
following conjunction:

function eval_0 (e: expr) : int

axiom eval_0_def :

(forall n: int. eval_0 (Cte n) = n) ∧
(forall e1 e2: expr. eval_0 (Sub e1 e2) = eval_0 e1 - eval_0 e2)

In the general case, a match-with expression in a formula is translated as a
conjunction of implications. For example, a Why3 formula

match e with

| Cte n → n > 0

| Sub e1 e2 → eval_0 e1 > eval_0 e2

end
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1 function eval_1 (e: expr) (k: int → ’a) : ’a =

2 match e with

3 | Cte n → k n

4 | Sub e1 e2 →
5 eval_1 e1 (\ v1. eval_1 e2 (\ v2. k (v1 - v2)))

6 end

7

8 function interpret_1 (p : prog) : int = eval_1 p (\ n. n)

Fig. 2. Semantics encoded in CPS form

becomes

(forall n: int. e = Cte n → n > 0) ∧
(forall e1 e2: expr. e = Sub e1 e2 → eval_0 e1 > eval_0 e2)

When pattern matching happens in a term, we resort to the selector function.
Here is how the match-with expression in the definition of eval 0 is translated:

match_expr e (Cte_proj_1 e)

(eval_0 (Sub_proj_1 e) - eval_0 (Sub_proj_2 e))

Like ML or Coq, Why3 admits complex patterns, containing wildcards and
or-patterns. These are compiled internally into nested match-with expressions
over simple patterns [18].

3 Continuation-Passing Style

The next exercise is to CPS-transform the function eval 0. It amounts to adding
a second argument, the continuation, which is a function k to be applied to the
result. This trick allows us to replace any recursive call in the body of a program
f by a tail call: C[f x] becomes f x (λv. C v). Of course, this can be done only
if the language supports higher-order functions. Such a support was added to
Why3 recently.

For the function eval 0, we obtain the function eval 1 in Fig. 2. The new
interpreter, interpret 1, calls eval 1 with the identity continuation.

3.1 Soundness Lemma

The soundness of our CPS-transformed interpreter can be expressed by two
lemmas relating the CPS-based semantics with the direct big-step semantics,
one for eval 1 and one for interpreter 1. The first lemma must naturally be
generalized: for any continuation k, eval 1 e k returns the same result as the
application of k to the direct value of e.

lemma cps_correct_expr:

forall e: expr, k: int → ’a. eval_1 e k = k (eval_0 e)
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The second lemma is an easy consequence of the first one, applied to the identity
continuation.

lemma cps_correct: forall p. interpret_1 p = interpret_0 p

Proving the first lemma is not easy. It cannot be proved as such by SMT solvers,
since it requires induction on e. Why3 provides two ways to perform such an
induction.

Structural induction by a dedicated transformation. The first way is to apply a
Why3 transformation, that is a kind of proof tactic directly coded in Why3’s
kernel, that reduces a given goal into one or several sub-goals that, all together,
imply the original goal. Resulting sub-goals can in turn be solved by external
provers, or subject to another transformation, etc.

A Why3 transformation is devoted to structural inductive reasoning on alge-
braic data-types, producing one sub-goal for each constructor of the considered
data type. For our particular lemma, a heuristics selects structural induction
on e, as the goal involves a function defined recursively over e, namely eval 1.
Then the proof is easily completed using SMT solvers on the sub-goals. Using
such a dedicated transformation to add support for induction in an automated
verifier is originally due to Leino [19].

General induction via lemma functions. The second way to perform reasoning
by induction, that would work for general recursion, is to use lemma functions.
This concept, that should be classified as folklore, was first emphasized in the
VeriFast verifier [9], where some inductive reasoning is required in the context
of representations in separation logic. Such a notion also exists in Dafny [8], and
now in Why3. It is based on the idea that a recursive program can be used to
simulate induction, as soon as it is terminating and side-effect free. In Why3,
such a lemma function is written as follows:

let rec lemma cps_correct_expr (e: expr) : unit

variant { e }

ensures { forall k: int → ’a. eval_1 e k = k (eval_0 e) }

= match e with

| Cte _ → ()

| Sub e1 e2 → cps_correct_expr e1; cps_correct_expr e2

end

Here we are defining a program, using let instead of function. As for any
program, we have to prove it correct, i.e., a verification condition is generated.
When such a program is given the extra attribute lemma, its contract is then
turned into a logical statement, which is added to the logical context. The state-
ment is exactly that of lemma cps correct expr above. For that to be sound,
a termination proof is mandatory, hence the variant clause. In this case, it
means that recursive calls are made on arguments that are structurally smaller
than e. (More details on variants and termination proofs are given in the next
section.) The VC for this lemma function is easily proved by SMT solvers.
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3.2 Encoding Higher-Order Functions

Why3 is essentially a first-order system. It treats the mapping type ’a → ’b
as an ordinary abstract type whose inhabitants are lambda-abstractions. Why3
desugars functional applications like (k (eval 0 e)) using a binary “mapping
application” operation: k @ eval 0 e. Partial applications of function and pred-
icate symbols are replaced with suitable lambda-abstractions.

Why3 does not implement higher-order unification and provides no means
of construction of new mappings beyond what can be derived from the user
axioms using first-order logic. Thus, the only construction that requires special
treatment is lambda-abstraction.

Why3 translates abstractions to first-order logic using lambda-lifting. This
amounts to representing every lambda-term in the problem as a fresh top-level
function which takes the free variables of that lambda-term as arguments. For
example, here is how the definition of eval 1 in Fig. 2 is translated:

function lam1 (k: int → ’a) (v1: int) : int → ’a

function lam2 (k: int → ’a) (e2: expr) : int → ’a

function eval_1 (e: expr) (k: int → ’a) : ’a =

match e with

| Cte n → k @ n

| Sub e1 e2 → eval_1 e1 (lam2 k e2)

end

axiom lam1_def : forall k: int → ’a, v1 v2: int.

lam1 k v1 @ v2 = k @ (v1 - v2)

axiom lam2_def : forall k: int → ’a, e2: expr, v1:int.

lam2 k e2 @ v1 = eval_1 e2 (lam1 k v1)

Here, lam1 represents the inner lambda-term \ v2. k (v1 - v2). The func-
tion lam2 represents the outer term \ v1. eval 1 e2 (\ v2. k (v1 - v2)).
Since eval 1 and the introduced functions lam1 and lam2 are mutually recur-
sive, Why3 puts the translated definition of eval 1 between the declarations
of uninterpreted symbols lam1 and lam2 and the axioms that define their
semantics.

Why3 assumes extensional equality of mappings, even though it does not
include the corresponding axiom in the translation (this may change in future
versions). Because of this, lambda-terms that occur under equality are not
lifted, but inlined. For example, an equality id = \ n: int. n is rewritten into
forall n: int. id @ n = n. Then the axiom of extensionality can be directly
proved in Why3.

The current implementation does not detect when two lambda-terms are
instances of one common pattern. In particular, this makes it not robust with
respect to inlining: if the definition of a function symbol contains a lambda-term
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and is inlined, then every occurrence of that term will be lifted separately, which
may affect the provability of the task. We intend to alleviate this shortcoming
in future versions of Why3.

4 Defunctionalization

The next step of our case study is to “defunctionalize” the code of the previous
section. The general idea of defunctionalization is to replace the functions used
as continuations by some first-order algebraic data type, having as many con-
structors as the various lambdas in the CPS code. For our example, this data
type is

type cont = A1 expr cont | A2 int cont | I

It has three constructors, corresponding to the three continuations of the code
on Fig. 2, two on line 5 and one on line 8. The second continuation on line 5 is
(\ v2. k (v1 - v2)). It has two free variables: v1 of type int and k which is
itself a continuation. The constructor A2 associated to this continuation is thus
given parameters of type int and cont (hence the algebraic data type is recur-
sive). Similarly, the first continuation has both e2 and k as free variables, so the
corresponding constructor A1 is given parameters of type expr and cont. Finally,
the third continuation has no free variables. It is associated to the constant con-
structor I.

To derive a new interpreter interpret 2, we introduce an extra function
continue 2, defined mutually recursively with function eval 2 (Fig. 3). It takes
as arguments a continuation c and a value v, and evaluates c applied to v.
Notice that we now define programs, introduced with let, instead of logic func-
tions introduced with function. The reason is technological: the mutual recur-
sion above cannot be statically checked terminating by Why3, the termination
argument being not structural. The termination has to be proved by theorem
proving, as shown in Sect. 4.3 below.

It is worth pointing out that the code of eval 2 and continue 2 only make
tail calls. Thus it can be seen as a small-step semantics for our language or,
equivalently, as an abstract machine for interpreting programs in this language.

4.1 Soundness

Since we wrote a program and not a logic definition, the soundness of our defunc-
tionalized interpreter is not expressed by a pure logical lemma but with a con-
tract for the interpret 2 program, where the post-condition tells that the
result coincides with the big-step semantics.

let interpret_2 (p: prog) : int

ensures { result = eval_0 p }

To achieve the proof that the interpreter satisfies this contract, we need to
find appropriate contracts for the auxiliary programs eval 2 and continue 2.
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1 let rec continue_2 (c: cont) (v: int) : int =

2 match c with

3 | A1 e2 k → eval_2 e2 (A2 v k)

4 | A2 v1 k → continue_2 k (v1 - v)

5 | I → v

6 end

7

8 with eval_2 (e: expr) (c: cont) : int =

9 match e with

10 | Cte n → continue_2 c n

11 | Sub e1 e2 → eval_2 e1 (A1 e2 c)

12 end

13

14 let interpret_2 (p: prog) : int = eval_2 p I

Fig. 3. De-functionalized interpreter

For that purpose, a first idea would be to define a logic function eval cont
(c:cont) (v:int) returning the evaluation of c on v. Such a function would
be a non-structurally recursive function, and would be rejected by Why3: logic
functions and predicates must be guaranteed to terminate (see Sect. 5 for a dis-
cussion about this limitation of Why3). However, instead of a logic function, we
can define a ternary predicate eval cont (c:cont) (v:int) (r:int) express-
ing that r is the result of the evaluation of c on v. Such a predicate can be
defined inductively as follows.

inductive eval_cont cont int int =

| a1 : forall e: expr, k: cont, v r: int.

eval_cont (A2 v k) (eval_0 e) r → eval_cont (A1 e k) v r

| a2 : forall n: int, k: cont, v r: int.

eval_cont k (n - v) r → eval_cont (A2 n k) v r

| i : forall v: int. eval_cont I v v

Such a definition corresponds to a set of inference rules for an evaluation judg-
ment c v ⇒ r that means “the application of continuation c to the value v
evaluates to r”. To ensure the consistency of the definition, Why3 checks for the
standard positivity conditions of occurrences of eval cont in each clause. The
contracts for our auxiliary programs can then be stated as follows.

let rec continue_2 (c: cont) (v: int) : int

ensures { eval_cont c v result }

with eval_2 (e: expr) (c: cont) : int

ensures { eval_cont c (eval_0 e) result }

Annotated as such, those programs are easily proved correct by automated
provers. For example, Alt-Ergo, CVC3, and Z3 all discharge the VCs in no time.
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4.2 Encoding of Inductive Predicates

Translation of inductive predicates for first-order provers is similar to that of
algebraic types: Why3 declares an uninterpreted predicate symbol and then adds
one axiom per clause of the inductive definition plus the axiom of inversion. Here
is the translation of the eval cont predicate.

predicate eval_cont (e: cont) (v r: int)

axiom a1 : forall e: expr, k: cont, v r: int.

eval_cont (A2 v k) (eval_0 e) r → eval_cont (A1 e k) v r

axiom a2 : forall n: int, k: cont, v r: int.

eval_cont k (n - v) r → eval_cont (A2 n k) v r

axiom a3 : forall v: int. eval_cont I v v

axiom eval_cont_inversion : forall k0: cont, v0 r0: int.

eval_cont k0 v0 r0 →
((exists e: expr, k: cont.

eval_cont (A2 v0 k) (eval_0 e) r0 ∧ k0 = A1 e k) ∨
(exists n: int, k: cont, v0 r0: int.

eval_cont k (n - v0) r0 ∧ k0 = A2 n k) ∨
(k0 = I ∧ v0 = r0))

Just like in the case of algebraic types, this translation is incomplete, because
we are unable to express in first-order logic that eval cont is the least rela-
tion satisfying the axioms. If we declared eval cont as a coinductive predicate
(which is also supported by Why3), the translation for first-order provers would
be exactly the same. This does not present a problem, since these provers do
not perform reasoning by induction or by coinduction. However, it is desirable
to be able to make proofs by induction over an inductive predicate inside Why3,
using dedicated transformations and/or ghost lemmas, similarly to what we do
for algebraic types (Sect. 3.1). This is one of the directions of our future work.

4.3 Termination

So far, we have proved the partial correctness of our interpreter. This is not fully
satisfactory since an implementation that would loop forever would also satisfy
the same contract. We thus aim at proving termination as well.

Because the two auxiliary programs are mutually recursive in a quite intricate
way, it is not completely trivial to find a termination measure that decreases on
each recursive call. One adequate measure is given by the following ad-hoc size
functions:

function size_e (e: expr) : int =

match e with

| Cte _ → 1

| Sub e1 e2 → 3 + size_e e1 + size_e e2

end
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function size_c (c: cont) : int =

match c with

| I → 0

| A1 e2 k → 2 + size_e e2 + size_c k

| A2 _ k → 1 + size_c k

end

The contracts of our auxiliary functions are then augmented with the following
variants:

let rec continue_2 (c: cont) (v: int) : int

variant { size_c c }

...

with eval_2 (e: expr) (c: cont) : int

variant { size_c c + size_e e }

...

Generally speaking, a set of mutually recursive programs can be annotated as

let rec f1 x1

variant { v1,1(x1) [with R1], . . . , v1,m(x1) [with Rm] }
...
with fn xn

variant { vn,1(xn) [with R1], . . . , vn,m(xn) [with Rm] }
where each vi,j returns a value on some type τj and Rj is a binary relation on
τj . The verification conditions are then:

1. Each relation Rj must be well-founded.
2. For each call fi(e) in the body of the program fj , the vector (vi,1(e), . . . , vi,m

(e)) must be strictly less than the vector (vj1(xj), . . . , vj,m(xj)) with respect
to the lexicographic combination of order relations R1, . . . , Rm.

These verification conditions ensure termination because if there were an infinite
sequence of program calls, there would be an infinite decreasing sequence for
R1, . . . , Rm.

Why3 assumes default relations for the variant clauses so that, most of the
time, the user does not need to provide the relation. If the type τj is int, the
default relation is

Rint y x := x > y ∧ x ≥ 0.

If τj is an algebraic data type, then Rj is the immediate sub-term relation.
For our interpreter, the default relation Rint is used. The VCs related to ter-

mination cannot be proved automatically, since SMT solvers lack the information
that sizes are non-negative. So we first state this as two lemmas:

lemma size_e_pos: forall e: expr. size_e e ≥ 1

lemma size_c_pos: forall c: cont. size_c c ≥ 0
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Both require induction to be proved. As we did earlier in Sect. 3.1, we can either
use Why3’s transformation for structural induction or turn these lemmas into
recursive lemma functions. The former is simpler. Once these two lemmas are
proved, termination of eval 2 and continue 2 is proved automatically by SMT
solvers.

5 Conclusions

Using the automatic program verifier Why3, we solved a student exercise aim-
ing at illustrating, on a simple language, the relations between various seman-
tics that were described in a research paper [14]. Unlike the students, we did
not only code the interpreters and tested them, but also proved them correct.
We formalized the big-step semantics of that language and proved correct its
compilation, first into a CPS-style semantics and then into a small-step one,
close to an abstract interpreter. The complete example available at http://
toccata.lri.fr/gallery/defunctionalization.en.html also contains another variant
of that language, forbidding negative numbers and possibly raising an “Under-
flow” exception. It also formalizes another semantics based on rewriting, mak-
ing an analogy between reduction contexts and continuations, and an explicit
abstract machine for executing the language. Even if the specifications and the
proofs require advanced features such as algebraic data types, inductive predi-
cates, and higher-order functions, we were able to prove our interpreters formally
using only automated theorem provers.

Related Tools and Experiments. Why3 is not the only software verification tool
where this kind of formalization can be done. For instance, the second Verified
Software Competition [20] featured a challenge related to the semantics of S and
K combinators and this challenge was successfully tackled by systems such as
ACL2, Dafny, VCC [21], or VeriFast. Some features, such as algebraic data types
and pattern matching, can be encoded without too much difficulty if a given
system does not have a native support for them. Other features, such as type
polymorphism, are much more difficult to simulate. Fortunately, polymorphism
(parametric or ad-hoc) gained much traction in the mainstream programming
languages (Java generics, C++ templates) and the verification tools follow the
trail. For instance, both Dafny and VeriFast support generic types.

Perspectives. The question behind this experiment is whether an automatic
program verifier can be a reasonable replacement for an interactive proof assis-
tant for formalizing a programming language, its semantics, and its compilation.
More generally, any program performing symbolic computation is a potential
use case for the proposed techniques. Recently, we developed a generic app-
roach for data types with binders in Why3. On top of it, we built a verified
interpreter for lambda-calculus and a verified tableaux-based first-order theo-
rem prover [22]. A couple of years ago, we formalized in Why3 a simple imper-
ative while-language [23], with an operational semantics, some Hoare-style rules

http://toccata.lri.fr/gallery/defunctionalization.en.html
http://toccata.lri.fr/gallery/defunctionalization.en.html
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proved correct with respect to the operational semantics, and (partially) a weak-
est precondition calculus. This former case study was involving a few Coq proofs
and was missing support for higher-order logic, hence it would deserve to be
revisited with the current Why3 environment.

Along these lines, we intend to improve Why3 in the following ways. In short
term, we want to add support for non-structural recursion in pure functions, as it
is done for programming functions. We also intend to allow lambda-expressions
to be used in programs, provided they are terminating and side-effect free. A key
challenge to apprehend large programs and large proofs is the ability to control
the logical context. Indeed, automated provers are extremely sensitive to the
number, size, and shape of logical premises. Why3 already provides a module
system that allows the user to split specification and implementation into small
interlinked components [13]. We are currently working on the principles of refine-
ment for this module system (both for specification and program code). The idea
is to verify program components in a most abstract and minimal context, and
then to reuse them in a complex and refined development. Another way to min-
imize the context before invoking automated provers is to provide some limited
interaction where the user filters out irrelevant concepts, e.g. everything which
is related to the properties of sorted arrays if the conclusion under consideration
does not require it.

Acknowledgments. We thank Olivier Danvy for proposing these exercises.
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Abstract. The KeY system offers a platform of software analysis tools for
sequential Java. Foremost, this includes full functional verification against
contracts written in the Java Modeling Language. But the approach is gen-
eral enough to provide a basis for other methods and purposes: (i) comple-
mentary validation techniques to formal verification such as testing and
debugging, (ii) methods that reduce the complexity of verification such as
modularization and abstract interpretation, (iii) analyses of non-functional
properties such as information flow security, and (iv) sound program trans-
formation and code generation. We show that deductive technology that
has been developed for full functional verification can be used as a basis
and framework for other purposes than pure functional verification. We
use the current release of the KeY system as an example to explain and
prove this claim.

1 Overview

Motivation. Over the last decades the reach and power of verification methods
and tools has increased considerably, and there has been tremendous progress
in the verification of real world systems. The basic technologies of deductive
program verification have matured. State of the art verification systems can
prove functional correctness at the source code level for programs written in
industrial languages such as Java.
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While for many years the term formal verification had been almost synony-
mous with functional verification, in the last decade it became more and more
clear that full functional verification is an elusive goal for almost all application
scenarios. Ironically, this happened through the advances of verification technol-
ogy: with the advent of verifiers that fully cover and precisely model industrial
languages and that can handle realistic systems, it finally became obvious just
how difficult and time-consuming the specification and verification of real sys-
tems is. Because of this, ‘simpler’ verification scenarios are often used in practice,
relaxing the claim to universality of the verified properties.

Using deductive verification as core technology. In this paper, we show that
deductive technology that has been developed for full functional verification (of
Java programs) can be used as a basis and framework for other methods and
purposes than pure functional verification:

– complimentary validation techniques such as testing and debugging,
– methods tackling the complexity of verification such as modularization and

abstract interpretation,
– analyses of non-functional properties such as information flow security,
– sound program transformation and code generation.

We claim that for such an extended usage scenario, much of the work that
went into the development of deductive verification systems can be reused. This
includes the program logics and verification calculi that capture the semantics
of the target programing language as well as the specification language, proof
search mechanisms, user interfaces of semi-automatic verification systems that
support proof construction and understanding proof states, interfaces to SMT
(satisfiability modulo theories) solvers, as well as data structures for programs,
specifications, and formulas, and associated parsers and pretty printers.

The KeY system. We use the current release of the KeY system [1] (KeY 2.2) to
explain and prove the claim that deductive verifications methodology can serve as
a platform for various verification and analysis methods, though other examples
of this phenomenon, such as Boogie [2] and Why [3] verification frameworks, can
be given. The KeY system is developed by the KeY project, a joint effort between
the Karlsruhe Institute of Technology, Technical University of Darmstadt, and
Chalmers University of Technology in Gothenburg, ongoing since 1999. KeY is
free/libre/open source software and can be downloaded from http://key-project.
org/download/.

Contents of this paper. In the following two sections, we describe the core tech-
nology for functional verification implemented in KeY: its program logic for Java
and its sequent calculus, that provides symbolic execution for Java (Sect. 2),
and its user interface (Sect. 3). Java is not a modular language. The specifica-
tion of Java programs must support an appropriate mechanism that permits to
decompose the verification target into components of manageable size that can

http://key-project.org/download/
http://key-project.org/download/
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be verified separately. In Sect. 4 we show that such a technology can be seam-
lessly integrated into the core verification technology. In Sect. 5 we describe how
symbolic execution calculi can be reused for abstract interpretation based verifi-
cation. Verification methods such as symbolic execution can be used to generate
tests from the specification and the source code (glass box testing) or only the
specification (black box testing) of the verification target. As shown in Sect. 6,
using reasoning techniques, one can generate tests that exercise particular pro-
gram paths, satisfy various code coverage criteria, or cover all disjunctive case
distinctions in the specification. A further use of verification for bug finding is to
enhance the debugging process by using verification technology that is based on
symbolic execution to implement symbolic debuggers (Sect. 7). Symbolic debug-
ging covers all possible execution paths, and there is no need to initialize input
values. Besides functional verification, the verification of non-functional prop-
erties, e.g., security properties, is of growing importance. In Sect. 8, we show
that information flow properties can be verified by using functional verification
methods as a basis. Finally, in Sect. 9, we show that a deductive calculus is a
good basis for covering additional mechanisms of the programing language in a
modular way (no need to build a new calculus or system). This is exemplified
with Java Card’s transaction mechanism that is not part of standard Java.

2 A Prover Performing Symbolic Execution

The core of the KeY system consists of a theorem prover for a program logic
that combines a variety of automated reasoning techniques. The KeY prover
differs from many other deductive verification systems in that symbolic execu-
tion of programs, first order reasoning, arithmetic simplification, external deci-
sion procedures, and symbolic state simplification are interleaved.1 For loop and
recursion free programs, symbolic execution is performed in a fully automated
manner.

The program logic supported by KeY is Dynamic Logic (DL) [5], a first
order multi-modal logic. DL extends first order logic (FOL) with two families
of modal operators: 〈p〉 (‘diamond’) and [p] (‘box’) where p is a program frag-
ment. The formula 〈p〉φ expresses that the program p terminates in a state in
which φ holds, while [p]φ does not demand termination and expresses that if p
terminates, then φ holds in the final state.2 Typically, φ is a FOL formula; in
this case, 〈p〉φ corresponds to the weakest precondition of p w.r.t. φ. Another
frequent pattern of DL is φ → [p]ψ, which corresponds to {φ} p {ψ} in Hoare
logic [6]. DL is closed under all logical connectives. For instance, the formula
∃v . ([p](x .= v) ∧ [q](x .= v)) states that the final value of x is the same, whether
we execute p or q.

To enable formal arguments about soundness and completeness, the KeY
prover employs a sequent calculus for reasoning about Java DL formulas. Each
1 The prover closest to KeY in this regard is KIV [4].
2 This formulation assumes a deterministic programming language, like sequential

Java in the context of KeY.
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proof node is a sequent of the form Γ ⇒ Δ, where Γ and Δ are sets of formulas,
with the intuitive meaning that the conjunction of the assumptions Γ implies at
least one of the formulas in Δ.

A proof in KeY consists of logical rule applications on DL sequents, using a
proof strategy called symbolic execution. It is exactly this principle which makes
the KeY prover an excellent basis for the various techniques described in this
paper. We exemplify the principle of KeY style symbolic execution: consider the
sequent (1), with precondition x > y and postcondition y > x. The program in
the modality swaps the values stored in x and y, using arithmetic.

x > y ⇒ 〈x=x+y; y=x-y; x=x-y〉 y > x (1)

To prove this formula, KeY symbolically executes one statement at a time,
turning Java code into a compact representation of its effect.4 This represen-
tation is called update, essentially an explicit substitution, to be applied at
some later point. In our example, symbolic execution of x=x+y; y=x-y; x=x-y;

results in
x > y ⇒ {x := y‖y := x}〈〉 y > x (2)

The expression x := y‖y := x is an update. The symbol || indicates its parallel
nature. Once the modality is empty, it is discarded, and the accumulated update
is applied to the postcondition y > x, leading to the proof goal x > y ⇒ x > y,
that can be closed immediately. The update application has swapped x and y,
translating the condition on the intermediate state into a condition on the initial
state. The interleaving of collecting and applying updates very much facilitates
forward symbolic execution. This is exploited not only for giving the proving
process an intuitive direction, but also as a basis for realizing the other features
of the KeY platform outlined in this paper.

To reason efficiently in a rich program logic for a target language like Java,
a large number of sequent calculus rules are needed (over 1500 in the standard
configuration). To implement these efficiently and to permit external validation
of the rules, we use so-called taclets, described in [1, Chap. 4]. Unbounded loops
cannot be handled by symbolic execution alone. KeY has invariant and induction
rules for this purpose [1, Sect. 3.6], see also Sect. 5 below. Method calls can be
handled either by inlining the method body or by replacing a method invocation
by the method’s specification, see Sect. 4 for an example.

3 User Interface

The KeY verification system uses a graphical user interface (GUI) that is
designed to make the interactive construction of formal verification proofs
intuitive and efficient. During formal verification a vast amount of technical
information is generated. The GUI helps the proof engineer to access relevant
information.

Figure 1 shows KeY’s GUI with a loaded and partly performed proof task.
Problem files containing Java code and specifications as well as (partial) proofs
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Fig. 1. The main window of the KeY GUI

can be loaded into the KeY system by selecting ‘File → Load’ or using the
button . A new ‘Proof Management’ window appears and the user can choose
the proof obligation to verify. Complete and partly finished proofs are also listed.
If code or specifications that were used in a proof have changed, this is indicated
as well.

After choosing a proof obligation, the corresponding sequent formula is con-
structed and shown in the right pane of the main window, see Fig. 1 (1). Then
the user can start the proof construction. In the upper left pane of the main
window the opened proofs are listed. Clicking allows to switch between different
proofs. The icon next to the proofs indicates whether a proof is complete ( )

or it contains open goals ( ). Below is a pane with different tabs to display the
open goals, the proof tree, strategy settings for the proof search and information
about the calculus rules. In Fig. 1 (2) the proof tree pane is shown. Each node of
the proof tree is annotated either with the applied proof rule (e.g., impLeft) or
with information about the proof step (case distinction, invariant, etc.). A right
click on the proof tree or a node in it produces a context menu with possible
actions on proof trees. The ability to prune, collapse, or unfold (parts of) the
proof tree are indispensable for navigation and understanding in larger proofs.
The user may also annotate proof nodes with free textual comments.

On the right pane (‘Current Goal’) of the of the main window the sequent
of the selected proof node is shown. Pointing and right-clicking on parts of the
sequent produces a context menu with a list of applicable proof rules for the
highlighted formula, see Fig. 1 (3). Hovering over the rules shows a tooltip with
the result that each rule gives when applied.
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Hovering over operators in the ‘Current Goal’ pane, the subexpressions con-
nected with that operator are highlighted. To search for formulas or proof nodes
there are two mechanisms, one that searches for (sub)formulas in the sequent
view and one that searches for proof nodes in the proof tree. These searches are
useful when trying to understand how a formula has changed during the proof
process. All buttons and menu entries as well as strategy settings have related
tooltips, which briefly describe their functionality.

KeY provides a counter example generator (button ) that transforms a
proof goal to an SMT formula over bitvector types and feeds it to an SMT
solver. If a counterexample is found, it is presented to the user for inspection.
This feature can help the user in cases where it is unclear whether the current
proof goal is valid or there is a flaw in the specification or code.

User interaction during proof search. The KeY prover attempts to automate
proof search as much as possible, but it also supports user interaction to guide
the proof process. Proofs for valid formulas are often, but not always found auto-
matically. For example, if complex quantifier instantiations are required, proof
search may fail. When automated proof search fails, the user can apply infer-
ence rules interactively in a stepwise manner, as described above. The problem
is that after a failed automated verification attempt, the user may be confronted
with an intermediate proof object that is difficult to understand, because the
automatic proof strategy tends to produce normal forms that are hard to read.
This led us to pursue a semi-automated proof style where the user does not
apply every step manually, but interacts with the automated strategy only at
certain points of interest. KeY provides composite interaction steps, so-called
strategy macros, that combine the application of basic deduction steps to achieve
a specific purpose. The available strategy macros in KeY include: Finish sym-
bolic execution symbolically executes Java programs in modalities. Propositional
expansion applies only propositional rules. Close provable goals closes any open
goal that is automatically provable, but does not touch goals where no automatic
proof is found. The strategy macro Autopilot applies these three substrategies
in this order. It divides the proof obligation into small subcases and thus guides
the user to those points of the specification for which the automated proof failed.

4 Modular Specification and Verification

A crucial goal for any formal verification system is the ability to modularize a
larger target program into manageable subtasks. In the context of KeY this con-
cerns the program written in Java and the Java Modeling Language (JML) [7] for
its specification. We have extended JML with concepts that support abstraction
and modular verification to a language called JML∗ [8]. In the recent verification
events in which KeY participated (VSTTE 2010, FoVeOOS 2011, VSTTE 2012,
and FM 2012; cf. [9]), these concepts have proven to be effective.



The KeY Platform for Verification and Analysis of Java Programs 61

Abstraction in JML specifications is provided through model fields, model meth-
ods, and ghost fields. When specifying object-oriented code modularly, it is gen-
erally important that an abstraction of the state of an object exists and can be
used in other parts of the specification. This way, details of the object’s imple-
mentation need not be revealed, which lets the verification both scale better and
become more modular. In KeY we follow this general principle.

While similar in appearance to fields in Java, model fields are declared for
specification and verification only, which allows the specifier to use JML∗ features
beyond Java expressions for their definition (including quantification). The value
of a model field is computed from the system state to which it is coupled through
a represents clause that is understood as a logical axiom. Ghost fields, too, are
only visible during verification. Unlike model fields, however, their value does
not depend on the state but is part of it (like a Java field). Both abstraction
techniques (ghost and model) can be used within the same specification in KeY.

Going beyond original JML, specification-only program elements in JML∗

allow the use of abstract data types (ADTs). When reasoning about concrete,
mutable data structures, e.g., linked lists or trees, we are usually only interested
in properties regarding the payload within these structures. ADTs provide an
abstraction from the implementation, concealing details about the linked data
structure that resides on the heap. JML∗ provides the two built-in ADTs
(finite sequences) and (sets of memory locations; see below).

Modularity of verification is provided through the concept of design by con-
tract [10]. Every method implementation is verified against its contract. Since
method invocations are abstracted by their contracts, contracts proved correct
remain valid even in case that new code has been added to the program. Method
contracts do not only contain pre- and postconditions (to describe their intended
behavior), but also frame conditions (to describe what must be preserved). In
JML∗, a frame is a set of heap locations to which a method may write at most.

1 public interface List {
2 //@ public model instance \seq conts;
3 //@ accessible contents: footp;
4

5 //@ public model instance \locset footp;
6 //@ accessible footp: footp;
7

8 /*@ public normal_behavior
9 @ ensures \result == conts.length;

10 @ accessible footp; @*/
11 public /*@pure@*/ int size();
12

13 /*@ public normal_behavior
14 @ ensures conts == \seq_concat(
15 @ \old(conts), \seq_singleton(x));
16 @ ensures \new_elems_fresh(footp);
17 @ assignable footp; @*/
18 public void append(int x); }

Fig. 2. List specified with model fields

In some cases, the locations of a
frame are known beforehand and can
be simply enumerated (static fram-
ing). For rich heap data structures,
however, there is a need to describe
all locations that ‘belong to’ the data
structure; a set that may change dur-
ing a run of the program. Such a set
of locations is called a footprint. The
technique to specify frames and foot-
prints in JML∗ and to reason about
them in KeY is the dynamic frames
approach [8,11], that introduces a
type for location sets. Frames
and footprints can be given in an
abstract, possibly recursive, manner.
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For instance, the footprint of a linked list is the union of its head node’s locations
(for its local data) and the footprint of its tail (if not null).

Figure 2 shows an example of a list interface, that is specified using two model
fields: conts for its contents and footp for its footprint. The mutator append()

changes only the footprint of this instance (L. 17, assignable clause), while the
pure method size() depends only on this footprint (L. 10, accessible clause).
If for two lists a and b the footprints, a.footp and b.footp denote disjoint sets,
we can conclude—without any knowledge about implementation—that a call to
a.append() does not have an influence to the result of b.size(). Otherwise, a

and b could be aliased deeply, for instance, a could be a tail of b. The predicate
in L. 16 expresses that only fresh object references may be added to the footprint
ensuring that sets are still disjoint after the method call if they were before.

Other verification frameworks have similar concepts of modularization: Dafny
[12] uses less fine-grained dynamic frames, ghost state, and pure functions, and
allows for user-defined ADTs. An alternative approach to the framing challenge
is separation logic. VeriFast [13] allows the modular specification of Java and C
code based on separation logic together with user defined ADTs and lemmas.
VCC [14] uses ownership to deal with that challenge.

5 Abstract Interpretation

Achieving a high degree of automation is still a challenge in program verifica-
tion. The nature of user interactions is either direct with the underlying the-
orem prover (cf. Sect. 3) or it is implicit in the need to provide specifications
such as method contracts, loop invariants or induction hypotheses. SMT solvers
and automated theorem provers have improved considerably during the previous
decade such that writing and finding specifications is now the main bottleneck
for program verification. In this section, we briefly sketch our approach to achieve
higher automation by generating loop invariants automatically, using abstract
interpretation techniques [15]. More details on the approach are given in [16]
which, however, was only implemented recently and is available at http://www.
se.tu-darmstadt.de/research/projects/albia/download/.

In a nutshell, our approach works as follows: the verification process starts
as usual with a DL formula that represents a proof obligation, for instance, that
a method m() satisfies its contract. The automated proof search executes m()

symbolically. As Java DL models the semantics of sequential Java faithfully and
precisely, we do not lose any precision until we reach a loop. In general, the
user would now have to provide a loop invariant either annotated in the source
code as a JML loop invariant specification or entered interactively when the loop
is encountered during the proof. Instead, we use abstraction to avoid the need
for a user-supplied invariant. But unlike in abstract interpretation, we avoid
to abstract the symbolically executed program. Instead, we abstract only part
of the symbolic state when the loop is encountered, namely that part which is
possibly modified by the loop. The (automatically proven) soundness condition
is that the abstract symbolic state represents at least all concrete states that are

http://www.se.tu-darmstadt.de/research/projects/albia/download/
http://www.se.tu-darmstadt.de/research/projects/albia/download/
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reachable by exiting the loop. For the part of the symbolic state that has not
been abstracted, no precision is lost.

We illustrate the process with a small example: the loop in Fig. 3 increases
the program variable i until n is reached. For ease of presentation we choose
exemplarily a trivial abstract domain for integers, namely, the sign domain
{0,≤,≥, <,>,�} which classifies integers into zero, non-positive, non-negative,
negative, positive, or any integer.

i = 0;

while (i < n)

i = i + 1;

Fig. 3. Loop exam-
ple for symbolic state
abstraction

On reaching the loop, the symbolic state looks as fol-
lows: n: n0, i: 0 where n0 is a symbolic value representing
an unknown but concrete value. Note, both values are not
abstract and no precision has been lost until this point.
Abstraction of the symbolic state begins by unwinding the
loop and analyzing which values have been changed, that
is, one compares the state before entering the loop with
the state after the first loop iteration. The only changed

value is that of i. The most precise abstract value that we can give to i and that
is valid before and after executing the body is ≥. Unwinding the loop once more
and re-computing the abstract value for i gives no change. We found a fixed
point and the abstracted symbolic state is n: n0, i: ≥, which is used to continue
symbolic execution after the loop.

In contrast to approaches like CEGAR [17], which use a counterexample
guided refinement loop approach (i.e., a coarse abstraction is stepwise refined in
case of a spurious counterexample), we start with a fully precise modeling and
loose precision only when needed and only for a localized (and often small) part of
the symbolic state. As is true for all abstraction based approaches, we loose some
precision, and thus completeness, in exchange for higher automation. However,
the trade off is more than justifiable when targeting specific program properties
like secure information flow (see Sect. 8), absence of null pointer exceptions, etc.

Combining deductive verification and abstract interpretation has also been
pursued by Leino and Logozzo [18]. They use a theorem prover from within
an abstract interpretation system to compute loop invariants on demand. How-
ever, the abstract interpretation system and the theorem prover remain separate
systems. Deep integration of abstract interpretation into deductive verification
based on dynamic logic has also been proposed by [8] using the technique of
predicate abstraction [19].

6 Test Case Generation

Even though the area of deductive verification made tremendous progress and
provided powerful tools, deductive methods still require expert level knowledge.
As a lightweight technique, KeY offers a verification based test case generation
facility [20,21], where deductive verification is used as a base technology. From
source code augmented with JML specifications, KeY generates proof obligations
in dynamic logic. During verification with the prover, the proof branches over the
necessary case distinctions, largely triggered by boolean decisions in the source
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1 final class List { /*@ nullable */ public List nxt;
2

3 public /*@ pure nullable */ List get(int i){
4 return i==0?this:((nxt==null || i<0)?null:nxt.get(i-1));
5 }
6 /*@ public normal_behaviour
7 requires a.length>0 && l!=null;
8 ensures (\forall int i;0<=i&&i<a.length;a[i]==l.get(i));*/
9 public void L2A(/*@nullable */List l, List[] a){

10 for(int i=0; i<a.length; i++){ a[i]=l;
11 if(l==null) break; l=l.nxt;
12 } } }

Fig. 4. Method L2A violates its contract

Step 1. Create a proof tree

Step 2. Press the button

Fig. 5. Test generation steps

code, as explained in Sect. 2. On each proof branch, a certain path through
the program is executed symbolically. KeY TestGen uses the same machinery
for a different purpose, namely generating JUnit test cases. The idea is to let
the prover construct an unfinished proof tree (with a bounded number of loop
unwindings), then to read off a path constraint from each branch, i.e., a constraint
on the input parameters and initial state for this path. We generate concrete test
input data satisfying each of these constraints, thereby achieving strong code
coverage criteria, in particular MCDC (Modified Condition/Decision Criterion),
by construction.

In addition to the source code, KeY’s test generation facility requires formal
specifications, for two purposes. First, specifications are needed to complete the
test cases with oracles to check the test’s pass/fail status. The second role of
specifications is to allow symbolic execution of method calls within the code
under test. The prover can use the specification, rather than implementation,
of called methods to continue symbolic execution. In particular, frequently used
library methods need to be specified.

As an example, Fig. 4 shows a class List (representing a list node). Method
get returns the i-th list node starting from this and following the nxt field. The
intended behavior of method L2A is to copy list elements starting from l into
the array a—as many as fit into the array. The user may not see the mistake
in the code and spend valuable time with failed verification attempts. However,
the problem can be quickly detected using KeY’s test generation functionality.

The first step is to create a proof tree. For example, to execute all pro-
gram paths with a bound on loop unwindings, the user may choose the strategy
macro ‘TestGen’ (Fig. 5, Step 1). By pressing the button (Step 2), a test suite
is generated which constructs different method arguments and creates various
list shapes by initializing the nxt field, such that every case distinction in the
proof tree (and hence in the program) is satisfied and executed. To detect the
fault in method L2A, a test case is needed that executes the loop at least two
times, i.e. a.length ≥ 2. To fix the method L2A, Line 11 must be replaced with
if(l!=null)l=l.nxt; which ensures that the rest of the array is initialized with
null if the end of the list is reached.

Besides generating test cases in order to find out why a proof cannot be
closed, we can generate them out of a closed proof tree. In this case a test suite
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covering all feasible paths is created. This suite can be used for regression testing
the software.

The usefulness of combining proofs and tests has been recognized in the last
decade, leading to the conference series Tests and Proofs. A recent extension of a
deductive verification tool with test generation capabilities is based on Frama-C
[22]. A set of popular test generation tools that are based on symbolic execution
and its variants is described in [23].

7 Debugging and Visualization

The Symbolic Execution Debugger (SED) [24,25] is an Eclipse extension that
executes Java methods symbolically. It is implemented on top of KeY and offers
interactive execution control just like a traditional debugger, including stepwise
execution and suspension at breakpoints.

Symbolic execution makes it possible to explore all concrete execution paths
of a program (up to a finite depth) in the symbolic states of a single sym-
bolic execution run. The result is a symbolic execution tree (SET). In this sense,
performing a proof in KeY realizes a sound, fully automatic, general purpose
symbolic execution engine for Java. A specific proof search strategy guarantees
that symbolic execution reflects the actual evaluation sequence defined by Java
semantics. JML specifications are not required, but can be used during symbolic
execution. Specifically, loop invariants ensure finite symbolic execution trees in
presence of loops; method contracts permit to handle methods for which the
source code is not available and guarantee finite symbolic execution trees in
presence of recursive method calls.

Debugging by symbolic execution is interesting for various reasons. Most
importantly, symbolic execution can start at any method or any other statement
in a program, no fixture is required. The initial state can be specified partially
or not at all. As all execution paths are covered, it is not necessary to set up
a concrete initial program state leading to an execution where a targeted bug
occurs. Because symbolic execution can be started ‘close’ to the suspected loca-
tion of a bug and the symbolic states contain only program variables accessed
during execution, the intermediate states of symbolic execution tend to be small
and simple. This makes it easy for the bug hunter to comprehend intermediate
states and the actions performed on them to find the origin of a bug. Finally, the
intended behavior of a program is correctly reflected in its symbolic execution,
which, therefore, will not cause a program error that disappears while debug-
ging. The underlying reason is that classical debuggers interact and influence
the execution of the analyzed program.

Figure 6 shows a debugging session where method eq() is inspected. Its full
SET is displayed in the view on the left. Different icons emphasize the role of
each node. The root is a start node representing the program fragment under exe-
cution. After the call to eq() the if-guard this.value == n.value is evaluated,
which involves an access to the instance variable value of parameter n. As we know
nothing about n—it might well be null—symbolic execution branches. The tree
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Fig. 6. Symbolic Execution Debugger: debugging method eq symbolically

branches are labelled with the condition under which each path is taken: if n is
null then execution terminates with an uncaught NullPointerException, which
may or may not be intended behavior. In the latter case, it directly points to a
bug. Otherwise, the guard can be evaluated to either true or false. In each case a
return statement is executed next.

The symbolic program state of a selected node is shown in the Variables view.
The value fields of instance variables self and n have an identical symbolic value.
So either self.value and n.value have the same value or self and n refer to the
same object. Aliasing is a common source of bugs and SED helps to find them
by visualizing all nonisomorphic memory layouts fulfilling a symbolic state.

EFFIGY [26] was the first system that allowed to interactively execute a pro-
gram symbolically in the context of debugging. It did not support specifications
or visualization. Behavior trees [27] are an abstract visual notation to specify
the behavior of software systems. These are derived from a requirements analysis
rather than from source code and they do not represent symbolic states.

8 Information Flow Analysis

Programs with publicly accessible interfaces (like web applications) are increas-
ingly used to process confidential data. This raises the importance of information
flow control within such applications: confidential information must not leak to
public outputs. Information flow is the degree to which the initial values of vari-
ables containing confidential data (‘high’ variables) interfere with the final values
of publicly observable (‘low’) variables. Formal techniques for information flow
analysis and control are concerned with showing that information flow is absent
or limited in a program. A survey is available in [28], though many advances
have occurred since its publication. Three approaches for analyzing information
flow have been implemented using KeY.
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The first approach is based on self-composition [29,30], which is appealing
because it is semantically precise, supports semantic declassification (i.e., accept-
ing that specific parts or properties of confidential information does become pub-
lic), and can be realized on top of a software verification systems like KeY in a
direct manner. The implementation in KeY [31] (which can be seen as a direct
formulation of information flow in Java DL) symbolically executes a program p
twice with equal symbolic values for the low variables but possibly different val-
ues for high variables. Absence of information flow is shown by proving that the
symbolic values for the low variables are equal in the respective final states.

Beyond this basic idea, the approach and its implementation feature several
optional refinements. First, it is possible to execute p symbolically only once and
combine the obtained verification conditions. Second, if p is decomposable into
individual parts, each without information flow, then these parts can be consid-
ered independently reducing the number of code paths that need to be reasoned
about. Third, the analysis supports not only primitive types but also object ref-
erences as secret and publicly observable values [32]. Finally, modular contracts
used for functional verification (Sect. 4) can be used when proving absence of
information flow as well.

Specifying information flow policies that programs must adhere to happens
with an extension of JML [33]. The language allows a convenient and fine-grained
specification of declassification and erasure by assigning security levels (high/
low) to terms instead of variables and fields.

Another approach is to track information flow with ghost states [34]. It
aims at a higher degree of automation and higher efficiency by trading preci-
sion. Declassification is supported. The approach can be combined with abstract
interpretation (Sect. 5) and thus holds the potential for increasing automation by
inference of suitable invariants. In this approach, we complement each program
variable with a ghost variable that overapproximates the set of locations the
actual variable depends on. When a program variable is assigned a new value t,
its corresponding ghost variable is automatically updated too. The new value of
the ghost variable is the union of the dependencies of all variables occurring in t
(plus implicit dependencies caused by control flow). A program is secure if the
set of calculated dependencies is a subset of those allowed by the specification.

The third approach combines KeY with external tools for projection com-
putation and model counting in a tool chain for quantitative information flow
analysis of imperative programs [35]. The user does not specify what informa-
tion is acceptable to declassify, but instead the tool chain computes a number of
information-theoretical measures (e.g., Shannon entropy or min-entropy) reflect-
ing the amount of confidential information in bit disclosed by the program.

9 Verification of Java Card Applets

One of the specific strengths of KeY is its complete support for verification of
programs written in Java Card [36], a dialect of Java for smart cards. This
includes support for all features specific to the Java Card platform. These are
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a[0] = 0;

JCSystem.beginTransaction();

Util.arrayFillNonAtomic(a,0,1,1);

a[0] = 2;

JCSystem.abortTransaction();

//@ assert a[0] == 1;

a[0] = 0;

JCSystem.beginTransaction();

a[0] = 2;

Util.arrayFillNonAtomic(a,0,1,1);

JCSystem.abortTransaction();

//@ assert a[0] == 0;

Fig. 7. Two programs exhibiting subtleties of the Java Card memory management

the memory model that distinguishes between persistent and transient data as
well as a transaction mechanism that ensures atomic updates of the persistent
memory of the device [37, Chap. 7]. Each Java Card device is equipped with two
types of memory: (i) persistent memory that keeps its contents between card
power-ups (i.e., sessions), (ii) transient (scratch pad) memory that is reset on
every power-up. Consequently, the semantics of a primitive assignment to an
array element3 depends on the kind of memory that the array is allocated to.
Moreover, the transaction mechanism allows to group several assignments into
atomic blocks and to collectively undo several assignments in one system API
call.

On top of this, there is a specific interplay between special system API calls
and regular assignments that involve the same persistent data. We illustrate this
with the two programs in Fig. 7 that are both correct relative to their stated
assert annotations. The call to the arrayFillNonAtomic method assigns value 1

to the array element a[0]. In principle, it should bypass any rollback effects of
abortTransaction (which is what indeed happens in the program on the left),
however, an earlier regular assignment to a[0] inside the same transaction dis-
ables this bypass effect of arrayFillNonAtomic.

A correct treatment of situations like the one in Fig. 7 in the underlying
program logic may be expected to be difficult. Indeed, previous formalizations
of Java Card were quite complex [38,39]. In KeY 2.2 we use the explicit heap
model to our advantage: with an additional heap variable the Java Card mem-
ory model is formalized in a completely modular manner. This is achieved by
adding a handful of carefully crafted rules for entering and exiting transactions,
and assigning array elements in transaction contexts [40]. The introduction of
an additional heap variable also involves a slight, yet fully transparent, exten-
sion of the JML∗ specification language to enable sound and complete modular
verification also of programs involving Java Card transactions.
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Abstract. When first encountering data structures such as arrays,
records and pointers programmers are often presented with pictorial rep-
resentations. The use of pictures to describe data structures and their
manipulation can help establish basic programming intuitions. The same
is true of program proving where pictures are frequently used within the
literature to describe program properties such as loop invariants. Here we
report on an experimental prototype of a visualization tool that trans-
lates verification conditions arising from array based code into pictures.
While initially aimed at supporting teaching, we have received positive
feedback from users of program proving tools within industry.

1 Introduction

The manifesto of the Verified Software Initiative [9] set out a fifteen year pro-
gramme of research with the aim of demonstrating the viability of formal ver-
ification technologies in the development large-scale bug-free software systems.
Central in this endeavor are the complementary strands of theory, tools and
experiments. Here we focus on tools and the need for tools that increase the
accessible formal verification techniques. Specifically we are interested in tools
that support the teaching of assertion based program proving techniques and
which will help win the hearts-and-minds of the next generation of formal meth-
ods researchers and practitioners.

While the basic notion of program proof via verification condition generation
(VCG) is relatively simple for a toy programming language [4], the approach
quickly becomes much harder to teach when working with an industrial-scale
programming language and applications. Our language of choice is SPARK1 [1],
a programming language derived from Ada and which is supported by a range
of static analysis techniques including formal verification. SPARK has been used
extensively within the development of high-integrity software systems, includ-
ing safety-critical applications such as railway signaling and avionics as well as
security-critical application such as smartcard technologies. We have found that
the high-profile nature of its applications makes SPARK relatively easy to moti-
vate and is attractive to students. However, when introducing program proving,
students find it hard to relate to verification conditions (VCs). Our aim is to use

1 The version based upon Ada 95.

c© Springer International Publishing Switzerland 2014
D. Giannakopoulou and D. Kroening (Eds.): VSTTE 2014, LNCS 8471, pp. 72–86, 2014.
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pictures where appropriate to help programmers gain insight as to the validity
of VCs.

As a starting point we have focused on VCs arising from code that manip-
ulates arrays. Whether learning how to construct algorithms that manipulate
arrays [3,13] or how to the reason about the correction of such algorithms
[6,8,12], authors typically use pictures in order to initially engage their read-
ers. John Reynolds’ use of so called partition diagrams [12] for reasoning about
array based programs is may be the best example. And to a degree it is Reynolds’
vision of “making program logics intelligible” that motivates our work.

Here we present an experimental tool that dynamically generates pic-
tures from SPARK VCs. We believe that the generated pictures serve three
purposes:

– A picture can more immediately help to identify whether or not a VC is
provable.

– If provable then a picture may give guidance as to how a proof of the VC
might proceed.

– If a VC is unprovable then the picture may give guidance as to where the
bug lies.

While we have emphasized the role of pictures as an aid to teaching, we believe
that the power of pictures is more general. For instance, within an industrial
context verification engineers will be called upon to deal with the VCs that
are not automatically discharged by the proof tools. Deciding whether or not a
VC is provable can be a time consuming process, may be even involve wasted
interactive proof attempts. If by turning the undischarged VCs into pictures
such decisions can be made more quickly then the productivity gains could be
significant.

In Sect. 2 we provide a brief overview of the SPARK programming language.
Our overall approach is motivated in Sect. 3 while Sect. 4 describes our experi-
mental tool. Related and future work is described in Sect. 5 with our conclusions
in Sect. 6.

2 Background on SPARK

As mentioned above, the focus of our initial experiments has been the visualiza-
tion of VCs arising from SPARK programs that manipulate arrays. Here we give
a brief introduction to the structure of SPARK VCs in general and how arrays are
handled specifically. For a more complete description the reader is directed to [1].
SPARK includes an annotation language that supports flow analysis and formal
proof. In the case of formal proof the annotations capture the program specifi-
cation, asserting properties that must be true at particular program points. The
annotations are supplied within regular Ada comments, allowing a SPARK com-
pliant program to be compiled using any Ada compiler. Within the work



74 M. Jami and A. Ireland

presented here we focus on three proof annotations, namely preconditions (--#
pre), postconditions (--# post) and loop invariants (--# assert). When spec-
ifying properties of array based programs quantification is important. SPARK
supports both universal (for all) and existential (for some) quantification.

Compliance to the SPARK language is enforced by a static analyser called
the Examiner. In addition, the Examiner performs data flow and information
flow analysis [2]. The Examiner supports formal verification by building directly
upon the Floyd/Hoare style of reasoning. VCs can be generated for proofs of
both partial correctness and exception freedom. In the conventional way, arrays
are modelled as functions in the programming logic of SPARK, where:

– accessing the Ith element of array A is denoted by element(A, [I]), while
– updating the Ith element with the value V is denoted by update(A, [I], V).

3 Our Basic Approach

Our pictures of array related VCs are based upon boxes for individual elements
and rectangles containing ellipses for arbitrary sequences of elements, which we
will refer to as segments. In terms of referencing elements, we place indexes
above the array pictures while properties and relations are depicted using braces
below. By way of illustration, Fig. 1 gives two pictures. The upper picture shows
an array A where all the elements from f to i − 1 are strictly less than the
ith element. The lower picture depicts the swapping of elements within an array.
We also have pictorial representations for updating an element with an arbitrary
value as well as updating with a value from another element within the array,
but space precludes us from presenting them here.

In order to illustrate our basic approach we consider a simple teaching exam-
ple - the Polish Flag Problem. The general idea is to partition a mixture of
coloured objects into distinct colours. In the case of the Polish Flag Problem,
there are two distinct colours, i.e. red and white, corresponding to the colours
of the Polish National Flag2. A solution to the problem, written in SPARK,
is given in Fig. 2. Note that an array Flag is used to represent the mixture of
colours. It is assumed that all the elements of Flag are either Red or White. This
assumption is expressed by the following precondition:

--# pre (for all I in IndexRange => (Flag(I)=Red or Flag(I)=White));

where IndexRange defines the range of valid indices for the array Flag. The required
postcondition takes the following form:

--# post for some P in Integer range (Flag’First) .. (Flag’Last+1) =>

--# ((for all Q in Integer range Flag’First..(P-1) => (Flag(Q)=Red)) and

--# (for all R in Integer range P..Flag’Last => (Flag(R)=White)));

2 This is a simplification of Dijkstra’s Dutch National Flag Problem which requires
three colours.
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Fig. 1. Arrays as pictures

This asserts that on termination all the Red elements within Flag will pro-
ceed the White elements, where the existential variable P is used to indicate the
lower bound of the White elements. Note that to accommodate the situation
where Flag contains no White elements, the upper bound of P is defined to be
Flag’Last+1. The basic idea behind the algorithm is that a lower segment of
Red elements and an upper segment of White elements are maintained during
the computation. Two local variables, I and J are used in defining the upper
and lower bounds of each segment respectively during this computation. Sand-
wiched between the lower and upper segments (I..J-1 inclusive) is a mixture of
coloured elements. This “basic idea” is expressed formally by the loop invariant
corresponding to the assert statement in Fig. 2. Note that on termination I=J
and the consequently mixed colours segment (I..J-1) will be empty.

Here we focus on the VCs associated with the loop invariant and the postcon-
dition. With regards to the loop we consider specifically the else-branch, where
the corresponding VC is shown in Fig. 3. Note that both hypotheses and con-
clusions are identified using labels prefixed with H and C respectively. Note also
that only those parts that are required in order to draw pictures of the array are
given. In some sense this is more interesting than the then-branch since the con-
clusion formulas C4 and C5 involve nested updates, making it harder to decide
whether or not the VC is provable. In contrast, we believe that the validity of
the VC is more immediate if presented with the pictorial representation as pro-
vided in Fig. 4. Moreover, we would argue that the picture also provides a strong
hint as to how a proof should proceed. That is, it tells you which parts of the
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...
IndexUpper: constant := 4;
IndexLower: constant := 1;
subtype IndexRange is Integer range IndexLower .. IndexUpper;
subtype PointerRange is Integer range IndexRange’First .. IndexRange’Last+1;
type Colour is (Red, White);
type ArrayOfColours is array (IndexRange) of Colour;
...
procedure Partition_Section(Flag: in out ArrayOfColours)
is

subtype JustBiggerRange is Integer range Flag’First .. Flag’Last+1;
I: JustBiggerRange;
J: JustBiggerRange;
T: Colour;
begin

I:=Flag’First;
J:=Flag’Last+1;
loop

--# assert Flag’First<=I and
--# J<=(Flag’Last+1) and
--# I<=J and
--# (for all Q in Integer range Flag’First..(I-1) => (Flag(Q)=Red)) and
--# (for all R in Integer range J..Flag’Last => (Flag(R)=White));
exit when I=J;
if Flag(I)=Red then

I:=I+1;
else

J:=J-1;
T:=Flag(I);
Flag(I):=Flag(J);
Flag(J):=T;

end if;
end loop;

end Partition_Section;

Fig. 2. Solution to Polish Flag problem written in SPARK

goal follow directly from the given, and which parts of the goal must first be
decomposed, i.e. the white segment from j−1 to l must be decomposed into the
(j − 1)th element and the segment from j to l.

Now consider the post-loop VC which is given in Fig. 5 and the correspond-
ing pictures shown in Fig. 6. Again we argue that the validity of the VC is more
immediate when considering the pictorial representation. In addition, the pic-
tures strongly suggest how to complete the proof, i.e. instantiate the existential
variable p within the goal to be i (or j since i = j).

The real value of pictures, as hinted in the introduction, is in identifying
when a VC is not provable or where inconsistencies have arisen between the code
and the specification. By way of illustration, consider Fig. 7 which gives a revised
version of the loop associated with our Polish Flag solution. Here we focus on the
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procedure_partition_section_5.
...
H3: i <= j .
...
H4: for_all(q_: integer, ((q_ >= indexrange__first) and (

q_ <= i - 1)) -> (element(flag, [q_]) = red)) .
H5: for_all(r_: integer, ((r_ >= j) and (r_ <=

indexrange__last)) -> (element(flag, [r_]) =
white)) .

...
H12: not (i = j) .
...
H17: not (element(flag, [i]) = red) .
...

->
...
C4: for_all(q_: integer, ((q_ >= indexrange__first) and (

q_ <= i - 1)) -> (element(update(update(flag, [i], element(
flag, [j - 1])), [j - 1], element(flag, [i])), [
q_]) = red)) .

