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Abstract This chapter presents studies on the enhanced detection of characteristic
signals from critical mechanical components such as bearings by the nonlinear
effect of stochastic resonance (SR). In the past decades, classical stochastic reso-
nance (CSR) method has been extensively studied to enhance the fault detection of
these critical mechanical components such as bearings and gears. Based on CSR
theories, the main content of this chapter includes two parts. The first is aiming at
identifying the component characteristic frequencies in the spectra, SR normalized
scale transform is proposed based on parameter-tuning bistable SR model, which
leading to a new method via averaged stochastic resonance (ASR) to enhance the
result of incipient fault detection. Then, rather than achieving the improvement of
the signal-to-noise ratio (SNR) by increasing the noise intensity, a new approach is
developed based on adding a harmonic excitation with a frequency based on the
system’s Melnikov scale factor to the system while the noise is left unchanged. The
effectiveness of this method is confirmed and replicated by numerical simulations.
Combined with the strategy of the scale transform, the method can be used to detect
weak periodic signal with arbitrary frequency buried in the heavy noise. In addition,
the chapter also presents the case study of applying these methods for the
enhancement of fault characteristic signals in detecting incipient faults of roller
bearings.
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7.1 Introduction

Fault detection of critical mechanical components, such as bearings and gears of a
power train in complex machines like helicopters and wind turbines, is one of the
important tasks in the field of running reliability. It is well known that the evalu-
ation of the dynamic behavior of the mechanical components solely depends on the
quality of the measured signals. The factors such as the influence of their trans-
mission path, the transmission medium, the ambient environment, change of
internal dynamics etc., degrade the measured signals, leading to measurements with
low signal-to-noise ratio (SNR). In many cases, the useful information is buried in
the noise seriously so that it can be hardly recovered by conventional method. It
means that the early signatures of possible potential faults may be missed, which
would lose the chance to prevent the catastrophic failures induced by the
mechanical components like helicopters. Thus, the detection issue of early symp-
toms of a dynamic mechanical component fault is essentially a topic of weak signal
detection.

Therefore, weak signal detection under heavy background noise becomes more
and more important for early detection of fault. Over the last decades, it is com-
monly concerned by scientists and engineers to detect and enhance weak target
signal more expeditiously and precisely in noise environment with special restric-
tions. Therefore, some notions concerning weak signal detection were recom-
mended. Several approaches have been applied to weak signal detection, such as
chaotic resonator [1, 2], difference resonator [3], wavelet analysis [4], holospectral
analysis, high order statistics, Hilbert-Huang transform and so on [5]. Furthermore,
an enhanced detection solution for weak signals based on stochastic resonance
theory has been presented, which can detect a weak signal in the presence of heavy
noise from a very short data record [6].

In this chapter, two new enhanced detection approaches are presented based on
extended stochastic resonance theory to detect weak signal in the presence of heavy
noise. One is ‘averaged’ enhanced detection strategy based on normalized scale
stochastic resonance model [5] to detect weak signal. The other effective SNR
enhancement is achieved by adding a harmonic excitation with frequency based on
the system’s Melnikov scale factor to the system while the noise is left unchanged.

Although the principle and property have been illustrated previously [7–9], key
issues deeply related to SR and its application in weak mechanical signal processing
will be discussed. Through a kind of normalized scale transform, the frequency
range of weak signal SR model can detect is extended from low frequency to
relative higher frequency. Based on normalized scale transform, a new method via
averaged stochastic resonance (ASR) is presented to enhance the result of rolling
element bearing fault detection furtherly.

Furthermore, in classical SR, the SNR can be improved by increasing the noise.
But the approach by increasing the noise is counterintuitive and unwieldy.
According to Melnikov theory, for a wide class of systems, deterministic and
stochastic excitations play qualitatively equivalent roles in inducing chaotic
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motions with escapes over a potential barrier [10]. Such motions therefore possess
common qualitative features that suggest the extension of SR approaches beyond
classical SR, so that the SNR can alternatively be improved by keeping the noise
unchanged and adding a deterministic excitation which is close to the detected
signal and selected in accordance with Melnikov theory, rather than by increasing
the noise.