C5: for_all(r_: integer, ((r_ >= j - 1) and (r_ <=
indexrange__last)) -> (element(update(update(
flag, [i], element(flag, [j - 1])), [j - 1], element(
flag, [i])), [r_]) = white)) .

...

Fig. 3. Polish Flag: Loop invariant VC - else branch

Fig. 4. Polish Flag: Loop invariant VC picture - else branch
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procedure_partition_section_12.
H1: indexrange__first <= i .
H2: j <= indexrange__last + 1 .
...
H4: for_all(q_: integer, ((q_ >= indexrange__first) and (

q_ <= i - 1)) -> (element(flag, [q_]) = red)) .
H5: for_all(r_: integer, ((r_ >= j) and (r_ <=

indexrange__last)) -> (element(flag, [r_]) =
white)) .

...
H12: i = j .

->
C1: for_some(p_: integer, ((p_ >= indexrange__first) and (

p_ <= indexrange__last + 1)) and ((for_all(q_:
integer, ((q_ >= indexrange__first) and (q_ <= p_ - 1)) -> (element(
flag, [q_]) = red))) and (for_all(r_: integer, ((
r_ >= p_) and (r_ <= indexrange__last)) -> (element(
flag, [r_]) = white))))) .

Fig. 5. Polish Flag: Post loop VC

Fig. 6. Polish Flag: Post loop VC picture

verification of the loop invariant with respect to the then-branch. The associated
VC is given in Fig. 8 while the corresponding pictorial perspective is shown in
Fig. 9. Again we argue that the pictures are more effective at communicating that
there are problems, i.e. the contradiction with regards to the colour of element i
within the given hypothesis. This contradiction arises because the loop invariant
is flawed, i.e. the upper bound of the red segment should be (i − 1) but in the
revised loop code it is given as (i + 1).
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...
loop
--# assert Flag’First<=I and
--# J<=(Flag’Last+1) and
--# I<=J and
--# (for all Q in Integer range Flag’First..(I+1) => (Flag(Q)=Red)) and
--# (for all R in Integer range J..Flag’Last => (Flag(R)=White));

exit when I=J;
if Flag(I)=White then

J:=J-1;
T:=Flag(I);
Flag(I):=Flag(J);
Flag(J):=T;

else
I:=I+1;

end if;
end loop;
...

Fig. 7. Revised Polish Flag code

procedure_partition_section_4.
...
H3: i <= j .
H4: for_all(q_: integer, ((q_ >= indexrange__first) and (

q_ <= i + 1)) -> (element(flag, [q_]) = red)) .
H5: for_all(r_: integer, ((r_ >= j) and (r_ <=

indexrange__last)) -> (element(flag, [r_]) =
white)) .

...
H12: not (i = j) .
...
H17: element(flag, [i]) = white .
...

->
...
C4: for_all(q_: integer, ((q_ >= indexrange__first) and (

q_ <= i + 1)) -> (element(update(update(flag, [i], element(
flag, [j - 1])), [j - 1], element(flag, [i])), [
q_]) = red)) .

C5: for_all(r_: integer, ((r_ >= j - 1) and (r_ <=
indexrange__last)) -> (element(update(update(
flag, [i], element(flag, [j - 1])), [j - 1], element(
flag, [i])), [r_]) = white)) .

...

Fig. 8. Polish Flag: Loop invariant VC - then branch (revised code)
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Fig. 9. Polish Flag: Loop invariant VC picture - then branch (revised code)

4 Experimental Implementation and Results

We now describe how the basic approach outlined above has been implemented in
an experimental tool called Auto-VCV. As shown in Fig. 10, Auto-VCV involves
three phases:

Parser: given a raw VCG file all information relating to arrays is extracted.
Translator: from the extracted information the relative ordering of array ele-

ments and segments is determined.
Picture Generator: the relative ordering information is mapped onto the

absolute positioning of the array pictures.

Fig. 10. Auto-VCV architecture

We focus in particular on the core algorithm which extracts information from
VCs that is relevant to drawing pictures of arrays. The algorithm takes three
input files:

vcg: contains all the VCs related to a specific procedure.
fdl: records type information as well as the variables and constants associated

with the procedure. Any user defined proof functions that are used within
assertions are also recorded.
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Fig. 11. Auto-VCV screenshot

Fig. 12. Auto-VCV: Polish Flag loop invariant VC picture - else branch

rul: contains the definition of proof functions supplied by the user.

Parsing the raw VCs, along with the information in the fdl3 and rul files, the
algorithm performs the following four tasks for each VC:

1. Identification of the arrays that are explicitly referenced within the given
hypotheses and conclusions.

3 FDL stands for Functional Description Language [1].
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Fig. 13. Auto-VCV: Polish Flag loop invariant VC picture - then branch (revised code)

subtype Index_Type is Integer range 1 .. 9;
type Array_Type is array (Index_Type)
of Integer;

...
procedure Bubble_Max(Table: in out Array_Type)

is
R: Index_Type;
T: Integer;

begin
R:= 1;
loop

--# assert (for all I in Integer range Table’First .. (R-1) => (Table(I) <= Table(R)));
exit when R = Index_Type’Last;

R:=R+1;
if Table(R-1) > Table(R) then

T:= Table(R);
Table(R):= Table(R-1);
Table(R-1):= T;

end if;
end loop;

end Bubble_Max;

Fig. 14. Bubble Max code

2. Extraction of properties and relations with respect to elements and segments
that are contained within the identified arrays, including constraints on index
variables and upper and lower bounds.

3. Ordering the elements and segments that are explicitly identified above, this
may involve elementary reasoning with regards to the constraints extracted
for index variables.

4. Positioning the elements and segments, i.e. determining if segments (and ele-
ments) are (i) adjoining, (ii) non-adjoining, (iii) overlapping. Implicit gaps
and overlaps are calculated, i.e. either a fixed number of consecutive elements
of a segment.
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procedure_bubble_max_3.
H1: for_all(i_: integer, ((i_ >= index_type__first) and (

i_ <= r - 1)) -> (element(table, [i_]) <= element(
table, [r]))) .

...
H18: element(table, [r + 1 - 1]) > element(table, [r + 1]) .
...

->
C1: for_all(i_: integer, ((i_ >= index_type__first) and (

i_ <= r + 1 - 1)) -> (element(update(update(
table, [r + 1], element(table, [r + 1 - 1])), [r + 1 - 1], element(
table, [r + 1])), [i_]) <= element(update(update(
table, [r + 1], element(table, [r + 1 - 1])), [r + 1 - 1], element(
table, [r + 1])), [r + 1]))) .

...

Fig. 15. Bubble Max: Loop invariant VC - then-branch (true)

Fig. 16. Auto-VCV: Bubble Max loop invariant VC picture - then-branch (true)

The basic tasks outlined above can be applied in two distinct modes within
Auto-VCV. Firstly, in what is called debug mode pictures are extracted from
individual hypotheses (or conclusions) one at a time for each VC. Secondly, in
integrated mode all the individual pictures are combined to give a single picture
for the given VC. The actual picture drawing aspect of the system maps the
abstract information extracted from the VCs onto concrete positions within the
Auto-VCV interface panels.
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procedure_bubble_max_4.
H1: for_all(i_: integer, ((i_ >= index_type__first) and (

i_ <= r - 1)) -> (element(table, [i_]) <= element(
table, [r]))) .

...
H18: not (element(table, [r + 1 - 1]) > element(table, [r + 1])) .

->
C1: for_all(i_: integer, ((i_ >= index_type__first) and (

i_ <= r + 1 - 1)) -> (element(table, [i_]) <= element(
table, [r + 1]))) .

...

Fig. 17. Bubble Max: Loop Invariant VC - then-branch (false)

Fig. 18. Auto-VCV: Bubble Max loop invariant VC picture - then-branch (false)

Auto-VCV has an object oriented design and is implemented in Java SDK 1.7
version using AWT and Swing utilities along with the Java 2D graphics library
[7]. The GUI for Auto-VCV is shown in Fig. 11, note that as well as displaying
pictures of arrays it also allows the user to view the related VC (bottom panel)
and FDL file (bottom right panel). Mode selection and other navigation options
are shown in the panel on the right.

Returning to our running example, the pictures generated by Auto-VCV for
the VC given in Fig. 3 are shown in Fig. 12, while the pictures generated for the
VC given in Fig. 8 are shown in Fig. 13. In order to illustrate pictures involving
relations, consider the Bubble Max procedure given in Fig. 14 - a procedure in
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which the largest value within an array “bubbles” up to the top, i.e. the element
with the largest index. The VC associated with the then-branch is given in Fig. 15
while the corresponding Auto-VCV generated picture is shown in Fig. 16. The
VC and pictures associated with the path that avoids the then-branch are given
in Figs. 17 and 18 respectively. Again we would argue that the validity of these
VCs is more immediate when viewed as pictures.

5 Related and Future Work

We are unaware of any other work that directly addresses the visualization of
array based VCs. As part of a previous project, which focused on separation logic
[11], we built an animation tool [10] which supports the visualization of programs
that manipulate the heap. The spatial operators associated with separation logic
makes it particularly amenable to extracting pictures from formulas.

Further testing and development of the Auto-VCV tool is required. For
instance we need to develop the tool so that it can represent relations between
distinct pictures, e.g. when proving sorting algorithms one needs to specify that
the output array is a permutation of the input array. Moreover, to deal effectively
with more comprehensive functional specifications definitions become important.
Handling definitions is currently under development, and accounts for the rul
(file) input to our algorithm discussed above. Multi-dimensional arrays as well
as records are also part of our future work plans. Following the motivations of
Reynolds [12] mentioned in the introduction, we are also keen to explore the role
of pictures within proof.

In terms of SPARK users, we have received positive feedback on Auto-VCV
from software engineers within BAE Systems that use SPARK. We also intend
to make use of our work within a MSc programme which covers SPARK and
program proof. Another potential direction will be to target Boogie, a generic
verification condition generator [5]. Following the Boogie route would allow our
approach to be more easily applied to other programming languages.

6 Conclusion

We have presented an approach to visualizing VCs associated with array based
code. The core of the approach has been demonstrated via our Auto-VCV pro-
totype tool which extracts pictures from SPARK VCs. While still very much an
experimental tool, we believe that it demonstrates the value of visualizing VCs
as pictures, both as an aid to proof as well as debugging code and specifications.
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Abstract. Services running in the cloud face threats from several par-
ties, including malicious clients, administrators, and external attackers.
CloudProxy is a recently-proposed framework for secure deployment of
cloud applications. In this work, we present the first formal model of
CloudProxy, including a formal specification of desired security proper-
ties. We model CloudProxy as a transition system in the UCLID mod-
eling language, using term-level abstraction. Our formal specification
includes both safety and non-interference properties. We use induction
to prove these properties, employing a back-end SMT-based verification
engine. Further, we structure our proof as an “assurance case”, show-
ing how we decompose the proof into various lemmas, and listing all
assumptions and axioms employed. We also perform some limited model
validation to gain assurance that the formal model correctly captures
behaviors of the implementation.

1 Introduction

With computation shifting to the cloud, security in cloud computing has become
a concern. Providers of Infrastructure as a Service (IaaS) lease data center
resources (processors, disk storage, etc.) to mutually non-trusting users. While
IaaS providers use virtualization to isolate users on a physical machine, even
if the virtualization software is assumed to be secure, a malicious user may
still exploit misconfigurations or vulnerabilities in management software to gain
complete control over data center networks and machines. Moreover, a mali-
cious data center administrator can steal or modify unprotected disk storage.
This can be catastrophic because applications may save persistent secrets (e.g.
databases, cryptographic key) and virtual machine images (containing trusted
program binaries) to disk. These threats are a challenge for deploying security-
critical services to the cloud.

CloudProxy [16] is a recently-proposed framework for securely deploying
cloud applications on commodity data center hardware. It implements a trusted
service that is available to applications to (1) protect confidentiality and integrity
of secrets stored on secondary storage, (2) cryptographically prove that they are
running unmodified programs, and (3) securely communicate with other appli-
cations over untrusted networks.

c© Springer International Publishing Switzerland 2014
D. Giannakopoulou and D. Kroening (Eds.): VSTTE 2014, LNCS 8471, pp. 87–104, 2014.
DOI: 10.1007/978-3-319-12154-3 6
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We consider the problem of formal specification and verification of Cloud-
Proxy. We are concerned with proving that CloudProxy provides a set of secu-
rity properties to any application that uses its API. To that end, we model the
internals of CloudProxy in the presence of arbitrary, non-deterministic applica-
tions. Our first challenge is that the security guarantees listed above are informal
and fairly high-level; it is non-trivial to formulate these properties for a detailed
model of CloudProxy. Therefore, we construct an assurance case [20] that decom-
poses our proof into several axioms, assumptions about our trusted computing
base, and lemmas that must be proved. The assurance case argues that our lem-
mas are complete — under our documented assumptions, our lemmas imply the
high-level security goals outlined by the authors of CloudProxy [16]. In formal-
izing these lemmas, we use well-known characterizations of non-interference [10]
and semantic information flow [13]. Finally, we build a detailed term-level [5]
model of CloudProxy, and prove these properties using a Satisfiability Modulo
Theories (SMT) based theorem prover [3].

In summary, the primary contributions of this paper include:

– a formal model of CloudProxy (see Sect. 4)
– an assurance case for systematically decomposing our proof into a set of

assumptions made by CloudProxy, and properties that must be proved on
the model (see Sect. 3: Fig. 2 and Table 1)

– a semi-automatic, machine-checked proof of our properties on the formal
model (see Sect. 5).

2 Background

2.1 CloudProxy’s Threat Model

We outline CloudProxy’s threat model, which is described in greater detail
in [16]. The adversary controls everything outside of the protected application’s
trusted computing base (TCB): hardware and OS/hypervisor that is running
CloudProxy. That is, the adversary has physical access to all data center hard-
ware and infrastructure, except the hardware (i.e. CPU, memory, chipset, back-
plane, disks) on which the protected application is currently running — there is
no direct access to the hardware during operation and for a few minutes there-
after (to prevent cold boot attacks [12]). In practice, providers of Infrastruc-
ture as a Service (IaaS) may enclose racks of processors in cages to prevent
physical access. However, a malicious administrator can remove, examine, mod-
ify the disk, and later re-install the modified disk on a CloudProxy machine.
The adversary also controls all data center networks. In this threat model,
CloudProxy protects the protected application’s secrets that (1) reside locally
on the machine, and (2) are communicated to other trusted applications over an
untrusted network channel.
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Fig. 1. Overview of CloudProxy architecture

2.2 Overview of CloudProxy Architecture

Figure 1 gives a structural overview of the CloudProxy architecture. CloudProxy
assumes that it runs on trusted hardware, which includes a trusted CPU, and a
trusted motherboard containing a secure co-processor called the TPM [17]. The
TPM serves as a root of trust for secure boot, cryptographic sealing/unsealing
of secrets, and attestation of applications. Sealing encrypts the secret, and also
binds it to the measurement of the application invoking the API; unsealing
decrypts the sealed secret if and only if the measurement of the caller matches the
bound measurement of the ciphertext. A measurement is a cryptographic hashing
on the state of the entity of concern. The TPM protects the sealing keys within
its hardware, thereby protecting the keys from software attacks. Attestation is
a mechanism by which a remote party can verify that the local platform has a
desired measurement, and then provision secrets to the local platform. The TPM-
enabled boot eventually launches the operating system, which is also trusted by
CloudProxy – Sect. 3 describes what guarantees we require from a trusted OS.
At the time of writing, CloudProxy uses a hardened Linux kernel. The crux of
CloudProxy is the TCService process which exposes an API (see Sect. 2.4) to
its mutually trusting applications. The application uses this API to (1) seal its
secrets before saving them to disk storage, (2) measure itself and the underlying
OS to prove that it is running unmodified code, and (3) authenticate itself to
remote CloudProxy applications via the attest API.

We briefly describe how this architecture protects us from an adversary with
capabilities as described in the threat model above. First, CloudProxy uses a
trusted OS/hypervisor layer for isolating the protected application’s execution
from other adversarial applications. We argue that apart from vulnerabilities
in the application logic (which is beyond our scope), the TCService API is the
only remaining means of attack from adversaries. In this paper, we prove that
TCService prevents any application’s API request from interfering with another
application’s API response. Secondly, to protect from insider attacks that steal



90 W.Y. Tan et al.

or modify disks, TCService provides a seal (and corresponding unseal) API to
add cryptographic confidentiality and integrity protection before writing secrets
to disk. Since disks also store binaries within an application’s TCB, TCService
uses the TPM to measure the entire software stack (OS, TCService, CloudClient)
before executing it. Lastly, to protect from attacks that observe or tamper mes-
sages sent over network, TCService provides an attest API that an application
can use to authenticate itself to a KeyServer. If the application has the expected
measurement, TCService will return a certificate (signed by KeyServer) contain-
ing the application’s public key. The application uses this certificate to establish
a secure channel with another CloudProxy application over the network, thereby
preventing network attacks. We use an assurance case in Sect. 3 to make a sys-
tematic argument for why CloudProxy provides sufficient defense against this
threat model.

2.3 Deploying and Initializing CloudProxy

CloudProxy is deployed in two parts: (1) a virtual machine image containing
the trusted OS and all CloudProxy applications, and (2) the trusted KeyServer .
The KeyServer is deployed with the desired measurement of TCService, and
desired measurements of each application. When the machine boots up and starts
TCService, TCService uses the TPM to measure its trusted computing base (the
OS and TCService binary), and sends a TPM’s attestation to this measurement
along with TCService’s public key to the KeyServer . If the measurement matches
the expected value, the KeyServer returns a certificate binding TCService to its
public key. This establishes trust between the KeyServer and TCService for all
future communication. Next, TCService starts the application, e.g. CloudClient
in Fig. 1. To establish trust with the KeyServer , CloudClient uses TCService
to measure its trusted computing base (the OS, TCService, and CloudClient
binary), and sends the TCService’s attestation to this measurement along with
the CloudClient’s public key to the KeyServer. In response, the KeyServer pro-
duces a signed certificate binding CloudClient to its public key. From hereon,
CloudClient uses this certificate for establishing secure connections with other
applications such as the CloudServer. The application also generates a private
attestation key, which it seals using TCService and saves to disk for future use.
Note that the TPM acts as a hardware root of trust in this entire process.

2.4 CloudProxy API

Once the applications have been initialized, they may invoke any of the following
CloudProxy API, in any order. We now briefly describe the semantics of each
API function (details found in [16]).

1. GetHostedMeasurement(): computes the measurement of the calling applica-
tion.

2. Attest(data): returns a certificate (signed by TCService) binding data to the
caller by including the caller’s measurement in the certificate.
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3. GetAttestCertificate(): returns a certificate (signed by KeyServer) binding the
caller’s public key.

4. Seal(secret): encrypts the concatenation of secret and the caller’s measure-
ment. Then the message authentication code (MAC) of this ciphertext is
attached to the ciphertext.

5. Unseal(sealed secret): performs integrity check on the MAC, and decrypts
the input data if the integrity check succeeds. Next, TCService checks if the
caller’s measurement is equal to the measurement field in the plaintext. If
this check succeeds, the plaintext is returned to the caller.

6. GetEntropy(n): returns a cryptographically-strong random number of size n
bits.

3 Assurance Case

We prove that CloudProxy protects its client applications from the threats
allowed in our threat model. However, the description of the threat model and
desired properties in the original CloudProxy paper are quite informal. Our first
contribution in this work is to formalize these high-level security properties into
a set of axioms, assumptions, and lemmas that are expressible within a model
of CloudProxy. Although we formalize our assumptions and lemmas, we rely on
an informal assurance case as a meta-level argument for why our lemmas and
assumptions fulfill the high-level security properties. In Sect. 4, we build a formal
model of CloudProxy, and in Sect. 5, we prove a set of lemmas on this model.

An assurance case is a documented body of evidence that provides a system-
atic, albeit informal, argument that a system satisfies a set of properties [20].
An assurance case first starts with a goal, and then iteratively decomposes it
into constituent goals and assumptions, until all goals are supported by direct
evidence. We follow the Goal Structuring Notation (GSN) as described in the
GSN Community Standard [2]. A goal or a claim (marked by box labeled G)
is a lemma we would like to prove. An assumption (marked by oval labeled A)
represents an assumption or an axiom in our proof. A context (labeled Ct) is
used to limit scope of our work. An evidence (marked by circle labeled E) refers
to a proof and is used to support a goal. We use circles with dashed lines to
indicate proofs that are in progress.

As shown in Fig. 1, CloudProxy relies on several components: a trusted hard-
ware, a trusted OS/hypervisor layer, to-be-verified TCService, and a trusted
remote key server. In this work, we only verify TCService, and assume that
properties about other components hold. This is encoded as assumption A1 in
Fig. 2: the hardware, the hypervisor, and the OS (including the TPM driver) are
trusted.

For ease of exposition, we use the term “protected application” to refer to a
CloudProxy application whose secrets we seek to protect, and the term “mali-
cious application” to refer to any other CloudProxy application or program run-
ning on the same machine. Proving that CloudProxy protects the protected
application’s secrets (G1) is decomposed into 3 goals G2 - G4, one for each
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Fig. 2. CloudProxy assurance case.

ability granted to our adversary by the threat model. It must be noted that
CloudProxy does not prevent an application from erroneously leaking its secrets
to the adversary; it only exports an API that, if used correctly, enables the
application to protect its secrets. As a result, verifying application logic is out of
scope (Ct1). Each goal in G2 - G4 is defined in terms of one or more goals in
G5 - G9. G7 protects the application from attacks that change the application’s
binary or TCService’s binaries on disk before the machine boots up. G7 is sup-
ported by a proof of correctness of the measured launch sequence (E1), which
uses the TPM to compute a cryptographic hash of the binaries before launching
TCService and applications. We need not measure binaries after they launch
because (1) we trust the OS/hypervisor to enforce memory protections, and
(2) our threat model prevents an insider from physically accessing the mem-
ory chip of a machine running CloudProxy (A2). Note that all high-level goals
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G2 - G4 depend on G7 because successfully mounting a compromised TCSer-
vice binary will nullify all security guarantees. In addition to G7, we need G5
and G6 to guarantee G2: a protected application’s secrets are not observable
in plaintext by malicious programs on that machine. G5 enforces that a mali-
cious program does not observe a protected application’s execution. Our notion
of execution only considers application’s state updates and side-effects via sys-
tem calls; we do not consider information leaks via side channels. G6 enforces
that the protected application’s secrets have cryptographic confidentiality and
integrity protections before being saved to disk. G8 and G9 together protect an
application’s secret that is sent over the network. G8 relies remote attestation
to prove to a third-party that each protected application and TCService are run-
ning unmodified binaries. Following remote attestation, G9 enforces that future
communication takes place over a cryptographically secure channel. CloudProxy
uses TLS (E3) for secure communication – we do not verify the TLS implemen-
tation in this work (this problem is explored in [4]).

Consider the assurance case for G5. This responsibility is shared between the
OS protections (G11) and the TCService API guarantees (G12). G11 stipu-
lates that our OS (1) protects an application’s address space from reads or writes
by other programs, and (2) TCService is in full ownership of the TPM device.
Both requirements can be fulfilled by a separation kernel [18]. While separabil-
ity is a strict and possibly unreasonable requirement for commodity OS, for this
discussion we assume we have a separation kernel via A4. As a result, TCSer-
vice interface is the last remaining means by which a malicious application can
interfere with the protected application’s execution. To that end, G12 stipulates
a non-interference property on TCService: responses to the protected applica-
tion’s API requests is independent of the malicious application’s API requests.
We prove this property (E4) on our UCLID model, and make an initial attempt
of validating this model with respect to the implementation (E5). Model valida-
tion proves that all behaviors in the implementation are captured by the model
(see Sect. 6).

Consider the assurance case for G6. If secrets are sealed using TCService’s
seal API, then an adversary is unable to observe a secret’s plaintext (confidential-
ity) and is also unable to tamper a secret’s ciphertext without being detected
(integrity). The proof for G6 hinges on two sets of lemmas: (1) G13-G16:
TCService’s implementation of seal preserves confidentiality and integrity, and
(2) G10: TCService never reveals its sealing key. For G13-G16, we assume
(A6) that we have a Dolev-Yao [9] adversary — analyzing the strength of cryp-
tographic operations is beyond our scope. In other words, our proof uses axioms
of strong encryption, pre-image resistance of hash functions, second pre-image
resistance, and strong collision resistance of hash functions. TCService performs
seal by first encrypting the secret, and then appending the MAC (implemented
using hash function) of the ciphertext. Goal G14 is fulfilled by the confidential-
ity assumption about ideal encryption scheme. Goal G16 is fulfilled by the pre-
image resistance, second pre-image resistance, and the strong collision resistance
axiom about hash function used in MAC. We assume that the cryptographic
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Table 1. Node refers to the assurance case node in Fig. 2. Proof Obligations are
either nodes in the assurance case, or property number(s) in Sect. 5.

Node Description Proof Obligation

A1 Hardware, hypervisor and OS are trusted

A2 Adversary cannot physically access computers that are

running CloudProxy

A3 KeyServer is trusted

A4 Hypervisor and OS layers enforce separability

A5 Unique pid to all CloudProxy apps during TCService’s

lifetime

A6 Cryptographic primitives seal, unseal, SHA are implemented

perfectly

A7 TPM driver does not leak TCService’s secrets

Ct1 Verifying app logic is out of scope

E1 Verify measured launch mechanism

E2 Verify remote attestation protocol

E3 Use verified TLS implementation for network communication

E4 Prove G12 on UCLID model. Ppty (1), (2)

E5 Validate UCLID model

E6 Prove G13 on UCLID model Ppty (6)

E7 Prove G15 on UCLID model Ppty (7)

E8 Prove G22 on UCLID model Ppty (9)

E9 Prove G19 on UCLID model

G1 CloudProxy API secures protected app’s secrets A1, G2-G4

G2 Secure against malicious programs running on same machine G5-G9

G3 Secure against malicious physical access of disk storage A2, G5-G7

G4 Secure against network attacks G7-G9

G5 Executions of any app do not affect other apps G11-G12

G6 Sealed secrets on disk have confidentiality and integrity

protection

G10,G13-G16

G7 Protected app and TCService are launched from unmodified

code

E1

G8 Remote attestation via untrusted channels A3, E2, G10

G9 Use TLS for establishing cryptographically secure channels E3

G10 Protected app and TCService do not reveal attestation and

sealing keys

G17-G20

G11 Isolation of address space belonging to TCService and apps A5

G12 Non-interference: Applications cannot affect each other

through TCService API

A4, E4-E5

G13 TCService seal API provides data confidentiality A4-A5, E5-E6

G14 Cryptographic library’s seal() provides data confidentiality A6

G15 TCService seal API provides data integrity A4-A5, E5, E7

G16 Cryptographic library’s seal() provides data integrity A6

G17 TCService does not reveal keys during initialization A7, G21

G18 Protected app does not reveal keys during initialization A6, G21

G19 TCService does not leak keys within responses to API calls E5, E9

G20 Protected app does not reveal keys after initialization

G21 CloudProxy initialization process does not reveal keys G22

G22 Arguments of system calls do not leak keys E5, E8
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library satisfies these axioms about encryption and hash functions. TCService
also appends the application’s measurement within the sealed secret. This mea-
surement is used to decide if TCService should return the unsealed secret to the
requester — the requester’s measurement must match the measurement at the
time of sealing. To that end, we also need goals G13 (fulfilled by E6) and G15
(fulfilled by E7) to prove that TCService does not unseal the protected applica-
tion’s secret on behalf of a malicious application. While building a formal model,
we identified a design flaw (presented here as assumption A5) that the OS does
not reuse process identifiers throughout the lifetime of TCService— TCService
uses the process identifier (pid) to identify the application invoking the API call.

Consider the assurance case for G10. We must prove that this property
holds during (1) TCService’s initialization (G17), (2) application’s initialization
(G18), and (3) servicing of API request by TCService (G19). Although verifying
application logic is out of scope, the application’s initialization is handled by
CloudProxy. G18 proves that this initialization process does not leak keys. Both
TCService and application use the same initialization routine, with the exception
that the application uses the TCService’s API for cryptographic operations,
while TCService uses the TPM’s API. This allows us to share G21 for fulfilling
both G17 and G18. E8 fulfills G22 by proving that each write (e.g. file write,
socket send) out of the application’s address space is either sealed or the written
value is independent of the keys. Finally, the proof in E9 fulfills goal G19:
TCService does not leak its sealing and attestation key in response to an API
request. G19 is necessary even after proving the non-interference property in
G12. This is because TCService may leak the protected application’s secrets by
erroneously revealing its own sealing key.

4 Formal Modeling

Our assurance case in Sect. 3 allows us to focus our verification effort on the
composition of TCService with the protected and malicious applications. Thus,
we do not model the entire TCB consisting of the OS and hardware, since this
TCB is not the focus of our verification effort. Instead, we use axioms and
assumptions about the TCB in our model.

Figure 3 presents the structural overview of our model1, for which we use the
UCLID [5] modeling language. This model is a synchronous composition of four
transition systems: (1) Protected application App, (2) Malicious application
Mal App, (3) Scheduler , and (4) TCService. The model captures the initialization
routine (Sect. 2.3) of TCService and applications, as well as the semantics of each
CloudProxy API. Recall that CloudProxy does not place any constraints on the
application’s behavior; secrets will get compromised if the application erroneously
leaks the plaintext secrets or the private sealing keys. Therefore, we verify TCSer-
vice in the presence of an arbitrary App and an arbitrary Mal App. When trig-
gered, App and Mal App non-deterministically choose an API call and arguments
1 The model is available on http://uclid.eecs.berkeley.edu/cloudproxy.

http://uclid.eecs.berkeley.edu/cloudproxy
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Fig. 3. UCLID model is a synchronous composition of App, Mal App, Scheduler , and
TCService.

to TCService in each step of execution. The Scheduler non-deterministically trig-
gers eitherApp orMal App to execute in each step. We choose interleaving seman-
tics because the TCService implementation serializes all API requests onto a FIFO
buffer, and handles each request atomically. Since Mal App is completely non-
deterministic, our proofs apply to CloudProxy executions containing an
unbounded number of malicious applications. TCService maintains the follow-
ing state variables: (1) a private key (private key) for remote attestation, (2) a
symmetric key (sym key) for use in seal and unseal, (3) running pid table[] for
process identifiers of all running CloudProxy applications, and (4) measurements
measurement table[] of all running CloudProxy applications. Each API operation
may involve reading and writing to Secondary storage, which is modeled as an
unbounded memory in the theory of Arrays.

As we are not analyzing the strength of cryptographic operations, we adopt
the Dolev-Yao abstraction [9] in our model. Messages, keys, and state variables
are modeled as terms. Cryptographic operations are uninterpreted functions over
terms. The cryptographic operations are perfect — we apply axioms about strong
encryption, pre-image resistance, second pre-image resistance, and strong colli-
sion resistance of hash functions.

The following lists the assumptions on the capabilities of Mal App in our
model:

1. Mal App is able to execute any cryptographic operations as well as invoke
any API of TCService.

2. At initial state, Mal App does not have the knowledge of either App secrets
or TCService keys in plaintext.

3. Mal App is not able to eavesdrop on data returned by TCService to App.
This assumption is sound since we assume that the OS is trusted, and the
OS controls the response/request channel.
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4. The malicious application has unlimited storage for data learned from invok-
ing TCService APIs and cryptographic functions at every transition step. In
other words, Mal App may learn and generate new data from any combination
of arbitrary function call.

During our modeling, we found a bug in the implementation. When a process
terminates, the entry for that process pid is not removed from the running pid
table[] and measurement table[] . If the OS spawns a new application with the
same pid , then the new application can start unsealing secrets belonging to the
terminated CloudProxy application. Having identified this bug, we introduce an
assumption (A5 in assurance case) that the pid will not be reused throughout
the lifetime of TCService.

5 Verification

In this section, we formalize and verify properties on the UCLID model for
each evidence in our assurance case. As mentioned previously, the evidences
marked with a dashed line represent proofs that are currently in progress or
left for future work. Each proof was performed using UCLID’s internal decision
procedures [5,15].

5.1 Non-interference between Applications

G12 in Fig. 2 stipulates that the responses to an application’s API requests
is independent of the malicious application’s API requests. This means that
Mal App’s inputs to TCService can be removed without affecting TCService
outputs to App, and vice versa. In the context of CloudProxy, this property
requires two proofs:

1. non-interference (secrecy): App’s secrets are not leaked to Mal App when
Mal App invokes an API request

2. non-interference (integrity): results of App’s API calls are unaffected by
Mal App’s API requests

We adopt Goguen and Meseguer’s formalization of non-interference for both
checks [10]. A trace is a sequence of states. Let T be the set of infinite traces
allowed by the composition of TCService ‖ App ‖ Mal App. Also, let inApp(t)
and inMal App(t) be the sequence of API requests invoked by App and Mal App,
respectively, in a trace t. Similarly, let outApp(t) and outMal App(t) be the sequence
of API responses by TCService toApp andMal App, respectively, in a trace t. The
following property checks non-interference (secrecy) to Mal App:

∀t1, t2 ∈ T :(inApp(t2) = ε ∧ inMal App(t1) = inMal App(t2)) ⇒
(outMal App(t1) = outMal App(t2)) (1)
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Fig. 4. The figure shows three traces t1, t2 and t3, where trace t2 replaces App API
requests in t1 with ε, and t3 replaces Mal App API requests in t1 with ε.

and the following property checks non-interference (integrity) from Mal
App’s API requests:

∀t1, t3 ∈ T :(inMal App(t3) = ε ∧ inApp(t1) = inApp(t3)) ⇒
(outApp(t1) = outApp(t3)) (2)

where ε denotes no API invocation (modeled as stuttering steps). Note that
this definition only applies if two conditions are met: (1) TCService must be
deterministic (App and Mal App need not be deterministic), and (2) TCService’s
transition function must be total with respect to inputs (Fig. 4).

A hyperproperty is a set of sets of possibly infinite execution traces [7]. As
Properties (1) and (2) reason over a pair of traces, they are both are hyperproper-
ties. We can rewrite them as 2-safety properties [7] and prove them using induc-
tion. As Fig. 5(a) illustrates, we first construct a 2-fold parallel self-composition
of the system, resulting in two instances Sys1 and Sys2 of TCService that run
synchronously and use the same transition relation R. Let s1 and s2 be the state
of TCService in Sys1 and Sys2 respectively. Let in1 and in2 be the input to
TCService in Sys1 and Sys2 respectively. We also let inApp

n and inMal App
n be

to App’s input and Mal App’s input to TCService in Sysn respectively. Simi-
larly, let outApp(s) and outMal App(s) refer to TCService’s output in state s to
App and Mal App respectively. For non-interference (secrecy), we prove the
following inductive property:

∀s1, s2.Init(s1) ∧ Init(s2) ⇒ ΦMal App(s1, s2) (3)

∀s1, s
′
1, s2, s

′
2, in1, in2.

(ΦMal App(s1, s2) ∧ R(s1, in1, s
′
1) ∧ R(s2, in2, s

′
2) ∧ inApp

2 = ε ∧ inMal App
1 = inMal App

2 )

⇒ ΦMal App(s
′
1, s

′
2) (4)
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Fig. 5. S denotes the state of TCService in our UCLID model. We prove non-
interference (secrecy) in (a) by proving that Mal App cannot distinguish s′

1 from s′
2.

We prove non-interference (integrity) in (b) by proving that App cannot distinguish s′
1

from s′
3.

where

ΦMal App(sa, sb)
.
=∀s′

a, s′
b, in.

R(sa, in, s′
a) ∧ R(sb, in, s′

b) ⇒ (outMal App(s′
a) = outMal App(s′

b))
(5)

For any pair of states sa and sb, predicate ΦMal App(sa, sb) is true if and only if
those states are indistinguishable to Mal App — for the same API call, TCSer-
vice produces identical output in both sa and sb. We also use a transition predi-
cate R(s, i, s′) which is true iff the system can transition from state s to s′ under
input i. Property 3 checks the base case that ΦMal App holds on any pair of initial
states. The inductive step (Property 4) proves that from any pair of states s1

and s2 that is indistinguishable to Mal App, TCService must transition to a pair
of states s′

1 and s′
2 (respectively) that are also indistinguishable to Mal App. We

also need an auxiliary invariant to discharge the induction proof: if the App’s
pid entries of the measurement table in TCService in s1 and s2 are the same,
then these entries have the same values in s′

1 and s′
2.

Proving non-interference (integrity) between App and Mal App requires
a similar inductive proof – the preceding discussion applies verbatim if App is
substituted for Mal App and vice versa. UCLID took about 5 s to prove each
property.2

5.2 Data Confidentiality

Here, we describe our proof of G7: Mal App cannot acquire the plaintext of a
sealed secret belonging to App. Recall from Fig. 2 that we split this goal into
two lemmas:

– Lemma 1: Mal App cannot obtain the plaintext by breaking the underlying
cryptography (goal G14 in Fig. 2).

2 UCLID was running on VirtualBox and the machine was a 2.6GHz quad-core with
2GB of memory space allocated to this VirtualBox environment.
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– Lemma 2: Mal App cannot obtain the plaintext by invoking a sequence of
CloudProxy API calls (goal G13 in Fig. 2).

Lemma 1 is simply assumed in our work since we assume a Dolev-Yao
adversary [9]. In accordance with the Dolev-Yao model, our model represents
data as terms of some abstract algebra, and cryptographic primitives operate on
those terms to produce new terms. TCService satisfies Lemma 2 by appending
measurement to the secret prior to sealing. During unsealing, if the secret’s mea-
surement does not match the measurement of API requester, then the request
fails. In what follows, we prove that TCService implements this logic correctly.

Let m be a measurement, mApp be the App’s measurement, and D be the
set of terms from an abstract algebra. Also, let ENC MAC be the authenti-
cated encryption function that first encrypts the plaintext, and then appends
an integrity-protecting MAC of the ciphertext. Let inMal App

API be the API call
from the Mal App to TCService, and let inMal App

arg be the arguments of the API
call from the Mal App to TCService. outMal App

success (s) denotes whether TCService
successfully performed the API request invoked by Mal App. outMal App

result (s) is
the return output of TCService to the Mal App. sKTCS denotes the symmetric
key used by TCService to seal or unseal. We define Lemma 2 as follows.

φ(s) .=∀secret ∈ D, s′,mApp, in.

(inMal App
API = unseal ∧ inMal App

arg = ENC MAC(sKTCS , secret,mApp))∧
R(s, inMal App, s′) ⇒ ¬outApp

success(s
′) (6)

where ENC MAC(sKTCS , secret,mApp) is a term encoding any arbitrary sealed
secret that can belong to App, as secret is an unconstrained symbolic constant.
This allows us to only consider API calls whose argument has this form. This
property guarantees that TCService never returns the plaintext secret as a result
of calling unseal API. Lemma 1 guarantees that the adversary cannot obtain
the plaintext from a sealed secret by breaking the underlying cryptography.

We prove Lemma 2 via 1-step induction. UCLID took about 30 s to prove
this property. Moreover, we discovered the following necessary assumption to
prevent spurious counter-examples to the inductive proof: Mal App has a differ-
ent measurement than App, i.e. mMal App �= mApp. This is reasonable because
they run different binaries, and hash functions are assumed to be collision free.

5.3 Data Integrity

Similar to confidentiality, we prove that TCService enforces integrity protection:
the adversary cannot tamper a sealed secret and still have TCService success-
fully unseal it on behalf of App. Again, we assume perfect integrity protection
of ENC MAC(key, ., .), and hence any modification to ENC MAC(key, ., .)
should not be able to unseal successfully. Only data that was previously sealed
by TCService can be successfully unsealed by TCService– any other data would
fail the MAC check since the MAC check uses TCService’s symmetric key sKTCS .
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This leaves the adversary with only one attack: replace App’s sealed data with
Mal App’s sealed data. Therefore, the following property checks that TCService
does not unseal another application’s sealed data on behalf of App.

Let M be the set of measurements, and D be the set of data. We prove that
an unseal request satisfies the property:

φ(s) .=∀secret ∈ D,∀m ∈ M, s′, in.

inApp
API = unseal ∧ inApp

arg = ENC MAC(sKTCS , secret,m)

∧ m �= mApp ∧ R(s, inApp, s′) ⇒ ¬outApp
success(s

′) (7)

where ENC MAC(sKTCS , secret,m) is a term encoding any sealed secret that
can belong to an application other than App, as secret and m are unconstrained
symbolic constants.

UCLID took less than 5 s to prove this property. A caveat to note here is that
CloudProxy does not currently have a mechanism to check for the freshness of
data. The adversary may perform a replay attack by replacing the App’s sealed
secret on disk with an older secret sealed by the App.

5.4 Protecting Keys

During initialization, TCService generates a symmetric sealing key sKTCS , and a
private attestation key pKTCS . Similarly, a CloudProxy application uses TCSer-
vice to generate a symmetric key sKApp and private attestation key pKApp. In
this section, we prove that keys sKApp and pKApp are never leaked in writes
outsides the App’s address space (goal G18). We only focus our attention on
App’s keys in this section; the property and proof for TCService is identical. We
defer proof for TCService as it uses the same initialization routine as the appli-
cation. We express this property in the semantic information flow framework
introduced by [13]. For any pair of traces, where the traces start from symbolic
states differing in values of sKApp and pKApp (but all other state variables are
identical), the unencrypted outputs along the two traces must be identical – the
keys will affect the values of encrypted data. In other words, values written to
disk are not a function of the keys. Once again, this is a 2-safety property of
TCService ‖ App ‖ Mal App. We use a 1-step induction to prove this property.

First, we define a specification state variable S that gets updated each time
App invokes TCService seal API on some data or during initialization.

next(S(x)) =

⎧
⎪⎨

⎪⎩

true inApp
API = seal ∧ x = ENC MAC(sKTCS , inApp

arg ,mApp)
true initApp = true ∧ x = ENC MAC(sKApp, pKApp,mApp)
S(x) otherwise

(8)

where initApp is a boolean value that indicates whether App is at the initializa-
tion phase. In addition, ∀x.S0(x) = false where S0 is the initial state of S.

Let s1 and s2 be a pair of states, where pKApp,1 and pKApp,2 are App’s
private keys in s1 and s2 respectively. sKApp,1 and sKApp,2 are App’s symmetric
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keys in s1 and s2 respectively. s1 \{pKApp,1, sKApp,1} denotes the set of all state
variables in s1 excluding the two keys. Finally, outdisk(s1) denotes the output
to disk in state s1, and outdisk(s2) denotes the output to disk in state s2. We
formulate this property as follows:

∀s1, s2, s
′
1, s

′
2, in.

(s1 \ {pKApp,1, sKApp,1}) = (s2 \ {pKApp,2, sKApp,2})

∧ R(s1, in
App, s′

1) ∧ R(s2, in
App, s′

2)

∧ (¬S(outdisk,1(s′
1)) ∨ ¬S(outdisk,2(s′

2))) ⇒
(outdisk(s′

1) = outdisk(s′
2)) (9)

UCLID took about two seconds to prove this property. An important caveat
is that we only prove this property for writes that the CloudProxy initialization
code of App makes via the system call interface (e.g. file write to disk). The
soundness of this proof relies on the model validation proof that we have captured
all possible writes to disk in our model.

6 Model Validation

Although we have proved the security properties of CloudProxy on the formal
UCLID model, we are left with an important question: is the model a sound
abstraction of the original system? A valid model must encode all behaviors
that are allowed in the original system. We make first steps in using KLEE [6]
to validate our UCLID model against the C++ implementation, using techniques
proposed by Sturton et al. [21].

Since we do not precisely model all computation within TCService (e.g. mes-
sages are abstracted away as terms), we need to show that the unmodeled code
does not affect the subset of TCService state that we have modeled. Let V denote
the state variables that are present in our UCLID model. We manually identify
code paths that will be pruned away from our modeling. Then, we prove that
the pruned code does not affect any state variable within V . This proof uses the
Data-Centric Model Validation (DMV) technique from [21]. Once we have vali-
dated our pruning, we must further prove that the model correctly abstracts the
pruned program. This is termed as Operation-Centric Model Validation (OMV)
in [21]. Both validation steps are a work in progress.

The entire TCService has about 58k lines of code (LoC), of which about 8k
LoC is used to build our model. The cryptographic keys, measurement table,
and the pid table in TCService are our V set, and only approximately 1k LoC
modifies V . After the DMV step, we model in UCLID the remaining 1K LoC.
We encountered several challenges in performing OMV, and delay that to future
work.

7 Related Work

There has been some use of formal methods for building trustworthy cloud
infrastructure. CertiKOS [11] is a verified hypervisor architecture that ensures
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correct information flow between different guest users. They use a compositional
proof technique to decompose their proof into individual lemmas that can be
proved using different proof engines. Klein et al. [14] provide a machine-checked
verification of the seL4 microkernel in Isabelle. These efforts are especially rele-
vant since CloudProxy needs a trusted OS/hypervisor layer. While both efforts
use interactive theorem proving for building machine checked proofs, we use
a more automated methodology based on model checking. Another alternative
approach is to directly prove the implementation code by inserting annotations
and assertions, and then run a verifier on the code. VCC has been developed to
verify the Hyper-V implementation using this approach [8]. More importantly,
a carefully constructed model can raise the level of abstraction enough to prove
such properties efficiently.

We structure our proof of correctness as an assurance case. Assurance cases
have been applied in practice to present the support for claims about properties
or behaviors of a system. ASCAD [1] presents safety cases (a slight variant of
assurance case) for safety critical systems such as military systems. Shankar
et al. [19] use Evidential Tool Bus to construct claims, and to integrate different
formal tools to provide evidence for each claim.

8 Conclusion

We present the first formal model of CloudProxy, and an assurance case to sys-
tematically construct a proof that CloudProxy protects an application’s secrets
in our threat model. The assurance case lists practical assumptions we make
about the trusted computing base of CloudProxy applications. During our
modeling and verification of CloudProxy, we have uncovered a flaw and few
unintended assumptions in the design (e.g. no reuse of pid during TCService’s
lifetime). Security properties and lemmas derived from the assurance case (e.g.
non-interference) are formalized and proved in our model. In ongoing work, we
are exploring a model validation technique to prove that our model encodes all
the behaviors allowed by CloudProxy’s implementation.

Acknowledgments. We sincerely thank David Wagner and Petros Maniatis for their
valuable feedback. This work was funded in part by the Intel Science and Technology
Center for Secure Computing, and SRC contract 2460.001.
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Abstract. In [4] we presented an LTL model checker whose code has
been completely verified using the Isabelle theorem prover. The intended
use of the checker is to provide a trusted reference implementation against
which more advanced checkers can be tested. However, in [4] the checker
still used an ad-hoc, primitive input language.

In this paper we report on CAVA, a new version of the checker accept-
ing inputs written in Promela. We report on our formalization of the
Promela semantics within Isabelle, which is used both to define the
semantics and to automatically generate code for the computation of
the state space. We report on experiments on standard Promela bench-
marks comparing our tool to SPIN.

1 Introduction

Nearly every hand-written software in the ecosystem suffers from bugs. This is
almost inevitable when the software is geared towards high performance and
therefore uses highly complicated algorithms and data structures which are not
easily provable.

On the other hand, it is in general not feasible to thoroughly prove correctness
of the code itself, though exceptions exist [10]. But other measures, like model
checkers, allow to nevertheless increase trust in the software. As such, the tool is
in the role of a trust-multiplier. Hence, their verdict must not be wrong. Now the
recursion begins – or as [17] puts it: “Quis custodiet ipsos custodes?” – “Who
will watch the watchmen?”

Different approaches to tackle this problem exist (an overview is given in
[6]). We proposed a pragmatic solution in a previous paper [4]: a verified ref-
erence implementation of an LTL model checker for finite-state systems à la
SPIN [9], CAVA. This model checker follows the well-known automata-theoretic
approach [19]: Given a finite-state program P and a formula φ, two Büchi
automata are constructed that recognize the executions of P , and all poten-
tial executions of P that violate φ, respectively. Then the product of the two
automata is computed and tested on-the-fly for emptiness.

To prove full functional correctness of executable code, we define the program
in the logic HOL (roughly: combination of functional programming language
with logic) of the interactive theorem prover Isabelle [12]. After proving the
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program correct in Isabelle/HOL, ML (or OCaml, Haskell or Scala) code can be
generated automatically from those definitions [8]. Using refinement, abstract but
proof-friendly definitions can be rewritten as efficient, more complex variants,
while still preserving correctness (cf. [4,11]).

In our implementation CAVA, the four parts (system construction, LTL-
to-Büchi conversion, product construction, emptiness check) are not fixed.
Instead, an interface in form of proof obligations and types is defined. Any-
thing fulfilling those obligations and exposing functions of the specified type can
therefore be used for the corresponding part. LTL-to-Büchi conversion and prod-
uct construction currently offer no alternative, using the algorithm of Gerth et
al. [7] and the standard on-the-fly construction, respectively. Emptiness checking
is currently implemented by different flavors of nested depth-first search algo-
rithms [3,16]. For system construction, we offer the modeling languages Boolean
programs [4] and Promela [2]. The first is an ad-hoc approach and fairly limited
in its expressiveness, while Promela is a powerful, widely used language.

This paper will focus on the novel support for Promela models. By sharing the
modeling language with SPIN, we strengthen our position as a reference imple-
mentation. Further, we enhance the comparability of timing results by removing
the problem of different state space sizes, which complicates comparisons [4].
What is more, our work also serves as a formalization of Promela semantics.
This allows implementation of optimizations proven to preserve semantics, but
also serves as a source of documentation.

We will give a short overview about our Promela support in Sect. 2 with
more formalization details following in Sect. 3. In Sect. 4 we will outline the
trustworthiness of the resulting program. We will then conduct experiments and
elaborate on the results in Sect. 5. In the final Sect. 6 we talk about (possible)
future work.

The tool and all supporting material, including the ML code, can be found
online at http://cava.in.tum.de/VSTTE14.

2 Promela

Promela [2] is a modeling language, mainly used in the model checker SPIN [9]. It
offers a C-like syntax and allows to define processes to be run concurrently. Those
processes can communicate via shared global variables or by message-passing via
channels. Inside a process, constructs exist for non-deterministic choice, starting
other processes and enforcing atomicity. It furthermore allows different means
for specifying properties: LTL formulae, assertions in the code, never claims (i.e.
an automata that explicitly specifies unwanted behavior) and others.

Some constructs found in Promela models, like #include and #define, are
not part of the language Promela itself, but belong to the language of the C
preprocessor. SPIN does not process those, but calls the C compiler internally
to process them. In CAVA we do the same.

Though there are approaches for giving a formal semantics of Promela
[5,18,20], none of them shows that its definition matches reality. Moreover, some
refer to outdated versions of the language.

http://cava.in.tum.de/VSTTE14
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Therefore, observing the output of SPIN and examining the generated graphs
often is the only way of determining the semantics of a certain construct. This
is complicated further by SPIN unconditionally applying optimizations. For the
current formalization we chose to copy the semantics of SPIN, including the
aforementioned optimizations. For some constructs, we had to restrict the seman-
tics, i.e. some models are accepted by SPIN, but not by CAVA. Those devia-
tions are:

– run is a statement instead of an expression. SPIN here has a complicated set
of restrictions unto where run can occur inside an expression. The sole use of
it is to be able to get the ID of a spawned process. We omitted this feature
from CAVA to guarantee expressions to be free of side-effects.

– Variable declarations which got jumped over are seen as not existing. In SPIN,
such constructs show surprising behavior:
int i; goto L; i = 5; L: printf("%d", i) yields 0, while
goto L; int i = 5; L: printf("%d", i) yields 5.
The latter is forbidden in CAVA (it will get rejected with “unknown vari-
able i”), while the first behaves as in SPIN.

– Violating an assert does not abort, but instead sets the variable assert
to true. This needs to be checked explicitly in the LTL formula. We plan on
adding this check in an automatic manner.

– Types are bounded. Except for well-defined types like booleans, overflow is
not allowed and will result in an error. The same holds for assigning a value
that is outside the bounds. SPIN does not specify any explicit semantics here,
but solely refers to the underlying C-compiler and its semantics. This might
result in two models behaving differently on different systems when run with
SPIN, while CAVA, due to the explicit bounds in the semantics, is not affected.

Additionally, some constructs are currently not supported, and the compi-
lation will abort if they are encountered: d step1, typedef, remote references,
bit-operations, unsigned, and property specifications except ltl and assert.
Other constructs are accepted but ignored, because they do not change the
behavior of a model: advanced variable scoping, xr, xs, print*, priorities, and
visibility of variables.

Nonetheless, for models not using those unsupported constructs, we generate
the very same number of states as SPIN does. An exception applies for large goto
chains and when simultaneous termination of multiple processes is involved, as
SPIN’s semantics is too vague here.

3 Formalization and Implementation

Any formalization of a program needs to specify three things: How to encode
the program structure (i.e. the operations and the control flow), how to encode
the program state, and how to compute the set of successor program states (i.e.
execute a program).
1 This can be safely replaced by atomic, though larger models will be produced then.
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record pState =
pid -- "Process identifier"
vars -- "Local variables"
pc -- "Program counter"
channels -- "Reference local channels"
s_idx -- "Reference program"

record gState =
vars -- "Global variables"
channels -- "Channels are always global"
timeout -- "No process can make transition"
procs -- "List of all running processes"

record edge =
cond -- "Necessary condition"
effect -- "Effect on states"
target -- "Next state"
prio -- "Priority"
atomic -- "Atomicity information"

Fig. 1. Structure definitions

A Promela program does not consist of a single thread of action, but instead
consists of multiple processes which run independent of one another except for
when they interact. This is reflected in our formalization.

The program structure of Promela is represented by a set of transition sys-
tems: For each process pi, we define Ti = (Si, Ii ∈ Si, δi ⊆ Si×E), where Si ⊆ N

(the set of program points) and E is the set of all records of type edge, as defined
in Fig. 1, i.e. δi is the transition relation (the target is encoded in edge). Ii then
is the initial program point for this process.

The program state is encoded in two different types of environments, also
given in Fig. 1: gState for the global state and pState for the state of each
process. Naturally, the global state contains the set of all current pStates (field
procs).

The program is constructed from an abstract syntax tree (AST), enriched
with semantic information (e.g. variables annotated by their type), which gets
translated into the aforementioned set of transition systems, and an initial
gState structure.

Calculating the next steps of execution is formalized by the successor function
(SPIN calls it semantic engine), as required by CAVA to serve as a system
implementation. For a given configuration and program, it specifies the set of
all possible transitions and resulting states. For each process, the set of all edges
from the current state is taken into account. The effect of each edge whose
cond evaluates to true under the current environment is then applied to yield
a new environment. In case of an atomic block, successors are computed until
either no further transition is possible (atomicity is lost), or the block is left.
Only the last environment is then presented in the result set. As this part is
based on SPIN, more information can be found in [9, Chap. 7].

As noted, the translation into a set of transition systems requires an enriched
AST. This is achieved in two steps: A hand-written SML parser translates the
Promela source into an abstract syntax tree. This data structure is then enriched
in Isabelle with the semantic information and some constructs (e.g. for-loops)
get replaced by semantically equal parts (de-sugaring). This step allows to keep
the semantic engine more concise and explicit, also straightening proofs.
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stmntToState (StmntAssign v e) (lbls, pri, pos, nxt, ) =
([[(|cond = ECTrue, effect = EEAssign v e, target = nxt, prio = pri, atomic = NonAtomic|)]],
Index pos, lbls)

stmntToState (StmntCond e) (lbls, pri, pos, nxt, ) =
([[(|cond = ECExpr e, effect = EEId, target = nxt, prio = pri, atomic = NonAtomic|)]],
Index pos, lbls)”

stepToState (StepStmnt s (Some u)) (lbls, pri, pos, nxt, onxt, ) = (
let
(∗ the ’unless’ part ∗)
(ues, ,lbls’) = stmntToState u (lbls, pri, pos, nxt, onxt, True);
(∗ ’u’ is the guard for the whole unless; ’ues’ the rest ∗)
u = last ues; ues = butlast ues;
pos’ = pos + length ues;
(∗ find minimal current priority ∗)
pri’ = min prio u pri;
(∗ the main part –

priority is decreased, because there is now a new unless part with higher prio ∗)
(ses,spos,lbls’’) = stmntToState s (lbls’, pri’ − 1, pos’, nxt, onxt, False);
(∗ add an edge to the unless part for each generated state ∗)
ses = map (List.append u) ses
in (ues@ses,spos,lbls’’))

Fig. 2. Construction of transition system (excerpt)

In Fig. 2 we show the construction of the edges for three exemplary nodes in
the enriched AST: The first two, StmntAssign and StmntCond, are representa-
tive examples for most of the AST-nodes: A specific condition and effect are set,
and control passes to the next statement. It is to note, that cond for the first
node and effect for the second one each resemble a no-op, as expected. The
third example is an {s} unless {u} construct, which is one of the more com-
plicated control structures in Promela: from each step in the sequence s, control
can go the unless-part u as soon as the first expression in u becomes true. In
general, all constructs influencing the control flow (e.g. do or if) are complex.
To a great degree, this is due to SPIN’s semantic trying to minimize the use of
intermediate states, something commonly happening with nested loops – even
more when (nested) unless is involved. Another complication for constructing
the control flow originates from atomicity, which can be passed between processes
(by handshakes), lost (on blocks), or chained (by goto).

In Fig. 3 we display snippets from the evaluation function for the condition
on the edges. Again, this is in most cases rather straightforward. Those examples
amount to: expressions must evaluate to something non-zero; spawning a new
process requires the number of currently running processes to be below some
upper bound2; and for sending something over a channel, the capacity of this
channel must not be exhausted.

The structure for evaluating the effects is similar, as shown in Fig. 4: a vari-
able is set to the correct value; a new process is started; the assert variable
is set, if the expression is true. For sending and receiving (not shown) more effort
is necessary, stemming mostly from the different variants and from the fact, that
2 A necessary condition for a finite state-space.
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evalCond (ECExpr e) g l ↔ exprArith g l e �= 0
evalCond (ECRun ) g l ↔ length (procs g) < 255
evalCond (ECSend v) g l ↔ withChannel v (λ c. case c of

Channel cap q ⇒ length q < cap
| HSChannel ⇒ True) g l

Fig. 3. Evaluation of conditions (excerpt)

evalEffect (EEAssign v e) g l = setVar v (exprArith g l e) g l
evalEffect (EERun name args) prog g l = let (g, ) = runProc name args prog g l in (g,l)
evalEffect (EEAssert e) g l = if exprArith g l e = 0

then setVar assert 1 g l
else (g,l)

Fig. 4. Evaluation of effects (excerpt)

receiving can compare values, evaluate variables, and set variables at the same
time.

The formalization presented is, as explained, currently quite SPIN-centric
and therefore in parts too specific and concrete, especially concerning optimiza-
tions. But the current work now allows to abstract into a more concise formal-
ization. Thereafter, the current implementation can be shown to adhere to the
same semantics. As was done in the other parts of CAVA, further optimizations
can then be applied. Using the refinement approach [11], this does not affect the
abstract formalization.

To give some insight about the size of development: The Isabelle theories
regarding Promela span about 2100 lines, with the generated code being about
3100 lines of ML. Additional 2400 lines are added by the parser.

4 Trustworthiness

When speaking about something being verified, one needs to state explicitly
which properties the result is guaranteed to have. Also, except when noted oth-
erwise, some parts are assumed to be correct, like compiler, hardware, and oper-
ating system.

For CAVA, the property to hold is the correctness theorem about the model
checker: A lasso is found iff the property does not hold for the system (cf. [4]),
and, if existing, the lasso is a counter-example. As some parts of CAVA are
programmed directly in SML (especially the user-interface and the parsers),
no correctness assumption can be made about them. For example, CAVA may
return a correct lasso, but the output might still be erroneous, due to a mistake
in the printing function. But as those parts are (a) easily checkable by hand
and (b) no useful correctness properties can be shown for them (how would one
express, that the result of a parser is correct without adding another unproven
layer on top?), we still claim the result to be verified.

It remains to show, that the properties hold on the generated code. By design
of Isabelle/HOL as an LCF-style theorem prover, every proof-construction is
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done by primitives of a small trusted kernel [12]. Therefore the proofs in it
are correct deductions in the logic and the properties hold. The task of the
code-generator [8] then is to translate the definitions from HOL syntax to the
target syntax; one can see it as a pretty-printer. Because of this translation on
a syntactic level, the properties also hold on the exported code.

What is not covered here is the actual formalization of the properties itself,
i.e. whether the HOL term represents the informal claim one is expecting. As [15]
lays down in detail, this problem is inherently unsolvable in an automatic fashion
and can only be checked by the interested human itself.

5 Evaluation

With the support for Promela, it is now possible to test the very same models in
both SPIN and CAVA. For this, we used models from [1,13], with some minor
modifications to match modern Promela syntax. The tests were performed on a
Core i7 with 2.7 GHz, memory being hard-limited to 6.5 GB. Also, a timeout of
800 s was set for each run.

CAVA was compiled with MLton 20130715. SPIN (version 6.2.5) was used
without optimizations, especially partial-order reduction: spin was run with
-o1 -o2 -o3 and the code compiled with -DNOREDUCE. During the benchmark,
SPIN’s search depth was set to 6 ∗ 107 (-m60000000).

Further, -Dd step=atomic was passed to both SPIN and CAVA, replacing
d step blocks by atomic blocks, as the former is not supported by CAVA. Since
d step is an optimized and restricted form of the latter (collapsing the sequence
into one state), this is semantically sound, but influences the size of the state
space.

The benchmark consists of 306 single tests, 4 of which got removed, as they
contained failing asserts which CAVA ignores by default (cf. Sect. 2). Further, 50
tests included features not supported in CAVA, 77 led to failures in SPIN (most
often out-of-memory and exhausted search depth), 94 timed out on CAVA (a
test may occur in multiple of those categories). In total 157 tests performed
successfully on both tools. To ensure a complete search of the state space the
property used together with those tests is G true. Each test was run 5 times, the
worst and best time removed and the remaining three averaged. Two timed out
runs mark the whole test as timed out.

This benchmark shows, that overall CAVA is about 20 times slower than
SPIN. Figure 5a plots the results of the benchmark: the line represents tSPIN =
20tCAVA, so anything above represents a test where CAVA was less than 20 times
slower than SPIN (dots below analogously). Tests on which it timed out, had a
mean run time of 89.18 s in SPIN, lying far above timeout

20 . This is a good result
for a verified and generated software, especially as SPIN builds a tailored checker
for each model, whereas CAVA’s is general.

Further, we tested multiple properties on scaling versions of the leader elec-
tion protocol and the “Dining Philosophers”. Here, the LTL-to-Büchi translation
is important. As of this time, the implementation in CAVA is tailored to verifica-
tion, not efficiency. This leads to larger-than-necessary state spaces, in particular
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Fig. 5. Benchmark results

for formulas containing U. Therefore the slowdown is a factor between 9 and 70.
For negative properties, SPIN found 75 of 77 counter-examples in less than 10 s,
CAVA 70 of 77.

The main reason for the difference in performance is the lack of destructive
updates in a purely functional program. In particular we must use trees as our
main data structure, yielding a logarithmic overhead. Arrays can only be used
when updates are seldom, as they cannot be updated in-place but need to be
copied in full. Moreover we cannot utilize pointers for keeping a reference to a
changing structure, but have to look up information each time. The consequences
are shown in Fig. 5b. We ran “Dining Philosophers” modeled in two different
ways: using three arrays of length N , and using 3N different variables. The
amount of variables has a very notable impact on performance, even though this
does not influence the state-space.

6 Future Work

In the previous sections we outlined the current state of the Promela implemen-
tation for our model checker CAVA. As already indicated throughout the paper,
there still are additional targets which are to be addressed.

In Sect. 2 we mentioned different parts of Promela which are not implemented
yet. For those where it is possible, we strive to add support. This also includes
overflowing for integer types, as there may be valid use cases.

Furthermore, the current formalization should see further separation between
abstraction and implementation, as was done in the other parts of CAVA. This
also allows for an even better presentation of the semantics of Promela for one,
and, due to possible refinement, additionally clears the way for implementing
optimizations without changing semantics.

As already hinted in the previous section, there are several opportunities for
performance enhancements. For faster lookups, we already employ hashing. Here,
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a theory of consistent hashes is planned, to introduce a technique eliminating
the rehashing of unchanged structures.

Further future work includes the introduction of new algorithms for emptiness
detection, yielding an even better performance.

An important topic to work on are the additional non-trivial optimizations of
SPIN, this includes partial-order reduction [14]. This technique is an important
optimization used in SPIN to drastically reduce the size of the state-space. This
technique needs to be formalized in Isabelle/HOL and then be integrated into
CAVA.
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Abstract. A fundamental problem in concurrent system design is to
identify flexible programming disciplines under which weak memory mod-
els provide sequential consistency. For x86-TSO, a suitable reduction
theorem for threads that communicate only through shared memory was
given by Cohen and Schirmer [6]. However, this theorem cannot han-
dle programs that edit their own page tables (e.g., memory managers,
hypervisors, and some device drivers). The problem lies in the interac-
tion between a program thread and the hardware MMU that provides
its address translation: the MMU cannot be treated as a separate thread
(since it implicitly communicates with the program thread), nor as part
of the program thread itself (since MMU reads do not snoop the store
buffer of the program thread). We generalize the Cohen-Schirmer reduc-
tion theorem to handle programs that edit their page tables. The added
conditions prevent the MMU of a thread from walking page table entries
owned by other threads.

Keywords: Store buffer reduction · MMU · TLB · Sequential consis-
tency · Verification

1 Introduction

When reasoning about concurrent software, programmers typically assume
sequential consistency (SC) [10], a model in which all threads see all memory
accesses in a linear order. However, as providing SC in hardware is
relatively expensive, modern multicore processors typically implement weaker
memory models, in which writes can appear in different orders to different
threads. To use SC when reasoning about low-level programs written to execute
directly on such hardware, we need practical program criteria that guarantee
that any execution is simulated by an SC one.

In this paper, we consider one of the more prevalent non-SC memory models,
x86-TSO [12], the native memory model provided by x86/x64 family processors.
In x86-TSO, when a processor retires an instruction, its stores are queued in
a FIFO store buffer (SB); only when such a store emerges from the SB is it
applied to the global, shared memory, and made visible to other processors.
c© Springer International Publishing Switzerland 2014
D. Giannakopoulou and D. Kroening (Eds.): VSTTE 2014, LNCS 8471, pp. 117–132, 2014.
DOI: 10.1007/978-3-319-12154-3 8
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To make SBs transparent to single-threaded programs, when a processor issues
a load for an address, it first checks whether there is a store to that address in
its SB. If there is such a buffered store, the most recent one is used to satisfy the
load; otherwise, it loads the value from memory. Thus, a store from a processor
becomes visible to (later) loads from that processor as soon as it enters the SB,
and so becomes visible to the thread issuing the store before it becomes visible to
threads running on other processors. Thus, stores can appear in different order
for different threads, violating SC. For example:

T1: a1:=1 T2: a2:=1
if(a2==0) if(a1==0)
critical section critical section

In an SC execution, it is impossible for both threads to enter the critical
section. But under x86-TSO, both tests might succeed before stores a1 and a2
emerge from their respective SBs, allowing both threads to enter the critical
section.

One way to reason about programs running on x86-TSO is to materialize the
SBs explicitly in the programming model. This approach is hopelessly imprac-
tical; for example, the postcondition of a function call would have to explicitly
talk about the stores left in the SB, exposing the internal details of the function
implementation to its callers and destroying modular program reasoning.

A discipline guaranteeing SC, like the one presented in this paper, disallows
programs such as the one above; typically, it requires a thread to flush its SB
at some point between a volatile store1 (like the assignment to a1 above) and a
subsequent volatile load (like the read of a2). An SB reduction theorem, giving
such a discipline for x86-TSO, was given by Cohen and Schirmer in [6]. The
main challenge in making such a discipline practical is avoiding introducing
flushing obligations related to accesses that do not race with other threads; the
reduction theorem from [6] achieves this by means of an ownership discipline,
where conformance to the ownership discipline is itself verified assuming SC.

A complication arises in trying to extend the SB reduction theorem to a
hardware model that includes virtual address translation. (Such translation is
invisible to most user-space programs, but is visible to programs that edit their
own page tables, such as memory managers and hypervisors.) Since the MMU
(which can speculatively read PTEs and cache address translations) is naturally
modelled as a separate thread, it is tempting to try to apply the SB reduction
theorem directly. The problem is that the SB reduction theorem assumes the
processors communicate only through shared memory, whereas a processor and
its MMU implicitly share address translations cached in the Translation Looka-
side Buffer (TLB). The TLB cannot simply be treated as volatile shared memory,

1 We rely on a C-idiom, where shared portions of memory are identified by a volatile

tag. The volatile tag prevents a compiler from applying certain optimizations to
shared accesses which could cause undesired behavior, e.g., store intermediate values
in registers instead of writing them to the memory. Shared memory accesses are also
called volatile.
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since an SC discipline would require the processor to flush its SBs between each
of its volatile writes and the implicit TLB read needed to fetch the next address
translation; this amounts to a flush after each volatile write, rendering the disci-
pline impractical. The purpose of this paper is to extend the reduction theorem
to accommodate SBs, without introducing such flushes.

The rest of the paper is structured as follows. In Sect. 2, we briefly describe
our model of the x86/x64 MMU. In Sect. 3, we describe our programming disci-
pline. In Sect. 4, we formalize the models and the discipline. In Sect. 5, we state
the reduction theorem and give a proof strategy. We conclude in Sect. 6.

2 MMUs

In the presence of address translation, there is a private MMU and SB component
for each thread (Fig. 1). We model the TLB as part of the MMU state. The
MMU component can speculatively walk the page tables, one level at a time,
setting accessed and dirty bits as it goes, and caching complete or incomplete
translations in the TLB. When a thread runs in translated mode, memory access
requires a suitable address translation for the virtual address of the access to
be cached in the TLB. Page tables are ordinary memory pages, and so can be
either thread-local or shared between different MMUs.

A thread can read and write page tables (even tables being used by other
threads), changing the set of possible address translations. Such writes are typ-
ically accompanied by flushes of the TLB to eliminate stale translations before
accessing memory through the new page table entries (PTEs).

Some possible violations of sequential consistency in the presence of an MMU
(even in a single threaded environment) are illustrated in the following example:

T1: pte2.p:=0 MMU1: pte1.a:=1
t0:=pte1.a t1:= pte2

Suppose pte1 and pte2 are page table entries, pte1 points to pte2, the present
bit in both entries is set2, and the access bit pte1.a is clear. t0 and t1 are read

Program thread

Shared memory

MMUSB

Fig. 1. Abstract view of x86-TSO with the address translation

2 Non-present PTEs cannot be used to produce an address translation. Instead, they
are used to signal a page fault.
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temporaries in T1 and MMU1 respectively. Consider a TSO execution where the
steps of the thread are executed before the steps of the MMU, and the write to
pte2 is put to the SB. After this execution, t0 is 0 and the MMU reads pte2
with the present bit set. As a result, the MMU gets an address translation that
goes through pte1 and pte2. But such a translation cannot be obtained in an
SC execution that ends with t0 = 0: in such an execution, the MMU would have
to read pte2 after the assignment to t0, at which point pte2 has been marked
nonpresent and so cannot be used for translation.

3 Programming Discipline

The programming discipline introduced here is an extension of the program-
ming discipline from [6] and is based on ownership sets, which have to be main-
tained explicitly with ghost code. A memory access is classified as either shared
(volatile) or local and must be safe, i.e., obey the programming discipline. Seman-
tically, there is no difference between the two types of access, but the different
types are subject to different rules. Interlocked accesses, i.e., those accesses which
flush the SB as a side effect, follow the same rules as volatile accesses.

In [6], each location is classified as shared or unshared, unowned or owned
(by a unique thread), read-only or read-write. We extend this classification by
adding a specialized type of “owned page table” addresses and allow shared,
unowned read-write locations to contain shared page tables:

– Shared, unowned read-write locations are used to implement locks [8], lock-
free algorithms or shared page tables. Every thread can perform volatile reads
and writes to these addresses, and any MMU is allowed to read and write this
memory.

– Shared, unowned read-only addresses are used for static data. Every thread
can perform volatile and non-volatile reads from these addresses.

– Shared, owned read-write addresses are used for single-writer-multiple-reader
data structures. Every thread can perform volatile reads, but only the owner
is allowed to do volatile writes to these addresses.

– Unshared, owned read-write addresses are used for thread-local data or for
data protected by a lock. The owner is allowed to write and read the data
with volatile and non-volatile accesses.

– Owned page table addresses are used for local page tables. The owning thread
can read or write these addresses with volatile accesses. The MMU of the
owning thread is allowed to read and write this memory.

Note that the set of addresses that can be accessed by the MMU of a thread is
defined by the set of incomplete translations cached in the TLB and the set of
PTEs reachable from the page table origin (PTO), which is stored in a register.
Hence, our discipline requires every reachable PTE address to be either in the
set of local page table addresses or to be in the set of shared, unowned read-write
addresses. The latter is useful in situations when several concurrent threads are
sharing the same set of page tables for address translation. Moreover, a local
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page table can point to a page table shared by MMUs of several threads, which
allows splitting the address space of a thread into local and shared parts.

Ownership can be transfered either by a non-blocking ghost update or as
part of an (atomic) volatile or interlocked write operation. The latter is helpful,
e.g., when one acquires a lock and wants to get the ownership of the memory
protected by the lock. A thread can take ownership of unowned addresses and
release the ownership of addresses it owns. When a thread acquires ownership
of an address, it can make it unshared, shared, or an owned page table address.
When releasing an owned address a thread can make it shared read-write or
shared read-only. It can also make an address that it owns unshared.

The SB flushing rule of our programming discipline is unchanged from [6]: an
SB has to be flushed between every volatile write and a subsequent volatile read.
This is the only flushing required. Equivalently, we maintain for each thread a
dirty flag that is set on a (nonflushing) volatile write and cleared when the
SB is flushed, and require the flag to be clear when performing a (nonflushing)
volatile read. This guarantees that updates from a thread to shared state are
made visible to other threads before it reads similar updates from other threads.
Local page tables are, in this regard, treated as state shared between a thread
and its MMU. The programming discipline can be checked assuming SC, making
it suitable for integration into a verifier for concurrent software such as VCC [4].

We reconsider the example with a thread and an MMU from Sect. 1.

T1: assert(ownedpt(pte2)) MMU1: pte1.a:=1
vol pte2.p:=0 {D:=1} t1:= pte2
FENCE {D:=0}
assert(ownedpt(pte1) && D==0)
vol t0:= pte1.a

(Ghost updates, like the operations on D above, are written in braces, and volatile
operations are prefixed by vol.) Before accesses to pte1 and pte2, we assert that
both PTEs are present in the local page table set of the thread. (Alternatively,
we could consider shared unowned page table entries). The write to pte2 has
to be volatile, which means that the dirty flag D of the thread is set. A read
of pte1 also has to be volatile. As a precondition of volatile reads we requires
the dirty flag to be clear. Hence, between the write and the read we insert a
fence, the only effect of which is to flush the SB, which clears the thread’s dirty
flag. A TSO execution that previously caused a problem is ruled out now: at the
time when the thread reads pte1, the store to pte2 is already committed to the
memory. Hence, if the thread execution ends with t0 = 0, we can be sure that
the MMU will not get an address translation going through pte1 and pte2.

However, adding these annotations to the code of the program is not enough.
We also have to make sure that the MMU can only perform safe accesses, i.e.,
accesses to the local and shared page tables. To check this in VCC we explicitly
model the MMU in the ghost state of the program and introduce a ghost T1’
thread, which nondeterministically executes all possible MMU steps [2]:
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T1: assert(ownedpt(pte2)) T1’: . . .
vol pte2.p:=0 {D:=1} assert(ownedpt(pte1))
FENCE {D:=0} {pte1.a:=1}
assert(ownedpt(pte1) && D==0) assert(ownedpt(pte2))
vol t0:= pte1.a {t1:= pte2}

. . .

Note that the programming discipline refers to translated physical addresses,
rather than untranslated virtual addresses. Showing that the translated physical
addresses of memory accesses are safe can be done if one keeps track of the set of
all possible address translations for a given thread. This set can be maintained
as part of the MMU state in the ghost state of the program [2].

4 Formalization

Let N denote the set of natural numbers, B the Booleans, A the set of memory
addresses, V the set of memory values, and T the set of names of temporaries.
Memory is modeled as a map from A to V; m(a �→ v) denotes the memory that
maps a to v and other addresses as m. We also use nested record updates, e.g.,
c[c1.X := v]. The n-th element of list l can be selected with l[n] or l[n].

4.1 MMU Abstraction

The MMU model considered here is very abstract. We don’t model the MMU
in detail here because we present only a reduction theorem, i.e., it only allows
us to ignore the SBs. The only important property we rely on in our proof
is the monotonicity of the MMU, which we state as an assumption here. To
reason about a program with the MMU or to verify properties of the translations
provided by the MMU (e.g., compliance to our programming discipline), one can
instantiate the model presented here by a detailed, architecture-specific MMU
model in the style of [2].

The set of MMU configurations is denoted by U. The MMU state subsumes
the TLB state and the value of the PTO register (CR3 register in x86). The set
of all possible access rights is denoted by R. A single page table entry (PTE)
occupies a single cell in the memory and has the same type V as all other memory
values. Our MMU model relies on the following (uninterpreted) functions:

– atran(mmu, va,mode, r) ∈ 2A. Given an MMU state mmu ∈ U, a virtual
address va ∈ A, translation mode mode ∈ B (1 - translated mode, 0 - untrans-
lated mode) and the set of access rights r ∈ R, the function returns the set
of translated physical addresses for the specified access. In case there are no
available translations the returned set is empty. For the untranslated mode
function atran should return {va}.

– can-access(mmu, pa) ∈ B. For a physical address pa ∈ A the predicate denotes
that the MMU can perform an access to a PTE located at address pa. This
is the case when the MMU has an incomplete translation leading to the PTE
located at address pa.
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– δmmur (mmu, pa, pte) ∈ 2U. For page table entry pte ∈ V located at address
pa the function returns the set of possible MMU states after the MMU has
processed pte. After this step the MMU can have complete or incomplete
translations through pte buffered in its TLB. We use this function to obtain
the new state of the MMU after the MMU read step.

– δmmuw (mmu, pa, pte) ∈ 2V. This function returns the set of possible PTE
values which can be written by the MMU at address pa, given that pte is the
current value of the PTE located at address pa. This step models setting of
access and dirty bits in a page table entry.

– can-page-fault(mmu, va, r, pa, pte) ∈ B. The predicate denotes that the page
fault for the virtual address va and access rights r can be signalled by
the MMU. The condition for the page fault must be present in the page
table entry pte located at address pa and the MMU must already have an
incomplete address translation leading to pte.

– δflush(mmu,F ) ∈ U. For the set of (virtual) addresses F ∈ 2A the function
performs a TLB flush, removing translations for addresses in F from the TLB,
and returns the new MMU state after the flush is performed.

– δwpto(mmu, v) ∈ U. The function performs a complete TLB flush and sets the
new value v ∈ V for the PTO.

We assume monotonicity of the MMU, i.e., after the MMU performs a read
of a PTE its set of buffered address translations can only grow:

∀mmu′ ∈ δmmur (mmu, pa, pte) :
atran(mmu, va,mode, r) ⊆ atran(mmu′, va,mode, r).

Such an assumption might seem too strong, since the real hardware TLBs are
limited in size and typically only contain one (complete) translation for a given
virtual address. However, modern architectures use multiple TLBs per proces-
sor (e.g., based on page size, instruction/data), so multiple translations for a
virtual address can coexist. Moreover, as there is no way to force a walk other
than flushing, no real program leverages nonmonotonicity (just as no software
leverages the limited length of SBs or limited number of cache lines).

4.2 Instructions

The set of memory instructions I is defined as a datatype

I =Read vol va t r | Write vol va (D, f) r annot | Ghost annot
| RMW va t (D, f) r cond annot | Fence | Switch mode
| INVLPG F | WritePTO v

The parameter vol denotes whether the memory access is volatile. annot is a
tuple consisting of the ownership annotations, va is a virtual address, t is a read
temporary, r denotes the set of access permissions used for the translation of
va, function f takes as a parameter the map from temporaries to values and
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returns a value to be stored in the memory, D specifies the set of temporaries
on which function f operates, predicate cond tests on whether a write has to be
performed by an RMW instruction, F is a set of addresses to be flushed from
the TLB and v is the new value for the PTO.

The ownership annotations annot = (A,L,R,W,Apt, Rpt) contain the fol-
lowing sets of addresses: acquired addresses A, the local portion of acquired
addresses L, released addresses R, the writable portion of released addresses W ,
acquired page table addresses Apt and released page table addresses Rpt.

To distinguish between different kinds of instructions, we introduce pred-
icates R(I), W (I), G(I) (for read, write and ghost), RMW (I), FENCE (I),
SWITCH (I), INVLPG(I) and WPTO(I). Volatile and non-volatile operations
are distinguished by prefixes v and nv respectively (e.g., vR(I) and nvR(I)). We
denote the individual fields X of instruction I as I.X.

4.3 Virtual Machine

The virtual machine is an abstract machine with sequentially consistent mem-
ory and address translation, but without SBs. The virtual machine maintains
additional ghost information that allows enforcement of the ownership-based
programming discipline both for instructions and for MMU memory accesses.

The configuration c of a virtual machine is given by the tuple

c = (m, shared, ro, ts),

where ts[i] is the thread-local configuration of thread i, m ∈ A → V is the shared
memory of the machine, shared ∈ 2A is the (ghost) set of shared addresses, and
ro is the (ghost) set of read-only addresses.

The thread-local configuration c.ts[i] of thread i is defined as

c.ts[i] = (p, is, ϑ,mmu,D,O, pt,mode),

where p ∈ P is the (uninterpreted) program state of the thread, is ∈ I
∗ is

the instruction list, ϑ ∈ T ⇀ V is the set of read temporaries (a read buffer),
mmu ∈ U is the MMU state, D ∈ B is the (ghost) dirty flag, O ∈ 2A is the (ghost)
thread-local ownership set, pt ∈ 2A is the (ghost) set of local page table addresses,
and mode ∈ B is the translation mode. For components X of thread local con-
figuration c.ts[i] we abbreviate c.X[i]. By c.ghst[i] = (c.O[i], c.pt[i], c.shared, c.ro)
we abbreviate the ghost information of thread i (except the dirty flag) and the
shared ghost information.

Let ghst = (O, pt, shared, ro) be the ghost information of thread i. Then
the ownership transfer otran(ghst, i, I) = (O′, pt′, shared′, ro′), performed by a
ghost, volatile write or RMW instruction I in thread i is defined as:

ro′ = ro ∪ (I.R \ I.W ) \ (I.A ∪ I.Apt) O′ = O ∪ I.A \ I.R

shared′ = shared ∪ I.R ∪ I.Rpt \ (I.L ∪ I.Apt) pt′ = pt′ ∪ I.Apt \ I.Rpt
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Fig. 2. Ownership transfer.

The possible status changes of an address due to the ownership transfer are
shown in Fig. 2.

The computation of the virtual machine is defined by a non-deterministic
transition relation c ⇒ c′, where every step is either a program step, a mem-
ory step, an MMU step or a page fault step of thread i. A program step of
thread i applies (uninterpreted) function δp to the program state and the set of
temporaries of the thread to obtain a new program state and newly generated
instructions, which are then appended to the old instruction list (Fig. 3).

A memory step of thread i is defined by a case split on the type of instruc-
tion I = hd(c.is[i]) to be executed (Fig. 3). In case of a read, write or RMW
instruction we first translate the virtual address I.va using access rights I.r
and choose a physical address pa from the set of available address translations
provided by the function atran. A read instruction updates temporary I.t with
the read value c.m(pa). For a write instruction, we obtain the store value by
applying the function I.f to the current set of temporaries and store this value
at pa. A volatile write also performs the ownership transfer and sets the dirty
flag. An RMW instruction first performs a read of memory cell c.m(pa) into
temporary I.t, then checks condition I.cond on the updated set of temporaries.
If the test succeeds, we obtain the store value by applying I.f to the updated
set of temporaries, store this value at address pa, and perform the ownership
transfer. Regardless of the test result, we reset the dirty flag. Fence and ghost
instructions do not update the non-ghost part of the state (except for the length
of the instruction list). A ghost instruction just performs the ownership transfer;
a fence instruction clears the dirty flag. Mode switch, INVLPG, and write to
PTO instructions also clear the dirty flag. On a mode switch, we change the
translation mode to I.mode. An INVLPG instruction removes the invalidated
translation from the MMU using function δflush , and a write to PTO instruction
applies function δwpto to the current MMU state.

The MMU of thread i (Fig. 4) can either perform a read from the page tables
or a write setting control bits. In case of a read the new MMU state is chosen
from the set of MMU states provided by function δmmur and in case of a write
we chose the value to be written from the set of values provided by function
δmmuw . A page fault step is triggered in translated mode when instruction in
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(p′, is′) = δp(c.p[i], c.ϑ[i])

c
p

==⇒i c[p[i] := p′, is[i] := c.is[i] ◦ is′]

R(I) pa ∈ (atran(c.mmu[i], I.va, c.mode[i], I.r))

c
m

==⇒i c[ϑ[i] := c.ϑ[i](I.t �→ c.m(pa)), is[i] := tl(c.is[i])]

nvW (I) pa ∈ (atran(c.mmu[i], I.va, c.mode[i], I.r))

c
m

==⇒i c[m := c.m(pa �→ I.f(ϑ[i])), is[i] := tl(c.is[i])]

vW (I) pa ∈ (atran(c.mmu[i], I.va, c.mode[i], I.r)) ghst′ = otran(c.ghst[i], i, I)

c
m

==⇒i c[m := c.m(pa �→ I.f(ϑ[i])), ghst[i] := ghst′, D[i] := 1, is[i] := tl(c.is[i])]

RMW (I) pa ∈ (atran(c.mmu[i], I.va, c.mode[i], I.r)) ϑ′ = c.ϑ[i](I.t �→ c.m(pa))

(m′, ghst′) = (I.cond(ϑ′) ? (c.m(pa �→ I.f(ϑ′)), otran(c.ghst[i], i, I)) : (c.m, c.ghst[i]))

c
m

==⇒i c[m := m′, ϑ[i] := ϑ′, ghst[i] := ghst′, D[i] := 0, is[i] := tl(c.is[i])]

G(I) ghst′ = otran(c.ghst[i], i, I)

c
m

==⇒i c[ghst[i] := ghst′, is[i] := tl(c.is[i])]

FENCE(I)

c
m

==⇒i c[D[i] := 0, is[i] := tl(c.is[i])]

SWITCH (I)

c
m

==⇒i c[mode[i] := I.mode, D[i] := 0, is[i] := tl(c.is[i])]

WPTO(I) ∨ INVLPG(I)

mmu′ = (WPTO(I) ? δwpto(c.mmu[i], I.v) : δflush(c.mmu[i], I.F ))

c
m

==⇒i c[mmu[i] := mmu′, D[i] := 0, is[i] := tl(c.is[i])]

Fig. 3. Program and memory steps of thread i of the virtual machine. In the memory
step we execute instruction I, where I = hd(c.is[i]).

mode[i] can-access(c.mmu[i], pa) mmu′ ∈ (δmmur (c.mmu[i], pa, c.m(pa)))

c
mu
==⇒i c[mmu[i] := mmu′]

mode[i] can-access(c.mmu[i], pa) v′ ∈ (δmmuw (c.mmu[i], pa, c.m(pa)))

c
mu
==⇒i c[m := c.m(pa �→ v′)]

mode[i] can-access(c.mmu[i], pa) I = hd(c.is[i]) (R(I) ∨ W (I) ∨ RMW (I))

can-page-fault(c.mmu[i], I.va, I.r, pa, c.m(pa)) p′ = δpf (c.p[i], I.va, I.r, c.m(pa))

c
pf

==⇒i c[is[i] := [], p[i] := p′, mmu[i] := δflush(c.mmu[i], {I.va}), D[i] := 0]

Fig. 4. MMU steps and page fault step of thread i of the virtual machine.
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the head of the instruction list requires address translation and the page fault
for the address of the instruction can be signalled. As an effect of the page fault
we (i) update the program state using (uninterpreted) function δpf which loads
the information about the faulty translation to the program state, (ii) flush all
translations for the faulty virtual address from the MMU and (iii) clear the
instruction list. Additionally, we reset the dirty flag.

Note that reading a faulty entry and signalling a page fault is done in a single
atomic transition, i.e., the MMU is not allowed to pre-fetch a faulty PTE first
and then use it for signalling a page fault some time later. This allows modeling
silent rights granting in page tables (i.e., when the user grants more rights in a
PTE without a consequent TLB flush) and setting of the present bit in a PTE
without TLB flushing. In a real x86 TLB, the same behaviour is achieved by
performing a fresh re-walk of page tables in case of a page fault [1].

Safety for instruction I in thread i (Fig. 5) restricts the sets of translated
physical addresses that can be accessed by read, write, and RMW instructions
and sets the rules for the ownership transfer. Safety of a volatile read requires
the dirty flag to be cleared (this is due to our flushing rule). An MMU access
to physical address pa is safe if pa belongs a local page table or to the shared
portion of the memory that is not owned by anyone and that does not belong
to the read only memory. Configuration c of the virtual machine is safe if first
instructions in the instruction lists of all threads are safe and all MMU steps
that can be performed from c are safe.

Note that the ownership is essential to the discipline here (and in [6]) because
flushing obligations both for SBs and for TLBs can arise through the giving up

safe-instr(c, i, I) ≡ (∀pa ∈ atran(c.mmu[i], I.va, c.mode[i], I.r).

(vR(I) → pa ∈ c.O[i] ∪ c.shared ∪ c.pt[i] ∧ ¬c.D[i]) ∧
(nvR(I) → pa ∈ c.O[i] ∪ c.ro) ∧
(vW (I) → ∀j �= i. pa /∈ c.O[j] ∪ c.pt[j] ∧ pa /∈ c.ro) ∧
(nvW (I) → pa ∈ c.O[i] ∧ pa /∈ c.shared) ∧
(RMW (I) ∧ ¬I.cond(ϑ′) → pa ∈ c.O[i] ∪ c.shared ∪ c.pt[i]) ∧
(RMW (I) ∧ I.cond(ϑ′) → ∀j �= i. pa /∈ c.O[j] ∪ c.pt[j] ∧ pa /∈ c.ro)) ∧
(vW (I) ∨ G(I) ∨ (RMW (I) ∧ I.cond(ϑ′)) → ∀j �= i. I.L ⊆ I.A ∧

(I.A ∪ I.Apt) ∩ (c.O[j] ∪ c.pt[j]) = ∅ ∧ I.R ⊆ c.O[i] ∧ I.Rpt ⊆ c.pt[i] ∧
I.A ⊆ c.O[i] ∪ c.shared ∪ I.Rpt ∧ I.Apt ⊆ c.pt[i] ∪ c.shared ∪ I.R ∧
I.A ∩ I.R = ∅ ∧ I.Apt ∩ I.Rpt = ∅ ∧ I.Apt ∩ I.A = ∅)

safe-mmu-acc(c, pa, i) ≡ pa ∈ c.pt[i] ∪ c.shared ∧ pa /∈ c.ro ∧ ∀j. pa /∈ c.O[j]

safe-state(c) ≡ ∀i. safe-instr(c, i, hd(c.is[i])) ∧
∀i, pa. can-access(c.mmu[i], pa) → safe-mmu-acc(c, pa, i).

Fig. 5. Safety of instruction I in thread i, where ϑ′ = c.ϑ[i](I.t �→ c.m(pa)).
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of ownership. If a thread with a dirty flag set, for instance, releases an owned
unshared address (thus, making it shared and safe to access for other threads)
and then performs a volatile read from that address, it has to flush an SB
beforehand. If a thread acquires (i.e., makes it owned, unshared) a local page-
table address that is accessible by its MMU (e.g., after detaching a page table),
it has first to perform an INVLPG because, otherwise, the address would still
remain accessible after the ownership transfer and the MMU safety would be
violated. If a thread acquires a shared, unowned read-write address that was
accessible by MMUs of other threads (e.g., after detaching a shared page table), it
has to force an INVLPG on those threads as well. Thus, TLB flushing is governed
by the programming discipline just as SB flushing is. The only difference is that
we argue about the MMU/TLB state in an SC environment explicitly, while the
SBs are abstracted by the dirty flags.

4.4 Store Buffer Machine

The SB machine is obtained by adding SBs to the virtual machine. The ghost
fields carried from the virtual machine configuration are used to simplify the
simulation proof. Store buffers are used not only to buffer memory stores but also
to collect history information about the steps of the execution. This information
is used to couple the current state of the SB machine with the corresponding state
of the virtual machine. The ghost fields carried from the virtual machine do not
influence the execution of the SB machine in any way, and the history information
recorded in the SB does not influence the non-ghost components (except for the
length of the SB when the history information retires). Hence, proving simulation
between an SB machine without the ghost and history components and with
them is a trivial task and we omit it here.

Configuration of the SB machine csbh has the same components as configura-
tions of the virtual machine. Thread-local configuration csbh .ts[i] has all compo-
nents from the local configuration of the virtual machine plus an SB component
csbh .ts[i].sb ∈ I

∗
sb, which is a list of SB instructions:

Isb =Writesb vol va (D, f) r annot pa v | Readsb vol va t r pa v
| Ghostsb annot | Progsb p p′ is.

The only SB instruction with a non-ghost effect is Writesb, which stores value
v to memory address pa (the other fields of the instruction contain the history
information). For reads, ghost instructions and program steps we only record the
history. For program steps we record the program state p before the step and
the program state p′ after the step, along with the newly generated instruction
sequence is. For a given read, write, or ghost instruction I ∈ I, we use the
function sbins(I, pa, v) ∈ Isb to convert instruction I to a corresponding SB
instruction. We overload the predicates R(I), W (I), etc. to work also on SB
instructions, and introduce predicate P (I) for the recorded program step.

The behavior of the SB machine is given by a non-deterministic transition
relation csbh ⇒ c′

sbh , where every step is either a program step, a memory step,
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(p′, is′) = δp(p[i], ϑ[i]) I ′ = Progsb p p′ is′

csbh
p

==⇒i csbh [p[i] := p′, sb[i] := sb[i] ◦ I ′, is[i] := is[i] ◦ is′]

R(I) pa ∈ (atran(mmu[i], I.va, mode[i], I.r)) v = fwd(sb[i], csbh .m, pa)

csbh
m

==⇒i csbh [ϑ[i] := ϑ[i](I.t �→ v), sb[i] := sb[i] ◦ [sbins(I, pa, v)], is[i] := tl(is[i])]

W (I) pa ∈ (atran(mmu[i], I.va, mode[i], I.r)) D′ = vW (I) ∨ D[i]

csbh
m

==⇒i csbh [sb[i] := sb[i] ◦ [sbins(I, pa, I.f(ϑ[i]))], is[i] := tl(is[i]), D[i] := D′]

G(I)

csbh
m

==⇒i csbh [sb[i] := sb[i] ◦ [sbins(I, pa, v)], is[i] := tl(is[i])]

W (I) ghst′ = (nvW (I) ? ghst[i] : otran(ghst[i], i, I))

csbh
sb
==⇒i csbh [m := csbh .m(I.pa �→ I.v), ghst[i] := ghst′, sb[i] := tl(sb[i])]

R(I) ∨ P (I)

csbh
sb
==⇒i csbh [sb[i] := tl(sb[i])]

G(I) ghst′ = otran(ghst[i], i, I)

csbh
sb
==⇒i csbh [ghst[i] := ghst′, sb[i] := tl(sb[i])]

Fig. 6. Program, memory and SB steps of thread i of the SB machine. For component
X of thread configuration csbh .ts[i], we simply write X[i]. For the memory step we only
consider execution of read, write or ghost instruction I, where I = hd(is[i]). For the
SB step we take I = hd(sb[i]). As in the case of the virtual machine, we abbreviate by
ghst[i] the ghost state of thread i and the shared ghost information.

an SB step, an MMU step, or a page fault step of thread i. A program step of
the SB machine has the same effect as in the virtual machine and is recorded as
history information in the SB (Fig. 6). A read instruction performs the read and
is recorded to the SB as history information; the read value is obtained with the
function fwd(sb[i], csbh .m, pa), which returns the most recent store to pa present
in the SB, or if there are no such stores, the memory value csbh .m(pa). A write
instruction is not executed immediately, but is buffered in the SB together with
the ghost history information. A ghost instruction is likewise recorded into the SB
without an immediate effect on the configuration. All other memory instructions,
as well as page fault steps, can be executed only when the SB is empty, and
have the same semantics as defined for the virtual machine, so we omit them
here. We also leave out the MMU read and write steps, which have exactly the
same semantics as in the virtual machine. When a write instruction leaves SB,
it delivers the corresponding buffered store to the memory and performs the
ownership transfer if the write is volatile. A ghost SB instruction only performs
the ownership transfer. Read and program SB instructions that exit the SB do
nothing.
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5 Simulation

Our main result is stated in the following simulation theorem.

Theorem 1 (Reduction)

csbh ⇒∗ c′
sbh ∧ csbh ∼ c ∧ initial(c) ∧ sbempty(csbh) ∧ safe-reach(c) →

∃c′. c ⇒∗ c′ ∧ c′
sbh ∼ c′

We consider only executions that start with empty SBs. Predicate safe-reach(c)
denotes that any configuration reachable from configuration c is safe. The initial
configuration of the SB machine can be obtained from the initial configuration
of the virtual machine by simply copying all components. Predicate initial(c)
assumes the ghost state of the virtual machine to be correctly initialized, i.e.,
that the ownership sets are disjoint and the read-only set is a subset of shared
addresses. The coupling relation csbh ∼ c guarantees equality of the local thread
configurations (excluding the SB component) when the SBs are empty.

The proof of Theorem 1 is done by forward simulation: for every step of the
SB machine, we find a (possibly empty) corresponding sequence of steps of
the virtual machine that preserves the coupling relation. Here the scheduling
of the virtual machine becomes crucial. In particular, we have to make sure that
the reads (including the MMU reads) performed in both machines get the same
value. Two obvious ways to try to do the scheduling are: (i) executing an instruc-
tion on the virtual machine when this instruction is executed on the SB machine
and (ii) executing an instruction on the virtual machine when this instruction
leaves the SB (i.e., delaying the virtual machine until this point). The history
information recorded in the SB in this case helps to reconstruct the instruc-
tions which yet have to be executed in the virtual machine. However, neither of
these approaches work. Executing instructions simultaneously on both machines
would cause inconsistency of the shared memory (because of the volatile writes
committed to the SB on the SB machine and directly to the memory on the
virtual machine). Since any thread is allowed to read the shared portion of the
memory, this might lead to inconsistent read results between SB and virtual
machines. Delaying all instructions in the virtual machine also does not work,
because while a volatile read is delayed in the virtual machine, its read value
might get invalidated by a volatile write from another thread.

The scheduling policy which does provide consistent read results executes
instructions of thread i simultaneously on both machines until a volatile write
enters the SB. At that point, thread i of the virtual machine is delayed until
this volatile write leaves the SB. When it does, the virtual machine executes
this volatile write together with the instructions (and program steps) recorded
in the SB of thread i after that write but before the next volatile write. Clearly,
such a strategy keeps the shared portion of the memory consistent between the
machines. In a safe execution when a volatile read is executed in the virtual
machine the dirty bit must be cleared. A cleared dirty bit of a thread means
that the SB of this thread does not contain any volatile writes (we maintain this
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property as an invariant). Hence, the volatile reads are never delayed and are
executed simultaneously in both machines.

Additionally, we want the content of local page tables to be always consistent
between the machines. The reason for that is that local PTEs may point to
shared page tables and delaying the MMU writes to local PTEs would force us
to delay the MMU writes to the shared memory as well. As a result, we have
to execute all MMU steps simultaneously in both machines. Together with the
possible delay in instruction execution, this leads to reordering of MMU steps
with respect to executed instructions in a given thread, but this reordering is
always done to the left of the instruction sequence. This behaviour is fine, because
the monotonicity property of our MMU model guarantees that once added the
address translations are never removed from the MMU (until explicitly flushed).
In the virtual machine, some address translations will be added to the MMU
earlier than in the SB machine (if one counts time by the number of executed
instructions), but they will still remain there when the instructions that might
rely on these address translations are executed.

For the formal definition of the coupling relation and for the detailed proofs
of Theorem 1 refer to our technical report [3].

6 Conclusion

We presented a programming discipline for concurrent programs running in
translated mode and racing with MMUs. Our reduction theorem guarantees,
that if such a program satisfies the safety conditions in an SC environment, then
execution of this program under TSO also preserves sequential consistency. As a
result, one can derive properties for TSO executions by verifying programs in a
sequentially consistent model of executions. The safety criteria from Fig. 5 might
seem very much suited towards verification experts and not towards program-
mers. However, the core verification discipline, and the methodology for how to
manage ownership and add suitable ghost code, is essentially based on VCC.
This discipline is there not just to avoid data races; its there to allow modular,
thread-local reasoning about fine-grained concurrent software. Because one has
to track ownership anyway, the additional burdens arising from the use of MMUs
and SBs are themselves fairly minimal. VCC has been used to verify more than
100KLOC of real-world concurrent software, so the annotation is indeed prac-
tical; typical annotation overheads are on the order of 2/1 (i.e., twice as much
annotation as source code).

Our main motivation for extending the SB reduction theorem with MMUs
was driven by the results obtained during the Verisoft XT project [13], which
aimed at the formal verification of the Microsoft Hyper-V hypervisor in VCC.
When the project ended in 2010 many crucial portions of the hypervisor code
were verified. Yet, the overall theory of the multi-core hypervisor verification was
far from being completed, even on paper. Since then, many pieces of the theory
have been worked out [5]. This paper is intended to close another open gap in
that theory and to allow verification of software that manages page tables.
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Related work. The programming discipline presented here is an extension of [6]
and can be used to verify both data race free (DRF) andnon-DRF programs.
There are simpler, ownership-free criteria to guarantee SC for non-DRF pro-
grams in the presence of SBs (such as the absence of triangular races [11] or
quadrangular races [7]), but they guarantee a condition stronger than SC, and
thereby allow non-racing accesses to induce flushing obligations. Neither of these
disciplines considers address translation. Kolanski [9] develops a programming
logic based on separation logic that specifically materializes page tables and
address translation. However, it considers neither concurrency, caches (such as
TLBs), nor store buffering.
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Abstract. The separation kernel concept was developed as an architec-
ture to simplify formal kernel security verification, and is the basis for
many implementations of integrated modular avionics in the aerospace
domain. This paper reports on a feasibility study conducted for the Euro-
pean Space Agency, to explore the resources required to formally verify
the correctness of such a kernel, given a reference specification and a
implementation of same. The study was part of an activity called Meth-
ods and Tools for On-Board Software Engineering (MTOBSE) which
produced a natural language Reference Specification for a Time-Space
Partitioning (TSP) kernel, describing partition functional properties such
as health monitoring, inter-partition communication, partition control,
resource access, and separation security properties, such as the secu-
rity policy and authorisation control. An abstract security model, and
the reference specification were both formalised using Isabelle/HOL.
The C sources of the open-source XtratuM kernel were obtained, and
an Isabelle/HOL model of the code was semi-automatically produced.
Refinement relations were written manually and some proofs were
explored. We describe some of the details of what has been modelled
and report on the current state of this work. We also make a comparison
between our verification explorations, and the circumstances of NICTA’s
successful verification of the sel4 kernel.

1 Introduction

The separation kernel concept was introduced by Rushby [1] to aid in achieving
high assurance in critical systems. A separation kernel creates a secure environ-
ment providing temporal and spatial partitioning of applications. In this envi-
ronment each application can only access the set of resources that the kernel
assigns, by being isolated into partitions where there is no flow of data beyond
explicitly authorized channels.

In the last decade the use of separation kernels has increased, with architec-
tures such as the Multiple Independent Levels of Security and Safety architecture
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(MILS) [2], appearing, as well as standards such as Common Criteria (CC) [3]
and the associated Separation Kernel Protection Profile (SKPP) [4] for security
requirements, or ARINC-653 [5] for functional requirements. In particular, in
the space environment, the IMA for Space (IMA-SP) platform proposed by the
European Space Research and Technology Centre (ESTEC) uses a separation
kernel, which helps with fault containment.

Based on those standards and architectures, different implementations of the
separation kernel have emerged, such as PikeOS [6], seL4 [7], XtratuM [8], or
Air2 [9] among others. The SKPP assurance requirements only require, from
the formal methods point of view, that a certified kernel design is semiformally
verified and to provide a formal security policy model. However, for simple and
small designs it is technically possible to go beyond those levels and perform a
full verification of the implementation to ensure the absence of errors.

A separation kernel implementation is too complex for a direct approach to
the verification of the implementation’s code. Aiming to reduce the verification
complexity, projects like L4.Verified [7], VerisoftXT [6], and the verification of the
software for the so called Embedded Device (ED) [10] have successfully applied
techniques such as refinement verification, where the properties are verified over
an abstract model, which is less detailed and therefore easier to verify. Then,
by means of so-called forward simulation, the implementation model is verified.
L4.Verified and VerisoftXT respectively aim to verify the general purpose ker-
nels seL4 and PikeOS, each composed of around 10 K lines of code. On the other
hand, the verification in [10] targets a software-based embedded device of around
3k lines of code. L4.Verified fully verified security and functional properties of the
seL4 kernel down to the C implementation and machine code. VerisoftXT fully
verifies functional correctness of PikeOS, including memory separation correct-
ness as well. Finally the work in [10] is focused on Common Criteria certification
and verification is restricted to security properties. The significance of secure
micro-kernel verification is still increasing and new on-going projects continue
to arise, like [11] where non-interference has been proved on Prosper, a sim-
ple separation micro-kernel targeting the ARM architecture, and [12] where the
information flow policy for the SAFE security kernel was verified.

Within the project Methods and Tools for On-Board Software Engineering
(MTOBSE)1 we developed an abstract model which captures requirements of a
reference specification, for a partition-separation kernel, which was also devel-
oped under this project, guided by the SKPP and the IMA-SP specification [13].
We also formalised an abstract model of a security policy, and we provide a for-
mal refinement relation between this and the reference model. We selected the
open source XtratuM kernel [8] as the code verification target. Using existing
model extraction tools, we have partially modeled the XtratuM microkernel and
we have formalised the refinement relation between the abstract model and the
XtratuM implementation model.

Unlike L4.Verified, VerisoftXT, and the verification of the ED kernel, we
are not either starting from a particular specification and deriving verifiable
1 Funded by ESTEC CONTRACT No. 4000106016
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code (L4.Verified), or taking existing code and abstracting out a specification
(VerisoftXT and ED kernel). In our case we have written a general reference
specification and have constructed an abstract model of that specification. We
are exploring the feasibility of verifying third-party kernel implementations,
such as XtratuM, against our reference abstract model, which we expect to
be more difficult as a result of the independent development of the model and
implementation.

As work in progress, we describe the methodologies and toolchain we are
using to formally verify the XtratuM kernel w.r.t. the abstract model, and we
also detail the process used to obtain the implementation model from the source
code, as well as the issues that arise regarding feasibility.

2 About the Partitioned-Separation Kernel:
A Reference Specification

Before John Rushby introduced the concept of a separation kernel [1], security
models for high assurance kernels were too complex for feasible sound verifi-
cation. The separation kernel approach uses simpler notions of partition and
separation to result in a security kernel for which proof is much easier, but
the necessary characteristics are still covered. To achieve process isolation, a
secure kernel considers the spatial separation of resources and temporal separa-
tion of execution. Spatial separation restricts the set of resources each process
can access to a designated set, while temporal separation ensures the execution
of each process occurs at well defined times, without being changed or delayed
by activities elsewhere in the system. These two concepts ensure that processes
have the perception of being executed in independent environments. However, it
is necessary to allow flows of information among processes. Since those informa-
tion flows break the spatial separation principle, the separation kernel protection
profile (SKPP) [4] establishes a Partition Information Flow Policy (PIFP) that
relaxes the separation, but only for appropriate information flows.

The natural language reference specification [14], developed in the MTOBSE
project, consists of software requirements, interface requirements, and the archi-
tectural design. Both the software requirements and the interface requirements
are based on the requirements baseline for the IMA-SP platform [13] and ESA’s
own suggestions. Based on the specified requirements, the architectural design
describes the data structures, component internal interfaces, and component
functionalities.

The main sources from which the software requirements are drawn are the
Arinc-653 standard specification [5] for functional requirements (partitioning
aspects) and the Separation Kernel Protection Profile (SKPP) [4] for security
requirements (separation aspects). To achieve temporal partitioning as defined
in the ARINC-653 standard, IMA-SP requires the use of a static cyclic scheduler,
where partitions are assigned to execution windows called Partition Time Win-
dows (PTW), which are strictly dispatched according to their assigned execution
quotas and period. IMA-SP allows the static configuration of a set of schedulers,
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and during execution system partitions can invoke system calls to change the
active scheduler to one of that set. Additionally, spatial partitioning is achieved
by memory protection hardware, and forbidding any partition communication
not explicitly allowed by an inter-partition communication channel, enforced by
the separation kernel’s PIFP.

Although the developed reference specification is guided by these standards,
it does not intend to be fully compliant with them. For example, a non-standard
view is taken of requirements for processes, intra-partition communication, and
the health monitor. The ESA view is that management of those aspects are
handled by a partition guest OS for processes and intra-partition communication,
or a system partition for the health monitor. Also, as far as possible drivers are
not part of the kernel in order to keep it as simple as it is possible. Only clock
drivers are part of the kernel since they are necessary for the partition scheduler.
A system partition is responsible for allocating drivers for other devices. User
partitions cannot have direct access to devices, and any communication between
a device and a user partition is through an explicit inter-partition communication
channel between the user partition and the driver system partition.

In the case of security and separation requirements this reference specification
follows the SKPP recommendations, and it includes requirements tailored to the
space environment for audit, user data protection, identification and authenti-
cation, security management, protection of the security functions, and resource
utilisation.

Figure 1 shows the diagram for the architectural design. It includes the com-
ponents required by the reference specification, including cores to manage par-
titions, communication, global and local time, exceptions not concerned with
the kernel security functionality, interrupts and devices, and finally the Kernel

Fig. 1. Separation kernel design
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Security Functions (KSF) core. User and System partitions can access the func-
tionality the kernel provides through the interface that these modules implement.

3 Verification Methodology and Toolchain

The complexity of verifying a separation kernel makes it necessary to use verifi-
cation based on layer abstractions such as refinement.

Our approach to refinement verification is fairly standard, as we take a for-
ward simulation approach. We determine a refinement relation RAI between
the states SA of an abstract model MA and the states SI of an implementation
model MI . Given opI : sI �→ s′

I and opA : sA �→ s′
A, showing that opI data-

refines opA is a matter of showing, given any sI and sA, that the diagram in
Fig. 2 commutes: Generally, the relation between RAI is not trivial, mapping
one abstract state to a set of corresponding implementation states. Additionally,
in particular when aiming the full kernel verification, data and behavioral simpli-
fication of the abstract model bring new invariants in the implementation model
that must be verified. So, to simplify the refinement task and the verification,
it is typically necessary to introduce intermediate models MIM0 · · · MIMn

with
higher levels of abstraction such that MA � MIM0 · · · MIMn

� MI .
Although it is well known that refinement preserves safety but not liveness

properties [15], in [16] it is shown that it is possible to formulate liveness prop-
erties in such a way that they are preserve by refinement.

Our property verification effort will be concentrating on proving system-call
correctness and verifying security properties. Proofs for system calls will use
classical Hoare triples based on pre- and post-conditions, ensuring that system
calls satisfy their functional requirements. With regard to security properties,
they will be verified using invariant preservation over data structures related to
a security property.

The whole verification process is being carried out using the Isabelle/HOL
theorem prover [17]. Isabelle/HOL Higher-Order Language (HOL) allows us to
model the kernel abstraction, and to describe the properties representing the
security and functional requisites and the refinement relation between models.
In order to apply refinement verification we need to obtain an implementation
model, which can be obtained using a semantic model of the implementation
language over the source code. To that aim, we are using the C-Parser tool [18]
developed by NICTA (Australia’s Information and Communications Technology

Model MA : sA s′
A

Model MI : sI s′
I

opA

RAI RAI

opI

Fig. 2. Refinement (forward simulation)
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(ICT) Research Centre of Excellence), that takes as input code a subset of C-992,
and automatically provides a set of Isabelle/HOL theories defining an imperative
model of that code. C-Parser introduces proof automation, discharging trans-
lation correctness, so the tool ensures that the model is correct with regard the
provided semantic model, and additionally it automatically proves properties
about memory access correctness.

4 Modelling the Separation Partitioning Kernel

Refinement verification requires the construction of an abstract model of the
requirements, simple enough to make the verification feasible. However, it is
important to have simplicity in mind as a compromise between verification of
requirements and refinement verification, to obtain a transition relation which
eases the refinement verification.

The partitioning-separation formal model is composed of more than thirty
Isabelle/HOL theories where the kernel architecture and behaviour are defined
according to the reference specification. These theories cover the spectrum from
low-level machine data-types up to high-level kernel security behaviour. This
range of abstract levels is required both to ease the construction of refinement
relations, and cover aspects of security that themselves have low-level hardware-
related aspects.

Therefore, the abstract model includes elements present in implementations
like XtratuM: e.g., partial support for function pointer structures, and features
such partitions with two virtual timers (global and local).

4.1 Kernel Data Structures

The kernel global state is modelled as an Isabelle/HOL record containing the
current state of the partition-separation kernel components described in Sect. 2,
and an additional field representing the current machine state, which is neces-
sary to ensure that setup of hardware (e.g. MMU configuration) enforces data
separation.

record state=

partition_manager ::partition_manager_type

communication_state ::communication_type

health_monitor :: health_monitor_type

ksf :: ksf_state

trap_management :: trap_management_type

Collections of objects uniquely identified, like partitions, or communications
channels, are specified using partial functions from the field identifying the object
(e.g. the partition identifier) to the object itself. Since Isabelle functions are

2 C-99 refers to the revised standard of ANSI C, or C-89, released in 1999
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total, partial functions are specified using datatype option, which returns None

for those identifiers not mapped to any object and Some obj for those mapped
to object obj.

The State and Function Pointers. Operating systems implement trap and
interrupt functions using a table mapping traps and interrupts to the func-
tion handling them. So, on incoming interrupts or traps, the OS goes to the
lookup table and executes the management functions. To model this behav-
iour on Isabelle/HOL it should be enough to define a function mapping traps
and interrupts to higher order functions managing the interrupts. Since traps
and interrupt management functions usually modify global variables, it is nec-
essary to model them as functions modifying the state, which can be done using
monads.

However, Isabelle/HOL requires that datatype constructors involving the
type constructor → for the full function space, do not use the newly defined
datatype in the → lefthandside, i.e. all occurrence must be strictly positive [19].
This is because having a constructor which recursively uses a new type τ on the
left side of → means that the cardinality of τ would be at least that of the power-
set of τ , which by Cantor’s theorem would be strictly greater than the cardinality
of τ . Therefore, due to this restriction it is not possible to include state modifier
functions in the global state, nor in the state of any kernel component.

One work around, is to define the state without considering function pointers,
and create a new record extending the original state with the set of possible
functions being pointed to by these pointers. But that is not enough to allow state
components using function pointers, like the machine state, to directly reference
those function pointers, since they belong to the extended_state definition, which
is not visible to them. To solve this, the field extending the state containing the
functions pointed to by function pointers, is mapped from naturals to higher
order functions modifying the state, and function pointer variables keep the
natural number associated with the relevant function pointer in the mapping
function. Invoking the function pointer means getting the function mapped to
that natural. The relevant excerpt from the model is immediately below, noting
that we have two different kinds of function pointer: interrupts and trap-handlers.
Both take the interrupt or trap being handled and return a monad over a partial
state.

record extended_state = state + funct_pointers :: funct_pointer_map

type synonym interrupt_handler = "pointer ⇒ hw_irq ⇒ unit ps_monad"

type synonym trap_handler = "hw_fault ⇒ unit ps_monad"

datatype funct_pointer = FunctionPointer_1 "trap_handler"

|FunctionPointer_2 "interrupt_handler"

type synonym funct_pointer_map = "funct_pointer_ind ⇀ funct_pointer"

However, this work around also has limitations. The most important one
is that functions pointed to by function pointers cannot invoke other function
pointers. This is because the actual function is a monad to partial_state, which
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does not include the function pointer mapping. Nonetheless, none of the function
pointers modelled are affected by this limitation.

Using record related Isabelle/HOL functions is possible to define maps from
state to partial_state and vice versa:

definition s_2_ps::"state ⇒ partial_state"

where "s_2_ps s ≡ partial_state.truncate s"

definition ps_2_s::" funct_pointer_map ⇒ partial_state ⇒ state"

where "ps_2_s fp ps ≡ partial_state.extend ps (state.fields fp)"

Health Monitor. In the presence of hardware faults, the trap manager sends
the trapped fault to the health monitor. The health monitor is modelled as a
record containing a fault management table, modelled as a total function from
faults to monitoring actions, and a fault record. The fault management table
specifies one of the following actions: system restart (cold or warm), shutdown,
halt, or ignore. This last action keeps a fault log accessible by the health monitor
system partition, as specified by the IMA-SP.

Partition Virtual Machines. As mentioned in Sect. 2 the separation kernel
provides a virtual machine to partitions in such a way that they have (appar-
ently) unique access to the hardware. To that aim, in addition to user context
registers and the program counters, the partition manager keeps the partition
cache status, for both data and code caches, interrupt state, and virtual timers.

Partition cache virtualization keeps the state of cache-enabled and frozen bits
for data and cache in the MMU configuration, restoring them on each partition
switch from the cache virtualization data of the incoming partition. In addition,
on each partition switch the contents of the cache for the outgoing partition is
flushed for cache sanitation.