7.2 Fundamental of SR and Normalized Scale Transform

7.2.1 Fundamental of SR

The study of stochastic resonance in signal processing has received considerable
attention over the last decades. In the context, stochastic resonance is commonly
used as an approach to increase the SNR at the output through the increase of the
special noise level at input signal. For a class of multistable system with noise and a
periodic signal, the improvement of SNR achieved by increasing the noise intensity
is known as stochastic resonance (SR) which will be referred to classical SR. The
essence of the physical mechanism underlying classical SR has been described in
[5–9]. Considering the motion in a bistable double-well potential of a lightly damped
particle subjected to stochastic excitation and a harmonic excitation (i.e., a signal)
with low frequency x0. The signal is assumed to have small amplitude that, by itself
(i.e., in the absence of the stochastic excitation), it is unable to move the particle from
one well to another. It is denoted that the characteristic rate, that is, the escape rate
from a well under the combined effects of the periodic excitation and the noise, by
a ¼ 2pntot=Ttot, where ntot is the total number of exits from one well during time Ttot.
The behavior of the system will change when increasing the noise while the signal
amplitude and frequency are unchanged. For zero noise, a ¼ 0, as noted earlier. For
very small noise, a\x0. However, as the noise increases gradually, the ordinate of
the spectral density of the output noise at the frequency x0, denoted by Un x0ð Þ, and
the characteristic rate a increases accordingly. Experimental and analytical studies
show that, until a � x0, a cooperative effect (i.e., a synchronization-like phenom-
enon) occurs wherein the signal output powerUs x0ð Þ increases as the noise intensity
increases. Remarkably, the increase of Us x0ð Þ with noise is faster than that of
Un x0ð Þ. This results in an enhancement of the SNR. The synchronization-like
phenomenon plays a key role in the mechanism as described in [10].

At present, the most common studied SR system is a bistable system, which can
be described by the following Langevin equation

x
: ¼ ax� bx3 þ A sin x0t þ /0ð Þ þ C tð Þ ð7:1Þ

where C tð Þ is noise term and C tð Þ;C 0ð Þh i ¼ 2Dd tð Þ, A sin x0t þ u0ð Þ is a periodic
driving signal. Generally, it is also written as the form of Duffing equation
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x
:: ¼ �b_xþ ax� bx3 þ A sin x0t þ /0ð Þ þ C tð Þ ð7:2Þ

where b is the damping coefficient.

7.2.2 Normalized Scale Transform of SR Model

Equation (7.1) has two stable solutions xs ¼ � ffiffiffiffiffiffiffiffi
a=b

p ¼ �c (stable points) and a
unstable solution xu ¼ 0 (unstable point) when A ¼ D ¼ 0, here the potential of
Eq. (7.1) is given by

V xð Þ ¼ � 1
2
ax2 þ 1

4
bx4 ð7:3Þ

The height of potential is

DV ¼ V 0ð Þ � V cð Þ ¼ a2

4b
ð7:4Þ

When adding the modulation signal, potential function is

V x; tð Þ ¼ � 1
2
ax2 þ 1

4
bx4 � Ax cosx0t ð7:5Þ

For a stationary potential, and for D � DV , the probability that a switching event
will occur in unit time, i.e. the switching rate, is given by the Kramers formula [11]

r0 ¼ 2pð Þ�1 V 00 0ð Þ V 00 cð Þj½ �1=2exp �DV=Dð Þ ð7:6Þ

where V 00 xð Þ � d2V=dx2. When a periodic modulation term A sinx0t is included on
the right-hand-side of Eq. (7.1), it leads to a modulation of the potential Eq. (7.5)
with time and an additional term �Ax cosx0t is now present on the right-hand-side
of Eq. (7.5). In this case, the Kramers rate Eq. (7.6) becomes time-dependent:

r tð Þ � r 0ð Þ exp �Ax sinx0t=Dð Þ ð7:7Þ

Which is accurate only for A � DV and x0 � V 00 �cð Þf g1=2. The latter condition is
referred to as the adiabatic approximation. It ensures that the probability density
corresponding to the time-modulated potential is approximately stationary (the
modulation is slow enough that the instantaneous probability density can ‘adiabati-
cally’ relax to a succession of quasi-stationary states). The slow modulation means
that the signal to detect is confined to a rather low frequency range and small
amplitude. It is well known that the characteristic frequency reflecting mechanical
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system state exceeds the range of limit, so how to detect the high frequency signal is of
great importance in weak characteristic signal detection of mechanical system.

To overcome the low frequency limitation of SR, a scale transform needs to be
introduced to shift the frequency of interest into the range in which SR operates.
Considering the bistable system modeled by Eq. (7.1), where A is the amplitude of
the input signal, x 	 1 is its frequency, C tð Þ is Gaussian white noise with the
correlation hC tð Þi ¼ 0; hC tð Þ;C 0ð Þi ¼ 2Dd tð Þ, and D is the noise intensity, when
a and b are positive real numbers, a variable substitution can be carried out by

z ¼ x
ffiffiffiffiffiffiffiffi
b=a

p
; s ¼ at ð7:8Þ

Substituting Eq. (7.8) into Eq. (7.1) yields:

a

ffiffiffi
a
b

r
dz
dt

¼ a

ffiffiffi
a
b

r
z� a

ffiffiffi
a
b

r
z3 þ A cos

x0

a
sþ /0

� �
þ C

s
a

� �
ð7:9Þ

where the noise C s=að Þ satisfies hC s=að ÞC 0ð Þi ¼ 2Dad sð Þ. Therefore

C
s
a

� �
¼

ffiffiffiffiffiffiffiffiffi
2Da

p
n sð Þ ð7:10Þ

where hn sð Þi ¼ 0; hn sð Þ; n 0ð Þi ¼ d sð Þ.
Substituting Eq. (7.10) into Eq. (7.9) results in:

a

ffiffiffi
a
b

r
dz
dt

¼ a

ffiffiffi
a
b

r
z� a

ffiffiffi
a
b

r
z3 þ A cos

x0

a
sþ /0

� �
þ

ffiffiffiffiffiffiffiffiffi
2Da

p
n sð Þ ð7:11Þ

Equation (7.11) can be simplified into

dz
dt

¼ z� z3 þ
ffiffiffiffiffi
b
a3

r
A cos

x0

a
sþ /0

� �
þ

ffiffiffiffiffiffiffiffiffi
2Db
a2

r
n sð Þ ð7:12Þ

Equation (7.12) is a normalized form and equals to Eq. (7.1). The frequency of the
signal after the scale transform is 1=a times of which before transform. Hence,
through the chosen of larger parameter a, a high frequency signal can be normalized
to lower one to satisfy the request of the theory of SR.

During the numerical simulation, the variance r2 is used to describe the statistical
property of thewhite noise. As the noise intensityD is influenced by sample step h, the
actual valueD ¼ r2h

�
2. If RMS value of the noise is r0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2D=h

p
before transform,

the intensity of the noise will change to 2Db
�
a2 after the transform. In addition,

because the sample frequency descends, the sample step becomes a times of the
original sample step. Therefore, the RMS of the noise after transform is
r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Db= a2 � ahð Þp
. The ratio of the noise RMS after the transform to which before

the transform is
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r=r0 ¼
ffiffiffiffiffiffiffiffiffiffi
b=a3

p
ð7:13Þ

It is easy to be seen that, after the transform, the signal and noise are amplifiedffiffiffiffiffiffiffiffiffiffi
b=a3

p
times.

7.2.3 Averaged SR Model with Normalized Scale Transform

Taking y tð Þ as the sampled signal or the envelop signal of raw signal with Hilbert
transform (as described in Sect. 4.1), Eq. (7.12) can be written as

dz
ds

¼ z� z3 þ
ffiffiffiffiffi
b
a3

r
y sð Þ þ

ffiffiffiffiffiffiffiffiffi
2Db
a2

r
n sð Þ ð7:14Þ

Then Eq. (7.14) can be solved numerically J times with different ni sð Þ ði ¼
1; 2; . . .; JÞ to obtain zi sð Þ ði ¼ 1; 2; . . .; JÞ, then an average is carried out by

�z sð Þ ¼ 1
J

XJ
i¼1

zi sð Þ ð7:15Þ

Through this average procedure a more reliable detection result can be obtained,
which is a general operation based on the Monta Carlo principle.

7.2.4 Model Validation Using Simulated Data

To evaluate the performance of the scale transform proposed a numerical simulation
study is carried out based on a mixed signal to be enhanced through the model of
bistable system with parameters a ¼ b ¼ 1, A ¼ 0:5, f ¼ 0:1Hz, r ¼ 5,
fs ¼ 20Hz, N = 2,000.