In partition virtualization, interrupt management plays a big role. Fields
in charge of interrupt management determine whether virtual interrupts are
enabled for the partition and the priority level. Two total functions provide a
mapping from hardware and system traps to addresses in the partition trap han-
dler table, with the possibility of masking traps and keeping track of unattended
traps. Partitions’ trap routines are user code and their execution are beyond the
scope of the kernel model. The Isabelel/HOL structure for partition interrupt
virtualization is:

record trap_info = hw_mask :: trap_mask

hw_pending :: trap_pending

ext_mask :: trap_mask

ext_pending :: trap_pending

t_enabled :: trap_enabled

t_PIL :: pil t_line :: trap_line

hw_vector :: "hw_irq ⇒ vector_index"

sys_vector :: "ext_irq + ext_fault⇒ vector_index"

sw_trap :: "sw_trap option"
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Machine State. Although the kernel model does not aim at hardware verifi-
cation, we need a hardware model of those parts which require a correct setup
to ensure spatial separation. The machine model depends heavily on the target
hardware platform, which in the case of the current project, is the Sparc V8
architecture [20].

In particular, we have modeled the following:

1. Processor registers to control supervisor mode and incoming traps and inter-
rupts

2. User general purpose registers to check register sanitation on context switches
3. Input/output devices’ address space to verify correct setup of devices
4. Memory Management Unit (MMU) to ensure the directory entries for virtual

memory are correctly configured.

(i) and (ii) are modelled by CPU_context and user_context, defined as total
functions from a register datatype, specified as a datatype providing a con-
structor for each register, to a machine word, specified as a 32-bit word. (iii)
is modelled by io_memory as a partial function, from the set of devices mem-
ory addresses to machine words. Finally MMU_state models (iv) and contains the
MMU registers, modeled also as total functions from MMU register name to
machine words, the data and code cache, and the memory.

4.2 Kernel Behaviour

The separation kernel is an event-oriented model. Indeed, partitions are run
owning the microprocessor until some event raises a trap, to wake up the kernel,
which will handle the event. Conforming to this, the top Isabelle/HOL theory in
the modelled kernel is an entry point waiting for incoming events, i.e. traps and
partition calls to kernel services. In addition, as we are concerned with spatial
separation verification, memory access events are also considered. With a correct
MMU set-up, a partition accessing virtual memory addresses not assigned to that
partition shall cause a memory access error.

The kernel states are shown in Fig. 3. The entry point only handles traps,
system calls and access to memory when the kernel is in NORMAL or MAIN-
TENANCE states, these being software events ignored in any other state. The
BOOT state is partially modelled by a booting function returning an initial
kernel state for the given initial configuration.

Traps, Interrupts, and Health Monitor. The model captures hardware
traps and device interrupts with a partial function from traps and interrupts
to the function handling them. By default, the health monitor handles kernel
traps, but partition traps are delivered to a system partition, which carries out
health monitor functions. Whether an incoming trap is delivered to the system
partition is decided by a configuration table with the actions to take on traps.
Interrupts and traps are considered non-preemptive.
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Fig. 3. Kernel state transition graph

Similarly to traps, device interrupts are also handled by a system partition.
When a device interrupts the kernel it sets the bit corresponding to that interrupt
in the partition virtual machine for the system partition handling interrupts. The
kernel only provides handlers for the hardware timers. In particular it provides
two handlers: one is for the system time, incrementing the system clock and the
running partition system clock; the other is for system timers, which control the
partition scheduler and virtual timers for partitions.

The Security Model. The SKPP [4] functional security requirements include:
security audit, user data protection, identification and authentication, security
management, self-protection, and resource utilization. The most important parts
from the temporal and spatial isolation perspective are those defining the flow
control functions, and temporal quotas.

The flow control function is modelled in the Kernel Security Function (KSF)
module as a function mapping partitions and resources to the allowed operations
of partitions over the resources, following a flow control policy based on the
Least Privilege abstraction [21] (LP). The LP function defines, for each pair
(partition × resource), acceptance or denial of a given operation (write/read
allowed or not). In the case the operation is not specified, and the value for
that pair is unspecified, then the flow control is based on a function mapping
operations between partitions, following in that case a partition-pair abstraction.
Here the partition pair function PP defines, for each pair (partition×partition),
the acceptance or denial of a given operation, and in the case that the value is
unspecified any operation involving those partitions is forbidden.

The IMA-SP specification [13] forbids shared memory, and the only flow
between partitions is using inter-partition communication channels, which com-
municate via ports uniquely assigned to partitions. Communication channels fix
the direction of the communication so each channel has to be composed of a
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source port, which writes to the corresponding destination port, ensuring a one
way communication flow. Considering inter partition communication, the flow
control function model shall allow an operation op between partitions P1, P2
using a inter partition channel ch = 〈sp × dp〉, with sp a source port in P1,
dp a destination port in P2, if LP P1 dp = Write Allowed ∨ (LP P1 dp =
Undefined ∧ PP P1 P2 = Write Allowed) ∧ LP P2 sp = Read Allowed ∨
(LP P2 sp = Undefined ∧ PP P2 P1 = Read Allowed).

In the case of multi-cast channels with one source port sp and multiple
destination ports dp1, . . . , dpn, the operation will be allowed if for all pairs
(sp × dp1) . . . (sp × dpn) the relation above holds.

For the KSF to enforce temporal quotas, it manages the global clock and
the set of Major Time Frames (MTF) defining the scheduler. It is in charge of
switching partitions, detecting if some partition has exceed its temporal quota
and ensuring that residual information is removed. The reason that a partition
can exceed its temporal quota is because a partition can invoke a system service
just before the current PTW finishes and, since the kernel is not preemptive, the
timer interrupt would not be handled until that call finishes. This could be solved
by allowing preemption, but making the kernel more complex, or establishing a
time in the MTF after which system calls are not allowed.

With regard to security, the KSF models authorization access to kernel priv-
ileged operations. The KSF records, for each partition, a set of authorized oper-
ations. For the sake of kernel simplicity, system partitions own authorization to
all privileged operations, whereas non-system partitions own no rights.

Kernel Services. Kernel services typically change the kernel state into another
one modifying some kernel variables, so they are modelled using state monads.
The kernel offers two types of services: privileged services like changing the state
of a partition or halting the kernel, and non-privileged services such as sending a
message to a communication port, or modifying some partition virtual machine
property like enabling the data cache. Before invoking any kernel service, the
kernel checks out the current partition privileges to detect if the current partition
is authorized to perform the operation (check phase). Also, the service arguments
are examined to check they are correct (decode phase). Only if the partition has
the necessary privileges and the arguments passed to the service are correct
the service is invoked (invocation phase), otherwise the kernel will return the
corresponding error code.

4.3 The Abstract Security Model

We represent the separation kernel concept with an abstract security model
(ASM, Fig. 4) whose configuration is composed of the tuple < P,α, β, σ >,
where P is a set of partition-ids, α is an action policy representing a set of
allowed actions for each partition-id, β is a set of applications as a function from
partitions to sequence of actions, and σ is a schedule, modelled as a sequence of
partition-ids, each occurrence denoting the corresponding partition performing
one (the next) action from its corresponding sequence.
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run : Sys → RunHist
run(α, σ, β) = executeα(σ, β)

execute : ActPol → (Sched × Apps) → RunHist
executeα(〈〉, ) = 〈〉

executeα(p : σ, β) = performβ,p
α,σβ(p)

perform : (ActPol × Sched) → (Apps × PId) → Run → RunHist

performβ,p
α,σ〈〉 = executeα(σ, β)

performβ,p
α,σ(a : r) =

{
(p, a) : executeα(σ, β † {p �→ r}) , a ∈ α(p)
〈〉 , a /∈ α(p)

Fig. 4. Abstract security model

We say that a run-history run, defined as a sequence of pairs (Pid×actions)∗,
is consistent with an action policy α, hpConsistentα run, if for every parti-
tion/action pair (p, a) ∈ run, α allows p to perform a.

The key property in ASM is that the execution of actions for each scheduled
partition, given by run(α, σ, β), is consistent with the policy:
hpConsistentα run(α, σ, β).

Run takes as input the action policy (α), the scheduler (σ), and the sequence
of actions that partitions execute (β), and it returns the run-history. If the
sequence of partitions defined by the scheduler is empty, run finishes; otherwise
if it is equal to p : σ (: is the list constructor) it adds the pair (p, a) to the run
history, where a is the next action in the sequence of actions for partition p,
β(p), and a is taken out from the list of actions for β(p) († is the map override
operator). If there is no next action a for p, β(p) = 〈〉, the next partition in σ
is scheduled and the run history is not modified. If action a is not allowed for
partition p, expressed as a /∈ α(p), then we simply stop, and return an empty
history.

4.4 Refinement Relation between ASM and the Reference Model

For refinement verification (Fig. 5) we define the relation RASM between states
belonging to ASM and the abstract model of the reference specification (rm).
This relates the sequence of actions for partitions β, the scheduler σ, and the
action policy α, with the set of partitions defined in the partition manager, the
scheduler, and the security policy, respectively.

Function f used in RP and RSP defines a function from partition-ids in the
very abstract model to partition-ids in the abstract model. Function h associates
the partition sequence of actions in ASM with segment codes in the abstract
model. Similarly, g associates in RP the partition’s set of allowed action with
the set of allowed operations in the partition security model. For RS , a prefix
p∗ of σ must be equal to the partition window (PTWid) in the abstract model’s



Separation Kernel Verification: The Xtratum Case Study 145

RASM (β, σ, α) rm ≡ RP β rm.partition manager ∧ RS σ rm.scheduler ∧
RSP α rm.security model

RP β pm ≡ ∃f, h.Dom β = f ‘(Dom pm.partitions) ∧
∀i ∈ Dom β.β i = h(pm.partitions(f i))

RS σ sch ≡ σ = p∗ : σ1 ∧ partition sch[sch.current][sch.PTWid] = p ∧
∃pv.σ1 = pv sch

RSP α sp ≡∃f, g. Dom α = f ‘(Dom sp)∧
∀i ∈ Dom α.α i = g(pm.partitions(f i))

Fig. 5. Abstract security model refinement relation

current scheduler sch.current. ‘ represents set image function, and : the concate-
nation operator. Variable pv is a prophecy variable [15] introduced to simulate
non-deterministic changes of the current scheduler when a partition invokes the
corresponding system call as defined by IMA-SP.

5 Towards Separation Kernel Verification:
The Xtratum Case

The XtratuM kernel [8] is a general partitioning microkernel, which provides
basic hardware access to allocated partitions and is in compliance with the
IMA-SP reference specification [13]. XtratuM provides temporal and spatial
separation, using specific hardware to access memory and a deterministic cyclic
scheduler to provide partitions with spatial and temporal isolation, inter-partition
communication, and health monitoring for partition fault management.

5.1 Getting an Implementation Model

To get the implementation model, we used Xtratum 3, release 33, dated June
2012 and we modified it to make it compliant with Nicta’s C-Parser 1.13, dated
May 2013. Xtratum, version 3-33, is composed of more than 10 K. Lines of C
code and 440 functions. Therefore, although it is really small in comparison with
general purpose kernels (e.g., Linux v3 kernel has more than 19,000 K LoC) it
is still big enough to necessitate that the implementation model is obtained
automatically.

However, the C-Parser tool imposes some restrictions due to verification
decisions and parsing considerations. The most significant ones are: function calls
and assignments are not considered statements, but expressions, so side-effect
expressions are not allowed such as assignments in control flow conditions; to
simplify the memory model, pointers referencing local variables are not allowed;
union and bitfields are considered unsafe since they violate the abstraction of
the C semantic model and hence are forbidden.

XtratuM makes use of a subset of C not covered by C-Parser, so it has
been necessary to edit XtratuM’s source code to make it compliant with the



146 D. Sanán et al.

parsing tool. With that aim, side-effect expressions where split using temporary
variables to store the side-effect modification, and referenced local variables were
moved out of the local context to the global kernel context. Unions and bitfields
have been manually transformed into arrays of bytes of the size of the largest
union field. C operators accessing union fields are substituted with functions
that access the field in the resulting array of bytes. Note that currently those
modifications are implemented to make the use of C-Parser possible, but this
means we need to verify of the correctness of our modifications. Nicta uses a
specific tool to automate this transformation and provide a translation proof,
but as of this time it is not publicly available.

In addition, it is necessary to modify the XtratuM source code to find
workarounds to bugs or undocumented C statements not handled by the parser,
such as C comments at the end of a line using “//”, or the volatile type quali-
fier. The above issues are resolved by their removal from the source code because
they do not affect the functional behaviour of the implementation. Other prob-
lems are resolved by replacement with equivalent but compliant code. While
deriving the partial implementation model, we found 14 different incompatibili-
ties between the XtratuM code and the parsing tool.

So far, we have partially extracted an implementation model for XtratuM,
having extracted the kernel data definitions and the scheduler functions, and
those functions the on which scheduler depends. To obtain a complete model
using C-Parser, it is necessary to restructure the source code and to provide
a model of the kernel’s assembly code, which the parser ignores. First, as is
usual in a Kernel’s code organization, XtratuM is organized in different mod-
ules which are independently compiled, and later linked into the final executable
file. In this scheme, inter-module dependencies are resolved by exporting func-
tion prototypes that other modules use. It is common to find cyclic depen-
dencies between modules which are resolved during the linking stage. On the
other hand, C-Parser’s input is a unique C file, where such cyclic dependen-
cies are not allowed. Hence, it was necessary to carefully re-structure the source
code to be compatible with C-Parser. In future we may also explore the use
of the CIL tool (http://sourceforge.net/projects/cil/) to merge all the C files
into one without such cycles. Indeed, we are getting a modified kernel where for-
mal verification ensures its correctness and that its behaves as expected by the
specification. Second, kernels use assembly code in their lower layers to access
the hardware, especially for functionality concerning interrupt management and
hardware configuration. Although at this stage it is not intended to perform
machine code verification, it is at least necessary to provide a minimum model
to ensure hardware configuration correctness, especially of critical elements for
supporting isolation such as the MMU.

5.2 Refinement Model

The construction of the abstract model was developed considering both the ref-
erence specification [14] and the XtratuM implementation foreseeing the refine-
ment relation with the implementation model. Nevertheless, and although both

http://sourceforge.net/projects/cil/
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models have a similar architecture, some of the data structures in the imple-
mentation differ dramatically from the abstract model, therefore the refinement
relation is not straightforward. This may have a negative impact on the cost of
the refinement proof. In particular, most of the data structures in the abstract
model are represented as partial functions, while the implementation uses static
arrays or linked lists, and often the implementation splits the data structures into
multiple arrays or lists, aiming for efficiency, but requiring us to check that the
partial functions in the abstraction truly correspond with the implementation.

It is worth noting, that although the refinement relation must connect the
whole model with the implementation model, there are some components like
the KSF’s security policy that are not currently refined since the implemen-
tation does not provide an explicit model of it, although there is a functional
implementation of it implicit in inter-partition communication.

6 Future Work

Verifying a kernel is a major task, with complete verification requiring sev-
eral years of effort, even in the case of a small separation kernel consisting of
only a few thousands of lines of code. After finishing the abstract model that
spans functional and security requirements, there are still two big steps to carry
out: Requirement verification over the abstract models and proof of refinement
between the abstract model and the implementation model.

Although verification of requirements can be considered a conceptually
straightforward task, albeit with a lot of attention to a lot of detail, mostly
focused on invariants and Hoare-triplet verification, it is still necessary to bring
forth a proof of separation to support a guarantee of partition isolation in this
architecture.

The proof of refinement will require collaboration with the XtratuM team
which will help to produce a modified C-Parser compliant kernel. Additionally
it may be necessary to modify the model extractor to be a better fit to Xtra-
tuM, or other alternative implementations, with particular features (e.g., total
parser support for function pointers). Moreover, the refinement verification could
require an intermediate layer to cover the gap between the abstract model and
the implementation model.

What is very clear, is that an approach that requires verifying a refinement
relation between independently developed specifications and implementations, is
more complex than one where one end of the refinement relation was developed
with the other end already known and understood. The MTOBSE project was
looking at the situation where a customer issues the specification, and then seeks
suppliers to tender their implementations, in open competition — a situation
very common were customers are tax-payer/government funded entities such as
ESA.
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Abstract. Separation algebras are a well-known abstraction to capture
common structure of both permissions and memories in programming
languages, and form the basis of models of separation logic. As part of
the development of a formal version of an operational and axiomatic
semantics of the C11 standard, we present a variant of separation alge-
bras that is well suited for C verification.

Our variant of separation algebras has been fully formalized using
the Coq proof assistant, together with a library of concrete implemen-
tations. These instances are used to build a complex permission model,
and a memory model that captures the strict aliasing restrictions of C.

1 Introduction

Separation logic [19] is widely used to reason about imperative programs that
use mutable data structures and pointers. Its key feature is the separating con-
junction P ∗ Q that allows to split the memory into two disjoint parts; a part
described by P , and another part described by Q. The separating conjunction
is used for example in the frame rule.

{P} s {Q}
{P ∗ R} s {Q ∗ R}

This rule enables local reasoning about parts of a program. Given a Hoare triple
{P} s {Q}, this rule makes it possible to derive that the triple also holds when
the memory is extended with a disjoint part described by R.

In previous work, we have extended separation logic to deal with intricate
features of the C programming language. In [15] we have extended separation
logic to support non-local control flow in the presence of block scope variables
(with pointers to those), and in [13] we have extended that separation logic to
deal with non-determinism and sequence points in C.

A shortcoming of this first version of our separation logic for C is its rather
basic memory model that merely supports integers and pointers, but no array,
struct, and union types. In order to support these data-types together with the
strict-aliasing restrictions of C11 [10, 6.5p6-7], which allow compilers to perform
type-based alias analysis, one needs a rich memory model. For that reason, we
have developed a memory model based on forests structured according to the
shape of data types in C to accurately describe these restrictions [12].

In this paper, we will show how separation algebras are used for the integra-
tion of our separation logic and our memory model.
c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-12154-3 10
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Separation logic for C. The key observation of our separation logic in [13] is the
correspondence between non-determinism in expressions and a form of concur-
rency. Inspired by the rule for the parallel composition [18], we have the following
kinds of rules for each operator �.

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 � e2 {Q1 ∗ Q2}

The intuitive idea of the above rule is that if the memory can be split up into two
parts, in which the subexpressions e1 respectively e2 can be executed safely, then
the full expression e1 � e2 can be executed safely in the whole memory. Since
the separating conjunction ensures that both parts of the memory do not have
overlapping parts that will be written to, it is guaranteed that no interference
of the side-effects of e1 and e2 occurs. It thus effectively rules out expressions as
(*p = 3) + (*p = 4) that have undefined behavior [10, 6.5p2].

Our separation logic uses permissions [4], and therefore the singleton asser-
tion has the shape e1

x�→e2 where x is the permission of the object e2 at address
e1. Fractional permissions [5] are used to make sharing of read only memory of
multiple subexpressions possible. This is needed in *p + *p for example.

Permissions are also used to keep track of whether an object has been locked
due to a previous assignment. This is needed to ensure that no undefined behav-
ior because of a sequent point violation occurs (modifying an object in memory
more than once between two sequence points). Furthermore, since C only allows
pointer arithmetic on addresses that exist (i.e. have not been deallocated), we
need existence permissions. Bornat et al. [4] left existence permissions for future
work, but our permission model incorporates these.

Since permissions are used to account for various constraints, they become
very complex, especially when used in a memory model for a real-world language
like C. We will use separation algebras to factor out common structure and to
build the permission and memory model in a more compositional way.

Approach. Separation algebras, as originally defined by Calcagno et al. [6], are
used as models of separation logic. Given a separation algebra, which is a partial
cancellative commutative monoid (A, ∅,∪), a shallow embedding of separation
logic with assertions P,Q : A → Prop can be defined as:

emp := λx . x = ∅
P ∗ Q := λx .∃x1 x2 . x = x1 ∪ x2 ∧ P x1 ∧ Q x2

The prototypical instance of a separation algebra is a heap, where ∅ is the
empty heap, and ∪ the disjoint union. Other useful instances include the booleans
(bool, false,∨) and fractional permissions ([0, 1]Q, 0,+) [4,5] where 0 denotes no
access, 1 exclusive access, and 0 < < 1 read-only access. Separation algebras are
closed under various many (products, finite functions, etc.), and hence complex
instances can be built compositionally.

When formalizing separation algebras in the Coq proof assistant, we quickly
ran into some problems:
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1. Dealing with partial operations is cumbersome.
2. Dealing with subsets types (modeled as Σ-types) is inconvenient.
3. Operations like the difference operation \ cannot be defined constructively

from just the laws of a separation algebra.

To deal with problem 1 of partiality, we turn ∪ into a total binary operation,
and axiomatize a binary relation x ⊥ y that describes that x and y are disjoint.
Only if x ⊥ y holds, x ∪ y is required to satisfy the algebraic laws.

Problem 2 already appears in the simple case of fractional permissions [0, 1]Q,
where the ∪-operation (here +) can ‘overflow’. We remedy this problem by hav-
ing all operations operate on pre-terms (here Q) and axiomatize a predicate valid
that describes that a pre-term is valid (here 0 ≤ ≤ 1).

Although problems 1 and 2 seem relatively minor for trivial separation alge-
bras like Booleans and fractional permissions, these problems become more evi-
dent for more complex (recursive) separation algebras like those that appear
in our memory model. Our approach makes using plain ML/Haskell-style types
possible. In order to deal with problem 3, we axiomatize the relation ⊆ and the
operation \. Using a choice operator, the \-operation can be defined in terms of
∪, but in Coq (without axioms) that is impossible.

Since the aforementioned problems merely concern ease of formalization, our
solution so far is just a different form of presentation and does not fundamentally
change the notion of a separation algebra. Although our solution results in more
laws, these are generally trivial to prove. Moreover, we describe some machinery
to deal with the additional conditions.

A more fundamental problem is that the standard definition of a separation
algebra allows for very strange instances that do not correspond to a reasonable
separation logic. To that end, Dockins et al. [8] have described various restrictions
of separation algebras: splittability, positivity, disjointness, etc. Of course, we
rather avoid the need to formalize a complex algebraic hierarchy in Coq. Hence,
we define one variant that fits our whole development.

Our variant also includes additional features to abstractly describe exclusive
ownership, which is needed for our permission and memory model.

Related work. Separation algebras were originally defined by Calcagno et al. [6],
but their work dealt with a rather idealized language, and was not aimed at for-
malization in proof assistants. However, many researchers have used separation
algebras and separation logic for realistic languages in proof assistants.

Dockins et al. [8] have formalized separation algebras together with various
restrictions in Coq. They have dealt with the issue of partiality by treating ∪ as
a relation instead of a function. However, this is unnatural, because equational
reasoning becomes impossible and one has to name all auxiliary results.

Bengtson et al. [2] formalized separation algebras in Coq to reason about
object-oriented programs. They have defined ∪ as a partial function, and did not
define any complex permission models. Yet another formalization of separation
algebras is by Klein et al. [11] using the Isabelle proof assistant. Their approach
to partial operations is similar to ours. Section 2 contains a comparison.
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In our previous paper on a separation logic for non-determinism and sequence
points in C [13] we used an extension of permission algebras to describe permis-
sions abstractly. Separation algebras are more general: the previous abstraction
contained notions specific to permissions, and therefore the memory model itself
was not an instance. Moreover, separation algebras include an ∅-element, which
is necessary to split the trees of our memory model. The permission model that
we present in this paper is based on our previous one [13], but it is built more
compositionally, and it supports existence permissions.

There has been a significant amount of previous work on formalized memory
models for the C programming language, most notably by Leroy et al. [17] and
Beringer et al. [3] in the context of the CompCert compiler [16]. However, no
previous memory models apart from our own [12] have taken the strict aliasing
restrictions of C11 into account. Thus, in particular no previous work has dealt
with separation logic for such a memory model.

Contribution. Our contribution is fivefold:

– We define a variant of separation algebras that works well in Coq (Sect. 2).
– We present a complex permission model for an operational and axiomatic

semantics of the C programming language (Sects. 3 and 4).
– We present a generalization of the memory model that we described in [12]

and show that it forms a separation algebra (Sect. 5).
– We present an algebraic method to reason about disjointness (Sect. 6).
– All proofs have been formalized using the Coq proof assistant (Sect. 7).

Because this paper is part of a large formalization effort, we often omit details
and proofs. The interested reader can find all details online as part of the Coq
development at http://robbertkrebbers.nl/research/ch2o.

2 Simple Separation Algebras

We first describe our version of separation algebras that is equivalent to tradi-
tional non-trivial, positive, and cancellative separation algebras.

Definition 2.1. A simple separation algebra consists of a set A, with:

– An element ∅ : A
– A predicate valid : A → Prop
– Binary relations ⊥, ⊆ : A → A → Prop
– Binary operations ∪, \ : A → A → A

Satisfying the following laws:

1. If x ⊥ y, then y ⊥ x and x ∪ y = y ∪ x
2. If valid x, then ∅ ⊥ x and ∅ ∪ x = x
3. If x ⊥ y and x ∪ y ⊥ z, then

(a) y ⊥ z, x ⊥ y ∪ z and
(b) x ∪ (y ∪ z) = (x ∪ y) ∪ z

http://robbertkrebbers.nl/research/ch2o
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4. If z ⊥ x, z ⊥ y and z ∪ x = z ∪ y, then x = y
5. If x ⊥ y, then valid x and valid (x ∪ y)
6. There exists an x = ∅ with valid x
7. If x ⊥ y and x ∪ y = ∅, then x = ∅
8. If x ⊥ y, then x ⊆ x ∪ y
9. If x ⊆ y, then x ⊥ y \ x and x ∪ y \ x = y

To deal with partiality, we turned ∪ into a total operation. Only if x and y
are disjoint, notation x ⊥ y, we require x ∪ y to satisfy the algebraic laws.

Laws 2–4 describe the traditional laws of a separation algebra: identity, com-
mutativity, associativity, and cancellativity. Law 5 ensures that valid is closed
under ∪. Law 6 ensures that the separation algebra is non-trivial, together with
law 5 this yields valid ∅. Law 7 describes positivity, and laws 8 and 9 fully
axiomatize the ⊆-relation and \-operation. Using positivity and cancellativity,
we obtain that ⊆ is a partial order and that ∪ is order preserving and respecting.

Definition 2.2. The simple Boolean separation algebra bool is defined as:

valid x := True ∅ := false

x ⊥ y := ¬x ∨ ¬y x ∪ y := x ∨ y

x ⊆ y := x → y x \ y := x ∧ ¬y

Boyland’s fractional permissions [0, 1]Q [5] where 0 denotes no access, 1 exclu-
sive access, and 0 < < 1 read-only access, form a simple separation algebra.

Definition 2.3. The simple fractional separation algebra Q is defined as:

valid x := 0 ≤ x ≤ 1 ∅ := 0
x ⊥ y := 0 ≤ x, y ∧ x + y ≤ 1 x ∪ y := x + y

x ⊆ y := 0 ≤ x ≤ y ≤ 1 x \ y := x − y

The version of separation algebras by Klein et al. [11] in Isabelle also treats
∪ as a total operation and uses a relation ⊥. There are some differences:

1. We include a predicate valid to prevent having to deal with subset types.
2. They have weaker premisses for associativity (law 3b), namely x ⊥ y, y ⊥ z

and x ⊥ z instead of x ⊥ y and x ∪ y ⊥ z. Ours are more natural, e.g. for
fractional permissions one has 0.5 ⊥ 0.5 but not 0.5 + 0.5 ⊥ 0.5, and it thus
makes no sense to require 0.5 ∪ (0.5 ∪ 0.5) = (0.5 ∪ 0.5) ∪ 0.5 to hold.

3. We axiomatize \ because Coq does not have a choice operator.

3 Permissions and Separation Logic for C

Our semantics for the C programming language needs a complex permission
system to account for whether certain operations are allowed or not. We classify
the C permissions using the following permission kinds.
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Fig. 1. Left: the lattice of permission kinds. Right: the actual permissions.

– Freeable. All operations (reading, writing, deallocation) are allowed.
– Writable. Just reading and writing is allowed.
– Readable. Solely reading is allowed.
– Existing. Objects with permissions of this kind are allowed to have pointers to

them, which can be used for pointer arithmetic but cannot be dereferenced.
Permissions of this kind are called existence permissions in [4].

– Locked. Permissions of this kind are used temporarily for objects that have
been locked due to a write. The original permission of these objects will be
restored at a subsequent sequence point [13].
For example, in (x = 3) + (*p = 4); the assignment x = 3 will lock the
object x. The purpose of this lock is to describe the sequence point restriction
of C that disallows to assign to the same object multiple times during the
execution of the same expression. Hence, if p points to x, the expression
will have undefined behavior. At the sequence point ;, the object x will be
unlocked, and its original permission will thereby be restored.

– ⊥. No operations are allowed at all, and pointers to objects with permission
of this kind are indeterminate. For example, free(p); return (p-p); has
undefined behavior. After the call to free, the pointer p refers to an object
with a permission of kind ⊥. Therefore, p becomes indeterminate [10, 6.2.4p2],
and cannot be used for pointer arithmetic anymore.

As displayed in Fig. 1, permission kinds form a lattice (pkind,⊆) where k1 ⊆
k2 expresses that k1 allows fewer operations than k2. We use permission kinds
as an abstract view of the permission model to allow the operational semantics
to determine if certain operations are allowed. However, for our separation logic
we have to deal with sharing. This is needed to:

– Split a Writable or Readable permission into Readable ones. This is needed in
x + x where both parts require read ownership of x.

– Split a Freeable permission into an Existing and Writable one. This is needed
in *(p + 1) = *p = 1 where one part requires write ownership of *p, and
another performs pointer arithmetic on p (which is only allowed if *p exists).
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When reassembling split permissions (using ∪), we need to know when exclu-
sive access is regained. Hence, the permission model needs to be more structured.

Definition 3.1. A C permissions system is a separation algebra A with func-
tions kind : A → pkind, lock, unlock, 1

2 : A → A and token : A satisfying:

unlock (lock x) = x provided that Writable ⊆ kind x (1)
kind (lock x) = Locked provided that Writable ⊆ kind x (2)

kind
(
1
2x

)
=

{
Readable if Writable ⊆ kind x

kind x otherwise
(3)

kind token = Existing (4)

kind (x \ token) =

{
Writable if kind x = Freeable

kind x if Existing ⊂ kind x
(5)

The 1
2 -operation is used to split a Writable or Readable permission x into

two Readable permissions 1
2x. Permissions of kind Locked cannot be split using

1
2 because such permissions require exclusive write ownership. The \-operation
is used to take an existence permission token of some permission. In particular,
it is used to split a Freeable permission x into an Existing permission token and
Writable permission x \ token. The existence permission token has kind Existing
and thus allows solely pointer arithmetic.

A possible permission model satisfying these laws is (a subset of) the following
three dimensional space:

{Freed} + {◦, •} × Q × [0, 1]Q.

Figure 1 displays how the elements of this model project onto their kinds. This
permission model combines fractional permissions to account for read/write own-
ership with counting permissions to account for the number of existence permis-
sions (i.e. tokens) that have been handed out. The annotations {◦, •} describe
whether a permission is locked • or not ◦. Although counting permissions are
traditionally modeled by natural numbers [4], our model uses rational numbers
to allow the counting part to be splittable as well.

Our organization of permissions is inspired by CompCert [17], but has the
additional Locked node. Since CompCert only deals with an operational seman-
tics for C, it does not need to make a distinction between permissions and per-
mission kinds. Therefore, a coarse permission model suffices.

4 Extended Separation Algebras

In this section we extend simple separation algebras with some features that
will be used for our memory model. Moreover, we present various instances of
separation algebras that will be used to contruct a C permission system.
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Definition 4.1. A separation algebra extends a simple separation algebra with:

– Predicates splittable, unmapped, unshared : A → Prop
– A unary operation 1

2 : A → A

Satisfying the following laws:

10. If x ⊥ x, then splittable (x ∪ x)
11. If splittable x, then 1

2x ⊥ 1
2x and 1

2x ∪ 1
2x = x

12. If splittable y and x ⊆ y, then splittable x
13. If x ⊥ y and splittable (x ∪ y), then 1

2 (x ∪ y) = 1
2x ∪ 1

2y
14. unmapped ∅, and if unmapped x, then valid x
15. If unmapped y and x ⊆ y, then unmapped x
16. If x ⊥ y, unmapped x and unmapped y, then unmapped (x ∪ y)
17. unshared x iff valid x and for all y with x ⊥ y we have unmapped y

The predicate unmapped describes whether storage with given permission
is allowed to contain content or should be empty. Dually, unshared x describes
whether a permission x has exclusive ownership of its storage. This means that
all permissions disjoint to x do not allow their storage to contain content. The
following table describes how the C permissions are classified using the predicates
unmapped and unshared.

unshared unmapped Examples

Readable permissions

� The ∅ permission and Existing permissions

� Freeable, Writable and Locked permissions

� � The Freed permission

For separation algebras where unmapped and unshared make no sense (for
example, the memory model in Sect. 5), we let unmapped x := x = ∅ and
unshared x := False. These definitions trivially satisfy laws 14–17.

The 1
2 -operation is partial because permissions without read ownership (for

example those of kind Locked) cannot be split. Similar to the treatment of ∪, we
turn 1

2 into a total function and let splittable describe if a permission can be split
(laws 10 and 11). Law 12 makes sure that splittable permissions are infinitely
splittable, and law 13 ensures that 1

2 distributes over ∪.

Definition 4.2. The Boolean separation algebra bool is extended with:

splittable x := ¬x 1
2x := x

unmapped x := ¬x unshared x := x
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Definition 4.3. The fractional separation algebra Q is extended with:

splittable x := 0 ≤ x ≤ 1 1
2x := 0.5 · x

unmapped x := x = 0 unshared x := x = 1

A crucial part of the C permissions is the ability to lock permissions after
an assignment to describe the sequence point restriction [13]. The lockable sep-
aration algebra adds annotations {◦, •} to account for whether a permission is
locked • or not ◦. Permissions that are locked have exclusive write ownership,
and are thus only disjoint from those that do not allow content.

Definition 4.4. Given a separation algebra A, the lockable separation alge-
bra L(A) := {◦, •} × A over A is defined as:

valid (◦x) := valid x valid (•x) := unshared x

∅ := ◦ ∅
◦x ⊥ ◦ y := x ⊥ y ◦ x ⊥ • y := x ⊥ y ∧ unmapped x ∧ unshared y

•x ⊥ • y := False • x ⊥ ◦ y := x ⊥ y ∧ unshared x ∧ unmapped y

◦x ∪ ◦ y := ◦ (x ∪ y) ◦ x ∪ • y := • (x ∪ y)
•x ∪ • y := • (x ∪ y) • x ∪ ◦ y := • (x ∪ y)

We omitted the definition of some relations and operations in the previous
and coming definitions due to space restrictions.

The C permission model needs existence permissions that allow pointer arith-
metic but do not supply read or write ownership. The counting separation algebra
over A has elements (x, y) with x ∈ Q and y ∈ A. Here, x counts the number
of existence permissions that have been handed out. Existence permissions are
elements (x, ∅) with x < 0. To ensure that the counting separation algebra is
closed under ∪ and preserves splittability, the counter x is rational.

Definition 4.5. We let z1 and z2 denote the first and second projection of z.

Definition 4.6. Given a separation algebra A, the counting separation alge-
bra C(A) := Q × A over A is defined as:

valid x := valid x2 ∧ (unmapped x2 → x1 ≤ 0) ∧ (unshared x2 → 0 ≤ x1)
∅ := (0, ∅)

x ⊥ y := x2 ⊥ y2 ∧ (unmapped x2 → x1 ≤ 0) ∧ (unmapped y2 → y1 ≤ 0)
∧ (unshared (x2 ∪ y2) → 0 ≤ x1 + y1)

x ∪ y := (x1 + y1, x2 ∪ y2)

Finally, we need to extend permissions with a permission Freed to keep track
of whether storage has been deallocated. Deallocated storage is not allowed to
contain any content, and pointers to deallocated storage are indeterminate and
thereby cannot be used for pointer arithmetic.
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Definition 4.7. Given a separation algebra A, the freeable separation alge-
bra F(A) := {Freed} + A over A is defined by extending the separation algebra
with:

valid Freed := True

Freed ⊥ Freed := False

Freed ∪ Freed := Freed

unmapped Freed := True

x ⊥ Freed := x = ∅
Freed ⊥ y := y = ∅
x ∪ Freed := Freed

Freed ∪ y := Freed

unshared Freed := True

Combining the previous separation algebras, we now define the C permission
model. It is easy to verify that it satisfies the laws of Definition 3.1.
Definition 4.8. C permissions are defined as

perm := F(L(C(Q)))

with:

kind z :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Freeable if z = ◦ (0, 1)
Writable if z = ◦ (x, 1) with x = 0
Readable if z = ◦ (x, y) with 0 < y < 1
Existing if z = ◦ (x, 0) with x = 0
Locked if z = • (x, y)
⊥ otherwise

lock z :=

{
• (x, y) if z = ◦ (x, y)
z otherwise

unlock z :=

{
◦ (x, y) if z = • (x, y)
z otherwise

token := ◦ (−1, 0)

5 The C Memory Model and Strict Aliasing

In type-based alias analysis, type information is used to determine whether point-
ers are aliased or not. Consider:

float f(int *p, float *q) { float x = *q; *p = 10; return x; }

Here, a compiler should be able to assume that p and q are not aliased because
their types differ. However, the (static) type system of C is too weak to enforce
this restriction since a union type can be used to call f with aliased pointers.

union INT_FLT { int x; float y; } u = { .y = 3.14 };
f(&u.x, &u.y);
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A union is the C version of the sum type, but contrary to traditional sum types,
unions are untagged instead of tagged. This means that the variant of a union
cannot be obtained. Unions destroy the property that each memory area has a
unique type that is statically known. The effective type [10, 6.5p6-7] of a memory
area hence depends on the run-time behavior of the program.

The strict-aliasing restrictions of C11 [10, 6.5p6-7] ensure that a pointer to
a variant of a union type (not to the whole union itself) can only be used for an
access (a read or store) if the union has that particular variant. Calling g with
aliased pointers (as in the example where u has the y variant, and is accessed
through a pointer p to the x variant) results in undefined behavior.

Under certain circumstances it is nonetheless allowed to access a union using
a pointer to another variant than its current one, this is called type-punning [10,
6.5.2.3]. For example, the function g has defined behavior (on architectures with
size of(int) ≤ size of(float) and where ints do not have trap values):

int g() { union INT_FLT u; u.y = 3.0; return u.x; }

Type-punning may only be performed directly via an l-value of union type.
The function h below thus exhibits undefined behavior because type-punning is
performed indirectly via a pointer p to a variant of the union.

int h() { union INT_FLT u; int *p = &u.x; u.y = 3.0; return *p; }

Significant existing formal versions of C (e.g. those by Leroy et al. [17] and
Ellison and Rosu [9]) model the memory as a finite partial function to objects,
where each object consists of an array of bytes. Since these existing formal
versions of C do not keep track of the variants of unions, they cannot capture
the strict-aliasing restrictions of C11.

Instead of using an array of bytes to represent the contents of each object, our
memory model [12] uses structured trees that have arrays of bits that represent
base values (integers and pointers) on the leafs. This modification captures the
strict-aliasing restrictions: effective types are modeled by the state of these trees.

A generalization of our memory model [12], where the leafs of the trees are
elements of a separation algebra instead of just bits, forms a separation algebra.
The original version of the memory model can be re-obtained by instantiating
the generalized version with (permission annotated) bits.

Definition 5.1. C-trees over a separation algebra A are defined as:

w ∈ ctreeA ::= baseτb

→
x | arrayτ

→
w | structs

−→
w

→
x | unionu (i, w,

→
x) | unionu

→
x

where x ∈ A. C-maps (m ∈ cmapA) are finite partial functions of a countable
set of memory indexes (o ∈ index) to pairs of booleans and C-trees.

In the above definition, s, u ∈ tag range over struct and union names (called
tags), τb ∈ basetype ranges over base types (signed char, unsigned int, τ∗, . . . ),
and τ ∈ type ranges over types (τb, τ [n], struct s, union s).
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C-trees have two kinds of union nodes: unionu (i, w,
→
x) represents a union in

a particular variant i with padding
→
x , and unionu

→
x represents a union whose

variant is unknown. Unions of the latter kind can be obtained by byte-wise
copying and appear in uninitialized memory. When accessing (reading or writing)
a union unionu

→
x using a pointer to variant i, the bits

→
x will be interpreted as

a C-tree w of variant i, and the node is changed into unionu (i, w,
→
x′) where

→
x′

corresponds to the remaining padding. It is important to note that the variant
of a union is internal to the memory model, and should not be exposed through
the operational semantics because an actual machine does not store it.

Padding between struct fields is stored in the current version of our memory
model, whereas it was absent in the original version [12]. For the actual instan-
tiation, we have defined a predicate in the Coq formalization to ensure that
padding always consists of indeterminate bits so as to be C11 compliant1.

The nodes (w, β) of C-maps are annotated with a boolean β to account for
whether storage has been allocated dynamically using malloc (if β = true) or
statically as a block scope variable (if β = false).

The original version of the memory model used specific nodes for objects
that have been deallocated. In the current version we make it more uniform and
represent such objects by a tree with Freed permissions at all leafs.

Definition 5.2. Bits are defined as:

b ∈ bit ::= 1 | 0 | (ptr p)i | ?

where p ∈ ptr ranges over pointers represented as paths through C-trees (see [12]
for the formal definition).

A bit is either a concrete bit 0 or 1, the ith fragment bit (ptr p)i of a pointer
p, or the indeterminate bit ?. As shown in Fig. 2, integers are represented by
concrete sequences of bits, and pointers by sequences of fragments. This way of
representing pointers is similar to Leroy et al. [17], but is on the level of bits
instead of bytes. The actual bit representation flatten w of a C-tree w is obtained
by flattening it. For the C-tree ws in Fig. 2 we have:

flatten ws = 10000100 01000100 ???????? ???????? (ptr p)0 (ptr p)1 . . . (ptr p)31

In order to re-obtain the actual memory model, we instantiate C-maps with
permission annotated bits. For that, we use the tagged separation algebra that
extends each element of an existing separation algebra with a tag.

1 In particular: “When a value is stored in an object of structure or union type,
including in a member object, the bytes of the object representation that correspond
to any padding bytes take unspecified values” [10, 6.2.6.1p6].
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struct T {
union U {

signed char x[2]; int y;
} u;
void *p;

} s = {
{ .x = {33,34} }, s.u.x + 2

}

ws =

.0

signed char: 1000010001000100

void∗: (ptr p)0 (ptr p)1 . . . (ptr p)31

p

Fig. 2. The C-tree ws corresponding to the object s declared in the C code on the left
(on the x86 architecture). Permissions are omitted for simplicity.

Definition 5.3. Given a separation algebra A and a set of tags T with default
tag t ∈ T , the tagged separation algebra Tt:T (A) := A × T over A is defined as:

valid x := valid x1 ∧ (unmapped x1 → x2 = t)
∅ := (∅, t)

x ⊥ y := x1 ⊥ y1 ∧ (unmapped x1 ∨ x2 = y2 ∨ unmapped y1)
∧ (unmapped x1 → x2 = t) ∧ (unmapped y1 → y2 = t)

x ∪ y :=

{
(x1 ∪ y1, y2) if x2 = t

(x1 ∪ y1, x2) otherwise

The tagged separation algebra Tt:T (A) ensures that each element x ∈ A with
unmapped x element has the default tag t. For the case of permission annotated
bits T?:bit(perm), we use the symbolic bit ? that represents indeterminate storage
as the default tag to ensure that unmapped permissions have no content.

Definition 5.4. The C memory is defined as:

mem := cmap (T?:bit(F(L(C(Q))))).

C-trees do not form a separation algebra because they do not have a single
∅ element (they have one for each type). However, apart from ∅ all other rela-
tions and operations can be defined by lifting those of the underlying separation
algebra from the leafs to the trees. Defining the separation algebra structure on
C-maps is then straightforward, the operations on the trees are lifted to finite
functions, and the ∅ element is defined as the empty partial function.

The ∪-operation on (disjoint) C-trees is defined as follows:

baseτb

→
x1 ∪ baseτb

→
x2 := baseτb (

→
x1 ∪ →

x2)

arrayτ

→
w1 ∪ arrayτ

→
w2 := arrayτ (

→
w1 ∪ →

w2)

structs
−−−→
w1

→
x1 ∪ structs

−−−→
w2

→
x2 := structs (

−−−→
w1

→
x1 ∪

−−−→
w2

→
x2)

unionu (i, w1,
→
x1) ∪ unionu (i, w2,

→
x2) := unionu (i, w1 ∪ w2,

→
x1 ∪ →

x2)

unionu (i, w1,
→
x1) ∪ unionu

→
x2 := merge∪ (unionu (i, w1,

→
x1))

→
x2

unionu
→
x1 ∪ unionu (i, w2,

→
x2) := merge∪ (unionu (i, w2,

→
x2))

→
x1
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Here, mergef w
→
x yields a modified version of w in which the elements on the

leaves are combined with
→
x using the function f .

The above definition makes it possible to split storage of compound data-
types into smaller parts. However, splitting a union into a part with write own-
ership and a part with mere existence permissions is quite subtle because the
variant of a union can change at run-time:

unionu (i, w1,
→
x1) = unionu (i, w′

1,
→
x′
1) ∪ part with existence permissions

⇓ switching from variant i to j

unionu (j, w2,
→
x2) = unionu (j, w′

2,
→
x′
2) ∪ part with existence permissions

Hence, for the part of a union that has mere existence permissions we always
use the node unionu

→
x with unknown variant. This restriction is enforced in the

rules for disjointness and validity. Some representative rules are listed below:

valid
→
x

valid (unionu
→
x)

valid w valid
→
x ¬(unmapped w ∧ unmapped

→
x)

valid (unionu (i, w,
→
x))

flatten w1 ++
→
x1 ⊥ →

x2 valid w1 ¬(unmapped w1 ∧ unmapped
→
x1) unmapped

→
x2

unionu (i, w1,
→
x1) ⊥ unionu

→
x2

Since operations that change the variant (type-punning and byte-wise copy-
ing) are only allowed if the entire union has exclusive write ownership, the con-
straint unmapped

→
x2 ensures that disjointness is preserved under such operations.

6 Reasoning About Disjointness

For the soundness proof of the axiomatic semantics in [13] we often had to reason
about preservation of disjointness under memory operations. To ease that kind
of reasoning, we have defined some machinery. In this section we will show that
the machinery of [13] extends to any separation algebra.

Definition 6.1. Disjointness of a sequence
→
x , notation ⊥ →

x , is defined as:

1. ⊥ [ ]
2. If x ⊥ ⋃ →

x and ⊥ →
x , then ⊥ (x ::

→
x)

Notice that ⊥ →
x is stronger than merely having xi ⊥ xj for each i = j. For

example, using fractional permissions, we do not have ⊥ [ 0.5, 0.5, 0.5 ] whereas
we clearly do have 0.5 ⊥ 0.5. Using disjointness of sequences we can for example
state the associativity law (law 3 of Definition 2.1) in a more symmetric way:

if ⊥ [x, y, z ] then x ∪ (y ∪ z) = (x ∪ y) ∪ z.

Next, we define a relation
→
x1 ≡⊥

→
x2 that captures that sequences

→
x1 and

→
x2 behave equivalently with respect to disjointness.
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Definition 6.2. Equivalence of
→
x1 and

→
x2 with respect to disjointness, notation→

x1 ≡⊥
→
x2, is defined as:

→
x1 ≤⊥

→
x2 := ∀x .⊥ (x ::

→
x1) → ⊥ (x ::

→
x2)

→
x1 ≡⊥

→
x2 :=

→
x1 ≤⊥

→
x2 ∧ →

x2 ≤⊥
→
x1

It is straightforward to show that ≤⊥ is reflexive and transitive, is respected
by concatenation of sequences, and is preserved by list containment. Hence,
≡⊥ is an equivalence relation, a congruence with respect to concatenation of
sequences, and is preserved by permutations. The following results allow us to
reason algebraically about disjointness.

Lemma 6.3. If
→
x1 ≤⊥

→
x2, then ⊥ →

x1 implies ⊥ →
x2.

Lemma 6.4. If
→
x1 ≡⊥

→
x2, then ⊥ →

x1 if and only if ⊥ →
x2.

Theorem 6.5. We have the following algebraic properties:

∅ ::
→
x ≡⊥

→
x (6)

(x1 ∪ x2) ::
→
x ≡⊥ x1 :: x2 ::

→
x provided that x1 ⊥ x2 (7)

⋃ →
x1 ::

→
x2 ≡⊥

→
x1 ++

→
x2 provided that ⊥ →

x1 (8)

x2 ::
→
x ≡⊥ x1 :: (x2 \ x1) ::

→
x provided that x1 ⊆ x2 (9)

7 Formalization in Coq

All proofs in this paper have been fully formalized using Coq [7]. We used Coq’s
notation mechanism combined with unicode symbols and type classes to let the
code correspond as well as possible to the definitions in this paper. The Coq
development contains many parts that are not described in this paper, including
the features of the original memory model [12].

In the Coq development, we used Coq’s setoid machinery [20] to conveniently
rewrite using the relations ≤⊥ and ≡⊥ (see Definition 6.2). Using this, we have
implemented a tactic that automatically solves entailments of the form:

H0 : ⊥ →
x0, . . . , Hn : ⊥ →

xn � ⊥ →
x

where
→
x and

→
x i (for i ≤ n) are arbitrary Coq expressions built from ∅, ∪ and⋃

. This tactic works roughly as follows:

1. Simplify hypotheses using result 6–8 of Theorem 6.5.
2. Solve side-conditions by simplification using the same results and a solver for

list containment (implemented by reflection).
3. Repeat these steps until no further simplification is possible.
4. Finally, solve the goal by simplification and list containment.

The Coq definitions corresponding to our memory model involve a lot of list
surgery to translate between bit sequences and trees. To ease proofs about list
surgery, we have developed a large library of general purpose theory. This library
not only includes theory about lists, but also about finite sets, finite functions,
and other data structures that are used heavily in the formalization.
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8 Conclusions and Further Research

The eventual goal of this research is to develop an operational and axiomatic
semantics (based on separation logic) for a large part of the C11 programming
language [14]. This paper is an important step towards combining our separation
logic [13,15] with our memory model [12]. However, a separation logic that can
deal with the full (non-concurrent) C memory model remains future work.

For the operational semantics, one only needs a memory model that uses a
coarse permission system, like the one used in CompCert [17]. In order to obtain
a more concise operational semantics, one may therefore like to separate the
memory model used in the operational semantics (with coarse permissions) from
the one used in the axiomatic semantics (with rich permissions). The approach
of juicy memories by Stewart and Appel [1, Chapter 42] might be useful.

It may be interesting to investigate what other permission models satisfy our
requirements (see Definition 3.1). The permission model of Dockins et al. [8] may
be a candidate.

Acknowledgments. I thank Freek Wiedijk and the anonymous referees for their help-
ful comments. This work is financed by NWO.
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Abstract. We propose verified implementations of several data struc-
tures, including random-access lists and ordered maps. They are derived
from a common parametric implementation of self-balancing binary trees
in the style of Adelson-Velskii and Landis trees. The development of the
specifications, implementations and proofs is carried out using the Why3
environment. The originality of this approach is the genericity of the
specifications and code combined with a high level of proof automation.

1 Introduction

Formal specification and verification of the functional behavior of complex data
structures like collections of elements is known to be challenging [1,2]. In particu-
lar, tree data structures were considered in many formal developments using var-
ious verification environments. In this paper, we consider self-balancing binary
trees, in the style of the so-called AVL trees invented by Adelson-Velskii and
Landis [3]. We design a generic implementation of these self-balancing trees from
which we derive and verify three instances: random access lists, ordered maps
and mergeable priority queues. To reach the appropriate level of genericity in the
common part of this development we use an abstract binary search mechanism,
based in particular on a notion of monoidal measure on stored data. This notion
is shared with an approach proposed by Hinze and Paterson [4] for the devel-
opment of another general-purpose tree data structure they called finger trees.
This abstraction allows us to clearly separate the concepts of balanced trees on
one hand and search trees on the other hand.

Our development is conducted using the Why3 program verifier, and auto-
mated theorem provers to discharge proof obligations. The genericity of the
development is obtained by using a module cloning mechanism of Why3, which
we present briefly in Sect. 2. Section 3 develops the structure of self-balancing
trees, independently of any notion of search. Then Sect. 4 presents an abstract
notion of search trees based on generic selectors. Finally we present and verify
the three proposed instances in Sect. 5. Related work in discussed in Sect. 6.

The Why3 formalization is available at http://www.lri.fr/∼clochard/AVL/
avl-why3.tgz.
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2 Preliminary: Cloning Modules in Why3

In Why3, generic development of components is done via the notion of cloning [5].
Cloning a module amounts to copy its contents while substituting some abstract
symbols (types, predicates, functions, procedures) and eliminating some axioms
by creating proof obligations for them. In case of procedure substitution, proof
obligations are generated as well to check for specification inclusion. This cloning
mechanism is used both as an instantiation mechanism for generic development
as well as a way to declare standard parameters. For example, suppose that
we want to write a development generic with respect to a structure of monoid.
Then fresh parameters can be created by cloning a standard abstract module
for monoid:

module Monoid
type t
constant zero : t
function op t t : t
axiom neutral : forall x. op x zero = x = op zero x
axiom associative : forall x y z. op (op x y) z = op x (op y z)

end
module Generic

clone export Monoid
(* Generic definitions here *)

end

And the generic module can later be specialized to a concrete monoid, say inte-
gers, by instantiating the monoid abstract symbols.

clone Generic with type t = int,constant zero = Int.zero,
function op = (+), lemma neutral, lemma associative

3 Balanced Binary Trees in AVL Style

We first present a certified implementation of the rebalancing operations for AVL
trees. Moreover, this implementation is used to directly derive a logarithmic-time
implementation of catenable dequeues.

3.1 Representation and Logic Model

The very first step of a verified data structure implementation is to decide not
only what is its internal representation but as importantly what it should repre-
sent, i.e. its logical meaning. Having a simple logical reflection of the structure
usually makes reasoning much easier. The internal representation of an AVL tree
is a binary tree storing the height at every node for efficiency reasons.

type t ’a = Empty | Node (t ’a) (D.t ’a) (t ’a) int

The namespace D corresponds to the abstract data stored in the tree.



Automatically Verified Implementation of Data Structures 169

The chosen model is the list of data stored in the tree in infix order, since it
is the part expected to be invariant by rebalancing. However, in order to specify
rebalancing, the tree structure cannot be completely abstracted away because
of the height requirements, so we also add the height to this model. Here is the
Why3 formalization (++ denotes list concatenation):

type m ’a = { lis : list (D.t ’a); hgt : int } (* type of the model *)
function list_model (t:t ’a) : m ’a = match t with Empty → Nil

| Node l d r _ → list_model l ++ Cons d (list_model r) end
function height (t:t ’a) : int = match t with Empty → 0

| Node l d r _ → let hl = height l in let hr = height r in
1 + if hl < hr then hr else hl

end
function m (t:t ’a) : m ’a = { lis = list_model t; hgt = height t }

3.2 Representation Invariant

The balancing criterion for AVL is that the difference between the heights of two
sibling trees does not exceed a given positive bound. The structural invariants
are readily transformed into the following Why3 predicate:

predicate c (t:t ’a) = match t with Empty → true
| Node l d r h → -balancing ≤ height r - height l ≤ balancing ∧

c l ∧ c r ∧ h = height t
end

Note that the constant balancing is left abstract as a positive integer. Most
implementations use a concrete value, which is a trade-off between the potential
tree depth and the cost of re-balancing the tree. Since the only impact of keeping
it abstract showed to be writing a name instead of a constant, that decision was
left to client code.

3.3 Code and Verification

Balancing is performed via smart constructors for tree nodes and catenation
operators, specified in terms of the model to build the expected lists. The parts
about the height are a bit more complex, as the information about the resulting
height has to be precise enough for proof purposes. For example, here is the
specification for the core balancing routine, which simulates the construction of
a tree node when the two child sub-trees are slightly off balance:

val balance (l:t ’a) (d:D.t ’a) (r:t ’a) : t ’a
requires { c l ∧ c r }
requires { -balancing-1 ≤ (m l).hgt - (m r).hgt ≤ balancing+1 }
ensures { let hl = (m l).hgt in let hr = (m r).hgt in

let he = 1 + (if hl < hr then hr else hl) in
let hres = (m result).hgt in 0 ≤ he - hres ≤ 1 ∧
(-balancing ≤ hl - hr ≤ balancing → he = hres) }

ensures { c result ∧ (m result).lis = (m l).lis ++ Cons d (m r).lis }
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More complex balancing is done via another smart constructor making no
hypothesis on the relative height of the two trees, and two catenation opera-
tors similar to the node constructors.

As for the verification part, it did not require any human help once the right
specifications were written. All proof obligations were completely discharged by
automated theorem provers.

Finally, the catenable dequeue implementation is immediate from the bal-
ancing code: catenation is provided, and all other operations (push and pop at
both ends) are internal sub-routines of rebalancing. It is logarithmic-time, and
also features a constant-time nearly-fair scission operation directly derived from
pattern-matching over the tree.

4 Selection of Elements in Balanced Trees

AVL trees were first introduced as binary search trees, so most operations over
them involve a binary search by comparison. However, Hinze and Paterson [4]
have shown that using a generalization of binary search based on monoidal anno-
tations, one could implement a variety of data structures. In this section, we
present and verify a generalized implementation of usual AVL routines (inser-
tion, deletion, etc.) using a similar approach.

4.1 Monoidal Summary

The usual search mechanism in binary search trees is search by comparison using
a total order. However, by keeping summaries of the contents in each subtrees,
one can provide a variety of other mechanisms. For example, keeping the number
of elements in each subtree gives positional information, which can be used to
perform efficient random access. Hinze and Paterson [4] proposed monoids as a
general mechanism to keep track of those summaries: the content of each subtree
is summarized by the sum of the measures of its elements in some given monoid.

We use those annotations as well to provide different search mechanisms.
They are integrated in the development with minimal changes as the height
bookkeeping is done the same way. We also add parameters corresponding to an
abstract monoid and measure.

4.2 Abstracting the Binary Search Mechanism

In their paper about finger trees, Hinze and Paterson suggest to implement most
data structure operations using a splitting mechanism, which finds an element
where a predicate over the monoidal abstraction of the prefix flips. We could
have used this technique, but it has some flaws when considering AVL trees.
First and foremost, it completely ignores the fact that the internal tree nodes
contain elements that could – and would – be used to guide the search. This is
not the case for finger trees as elements are stored in the leaves. Second, the usual
insertion/deletion/lookup routines coming with AVL trees would be replaced by
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much slower (though still logarithmic-time) implementations based on complete
splitting of the tree followed by catenation of the parts back together.

This last part, however, is perfectly fit for specification since what binary
search does is exactly selecting a split of the list model.