Figure 7.1a, b shows the mixed signal and its spectrum, while Fig. 7.1c, d gives
the output of the bistable system and the spectrum of the output signal. From
Fig. 7.1d, it can be seen that although the input SNR ¼ 20 log A=rð Þ ¼ �20 dB,
there is a clear spectrum line at f ¼ 0:1Hz, and the noise attenuation is obvious.

If the signal frequency is changed into f ¼ 1 kHz, according to the transform
principle, the parameters a ¼ b ¼ 104, fs ¼ 200 kHz and N = 2,000 can be used for
frequency shift. The mixed signal will be amplified by

ffiffiffiffiffiffiffiffiffiffi
a3=b

p ¼ 10; 000 times.
Applying SR enhancement to this mixed signal after the transform produces results
as shown in Fig. 7.2.

As it can be seen in Fig. 7.2, the signal and spectrum is consistent with that of
Fig. 7.1 although they show differences in the scales the time domains and fre-
quency coordinates. The noise components are greatly suppressed, and the
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Fig. 7.1 Time-domain and its FFT of the input and output when f ¼ 0:1Hz. a and b the input;
c and d the output by one-time; e and f the output by averaged
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Fig. 7.2 Time-domain and its FFT of the input and output when f ¼ 1 kHz. a and b the input;
c and d the output by one-time; e and f the output by averaged
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detecting signal is standing out, which shows that the transform method is effective
for adapting to the behavior of SR to enhance high frequency signals. Therefore, by
adjusting parameter a of the bistable system, SR model can adapt to different
frequency signal, while by adjusting parameter b, it can adapt to different noise
intensity. In addition, compared (d) with (f) of Figs. 7.1 and 7.2, it is obvious that
the averaged SR results are better than that of one-time SR result.

7.3 SR Model by Adding a Harmonic Excitation

7.3.1 SR Interpretation via Melnikov Theory and Chaotic
Dynamic Approach

As stated in [10, 11], for a bistable system with noise and a periodic signal, the
improvement of the signal-to-noise ratio (SNR) achieved by increasing the noise
intensity is known as stochastic resonance (SR) (i.e., classical SR in these papers).
Here, the signal to noise ratio (SNR) is expressed in dB as SNR = 10log10(S/N), where
S and N are, respectively, the ordinate of the output power spectrum and the ordinate
of the broadband output power spectrum at the signal frequency ω0. As described in
Sect. 2.1, the synchronization like phenomenon plays a key role in the SRmechanism.

Now we consider second-order dynamical systems described by the following
equation [10]

x
::
tð Þ ¼ �b _x tð Þ � V 0 xð Þ þ G tð Þ ð7:16Þ

where V xð Þ is a potential function. The unperturbed counterpart of Eq. (7.1) is the
Hamiltonian system expressed by x

:: ¼ �V 0 xð Þ. We assume that V xð Þ is a double-
well potential (Duffing-Holmes) as described in (7.3) with a = b = 1. x

:: ¼ �V 0 xð Þ
with the potential (7.3) and a = b = 1 has the homoclinic orbits [12].

Firstly, it is assumed that the excitation is only periodic, that is, in Eq. (7.16)
G tð Þ � A0 sin x0tð Þ. According to the Smale-Birkhoff theorem, the necessary con-
dition for the occurrence of chaos is that the Melnikov function induced by the
perturbation has simple zeroes. For Duffing system this condition is the Melnikov
inequality

� 4=3ð Þbþ A0SM x0ð Þ[ 0 ð7:17Þ

where

SM xð Þ ¼
ffiffiffi
2

p
pxsech px=2ð Þ ð7:18Þ

is a system property known as the Melnikov scale factor [13].
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Secondly, assume that the excitation consists of the quasiperiodic sum

G tð Þ � A0 sin x0t þ /0ð Þ þ Aa sin xatð Þ þ
XK
k¼1

ak sin xkt þ ukð Þ ð7:19Þ

For this case a generalization of the Smale-Birkhoff theorem [13] yields the Mel-
nikov inequality as the necessary condition for chaos