Splits are formalized by the following definitions:

type split ’a = { left : list ’a; middle : option ’a; right : list ’a }
function rebuild (s:split ’a) : list ’a =

s.left ++ option_to_list s.middle ++ s.right

The structure of splits corresponds exactly to the two possible outcomes of a
binary search in the tree: either finding an element in a node or ending on an
empty leaf. In order to describe the particular splits we wish to find, we use an
abstract selector parameter:

type selector
predicate selected (s:selector) (sp:split (D.t ’a))
predicate selection_possible (s:selector) (l:list (D.t ’a))

Informally, the selector describes the class of splits we want to find, represented
by the selected predicate. The selection possible describes the lists in which
splits corresponding to the selector can be found using binary search. This
compatibility mean that one can reduce the problem of finding a split in its
class by bisection over the node structure, potentially using the summary of the
branches to guide the search. We achieve this decription by adding an abstract
routine parameter performing this reduction:

type part = Here | Left selector | Right selector
val selected_part (ghost llis rlis:list (D.t ’a))

(s:selector) (l:M.t) (d:D.t ’a) (r:M.t) : part
requires { selection_possible s (llis ++ Cons d rlis) }
requires { l = M.sum D.measure llis ∧ r = M.sum D.measure rlis }
returns { Here →

selected s { left = llis; middle = Some d; right = rlis }
| Left sl → selection_possible sl llis ∧

forall sp. selected sl sp ∧ rebuild sp = llis →
selected s { sp with right = sp.right ++ Cons d rlis }

| Right sr → selection_possible sr rlis ∧
forall sp. selected sr sp ∧ rebuild sp = rlis →

selected s { sp with left = llis ++ Cons d sp.left } }

Note that the routine is expected to compute new selectors as the reduced prob-
lem may be different. Also, we need to ensures that whenever the search ends on
a leaf, the only possible split is the selected one. This is expressed by an axiom:

axiom selection_empty : forall s:selector. selection_possible s Nil →
selected s { left = Nil; middle = None; right = Nil }

4.3 Certified Routines Based on Binary Search

Using the abstract binary search mechanism, we certified the implementation of
a generalization of the usual routines over AVL trees: lookup, insertion, deletion,
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as well as splitting. The code is skipped here as it is standard, it is just a matter
of replacing the decisions usually done by comparison by a case analysis on the
result of selected part, interested readers may find the code for those routines
in Appendix A.3. We then focus on the specifications of those routines. For
example, let us see how we could specify insertion. Earlier, we mentioned that
those procedures could be build on top of splitting: one could perform insertion
by splitting the tree, replacing the potential middle element, and rebuilding it
afterwards. It turns out to be the right specification for insertion:

val insert (ghost r:ref (split (D.t ’a))) (s:selector)
(d:D.t ’a) (t:t ’a) : t ’a

requires { selection_possible s (m t).lis ∧ c t }
ensures { c result ∧ (m result).lis = !r.left ++ Cons d !r.right }
ensures { selected s !r ∧ rebuild !r = (m t).lis }
writes { r }

Note that we use a ghost reference instead of an existential quantifier for the
split. While using an existential is possible, there are two reasons for using such
a reference instead. First, existentially quantified goals tend to be hard for auto-
mated provers. In this case, we can very easily give them an explicit witness via
the reference. Second, in case the client code is really hard to prove, one can help
the automated provers by providing logical cuts. Such cuts will be much easier
to write if the existentially quantified value is known.

The three remaining routines have pretty similar specification:

– Deletion is the converse of insertion: any potential middle element is removed
of the split before rebuilding.

– Lookup amounts to return the middle of the split.
– Splitting returns a split with lists represented by AVL trees.

5 Verified Instances

5.1 Random-Access Sequences

The first instance use positional selection, which naturally gives random-access
sequences. This is obtained by instantiating the monoid by integers and mea-
suring all elements by 1, which gives fast access to the length of the sub-lists.
Using that information, binary search is done by finding in which of the three
pieces of the list lies the n-th element. Note that reducing the problem to a
sub-list requires the index to change. Also, as random-access lists are completely
polymorphic, data elements are instantiated with fully polymorphic values (D.t
’a = ’a).

The formal specification of this kind of selection is straightforward:

type selector = { index : int; hole : bool }
predicate selected (s:selector) (sp:split ’a) =

s.index = length sp.left ∧ (s.hole ↔ sp.middle = None)
predicate selection_possible (s:selector) (l:list ’a) =

if s.hole then 0 ≤ s.index ≤ length l else 0 ≤ s.index < length l
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The extra boolean field is intended to specify whether we want the list to be
cut in two pieces or split around the n-th element. Having both allows to derive
most positional operations over random-access lists directly from the abstract
selection routines:

– Assignment is derived from abstract insertion
– Positional insertion is also derived from abstract insertion
– Positional lookup is implemented by abstract lookup
– Positional deletion is derived from abstract deletion
– Both kind of positional splits are derived from abstract splitting.

However, the specifications had to be rewritten as the obtained ones did not
match the desired ones for random-access lists. This was done by writing spec-
ification wrappers around those operations. The automatic verification of this
wrapper did not required human help beyond making explicit a trivial induction
correlating the length of the list to its monoidal summary.

As an example of the resulting specifications, here is the one for the assign-
ment procedure:

val set (n:int) (d:’a) (l:t ’a) : t ’a
requires { c l ∧ 0 ≤ n < length (m l) }
ensures { c result ∧ length (m result) = length (m l) }
ensures { forall i:int. i �= n → nth i (m result) = nth i (m l) }
ensures { nth n (m result) = Some d }

5.2 Maps and Sets

Another instance correspond to the abstract data structures usually imple-
mented with AVL trees: ordered sets and associative arrays. Those naturally
correspond to the case of comparison-based binary search in sorted sequences.

Several new parameters are added to reflect the ordering structure.

– An abstract key datatype
– A function extracting keys from data
– A computable ordering relation over keys

From those parameters, binary search trees lookup, insertion, and deletion are
obtained by using straightforward instances for the selection parameters:

– Selection is done by keys, so the selector type is instantiated by keys.
– Selection can be done only in sorted sequences.

predicate selection_possible (_:’b) (l:list (D.t ’a)) = increasing l

– A split is selected by a key if it corresponds to elements with keys lower, equal
and greater than the selector respectively.



174 M. Clochard

predicate selected (k:Key.t) (sp:split (D.t ’a)) =
upper_bound k sp.left ∧ lower_bound k sp.right ∧
match sp.middle with None → true | Some d → eq k (key d) end

– Binary search is done by mirroring comparison

As we do not need the extra summaries here, the monoid is instantiated by the
unit monoid. Although this instantiation yields a perfectly valid implementation
for ordered associative arrays, it is unsatisfactory from the specification point of
view as the data structure is still modeled by a list. This is not a suitable model
for associative arrays, which are intended to represent finite key-values mappings.
In order to get specifications based on such modeling, we wrote specification
wrappers over the implementation. The new model was obtained by interpreting
the previous list model as an association list:

type m ’a = { func : Key.t → option (D.t ’a); card : int }
function association (l:list (D.t ’a)) : Key.t → option (D.t ’a) =

match l with
| Nil → \k. None
| Cons d q → \k. if eq k (key d) then Some d else association q k
end

function m (t:t ’a) : m ’a = {
func = association (AVL.m t);
card = length (AVL.m t);

}
predicate c (t:t ’a) = AVL.c t ∧ increasing (AVL.m t)

Note that this instantiation does not break the abstraction barrier: the spec-
ification wrappers and selectors are based on the model of the AVL trees only.

The obtained specifications indeed corresponds to the expected behavior of
an associative array. For example, here is the specification for insertion (others
look alike):

val insert (d:D.t ’a) (t:t ’a) : t ’a
requires { c t }
ensures { c result }
ensures { c result ∧ (if (m t).func (key d) = None

then (m result).card = (m t).card + 1
else (m result).card = (m t).card) ∧

forall k:Key.t. if eq k (key d) then (m result).func k = Some d
else (m result).func k = (m t).func k }

The verification of those specification wrappers was not completely immedi-
ate, as it required a number of facts over sorted association lists that could be
proved only by induction. Mostly, it required a bridge lemma between the notion
of selected split of the list and a similar notion stated in terms of key-value map-
pings. This required a small amount of manual work to state the corresponding
lemmas and to make explicit the inductive structure of the proofs.

Finally, certified implementations of ordered maps and sets were derived from
this implementation by writing immediate specification wrappers over instances
of this implementation.
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– Sets were obtained from an instance identifying keys and elements. For spec-
ifications, the model was reduced to the predicate of presence.

– Maps were obtained by instantiating the elements with couple formed of a
key and a polymorphic value. As keys were irrelevant as outputs of the model
mapping, that part was removed from specifications.

5.3 Mergeable Priority Queues

The last instance presented in this paper is selection of the element with the
smallest key, which is an immediate implementation of mergeable priority queues.
The corresponding monoid is the minimum monoid over keys extended with the
positive infinity, which gives fast access to the smallest key of sub-lists. Then,
binary search can be done by taking a path leading to a minimum element. For
the ordering and keys, we reuse the same setting as for associative arrays.

The specification of minimum selection is quite direct as well: it amounts to
say that the split has a middle element and that it is minimal.
type selector = unit
predicate selected (_:unit) (sp:split (D.t ’a)) =

match sp.middle with
| None → false
| Some d → lower_bound (key d) sp.left ∧ lower_bound (key d) sp.right
end

predicate selection_possible (_:unit) (l:list (D.t ’a)) = l �= Nil

Binary search can obviously be done by taking the path to the minimum element.
From this instantiation, one can map the priority queue operations to the

abstract AVL ones:
– finding the minimum is exactly lookup.
– removing the minimum is deletion.
– adding an element can be implemented by prepending the new element.
– merging two priority queues can be done by catenation.

Again, those operations were wrapped under new specifications with a better-
suited model. Since the order of the elements inside the structure is irrelevant,
the priority queue is represented by a finite bag:
type m ’a = { bag : D.t ’a → int; card : int }
function as_bag (l:list ’a) : ’a → int = match l with

| Nil → \x. 0
| Cons x q → \y. if x = y then as_bag q y + 1 else as_bag q y
end

Here is an example of the final specifications, namely the one for the
remove min operation:
val remove_min (ghost r:ref (D.t ’a)) (t:t ’a) : t ’a

requires { c t ∧ (m t).card ≥ 1 }
writes { r }
ensures { c result ∧ (m t).card = (m result).card + 1 ∧

(m t).bag !r = (m result).bag !r + 1 ∧
(forall d. d �= !r → (m t).bag d = (m result).bag d) ∧
(forall d. (m t).bag d > 0 → le (key !r) (key d)) }
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6 Related Work

Verified balanced binary search trees. Numerous verified implementation of bal-
anced binary search trees have been proposed. For example, implementations of
AVL trees have been verified in Coq [6], Isabelle [7] and ACL2 [8], and similar ver-
ifications of red-black trees have been carried out [9–11] http://vacid.codeplex.
com. A number of them used some kind of proof automation, though develop-
ments in proofs assistants are mostly manual. However, those implementations
are not as generic as they are restricted to the usual binary search trees.

Finger trees. Finger trees were introduced by Hinze and Paterson [4] as a struc-
ture general enough to derive several common data structure from it, which is
exactly the same level of genericity intended by our certified implementation.
However, rather few certified implementation of finger trees were carried out.
Mathieu Sozeau verified the implementation of Hinze and Paterson using the
Program extension of Coq [12], and another verification was carried out using
Isabelle [13]. In both cases, proofs are mostly manual while our implementation
is verified correct with nearly no human interaction. Also, excepted for Sozeau’s
implementation of random-access sequences, there was no attempt to check that
the specification was indeed strong enough to verify the common instances.

7 Conclusions and Perspectives

This work presents a generic certified implementation of AVL trees and the
verification of three common data structures derived from that generic core.
The verification overhead is rather light, as it corresponds to less than 1400
non-empty lines of Why3 for the whole presented development, which amounts
to about 550 lines of implementation. Moreover, most of this verification cost
corresponds to code specification, as proofs are mostly discharged by automated
provers without needing to provide hints. Details about the development size
can be found in appendix.

In conclusion, we would like to assess that a high level of abstraction in
programs like the one used in this development mingles very well with proof
automation. This is first caused by the separation between unrelated concepts
like balancing and binary search. Mixing such concepts in a single routine widen
greatly the search space of automated provers, as they cannot identify that only
one of those is related to a particular goal. Also, another benefit of genericity
is that some routines are written and proven once, while proving directly the
instances would require a lot of duplication.

We expect that such generic approaches would help to the development of
certified libraries, which are a first step towards developing verified programs of
consequent sizes.

http://vacid.codeplex.com
http://vacid.codeplex.com


Automatically Verified Implementation of Data Structures 177

A Size of the Development

A.1 Lines of Code

Lines of implementation Lines of specification/proof hints

Balancing 174 196

Selection 91 59

Associative Array 58 237

Maps 40 180

Sets 31 139

Random-access sequences 63 143

Priority queue 78 219

Association list properties – 119

Sorted list theory – 33

Preorder theory – 22

Monoid theory – 30

Total 535 1377

Overall, the proof hints corresponds to about 40 lemmas.

A.2 Verification Setting

The verification was carried out using the development version of Why3, which
features abstract program substitution during cloning. Though not released yet
at the time this paper is written, this corresponds to the version 0.84. Each goal
was discharged using one of the four SMT solvers Alt-Ergo, CVC3, CVC4 or Z3.
The time limit was set to 5 seconds for the vast majority of them.

Prover Discharged goals Average time Maximum time

Alt-Ergo 471 0.29 s 6.76 s

CVC3 283 0.29 s 3.01 s

CVC4 66 0.68 s 7.39 s

Z3 11 1.37 s 4.84 s
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A.3 Code for Insertion, Lookup and Deletion

Note: the expensive list-manipulating code is ghost, and as such is not executed.

let rec insert (ghost r:ref (split (D.t ’a))) (s:selector)
(d:D.t ’a) (t:t ’a) : t ’a
requires { selection_possible s (m t).lis ∧ c t }
ensures { c result ∧ (m result).lis = !r.left ++ Cons d !r.right }
ensures { selected s !r ∧ rebuild !r = (m t).lis }
writes { r }
(* extra postcondition needed to prove the recursion. *)
ensures { 1 ≥ (m result).hgt - (m t).hgt ≥ 0 }
variant { (m t).hgt }

= match view t with
| AEmpty → r := { left = Nil; middle = None; right = Nil };

singleton d
| ANode tl td tr _ _ → match selected_part (m tl).lis (m tr).lis

s (total tl) td (total tr) with
| Left sl → let nl = insert r sl d tl in

{ e with right = (!r).right ++ Cons td (m tr).lis }; balance nl td tr
| Right sr → let nr = insert r sr d tr in

r := { !nr with left = (m tl).lis ++ Cons td (!r).left }; balance tl td nr
| Here → r := { left = (m tl).lis;

middle = Some td;
right = (m tr).lis };

node tl d tr
end

end

let rec remove (ghost r:ref (split (D.t ’a))) (s:selector)
(t:t ’a) : t ’a
requires { selection_possible s (m t).lis ∧ c t }
ensures { c result ∧ (m result).lis = !r.left ++ !r.right }
ensures { selected s !r ∧ rebuild !r = (m t).lis }
writes { r }
(* needed to prove the recursion *)
ensures { 1 ≥ (m t).hgt - (m result).hgt ≥ 0 }
variant { (m t).hgt }

= match view t with
| AEmpty → r := { left = Nil; middle = None; right = Nil}; t
| ANode tl td tr _ _ → match selected_part (m tl).lis (m tr).lis

s (total tl) td (total tr) with
| Left sl → let nl = remove r sl tl in

r := { !r with right = (!r).right ++ Cons td (m tr).lis; balance nl td tr
| Right sr → let nr = remove r sr tr in

r := { !r with left = (m tl).lis ++ Cons td (!r).left; balance tl td nr
| Here → r := { left = (m tl).lis;

middle = Some td;
right = (m tr).lis };

fuse tl tr
end

end

let rec get (ghost r:ref (split (D.t ’a))) (s:selector)
(t:t ’a) : option (D.t ’a)
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requires { c t ∧ selection_possible s (m t).lis }
ensures { selected s !r ∧ rebuild !r = t.m.lis }
ensures { result = (!r).middle }
writes { r }
variant { (m t).hgt }

= match view t with
| AEmpty → r := { left = Nil; middle = None; right = Nil }; None
| ANode tl td tr _ _ → match selected_part (m tl).lis (m tr).lis

s (total tl) td (total tr) with
| Left sl → let res = get r sl tl in

r := { !r with right = (!r).right ++ Cons td (m tr).lis }; res
| Right sr → let res = get r sr tr in

r := { !r with left = (m tl).lis ++ Cons td (!r).left }; res
| Here → r := { left = (m tl).lis;

middle = Some td;
right = (m tr).lis };

Some td
end

end
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Abstract. Modern theorem provers can discharge a significant propor-
tion of Proof Obligation (POs) that arise in the use of Formal Method
(FMs). Unfortunately, the residual POs require tedious manual guidance.
On the positive side, these “difficult” POs tend to fall into families each
of which requires only a few key ideas to unlock. This paper outlines a
system that can lessen the burden of FM proofs by identifying and char-
acterising ways of discharging POs of a family by tracking an interactive
proof of one member of the family. This opens the possibility of captur-
ing ideas — represented as proof strategies — from an expert and/or
maximising reuse of ideas after changes to definitions. The proposed sys-
tem has to store a wealth of meta-information about conjectures, which
can be matched against previously learned strategies, or can be used to
construct new strategies based on expert guidance.

1 Introduction

Formal methods based on one or another chosen specification language are now
used to document different levels of abstraction for many systems. In those meth-
ods that adopt a “posit and prove” style of development, engineering decisions
are recorded in concrete models and Proof Obligation (POs) are generated whose
discharge establishes that the reified model has a behaviour compatible with a
more abstract model. (There are also POs that establish internal consistency of
one level of model — e.g. respecting invariants.)

Both clever engineering and AI techniques have led to Automated Theorem
Prover (ATPs) that can discharge an impressively large proportion of POs but
the manual discharge of the remaining POs is an impediment to the wider use of
formal methods. The research hypothesis of the AI4FM project is that a system
can be built that learns, from interactive proof, ideas that will facilitate auto-
matic discharge of other recalcitrant POs in the same family. The emphasised
qualification in the previous sentence indicates that the system is not intended
to discover general heuristics; the aim is to extract intuition about functions and
data structures used in the specific family of POs.

c© Springer International Publishing Switzerland 2014
D. Giannakopoulou and D. Kroening (Eds.): VSTTE 2014, LNCS 8471, pp. 183–199, 2014.
DOI: 10.1007/978-3-319-12154-3 12
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The design of the AI4FM system is itself being conducted formally. Moreover,
exploration of the design space is being undertaken by recording and modify-
ing formal models of the proposed system. This paper reviews such a model,
emphasising the meta-information and strategies that contribute to establishing
the research hypothesis of the AI4FM project. A similar process was used to con-
siderable effect in the creation of the mural theorem proving assistant [JJLM91].

To underpin the explanation of the AI4FM system, Sect. 2 introduces a formal
specification of a heap memory manager; POs and proof strategies arising from
this example are used to illustrate AI4FM system features. Sections 3 and 4 min-
imally present the specification of the core of the proposed system, particularly
the representation of proof strategies and the important high-level information
about POs needed to reuse the strategies. A summary of the specification is
given in Appendix A, whereas a complete description can be found in [FJVW13,
Chapter 3]. The model of how proof strategies are (re)played and captured is
described in Sects. 4 and 5. Proof strategies illustrating the model have been
informally—but in more depth—presented in [FW14]. Section 6 reviews some
related work and Sect. 7 summarises the conclusions.

2 Background

This section introduces a heap memory model that is used below to illustrate
AI4FM. The example is adapted from [JS90, Ch.7], where it was specified using
the VDM notation. The Heap specification has been formally mechanised (i.e.
all the POs have been proved) using both Isabelle [Pau94] and Z/EVES [Saa97]
theorem provers. The mechanisation of the proofs is recorded in [FJVW13]. This
work has also generated an account of practical proof patterns [FW14], whose
descriptions underpin the proof-process modelling presented in this paper.

The heap memory manager is modelled using two operations at two levels of
abstraction (here specified using VDM notation):

Loc: the type of a single memory location, represented as N.
Free: the type of the heap as a collection of all free locations. At level 0, it is

represented as a set of locations Free0 = Loc-set. At level 1, it is represented
as a map from start locations to sizes that is constrained by a datatype
invariant to be disjoint and separate:
Free1 = Loc

m−→ N1

inv (f ) � disj (f ) ∧ sep(f )

disj (f ) � ∀l , l ′ ∈ dom f · l �= l ′ ⇒ locs-of (l , f (l))∩ locs-of (l ′, f (l ′)) = { }
sep(f ) � ∀l ∈ dom f · (l + f (l)) /∈ dom f

The invariant conditions ensure that the range of locations identified by any
two map elements (defined as {l . . . l + f (l)-1} by locs-of ) do not intersect
(disj ) and that contiguous memory regions are as large as possible (sep).

NEW: takes a size as input and, if available, returns a starting location for a
contiguous chunk of memory of the appropriate size after updating the state.
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DISPOSE: returns a contiguous chunk of memory to the heap. This operation
takes a start location and size as parameters and updates the state.

At level 0, these operations are defined using set operations, whereas at level 1
they are refined to use mapping from locations to their corresponding sizes. The
main PO discussed in this paper is feasibility of the NEW operation and the
associated lemmas needed for the proof At level 1, the NEW operation is:

NEW 1 (s:N1) r :Loc
ext wr f1 : Free1
pre ∃l ∈ dom f1 · f1(l) ≥ s

post r ∈ dom
↼−
f1 ∧ (

↼−
f1 (r) = s ∧ f1 = {r} −� ↼−

f1 ) ∨
(
↼−
f1 (r) > s ∧ f1 = ({r} −� ↼−

f1 ) ∪m {r + s �→ ↼−
f1 (r) − s})

NEW 1 has two behaviours depending on whether a location of exactly the
required or strictly larger size has been located. If the size matches, then that
element is removed from the map; if the map element refers to a larger region,
then the remaining locations in the region must be added back to the heap
(hence the map union). The precondition embraces both cases by using ≥.

The feasibility PO for NEW requires that, for every starting state (
↼−
f1 ) and

input (s) that satisfy the precondition and invariant, there exists an updated
state (f1) and result (r) that satisfy the postcondition and invariant.

∀s ∈ N1,
↼−
f1 ∈ Free1 · ∃l ∈ dom

↼−
f1 · ↼−f1 (l) ≥ s ∧ sep(

↼−
f1 ) ∧ disj (

↼−
f1 )

⇒
∃f1 ∈ Free1, r ∈ Loc · [r ∈ dom

↼−
f1 ∧ (

↼−
f1 (r) = s ∧ f1 = {r}−�↼−

f1 ) ∨
(
↼−
f1 (r) > s∧f1 = ({r}−�↼−

f1 )∪m{r+s �→ ↼−
f1 (r)−s})]∧sep(f1)∧disj (f1)

The first step of the proof is to expose the postcondition by application of
introduction rules, then supply an appropriate witness for the result (l , from the
precondition), resulting in a conjecture of the form:

↼−
f1 ∈ Free1, s ∈ N1, l ∈ dom

↼−
f1 , l ≥ s, sep(

↼−
f1 ), disj (

↼−
f1 )

∃f1 ∈ Free1 · [l ∈ dom
↼−
f1 ∧ (

↼−
f1 (l) = s ∧ f1 = {l} −� ↼−

f1 ) ∨
(
↼−
f1 (l) > s ∧ f1 = ({l} −� ↼−

f1 ) ∪m {l + s �→ ↼−
f1 (l) − s})] ∧ sep(f1) ∧ disj (f1)

To progress this proof, a witness for the updated state must be provided; how-
ever, a hidden case analysis on the ≥ in the hypothesis is required because of
the alternative behaviours of NEW . The two cases, l > s and l = s, can then
be solved independently. In both cases, the witness for f1 is explicit in the post-
condition. The invariant is challenging. For the l > s case, the goal is:

↼−
f1 ∈ Free1, s ∈ N1, l ∈ dom

↼−
f1 , l ≥ s, sep(

↼−
f1 ), disj (

↼−
f1

sep(({l} −� ↼−
f1 ) ∪m {l + s �→ ↼−

f1 (l) − s})∧
disj (({l} −� ↼−

f1 ) ∪m {l + s �→ ↼−
f1 (l) − s})

which can be solved by lemmas that distribute the invariant over map operators.



186 L. Freitas et al.

Even in this relatively small case study, the notion of PO families plays an
important role. The two main ideas in this proof are: discovering a hidden case
analysis (i.e. a missing hypothesis) and using lemmas that distribute the map
operators over the invariant — and these are exactly what is needed to solve the
(more complicated) DISPOSE feasibility proof obligation.

3 The AI4FM System

This section describes the abstract model of the AI4FM system that realises
the functionality described in the introduction. Specifically, we describe the
meta-information content of conjectures that enable strategies to be learned
and matched against proof situations, as described in Sects. 4 and 5.

The accumulated information in an AI4FM instantiation can be thought of as
a collection of bodies (in the sense of “body of knowledge” as meta-information
associated to user theories). Each body contains proof tasks (conjectures and
their justifications), user-defined functions and types, and strategies. This paper
focuses on conjectures, justifications and strategies and the reader is referred to
[FJVW13, Chapter 3] for a full description of the model.

3.1 Conjectures

A proof task is a Judgment , which contains hypotheses and a conclusion, and
a role. A role describes the purpose of this task. In addition there can be any
number of (attempts at) justifications. Thus:

Conjecture :: what : Judgement
role : {Axiom,Trusted,Lemma,Subgoal, · · · }
justifs : JusId

m−→ Justification
specialises : [ConjId ]
· · ·

An example of a low level conjecture would be a natural deduction proof
rule for “or elimination” which might be marked as an axiom (Axiom). Within
a body for a VDM specification like the heap, a proof obligation generator will
create a Conjecture for each PO about the consistency of that single specification.
Thus, another conjecture may be the Lemma representing the NEW feasibility
PO of Sect. 2.

3.2 Justifications

Turning to Justification, it is explicitly envisaged that there can be multiple
attempts to justify a proof task. When a conjecture is first generated, it will
have no justifications. A user might start one proof justification, leave it aside
and try another, then come back and complete the first proof. But notice that
the notion of whether a proof is complete (in the sense of (transitively) relying
only on axioms) is a complex recursive predicate. Overall,
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Justification :: by : (ConjId | ToolOP)
with : ConjId∗

A justification which uses an established inference rule will point to its
ConjId . The with field points to any sub-problems that need to be discharged
to complete the proof. Notice that such a justification corresponds to one step
in a proof: collecting a whole proof requires tracing the attempts at the sub-
conjectures. In practice, TP tools such as Isabelle and Z/EVES are powerful
enough that a user will hardly ever interact at the level of the (natural deduction)
laws of the logic itself. So, in fact, the most prevalent examples of Justification
ought come from an attached Theorem Prover. Use of an ATP will be recorded
as an instance of ToolOP — such output will be specific enough to the ATP that
it is not further specified here (e.g. a concrete proof script instance).

3.3 Meta-Information

Finally, conjectures include meta-information (or features):
Conjecture :: · · ·

provenance : (Origin | Why)∗

emphTps : TyId m−→ N

emphFns : FnId m−→ N

other : · · ·
The additional features of each Conjecture, i.e. provenance, emphasised types or
functions, are the key information collected to enable analysis and creation or
execution of proof strategies. The provenance feature details a sequence describ-
ing the history of how a particular conjecture has arisen. For example, for top-
level PO conjectures, it would record the type of PO; for sub-goal conjectures, it
would record the strategies that lead to that particular goal, e.g. the provenance
for the NEW 1 feasibility Conjecture nearing its complete justification could be:

[EXPOSE -POST , HCA, EXIST -PRE -WITNESS , SINGLE -PT -WITNESS , WIT -

NESSED , SPLIT -INV -POST , INV -BRKDOWN ].
In general, the set of tokens indicating provenance is open ended, yet fairly
stable per domain. Registering this information allows simplifying proof strategy
search for similar proofs. The AI4FM system could match the provenance with
a strategy in an earlier proof and suggest adapting it: e.g. “On a previous similar
proof, the next step was this particular strategy” (see Sect. 5.2 for an example).

Moreover, it would be useful if definitions within bodies of knowledge con-
tained information about their use within the proof obligations/conjectures of
the body. For example, this could include properties of operators, such as them
being distributive and associative but not commutative — they could influence
strategy matching.

4 Playing Proof Strategies

The most common mode of operation for AI4FM is the intelligent suggestion and
application of “intentful” strategies and lemmas to break down and solve POs.
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In general the ethos described fully in [FW14] is to use strategies to deconstruct
a high-level PO to the point where so-called weakening lemmas (e.g. goal simpli-
fication rules) can be suggested to break down the conjectures until automation
can kick in to discharge the remaining goals. AI4FM strategies are intentful
because they advertise their applicability to conjectures by MTerms (the ‘M’ is
for Matching) and are optionally annotated with an explicit intent as a natural
language record of a strategy’s purpose and is identifiable by machine. The suit-
ability of any strategy for progressing the proof of a given conjecture is given by
evaluating the propositional MTerm over a conjecture’s features (as described in
Sect. 3). Such functionality is modelled via two operations: FIND-STRATEGY
to suggest a list of appropriate strategies for a given conjecture; and, APPLY
to execute the strategy found.

The following section describes the structure of a strategy in detail and
Sect. 4.2 instantiates some example strategies. Then, Sects. 4.3 and 4.4 describe
the FIND-STRATEGY and APPLY operations, respectively.

4.1 Anatomy of a Strategy

The first component of an AI4FM strategy is an intent , given as a Why token:
Strategy :: intent : [Why ]

· · ·
The intent serves a dual purpose:

1. It serves to explain what the strategy does;
2. It is added to the provenance of the (sub)conjectures generated.

The latter enables subsequent strategies to be suggested because this strategy
has been applied (see Sect. 4.2.3, for example). The purpose of a strategy is
to progress proofs and the crucial component that instructs AI4FM how that
strategy should be applied is the by field:

Strategy :: · · · by : (conjId | ToolIP) · · ·
The by field shows that a strategy can be justified by either a call to an internal
conjecture (given by a conjId) or an external tool (given by a ToolIP). Appeals
to inference rules, axioms or previously proved (or even still open) conjectures
are given by internal references. Tools can either be part of the theorem prover or
can be separately developed “apps” within AI4FM — e.g. [GKL13]. The script
component of a ToolIP indicates that the input to different tools can vary.

Strategy :: · · ·weightings : MTerm m−→ Weight
mvars : mvar∗ · · ·

The weightings map, describes when a strategy should be applied and contains
the key feature-matching objects: MTerms. Each MTerm is associated with a
natural number that describes the utility of the current strategy for progressing
the proof, if that MTerm be satisfied. A basic MTerm is a proposition built from
negation (¬ ), conjunction (∧) and an unbounded set of atomic (paramaterised)
predicates. For example, the atomic prov -test(VDM -FEAS , conjId) checks if the
VDM -FEAS token is part of the provenance of the conjecture conjId .
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Rather than permit choice explicitly in MTerms, the weightings map means
that a strategy can have multiple MTerms with different associated weights.
This approach enables multiple (disjunctive) scenarios in which a strategy is
applicable and a notion of partial match to be modelled. The weightings are
used by the FIND-STRATEGY operation to rank strategies by value; match-
ing in a single strategy must therefore return the highest ranking MTerm in
the weightings. Machine learning techniques like PageRank adaptations [KU14]
can be used to learn ways to improve the strategies matching rate. For more
sophisticated matching, a simple binding mechanism called matching variables
(mvars) for MTerms is provided, and is written with the following syntax:

match ?x ?y with atomic1(?x , ?y , conjId)∧· · ·∧atomicn(?x , ?y , conjId)

to mean that evaluation of an MTerm must instantiate ?x and ?y as terms
from the judgement to satisfy the basic MTerm part. Any mvars in MTerms
must be declared in the strategy itself. This means that they can also appear in
the tool input script to customise the behaviour of a strategy. MTerms, mvars,
and ToolIP are exemplified in the next section, but further discussion is post-
poned until Sect. 4.3, where they are used in the FIND-STRATEGY operation.
Finally, strategies can be organised into a “taxonomy”. The idea is perhaps best
illustrated by an example:

NPeanoInduct specialises InductionProof

NCompleteInduct specialises InductionProof

So the final field becomes:
Strategy :: · · ·

specialises : [StrId ]
Specialisation is a simple example of strategy capture, described in Sect. 5.

4.2 MWhy Strategies Example

To ground the previous section, with a strong focus on MTerms, three example
strategies, implementing the proof patterns from [FW14], are given.

4.2.1 VDM Structural Breakdown
The first illustration of an AI4FM strategy is for structural breakdown, which
simply decomposes a top-level proof obligation (e.g. VDM’s feasibility, narrow-
postcondition or widen-precondition POs) — by performing safe introduction
rules. For example, a feasibility proof obligation of the form:

∀↼−σ , ī · pre-OP(↼−σ , ī) ⇒ ∃σ, ō · post-OP(↼−σ , ī , σ, ō)

(where ↼−σ and ī are the initial state and inputs and σ and ō represent the
updated state and outputs for a particular operation) would be transformed to:

∃σ, ō·post-OP1∧. . .∧post-OPn∧post-OP -σ-inv1∧. . .∧post-OP -σ-invn

That is, quantifiers and assumptions are stripped (and added to the context) and
the conclusion is unfolded to a conjunction of postconditions and state invariants.
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The result of structural breakdown on the feasibility PO for NEW from Sect. 2
would be the following:

↼−
f1 ∈ Free1, s ∈ N1, l ∈ dom

↼−
f1 , l ≥ s, sep(

↼−
f1 ), disj (

↼−
f1 )

∃r ∈ N1, f1 ∈ Free1 · [r ∈ dom
↼−
f1 ∧ (

↼−
f1 (r) = s ∧ f1 = {r} −� ↼−

f1 ) ∨
(
↼−
f1 (r) > s ∧ f1 = ({r} −� ↼−

f1 ) ∪m {r + s �→ ↼−
f1 (r) − s})] ∧ sep(f1) ∧ disj (f1)

The intent for this strategy is given as EXPOSE -POST to describe that it
is really just exposing the main postcondition. The weightings map consists of
three individual MTerms that check whether the conjecture is one of the required
top-level VDM POs. For feasibility, the MTerm is:

prov -test(FEAS -PO , conjId)∧¬ prov -test(EXPOSE -POST , conjId)

Since the MTerms for this strategy are straightforward, there are no mvars to
be recorded and it does not specialise any other strategies.

4.2.2 Hidden Case Analysis
A common technique for progressing a tricky proof is to introduce new hypothe-
ses to help solve the goal. The price to pay is that these hypotheses need to be
discharged at some point. Fortunately, some inference rules allow one to make
use of new hypotheses, as in disjunction elimination, where the burden is to prove
the same goal under different (disjunctive) hypotheses. This use of disjunction
elimination is itself a specialisation of a fundamental concept in theorem proving,
the “cut rule”:

cut-disj-elim
H � C1 ∨ C2 C1 � G C2 � G

H � G

When there is no explicit disjunction in the goal, yet there is a missing hypothesis
to finish the proof, it is called Hidden Case Analysis (HCA). A specific instance
of HCA is where the “cut” hypothesis is ≥ — its MTerm provides a first use of
matching variables:

match ?hyp with hyp-test(?hyp, conjId) ∧ top-symb(?hyp,≥)

where a hypothesis with a ≥ is matched against the conjecture. This strategy is
used in the NEW feasibility PO to split l ≥ s into l = s ∨ l > s.

4.2.3 Existential Witnessing
The final example strategy, existential witnessing, is a general strategy for pro-
gressing with POs with an existential quantifier, by instantiating it with a witness
provided by the user. The MTerm is:

prov -test(EXPOSE -POST , conjId)∧top-symb(∃, conjId .what .conc)

and the intent of this strategy is simply WITNESS . Existential witnessing is an
example of a strategy that has specialisations: two important examples of such
a specialised existential witnessing strategy are single-point and fully witnessed.
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Single-point existential witnessing. A common situation that arises with POs
is the need to witness updated state variables — the PO may be of the form
∃σ · σ = t ∧ . . .. A strategy provided for this situation, with an MTerm:

match ?tm ?x ?y with
prov -test(EXPOSE -POST , conjId)∧subtree(?tm, conjId .what .conc)
∧ exvar -test(?x , conjId .what .conc) ∧
top-symb(=, ?tm) ∧ left-child(?x , ?tm) ∧ right-child(?y , ?tm)

which picks out a subterm of the conclusion that has the shape ?x =?y where?x
is an existentially bound variable. The by for this strategy could be a call to
an Isabelle tactic with the following script: apply(rule-tac x =?y in exI ), which
is the Isabelle command for performing existential introduction with explicit

witnesses. The matching of ?x and ?y as f1 and ({l} −� ↼−
f1 ) respectively is the

appropriate single-point witness for the l = s case of NEW feasibility PO.

Fully witnessed. This specialisation of witnessing has a niche purpose: match con-
jectures that have been witnessed already, and had all the existentials stripped
from them. It does nothing to the goal, but adds WITNESSED to the prove-
nance of the Conjecture enabling further proof strategies to attack the witnessed
postconditions and invariant. The MTerm for this strategy is:

prov -test(WITNESS , conjId)∧¬ top-symb(conjId .what .conc,∃·)∧¬
prov -test(WITNESSED , conjId)

Specialisations of strategies must have a higher weight than their general ver-
sions, to ensure that if it matches, the specialised version will be triggered.

4.3 Finding a Strategy

If a conjecture cannot be solved by proof automation,1 the FIND-STRATEGY
operation can be used to search through the set of available strategies and check
their applicability to the current conjecture (ranked by Weight in order of their
applicability). As described above, this requires evaluating the MTerms of a
strategy. The function for evaluating an MTerm has type:

match :MTerm × ConjId → Binding-set

match(mt , c) � ...

where a Binding is a map between mvars and terms (in the theorem prover):

Binding = mvar m−→ term

A set of bindings is returned because there can be many and each may be
interesting to an engineer. Consider, for example, an MTerm as follows:

hyp-test(?hyp, conjId) ∧ top-symb(?hyp,≤)

1 It is assumed that ATP is always used before strategic intervention is required.
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which matches any hypothesis of the conjecture that has a ≤ as its top symbol.
The strategy associated with this MTerm could, for example, apply case analysis
on ≤ (introducing the = and < cases). In a goal x ≤ y , x ≤ z � . . ., there would
be two possible matches. A failure to match the MTerm against the conjecture is
represented by the empty set. This is different from the case where an MTerm is
successfully matched, but has no matching variables, which returns a singleton
set containing the empty map. Thus, since each strategy has multiple MTerms,
it must return the highest weight from all those MTerms that match, which is:

Max (ran({mt | mt ∈ domweightings ∧ match(c,mt) �= {}} � weightings))

and if that MTerm contains multiple matches, then each binding must also be
returned. This weighted filtering of available strategies is a crucial part of match-
ing evaluated MTerms, so that the most suitable strategies with actual instan-
tiations from the current conjecture are found. This means that the operation
is:

FIND-STRATEGY (f :BdId ,n:ConjId) r : (StratId×Weight×Binding)∗

pre n ∈ dom guts(f )

post . . . ∧ (st ,w , bd) ∈ r
⇒ dom bd ⊆ st .mvars∧∃mt ∈ domweightings·bd ∈ match(mt ,n)
∧ . . .

We use a sequence since we want to order strategies as most applicable, but leave
the Weight to show the distribution of applicability. We give the precondition
and the part of the postcondition that ensures that any returned strategies and
bindings are indeed a match. We elide the rest of the postcondition for brevity.

4.4 Applying a Strategy

Once an engineer has chosen the strategy to use, based on those found to be
applicable, the APPLY operation can be used. APPLY takes the conjecture
and a strategy with associated binding and applies it, updating the state by:

1. Adding new conjectures generated by the strategy, including the Why of the
applied strategy as part of the provenance of the new conjectures.

2. Adding a justification to the conjecture that the strategy was applied to,
including any tool output, ToolOp.

If the strategy uses an external tool, then the Binding must be used to
instantiate any potential mvars in the script of the tool input, ToolIP . If the
strategy fails, then the operation will return false and not update the state.

The signature of APPLY and part of the postconditions relevant to the
provenance of generated conjectures:

APPLY (f :BdId ,n:ConjId , s:StratId , b:Binding) r : bool×conjId -set
ext wr Σ
pre . . .
post (r = (true, cs)

⇒ . . .∧∀c ∈ cs·c ∈ domΣ.guts∧s.intent ∈ c.provenance∧. . .)
∧ (r = (false, cs) ⇒ . . .)
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The postcondition ensures that all of the generated conjectures (the set cs) have
been added to the guts of the body , and that the provenance has been updated
to include the intent of the applied strategy.

5 Capturing Proof Strategies

When an expert has to intervene to progress a proof, this is identified within
AI4FM as an opportunity to learn both new proof techniques and new whys of
a proof technique. The key aim of AI4FM is to learn from expert intervention
in a single proof to improve automation in subsequent proof attempts that are
similar in some way. We have devised several ways in which AI4FM can learn
new strategies and this section describes another example of the most commonly
used techniques: strategy capture by specialisation.

After showing strategy specialisation for existential variable witnessing, we
motivate this technique with another example of HCA. Section 5.1 describes how
this can be performed; finally, Sect. 5.2, briefly summarises other ways in which
AI4FM can learn from an expert.

5.1 Strategy Specialisation Example: Hidden Case Analysis

As described in Sect. 4.2.2, exposing a HCA is an important technique for pro-
gressing proofs. The key step is the act of introducing case analysis by a spe-
cialised version of the “cut rule”: it introduces the two cases and a lemma that
requires showing that the disjunction holds in the current context. For example,
applying cut-disj -elim with C1 = x > y and C2 = x = y is the correct case
analysis for the NEW 1 feasibility proof obligation described in Sect. 4.2.2. The
goal x ≥ y � x > y ∨ x = y can then be proved as a lemma. This exam-
ple strategy was first created for the NEW 1 feasibility proof, which requires
the hidden case split on the ≥ present in its precondition.

To learn a new strategy from the basic inference rule strategy cut-disj -elim,
we need to provide an MTerm and reference the lemma generated as proved. This
done, the system can automatically suggest the specialised ≥ HCA strategy in
similar situations: namely, whenever ≥ appears in the hypothesis and the user
is stuck (i.e. no known strategy is applicable and the user explicitly asks help
to AI4FM), alternative HCA or indeed instantiation of known ones could be
suggested. This is detailed below.

5.2 Using Provenance to Specialise Strategies

The process of capturing new strategies works in two ways: a priori, where the
expert user interacts and informs AI4FM about novel ideas from previous known
successful ones; and post-facto, where searching/clustering procedures can try
and learn new strategies from successfully applied ones. So far, we have investi-
gated the former and plan to work on the latter in the future.
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Thus, at the point where the (expert-)user suggests the HCA for ≥ as a new
strategy, the AI4FM system could request the user for alternative hypothesis
generating instances of the “cut rule” that would make sense in the context.
For example, spotting that ≥ is a reflexive pre-order maximises the chance of
a strategy generalising this to ≤,⊆, · · · . Moreover, assuming the provenance
information from the DISPOSE1 feasibility proof suggests cut-disj -elim, but
without the knowledge what to plug in for the disjuncts, the user could be asked
to suggest something.

Hidden case analysis in DISPOSE1. The feasibility proof for DISPOSE1 (see
details in [FJVW13, App. E.8, F]), needs a specialised version of HCA, where
the new hypotheses are about whether the adjoining sets of memory below and
above the memory being disposed are empty or not. This is important because
it will determine, because of the sep invariant, the largest contiguous memory as
the correct state update. So, if neither below nor above is empty, the returned
value is their unions, whereas if either is empty, the formula in DISPOSE1
postcondition is greatly simplified. All of these cases rely on the fact of the
application of the HCA strategy, where the hidden disjunction is about emptiness
of both sets (leading to 4 cases). A detailed technical explanation for this is
in [FJVW13, Appendix E.8, F] and [FJVW13, Section 3.2.3]. It discusses how the
HCA strategy applied in NEW 1 (at the right time) is specialised for DISPOSE1,
providing the (expert) user informs the system about the hidden disjunct on the
empty sets. The capturing was played independently in two proof modes (i.e.
tactical and Isar) in Isabelle to the same result.

The interesting observation here is that, despite significant differences of
detail, the overall proof strategy for NEW 1 is quite similar to DISPOSE1, as was
predicted (in the AI4FM hypothesis). This indicates that with enough strategies
available, the level of successful applications to different problems will be higher.

6 Related Work and Status

As discussed above, the system described in this paper should be seen in the
wider context of the AI4FM project, where the project partners and collabora-
tors have been working on tools that can be used by the system described here.
Three of these related tools are:

Proof Strategy Graph [GKL13] is a tool for encoding proof strategies.
PSGraphs can be composed statically based on a notion of types on incoming
and outgoing goals. The goal types simultaneously allow for additional control
of a strategy’s behaviour and understanding of its purpose and result. The goal
types on PSGraphs correspond closely to our MTerms, enabling the learning of
new AI4FM strategies from instances of PSGraphs.

Lemology [HKJM13] suggests lemmas by analogy with a similar theorem;
furthermore, it can be used to suggest analogous conditions to speculate new
lemmas. The AI4FM should capture enough details of proof and conjecture fea-
tures to detect analogy and suggest applicable lemmas.

IsaCoSy [JDB11] can generate conjectures based on functions and types of
interest, run them through a counterexample checker to eliminate obvious false
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conjectures, then use an automated theorem prover to attempt to prove the
remainder. The emphFns and emphTps from unproven conjectures can be fed
into IsaCoSy to help generate lemmas that can progress a proof automatically.

Other related work includes [HK13] where machine learning is used to iden-
tify clusters of lemma usefulness. They apply the technique to simple inductive
theorems in both the Coq and ACL2 provers. The idea is to try and identify
lemmas with high “quality”, in the sense of helping solve more goals. A key
difference to our approach is that we anticipate the use of meta-information for
learning, instead of the actual raw proof data, given it is not easy to gather
enough of it (i.e. one would not provide 100 samples of the same proof).

In [KU14], authors describe a way to mine proof tracing information in order
to detect lemma relevance, duplication, and ranks them in order of importance.
The idea uses machine learning (clustering and PageRank) techniques by sifting
through the large amount of data found in the proof object (inference graph).
It takes into account intermediate lemmas (or sub-goals), as well as user defined
lemmas. Their approach observe the problem at this lowest-level of proof object,
as well as at the theorem prover’s tactic-application level, where the difference
helps determine what is a useful lemma (in terms of its applicability during
proof), as opposed to what makes the theorem prover “happy” (in terms of the
interaction between the lemma shape and the way it relates to the various proof
tactics applied). We are trying to understand their experimental setup data in
order to make use of similar techniques in AI4FM. Their work, however, has no
notion of user-supplied input, where proof intent (e.g. meta-proof information)
is provided in order to search for similar proof strategies on different goals.

Status. Proof engineering is essential for scalability: it takes a good amount
of unrelated proof effort to enable one to tackle the actual proof obligations of
interest. Lemmas are useful whenever one needs to either: decompose a complex
problem; fine-tune the theorem prover’s rewriting abilities to given goals; gener-
alise a solution of some related (usually more abstract) problem; and to provide
alternative solutions of the same data structure being modelled; etc.

In our experiment we have tested our hypothesis by having the same proof
task performed independently by three different people with three different back-
grounds (formal methods proof expert, Isabelle proof expert, MSc student), in
two different provers (Isabelle/HOL and Z/EVES), and encoded in two different
methods (VDM and Z) on medium size refinement problem (i.e. the Heap). We
analysed the proof traces and scripts of the Isabelle development (using Perl)
looking for commonalities and differences. On the expert proof engineer devel-
opment, our new lemmas on VDM maps in Isabelle were the ones with highest
reuse rate (at 22%), with other available Isabelle library lemmas reuse being
quite high too (at 38%). On the Isabelle expert, the ratio was slightly different
at 16% and 65% respectively. The effort on PO-specific weakening lemmas and
type bridges was comparable at 23% and 17% for each expert. This indicates
that a considerable amount of effort (around 20% for both experts) was related
to setting up VDM map operators and lemmas in Isabelle, whereas around the
same effort was needed on the actual POs. Arguably, the VDM lemmas are
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reusable across problems, hence the patterns described for the Heap problem
do transfer across problems (in VDM at least). The encoding in Z/EVES was
relatively straightforward, as there were no issues with undefinedness and the
Z mathematical toolkit is quite similar to VDM’s. This part of the experiment
was useful, however, in early detection of possible proof-difficulty in the model,
which only appeared much latter in the Isabelle development.

Prototype Implementation. For a comprehensive capture of proof strategies, a
prototype AI4FM system is being developed. It allows us to track proof histories
and provides a convenient user interface and scalable data persistence to record
the necessary meta-information about the expert’s proof process and strate-
gies [Vel12,FJV14]. The current system implementation2 supports integration
with and proof capture from both Isabelle and Z/EVES proof assistants. While
it currently employs an older version of MWhy (meta-)information model and
requires significant engineering effort to keep up with developments of underlying
provers, having tool support for proof capture, strategy extraction and replay
expands the AI4FM approach beyond pencil-and-paper exercises.

7 Conclusions

From our experiments, the use of MWhy (meta-)information about the proof
process has helped reduce the burden of proof within three separate proof exer-
cises (see http://www.ai4fm.org). This confirms our hypothesis that it is possible
to learn (or capture) (re-)playable proof strategies across the same FM problem,
such that from a few POs and key ideas, remaining (recalcitrant and tedious)
POs can be discharged.

This paper describes a summary of our meta-information capturing, play-
ing, and replaying AI4FM system, where MWhy represents the state, and sev-
eral operations over this state represent finding suitable proof strategies (play),
applying them to a different goal (replay), as well as suggesting specialisations
of available strategies as a means to improve strategy application (capture).

This abstract description of the AI4FM system can be implemented in dif-
ferent ways. The prototype ProofProcess framework mentioned above acts as
an add-on to different theorem provers by capturing and storing the meta-
information externally. Alternatively, the AI4FM system could be closely inte-
grated with a theorem prover, allowing –for example– an expert to specify the
meta-information within the formal specification, etc.

Further Work. When discovering different strategies, we need to create specific
MTerms. So far, we have created MTerms common to a category of FM POs.
We are working to expand that by performing proof exercises over a variety of
examples, as well as tapping into previous proofs by authors from the Grand
Challenge experiments [BFW09,FW08,FW09].

2 ProofProcess framework, http://github.com/andriusvelykis/proofprocess.

http://www.ai4fm.org
http://github.com/andriusvelykis/proofprocess
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Several interesting questions were raised after the presentation at VSTTE in Vienna.
Shankar emphasised the virtue of recording information about proof strategies that fail
— this was recognised early in AI4FM [JFV13] but the reminder is timely and a way
of handling this will be made more explicit in the model. Christoph Gladisch ques-
tioned the extent to which “machine learning” could help improve an AI4FM system:
currently mechanised learning is focussed on setting of the Weight field — we agreed
to pursue a dialogue on the topic. Mike Whalen urged others to make source material
available to the AI4FM project — we would obviously welcome this but emphasise that
we need (instrumented) proof processes rather than just finished proofs — our proof
material is available via http://www.ai4fm.org

A Model

Σ :: bdm:BdId
m−→ Body

bdrels: (BdId × Relationship × BdId)-set

Body :: domain:Domain

functions:FnId
m−→ FnDefn

types:TyId
m−→ TyDefn

guts:ConjId
m−→ Conjecture

strats:StratId
m−→ Strategy

FnDefn :: type:Signature
tags:FnTag-set
defn:

[
Definition

]

Conjecture :: what : Judgement
role: {Axiom,Trusted,Lemma,Subgoal, · · · }
justifs: JusId

m−→ Justification
specialises: [ConjId ]
provenance: (Origin | Why)∗

emphTps:TyId
m−→ N

emphFns:FnId
m−→ N

other : · · ·
Judgement = Typing | Equation | Ordering | · · · | Sequent
Sequent :: hyps: Judgement∗

goal : Judgement

Justification :: by : (ConjId | ToolOP)
with:ConjId∗

ToolOP = · · ·
Origin = Token

Why = Token

FnTag = {Inv,Pre,Post, . . .}

http://www.ai4fm.org
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Strategy :: intent : [Why ]
by : (ConjId | ToolIP)

weightings:MTerm
m−→ N

mvars:mvar∗
specialises: [StratId ]

ToolIP :: name: {Sledgehammer,SMT,Simplify,PSGraph, · · · }
script :Token

Atomic = prov -test | tag-test | hyp-test | · · ·
MTerm :: mvars:mvar∗

mterm: propositional terms over Atomic

Relationship = Uses | Specialisation | Morphism | Isomorphism |
Inherits | Sub | Similarity | · · ·
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Univ. Grenoble-Alpes, VERIMAG, 38000 Grenoble, France
{alexis.fouilhe,sylvain.boulme}@imag.fr

Abstract. Convex polyhedra provide a relational abstraction of numer-
ical properties for static analysis of programs by abstract interpretation.
We describe a lightweight certification of polyhedral abstract domains
using the Coq proof assistant. Our approach consists in delegating most
computations to an untrusted backend and in checking its outputs with
a certified frontend. The backend is free to implement relaxations of
domain operators (i.e. a subpolyhedral abstract domain) in order to trade
some precision for more efficiency, but must produce hints about the
soundness of its results. Previously published experimental results show
that the certification overhead with a full-precision backend is small and
that the resulting certified abstract domain has comparable performance
to non-certifying state-of-the-art implementations.

Keywords: Abstract interpretation · Abstract domain of polyhedra ·
Program verification in Coq

1 Introduction

Astrée [1] is a major success of semantics-based static analysis of programs: it
is capable proving the absence of runtime undefined behaviours in large scale real
world C programs from avionics. Abstract interpretation [2], on which Astrée

is based, formalizes the state analysis of programs and guarantees that the ana-
lyzer soundly over-approximates the behaviours of the program under analysis.
However, Astrée is itself a complex piece of software. Despite the care put in its
development, it may contain bugs. One possible solution consists in proving that
the analyzer implementation is sound and having this proof mechanically checked
by a proof assistant. Trusting the result of the analyzer is thereby reduced to
trusting the proof checker and answering the question: Is what has been proved
what we want to prove?

This question is especially relevant in the context of automated C program
manipulation, where the semantics of the C programming language are part
of the specification. The CompCert C compiler [3] is a successful project built
with the Coq proof assistant. The Verasco project aims at building an abstract
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interpreter in a similar manner, reusing the CompCert infrastructure: mainly
the formalized semantics of the C programming language and the frontend. Once
the semantics of the program under analysis are defined, the correctness proof
is composed of two components: the abstract domain must be shown to soundly
over-approximate manipulations of sets of reachable states, and the link between
the program semantics and the abstract domain must be proved correct.

Our work addresses the problem of proving correct in Coq an implementa-
tion of the abstract domain of polyhedra [4], which capture linear relationships
between program variables. The abstract domain we built is similar both in
features and performance to the core of the polyhedra library in the PPL [5]
and Apron [6]. We adopted the same two tier architecture as Besson et al. [7]:
an untrusted Ocaml backend performs most of the computations and outputs
proof hints for the results it produces, which are used by a frontend developed
in Coq to build trustworthy results.

The efficient generation of proof hints, which we call certificates, is described
elsewhere [8], along with an experimental evaluation of the overall abstract
domain. The main contribution of the work described here is the design of the
link between the Coq frontend and the untrusted backend. It avoids the conver-
sion and transfer of polyhedra. This makes the coupling between the frontend
and the backend very loose. As a result, building other certificate-producing
backends is easy and has no impact on the Coq frontend code. Complete free-
dom is given on the choice of data structures: a backend could use constraint
or double representation for polyhedra. Furthermore, since the backend does
not give formal precision guarantees, a backend could implement relaxations of
domain operators [9,10], trading precision for efficiency.

We also present a lightweight method to ensure the soundness of Ocaml code
extracted from the Coq frontend, even when the backend has an internal state,
or when the functional purity of the backend is not trusted. Last, we describe
the architecture of the frontend as a collection of functors which extends a bare
metal abstract domain interface. This approach makes the proof modular: it is
simpler and more robust to change.

2 A Certified Interface of Polyhedral Abstract Domains

Let us introduce an small imperative programming language, named PL. The
syntax of PL programs is described on Fig. 1. Letter t stands for an affine term
and c is a condition over numerical variables with the following syntax:

Fig. 1. Syntax and postcondition computation of PL
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c ::= t1 �� t2 | ¬c | c1 ∧ c2 | c1 ∨ c2

with ��∈ {=, �=,≤,≥, <,>}. All numbers are rationals.
Let us now sketch how to build a “sound-by-construction” static analyzer

performing a value analysis for this toy language. This will also introduce our
logical interface of abstract domains. For simplicity, we assume here that PL
programs are annotated, by an untrusted analyzer, with candidate invariants pi

where they are hard to infer: at the loop headers. Hence, we only have to prove
the soundness of a postcondition computation, described on Fig. 1, which checks
whether the candidate invariants are inductive. Given a precondition p, the post-
condition 〈p〉s of a statement s is computed using recursion on the syntax of s. If
a candidate invariant cannot be shown to be inductive, it is replaced by 
, which
is always safe. This happens when the candidate invariant does not include the
postcondition of the loop body and may have two causes. Either the candidate
invariant is not inductive, or the abstract domain used for checking inductiveness
is not precise enough.

The postcondition computation relies on the operators of the abstract domain.
Let us introduce them on the example of the abstract domain of polyhedra. Their
Coq formal specifications are presented on Fig. 2. A polyhedron p encodes a for-
mula

∧
i ai.x ≤ bi, where ai is a row vector of rational constants, bi is a ratio-

nal constant and x is a column vector of numerical variables of the program. Its
semantics, or concretization, is the predicate [[p]] defined as λm.

∧
i

∑
j aij .m(xj)≤

bi, where m is a total map from variables to rationals representing a memory state.
We omit the definitions of the semantics [[t]] of t and [[c]] of c, as they are standard.

– Polyhedron 
 corresponds to the predicate True.
– Polyhedron ⊥ corresponds to the predicate False.
– Polyhedron p� c over-approximates the conjunction of [[p]] and [[c]] (hence, the

forward predicate transformer for guard).
– Polyhedron p1 p2 over-approximates the disjunction of [[p1]] and [[p2]] (hence,

the forward predicate transformer for join).
– Given a term t and a variable x, polyhedron p[x := t] over-approximates the

result of applying the forward predicate transformer for x := t on [[p]].
– Boolean p1 � p2 over-approximates the inclusion of predicates: if it is true,

then [[p2]] is a logical consequence of [[p1]].

Although we have omitted them here, the Coq code of the invariant checker
needs to formalize the semantics of PL and prove that the reachable states of a
PL program are soundly captured by the postcondition computation defined on
Fig. 1. This relies on the abstract domain operations satisfying the specifications
on Fig. 2.

These specifications are weak: they only enforce that the operators of the
abstract domain perform safe over-approximations. They give no information
on the precision of the results. Building an abstract domain satisfying these
specifications is our focus in this paper.
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Fig. 2. Correctness specifications of our main polyhedral operations

3 Result Certification of Polyhedral Abstract Domains

While using Coq enhances the reliability of software, it sets a number of restric-
tions on the programs which can be reasoned about. First, the Coq programming
language is restricted to pure functions that must be shown to terminate. The
algorithms used by the abstract domain of polyhedra are complex to implement
and these Coq requirements would have made their implementation even harder.
The most representative example is the simplex algorithm.

Furthermore, Coq programs cannot use native machine arithmetic for com-
puting. Instead, numbers are represented as lists of bits. The algorithms operat-
ing on polyhedra being arithmetic intensive, this suggests carrying out as much
computation outside Coq as possible. Again, the simplex algorithm is the most
representative example.

The arguments required to prove the correctness of the operators of the
abstract domain of polyhedra make it convenient to offload much computation
to an untrusted oracle and keep only a small amount of code to be proved correct
in Coq. We back up this claim with some background on polyhedra.

3.1 Representing Polyhedra for Certification

A polyhedron can be represented in two ways: as a conjunction of constraints
(i.e. affine inequalities) or as a set of generators, as illustrated on Fig. 3.

Fig. 3. Constraint and generator representations of the 3-dimensional hypercube

When working with generator representation, proving correctness of the poly-
hedral operations specified on Fig. 2 requires proving completeness results.
Indeed, forgetting one vertex of the hypercube yields an under-approximation of
this hypercube. Correctness of static forward analysis is not preserved through
under-approximation, but through over-approximation.

Proving correctness of polyhedral operations in constraint representation is
easier, as forgetting one constraint of the result produces a safe over-
approximation. The proof can be built incrementally by proving that each pro-
duced constraint includes the exact result.



204 A. Fouilhe and S. Boulmé

Fig. 4. Correctness specifications of the projection and renaming operators

3.2 Expressing Correctness as Inclusions of Polyhedra

The correctness of each operation reduces to inclusions of polyhedra. However,
this reduction requires to first break the complex operations given in Fig. 2 into
simpler ones, which compose a low level interface of polyhedral abstract domains.

This low level interface has the same inclusion test and join operators as
before. The guard is restricted to one affine constraint. There is no forward
predicate transformer for assignment, but projection and renaming operators
are provided, from which it can be built (see Sect. 6.3). The specifications for
projection and renaming are given in Fig. 4. Polyhedron p\x results from the
projection of p on the space of variables where dimension x has been removed.
Renaming p[x1←x2] over-approximates the renaming of x1 as x2 in p. Variable
x2 is required to be fresh, but this precondition is not formalized in the Coq

specification as it is not needed for our correctness proofs. A violation of this
precondition may result in a precision bug, see Sect. 4.1.

Correctness of the operators of the low level interface can now be reduced
to inclusions of polyhedra, with the exception of renaming. However, under the
freshness precondition, renaming is a purely syntactic transformation. Three
operations remain: the guard of a polyhedron p with an affine constraint c, the
projection of a variable x from a polyhedron p and the join of two polyhedra p1
and p2. Each constraint c′ of their result must be shown to satisfy the inclusion
properties specified below.

guard.
∧

i ci ∧ c � c′, with p �
∧

i ci

projection. p � c′ (and x should have a nil coefficient in c′)
join. p1 � c′ and p2 � c′

3.3 Checking Inclusion of Polyhedra

The correctness of the complex low level operations reduces to inclusions of
polyhedra. Farkas’s lemma further reduces polyhedra inclusion to a linear pro-
gramming problem on constraint representation of polyhedra. Below, we say
that “constraint a1.x ≤ b1 syntactically entails a2.x ≤ b2” if and only if
a1 = a2 and b1 ≤ b2.

Farkas’s lemma. A polyhedron p �
∧

ci is included in a one-constraint poly-
hedron c′ if and only if there exists λi ≥ 0, such that

∑
i λi.ci syntactically

entails c′.

Given λ, a vector of λi, checking that p is included in c′ is straightforward:
build the linear combination c � λ.p and check that c syntactically entails c′.
This generalizes to a polyhedron p′ �

∧
c′
j by supplying a vector of coefficients λj
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Fig. 5. Ocaml interface of the backend

for each constraint c′
j of p′. The vectors λj form a matrix Λ such that ps � Λ.p

and the constraints of ps entail those of p′ syntactically. The matrix Λ can be
used by a checker to validate the result of an operator: we call Λ an inclusion
certificate. Nothing is proved when the check fails, however.

3.4 Core Architecture of the Abstract Domain

Farkas’s lemma makes result verification cheap. Moreover, it guarantees that
producing a certificate to justify an inclusion property is always possible. This
motivates the two tier architecture we have chosen for our polyhedral abstract
domain.

The abstract domain is split in an untrusted Ocaml backend and a frontend
which is developed in Coq. The backend performs most complex computations
of the low level interface. Its interface is given on Fig. 5. The backend provides
certificates of type cert that allow the frontend to produce certified results.
Type poly is the internal representation of polyhedra used by the backend: it
remains opaque for the frontend. The functions isEmpty and isIncl produce
a certificate only when inclusion in ⊥ or in another polyhedron holds. Other
operations produce both polyhedra and certificates, except for renaming where
a certificate is not needed.

The communication protocol between the backend and the frontend is detailed
in next section. Section 5 describes the formalization in Coq of the backend func-
tions. Last, Sect. 6 describes how complex polyhedra operations are built from the
low level interface.

4 Using Certificates as Build Instructions

Three polyhedra operators use a certificate from the backend and produce a
polyhedron: the guard, join and projection operators. What we have presented
leads naturally to a pattern of algorithms for the frontend, which we illustrate for
the projection operator. First, polyhedron ps � Λ.p is built, using the certificate
Λ provided by the backend. Syntactic entailment is then checked with the result
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Fig. 6. The implementation of the projection in the frontend

p\x actually provided by the backend. An extra check is specific to the projection:
verifying that x is free in p.

Checking syntactic entailment is actually unnecessary: p′ can be used as a
result of the projection operator. It satisfies the inclusion property, by construc-
tion. On top of sparing the entailment check, this approach removes the need
for the backend to communicate its result to the frontend. The certificate is suf-
ficient. This remark applies to the projection operator, as well as to the guard
and join operators.

As a result, the operators follow a simpler pattern, illustrated for the pro-
jection operator on Fig. 6. The backend and the frontend both have their own
representation of a polyhedron, which we call pB and pF, respectively.

That pB and pF represent the same polyhedron is an invariant property. An
operator of the abstract domain consists in invoking the corresponding operator
of the backend, thereby obtaining the backend representation pB′ for the resulting
polyhedron. The backend also produces a certificate ce, from which the frontend
computes its representation pF′ of the result of the operator, along with a proof
that it is correct. This restores the synchronisation between the frontend and
backend: pF′ and pB′ represent the same polyhedron.

4.1 The Impact of Bugs

Previous discussion makes the assumption that all goes well: the certificate is
well-formed and yields a representation of the result computed by the backend.
However, bugs might lurk in the backend, leading to incorrect results or erroneous
certificates. Two possible effects can be observed by the user of the abstract
domain.

– If the certificate is well-formed but yields a result different from that of the
backend, synchronization is lost and the results built by the abstract domain
are likely to be wildly over-approximated, yet correct.

– If an ill-formed certificate (e.g. refers to nonexistent constraints) is output
by the backend, the frontend will report a failure. Two failure modes are
supported: abort or return a correct 
 result.

Unless the backend aborts, the frontend returns correct results in all cases: sound-
ness bugs in the backend induce precision bugs of the abstract domain. These
bugs are uncovered using standard software engineering methods.
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Fig. 7. Coq definition of polyhedron build instructions

Fig. 8. Coq definition of constraint build instructions

4.2 The Certificate Language

The frontend builds correct by construction results using certificates provided
by the backend. The type cert of the certificates is given in Fig. 7. We will
describe the design of the certificates from the ground up on the example of a
projection p\x for which the backend has produced a certificate Implies l.

From a high level of abstraction, Implies l is the sparse representation of a
matrix Λ which defines the result p′ � Λ.p of the projection. In order to make the
certificate compact, the constraints of p are identified by positive numbers and
the descriptions of linear combinations, the type linComb, refer to constraints
by their identifier. Identifier generation is handled by the backend: the frontend
requests freshId pB when it needs a constraint identifier that does not appear
in polyhedron pB. The frontend does not check the freshness of identifiers: as
described in Sect. 4.1, invalid identifiers may result in precision bugs.

Type consCert describes the various ways to build one constraint of p′
1.

Its definition appears in Fig. 8. The Direct construct is the standard applica-
tion of Farkas’s lemma. For efficiency reasons, a backend may handle equality
constraints specially, instead of representing them as pairs of inequalities. Two
applications of Farkas’s lemma are necessary to build an equality a.x = b from
p �

∧
i ci. One builds a.x ≤ b and the other builds a.x ≥ b. The equality follows

from their conjunction and we introduced the SplitEq construct to handle this
case.

The join operator requires a special construct, JoinCons. For each con-
straint c of the result of p1  p2, it must be shown that p1 � c and p2 � c. To
this end, a JoinCons certificate contains one linear combination to build c1 �
a1.x ≤ b1 such that p1 � c1 and another for c2 � a2.x ≤ b2 such that p2 � c2.
The frontend checks that a1 = a2 and then chooses c1 as the resulting constraint
if b1 ≥ b2, or c2 otherwise. If a1 �= a2, the certificate is considered ill-formed.

Type cert also provides a construct to build ⊥, as the result of a guard
for example. An Empty l certificate is used for this purpose, where the linear
combination l yields a trivially contradictory constraint, like 0 ≤ −1.
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Let us motivate the last construct of type cert through a glimpse of the
redundancy elimination behind a backend implementation of the guard p � c,
with p �

∧
i ci. Constraint c is rewritten using the equality constraints in p, so

as to lower the number of variables involved. The result c′ could then be involved
in proving that the system of inequalities

∧
i ci ∧ c′ hides an implicit equality e.

The new equality e could then used for further rewriting. Building a certificate
in that setting is hard. The construct Bind j cc ce helps by introducing a new
constraint resulting from the linear combination cc and giving it identifier j.
The remainder of the inclusion certificate, ce, may then use it.

5 Formalizing the Backend in COQ

Our abstract domain is split in two components: the frontend, which is developed
in Coq, and the backend, which is written in Ocaml. In order to execute the
code, the Coq frontend must be extracted to Ocaml code through Coq extrac-
tion mechanism. Extraction roughly consists in removing all the proof-related
information from a Coq development, as Ocaml type system is not powerful
enough to represent it.

Once extracted, the frontend calls to the backend appear as function calls
in the operators code. For the extraction to generate these calls, the backend
functions must be declared to Coq as axioms. Let f be an external function of
Ocaml type A → B. It is declared to Coq as a function f , of Coq type A → B
and the extractor is instructed to replace calls to f with calls to f . Types A and
B must be the extracted versions of A and B. The Ocaml compiler will report
an error otherwise.

These declarations prevent the execution of the Coq development in Coq

virtual machine: the body of the backend functions is not available to Coq.
Furthermore, this process of linking certified Coq code to untrusted Ocaml

code may lead to a number of serious pitfalls.

Inconsistency. An axiom like failwith : ∀B, string → B introduces incon-
sistency as it builds a proof of any B from a string. In particular, failwith
False "" gives a proof of False. This pitfall is avoided by providing a model of
axioms in Coq: a proof that their Coq type is inhabited.

Implicit axioms. Inductive type B (e.g. {x : Z | x < 5}) may be extracted into a
strictly larger extracted type B (e.g. Z). This introduces an implicit requirement
on f (i.e. its results are lower than 5) that Ocaml typechecker cannot ensure. For
our frontend, we have thus carefully checked that Coq inductive types involved
in backend functions are identical to their Ocaml extraction.

Memory corruption. Our backend uses the GMP [11] C library. A bug in GMP

or its Ocaml frontend, zarith [12], may corrupt arbitrary memory locations.
However, it seems unlikely that such a bug breaks soundness silently.
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Implicit purity axiom. Semantics of → are different in Coq and in Ocaml. In
Coq, f is implicitly a pure function: hence ∀x, f x = f x is provable. On the
contrary, f in Ocaml may use an implicit state such that, for a given x two
distinct calls f x give different results. In other word, axiomatizing f as A → B
in Coq introduces an implicit functional requirement: f is observationally pure.
Having an implicit state is allowed only if the effect of this implicit state remains
hidden (e.g. for memoization). See [13] for details.

However, it may be difficult to ensure that a backend has no observable
side effects. In ours, a bug in GMP or zarith may break this requirement.
Furthermore, our proofs do not rely on the purity of backend functions. The
following describes the theory of impure computations we have formalized in
Coq in order to declare the backend functions as potentially impure. This theory
is inspired by simulable monads [14], but from which we drop the notion of
prophecy, because we are not interested in generating the backend from Coq.

5.1 May-Return Monads: A Simple Theory of Impure
Computations

Impure computations are Coq computations that may use external computa-
tions in Ocaml. For any Coq type A, we assume a type ?A to denote impure
computations returning values of type A. Type transformer “ ?. ” is equipped
with a monad:

– Operator bindA,B : ?A → (A → ?B) → ?B encodes Ocaml “let x = k1 in k2”
as “bind k1 λx.k2”.

– Operator unitA : A → ?A lifts a pure computation as an impure one.
– Relation ≡A: ?A → ?A → Prop is a congruence (w.r.t. bind) which represents

equivalence of semantics between Ocaml computations. Moreover, operator
bind is associative and admits unit as neutral element.

Last, we assume a relation �A: ?A → A → Prop and write “k � a” to denote
the property that “computation k may return a”. This relation is assumed to be
compatible with ≡A and to satisfy the following axioms:

unit a1�a2 ⇒ a1=a2 bind k1 k2�b ⇒ ∃a, k1�a ∧ k2 a�b

The theory of may-return monads is a very abstract axiomatization of impurity:
it does not provide any information about effects of impure computations. How-
ever, as our frontend only cares about results of backend functions, this theory
suffices to our needs. Hence, backend functions f of type A → B are simply
axiomatized in Coq as f : A → ?B.

Our frontend is parameterized by an implementation of may-return monads:
it does not depend on a particular model. Simple transformers over a global
state have a denotation in the state monad defined in Fig. 9, using S as type of
states. Even if building a model where any Ocaml computation is denoted is
complex [15] and beyond the scope of this work, this gives us confidence in our
frontend being correct when used with a side-effecting backend.
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Fig. 9. The state-transformer model of may-return monads

Fig. 10. A trivial implementation of the may-return monad

5.2 Extraction of Impure Computations

The may-return monad is useful to control Coq assumptions that would other-
wise be left implicit. However, it is of no other practical interest and is removed
at extraction time by providing the trivial implementation given on Fig. 10. The
extractor inlines these definitions so that the monad has no runtime overhead.

The trivial implementation of the may-return monad is also used to provide
a pure Coq interface to our abstract domain, by exposing that � is equality.
Although this partly puts the backend in the trusted computing base (TCB), this
was actually required to plug our library as an abstract domain of the analyzer
developed as part of the Verasco project [16].

5.3 Backward Reasoning on Impure Computations

Having introduced axioms for impure computations in Sect. 5.1, we sketch below
how we automate Coq reasonings about such computations, by using a weakest-
precondition calculus programmed as a Ltac tactic.

First, we define in Coq an operator wlpA : ?A → (A → Prop) → Prop such
that wlp k P � ∀a, k�a ⇒ (P a) expresses the weakest precondition ensuring
that any result returned by computation k satisfies postcondition P .

For example, let us consider a Coq function g that first calls an external f
returning a natural number of N and second, increments its result. We define
g x � bind (f x) λn.(unit n+1) and express the property that “g returns only
strictly positive naturals” as the goal “∀x, wlp (g x) λn.n �=0”. Our Ltac tactic
simplifies this goal into a trivial consequence of “∀n : N, n+1 �=0”.

This tactic proceeds backward on wlp-goals, by applying repeatedly lemmas
which are represented below as rules. It first tries to apply backward a decompo-
sition rule: one for unit or bind below, or one for pattern-matching over some
usual types (booleans, option types, product types, etc.). When no decomposi-
tion applies, the tactic applies Cut&Unfold. Actually, it tries to discharge the
left premise using existing lemmas; if this fails, the definition of wlp is simply
unfolded; otherwise, the goal is replaced using the right premise: the unfolding
is thus performed with a lemma injection in hypothesis.
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Decomp-unit

P a

wlp (unit a) P
Decomp-bind

wlp k1 λa.(wlp (k2 a) P )

wlp (bind k1 k2) P

Cut&Unfold

wlp k P1 ∀a, k�a ∧ P1 a ⇒ P2 a

wlp k P2

In our Coq development, this tactic automates most of the bureaucratic reason-
ing on first-order impure computations. For higher-order impure computations
(e.g. invoking a list iterator), equational reasoning is also needed.

6 Modular Construction of the Abstract Domain

We have described in the last two sections a basic interface to the abstract
domain of polyhedra. It is a restricted version of the interface described in Sect. 2:
the forward predicate transformer for assignment is missing, for example. The
gap between the low level interface, closer to what the backend provides, and
the fully-fledged interface, that our abstract domain offers to the user, is bridged
entirely in the Coq frontend. The extra functionality is provided through the
use of functors. Each functor takes an abstract domain and builds a richer one
while lifting the proofs as necessary. This decomposition makes the proofs more
manageable and modular.

The overall architecture of the abstract domain is pictured on Fig. 11. The
shaded left-hand side is the Coq frontend. Each of the pictured layers repre-
sents a functor. The untrusted backend stands on the right-hand side. While
communication between the two is represented by arrows, it reduces to function
calls in the extracted frontend code.

6.1 Building the Guard Operator

A first example of our modular construction of some abstract domain features is
the guard operator presented in Sect. 3. This operator p� c accepts an arbitrary
propositional formula as constraint c. However, the backend guard operator takes
only constraints of the form t �� 0, with ��∈ {=,≤, <} and t an affine term.

Fig. 11. Overview of the domain architecture



212 A. Fouilhe and S. Boulmé

The transformation from the more expressive guards to the basic guards is
performed by the frontend by the following steps:

1. Negations are eliminated using De Morgan’s laws on binary operators to
push negation inwards, eliminating double negations, and taking the dual
comparison on atomic formula.

2. Comparison �= is rewritten as a disjunction of strict inequalities.
3. On Z, t1 < t2 is rewritten as t1−t2+1 ≤ 0. This increases precision of our

polyhedra computations where all variables are in Q.
4. Disjunctions are over-approximated by joins.

For a guard p � c, our algorithm performs a number of polyhedra operations
that is linear in the number of operations in c. The functor which provides this
extended guard operator to an abstract domain featuring only a basic one also
contains the proof that the algorithm described above is sound.

6.2 Framing Potentially Constrained Variables

Generating fresh variables has many applications for program verification: han-
dling local variables, parameter passing during function inlining, implementing
the forward predicate transformer for assignment, etc. However, our Coq spec-
ifications of abstract domains do not provide any information about the set of
variables constrained by a polyhedron. Indeed, these loose specifications allow a
modular management of fresh variables: in particular, certification of low-level
operations presented at Sect. 3 is not intricated with fresh variables handling.

Hence, this section and the next one introduce generic abstract domains
(functors) gluing additional data about constrained variables to the value of an
underlying abstract domain. We certify these functors by expressing the invari-
ant of theses additional data through the concretization function of the newly
introduced domain. We now illustrate the necessity of this trick on a functor that
simply frames the variables constrained by an abstract value (e.g. a polyhedron).

Formally, if F is a set of variables, we note m ≡F m′ if and only if memories
m and m′ coincide on F . Then, given a polyhedron p, we say that F frames p if
and only if ∀m1∀m2, m1 ≡F m2 ⇒ ([[p]]m1 ⇔ [[p]]m2), and that x is free in p if
and only if {x′ | x′ �= x} frames p. An operator bnd(p) can then be defined such
that {x | x ≤ bnd(p)} frames p (variables are represented by positive integers).
This operator returns an upper bound β on the variables constrained by p: we
say that β bounds p. These definitions also apply to conditions and terms.

Operator bnd is provided by a new abstract domain P
bnd wrapping each

element p of the underlying domain into a pair (p, β) such that β bounds (p, β).
Operations of Pbnd are given Fig. 12.

Naive definitions of P
bnd fail to make provable the correctness of opera-

tions: property “∀(p, β) ∈ P
bnd, β bounds p” may not be preserved by the

operations of Fig. 12. For example, let us consider (p1, β1) bnd (p2, β2). We
expect (p1  p2,max(β1, β2)) to be a good candidate implementation, since if
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Fig. 12. Main operators of Pbnd

β1 bounds p1 and β2 bounds p2, then max(β1, β2) bounds both p1 and p2. How-
ever, max(β1, β2) may not bound p1 p2, as this somewhat contorted, yet correct,
implementation of p1  p2 shows when x is chosen above the bound 1:

p1  p2 �
{

x ≤ 0 if p1 = p2 = ⊥

 otherwise

Our solution consists in keeping the definitions given in Fig. 12, but changing
that of [[(p, β)]] so that it implies the property “β bounds (p, β)”. Given a concrete
memory m, we impose that variables above β are free in [[(p, β)]]m by quantifying
over any abstract memory m� that results from the arbitrary update of m on
these variables:

[[(p, β)]]m � ∀m�, m� ≡{ x | x≤β } m ⇒ [[p]]m�

6.3 Assignment with Buffered Renaming

The P
bnd functor can be used to over-approximate the forward predicate trans-

former of assignment. Indeed, it allows to introduce an auxiliary fresh variable
x0 which names the value of variable x before the assignment:

p[x := t] � (p[x←x0] � x= t[x←x0]) \x0 where x0�max(bnd(t),bnd(p))+1

However, our abstract domain uses the P
:= functor described below instead,

because it performs a lower amortized number of polyhedra renamings.
Functor P:= makes it possible to express relations between memory states in

the intermediary computations of the operators. This achieved by duplicating the
set of variable names: each variable x can be represented as x@0 or x@1. Of these
two representatives of x, the concretization imposes that exactly one refers to a
concrete memory cell. Similarly to what is done in P

bnd, the other representative
is arbitrarily updated in abstract memory m�. The concretization involves a
function σ that associates its current representative to each variable. It also
involves a function π that associates concrete x to both abstract variables x@0
and x@1, for all x.

[[(p, σ)]]m � ∀m�, m� ≡{ x� | x�=σ(π(x�)) } m ◦ π ⇒ [[p]]m�

In the P
:= functor, assignment to x switches the representative of x, instead

of renaming the variable in the underlying polyhedron as with P
bnd. Renamings
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from assignments are buffered until joins or inclusions, where they may even-
tually be performed (only when representatives of identical variables need to
be unified). Furthermore, two successive renamings on the same variable in the
buffer annihilate (by involution of representative switch).

This functor could be extended so as to buffer projections, which can then be
reordered to get smaller intermediate results (in terms of size of representation).
The decision to apply projections is delegated to the backend. In this version,
the functor introduces a unique representative at each assignment: a kind of SSA
form is thus computed on-the-fly in the abstract domain. This extension is not
implemented yet.

In conclusion, our modular treatments of assignment depart from [7]: this
results in more manageable proofs. In [7], projections are systematically delayed
until inclusion tests: we believe that the choice of when to apply projections
should be delegated to the backend.

7 Conclusion

We presented one solution to prove the correctness of an implementation of the
abstract domain of polyhedra using the Coq proof assistant. In this setting,
correctness reduces to inclusions of polyhedra which, through Farkas’s lemma,
makes a posteriori verification of results a convenient approach. As a result, our
domain is composed of an untrusted backend, to which most of the complex
computations are offloaded, and a Coq frontend which validates the results
produced by the backend. This work makes two main contributions.

On one hand, we consider the implicit requirements set when linking certi-
fied code to untrusted external code in the Coq proof assistant. This delicate
issue might be carefully considered by certification authorities for e.g. avionics.
We partly address it through a lightweight method for declaring the backend
functions to Coq in such a way that the proofs remain trustworthy even when
the backend is not functionally pure.

On the other hand, we show how communication between the frontend and
the backend can be reduced to certificates, which serve as build instructions
for the frontend. The certificate language induces a low coupling between the
frontend and the backend: the latter could implement relaxations of some oper-
ators [9,10] or use entirely different data structures without requiring changes
to the frontend. Although it does not make abstract domain development easier,
our approach reduces the impact of bugs.

The complete domain further distinguishes itself from previous work by inte-
grating certificate generation to the backend and by a more modular proof archi-
tecture. Experiments shows that it has comparable performance to non-certifying
state-of-the-art implementations [8].

The complete code is available on the Web, along with a demonstration
application, from http://www-verimag.imag.fr/∼boulme/vstte2014.html.

http://www-verimag.imag.fr/~boulme/vstte2014.html
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Abstract. The development of sophisticated termination criteria for
term rewrite systems has led to powerful and complex tools that pro-
duce (non)termination proofs automatically. While many techniques to
establish termination have already been formalized—thereby allowing
to certify such proofs—this is not the case for nontermination. In par-
ticular, the proof checker CeTA was so far limited to (innermost) loops.
In this paper we present an Isabelle/HOL formalization of an extended
repertoire of nontermination techniques. First, we formalized techniques
for nonlooping nontermination. Second, the available strategies include
(an extended version of) forbidden patterns, which cover in particular
outermost and context-sensitive rewriting. Finally, a mechanism to sup-
port partial nontermination proofs further extends the applicability of
our proof checker.

1 Introduction

Program verification aims to establish certain properties of pieces of software,
such as termination. But in presence of bugs it is often at least as important to
show the negative property by means of a counter-example or, more generally,
a disproof, such as a nontermination argument.

In this paper we consider term rewrite systems (TRSs) which constitute
a powerful means to express functional programs in a compact way, and are
thus a natural input format for program analysis. However, many programming
languages employ particular evaluation strategies that are to be considered in
program analysis. Thus also TRSs have to be analyzed with respect to spe-
cific strategies. In particular, a TRS which is nonterminating when ignoring the
strategy may still be terminating when the evaluation respects the strategy.

Sophisticated techniques to analyze termination of TRSs (under strategies)
have been developed and implemented in tools for automated termination analy-
sis like AProVE [6] and TTT2 [12]. However, these tools are complex and thus one
should not blindly trust them: ever so often some tool delivers an incorrect proof,
which remains undetected unless another prover gives the opposite answer on
the same TRS. Therefore, it is of major importance to independently certify the
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generated proofs, which can be done using various certifiers [3,4,21] that rely
on formalizations within some trusted proof assistant. Due to certification, bugs
have been revealed in termination tools that have gone unnoticed for years and
were easily fixed after they have been detected.

Our certifier for nontermination techniques is developed in the proof assistant
Isabelle/HOL [16], and a preliminary version was already described in [23], which
however was quite limited: only looping TRSs R could be treated, i.e., TRSs
which admit derivations of the form t →+

R C[tμ] for some term t, context C, and
substitution μ; and the only supported strategy was innermost. There are even
more severe restrictions for the other certifiers: [3] only supports loops without
strategy, and [4] does not support nontermination proofs at all.

In the meanwhile, we extended our repertoire of formalized nontermina-
tion techniques. It now covers techniques for nonlooping nonterminating TRSs.
Moreover, as strategy specification we now support an extended version of for-
bidden patterns [9], which generalizes many common strategies like (leftmost)-
innermost, (leftmost)-outermost, and context-sensitive rewriting [15]. Finally,
we also integrated a mechanism to support partial nontermination proofs, which
further increases the applicability of our certifier and led to the detection of a
severe soundness bug of AProVE, which has now been fixed.

We consider our contributions threefold. First and foremost, our extensions
significantly increased the number of certifiable nontermination proofs. Second,
on the theory level we could drastically simplify one of the algorithms for check-
ing nontermination using forbidden patterns, and relax the preconditions for
applying the technique of rewriting dependency pairs (cf. Theorem 14). Finally,
we illustrate how termination checkers can benefit from certification: we used
Isabelle’s code generator [10] to integrate the executable functions from our
certifier in TTT2, such that this tool is now able to automatically generate non-
termination proofs involving general forbidden pattern strategies. This nearly
doubled the number of generated nontermination proofs of TTT2.

The remainder is structured as follows. In Sect. 2 we give preliminaries. In
Sect. 3 we explain our formalization of loop detection involving forbidden pat-
terns. Afterwards, Sect. 4 deals with techniques that allow to disprove termi-
nation of nonlooping TRSs, namely the techniques of rewriting and narrowing
dependency pairs [7], the switch between innermost termination and termina-
tion [8], and a direct technique to disprove termination [5]. Experimental data is
provided in Sect. 5 where we also explain how we integrated forbidden patterns
in TTT2, and why and how we added support for partial nontermination proofs
to CeTA. We conclude in Sect. 6.

Our formalization is part of the Isabelle Formalization of Rewriting (IsaFoR)
which also includes our certifier CeTA [21]. Since IsaFoR contains every tiny detail
of each proof, in the paper we just highlight some differences between the formal-
ization and the paper proofs. Both IsaFoR and all details on our experiments are
available at http://cl-informatik.uibk.ac.at/software/ceta/experiments/ntcert/.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/ntcert/
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2 Preliminaries

We refer to [2] for the basics of rewriting. We use �, r, s, t, u, w for terms, f , g
for function symbols, x, y for variables, σ, μ, τ , δ for substitutions, i, j, k, n, m
for natural numbers, o, p, q for positions, C, D for contexts, and P, R for TRSs.
Here, substitutions are mappings from variables to terms, and tμ is the term t
where each variable x in t has been replaced by μ(x); contexts are terms which
contain exactly one hole � , t[·]p is the context that is obtained by replacing the
subterm t|p of t at position p by the hole �. The term C[t] is the term where
the hole in C is replaced by t. We write s � t if s = C[t] for some context C and
s � t if s � t and s �= t. A position p is left of q iff p = o i p′, q = o j q′, and i < j.
The set of positions in a term t is written as Pos(t) and ε denotes the empty
position. The set of variables is V, and V(t) are the variables within a term t.

A TRS R is a set of rewrite rules � → r. The rewrite relation of R at position
p is defined by t →R,p s iff t = C[�σ] and s = C[rσ] for some rule � → r ∈ R,
substitution σ, and context C with C|p = � . In this case, the term �σ is called
a redex at position p. The reduction is outermost iff there is no redex above p,
and it is innermost (denoted i→R,p) iff there are no redexes below p. We often
omit p and R in a reduction →R,p, if R is obvious from the context, and if p can
be chosen freely. A TRS is overlay iff all critical pairs of the TRS are due to root
overlaps, i.e., there are no rules �1 → r1 and �2 → r2 such that a non-variable
proper subterm of �1 unifies with �2. A TRS is locally confluent if every critical
pair (s, t) is joinable, i.e., there is some u such that s →∗

R u and t →∗
R u.

We write t →! s if both t →∗ s and s is in normal form w.r.t. →, i.e., there
is no u such that s → u. Strong normalization of → is denoted by SN (→), and
SN →(t) denotes that t admits no infinite derivation w.r.t. →. We sometimes write
SN R(t) instead of SN →R(t). A DP problem is a pair of two TRSs (P,R) where P
is a set of dependency pairs encoding recursive calls, and R is used to evaluate the
arguments between two recursive calls. A (P,R) chain is an infinite derivation of
the form s1σ1 →P,ε t1σ1 →∗

R s2σ2 →P,ε t2σ2 →∗
R . . . where each si → ti ∈ P.

The chain is an innermost chain, iff additionally tiσi
i→!

R si+1σi+1 is satisfied
for all i. A TRS R is (innermost) nonterminating iff SN (→R) (SN ( i→R)) does
not hold. A DP problem (P,R) is (innermost) nonterminating iff it admits an
(innermost) (P,R) chain or if R is (innermost) nonterminating.1

Since the paper describes the formalization on an informal level which does
not require deep knowledge of Isabelle, we omit an introduction to this proof
assistant here. The logic we are using is classical HOL, which is based on simply-
typed lambda-calculus, enriched with a simple form of ML-like polymorphism.

3 Forbidden Patterns

This section deals with checking whether a loop is indeed a loop with respect to
a particular evaluation strategy: Given a certificate containing a TRS R, a loop
1 In the literature (e.g., in [7]) a nonterminating DP problem is also called infinite. This

is the reason why in IsaFoR this property is defined as infinite-dpp.
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and some strategy, our proof checker CeTA can check whether there does indeed
exist an infinite R-rewrite sequence which adheres to this strategy.

To support a broad variety of strategies we consider forbidden pattern rewrit-
ing, which covers for instance innermost, outermost, and context-sensitive rewrit-
ing [9,15]. Hence the formalization of techniques for forbidden pattern strategies
has the significant advantage that a wide range of strategies can be treated by the
same formalism, so CeTA internally converts all outermost and context-sensitive
strategies into forbidden patterns before the certifier for nontermination proofs
is invoked, cf. certify-cert-problem in Proof Checker.thy. We give a motivating
example before recalling some preliminaries on forbidden pattern rewriting.

Example 1. Consider the following applicative TRS which models a buggy imple-
mentation of the map function, where ‘ denotes a binary infix application symbol,
and : the cons operator. In the recursive call one forgot to invoke tl on xs and
hence the TRS does not terminate.

map ‘ f ‘ xs → if ‘ (empty ‘ xs) ‘ nil ‘ (: ‘ (f ‘ (hd ‘ xs)) ‘ (map ‘ f ‘ xs))
hd ‘ (: ‘ x ‘ xs) → x if ‘ true ‘ t ‘ e → t empty ‘ (: ‘ x ‘ xs) → false

tl ‘ (: ‘ x ‘ xs) → xs if ‘ false ‘ t ‘ e → e empty ‘ nil → true

Without strategy there is a loop map ‘ f ‘ nil → C[map ‘ f ‘ nil)] for C = if ‘
(empty ‘ nil) ‘ nil ‘ (: ‘ (f ‘ (hd ‘ nil)) ‘ �) which definitely does not show the real
problem of map to the user: the loop ignores the common evaluation strategy for
if which disallows reductions in the then and else branches. Note that due to the
applicative setting this desired behavior is not expressible by a context-sensitive
strategy, but it can be modeled by a forbidden strategy, as shown in Example 3.

3.1 Background

Using forbidden pattern strategies one can specify that the position of any redex
may not be below (or above) certain patterns. In this way one can express out-
ermost (or innermost) strategies. We consider the following extended definition
of a forbidden pattern which allows for patterns with location R. This admits to
also express strategies like leftmost-outermost with special treatment for if.

Definition 2. A forbidden pattern is a triple (�, o, λ) for a term �, position
o ∈ Pos(�), and λ ∈ {H,A,B,R}. For a set Π of forbidden patterns the rela-
tion Π→ is defined by t Π→p s iff t →p s and there is no pattern (�, o, λ) ∈ Π
such that there exist a position o′ ∈ Pos(t), a substitution σ with t|o′ = �σ, and

• p = o′o if λ = H (here),
• p > o′o if λ = B (below), and

• p < o′o if λ = A (above),
• p is right of o′ if λ = R (right of).

Example 3. For the TRS in Example 1, the forbidden pattern strategy where Π
consists of (if ‘ b ‘ t ‘ e, p, λ) for all p ∈ {12, 2} and λ ∈ {H,B} has the intended
effect that reductions in the then and else branches are not allowed.
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A TRS R is forbidden-pattern nonterminating w.r.t. Π iff ¬SN (Π→), which
can be proven via forbidden pattern loops (Π-loops). To succinctly describe infi-
nite derivations that are induced by loops we use context-substitutions.

Definition 4 [22]. A context-substitution is a pair (C, μ) consisting of a context
C and a substitution μ. The n-fold application of (C, μ) to a term t, denoted
t(C, μ)n, is inductively defined as t(C, μ)0 = t and t(C, μ)n+1 = C[t(C, μ)nμ].

Fig. 1. Redexes left of pnq.

As an example for context-substi-
tutions, we refer to Fig. 1 which illus-
trates the term t(C, μ)3.

Context-substitutions allow to con-
cisely write the infinite derivation
induced by a loop t →+ C[tμ] as
t = t(C, μ)0 →+ t(C, μ)1 →+ . . . →+

t(C, μ)n →+ . . ..
To facilitate the certification of

loops under strategies, one needs to
analyze its constituting steps. In the
remainder of this section we will
consider a loop with starting term t,
context C and substitution μ with
C|p = � of the form

t = t(C, μ)0 = t1 →q1 t2 →q2

· · · →qm tm+1 = t(C, μ)1 (1)

A loop of the form (1) is a Π-loop iff the step ti(C, μ)n →pnqi ti+1(C, μ)n

respects the forbidden pattern strategy induced by Π for all i � m and all
n ∈ N. For instance, assuming that one of the loop’s redexes is t|q as illustrated
in Fig. 1, we need to know whether this position remains a redex w.r.t. to the
strategy, no matter how many contexts and substitutions are applied around t.

The problem of whether a loop constitutes a Π-loop is decidable. To this
end, the following notions from innermost and outermost loops are useful.

Definition 5 [20,22]. A matching problem is a pair (u � �, μ). It is solvable iff
there are n and σ such that uμn = �σ. An extended matching problem is a tuple
(D � �, C, t,M, μ) where M = {s1 � �1, . . . , sn � �n}. It is solvable iff there are
m, k, σ, such that D[t(C, μ)m]μk = �σ and siμ

k = �iσ for all i. If M = ∅, we
just omit it.

A set of (extended) matching problems is solvable iff some element is solvable.
Given a loop, in order to decide whether it indeed constitutes a Π-loop one
computes a set of (extended) matching problems which has no solution if and
only if the loop is indeed a Π-loop.
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3.2 From Forbidden Pattern Loops to Matching Problems

A rewrite step is a Π-step iff it adheres to every single pattern π ∈ Π. In fact a
loop (1) is a Π-loop if and only if the following key property holds for all choices
of π ∈ Π, t = ti, t′ = ti+1 and q = qi where 1 � i < m [24]:

Property 6. For a forbidden pattern π = (�, o, λ) and t →q t′ all reductions
t(C, μ)n →pnq t′(C, μ)n are allowed with respect to π, i.e., there are no n, o′,
and σ such that t(C, μ)n|o′ = �σ and pnq = o′o if λ = H, pnq < o′o if λ = A,
pnq > o′o if λ = B, and pnq is right of o′ if λ = R.

This property can be decided by a case analysis on λ, defining suitable sets of
(extended) matching problems for each case. In the following paragraphs we give
these sets for patterns of type (·, ·,R) and (·, ·,B). The other cases are similar,
details can be found in the formalization.

Forbidden Patterns of Type (·, ·,R). For patterns π = (�, o,R), it has to
be checked whether pnq occurs to the right of o′. There are four possibilities,
as illustrated in Fig. 1: (1) o′ ends in t, (2) o′ ends in a term tμk, (3) o′ ends
in a position of Ck, or otherwise (4) o′ ends in a position of Ckμk−1, for some
k � n. Let W(t) =

⋃
k∈N

V(tμk) denote the set of variables introduced by the
substitution μ when applied iteratively. Then each case can be covered by a set
of matching problems as follows:

Definition 7. Let MR,π denote the union of the following four sets:

MR,1 = {(u � �, μ) | q′ ∈ Pos(t), q′is left of q, and u = t|q′}
MR,2 = {(u � �, μ) | q′ ∈ Pos(t), q′is left of q, x ∈ W(t|q′), and u � xμ}
MR,3 = {(u � �, μ) | p′ ∈ Pos(C), p′is left of p, and u = C|p′}
MR,4 = {(u � �, μ) | p′ ∈ Pos(C), p′is left of p, x ∈ W(C|p′), and u � xμ}

For the formalization of patterns (·, ·,R), we first had to incorporate support
for the left-of relation on positions. However, the most effort was spent on the
case analysis, i.e., an induction proof showing that any position in a context-
substitution t(C, μ)n fits into one of the four cases.

Forbidden Patterns of Type (·, ·,B). For patterns π = (�, o,B) the position
o′o has to be strictly above the redex, i.e., pnq > o′o. Here two cases can be
distinguished: o′o may end in t, so o′o � pn, or it may end in some occurrence
of C, so o′o < pn (similar to cases (1) and (3) in Fig. 1).

In case of the former, o′o has finitely many possibilities to hit a position in t
above q. Thus, this case reduces to finitely many (·, ·,H) cases.

In the latter case, o′o is a non-hole position of Cn, i.e., pn > o′o (and hence
p > ε). We consider all possibilities for non-empty subcontexts D, and compute
a number n0 such that it suffices to consider the term t(C, μ)n0 in order to
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account for all loop iterations.2 A detailed analysis of these two cases leads to
the following sets of matching problems MB and EB:

Definition 8. The (extended) matching problems MB,π = MB,1 ∪ EB,2 are

MB,1 =
⋃

q̄<q

MH,(�,q̄,H)

EB,2 = {(D � �, Cμ, t(C, μ)n0μ, μ) | � � D � C, D|p′′ = � , p′′pn0 > o}

where MH,(�,q̄,H) refers to the H matching problem for t, q, and (C, μ), and n0

is, dependent on p′′, the minimal number satisfying |p′′| + n0|p| > |o|.
Unsolvability of the respective sets of (extended) matching problems is a

sufficient and necessary condition for Property 6:

Theorem 9 [24]. Let t →q t′ and let (C, μ) be a context-substitution such that
C|p = � . All reductions t(C, μ)n →pnq t′(C, μ)n are allowed with respect to the
pattern π = (�, o, λ) if and only if Mλ,π is not solvable.

As to be expected from the technical definitions, the soundness and complete-
ness results for the respective cases required a considerable amount of reasoning
about contexts and positions. We preferred contexts over positions whenever
possible: position reasoning tends to be tedious because one always needs to
ensure that they are valid in the term where they are to be used. For instance,
IsaFoR internally represents forbidden patterns as triples (�[·]o, �|o, λ) rather than
(�, o, λ) to avoid the obvious side condition o ∈ Pos(�). The amount of bureau-
cracy on valid positions required throughout the formalization was nevertheless
substantial. Apart from this, the proofs for all cases could be formalized along
the lines of the paper proof. For the case of B patterns the results crucially rely
on the new solving procedure for extended matching problems.

3.3 Deciding Solvability of Extended Matching Problems

Solvability of (extended) matching problems is known to be decidable [20,22],
and in [23] we already formalized and simplified the decision procedure for non-
extended matching problems. In the remainder of this section we present our
algorithm to decide solvability of extended matching problems—these problems
originate from the outermost loop checking procedure and are also required in
the case of forbidden patterns, cf. Definition 8.

As in [23], our proofs deviate from the paper proofs considerably and result
in a simplified decision procedure which we also integrated in termination tools.
For example, in AProVE we have been able to delete some sub-algorithms (180
lines) and replace them by a single line of code.

2 More precisely, n0 can be set to 0 if p = ε and to otherwise.
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The decision procedure in [22] works in three phases: first, any extended
matching problem is simplified to solved form; second, from the simplified match-
ing problem a set of (extended) identity problems is generated, and finally, solv-
ability of the identity problems is decided. We followed this general structure
in the formalization, and only report on the first and the third phase, since the
second phase was straightforward.

The algorithm for the first phase consists of a set of strongly normalizing
inference rules. It contains rules for decomposition and symbol clash as in a
standard matching algorithm3, but also incorporates rules to apply a (context-)
substitution in cases where a standard matching algorithm would fail.

Definition 10 [22, Definition 5]. Let MP = (D � �0, C, t,M, μ) be an extended
matching problem where M = {s1 � �1, . . . , sm � �m} and C �= �. Then MP is
in solved form iff each �i is a variable. Let Vincr,μ = {x ∈ V | ∃n : xμn /∈ V} be
the set of increasing variables.

We define a relation ⇒ which simplifies extended matching problems that are
not in solved form, so suppose �j = f(�′

1, . . . , �
′
m′).

(v) MP ⇒ ⊥ if sj ∈ V\Vincr,μ

(vi) MP ⇒ (Dμ � �0, Cμ, tμ, {siμ � �i | 1 � i � m}, μ) if sj ∈ Vincr,μ

(vii) MP ⇒ 	 if j = 0, D = �, and (M ∪ {t � �0}, μ) is solvable
(viii) MP ⇒ (C � �0, Cμ, tμ,M, μ) if j = 0, D = �, and (M ∪ {t � �0}, μ)

is not solvable

As in [23], where we formalized the inference rules for simplifying non-
extended matching problems, we implemented these rules directly as a function
simplify-emp-main using Isabelle’s function package [13]. In this way, we did not
have to formalize confluence of ⇒.

Note that for this function one faces the problem of getting it terminating
and efficient at the same time: if one has to recompute Vincr,μ in every iteration,
the function becomes inefficient; on the other hand, if one passes Vincr,μ using an
additional parameter (e.g., Vi) then the function is not necessarily terminating as
it is not guaranteed that Vi is indeed instantiated by Vincr,μ. To see this, suppose
the simplification algorithm is invoked on the problem (D � �, C, t, {x � c}, μ)
where μ is the empty substitution but Vi a set containing x. Then an application
of Rule (vi) immediately leads to a recursive call with the same arguments.

To solve this problem, in [23] it was proposed to write two functions: The main
soundness result is proven for a terminating but inefficient one where Vincr,μ gets
recomputed in every recursive call. A second, possibly nonterminating function
has Vi as additional argument and is proven to be equivalent to the first function
if invoked with the right arguments, i.e., in this case with Vi = Vincr,μ.

Although this solution leads to an efficient and sound implementation, it
imposes quite some overhead. First, one has to write the simplification algorithm
twice, and second one has to perform an equivalence proof of the two functions.

Therefore we propose a different solution for simplify-emp-main. The simple
idea is to pass the pair (μ, Vi) as an argument to simplify-emp-main, where this
3 Rules (i)–(iv) in [22, Definition 5], which are omitted here for brevity.
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pair is encapsulated in a new type with the invariant that Vi = Vincr,μ. Thus, in
the implementation one just has to provide selectors from the new type to both
μ and Vi, where it now suffices to write only one implementation of simplify-
emp-main. Moreover, the whole quotient construction—creation of the new type,
writing the selectors, reasoning about this new type—can conveniently be done
via the lifting and transfer-package of Isabelle [11]. Note that in the meantime
we also rewrote the simplification algorithm for matching problems in [23] using
the same idea, again by using lifting and transfer.

For the third phase where (extended) identity problems are to be solved,
we could of course reuse the algorithm for non-extended identity problems that
has been developed in [23]. However, we did not stick to the complicated algo-
rithm of [22] for extended identity problems, since it requires several auxiliary
algorithms and the soundness proofs are difficult or tedious to formalize. (The
whole description takes 3.5 pages in [22] where these pages do not even cover
all proofs.) Instead, we developed a new, partial algorithm which is easy to
implement and easy to formalize. In detail, we show that all extended iden-
tity problems that are constructed for forbidden patterns via simplify-emp-main
belong to a special class of extended identity problems where the context within
such a problem is large in comparison to the other terms. This class of problems
can easily be translated into non-extended identity problems via the following
mini-algorithm: an extended identity problem (D ≈ s, μ, C, t) is solvable iff the
identity problem (D[t] ≈ s, μ) is solvable, provided there is some i such that
C � sμi. For more details on (extended) identity problems and our new proofs
we refer to [22] and lemmas eident-prob-to-ident-prob and simplify-emp-main-
large-C within the theory Outermost Loops.thy.

4 Nonlooping Nontermination

While in the previous section we restricted ourselves to loops (though for every
forbidden pattern strategy), we now aim at possibly nonlooping nonterminating
TRSs, but only consider innermost strategies. More precisely, we consider the
variant of innermost rewriting which corresponds to Π→ where Π = {(�, ε,A) | � ∈
Q} for some set of terms Q. The corresponding rewrite relation is qrstep within
IsaFoR, and it generalizes rewriting without strategy (Q = ∅) and innermost
rewriting (Q = {� | � → r ∈ R}). To ease the presentation, in the paper
we just consider the special cases →R and i→R in the following. In total, we
discuss three different techniques which can be used to disprove termination
for nonlooping nonterminating TRSs. One disregards the strategy completely
(Sect. 4.1), one performs rewrite steps which may violate the strategy (Sect. 4.2),
and one directly constructs infinite possibly nonlooping derivations (Sect. 4.3).

4.1 Switching Between Innermost Termination and Termination

Example 11. Let R′ be a confluent overlay TRS which encodes a Turing machine
A via innermost rewriting. We assume that the computation starts in a constant
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tminit which represents the initial configuration of A. Now consider the TRS R =
R′ ∪ {run-again(x) → run-again(tminit)} where run-again is some fresh symbol.

Obviously, R is not innermost terminating: if A terminates in some final con-
figuration represented by a term t, then run-again(tminit) i→∗

R run-again(t) i→R
run-again(tminit) is an innermost loop. Otherwise, there is an infinite evaluation
of run-again(tminit) when trying to rewrite the argument tminit to a normal form.

Observe that in the first case, the derivation may be long and thus hard to
find, e.g., A may compute the Ackermann function; and in the latter case, there
might be no looping derivation at all.

However, disproving termination of R is simple when disregarding the strat-
egy: the loop run-again(tminit) →R run-again(tminit) is easily detected. Hence, for
nontermination analysis one tries to get rid of strategy restrictions, and indeed
there are known criteria where SN ( i→R) and SN (→R) coincide: for example,
locally confluent overlay TRSs fall into this class [8]. Thus, the simple loop
above constitutes a valid innermost nontermination proof.

We formalized the criterion of [8], though we did not follow the original proof
structure, but developed a simpler proof via dependency pairs [1]. To this end,
we first integrated a similar theorem for DP problems, as it is utilized in AProVE,
cf. switch-to-innermost-proc in Innermost Switch.thy.

Theorem 12. Let P and R be TRSs such that R is locally confluent and such
that there is no overlap between P and R. Then any (P,R) chain shows the
existence of some innermost (P,R) chain.

Theorem 12 can not only be used on its own—to switch from innermost
termination to termination for DP problems—but it can also be utilized to derive
Gramlich’s result to switch from innermost termination to termination for TRSs.

Theorem 13 [8]. Let R be some finite TRS, let there be infinitely many symbols.
If R is locally confluent and overlay, then ¬SN (→R) =⇒ ¬SN ( i→R).

Proof. Let P be the set of dependency pairs of R. If R is not terminating,
then by soundness of dependency pairs there must be some (P,R) chain. By
Theorem 12 we conclude that there also is some innermost (P,R) chain: R is
locally confluent by assumption and there is no overlap between P and R since
R is an overlay TRS. Finally, by completeness of dependency pairs we conclude
from the innermost chain that R must be innermost nonterminating. ��

The formalization of this proof was straightforward: IsaFoR already contained
the required results on critical pairs, confluence, and dependency pairs [18,21], cf.
switch-to-innermost-locally-confluent-overlay-finite in Innermost Switch.thy.

The formalization also reveals side conditions which one never finds in paper
proofs: Finiteness of R and an unbounded supply of function symbols are taken
for granted, but are crucial to construct fresh function symbols (fresh symbols
are required in order to build the set of dependency pairs). With more bureau-
cracy, one would be able to drop the condition that R is finite—by arguing that
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in an infinite reduction only countably many symbols can occur, and by imple-
menting Hilbert’s hotel one can always construct enough fresh symbols—but
since for certification we are only interested in finite TRSs, we did not spend
this additional effort.

In order to guarantee local confluence we had to provide new means for
checking joinability. Whereas in [18] the main algorithm was a comparison of
normal forms of s and t, this is no longer the best solution in our setting, since
R is usually nonterminating. To this end, we now offer a breadth-first-search
algorithm to check joinability. The certificate just has to set a limit on the
search depth which ensures termination of the algorithm.

In total, we can now easily certify innermost nontermination proofs like the
one for Example 11: the certificate just has to contain the looping derivation
run-again(tminit) →R run-again(tminit) and an indication in how many steps each
critical pair of R can be joined.

4.2 Rewriting and Narrowing Dependency Pairs

In this section we consider two techniques of [7] that allow to ignore the strategy
for one step. Given a DP problem (P,R), they replace one of the pairs s → t in
P by new ones which result from rewriting or narrowing s → t.

One advantage over the result from the previous subsection is that we only
need unique normal forms for the usable rules while previously we had to consider
the whole TRS. Here, the usable rules of a term t are any subset U(t) of R such
that whenever tσ i→∗

R s for some σ which instantiates all variables by normal
forms, then in this derivation all applied rules must be from U(t). There are
various estimations of usable rules where the simplest one is provided in [1].
The following theorem already generalizes [7, Theorem 31] which requires non-
overlappingness instead of unique normal forms.

Theorem 14. Let (P{s → t},R) be a DP problem and suppose t →R,p t′ with
rule � → r ∈ R and substitution μ. If for U = U(t|p) the rewrite relation i→U
has unique normal forms and there are only trivial critical pairs between � → r
and U then the following holds: if (P {s → t′},R) is innermost nonterminating
then (P  {s → t},R) is also innermost nonterminating.

In the formalization we closely followed the original paper proof where we
were able to slightly relax the preconditions: it is sufficient to consider the usable
rules with respect to all arguments of t|p instead of t|p itself. To check that U
has unique normal forms we use the following easy but sufficient criterion: if all
critical pairs of U at the root level are trivial then i→U is confluent and thus has
unique normal forms. The following TRS can be shown innermost nonterminat-
ing via Theorem 14, but it requires the more relaxed preconditions.

Example 15. Consider the TRS R consisting of R′ of Example 11 and the rules:

c(x, y) → x c(x, y) → y f(a) → f(c(a, tminit))



Certification of Nontermination Proofs 227

Note that the result from the previous subsection is not applicable, since the
system is not locally confluent. However, since U(a) = ∅ and U(tminit) = R′ is
confluent, we can rewrite the dependency pair f�(a) → f�(c(a, tminit)) to f�(a) →
f�(a) and obtain an obvious loop.

To certify such a nontermination proof, one only has to provide the rewrite
step that is performed and a nontermination proof for the modified problem. All
preconditions are automatically checked by CeTA.

The second technique considers narrowing of dependency pairs, where a rule
s → t ∈ P is first instantiated to sσ → tσ and subsequently tσ gets rewritten to
u, yielding a new rule sσ → u. Since instantiation is obviously correct for nonter-
mination analysis, completeness of narrowing is a straightforward consequence of
the completeness result for rewriting, cf. Rewriting.thy, Instantiation.thy,
and Narrowing.thy.

4.3 Nonterminating Derivations

To finally detect nontermination, one requires a technique which actually finds
infinite derivations. As stated before, one can consider loops t →+ C[tμ], how-
ever, there are also techniques which are able to detect a larger class of nonter-
minating derivations [5,17] which are both available in CeTA.

The idea in [5] is to derive pattern rules of the form s σn τ ↪→ t δn μ which
state that for each n there is a rewrite sequence sσnτ →+ tδnμ. To this end,
there are several inference rules which allow to derive pattern rules, and there is
a sufficient criterion when a pattern rule implies nontermination.

Example 16. Consider the following nonterminating TRS.

s(x) > 0 → true 0 > y → false

s(x) > s(y) → x > y f(true, x, y) → f(x > y, s(x), s(y))

It is nonlooping, as in the infinite derivation

f(true, s2(0), s1(0)) → f(s2(0) > s1(0), s3(0), s2(0))

→2 f(true, s3(0), s2(0)) → f(s3(0) > s2(0), s4(0), s3(0))

→3 f(true, s4(0), s3(0)) → . . .

it takes more and more steps to rewrite sn+1(0) > sn(0) to true when n is
increased. However, using the inference rules, one can first derive the pattern
rule (s(x) > s(y)) {x/s(x), y/s(y)}n {x/s(x), y/0} ↪→ true∅

n
∅ which states that

it is possible to rewrite each term sn+2(x) > sn+1(0) to true (∅ denotes the empty
substitution). And afterwards, it is easy to combine this pattern rule with the
rule for f to detect nontermination, again using the methods of [5].

To be able to certify this kind of nontermination proofs, in Nonloop.thy
we first proved correctness of all inference rules on an abstract level, e.g., where
substitutions are modeled as functions from variables to terms. In order to check



228 J. Nagele et al.

concrete proofs, in Nonloop Impl.thy we then introduced a datatype to repre-
sent proofs, i.e., sequences of inference steps, where also the type of substitutions
was changed from the abstract type to a list based representation.

Using this approach, most of the paper proofs have been easily integrated
into Isabelle. We here only report on some issues we had to solve during the
formalization. To this end, consider the following two inference rules of [5].

s ∅
n

∅ ↪→ t ∅
n

∅

s σn
∅ ↪→ t[z]p (σ ∪ {z/t[z]p})n {z/t|p}

if p ∈ Pos(t), s = t|pσ, z is fresh (III)

s σn
s μs ↪→ t σn

t μt

s (σsρ)n μs ↪→ t (σtρ)n μt

if δρ = ρδ for each δ ∈ {σs, μs, σt, μt} (VII)

One of the small problems we encountered is the underspecification in Rule
(III): the condition “z is fresh” does not contain the information w.r.t. which
other variables z has to be fresh—in the formalization this is clarified, namely
V(s) ∪ V(t) ∪ ⋃

x:σ(x) �=x({x} ∪ V(σ(x))).
Moreover, there have been several operations on substitutions which first had

to be defined, e.g. for domain renamings [5, Definition 3], one defines substitu-
tions like {xρ/sρ | x/s ∈ σ} where ρ has some further properties. Before showing
properties of this substitution, in the formalization we first had to prove that
this substitution is well-defined, i.e., that the properties of ρ ensure that xρ is
always a variable, and that there are no conflicting assignments.

Further operations on substitutions became necessary for certification. For
example, in Rule (VII) one has to check equality of substitutions. Here, it turned
out that checking equality of the lists which represent the substitutions was not
sufficient, as some correct proofs have been rejected by our certifier, e.g., since
[(x, t), (y, s)] �= [(y, s), (x, t), (x, t)], but both lists represent the same substitu-
tion {x/t, y/s}. Instead, we had to implement a function subst-eq which decides
whether two substitutions which are represented by lists are identical.

We finally remark on an extension of the original approach that was required
in the formalization: while the technique in [5] is presented on the level of TRSs,
the implementation in AProVE also applies the method on DP problems, where
in the inference rules one has to distinguish between P- and R-steps. Moreover,
AProVE also uses the following inference rule, which was not described in [5].

s σn
s μs ↪→ t σn

t μt

sσk
s σn

s μs ↪→ tσk
t σn

t μt

X (X)

All these extensions have been integrated in IsaFoR and CeTA.
The technique of [17] is quite similar to [5] in the sense that there are also

derivation patterns which can be derived via some inference rules, until some
pattern is detected which immediately implies nontermination. In fact, [5] is an
extension of [17] as the latter only considers string rewrite systems, i.e., TRSs
with only unary function symbols. But since it is currently unknown whether [5]
can fully simulate [17], we also formalized the technique of [17] directly, which
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was a relatively easy task: since everything in [17] works on strings, there was
no tedious reasoning on substitutions and renamings of variables required, cf.
Nonloop SRS.thy.

For certification we require the full inference tree that derives the final pat-
tern, where in each inference rule all parameters have to be specified. For exam-
ple, for (III) we explicitly require σ, p, and z; and for (VII) the substitution ρ
has to be provided. Moreover, for pretty-printing and early error detection we
require that every derived pattern is explicitly stated within the certificate.

5 Experiments and Partial Nontermination Proofs

We tested our certifier using the TRSs from the termination problem database
(TPDB 8.0.7). To be more precise, we considered all 596 first-order TRSs where
at least one tool in 2013 has generated a nontermination proof. In our experi-
ments, we tested the following termination tools which all print their proofs in
a structured proof format (CPF).

• AProVE’13 and TTT2’13 are the versions of AProVE and TTT2 that participated
in the certified category of the termination competition in 2013. Both tools
are restricted to nontermination techniques of [23].