� 4b
3

þ A0SM x0ð Þ þ AaSM xað Þ þ
XK
k¼1

akSM xkð Þ[ 0 ð7:20Þ

Finally, assume that the system’s excitation is

G tð Þ � A0 sin x0t þ /0ð Þ þ Aa sin xatð Þ þ
ffiffiffiffiffiffiffiffiffi
2Db

p
R tð Þ ð7:21Þ

where R(t) is a Gaussian process with unit variance and spectral density g(ω). Over
any finite time interval, however large, each realization of the process R(t) may be
approximated as closely as desired by a sum [10]

RN tð Þ ¼
XK
k¼1

bk sin xkt þ ukð Þ ð7:22Þ

so that the Melnikov inequality, that is, the necessary condition for chaos, can be
written as in Eq. (7.20) where ak ¼

ffiffiffiffiffiffiffiffiffi
2Db

p
bk . In formula (7.22), bk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g xkð ÞDxp

,
uk are randomly chosen phases of uniform distribution on the interval 0; 2p½ � and
xk ¼ kDx, Dx ¼ xmax=K, xmax is the frequency beyond which the spectrum
vanishes (the cutoff frequency).

For the damped, forced system, the existence in a plane of section of a transverse
point of intersection between the stable and unstable manifolds implies the exis-
tence of infinity of intersection points. Eventually, they may form a chaotic motion
under a particular excitation. The strength of the chaotic transport, and therefore the
characteristic rate a, increases as the left-hand side of in Eq. (7.20) becomes larger
[13]. This is true regardless of whether the excitation is deterministic or stochastic.
Moreover, again regardless of whether the excitation is deterministic or stochastic, a
qualitative feature of the chaotic motions featuring escapes is that their spectral
densities have a broadband portion with significant energy content at and near the
system’s characteristic rate a. Thus, we expect that we can build a bridge between
chaos and stochastic resonance. That is to say, we can explain SR phenomena by
chaotic dynamics approach.

Assume that the excitation is a sum of a harmonic signal and an additional
harmonic component, that is, in Eq. (7.16), G tð Þ � A0 sin x0tð Þ þ Aa sin xatð Þ. The
system is therefore deterministic with, in general, quasiperiodic excitation. The
necessary condition for chaos is given by in Eq. (7.20) in which
a1 ¼ a2 ¼ � � � ¼ aK ¼ 0. We choose A0 so that, for Aa ¼ 0, the motion is confined
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to one well. In accordance with Melnikov theory this will be the case if the Mel-
nikov inequality given by in Eq. (7.17) is not satisfied. We now add the excitation
Aa sin xatð Þ. For a certain region Ra of the parameter space Aa;xa½ �, the system can
experience chaotic motion with jumps over the potential barrier. The Melnikov
scale factor SM xð Þ provides the information needed to select frequencies xa such
that the added excitation is effective in inducing chaotic behaviour. In general, xa

should be equal or close to the frequency for which SM xð Þ is the largest.
Given the existence in the spectrum of a broadband portion qualitatively similar

to that present in the case of classical SR, it is reasonable to expect that the
synchronization like phenomenon that occurs in the classical SR case would sim-
ilarly occur for the deterministically excited chaotic system. This was verified by a
numerical simulation for a large number of cases. As a typical example in [10], the
case for b ¼ 0:316, A0 ¼ 0:095, x0 ¼ 0:0632 (for these values in Eq. (7.17) is not
satisfied) and xa ¼ 1:1 is examined. Spectral densities of motions with these
parameters and Aa = 0.263, 0.287, and 0.332, are shown in (a), (b) and (c) of
Fig. 7.3, respectively. As it can be seen in Fig. 7.3a, when a ¼ 0:0671 is close to
the signal frequency x0 ¼ 0:0632, The energy in the broadband portion of the
spectrum is reduced clearly, while the energy at the signal’s frequency is enhanced,
compared with the respective counterparts in Fig. 7.3b, c, for which a ¼ 0:0518 and
a ¼ 0:1611, respectively. The synchronization like phenomenon noted for classical
SR is thus clearly evident in Fig. 7.3b. In addition, the motions in Fig. 7.3 of (a),
(b), (c) are indeed chaotic. This shows that the additive harmonic signal plays the
same effect as the noise in the enhancement of SNR.