• AProVE’14 is the current version of AProVE. It can even apply nontermination
techniques that are not supported by CeTA.

• TTT2’14 is the current version of TTT2.

Table 1. Experimental data.

AProVE’13 AProVE’14 TTT2’13 TTT2’14

# successful nontermination proofs 276 575 221 417

# certified proofs 276 563 221 417

# partially certified proofs – 12 – –

Table 1 clearly shows the significance of our formalizations: we doubled the
number of certifiable nontermination proofs for AProVE, and can now certify
98 % of the generated proofs.

Since AProVE’13, TTT2’13, and TTT2’14 use only techniques supported by
CeTA, it comes as no surprise that all these proofs were certified. In contrast, 12
proofs by AProVE’14 were refused as the applied nontermination techniques are
not available in CeTA, e.g., proofs for equational rewrite systems (modulo AC).

To still increase the reliability for these proofs, we added support for partial
proofs in CeTA. To be more precise, we added a proof technique called “unknown
proof” to CPF which logically states that the certifier may assume the impli-
cation ¬SN (a1) ∧ · · · ∧ ¬SN (an) =⇒ ¬SN (a0) where each ai may be some
arbitrary binary relation, including textual descriptions like “equational rewrite
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relation of . . . ” which are not formally specified. As a consequence, every tech-
nique that is not supported by CeTA can be exported as an unknown proof, and
then CeTA can still check all the proofs for the subgoals ¬SN (ai) with i > 0.

Using partial certification, CeTA can check in average 70 % of the proof steps
within each of the 12 partial proofs. Interestingly, due to the partial certification
capabilities of CeTA, we could even spot and fix one real soundness bug within
AProVE. In one example a terminating TRS R1 was transformed into a nonter-
minating TRS R2 although it was claimed that the termination behavior of R1

and R2 is equivalent. Since AProVE was not able to finally disprove termination
of R2—and hence there was no complete nontermination proof of R1—this bug
was only discovered due to partial certification, where even for incomplete proofs
every single nontermination technique could be checked by CeTA.

To support partial certification in CeTA, major restructuring was required.
Previously, there was a hierarchical structure of nontermination proofs where
the hierarchy was given by the input: nontermination proofs for DP problems
have been a leaf, proofs for TRSs have been the next layer, and proofs for relative
termination have been at the top of the hierarchy. However, now for every input
there is the “unknown proof” which may contain subproofs for all other inputs.
Therefore, the proof types for every input are modeled via one large mutual
recursive datatype (it is the datatype definition . . . -nontermination-proof at
the beginning of Check Nontermination.thy), which takes considerably more
time to process by Isabelle than the hierarchical sequence of non-mutual recur-
sive datatypes that we had before. Similarly, also all functions and proofs for the
overall certification procedure had to be defined and proven simultaneously for
all inputs. Whereas most of this adaptation was straightforward, we also encoun-
tered problems, that some packages in Isabelle do not support mutual recursion.
For example, in order to define our parser for CPF, we first had to add support
for mutual recursion to the partial functions package of [14]. We refer to [19] for
further details on this extension.

In order to obtain input examples for CeTA’s forbidden pattern loop check,
we integrated support for forbidden pattern loops into TTT2. More precisely, we
added a forbidden pattern loop check to the already present unfold strategy
which searches for loops. To that end, we exported IsaFoR’s loop checking proce-
dure to OCaml using Isabelle’s code generator. Though interfacing IsaFoR’s data
structures required some overhead, this proved to be a fast way to integrate
a reliable implementation in TTT2. Support of forbidden pattern loops allows
TTT2’14 to show nontermination of all those TRSs in our test set of 596 prob-
lems that feature an innermost, outermost, or context-sensitive strategy (197
problems in total), as well as Example 3. In total, by just integrating CeTA’s for-
bidden pattern loop check, we could nearly double the number of nontermination
proofs of TTT2’13: from 221 to 417, cf. Table 1.

6 Conclusion

In summary, we formalized several new nontermination techniques which cover
nonlooping derivations and looping derivations under strategies. In total this
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formalization increased the size of IsaFoR by around 10k lines. Due to our work,
CeTA is now able to certify the vast majority of nontermination proofs that are
generated by automated tools for TRSs.

Acknowledgments. The authors are listed in alphabetical order regardless of indi-
vidual contributions or seniority.
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Abstract. In this work we extend the Emerson and Kahlon’s cutoff
theorems for process skeletons with conjunctive guards to Parameter-
ized Networks of Timed Automata, i.e. systems obtained by an apri-
ori unknown number of Timed Automata instantiated from a finite set
U1, . . . , Un of Timed Automata templates. In this way we aim at giving
a tool to universally verify software systems where an unknown number
of software components (i.e. processes) interact with continuous time
temporal constraints. It is often the case, indeed, that distributed algo-
rithms show an heterogeneous nature, combining dynamic aspects with
real-time aspects. In the paper we will also show how to model check a
protocol that uses special variables storing identifiers of the participating
processes (i.e. PIDs) in Timed Automata with conjunctive guards. This
is non-trivial, since solutions to the parameterized verification problem
often relies on the processes to be symmetric, i.e. indistinguishable. On
the other side, many popular distributed algorithms make use of PIDs
and thus cannot directly apply those solutions.

1 Introduction

Software model-checking emerged as a natural evolution of applying model check-
ing to verify hardware systems. Some factors, among several ones, that still
make software model checking challenging are: the inherently dynamic nature
of software components, the heterogeneous nature of software systems and the
relatively limited amount of modular tools (both theoretical and practical) for
verifying generic software systems.

Software systems definable as an arbitrary number of identical copies of
some process template, are called parameterized systems, and are an example of
infinite state systems [17]. Sometimes the nature of a software system is hetero-
geneous, meaning that it combines several “characteristics” (e.g. a clock synchro-
nization algorithm is supposed to work with an arbitrary number of processes
but also to terminate within a certain time). The scarcity of modular tools is
witnessed by the fact that almost everyone trying to model check a software
system, has to build his/her own toolchain that applies several intermediate
steps (usually translations and abstractions) before building a model that can
be actually model checked.
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Despite such obstacles, several industries already apply model checking as
part of their software design and/or software testing stages. (e.g., Microsoft [8],
NASA [25], Bell Labs [20], IBM [9], UP4ALL1). In the aerospace industry, the
DO178C international standard [27] even consider software model checking (or
more generally, software verification) an alternative to software testing, under
suitable assumptions.

The core of our work is an extension of the Emerson and Kahlon’s Cutoff
Theorem [15] to parameterized and timed systems. Assuming a parameterized
system based on Timed Automata U1, . . . , Um that synchronize using conjunctive
Boolean guards, the cutoff theorem allows to compute a list of positive numbers
(c1, . . . , cm) such that, let φ be a given specification, then:

∀i ∈ [1,m].(∀ni ∈ [0,∞) . (U1, . . . , Um)(n1,...,nm) |= φ iff
∀ni ∈ [0, ci] . (U1, . . . , Um)(n1,...,nm) |= φ)

Intuitively, the proof shows that the cutoff configuration is trace equivalent to
each “bigger” system.

The contribution of this work is multifold, w.r.t. the aforementioned factors:
it reduces the problem of model checking an infinite state real-time software
system to model checking a finite number of finite state systems; it shows a con-
crete example of how to combine verification algorithms from distinct domains,
to verify what we call a heterogeneous software systems; the cutoff theorem
for real-time systems is a theoretical tool that can be applied as a first step
when verifying a parameterized and real-time algorithm. A second contribution
is methodological: this paper describes how to exploit the cutoff theorem to
model variables that store process identifiers (PIDs) of processes participating
to the distributed algorithm. This is non trivial, since the former relies on the
fact that processes should be symmetrical, thus indistinguishable. In order to
show this, we will use a popular benchmark protocol, viz. the Fischer’s protocol
for mutual exclusion. To the best of our knowledge, this is the first time that
the Fischer’s protocol has been verified using model checking techniques, for an
apriori unknown number of processes.

2 Related Work

Infinite State System. Timed Automata and Parameterized Systems are two
examples of infinite state systems [17]. In general, the problem of model checking
infinite state systems is undecidable [6]. A classic approach to overcome this
limitation, is to find suitable subsets of infinite state systems that can be reduced
to model checking of finitely many finite state systems, e.g. identifying a precise
abstraction (e.g. clock-zones for Timed Automata [10]). Other approaches are
based on the idea of finding a finite-state abstraction that is correct but not
complete, such that a property verified for the abstract system holds for the
1 http://www.uppaal.com/index.php?sida=203\&rubrik=92 URL visited on April’14.
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original system as well [7,14,19,30]. Some other approaches are based on the
idea of building an invariant representing the common behaviors exhibited by
the system [24]. When a given relation over the invariant is satisfied, then the
desired property is satisfied by the original system. Its limitation is that building
the abstraction or the invariant is usually not automatic.

Cutoffs for Parameterized Systems. Concerning the use of cutoff for model
checking parameterized systems, there exists two main approaches: computing
the cutoff number of process replications or the cutoff length of paths. The for-
mer consists in finding a finite number of process instances such that if they
satisfy a property then the same property is satisfied by an arbitrary number of
such processes. Emerson and Kahlon [15] established a cutoff value of about the
number of template states, for a clique of interconnected process skeletons. In
the case of rings, a constant between 2 and 5 is enough [18]. For shared resources
management algorithms [11], the cutoff value is the number of resources plus the
quantified processes (in the decidable fragment of processes with equal priority).
Other works proved that one process per template is enough, for certain grids
[26]. Recently, in [5] it has been showed that certain parameterized systems may
admit a cutoff which is not computable, while Hanna et al. [22] proposed a pro-
cedure to compute a cutoff for Input-Output Automata that is independent of
the communication topology. On the other hand, computing the cutoff length
of paths of a parameterized system consists in finding an upper bound on the
number of nodes in its longest computation path. When a property is satisfied
within the bounded path, then the property holds for a system with unbound
paths, i.e., with an arbitrary number of process instances. The classic work from
German and Sistla [19], Emerson and Namjoshi [16] proved that such a cutoff
exists for the verification of parameterized systems composed of a control process
and an arbitrary number of user processes against indexed ltl properties. Yang
and Li [29] proposed a sound and complete method to compute such a cutoff for
parameterized systems with only rendezvous actions. In that work, the property
itself is represented as an automaton. Lately it has been also showed that para-
meterized systems on pairwise rendezvous do not admit, in general, a cutoff [7].
To the best of our knowledge, cutoff theorems have not been stated previously
for timed systems. Surprisingly enough, extending Emerson and Kahlon cutoff
theorems [15] to timed systems does not increase the cutoff value.

Parameterized Networks of Timed or Hybrid Automata. The realm
of real-time systems (timed automata and, more in general, hybrid automata)
with a finite but unknown number of instances has been explored. Abdulla and
Jonsson [1] proposed in their seminal work to reduce safety properties to reach-
ability properties. They worked with a network composed by an arbitrary set of
identical timed automata controlled by a controller (i.e. a finite timed automa-
ton as well). Abdulla et al. show also that checking safety properties in net-
works of timed automata with multiple clocks is an undecidable problem [2],
as well as the problem of determining if a state is visited infinitely often, in
the continuous time model (in the discrete time model, instead, it is decidable)
[3]. It should be remarked that in their undecidability proof, the network of
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timed automata must rely on synchronous rendezvous in order to prove the
undecidability results. This motivated us to explore timed automata with dif-
ferent synchronization mechanisms in this work. Ghilardi et al. [13], reduced
model checking safety properties to reachability problem. Similarly to Abdulla
and Jonsson, they applied their approach to networks composed by an arbitrary
set of timed automata interacting with a controller. Their original contribution
consisted in the usage of Satisfiability Modulo Theories techniques. Göthel and
Glesner [21] proposed a semi-automatic verification methodology based on find-
ing network invariants and using both theorem proving and model checking.
Along the same line, Johnson and Mitra [23] proposed a semi-automatic verifi-
cation of safety properties for parameterized networks of hybrid automata with
rectangular dynamics. They based their approach on a combination of invariant
synthesis and inductive invariant proving. Their main limitation is that specifi-
cations are often not inductive properties (e.g. the mutual exclusion property it
is not an inductive property). In this case one must show that a set of induc-
tive invariants can imply the desired property. This last step is often not fully
automatic.

We consider systems composed of a finite number of templates, each of which
can be instantiated an arbitrary number of times. We limit Timed Automata
to synchronize using Conjunctive Guards, instead of the classic Pairwise Ren-
dezvous [10], because, as already mentioned, parameterized systems with pair-
wise rendezvous do not admit, in general, a cutoff [7]. Finally, the verification
proposed in this paper is completely automatic.

3 Parameterized Networks of Timed Automata

This work introduces Parameterized Networks of Timed Automata (PNTA),
an extensions of Timed Automata that synchronize using conjunctive Boolean
guards. We also introduce Indexed-Timed CTL�, a temporal logic that inte-
grates TCTL and MTL [12], for reasoning about timed processes, together with
Indexed-CTL�\X [15], for reasoning about parametric networks of processes. In
the following definition we will make use of a set of temporal constraints TC(Cl),
defined as:

TC(C) ::=� | ¬ TC(C) | TC(C) ∨ TC(C) |
C ∼ C | C ∼ Q

≥0

where ∼ ∈ {<,≤, >,≥,=}, C is a set of clock variables and Q denotes the set
of rational numbers.

Definition 1 (Timed Automaton Template). A Timed Automaton (TA)
Template Ul is a tuple 〈Sl, ŝl, Cl, Γl, τl, Il〉 where:

– Sl is a finite set of states, or locations;
– ŝl ∈ Sl is a distinguished initial state;
– Cl is a finite set of clock variables;
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– Γl is a finite set of Boolean guards built upon Sl;
– τl ⊆ Sl × TC(Cl) × 2Cl × Γl × Sl is a finite set of transitions;
– Il : Sl → TC(Cl) maps a state to an invariant, such that Il(ŝl) = �;

We will denote with |Ul| = |Sl| the size of the timed automaton. A network
of timed automata can be defined as a set of k TA templates, where each TA
template (say Ul) is instantiated an arbitrary number (say nl) of times.

Definition 2 (PNTA). Let (U1, . . . , Uk) be a set of Timed Automaton tem-
plates. Let (n1, . . . , nk) be a set of natural numbers. Then

(U1, . . . , Uk)(n1,...,nk)

is a Parameterized Network of Timed Automata denoting the asynchronous par-
allel composition of timed automata U1

1 || . . . ||Un1
1 || . . . ||U1

k || . . . ||Unk

k , such that
for each l ∈ [1, k] and i ∈ [1, nl], then U i

l is the i-th copy of Ul.

Let us remark that every component of U i
l is a disjoint copy of the corresponding

template component. In the following will be described how every process U i
l ,

also called instance, can take a local step after having checked that the neigh-
bors’ states satisfy the transition (conjunctive) Boolean guard. In such system a
process can check it is “safe” to take a local step, but it cannot induce a move on
a different instance. A PNTA based on conjunctive guards is defined as follows.

Definition 3 (PNTA with Conjunctive Guards). Let (U1, . . . , Uk)(n1,...,nk)

be a PNTA. Then, it is a PNTA with Conjunctive Guards iff every γ ∈ Γ i
l is a

Boolean expression with the following form:
∧

m∈[1,n1]
m �=i

(ŝl(m)∨s1l (m)∨· · ·∨sp
l (m)) ∧

∧

h∈[1,k]
h�=l

(
∧

j∈[1,nj ]

(ŝh(j)∨s1h(j)∨· · ·∨sq
h(j)))

where, for all l ∈ [1, k], i ∈ [1, nl] and p > 0, {s1l , . . . , s
p
l } ⊆ Sl, sl(i) ∈ Si

l and ŝl

is the initial states of Ul. The initial states ŝl(m) and ŝh(j) must be present.

We remark that our definitions of Timed Automaton template, PNTA and PNTA
with Conjunctive Guards are variants of the notion of timed automata and net-
works of timed automata found in literature (e.g. [10]).

The operational semantics of PNTA with conjunctive guards is expressed as
a transition system over PNTA configurations.

Definition 4 (PNTA Configuration). Let (U1, . . . , Uk)(n1,...,nk) be a PNTA.
Then a configuration is a tuple:

c = (〈s1, u1〉, . . . , 〈sk, uk〉)

where, for each l ∈ [1, k]:
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– sl : [1, nl] → Sl maps an instance to its current state, and
– ul : [1, nl] → (Cl → R

≥0), maps an instance to its clock function, s.t.

∀i . ul(i) |= Ii
l (sl(i)) (1)

C is the set of all the configurations.

Intuitively, let (. . . , 〈sl, ul〉, . . . ) be a configuration, then sl(i) ∈ Sl denotes the
state where instance U i

l is in that configuration. ul(i) is the clock assignment
function (i.e., ul(i) : Cl → R

≥0) of instance U i
l in that configuration. In other

words, for each c ∈ Cl, ul(i)(c) is the current value that the clock variable c
assumes for instance U i

l . Any assignment to such clock variables must satisfy
the invariant for the corresponding state (see Eq. (1)). The notion of transition
requires some auxiliary notations. Let l ∈ [1, k], and let i ∈ [1, nl], then we call:

– initial configuration
ĉ ∈ C such that, for each l ∈ [1, k], for each i ∈ [1, nk]:

sl(i) = ŝi
l, and

∀c ∈ Cl, ul(i)(c) = 0.
– projection

∀c = (〈s1, u1〉, . . . , 〈sl, ul〉, . . . , 〈sk, uk〉) ∈ C,
c(l) = 〈sl, ul〉, and
c(l, i) = 〈sl(i), ul(i)〉.

– state-component
∀c = (〈s1, u1〉, . . . , 〈sl, ul〉, . . . , 〈sk, uk〉) ∈ C,

state(c) = (s1, . . . , sl, . . . , sk),
state(c(l)) = sl, and
state(c(l, i)) = sl(i).

– clock-component
∀c = (〈s1, u1〉, . . . , 〈sl, ul〉, . . . , 〈sk, uk〉) ∈ C, ∀c ∈ Cl,

clock(c) = (u1, . . . , ul, . . . , uk),
clock(c(l)) = ul,
clock(c(l, i)) = ul(i), thus
clock(c(l, i))(c) = ul(i)(c).

– time increase
∀c ∈ Cl.∀d ∈ R

≥0.(ul + d)(i)(c) = ul(i)(c) + d
(clock(c) + d) = (u1 + d, . . . , ul + d, . . . , uk + d),
(clock(c(l)) + d) = (ul + d), and
(clock(c(l, i)) + d) = (ul + d)(i).

– clock reset
∀c ∈ Cl . ∀r ⊆ Cl . ∀j .

ul[(i, r) �→ 0](j)(c) =
{

0 if i = j and c ∈ r
ul(j)(c) otherwise

– clock constraint evaluation
ul(i) |= g iff the clock values of instance U i

l denoted by ul(i) satisfy the
clock constraint g; the semantics |= is defined as usual by induction on the
structure of g;
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– guard evaluation
state(c) |= γ iff the set of states of (U1, . . . , Uk)(n1,...,nk) denoted by state(c)
satisfies the Boolean guard γ; this predicate as well can be defined by induction
on the structure of γ.

Definition 5 (PNTA Transitions). The transitions among PNTA configura-
tions are governed by the following rules:

(delay)
c

d−→ c′ if d ∈ R
≥0

state(c′) = state(c)
clock(c′) = (clock(c) + d)
∀l, i, d′ ∈ [0, d].clock(c(l, i)) + d′ |= Ii

l (state(c(l, i)))
(synchronization)

c
γ−→ c′ if ∃l ∈ [1, k] .∃i ∈ [1, nl] :

s
g,r,γ−−−→ t ∈ τ i

l .
state(c(l, i)) = s,
clock(c(l, i)) |= g,
state(c) |= γ,
c′(h) = c(h) for each h �= l,
c′(l, j) = c(l, j) for each j �= i,
c′(l, i) = 〈t, clock(c(l, i))[(r, i) �→ 0]〉
clock(c′(l, i)) |= Ii

l (state(c
′(l, i))

Let us define what is a timed-computation for PNTA.

Definition 6 (Timed Computation). Let ĉ0 be an initial configuration, a
timed-computation x is a finite or infinite sequence of pairs:

x = (c0, t0) . . . (cv, tv) . . .

s.t. t0 = 0 and ∀v ≥ 0 . (∃d > 0 . cv
d−→ cv+1 ∧ tv+1 = tv + d) ∨ (∃γ . cv

γ−→
cv+1 ∧ tv+1 = tv)

In other words, a timed computation can be seen as a sequence of snapshots
of the transition system configurations taken at successive times. It should be
noticed that, according to Emerson and Kahlon [15], in this work, it has been
adopted the so-called interleaving semantics. This means that in a transition
between two configurations, only one instance can change its state (see the syn-
chronization rule in Definition 5). For the sake of conciseness, let us extend the
notion of projection, state-component, and clock-component to timed computa-
tions. Let x = (c0, t0) . . . (cv, tv) . . . be a timed computation, let xv = (cv, tv) be
the v-th element of x, then
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x(l) = (c0(l), t0) . . . (cv(l), tv) . . . clock(xv) = clock(cv)
x(l, i) = (c0(l, i), t0) . . . (cv(l, i), tv) . . . clock(xv(l)) = clock(cv(l))
xv(l) = (cv(l), tv) clock(xv(l, i)) = clock(cv(l, i))
xv(l, i) = (cv(l, i), tv)
state(xv) = state(cv) time(xv) = tv
state(xv(l)) = state(cv(l)) time(xv(l)) = tv
state(xv(l, i)) = state(cv(l, i)) time(xv(l, i)) = tv

x(l, i) is called the local computation of the i-th instance of automaton template
l. time(xv), time(xv(l)), and time(xv(l, i)) are the time-components of xv, xv(l),
and xv(l, i) respectively.

Definition 7 (Idle Local Computation). Let U i
l = 〈Si

l , ŝ
i
l, C

i
l , τ

i
l , I

i
l 〉 be the

i-th instance of the timed automaton template Ul. An idle local computation
ŝ(l, i) is a timed local computation such that, for all v ≥ 0:

ŝ(l, i) = (〈ŝi
l, ul(i)〉, t0) . . . (〈ŝi

l, ul(i) + tv〉, tv) . . .

ŝv(l, i) = (〈ŝi
l, ul(i) + tv〉, tv)

where t0 = 0 and for each c ∈ Cl, ul(i)(c) = 0.

It should be noticed that for each v, it must be ul(i) + tv |= Ii
l (ŝ

i
l), since

Ii
l (ŝ

i
l) = � according to Definition 1. Intuitively, an idle local computation is an

instance of the automaton template Ul that stutters in its initial state.

Definition 8 (Stuttering). Let x and y be two timed computations. Let x =
x0 · . . . · xv · xv+1 . . . The timed computation y is a stuttering of the timed com-
putation x iff for all v ≥ 0, there exists r ≥ 0, such that

y = x0 · . . . · xv · xv,δ1 · xv,δ2 · . . . · xv,δr · xv+1 . . .

where δ1, δ2, . . . , δr ∈ R
≥0, δ1 ≤ δ2 ≤ · · · ≤ δr, tv + δr ≤ tv+1, and

xv,δ1 = (〈state(xv), clock(xv) + δ1〉, tv + δ1)
xv,δ2 = (〈state(xv), clock(xv) + δ2〉, tv + δ2)
. . .
xv,δr = (〈state(xv), clock(xv) + δr〉, tv + δr)

Intuitively, the above definition means that a stuttering of a given timed compu-
tation x can be generated by inserting an arbitrary number of delay transitions
(see Definition 5) short enough to not alter the validity of temporal conditions
of the original computation x. It only represents a more detailed view (i.e. a
finer sampling) of the interval between a configuration and the next one without
changing the original sequence of states.

For the purpose of this work, timed computations conforming to Definition 6
(i.e. each configuration complies with Eq. (1)) can be classified in three different
kinds of computation:
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– Infinite Timed Computation: x is a timed computation of infinite length.
– Deadlocked Timed Computation: x is a maximal finite timed computation, i.e.

in it reaches a final configuration where all transitions are disabled.
– Finite Timed Computation: x is a (not necessarily maximal) final timed com-

putation, i.e. it is either a deadlocked computation or a finite prefix of an
infinite one.

4 A Temporal Logic for PNTA

A dedicated logic is needed in order to specify behaviors of a PNTA. This logic,
named Indexed-Timed-CTL�, allows to reason about real-time intervals and tem-
poral relations (until, before, after, . . . ) in systems of arbitrary size. While its
satisfiability problem is undecidable, the problem of model checking a PNTA is
proved to be decidable, under certain conditions.

Definition 9 (Indexed-Timed-CTL�). Let {Pl}l∈[1,k] be finite sets of atomic
propositions. Let p(l, i) be any atomic proposition such that l ∈ [1, k], i ∈ N

>0,
and p ∈ Pl. Then, the set of ITCTL� formulae is inductively defined as follows:

φ ::= � | p(l, i) | φ ∧ φ | ¬φ |
∧

il
φ | AΦ | AfinΦ | AinfΦ

Φ ::= φ | Φ ∧ Φ | ¬Φ | Φ U∼q Φ

where ∼ ∈ {<,≤,≥, >,=} and q ∈ Q
≥0.

As usual for branching-time temporal logics, the terms in φ denote state
formulae, while terms in Φ denote path formulae. For the purpose of this work
it is enough to assume the set of atomic propositions coincides with the set of
states of a given PNTA, i.e. Pl = Sl, for every l.

The path quantifier Afin (resp. Ainf) is a variant of the usual universal path
quantifier A, restricted to paths that are of finite length (resp. infinite length).
Such variants are inspired by [15]. Missing Boolean (∨,→, . . . ) operators, tem-
poral operators (G,F ,W, . . . ), as well as path quantifiers (E,Efin, Einf) can be
defined as usual. The semantics of ITCTL� is defined w.r.t. a Kripke Structure
integrating the notions of parametric system size and continuous time semantics
[12]. The continuous time model requires that between any two configurations
it always exists a third state. It is possible, though, introduce continuous time
computation trees [4]. Let us call s-path a function ρ : R≥0 → C that intuitively
maps a time t with the current system configuration at that time. The map-
ping ρ�t′ : [0, t′) → C is a prefix of ρ iff ∀t < t′.ρ�t′ (t) = ρ(t). The mapping
ρ	t′ : [t′,∞) → C is a suffix of ρ iff ∀t ≥ t′.ρ	t′ (t) = ρ(t). Let us take a prefix
ρ�t′ and an s-path ρ′, then their concatenation is defined as:

(ρ�t′ · ρ′)(t) =
{

ρ�t′ (t) if t < t′

ρ′(t − t′) else
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Let Π be a set of s-paths, then ρ�t′ · Π = {ρ�t′ · ρ′ : ρ′ ∈ Π}. A continuous time
computation tree is a mapping f : C → 2[R

≥0→C] such that:

∀c ∈ C.∀ρ ∈ f(c).∀t ∈ R
≥0 . ρ�t · f(ρ(t)) ⊆ f(c).

For the purpose of this work, here only s-paths defined over timed computations
will be considered.

Definition 10 (PNTA s-paths). For each timed computation x = (c0, t0) . . .
(cv, tv) . . . , let us call PNTA s-path the s-path ρ : R≥0 → C satisfying:

∀v.∀t ∈ [tv, tv+1) . ρ(t) = 〈s, c〉
where s = state(cv) and c = clock(cv) + t − tv.

It should be noticed that, according to the above construction, an infinite set
of timed computations can generate the same s-path ρ; let us denote such set by
tcomp(ρ). As a consequence, for each y ∈ tcomp(ρ), there exists x ∈ tcomp(ρ)
such that y is a stuttering of x (see Definition 8). The continuous semantics of
ITCTL� can be defined as follows.

Definition 11 (Satisfiability of ITCTL�). Let (U1, . . . , Uk)(n1,...,nk) be a
PNTA and c be the current configuration. Let φ denote an ITCTL� state for-
mula, then the satisfiability relation c |= φ is defined by structural induction
as follows:

c |= �
c |= p(l, i) iff p = state(c(l, i))
c |= φ1 ∧ φ2 iff c |= φ1 and c |= φ2

c |= ¬φ1 iff c � |= φ1

c |= Aφ1 iff ρ |= φ1, for all ρ ∈ f(c) and
(|ρ| = ω or deadlock(ρ))

c |= Ainfφ1 iff ρ |= φ1, for all ρ ∈ f(c) and |ρ| = ω
c |= Afinφ1 iff ρ |= φ1, for all ρ ∈ f(c) and |ρ| < ω
c |= ∧

il
φ(il) iff c |= φ1(il), for each il ∈ [1, nl]

ρ |= φ1 iff ρ(0) |= φ1

ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2

ρ |= ¬φ1 iff ρ � |= φ1

ρ |= φ1 U∼q φ2 iff for some t′ ∼ q,where ∼ ∈ {<,≤,≥, >,=}
ρ	t′ |= φ2, and ρ	t |= φ1 for all t ∈ [0, t′)

where |ρ| = ω (resp. |ρ| < ω, resp. deadlock(ρ)) denotes that the s-path ρ has
infinite length (resp. has finite length, resp. is deadlocked).

Note that a finite s-path is not necessarily deadlocked, since it can be a finite
prefix of some infinite s-path. When a given PNTA (U1, . . . , Uk)(n1,...,nk) satisfies
an ITCTL� state-formula φ at its initial configuration ĉ, this is denoted by

(U1, . . . , Uk)(n1,...,nk) |= φ
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Theorem 1 (Undecidability of ITCTL�). The satisfiability problem for
ITCTL� is undecidable.

Proof. The satisfiability problem for TCTL is undecidable [4]. TCTL is included
in ITCTL�, therefore the latter is undecidable.

In the next section we will call IMTL the fragment of ITCTL� having formulae
with the following forms:

∧
il

Qh(il), where Q ∈ {A,Afin, Ainf} and in h only
Boolean (∧ and ¬) and temporal (U∼q) operators are allowed. We will call IMITL
the subset of IMTL where equality constraints (i.e. U=q) are excluded.

5 Cutoff Theorem for PNTA with Conjunctive Guards

In this section we prove that a cutoff can be computed to make the PMCP of
PNTAs with conjunctive guards decidable, for a suitable set of formulae. The
system in which every template is instantiated as many times as its cutoff, will
be called the cutoff system. Given two instantiations I = (U1, . . . , Uk)(c1,...,ck)

and I ′ = (U1, . . . , Uk)(c
′
1,...,c′

k), such that all c′
i ≥ ci and at least one c′

j > cj , it
can be said that I ′ is bigger than I, written I ′ > I. The cutoff theorem states
that given a cutoff system I, for each I ′ > I, both I ′ and I satisfy the same
subset of ITCTL� formulae.

Theorem 2 (Conjunctive Cutoff Theorem). Let (U1, . . . , Uk) be a set of
TA templates with conjunctive guards. Let φ =

∧
il1 ,...,ilh

QΦ(il1 , . . . , ilh) where
Q ∈ {A,Ainf, Afin, E,Einf, Efin} and Φ is an IMTL formula and {l1, . . . , lh} ⊆
[1, k]. Then

∀(n1, . . . , nk).(U1, . . . , Uk)(n1,...,nk) |= φ iff
∀(d1, . . . , dk) � (c1, . . . , ck).(U1, . . . , Uk)(d1,...,dk) |= φ

where the cutoff (c1, . . . , ck) can be computed as follows:

– In case Q ∈ {Ainf, Einf} (i.e., deadlocked or finite timed computations are
ignored). Then cl = 2 if l ∈ {l1, . . . , lh}, and cl = 1 otherwise (i.e. l ∈
[1, k] \ {l1, . . . , lh}).

– In case Q ∈ {Afin, Efin} (i.e. finite timed computations, either deadlocked or
finite prefixes of infinite computations). Then cl = 1 for each l.

– In case Q ∈ {A,E} (i.e., infinite and deadlocked). Then cl = 2|Ul| + 1 if
l ∈ {l1, . . . , lh}; cl = 2|Ul| otherwise (i.e. l ∈ [1, k] \ {l1, . . . , lh}).
The proof of the Cutoff Theorem consists of three steps. The first step (Con-

junctive Monotonicity Lemma) shows that adding instances to the system does
not alter the truth of logic formulae. The second step (Conjunctive Bounding
Lemma) proves that removing an instance beyond the cutoff number, does not
alter the truth of logic formulae either. The third step (Conjunctive Truncation
Lemma) generalizes the Conjunctive Bounding Lemma to a system that has two
automaton templates with an arbitrary number of instances. The given proofs
can be generalized to systems with an arbitrary number of templates.
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Theorem 3 (Conjunctive Monotonicity Lemma). Let U1 and U2 be two
TA templates with conjunctive guards. Let Φ(1l) be an IMTL formula, with l ∈
{1, 2}. Then for any n ∈ N such that n ≥ 1 we have:

(i) (U1, U2)(1,n) |= QΦ(12) ⇒ (U1, U2)(1,n+1) |= QΦ(12)
(ii) (U1, U2)(1,n) |= QΦ(11) ⇒ (U1, U2)(1,n+1) |= QΦ(11)

where Q ∈ {E,Einf, Efin}.
A detailed proof of the theorem is in the extended version of this paper [28].

Intuitively, from any time computation x one can build a new time computation
y where each instance behaves as in x, except for a new instance of U2 that halts
in its initial state (remember that by definition the initial states don’t falsify
any conjunctive guard).

Theorem 4 (Conjunctive Bounding Lemma). Let U1 and U2 be two TA
templates with conjunctive guards. Let Φ(1l) be an IMTL formula, with l ∈ {1, 2}.
Then for any n ∈ N such that n ≥ 1 we have:

(i) ∀n ≥ c2.(U1, U2)(1,n) |= QΦ(12) ⇒ (U1, U2)(1,c2) |= QΦ(12)
(ii) ∀n ≥ c1.(U1, U2)(1,n) |= QΦ(11) ⇒ (U1, U2)(1,c1) |= QΦ(11)

where Q ∈ {E,Einf, Efin} and:

– c1 = 1 and c2 = 2, when Q = Einf;
– c1 = c2 = 1, when Q = Efin;
– c1 = 2|U2| and c2 = 2|U2| + 1, when Q = E.

Theorem 5 (Truncation Lemma). Let U1 and U2 be two TA templates with
conjunctive guards. Let Φ(1l) be an IMTL formula, with l ∈ {1, 2}, then:

∀n1, n2 ≥ 1.(U1, U2)(n1,n2) |= QΦ(12) iff (U1, U2)(n
′
1,n′

2) |= QΦ(12)

where Q ∈ {E,Einf, Einf}, n′
1 = min(n1, c1), n′

2 = min(n2, c2), and:

– c1 = 1 and c2 = 2, when Q = Einf;
– c1 = c2 = 1, when Q = Efin;
– c1 = 2|U2| and c2 = 2|U2| + 1, when Q = E.

The detailed proofs of Theorems 4 and 5 are given in the extended version
[28]. Thanks to the Truncation Lemma and the duality between operators A
and E, the Conjunctive Cutoff Theorem can be easily proved. The Cutoff The-
orem together with the known decidability and complexity results of the model
checking problems for various timed temporal logics [12] justify the following
decidability theorem.

Theorem 6 (Decidability Theorem). Let (U1, . . . , Uk) be a set of TA tem-
plates with conjunctive guards and let φ =

∧
il1 ,...,ilh

QΦ(il1 , . . . , ilh) where Q ∈
{A,Ainf, Afin, E,Einf, Efin} and {l1, . . . , lh} ∈ [1, k]. The parameterized model
checking problem (under the continuous time semantics)
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∀(n1, . . . , nk) � (1, . . . , 1).(U1, . . . , Uk)(n1,...,nk) |= φ

is:

– undecidable when Φ is an IMTL formula;
– decidable and 2-expspace when Φ is an IMITL formula;
– decidable and expspace when φ is a TCTL formula.

Proof. For the first two results, consider that the Cutoff Theorem reduces the
parameterized model checking problem to an ordinary model checking problem.
The latter is undecidable for MTL and is decidable and expspace-Complete (i.e.
DSPACE(2O(n)), for MITL [12]. Since the model has an exponential number
of states (i.e. n = 2|U |log(|U |), where U is the “biggest” template), the problem
is at most 2-EXPSPACE. Concerning the third statement, the TCTL model
checking problem is pspace-Complete [12]. Again, since the model has an expo-
nential number of states, the parameterized model checking problem is at most
expspace. A more detailed proof can be found in the extended version [28].

6 Case Study

We use the Fischer’s protocol for mutual exclusion to show how to model-check
a parameterized and timed systems. The protocol uses a single timed automa-
ton template, instantiated an arbitrary number of time. Figure 1 depicts such
template, where inv(b1) = (c ≤ k) [13]. In Fischer’s protocol every process (a)
reads and writes a PID from and into a shared variable, and (b) waits a constant
amount of time between when it asks to enter the critical section, and when it
actually does so. The Fischer’s protocol cannot be directly modeled in our frame-
work because of the shared variable. We will first abstract the variable into a
finite state system with conjunctive guards, and subsequently we will present
the results of our verification.

Abstracting Process Identifier. A variable can be modeled naively as an
automaton with the structure of a completely connected graph, whose vertices
denote possible assigned values (let us call V such model, see Fig. 2). The state
space can thus be infinite or finite, but even in the latter case it is usually too
big and makes the verification task unfeasible.

initstart b1 b2 cs
v = 0, c := 0 v := PID, c := 0 v = PID, c > k

v �= PID, c > k

v := 0

Fig. 1. Process in Fischer’s protocol as a Timed Automaton with integer variables



248 L. Spalazzi and F. Spegni

s0start

s1

s2

· · ·

Fig. 2. V: a shared variable

diffpidstart mypid

Fig. 3. W: a process-centric view of a
shared PID variable

An abstract shared variable for PIDs can be defined, under the assumptions:

– the variable only stores PID values;
– the variable is shared among all processes;
– every PID value overwrites the previous values of the variable itself;
– every process can compare the variable value only with its own PID value.

As in a predicate abstraction, we replace the shared variable with its process-
centric view. The latter has only two relevant states: it is either the same PID
as the process, or it stores a different one. We use W to denote such process
(see Fig. 3). Every process P is in a one-to-one relation with its own view of the
variable. We introduce a process template P ′ = P × W that results from the
synchronous product of the P and W . We could then model check a system P ′(n).
Doing this, we would probably obtain many spurious counter-examples, since two
processes could have their copy of W in state * Mypid. Since no variable can
store multiple values, this is impossible. Conjunctive guards, though, allow to
constraint the system in such a way that no two processes can be in a state of
the * Mypid group. This solution rules out the undesired spurious behaviors,
and is very convenient since it can be applied whenever an algorithm uses a
shared variable. We thus define P ′′ to be the refined version of P ′ represented in
Fig. 4 using the Uppaal notation. It is possible to show that the abstract system
simulates the concrete system, namely (P × V )(1,n) � (P × W )(1,n), for any
positive n.

Figure 4 depicts template P ′′. Some of the eight states resulting from the
product are not reached by any transition, and can thus be removed from the
model, implying a smaller cutoff. The model manipulation up to this point can
be completely automatized. We notice that it is safe to remove state b2 diff
and connect directly state b2 Mypid with Init Diff, obtaining the reduced
system in Fig. 5. Finally, let us remark that variable mypid in Figs. 4 and 5
is added to overcome Uppaal syntax limitations that cannot refer directly to
process states in guards and specifications. The reduced system has 4 states,
and thus the cutoff is 9.
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Fig. 4. P ′′ = (P × W ) + CG template Fig. 5. Reduced P ′′

Verification Results. Below are the formulae that have been model checked,
together with the required time and memory.2

Formula Outcome Time (s) Mem. (MB)

(1)
∧

i EF≥0 (CS mypid(i)) true 0.01 155.2

(2)
∧

i�=j AG≥0!(CS mypid(i) ∧ CS mypid(j)) true 30.1 155.2

(3)
∧

i AF≥0 (CS mypid(i)) false 0.59 155.2

Formula (1) checks that a process can enter its critical section, while (2)
checks the actual mutual exclusion property. Finally (3) states that a process
will always be able to enter its critical section. It is well known that while
the Fischer’s protocol ensures the mutual exclusion property (i.e. formulae (1)
and (2)), it also suffers from the problem of processes to possibly starve (i.e.
formula (3)).

7 Conclusions

In this work we presented the combined study of timed and parameterized sys-
tems. We proved that a cutoff exists for PNTA with conjunctive guards and
a subset of ITCTL� formulae. Moreover, the cutoff value is equal to the value
computed in Emerson and Kahlon’s work for untimed systems [15]. This proves
that the parameterized model checking problem is decidable for networks of
timed automata with disjunctive guards, for a suitable logic. We remark that
for timed systems, applying Theorem2 one obtains a considerably smaller cutoff
than applying the (untimed) Emerson and Kahlon’s cutoff theorem after reduc-
ing the original timed system to a finite state system by means of the traditional
region or zone abstractions.

Finally, we used the Fischer’s protocol for mutual exclusion as a benchmark
for showing how to apply the cutoff theorem. We claim that the use of conjunctive
2 The experiments were run on an Intel Core2 Duo CPU T5870 @ 2.0 Ghz with 4GB

RAM, OS Linux 3.13-1-amd64.
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guards is convenient for verifying systems based of shared variables, since they
naturally express the constraint that a variable can store only one value at any
time. As a follow-up of this work, we aim at two main goals: (a) finding more
algorithms for real-time and distributed systems that can be model checked using
our framework, and (b) extending the Emerson and Kahlon cutoff theorem also
to PNTA with Disjunctive Guards.
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Abstract. We introduce a refinement-based notion of correctness for
verification of interrupt driven real-time object code programs, called
timed refinement. The notion of timed refinement is targeted at verifica-
tion of low-level object code against high-level specification models. For
timed refinement, both the object code (implementation) and the specifi-
cation are encoded as timed transition systems. Hence, timed refinement
can be construed as a notion of equivalence between two timed transi-
tion systems that allows for stuttering between the implementation and
specification, and also allows for the use of refinement maps. Stuttering
is the phenomenon where multiple but finite transitions of the imple-
mentation can match a single transition of the specification. Refinement
maps allow low-level implementations to be verified against high-level
specification models. We also present a procedure for checking timed
refinement. The proposed techniques are demonstrated with the verifi-
cation of object code programs of six case studies from electric motor
control applications.

Keywords: Refinement-based verification · Verification of object code ·
Real-time verification · Stuttering bisimulations · Timed transition
systems

1 Introduction

Safety-critical embedded devices execute object code, and hence verification of
object code is imperative. In industry, verification of object code is primarily
achieved using testing. Interrupt-driven real-time object code programs can often
have behaviors that are very hard to emulate, capture, and analyze using only
testing-based methods. Inadequacy of industry processes to address this prob-
lem is evidenced by recent examples of buggy safety-critical embedded devices,
such as the Toyota Camry’s electronic throttle system (that could lead to unin-
tended acceleration) [19]. Another example is the medical device industry, which
is plagued with recalls due to software errors that are often deemed to cause
adverse health consequences or death [14,16].

We introduce a notion of refinement for the verification of real-time object
code programs, called timed refinement. The notion of timed-refinement is based
c© Springer International Publishing Switzerland 2014
D. Giannakopoulou and D. Kroening (Eds.): VSTTE 2014, LNCS 8471, pp. 252–269, 2014.
DOI: 10.1007/978-3-319-12154-3 16
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on the theory of Well Founded Equivalence Bisimulation (WEB) refinement [11].
WEB refinement can be construed as a notion of equivalence between two
transitions systems and is applicable for functional verification. However, WEB
refinement does not consider timing requirements and properties. Timed refine-
ment is a notion of equivalence between two timed transition systems (TTS)
that allows for stuttering between the implementation and specification, and also
allows for the use of refinement maps. Stuttering is the phenomenon where mul-
tiple but finite transitions of the implementation can match a single transition
of the specification. Refinement maps allow low-level implementations to be ver-
ified against high-level specification models. The incorporation of stuttering and
refinement maps allows for timed refinement to be applicable to the verification
of low-level real-time object code against high-level specification models. For
the case studies we verified, abstractions based on stuttering reduce
the size of the implementation TTS by at least 4 orders of magnitude
(Sect. 7). Our approach in theory is applicable to the verification of any real-time
object code, as long as the specification and object code are expressible as timed
transition systems.

The rest of the paper is organized as follows. First, we describe related work
in Sect. 2. We use case studies based on stepper motor control to describe and
demonstrate timed refinement. Section 3 describes stepper motor control. Back-
ground on WEB refinement is presented in Sect. 4. The notion of timed refine-
ment is introduced in Sect. 5. A procedure for checking timed refinement is given
in Sect. 6. Verification of case studies based on stepper motor control is described
in Sect. 7. Section 8 provides concluding remarks.

2 Related Work

Tools like UPPAAL [9] and Kronos [4] are based on timed automata [2], and
have been very successful in verification of real-time system-level models and
models of protocols. Another real-time system verification tool is Epsilon [6],
which is aimed at verifying communication protocols. Finding bugs in system-
level models is very useful in catching design bugs earlier on in the design cycle.
However, bugs can be introduced in the synthesis/implementation/compilation
process that generates object code. Our work is targeted at bridging the gap
between real-time high-level models and real-time object code. We are not aware
of prior work in formal techniques for verification of interrupt-driven real-time
object code.

Alur et al. have defined Bisimulation based equivalences for TTS [1], and
have proposed a method based on language inclusion for checking equivalence of
TTS. However, we are not aware of applications of this work for real-time object
code verification. Why do we extend the theory of WEB refinement for checking
equivalence of TTS? There has been a lot of previous work in developing theory
and optimized techniques for WEB refinement-based verification. By extending
the theory of WEB refinement to deal with TTS, our motivation is to leverage
these techniques and also exploit the properties of WEB refinement in object
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code verification. The very nice property of WEB refinement is that, it is enough
to reason about single steps of the implementation and specification. This can
be exploited in object code verification, by reasoning about one instruction at a
time. This property significantly reduces the verification burden. Also, our notion
of timed refinement is based on the ideas of stuttering segments and stuttering
transitions, which provides a natural way to abstract the implementation TTS
corresponding to the object code. Without using these abstractions, the number
of states and paths would explode (Sect. 7).

David et al. [5] have developed an UPPAAL-based tool to check refinement
between specifications of real-time systems. Boudjadar et al. [3] have developed a
bisimulation relation for real-time systems with priorities and provide a method
for encoding and verifying the problem using UPPAAL. The above refinement
approaches for real-time systems are targeted at high-level models and do not
consider stuttering and refinement maps. Since we incorporate stuttering and
refinement maps, our approach is unique in this regard and applicable to the
verification of low-level implementations such as object code.

Ray and Sumners have used a notion of refinement based on stuttering trace
containment to verify concurrent programs [15]. Their focus is on functional
verification and they do not consider real-time programs.

3 Stepper Motor Control

We use the example of stepper motor control to describe the notion of timed
refinement. A stepper motor is a brushless DC electric motor. Stepper motors
are widely used in commercial applications such as medical devices, computer
peripherals, robotics, machine tools, and process control [8,18], and many of
these applications are safety-critical. Current pulse applied to the motor gener-
ates discrete rotation of the motor shaft. A stepper motor can have 4 or 6 leads.
Consider a motor with 4 leads say a, b, c, and d. Then the following repeating
sequence of values to the leads causes the motor to spin: abcd = 1000, 0100, 0010,
0001, 1000 etc. There are other such repeating sequences that can cause a 4-lead
or 6-lead stepper motor to spin. Every next value in the sequence causes the
motor to rotate by a small angle. Thus a stepper motor can be controlled by
software (that generates the above sequence of values to the leads), executing
on a microcontroller that is interfaced with the motor. The time delay between
when each value in the sequence is generated, determines the speed of the motor.
The speed also depends on the angle the motor rotates at each step.

Fig. 1. Stepper motor control specification TTS
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Specification
Figure 1 shows a transition system (TS) specification for stepper motor control.
The TS has 4 states and captures the repeating sequence of values the soft-
ware controller must generate. The functionality of the controller is not fully
described unless the speed of rotation is specified. The speed is determined by
the time delay of each transition. The delay (d) of each transition is given by:
d = φ /6r, where, φ is the degree of rotation for each step of the motor, and r
is the rotational speed of the motor in rpm. In commercial applications, there
is typically a tolerance in the speed of the motor. For example, the expected
speed is 100 rpm, but it is acceptable for the speed to vary between 96 rpm and
104 rpm. This tolerance results in a lower limit and an upper limit (lb and ub)
on the delay of each transition. If φ = 1.8◦, then for this example, lb = 2.884 ms
(corresponding to speed 104 rpm) and ub = 3.125 ms (corresponding to speed
96 rpm). However, these timing requirements on the transitions cannot be incor-
porated in a transition system specification. Therefore, we use timed transition
systems for the specification.

Definition 1. A Timed Transition System (TTS) M is a 3-tuple 〈S, T, L〉, where
S is the set of states, T is the transition relation that defines the state transitions,
and L is a labeling function that defines what is visible at each state. T is of the
form 〈w, v, lb, ub〉, where w,v ∈ S and lb, ub ∈ �. lb and ub indicate the lower
bound and the upper bound on the time delay of the transition, respectively.

Figure 1 shows a timed transition system (TTS) specification for stepper
motor control. The timing requirements are marked on the transitions with lb =
2.884 ms, and ub = 3.125 ms.

Implementation
Our target is to verify the stepper motor object code control program. The
implementation model is obtained by generating a function for each instruction
that describes the effect of the instruction on the state of the microcontroller.
The state of a microcontroller includes the registers and memory of the micro-
controller. The set of all such functions (one for each instruction) and the initial
state of the microcontroller defines the TS model of the implementation. Note
that this set includes the instructions in interrupt service routines of the inter-
rupts that the program uses. Each instruction is also associated with a lower
bound and an upper bound on the instruction execution time. We note here
that there are many techniques and tools for timing analysis, and to determine
WCET and BCET [20]. Our goal in this work is not timing analysis, but func-
tional and timing verification. Also, note that on the specification side, the lower
and upper delay bounds indicate requirements. On the implementation side, the
delay bounds are an estimate of the lower limit and upper limit of the execution
time of the instruction/transition. The delay bounds on the implementation side
are used to verify if the implementation satisfies the timing requirements of the
specification.
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Fig. 2. Implementation TTS

Figure 2 shows an example TTS that is an implementation of the stepper
motor specification TTS shown in Fig. 1. Note that times are not shown in the
figure due to space limitations. We use this example to introduce the notion of
timed refinement. First, we describe the notion of WEB refinement.

4 Background: WEB Refinement

A formal and detailed description of WEB refinement is provided in [10,11]. Here,
we give a brief overview of the key features. As stated earlier, in the context of
refinement, both the implementation and specification are treated as transition
systems. Informally, the implementation behaves correctly as given by the speci-
fication, if every behavior of the implementation is matched by a behavior of the
specification and vice versa. However, the implementation and specification may
not have the same transition behavior. For example, the stepper motor object
code control program (the implementation) may take several steps (or transi-
tions) to match a single transition of the stepper motor control specification TS.
This phenomenon is known as stuttering. To account for such situations, multi-
ple but finite transitions of the implementation system are allowed to match a
single transition of the specification system.

Another issue is that to check equivalence, specification states and imple-
mentation states need to be compared. However, these states can look very
different. In the stepper motor specification, each state is a four bit value. How-
ever, the implementation state in this example includes registers and memory in
the microcontroller. WEB refinement employs refinement maps, functions that
map implementation states to specification states, to bridge this abstraction gap.
Below is the definition of WEB.

Definition 2. [11] B ⊆ S × S is a WEB on TS M = 〈S, T, L〉 iff:

(1) B is an equivalence relation on S; and
(2) 〈∀s, w ∈ S :: sBw :: L(s) = L(w)〉; and
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(3) There exist functions erankl : S × S → N, erankt : S → W,

such that 〈W, �〉 is well-founded, and
〈∀s, u, w ∈ S :: sBw ∧ sTu ::

(a) 〈∃v :: wTv ∧ uBv〉∨
(b) (uBw∧erankt(u) � erankt(s))∨
(c) 〈∃v :: wTv ∧ sBv ∧ erankl(v, u) < erankl(w, u)〉〉

In the third condition, case (b) denotes stuttering on the specification side
and case (c) denotes stuttering on the implementation side. For timed refinement,
we ignore stuttering on the specification side (we do not consider case (b)). For
object code verification, stuttering rarely occurs on the specification side as the
implementation (object code) typically has a much larger number of transitions
(millions) when compared with the specification. To check WEB refinement,
it is enough to reason about single transitions of the implementation and the
specification. Next is the definition of a WEB refinement.

Definition 3. [11] (WEB Refinement) Let M = 〈S, T, L〉, M ′ = 〈S′, T ′, L′〉,
and r : S → S′. We say that M is a WEB refinement of M ′ with respect to
refinement map r, written M ≈r M ′, if there exists a relation, B, such that
〈∀s ∈ S :: sBr(s)〉 and B is a WEB on the TS 〈S  S′, T  T ′,L〉, where
L(s) = L′(s) for s an S′ state and L(s) = L′(r(s)) otherwise.

Refinement is a compositional notion as given by the following theorem [12].
Below, Mc ≈r Mb denotes that Mc is a WEB refinement of Mb; and r; q denotes
composition, i.e. (r; q)(s) = q(r(s)).

Theorem 1. [12] (Composition for WEB Refinement) If Mc ≈r Mb and Mb ≈q

Ma then Mc ≈r;q Ma.

5 Timed Refinement

The correct functioning of the stepper motor control program depends also on
whether it meets the timing requirements of the specification. The notion of
WEB refinement does not consider time. We introduce the notion of timed
refinement that accounts for timing requirements in the context of refinement.
We define timed refinement in the context of timed transition systems (TTS).

If there is no stuttering between the implementation TTS (MI) and the
specification TTS (MS), every step of MI should match a step of MS , and the
delay of an implementation step should “match” the delay of the corresponding
specification step. By “match” we mean the following should be satisfied:

lbs ≤ lbi ≤ ubi ≤ ubs
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where, lbs, ubs, lbi, and ubi are the lower and upper delay bounds on corre-
sponding specification and implementation steps, respectively. If stuttering is
involved, which is the case for the stepper motor example (and would be the
case for most real world examples), then the requirements on the relationship
between MI and MS is more complicated. The reason being that with stuttering,
multiple but finite steps of MI can match a single step of MS . Also, the number
of stuttering steps in each situation is arbitrary and depends on the behavior of
the implementation that we want to verify.

Timed refinement is based on the idea that the implementation TTS MI

satisfies the timing requirements of its specification TTS MS , if in every case,
the delay between the previous time that MI made progress w.r.t. MS and the
next time MI makes progress w.r.t. MS , matches the time delay required for MS

to make that progress.

Fig. 3. Example comparing implementation and specification transitions.

We illustrate further with the example in Fig. 3. In the figure, if step 1 of
the implementation matches step 1 of the specification, and step 4 of the imple-
mentation matches step 2 of the specification, then steps 2 and 3 are stuttering
steps of the implementation. Also, steps 1 and 4 of the implementation are
non-stuttering steps. Progress on the implementation side corresponds to the
non-stuttering steps. For this example, the following should be satisfied.

lb2s ≤
4∑

n=2

lbn
i ≤

4∑

n=2

ubn
i ≤ ub2s

In the above and in the following discussions, in lbn and ubn, superscript n
indicates transition n. We now formalize the idea of timed refinement. In defining
a timed refinement between an MI and an MS , we assume that a refinement
relationship already exists between the two. In practice, what this means is that
verification of timed refinement is preceded by verification of WEB refinement.
Since the refinement relationship has been established and a witness refinement
map exists, we can then identify the stuttering and non-stuttering transitions of
the implementation TTS MI . This information is captured in a Marked TTS,
which is defined below,

Definition 4. A Marked TTS MM is a TTS where every transition of the TTS
is marked with a label st or nt, indicating that the transition is a stuttering
transition or a non-stuttering transition, respectively.
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Transitions of a marked TTS are of the form 〈w, v, lb, ub,m〉 where m ∈
{st, nt}. The general theory of WEB refinement allows for stuttering to occur
on the implementation side and the specification side. In practice, we rarely
encounter situations in which the specification stutters. Therefore, we make the
assumption that only the implementation can have stuttering steps. Hence a
marked specification TTS MM S corresponding to a specification TTS MS , is one
in which every transition is a non-stuttering transition and is marked with nt.

Definition 5. A marked implementation TTS MM I of TTS MI w.r.t a marked
specification TTS MM S is a marked TTS where for every transition of MM I

of the form 〈w, v, lb, ub,m〉, if r(w) = r(v), then m= st, else m=nt. r is the
refinement map used to establish that MI is a WEB refinement of MS.

MM I will satisfy the timing requirements of the corresponding MM S , if every
time the implementation makes progress (non-stuttering step), then the sum of
the delay of the non-stuttering step and the delays of all preceding stuttering
steps matches the delay of the corresponding specification step. Note that there
may be many paths in the implementation that lead to a specific non-stuttering
step. All these paths individually should satisfy the timing requirements of the
corresponding specification step. We call these finite paths as stuttering seg-
ments, which are defined below. Note that in the following discussions, we omit
the delay bounds from T, if the delay bounds are not relevant for the discussion.

Definition 6. A stuttering segment (π) of a non-stuttering step 〈wa, wb〉 of an
MM I is a sequence of steps of MM I{〈wn−1, wn−2〉, 〈wn−2, wn−3〉, ..., 〈w2, w1〉,
〈w1, wa〉, 〈wa, wb〉}, such that:

1. For all i such that 2 ≤ i ≤ n − 1, 〈wi, wi−1〉 is a stuttering step of MM I .
2. 〈wn, wn−1〉 is a non-stuttering step of MM I .
3. 〈w1, wa〉 is a stuttering step of MM I .

Fig. 4. Stuttering segment

The above definition is illustrated in Fig. 4. Note that the least length of a
stuttering segment is one. This occurs when a non-stuttering step is preceded by
another non-stuttering step. The stuttering segment then only consists of one
transition which is the non-stuttering step. Also, a non-stuttering step can have
many stuttering segments. For the TTS shown in Fig. 2, the stuttering segments
of 〈7, 4〉 are:

1. {〈22, 1〉, 〈1, 5〉, 〈5, 6〉, 〈6, 7〉, 〈7, 4〉}
2. {〈22, 1〉, 〈1, 8〉, 〈8, 9〉, 〈9, 10〉, 〈10, 11〉, 〈11, 12〉, 〈12, 7〉, 〈7, 4〉}.
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The idea of stuttering segments when combined with suitable abstractions for
timed refinement verification significantly mitigates the path explosion problem
that is often encountered in verification of interrupt driven control programs.
The reason being that verification is reduced to analyzing stuttering segments.

Definition 7. MI is a timed refinement of MS if:

1. MI is a WEB refinement of MS w.r.t. refinement map r.
2. Let MMI be the marked TTS of MI w.r.t. MS. Then, for every non-stuttering

transition of MMI 〈wa, wb〉, and for every stuttering segment π of 〈wa, wb〉,
the following should be satisfied:

lb〈r(wa),r(wb)〉
s ≤

∑

p∈π

lbp
i ≤

∑

p∈π

ubp
i ≤ ub〈r(wa),r(wb)〉

s

The notion of timed refinement given above is bisimilar in nature, even
though it is not defined in a symmetric manner. If the specification had a behav-
ior that was not matched by the implementation, the implementation would not
be a WEB refinement of the specification and hence would not be a timed refine-
ment of the specification. Note that for WEB refinement, an implementation
state cannot be related to more than one specification state (as the refinement
map is a function used to relate implementation states to specification states).
So once we have established WEB refinement, we don’t need to check the other
direction for timed refinement.