7.3.2 Simulation for Enhancing the Detection of Weak
Signal by Adding a Harmonic Excitation

7.3.2.1 Detecting Weak Signal at Low Frequency

Notice that the larger the left-hand side of Eq. (7.20), the stronger is the chaotic
transport, and therefore the larger is the rate a. Let Aa ¼ 0, ak ¼

ffiffiffiffiffiffiffiffiffi
2Db

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g xkð ÞDxp

in Eq. (7.20). It is therefore clear from in Eq. (7.20) that for any given power of the
stochastic excitation 2Db, the left-hand side of Eq. (7.20) becomes larger and the
rate a increases. We thus obtain the interesting qualitative result that, for a given
Melnikov scale factor SM(ω) and a given power of the stochastic excitation, the rate
a increases as the spectral power of the excitation is distributed nearer to the
frequency of SM(ω)’s peak, ωpk (the greatest effectiveness being achieved by a
single component with frequency equal or close to ωpk).

We now illustrate the usefulness of this result for a system with classical SR (i.e.,
one for which in Eq. (7.21) Aa ¼ 0; D[ 0). We assume R(t) has the Lorentzian

spectral distribution g xð Þ ¼ c 1þ x2s2ð Þ�1 cut off at the frequency ωmax; τ is the
correlation time and γ is a normalization constant such that the variance of R(t) is
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unity. The Melnikov scale factor SM(ω) would in practice suppress contributions of
components with frequencies x[xmax:

Considering the case s ¼ s1 ¼ 0:2, typical averaged output spectra P(ω) for
A0 ¼ 0:3;x0 ¼ 0:069;xmax ¼ 3:0; b ¼ 0:25 are shown in Fig. 7.4a–c for D = 0.1,
0.6, and 2.0, respectively (other parameters are the same as in [10]). The averaging
was performed over 225 noise realizations approximated by in Eq. (7.20) with
100 < K < 500. Note that A0\4b=3SM x0ð Þ, so that no chaotic behaviour can be
induced by the periodic signal alone. However, it was verified that, for the noise
realizations used to obtain the results of Fig. 7.4a–c, the Melnikov inequality given

X
(f

)

lg
X

(f
)

X
(f

)

lg
X

(f
)

X
(f

)

lg
X

(f
)

(a)

(b)
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Frequency/Hz Frequency/Hz

Frequency/Hz Frequency/Hz

Frequency/Hz Frequency/Hz

Fig. 7.3 Amplitude spectra of system with D = 0, A0 and x0 keep constant. a The system is
subjected to an additional harmonic excitation with xa ¼ 1:1 and Aa = 0.263. b All settings are the
same as in, a except amplitude Aa = 0.287. c All settings are the same as in, a except amplitude
Aa = 0.332
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by in Eq. (7.20) was satisfied, and that the respective motions were chaotic. Energy
transfer to the signal frequency was found to be the highest when the rate a for the
chaotic motion is close to the signal frequency (α = 0.0077, α = 0.0667, α = 0.1772
for Fig. 7.4a–c, respectively).

As illustrated earlier, assume that Aa ¼ 0, and that for a set of values A0, x0, b
and D the system has low SNR. We could improve the SNR by increasing
D. However, it is more effective to increase the SNR by keeping D unchanged and
adding an excitation Aa sin xatð Þ such that xa is equal or close to the frequency of
SM(ω)’s peak and Aa is so chosen as to bring about a characteristic rate comparable
to the signal frequency. In Fig. 7.4d, all parameters and the normalized spectrum
g(ω) are the same as for Fig. 7.4a, except that the system is subjected to an additive
sinusoidal excitation with amplitude Aa ¼ 0:23 and frequency xa ¼ 1:1. This
approach to increasing SNR is seen to be effective by comparing Fig. 7.4d with b
(in Fig. 7.4d, a ¼ 0:0706 close to x0).

7.3.2.2 Detecting Weak Signal with Arbitrary Frequency

From Eq. (7.18), we can get that SM(ω) achieves the maximum when x � 0:76.
Once the frequency xa of additive harmonic excitation is equal or close to the
frequency of SM(ω)’s peak, the SNR improvement is obvious. That is to say, the
frequency of the detected characteristic signal only satisfies x
xmax � 3:0 and is
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Fig. 7.4 Averaged power spectra of output for stochastically excited system: a–c increasing noise
intensity D and Aa ¼ 0. d The same noise intensity D as in a, and Aa ¼ 0:23. Noise correlation
time s ¼ 0:2
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very low. Now the problem is how to detect weak signal with arbitrary frequency
by the method discussed above?