WEB refinement is a compositional notion (see Sect. 4). We derive a similar
property for timed refinement. Below, Mc �r Mb denotes that Mc is a timed
refinement of Mb using refinement map r; and r; q denotes composition, i.e.
(r; q)(s) = q(r(s)). Let MM c←b

I denote the marked MI of Mc w.r.t. Mb. For the
following discussion, let Mc �r Mb and Mb �q Ma.

Lemma 1. If 〈w, v〉 is a non-stuttering transition of MM c←a
I , then 〈w, v〉 is a

non-stuttering transition of MM c←b
I .

Proof. If 〈w, v〉 is a non-stuttering transition of MM c←a
I , then q(r(w)) �= q(r(v)).

This implies that r(w) �= r(v), which implies that 〈w, v〉 is a non-stuttering
transition of MM c←b

I . �

Lemma 2. If 〈w, v〉 is a stuttering transition of MM c←a
I , then 〈r(w), r(v)〉 is

a stuttering transition of MM b←a
I .

Proof. We have that Mb �q Ma. Therefore, for 〈r(w), r(v)〉 to be a stuttering
transition of MM b←a

I , we need q(r(w)) = q(r(v)). We have that 〈w, v〉 is a
stuttering transition of MM c←a

I , which implies that q(r(w)) = q(r(v)). �

Lemma 3. If π is a stuttering segment of MM c←a
I , then π can be partitioned

into m (m ≥ 1) segments π1, π2, ..., πm, such that π1, ..., πm are stuttering seg-
ments of MM c←b

I .
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Proof. From the definition of stuttering segments, we know that every stutter-
ing segment π is preceded by a non-stuttering transition (say tp) and the last
transition in π is also a non-stuttering transition (say tl). Since π is a stuttering
segment of MM c←a

I , from Lemma 1, we get that tp and tl are non-stuttering
transitions of MM c←b

I . The other transitions of π may or may not be non-
stuttering transitions of MM c←b

I . If m of the transitions in π are non-stuttering
w.r.t. MM c←b

I , then these m non-stuttering transitions and the preceding stut-
tering transitions will result in m stuttering segments of MM c←b

I . �

Theorem 2. (Composition for Timed refinement) If Mc �r Mb and Mb �q Ma

then Mc �r;q Ma.

Proof. To show that Mc �r;q Ma, there are two conditions. First condition is
that Mc ≈r;q Ma. Since Mc �r Mb → Mc ≈r Mb and Mb �q Ma → Mb ≈q Ma,
from Theorem 1 we get Mc ≈r;q Ma.

Proof of second condition (see Definition 7 for second condition): Without
loss of generality, consider any non-stuttering transition of MM c←a

I say 〈wa, wb〉
and the corresponding stuttering segment π. Every stuttering segment is pre-
ceded by a non-stuttering transition (say 〈wc, wd〉). From Lemma 2, we have
that π can be partitioned into m stuttering segments of MM c←b

I : π1, ..., πm. Let
t1, t2, ..., tm be the non-stuttering transitions of Mb corresponding to the m stut-
tering segments. Since Mc�rMb, each of these m stuttering segments individually
will satisfy the timing requirements of the corresponding non-stuttering transi-
tions of Mb. Therefore, π will satisfy the sum of all the timing requirements of
t1, t2, ..., tm. Note that tm is 〈r(wa), r(wb)〉. From Lemma 1 tm:〈r(wa), r(wb)〉 is a
non-stuttering transition of MM b←a

I . The corresponding non-stuttering transi-
tion in Ma is 〈q; r(wa), q; r(wb)〉. Also, from Lemma 2, t1, t2, ..., tm−1 are stutter-
ing transitions of MM b←a

I and t1, t2, ..., tm−1 is preceded by the non-stuttering
transition 〈r(wc), r(wd)〉 of MM b←a

I . Therefore, t1, t2, ..., tm is a stuttering seg-
ment of MM b←a

I . Since Mb �q Ma, t1, t2, ..., tm will satisfy the timing require-
ments of 〈q; r(wa), q; r(wb)〉. Therefore, stuttering segment π of MM c←a

I will
satisfy timing requirements of 〈q; r(wa), q; r(wb)〉. Second condition is proved,
we have: Mc �r;q Ma. �

6 Checking Timed Refinement

Timed refinement verification is performed in three steps. The first step is to
verify that the implementation TTS (MI) is a WEB refinement of the specifica-
tion TTS (MS). The second step is to compute Marked MS (MMS) and Marked
MI (MMI) using information from the WEB refinement proof. The third step
is to discharge the remaining proof obligations of timed refinement, which is
to compute all the stuttering segments of MMI and check that the stuttering
segments satisfy the timing requirements of MMS .

The proof obligations for the WEB refinement verification were generated
manually and discharged using a decision procedure. The details are described in
Sect. 7. The second step is straightforward, which is to identify the non-stuttering
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and stuttering transitions of MI and mark them as such to get MMI . How-
ever, when computing MMI , we also abstract the implementation TTS. A brief
overview of this abstraction is provided in Sect. 7. We do not delve into the
details of the abstraction in this paper. The abstraction is required as otherwise,
the number of states and transitions of the implementation TTS will explode.

Algorithm 1. Procedure For Checking Timed refinement

1: procedure CheckTimedRef(MMI ,MMS , r)

2: for all t : 〈w, v, lb, ub,m〉 ∈ RI do

3: if m = nt then

4: sseg-list[0] ← t;

5: sseg-set ← {〈FALSE, 0, sseg-list〉};
6: repeat

7: termination-condition ← TRUE; sseg-set’ ← sseg-set;

8: for all sseg:〈sseg-complete, sseg-length, sseg-list〉 ∈ sseg-set’ do

9: if ¬sseg-complete then

10: tp : 〈wp, vp, lbp, ubp,mp〉 ← sseg-list[sseg-length];

11: sseg-set ← sseg-set/sseg;

12: for all tq : 〈wq , wp, lbq , ubq ,mq〉 ∈ RI do

13: if mq = nt then

14: sseg-set ← sseg-set ∪{〈TRUE, sseg-length, sseg-list〉};
15: else

16: sseg-list[sseg-length + 1] ← tq ;

17: sseg-set ← sseg-set ∪{〈FALSE, sseg-length+1, sseg-list〉};
18: termination-condition ← FALSE;

19: until termination-condition

20: for all 〈sseg-complete, sseg-length, sseg-list〉 ∈ sseg-set do

21: for all 〈ws, vs, lbs, ubs,ms〉 ∈ RMMS
do

22: if (ws = r(w)) & (vs = r(v)) then

23: if ¬(lbs ≤∑sseg−length
i=0 lbi ≤∑sseg−length

i=0 ubi ≤ ubs) then

24: return sseg-list;

We have developed a procedure for the third step (given in Algorithm1),
which checks the remaining timed refinement proof obligations. The input to
the timed refinement verification procedure is a list of transitions of MMI , a list
of transitions MMS , and the refinement map used for the WEB refinement proof
(which is a list of implementation states and the specification states they map
to). Each transition will include information about the delay of the transition
(lower bound and upper bound), and whether the transition is a stuttering or
non-stuttering transition.

The procedure iterates through the non-stuttering transitions of MMI (lines
2 and 3). The procedure computes all the stuttering segments for each non-
stuttering transition. sseg-set is the set of all stuttering segments corresponding
to transition t. A stuttering segment is recorded in the list of transitions sseg-list.
The stuttering segments are stored in sseg-set as a three tuple: 〈sseg-complete,
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sseg-length, sseg-list〉. sseg-complete is a flag that keeps track of whether the
computation of the stuttering segment is complete. sseg-length keeps track of
the length of the stuttering segment as it is computed. Lines 7–18 are repeated
until all the stuttering segments are computed. During the procedure, sseg-set
stores the partially computed stuttering segments.

The procedure then iterates through the partially computed stuttering seg-
ments (lines 8–9). For each partially computed stuttering segment, the procedure
looks at all incoming transitions to the tail of the segment (tp) in line 12. If there
are n incoming transitions, the partially computed stuttering segment will split
into n partially computed stuttering segments. Thus the partially computed stut-
tering segment is removed from sseg-set (line 11). If the incoming transition is a
non-stuttering transition, then the stuttering segment is complete as it is (line
14). Then sseg-complete is set to TRUE and the stuttering segment is added to
sseg-set. If the incoming transition is a stuttering transition, the transition is
added to the tail of the partially computed stuttering segment and added to the
sseg-set (lines 16–18).

As an example, the stuttering segments of 〈7,4〉 (in Fig. 2) are {〈7,4〉, 〈6,7〉,
〈5,6〉, 〈1,5〉, 〈22,1〉} and {〈7,4〉, 〈12,7〉, 〈11,12〉, 〈10,11〉, 〈9,10〉, 〈8,9〉, 〈1,8〉, 〈22,1〉}.
The procedure then computes the sum of the lower time delays and upper time
delays for each of the stuttering segments in sseg-set. Based on the refinement
map, every non-stuttering transition of the implementation maps to a transition
of the specification. The procedure then checks that the total of the lower time
delays and the total of the upper time delays for each stuttering segment of a non-
stuttering transition lie within the lower bound delay and the upper bound delay of
the corresponding specification transition (lines 21–22). For example, if the refine-
ment map maps implementation state 7 to specification state s0 and implementa-
tion state 4 to specification state s1, then the non-stuttering transition 〈7,4〉 maps
to the specification transition 〈s0,s1〉. The procedure will check that total delays
of every stuttering segment of 〈7,4〉 lie within the delay bounds of 〈s0,s1〉. The
stuttering segments that violate this requirement are counter examples. The pro-
cedure will output these stuttering segments (line 24). If no violations are found,
timed refinement is verified. We now show completeness of the procedure.

Lemma 4. For all stuttering transitions 〈w, v〉 of MMI , there exists a function
rank : SI → N such that rank(v) < rank(w) iff MMI does not have stuttering
cycles.

Proof. ⇒: We prove this by contradiction. Consider that MMI has a stuttering
cycle. Then, it is not possible to assign a natural number value to every state in
the cycle such that the value decreases for every transition in the cycle. Therefore,
there will be at least one transition in the stuttering cycle for which rank(v) <
rank(w) is not satisfied.

⇐: Consider the directed graph corresponding to MMI , where states are
the vertices and transitions are the directed edges. We now remove all the non-
stuttering transitions from RI . Since there are no cycles of stuttering transitions,
the resulting graph should be a set of DAGs. Natural number values can now be
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assigned to all the nodes in each DAG such that the value decreases for every
transition. This assignment of values is a witness rank function that satisfies
rank(v) < rank(w) for all stuttering transitions. �

Theorem 3. (Completeness) If MI ≈r MS, then Procedure CheckTimedRef
will complete for inputs MMI , MMS, and r.

Proof. If MI ≈r MS , then from the definition of WEB refinement and the defi-
nition of Marked MI (MMI), we have that there exists a function rank : SI →
N such that rank(v) < rank(w) for all stuttering transitions of MMI . From
Lemma 4, MMI has no stuttering cycles. The repeat loop (lines 6–19) termi-
nates only when all partially computed stuttering segments eventually hit a
non-stuttering transition when tracing backward in RI . Since RI has no stut-
tering cycles and is left total, Procedure CheckTimedRef will complete. �

Theorem 4. The time complexity of the CheckTimedRef procedure is O(|RI |3).
Proof. Let ni, ns, nss, and ni−ns, be the number of transitions of MMI , number
of transitions of MMS , number of stuttering segments of MMI , and number of
non-stuttering transitions of MMI . The outer for loop starting in line 2 has ni

passes. If initially the transitions of MMI were classified as stuttering and non-
stuttering transitions, the outer loop starting in line 2 can be reduced to ni−ns

passes. The initial classification would add an ni to the running time.
Each run of the repeat loop (line 6) increases the length of the partially com-

puted stuttering segments by 1. Therefore, the repeat loop has as many passes
as the maximum length of all stuttering segments of MMI (max(ss-length)).
The deletion in line 10 is (max(ss-length)). The for loop in line 8 has nss passes
and the for loop in line 12 executes ni times. So the running time of lines 6–19
is max(ss-length)nssni.

The loop starting in line 20 executes nss times and the inner loop in line 21
executes ns times. Therefore, the complexity of lines 20–24 is nssns. Therefore,
taking into consideration that the outer loop in line 2 executes ni−ns times and
adding up all the components we get the complexity of the procedure to be:
ni + ni−nsnssnimax(ss-length) + ni−nsnssns. Since we consider only stuttering
on the implementation side, the number of transitions of the implementation
ni > the number of transitions of the specification ns. Therefore, the complexity
of the procedure reduces to ni−nsnssnimax(ss-length). In the worst case, if all
transitions are non-stuttering transitions, ni−ns = ni. Also, there would not
be any stuttering transitions. Therefore, max(ss-length) = 1. Also, number of
stuttering segments would be equal to the number of transitions: nss = ni.
ni = |RI |, therefore, the time complexity of the CheckTimedRef procedure is
O(|RI |3). �

7 Verification of Stepper Motor Control Case Studies

A stepper motor with 4 leads can be stepped in two different ways based on
how the leads are energized. When the following four values are applied in a
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repeating sequence to the leads: 〈0001〉, 〈0010〉, 〈0100〉, 〈1000〉, 〈0001〉, ..., it
is known as full stepping. Instead if the following eight values are applied in a
repeating sequence to the leads: 〈0001〉, 〈0011〉, 〈0010〉, 〈0110〉, 〈0100〉, 〈1100〉,
〈1000〉, 〈1001〉, 〈0001〉, ..., it is known as half stepping.

A stepper motor can be controlled by a micro-controller. We used the ARM
Cortex-M3 based NXP LPC1768 [7] micro-controller for stepper motor control.
Four pins from PORT 2 of the LPC1768 are connected to the stepper motor
leads via an electronic circuit. The value of these 4 pins are determined by bits
28–31 of the FIOPIN register.

Case Study 1–Interrupt Driven Full Stepping Stepper Motor Control:
Stepper motor control with full stepping is implemented with the Repetitive
Interrupt Timer (RIT), which is a timer present in the LPC1768. The controller
microcode enables the RIT unit and also a register that RIT has to store a
constant value. Then the code enters a while loop. The RIT has a counter which
increments every clock cycle. When the counter reaches the value stored in the
RIT register, an interrupt is generated. As soon as the interrupt is generated,
the counter is reset to 0 and flow of control changes to the RIT interrupt service
routine (ISR). In the RIT ISR, the FIOPIN register is updated to the next
value of the leads required for full stepping, and then returns control to the
main program. The RIT constant register value is initialized such that the delays
between consecutive interrupts generated by the RIT matches the delay required
between full stepping control states. Also, this delay determines the speed at
which the motor runs.

Case Study 2–Interrupt Driven Half Stepping Stepper Motor Control:
The control is similar to the mechanism used for case study 1. The RIT unit is
employed here also. The ISR is modified to update the FIOPIN register based
on half stepping control instead of full stepping control.

Case Study 3–Full Stepping Stepper Motor Control without Inter-
rupts: For this case study, full stepping control is implemented without using
interrupts. The delay required between full stepping control states is achieved
using for loops with a large number of iterations. The number of iterations of the
for loop is determined so that the time required by the microcontroller to exe-
cute the for loop matches the delay required between full stepping control states.
The drawback with this approach is that if the control program performs other
functions and has enabled other interrupts, it may not be possible to guarantee
accurate speed of the motor.

Case Study 4–Half Stepping Stepper Motor Control without Inter-
rupts: For this case study, the delay required between half stepping control
states is achieved using for loops with a large number of iterations, instead of
interrupts.

Case Study 5–Interrupt Driven Variable Speed Full Stepping Step-
per Motor Control: The RIT unit is used to implement full stepping control.
However, the motor has 3 speed modes and in each mode the motor runs at
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a different speed. The modes can be changed based on input from a keyboard,
which acts as an external interrupt. When any key on the keyboard is pressed, an
interrupt is generated (different from the RIT interrupt). The keyboard input is
processed to change the speed of the motor. Note that since the control program
supports 2 interrupts, the RIT interrupt is given the higher priority.

Case Study 6–Interrupt Driven Variable Speed Half Full Stepping
Stepper Motor Control: 3 mode variable speed is implemented using half
stepping. The input from keyboard (which acts as an external interrupt) and
RIT interrupt are also employed here, with the RIT interrupt having higher
priority.

WEB Refinement Verification: For all the six case studies, WEB refinement
verification was performed using the Bit-level Analysis Tool (BAT) [13], which is
a decision procedure for the theory of bit-vectors with arrays. Note that some of
the proof obligations were encoded in SMT-LIB v2 language [17] and discharged
using the z3 SMT solver [21]. For the WEB refinement verification, we encoded
the specification TTS and the implementation TTS in the input language of the
BAT tool. For the WEB refinement proof, timing information is not required
and was not included in the descriptions of the implementation and specifica-
tion TTS. The implementation TTS consisted of the instruction functions (see
Sect. 3) and the initial state of the micro-controller registers and memory. The
next step is to construct a refinement map, which is the function that maps
implementation states to specification states. The refinement map for the case
studies is the function that extracts bits 28–31 of the FIOPIN register, as these
4 bits are connected to the leads of the stepper motor and directly determine the
state of the stepper motor.

Each instruction function corresponds to one or more transitions of the imple-
mentation TTS. We verified that each of the instruction functions satisfies the
WEB refinement correctness formula (see Sect. 4). The proof obligations were
encoded in the BAT language and checked using the BAT decision procedure.
Many instructions corresponded to more than one transition. In most cases, all
the transitions corresponding to an instruction were similar and could be verified
together using symbolic states and symbolic simulation. For some instructions,
there is more than one case. An example of this is instructions whose execution
could be altered by the RIT or other interrupts. For such situations, we handled
the cases separately. We had two verification obligations, one for the case where
the interrupt occurs and one for the case where the interrupt does not occur.
Note that the non-stuttering transitions corresponded to only those instructions
that updated the FIOPIN register. All other instructions corresponded to stut-
tering transitions. For the proof, we used pre-conditions and post-conditions to
propagate the required hypothesis for each of the proof obligations.

Timed Refinement Verification: We implemented the CheckTimedRef pro-
cedure (see Sect. 6) as a tool. The tool takes as input, transitions of abstracted
MMI , transitions of MMS , and the refinement map. The marked implementa-
tion TTS of a real-time control program will have a very large number of states
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Table 1. Verification statistics

Case Model Proof Refinement # of Transitions of # of Transitions

study size size verif. time [sec] MM I of abstract MM I

1 2,173 10,171 4.30 2.5 million 83

2 3,232 16,018 7.23 4.5 million 135

3 1,151 6,606 2.47 45 million 103

4 1,989 11,861 4.10 81 million 184

5 3,519 17,556 9.73 17.5 million 276

6 5,625 27,854 16.13 32 million 430

and transitions. Hence, this marked TTS cannot be input directly to the timed
refinement verification procedure. We use a number of techniques to abstract
MMI . The abstractions are based on the control flow graph of the object code
program. Sets of states and sets of transitions corresponding to an instruction
are abstracted as symbolic states and symbolic transitions. A basic block con-
sisting of a sequence of stuttering transitions is abstracted as one stuttering
transition with a delay which is the sum of the delays of the transitions in the
sequence. Loops consisting of only stuttering transitions are replaced with one
transition that mimics the delay of the loop. Use of these abstractions resulted
in tractable and efficient verification of the stepper motor microcode control case
studies. In future work, we plan to formalize and provide correctness proofs for
the abstractions used.

Table 1 shows the verification statistics for the 6 case studies. The verifica-
tion experiments were performed on a Intel(R) Celeron(R) CPU 540 1.86GHz
processor with an L2 cache of 1MB. The “Model Size” column gives the number
of lines of the implementation model in the input language of the BAT tool. The
“Proof Size” column gives the number of lines of BAT code for all the WEB
refinement proof obligations (includes the implementation model and the spec-
ification model). The refinement verification time column gives the total time
required to discharge all the WEB and timed refinement proof obligations. The
table also gives the approximate number of transitions of the imple-
mentation TTS MMI and the number of transitions of the abstracted
MMI . As can be seen from the table, abstractions based on stuttering
transitions and stuttering segments significantly reduce the number of
transitions of the implementation TTS making object code verification
feasible. We found several bugs both functional and timing. Below we describe
one functional bug (found during WEB refinement verification) and one timing
bug (found during timed refinement verification).

Functional Bug: The bug was found for case study 1. Bits 28–31 of the 32-bit
FIOPIN register control the motor leads. Other bits of FIOPIN can be used
for other purposes and should not be updated. The FIOPIN register can only
be updated as a whole and individual bits cannot be updated. Therefore, the
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FIOPIN is updated by using OR masking to set bits to ‘1’ and AND masking
to reset bits to ‘0’. This was accomplished by first performing the OR mask on
the FIOPIN register and then the AND mask. Therefore, the motor state was
transitioning from state 0001 to 0011, and then to 0010. This is incorrect as 0011
is not a correct state of the motor when full stepping. The bug was found during
WEB refinement verification. If an external interrupt had occurred between the
OR mask and the AND mask, then the motor would be stuck in a bad state.

Timing Bug: For both case studies 5 and 6, when switching from a lower speed
to a higher speed, we required that the transition take place smoothly with an
upper bound for the delay of the transition as the delay for state transitions of
the lower speed. However, this timing requirement was not satisfied by the object
code in certain states. Specifically, if the value of the RIT counter was close to
the compare value when the external interrupt occurred (forcing a change in
speed), there was not enough time to update the counter value and the compare
value, and still make the transition to the higher speed mode in time.

8 Conclusions

Timed refinement incorporates stuttering and refinement maps and we have
shown that hence it can be used for verification of low-level object code against
high-level models. We have also provided a procedure for checking timed refine-
ment with complexity O(|RI |3), and used this procedure to verify several inter-
rupt driven motor control object code programs. For the case studies we
verified, abstractions based on stuttering reduce the size of the imple-
mentation TTS by at least 4 orders of magnitude. For future work, we
plan to develop a procedure for checking WEB refinement for interrupt driven
object code programs, and also automated abstraction techniques for timed
refinement verification.
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Abstract. When a program fails, the cause of the failure is often buried
in a long, hard-to-understand error trace. We present a new technique
for automatic error localization, which formally unifies prior approaches
based on computing interpolants and minimal unsatisfiable cores of fail-
ing executions. Our technique works by automatically reducing an error
trace to its essential components—a minimal set of statements that are
responsible for the error, together with key predicates that explain how
these statements lead to the failure. We prove that our approach is sound,
and we show that it is useful for debugging real programs.

1 Introduction

Understanding why a program failed is the first step toward repairing it. But
this first step is also time-consuming and tedious. It involves examining the error
trace of a failing execution (typically generated by print statements), reducing
that trace to statements relevant to the error, and figuring out how the relevant
statements transform program state to cause the observed failure (e.g., an asser-
tion violation). Although debuggers aid this process by providing watchpoints
and breakpoints, it is still a mostly manual task that relies heavily on program-
mer intuition about the code. In particular, classic debuggers cannot remove
irrelevant statements from the error trace to help the programmer.

1 x=3; x = 3
2 y=5;

3 z1=y+x; z1 = y + 3,x = 3

4 z2=y-x; z1 = z2 + 6

5 assert(z2>z1); false

Fig. 1. Explaining error traces using abstract
labels after each statement

Dynamic slicing [1,36] was intro-
duced as a way to automatically
remove irrelevant statements from
the trace. Slicing is done using
dependency information (data or
control), removing statements that
do not impact the violated assertion
via any chain of dependence. The
main limitation of dynamic slicing is

c© Springer International Publishing Switzerland 2014
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that it does not consider the semantics of the bug, which can result in irrele-
vant statement being retained. For example, in the error trace shown in the
left column of Fig. 1, dynamic slicing cannot rule out statement 2, whereas at a
semantic level, the value of y is irrelevant.

In this paper, we propose a new semantics-aware technique for analyzing error
traces and for helping programmers understand the cause of an error. Given
an error trace, our algorithm produces a slice of the original trace annotated
with abstract labels explaining the failure. For example, our algorithm produces
the slice {1, 3, 4, 5} for the trace in Fig. 1, along with the explanatory labels
highlighted in gray, which show why the assertion z2>z1 fails. We call such an
annotated slice an error explanation.

Briefly, given an error trace, our technique computes an error explanation in
two steps. First, it computes an interpolant for each statement in the original
trace. An interpolant is a formula that captures the effect of a given statement
on the program state (as defined in Sect. 2), and in the context of error explana-
tion, interpolants serve as explanatory labels. Next, the trace is sliced by eliding
all statements that are surrounded by identical labels. Throughout this paper,
we make use of two conventions: (i) the interpolant before the first statement
of a trace is always true, which will not be shown, and (ii) if a particular state-
ment does not have a label after it, the previous label is assumed to be present
there. In our example (Fig. 1), this approach would elide statement 2, which is
semantically correct.

A slice produced by our algorithm is sound in that it fails for every binding of
its free variables to values (such as the variable y for our example subtrace), and
it is minimal in that it cannot be reduced any further without loss of sound-
ness. Our technique guarantees both soundness and minimality by exploiting
two central results of this paper. The first result is a theorem characterizing a
class of interpolant labelings, which we call inductive interpolant labelings (IILs),
that always lead to sound slices. The second result is a theorem relating slices
induced by “maximally stationary” IILs, in which labels remain unchanged over
a maximal set of statements (as defined in Sect. 3), to minimal unsatisfiable cores
(MUC) of the formula that encodes the trace semantics. Informally, a MUC is
an unsatisfiable fragment of a formula that becomes satisfiable if any of its con-
straints are removed. The formula for our example trace (Fig. 1) is shown below,
and the constraints comprising its sole MUC are highlighted in gray:

x = 3 ∧ y = 5 ∧ z1 = y + x ∧ z2 = y − x ∧ z2 > z1

1 a[2]=0; a[2] = 0

2 i=h; a[2] = 0, h = 1, i = h

3 i++; a[2] = 0, h = 1, i = 2

4 v=a[i]; h = 1, i = 2, v = 0,h ≤ j, j ≤ 1

5 j=j-h; h = 1, i = 2, v = 0, j = 0

6 a[j]=v; a[0] = 0

7 assert(a[0]==11 ∧ a[1]==14); false

Fig. 2. Error explanation by [12] for shell-sort

Our technique uses this MUC
to produce the maximally sta-
tionary IIL shown in the figure,
which leads to the sound and
minimal slice {1, 3, 4, 5}.

Previous work [12] that uses
interpolant-based slicing tries
to increase stationariness (cf.
Sect. 3.2) heuristically, with-
out preserving the inductive
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property of labeling (see Sect. 2.2 for a quick summary). This can lead to unsound
slices. As an example of such unsoundness, consider the faulty shell-sort pro-
gram from [12], which we will investigate in detail in Sect. 5.1 (Fig. 7). The
technique in [12] returns the annotated sliced trace shown in Fig. 2 (taken from
Fig. 4 in [12]). Although the slice annotation consists of interpolant labels, the
slice itself is unsound because it does not violate the assertion on line 7 in the
following environment:

{h �→0, j �→2, a[0] �→11, a[1] �→14}

The unsoundness is due to the omission of several statements that set the vari-
ables h and j. These statements are necessary for reproducing the failure, and
they are included in the sound slice computed by our algorithm (Fig. 7).

This paper makes the following contributions:

1. We formally characterize error explanations using the notion of inductive
interpolant labelings, which may be viewed as special kind of Hoare proofs.

2. We characterize two key properties of error explanations: soundness and min-
imality. We show that IILs form sound error explanations.

3. To characterize minimality, we introduce a new notion of maximally sta-
tionary labelings. We show that computing these labelings is equivalent to
computing MUCs of the path formula of the failing trace.

4. Finally, we propose a new hybrid algorithm for computing sound and minimal
error explanation that combines interpolant computation with a black-box
MUC extraction procedure. We have implemented this algorithm and applied
our prototype to two small case studies.

The rest of the paper is organized as follows. Section 2 reviews the
background material on MUCs, interpolants, and the corresponding trace min-
imization methods. Section 3 establishes formal properties of a restricted, but
sound, form of interpolant labeling, and the notion of minimality of slices. These
properties are exploited in Sect. 4 to develop our new algorithm for error trace
explanation. We evaluate the efficacy of the algorithm in Sect. 5, discuss related
work in Sect. 6, and present concluding remarks in Sect. 7.

2 Preliminaries

Our approach draws on two previous techniques for error localization [20] and
explanation [12]. We give a brief overview of these techniques and introduce
the necessary terminology along the way. Both techniques work on a logical
representation of a failing execution path π in a program P , which takes the form
of a path formula Φπ. The formula Φπ is a conjunction ι ∧ Φ ∧ ε, where ι is the
input that triggered the failure of the assertion ε in P , and Φ = (φ1∧φ2 · · ·∧φn) is
the SSA encoding of π. Because π violates ε, the path formula Φπ is unsatisfiable.
Both of the techniques reviewed in the section, as well as our algorithm, rely on
analyzing unsatisfiable path formulas.
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2.1 Unsatisfiable Core Based Error Trace Explanation

Every unsatisfiable formula Φ = φ1 ∧ . . . φn contains one or more unsatisfiable
cores, which are subsets of Φ whose conjunction is unsatisfiable. When every
proper subset of a core is satisfiable, it is called a minimal unsatisfiable core
(MUC) [32]. An unsatisfiable formula Φ also contains one or more satisfiable
subsets. When every proper superset in Φ of such a subset is unsatisfiable, we
call it a maximal satisfiable subset (MSS). The complement of an MSS is called
a minimal correcting subset (MCS), which denotes a minimal subset of Φ whose
removal from Φ will make the remainder satisfiable again. The set of MUCs
and the set of MCSs of Φ are duals of each other [21]: one can be obtained by
computing the irreducible hitting sets of the other.

Computing MCSs (or, dually, MUCs) of a path formula Φπ identifies the
relevant statements in a trace π [20]. For the example in Fig. 1, this method
might first compute an MCS consisting of the statement on line 1, which would
be flagged as a possible fix for the error. If the programmer wanted to see another
repair candidate, the technique would compute another MCS, consisting of the
statement on line 3, and so on. This process eventually flags all MCSs, covering
all the statements in each MUC. It would not flag the statement on line 2,
because it does not appear in any MUC of the trace.

In cases where multiple MUCs exist for a failing trace, where each MUC
explains one aspect of the bug, one may typically employ a ranking heuristic to
compare the MUCs, using say, the size of the MUC. In [20], a ranking mechanism
highlights statements that occur most frequently in MCSs as having higher like-
lihood of being the cause. Our experiments, and those in [20], however, suggest
that in practice most error traces contain only a small number of MUCs.

2.2 Interpolants-Based Error Trace Explanation

Given a pair of formulas A and B, where ¬(A∧B) holds, an interpolant of A and
B [8], denoted by Itp(A | B), is a formula I over the common symbols of A and
B such that A ⇒ I and B ⇒ ¬I. Given an indexed set (or sequence) of formulas
Φ = [Ai]ni=1, such that

∧
Φ = false, let Ai = [Ak]ik=1 and Bi = [Ak]nk=i+1 for

some 1 ≤ i ≤ n.
An interpolation sequence for Φ is a sequence I = [Ii]ni=0, such that the

following holds: (i) I0 = true and In = false; (ii)
∧ Ai ⇒ Ii and

∧ Bi ⇒ ¬Ii,
where each Ii is an interpolant; and (iii) each Ii is over symbols common to the
sets Ai and Bi. The sequence I is said to be inductive if for each Ii, Ii ∧Ai+1 ⇒
Ii+1. An interpolant sequence for a path formula Φπ (which is itself a sequence
[ι, φ1, . . . , φn, ε], with SSA subscripts dropped), shows the intermediate state
abstractions that lead to the error, and hence constitutes an explanation for
why π failed.

Ermis et al. [12] compute interpolant labelings in the following way. First,
they obtain a sequence of candidate interpolant labels from a theorem prover for
each location along the failing path. This initial set of labels is then minimized
by a greedy procedure which substitutes an interpolant at a given location, say
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Ij , by one from another location, say Ik, and checks if Ik is an interpolant
at location j. If this greedy substitution succeeds, then all statements between
the two program points are deemed irrelevant and sliced away. We show that
this greedy technique may produce unsound labelings (defined below) and hence
unsound error explanations. (We caution the reader that the term ‘inductive’ is
used in [12] in a different sense than in this paper).

2.3 Labeling and Sound Slices

Given a program trace π = [Si]ni=1, a labeling L for π is the sequence of labels
[Ii]ni=0. An error labeling L for a failing path π consists of labels that form
an interpolant sequence for π. We say that L is stationary across Si, denoted
st(L, i) iff Ii−1 ≡ Ii. A labeling L for π induces a slice ρ = {Si ∈ π|¬st(L, i)}
that excludes statements in π across which L is stationary.

We say that ρ is a sound slice of π iff the path formula for ρ is unsatisfiable.
Intuitively, this means that ρ is also a failing path. Instead of saying that the
path formula for π is unsatisfiable, for simplicity we say that π is unsatisfiable
or that π contains an unsatisfiable core.

3 Desired Properties of Error Explanations

In this section, we discuss two key properties for error explanations: soundness
and minimality. We first show that explanations based on unrestricted inter-
polant labelings are not guaranteed to be sound. We then introduce the defining
properties of sound and minimal explanations.

3.1 Sound Error Explanations

Figure 3(a) shows an example of an unsound error explanation, consisting of an
error trace with a valid interpolant labeling (i.e., every label is a valid interpolant
at its location). According to this explanation, statements 1 and 3 are irrelevant
to the error, because both are surrounded by stationary labels (true and z =
1, respectively). But removing statements 1 and 3 from the trace leaves the
variables z and x1 unconstrained, which renders the rest of the trace satisfiable.

Fig. 3. Problem with interpolants as labels for error explanation
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The basic problem of general interpolant labelings is that a labeling as a
whole may be unsound, even when the individual labels are valid interpolants.
To ensure soundness (Theorem 1), we restrict the space of admissible sequences
of interpolant labels to include only inductive interpolant labelings (IILs). An IIL
is a sequence of interpolants that satisfies the inductive property (cf. Sect. 2)—
each interpolant in an IIL must result from the conjunction of the preceding
interpolant and the intervening program statement. That is, if I1 and I2 are the
interpolant labels before and after a statement S, then I1 ∧ S =⇒ I2.

It is easy to see that the inductive property forbids the labeling sequence in
Fig. 3(a), as true ∧ x = 3 	=⇒ z = 1. A possible IIL for this trace is given in
Fig. 3(b), and it is the labeling computed by our method (Sect. 4). To the best of
our knowledge, none of the previous methods for interpolant-based error expla-
nation (including [12,31]) guarantee the inductive property, nor any alternative
soundness condition (see Sect. 6).

Fig. 4. Relating Hoare proofs, Inter-
polant labelings and IILs.

Remark. IILs correspond to a Hoare
proof for a failing path π. In particular,
{Ij−1}Sj{Ij} is a valid Hoare triple for
each 1 ≤ j ≤ n. In an arbitrary Hoare
proof for failure of π (with true and
false as the first and last labels respec-
tively), the assertion labels are inductive
but they are not necessarily interpolants,
i.e., they may contain symbols local to
either the prefix or the suffix. Similarly,
arbitrary interpolant error labelings do
not form a Hoare proof, because they
may not be inductive. IILs are restricted
Hoare proofs that contain labels only
over symbols common to the prefix and
the suffix. Figure 4 shows the general

relationship between Hoare proofs, interpolant labelings and IILs visually (max-
imally stationary IILs are explained in Sect. 3.2).

Theorem 1 (Sound Error Labelings)
If an error labeling L for π is an inductive interpolant labeling (IIL) then the
sliced error path π′ induced by L is sound.

Proof. Without loss of generality, assume that exactly two statements Sj and
Sk (j < k) are elided from the error path π to obtain π′. We then know the
following:

(1) Ij is the same as Ij−1 and Ik is the same as Ik−1, because Sj and Sk are
sliced away

(2)
∧{S1, . . . , Sj−1} =⇒ Ij−1 (Interpolant property)

(3) Ik ∧ ∧{Sk+1, . . . Sn} is unsatisfiable (Interpolant property)
This means Ik−1 ∧ ∧{Sk+1, . . . Sn} is unsatisfiable (1)
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(4) Ij ∧ ∧{Sj+1, . . . , Sk−1} =⇒ Ik−1 (Inductive property)
This means Ij−1 ∧ ∧{Sj+1, . . . , Sk−1} =⇒ Ik−1 (1)

From (2) and (4), we have
(5)

∧{S1, . . . , Sj−1, Sj+1, . . . , Sk−1} =⇒ Ik−1

From (3) and (5), we have
(6)

∧{S1, . . . , Sj−1, Sj+1, . . . , Sk−1, Sk+1, . . . , Sn} is unsatisfiable.

This set contains all statements in the error path π except Sj and Sk and so
represents the sliced error path π′. Hence, the path formula for π′ is unsatisfiable,
and π′ is sound (cf. Sect. 2). The proof can be directly extended to an arbitrary
number of elided statements. 
�

3.2 Minimal Error Explanations

Our goal is to compute not only sound but also minimal error explanations, which
succinctly explain the fault to the programmer. To characterize the minimality
of explanations, we propose a new formal criterion based on their stationariness.

Maximally Stationary Labeling. An IIL L is maximally stationary for a fail-
ing path π iff there exists no IIL L′ (with induced slices πL and πL′ respectively),
such that πL ⊂ π′

L. In order to compute maximally-stationary IILs efficiently,
we show that they correspond exactly to the MUCs of the path formula for π
(Theorem 2). To prove this result, we need the following lemma which says that
for any unsatisfiable core M of π, there exists an IIL stationary across all the
statements S excluded from the core.

Lemma 1. Let M be an unsatisfiable core for a failing path π and S ⊂ π. If
S ∩M = ∅, then there exists an IIL L which is stationary across each statement
in S.

Proof. Let |M | = l. Let π′ = [Sik ]lk=1 be the projection of π = [Sj ]nj=1 on to M
such that each Sik ∈ M and 1 ≤ i1 < i2 · · · < il ≤ n. Because M is unsatisfiable,
there exists an IIL L′ = [Iik ]l+1

k=1 for π′, where for each ik, (1) Iik ∧ Sik ⇒ Iik+1

(2) Iik = Itp(ι∧Si1 ∧ . . .∧Sik−1 | Sik ∧ . . .∧Sil ∧ε). Given a statement S ∈ S, we
will show how L′ can be extended to an IIL for M ∪ {S}. Assuming S occurs at
position p in π, where ik−1 < p < ik, we extend L′ to L′′ by copying Iik across
S: (Ii1)Si1 . . . Sik−1(Iik)S(Iik)Sik(Iik+1) . . . Sil(Iil+1).

It follows from (1) and Iik ∧ S ⇒ Iik that L′′ is inductive. To prove that
each label is an interpolant, consider labels Iim where m < p. It follows from
(2) that (ι ∧ Si1 ∧ . . . ∧ Sim−1) ⇒ Iim . Also, (Sim ∧ . . . Sil ∧ ε) ⇒ ¬Iim . Hence,
(S ∧ Sim ∧ . . . Sil ∧ ε) ⇒ ¬Iim . Also, each Iim is defined only over the shared
symbols at position m in L′′. The proof is similar for m > p. By extending L′

for each S ∈ S iteratively, we obtain an IIL for π. 
�
Using Lemma 1, we can now prove our main theorem.

Theorem 2. An IIL L for a failing trace π is maximally stationary iff the
induced slice of L forms a MUC.
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Proof. We show that (⇒) the slice induced by a maximally stationary IIL forms a
MUC, and that (⇐) for every MUC M of π, there exists a maximally stationary
IIL whose induced slice is equivalent to M . Both proofs are by contradiction.

(⇒) Suppose the slice M induced by L is not a MUC. Then there exists an
S ∈ M , such that M \{S} is unsatisfiable. So, by Lemma 1, there is an L′ whose
induced slice is M \ {S} ⊂ M . So, L is not maximally stationary.

(⇐) By Lemma 1, there exists an IIL L whose induced slice is exactly M .
Suppose L is not maximal. So there exists IIL L′ with induced slice M ′ ⊂ M .
Because L′ is an IIL, it follows from Theorem 1 that the slice M ′ is sound, i.e.,
M ′ is also unsatisfiable. So M is not a MUC. 
�

In the next section, we exploit Theorem 2 to propose a new error expla-
nation algorithm that computes maximally stationary IILs by using a MUC
computation engine as a black-box. Our algorithm thus benefits directly from
the advances in techniques for computing MUCs.

4 A Hybrid Algorithm for Error Trace Explanation

We now present a new algorithm for error trace understanding that combines
the benefits of MUCs and interpolants. Figure 5 shows the pseudocode for Gen-

Labels, the main procedure of our algorithm, to which the error path π ≡
{S1, S2, . . . , Sn} is provided. Without loss of generality, we assume that the
input ι and the violated assertion ε are included in π. GenLabels computes
an IIL L for the failing trace π.

Fig. 5. Generating IILs from unsatisfiable cores

GenLabels starts by obtaining an unsatisfiable core of π by calling Get-

Core (line 1). GetCore is a procedure that returns an unsatisfiable core of
the given formula, while maintaining the relative ordering of constraints (state-
ments) in the formula. Our algorithm then computes an IIL for C, which induces
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a sound slice of π (by Theorem 1). If C is a MUC, the resulting IIL is maximally
stationary (by Theorem 2), and the corresponding slice is minimal.

Line 2 initializes I0 to true, the first label for any error trace. Then, for each
statement Si, GenLabels performs the following steps. If Si occurs in the core
C (line 4), it computes the set V of variables that appear in the conjunction of
the previous label Ii−1 and the current statement Si (line 6). It also computes
the set V ′ of variables that appear in the core statements following Si (line 7).
The set V ∩V ′ consists of variables that appear in both Ii−1 ∧Si and in the core
statements following Si. Its complement, V ∩ V ′, represents the variables that
are not common to Ii−1 ∧ Si and the core statements following Si.

On line 8, all variables in the set V ∩ V ′ are existentially quantified and
eliminated from the formula Ii−1 ∧Si. The resulting formula is the label Ii after
Si. This step results in Ii being the “projection” of Ii−1∧Si onto the variables of
the statements in C that follow Si—that is, Ii is a formula only over the variables
in V ∩ V ′. Finally, if the current statement Si is not in the core C, line 10 sets Ii

to be the same as Ii−1. In Sect. 4.2, we prove that the labels generated in this
way form an IIL for π.

As an example, consider the trace in Fig. 1. Given π ≡ {x = 3, y = 5, z1 =
y + x, z2 = y − x, z2 > z1}, assume that GetCore returns the MUC C ≡ {x =
3, z1 = y + x, z2 = y − x, z2 > z1}. Our algorithm first initializes I0 to true.
For the first statement S1 ≡ x = 3, it sets V to be the variables in I0 ∧ S1,
i.e., {x}, and V ′ to be the variables in S3 ∧ . . . ∧ S5, i.e., {x, y, z1, z2}. Now, I1
is the formula ∃{y, z1, z2}.(true ∧ x = 3), which yields x = 3 after quantifier
elimination. The second statement, y=5, is not in C so we generate the same
label x = 3 after it. For S3 ≡ z1 = y + x, the sets V and V ′ would be {x, y, z1}
and {x, y, z1, z2} respectively. Thus I3 is the formula ∃{z2}(x = 3∧ z1 = y +x),
which is equivalent to the quantifier-free x = 3 ∧ z1 = y + 3.

The final label I4 is interesting: V is the set of variables in I3 ∧ S4, i.e.,
{x, y, z1, z2}, and V ′ is the set {z1, z2}. Therefore I4 is ∃{x, y}(z1 = y +3∧x =
3 ∧ z2 = y − x). Eliminating the quantifier yields z1 = z2 + 6, a predicate that
is not obvious from the program. This shows that regardless of the value of y,
z1 is 6 more than z2, which is why the assertion z2 > z1 failed. It can be seen
that each label is indeed an interpolant and the sequence is inductive, as we will
formally prove in Sect. 4.2.

4.1 Discussion of the Algorithm

Our algorithm is a variation on the strongest postcondition (SP) and weakest
precondition (WP) computation [9]. In general, SP and WP labels may not be
interpolants—particularly, they may carry variables not common to the prefix
and suffix at a program point—because they only utilize information from “one
direction” (forward for SP and backward for WP). Our algorithm fixes this by
using MUCs to obtain, in the forward direction, the set of relevant statements
so far and, in the backward direction, the set of variables to project away. With
this knowledge, our algorithm is able to combine the benefits of forward and
backward reasoning.
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Nevertheless, even if the restriction of interpolants to be only on common
variables is relaxed, SP and WP rarely keep the labels stationary. Figure 6 shows
the same example from Fig. 3 but labeled with (a) WP and (b) SP. It can be
seen that neither is stationary at any point along the trace, hence no statement
is removed from their induced slices.

Fig. 6. WP and SP may keep irrelevant statements in the explanation

Our algorithm uses the GetCore procedure to project out variables unnec-
essary to an explanation that corresponds to an unsatisfiable core (for which we
typically use a MUC). In Fig. 3(b), having prior knowledge of a particular MUC
that excludes the constraint x = 3 allows our algorithm to project away x, keep-
ing the interpolant stationary across the statement x=3.1 Without the knowledge
of such a core—e.g., if GetCore were to return the entire trace—the algorithm
would have no basis to project away x. It is this lack of “global knowledge” that
makes explanations based purely on an interpolant computation (using WPs,
SPs, or similar methods) less powerful than those seeded with a MUC.

We remark that we made the design choice of using quantifier-elimination in
our algorithm for two reasons. First, we do not need to depend on an interpolat-
ing theorem prover or construct a refutation proof of the formula. Second, this
approach exposes an interesting connection to SP and WP, as seen above. Having
said that, our algorithm can be easily extended to use proof-based interpolation
procedures [11,24] by first obtaining the refutation proof p corresponding to an
unsatisfiable core of π and then computing inductive interpolants from p.

4.2 Properties of the Algorithm

We present formal proofs that our algorithm generates IILs for every error trace
π, thus inducing sound slices (Theorem 1).

Lemma 2. (Labels are inductive)
If Ii−1 and Ii are the labels generated by our algorithm before and after a state-
ment Si respectively, then Ii−1 ∧ Si ⇒ Ii

1 We could have also produced another IIL corresponding to the other MUC, removing
the statement z=1 in that case.
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Proof. Assume that GetCore returned some unsatisfiable core C of the error
path. If Si did not appear in C, then according to the algorithm (line 10), Ii is
the same as Ii−1, and we are done since Ii−1 ∧ Si ⇒ Ii−1.

If Si did appear in C, then Ii ≡ ∃V ′′.(Ii−1 ∧ Si) where V ′′ is as defined in
the algorithm (lines 6–8). Assuming the theory of Ii−1 ∧ Si supports quantifier
elimination, Ii−1∧S ⇒ ∃V ′′.(Ii−1∧Si) since quantifier elimination from a formula
entails abstraction. Therefore Ii−1 ∧ Si ⇒ Ii. 
�

Note that by transitive closure of the inductive property for a sequence
Si . . . Sj of statements, we have that Ii−1 ∧ ∧{Si, Si+1 . . . Sj} ⇒ Ij .

Lemma 3 (Labels are interpolants). Let the error path π ≡ S1, S2 . . . , Si,
. . . , Sn. If Ii is the label generated by our algorithm after Si, then Ii is an inter-
polant. That is,

(a)
∧{S1, . . . , Si} ⇒ Ii

(b) Ii ∧ ∧{Si+1, . . . , Sn} is unsatisfiable
(c) Ii is a formula only on the common variables of {S1, . . . , Si} and {Si+1, . . . ,

Sn}
Proof. Base case: true is an interpolant before S1 (or after an implicit empty
S0) since it satisfies (a), (b) and (c).

Assume that Ii−1 is an interpolant after Si−1.

(a)
∧{S1, . . . , Si−1} ⇒ Ii−1 (hypothesis), and Ii−1∧Si ⇒ Ii (Lemma 2). There-
fore,

∧{S1, . . . , Si} ⇒ Ii

(b) Ii−1 ∧ ∧{Si, . . . , Sn} is unsatisfiable (hypothesis).

Consider the case Si not occurring in C. Then, Ii−1 ∧ ∧{Si+1, . . . , Sn} is
unsatisfiable (from hypothesis). The algorithm in this case sets Ii to be Ii−1.
Therefore, Ii ∧ ∧{Si+1, . . . , Sn} is unsatisfiable.
Consider the case Si occurring in C. Then, Ii−1 ∧ ∧{Sck , Sck+1 , . . . , Scm}
is unsatisfiable, where i = ck and {Sck+1 , Sck+2 , . . . , Scm} is a subset of
{Si+1, . . . , Sn}. We assume that the quantifier elimination is such that Ii ≡
∃V ∩ V ′(Ii−1 ∧ Si) is the strongest formula implied by Ii−1 ∧ Si on the
variables V ∩ V ′. That is, Ii is equivalent to Ii−1 ∧ Si on V and V ′. We
also know that V ′ ≡ vars (Sck+1 ∧ Sck+2 . . . ∧ Scm). This entails Ii ∧∧{Sck+1 , Sck+2 , . . . , Scm} is unsatisfiable. Therefore, Ii ∧ ∧{Si+1, Si+2, . . . ,
Sn} is unsatisfiable.

(c) We in fact prove a stronger version of (c): that Ii is only on the com-
mon variables of {Sc1 , Sc2 , . . . , Sck} and {Sck+1 , Sck+2 , . . . , Scm} for some k
where the former is a subset of {S1, S2, . . . , Si} and the latter is a subset
of {Si+1, Si+2, . . . , Sn}. The induction hypothesis here is that Ii−1 is only
on the common variables of {Sc1 , Sc2 , . . . , Sck−1} and {Sck , Sck+1 , . . . , Scm}
where the former is a subset of {S1, S2, . . . , Si−1} and the latter is a subset
of {Si, Si+1, . . . , Sn}.



What Gives? A Hybrid Algorithm for Error Explanation 281

Consider the case Si not occurring in C, which implies i 	= ck. Let j =
k − 1. Then, Ii (the same as Ii−1, as set by the algorithm) is only on the
common variables of {Sc1 , Sc2 , . . . , Scj} and {Scj+1 , Scj+2 , . . . , Scm}. From
the hypothesis, the former is a subset of {S1, S2, . . . , Si−1, Si} and the latter
is a subset of {Si+1, Si+2, . . . , Sn}, since i 	= ck (or i 	= cj+1).

Consider the case Si occurring in C, which implies i = ck. Then, Ii−1 ∧ Si

will be on vars(Ii−1) ∪ vars(Si). Now, if all variables in vars(Si) occur in
Sck+1 , . . . , Scm then V ∩V ′ is simply vars(Ii−1) ∪ vars(Si). Hence Ii is on the
common variables of {Sc1 , . . . , Sck} and {Sck+1 , . . . Scm}. If there is a variable
v ∈ vars(Si) not occurring in Sck+1 . . . Scm , then v will not appear in V ∩ V ′.
Hence it will appear in V ∩ V ′ and will be quantified and eliminated from Ii.
Thus, Ii is an interpolant after Si. 
�

5 Experimental Evaluation

We implemented our algorithm on the tracer [17] framework for symbolic
execution. The GetCore procedure was implemented to return a MUC. We
computed all MUCs using the method presented in [2], and generated an IIL
for each MUC. We found that the method scales poorly for large programs, so
one can also implement algorithms such as [4,21,26]. Our target programming
language was C.

We provided input traces manually for our case studies, but they were auto-
matically converted to SSA form by tracer. The underlying constraint solver
is CLP(R) [16], which uses the Fourier-Motzkin procedure for quantifier elim-
ination over reals. We modeled program variables in the theory of linear real
arithmetic due to our choice of solver, but any theory with quantifier elimina-
tion would work. Arrays were modeled using uninterpreted functions, and the
McCarthy axioms [23] were applied to obtain a symbolic expression for each
array reference. The heap was modeled as an array.

We now describe two case studies that serve as proof-of-concept that our algo-
rithm works well in practice. The first case study uses the faulty sorting example
from [12], and the second case study uses a more realistic program from the SIR
repository [33]. We emphasize that the goal of this paper is mainly to provide a
formal unification of MUC-based and interpolant-based error explanation, and
so user studies regarding which approach is more “intuitive” for debugging are
out of scope of this paper.

5.1 Shell Sort

Figure 7(a) shows the faulty program from [12], which is supposed to sort a
given array of integers. When applied to the already sorted input [11,14], it
returns [0,11] instead of the input itself. Our safety property therefore asserts
that the output should be [11,14]. The corresponding error trace is shown in
Fig. 7(b), annotated with the labels computed by our algorithm, where bolded
statements constitute the slice. We do not show the assume statements as they
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Fig. 7. (a) The faulty shell sort program and (b) its error trace for input [11, 14] with
labels

do not change the program state, and hence do not affect the interpolants. Note
that we have “grounded” h to 1 instead of executing h=h*3 and h=h/3 because
our underlying solver does not reason about integer arithmetic.

The initial label a[2] = 0 immediately suggests that there is a problem,
because we are only sorting an array of two integers and should not be accessing
a[2]. The rest of the labels capture how the value in a[2] gets propagated
to a[0]. The variables h and i are initialized to 1. Then, i is incremented to
2, causing a[i] (now 0) to be stored in v (line 10). Next, j is initialized to
i, and decremented by h twice to result in j being 0. Finally, line 16 stores
v (which is 0) into a[0], causing the violation. Our algorithm computed these
labels within 2–3 s.

The inductiveness of labels is key to the quality of the explanation. Each label
is implied by the conjunction of the previous label and the intermediate (bolded)
statement, enabling local reasoning about the bug flow. Since each label is an
interpolant, it only captures variables that are relevant to the bug at each point
(see, e.g., line 10, where a[2] stops being relevant to the bug and v becomes
relevant).
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30 prio=1; prio = 1

31 prionew job=prio; prionew job = 1

37 new process=malloc(sizeof(struct process));
prionew job = 1, new process �= NULL

41 prioenqueue=prionew job; prioenqueue = 1, new process �= NULL

42 prioput end=prioenqueue; prioput end = 1, new process �= NULL

43 processput end=new process; prioput end = 1, processput end �= NULL

44 prio queue[prioput end].head=processput end; prio queue[1].head �= NULL

45 prioget current=3; prioget current = 3, prio queue[1].head �= NULL

46 prioget current=prioget current-1; prioget current = 2, prio queue[1].head �= NULL

47 prioget current=prioget current-1; prioget current = 1, prio queue[1].head �= NULL

48 prioget process=prioget current; prioget process = 1, prio queue[1].head �= NULL

49 jobget process=&current job;

jobget process = &current job, prioget process = 1, prio queue[1].head �= NULL

50 nextget process=&prio queue[prioget process].head;

jobget process = &current job, ∗nextget process �= NULL

51 *jobget process=*nextget process; current job �= NULL

54 jobfinish=current job; jobfinish �= NULL

58 assert(jobfinish==NULL); false

Fig. 8. Inductive interpolant labeling computed by our algorithm for schedule2

5.2 Schedule2

For our second case study, we used the schedule2 program from the SIR repos-
itory [33]. It implements a priority scheduler for a given sequence of processes
and their priorities (1, 2, or 3). The program’s distributors seeded a bug, which
sets the default priority (prio) of a process with no priority to be 1 (instead
of -1). The error trace for an input of one process with no priority is shown
in Fig. 8.

We do not show the entire trace for space reasons. However, it is worth noting
that we applied dynamic slicing [27] on the original trace, which reduced its size
from 129 to 58 statements, on which we applied our algorithm. In Fig. 8, the
initial statement prio=1 is the seeded bug which our labeling has captured. At
line 37, a new process is created, which is captured by the label new process 	=
NULL.

At line 44, the process is added to the priority queue data structure, as shown
by the label prio queue[1].head 	= NULL. This indicates to the programmer that
something is wrong, because the process should not have been added to the
queue. At line 50, the process is retrieved from the head of the queue and set as
the current job to be executed, as captured by the label current job 	= NULL at
line 51. The assertion states that when the finish function is called to execute
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the processes, there should be no jobs available, but there is one due to the bug,
and therefore the assertion is violated. Our algorithm computed these labels in
about 2–3 s.

Ultimately the dynamically sliced trace of 58 statements was reduced to just
16 statements through our algorithm. Together with the explanatory labels, it
presents a much better explanation of the trace compared to dynamic slicing.

6 Related Work

BugAssist [20] analyzes proofs of unsatisfiability of the path formula to localize
errors; a minimal set of statements which, on removal, makes the formula sat-
isfiable again is marked as containing potential causes of the error. Instead, our
approach computes error-explaining labels on the trace and exploits MUCs to
compute a path slice relevant to the error. Ermis et al. [12] proposed the idea
of computing error-explaining labels using interpolants. Because they compute
individual labels independently, followed by a post-processing step to improve
stationariness, the resulting sequence of labels may be unsound (cf. Sect. 3).

Popular methods for fault localization include Delta debugging [7,35] and
Darwin [28], which compare failing and successful program states and execu-
tions; DIDUCE [14], which computes likely invariants from good runs and checks
for their violations on other runs; statistical methods [19], which compute sus-
piciousness of statements based on the frequency of their occurrences in passing
and failing runs; and methods based on dynamic slicing [1,36], which consider
dependency flows in failing runs. Other approaches use symbolic techniques to
explain counterexamples obtained by model checking [3,13]. Symbolic techniques
have also been used for program repair [6,22]. Sahoo et al. [30] combine likely
invariants, delta debugging and dynamic slicing techniques for scalable root cause
analysis on real-world programs. Error-explaining labels may be viewed as likely
invariants along the failing path; they assist the developer in pinpointing the
root cause.

Interpolant computation [24] is widely used to enable convergence of SAT/
SMT-based bounded model checking of both hardware [24] and software [15,25].
Interpolants of different strengths may be derived from the same proof of unsatis-
fiability; D’Silva et al. [11] present a unified lattice-based framework for ordering
the interpolants computed by different methods. Like our method, CEGAR-
based software verification techniques [5,15], which use interpolants for refine-
ment, also require that the interpolant sequence is inductive [18,29,34]. Dillig
et al. use abductive inference for assisting developers in classifying erroneous
analysis reports [10].

7 Conclusion

Interpolant-based error explanations are attractive in their ability to convey
the essence of an error trace to a programmer. In this paper, we examined
their ability to filter out statements that are guaranteed to be irrelevant to the
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error. Since the goal of minimal unsatisfiable core computation is also similar, we
examined whether the two techniques have any formal relationship. We found
that, in general, interpolant-based error explanations are weaker than minimal
cores in their ability to exclude irrelevant statements. More importantly, we
identified sufficient conditions on interpolant sequences so that statements are
not unsoundly ruled out as irrelevant; previous work is vulnerable to this pitfall.
We also pinpoint reasons why it is difficult to arrive at sound interpolant labeling
that matches minimal unsatisfiable cores in their power to exclude irrelevant
statements.
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