Combining Eqs. (7.3) and (7.16) obtains

x
:: ¼ �b _xþ x� x3 þ G tð Þ ð7:23Þ

where G(t) is expressed by Eq. (7.21), In general, let the added harmonic xa ¼ 1:0
and detected signal x0\xa. By assuming that t ¼ x1s, Eq. (7.23) becomes

1
x2

1

dx2

ds2
¼ � bdx

ds
þ x� x3 þ G sð Þ ð7:24Þ

Let x1 ¼ x, x2 ¼ 1
x1

dx
ds, rewrite Eq. (7.24) to be state equation

dx1
ds

¼ x1x2

dx2
ds

¼ x1 �bx2 þ x1 � x31 þ G sð Þ� � ð7:25Þ

Thus, Eq. (7.25) can be applied to enhancement detection of weak characteristic
signal with arbitrary frequency. It is important to emphasize that the normalized
scale transform of SR described in Eq. (7.12) is used, instead of Eq. (7.25).

Now, as a typical example, assume that we want to detect a characteristic signal
with amplitude A0 ¼ 0:3 and frequency x0 ¼ 0:069� 2p� 1,000 (i.e., 69 Hz). In
this case, x1 ¼ 2p� 1,000, xa ¼ 1:0� 2p� 1,000. Substituting these parameters
into Eq. (7.25) obtains the solution as shown in Fig. 7.5. It can be seen that the SNR
improvement is obvious from Fig. 7.6b.

0 50 100 150 200
-4

-2

0

2

4

(
)

lo
g

P
ω

(a)

Frequency/Hz
0 50 100 150 200

-4

-2

0

2

4

6

(
)

lo
g

P
ω

(b)

Frequency/Hz

Fig. 7.5 Averaged power spectra of output for stochastically excited system: a increasing noise
intensity D = 0.1 and Aa ¼ 0 (a ¼ 70:9466, lower than x0 ¼ 433:5398 (i.e., 69 HZ)). b The same
noise intensity D as in a, and Aa ¼ 0:23, here α = 429.5146 (i.e., 68.3594 Hz). Noise correlation
time s ¼ 0:2
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7.4 Validation Using Experimental Data

The experimental data was from the Centre for Diagnostic Engineering at Uni-
versity of Huddersfield. The test rig consists of a three-phase electrical induction
motor and a dynamic brake. The motor drives the brake by means of three shafts,
which are joined by pairs of matched flexible couplings. The shafts are supported
by two bearing housings, each containing one roller and one captive ball bearing.
The bearing used in the experiments was a N406 roller bearing. The tested bearing
was fitted in the bearing housing on the driven side.

In the experiments, the load applied to the test rig was 42.0 Nm and the rota-
tional speed was 1,456 r/min (24.3 Hz). When the load was decreased, the rota-
tional speed increased slightly. The three vibration signals were collected by
accelerometers which were fixed on the cage near the tested bearings. Two different
sizes of line defect were seeded on the outer race of bearings: a medium defect
(approximately 0.3 × 16 mm2), shown in Fig. 7.6a; and a small defect (approxi-
mately 0.11 × 6 mm2), shown in Fig. 7.6b. Based on the geometric sizes and the
rotational speed, the characteristic defect frequency (CDF) of the outer race was
calculated to be 83.4 Hz. To get the finger print recordings, a defect free test was
also conducted. All of the tests were repeated once during the experiments.

In the vibration data acquisition, the sampling rate was 64,938 Hz and the length
of data was 810,439. For the convenience of analysis, the vertical radial acceler-
ation signal was used to validate the SR-based algorithm for early detection of
incipient fault. In the analysis, we extracted the data points by two times sampling
interval. So the sampling rate was fs = 32,469 Hz. The length of data was selected to
be 217 = 131,072.

7.4.1 Envelop Analysis

The amplitude envelope of the raw vibration signals is computed using an algorithm
based on the Hilbert transform, H, which is defined by

H s tð Þ½ � ¼ 1
p

Z1

�1
s sð Þ 1

t � s
ds ð7:26Þ

Fig. 7.6 Line defects seeded on the outer race of the test bearings. a MF (0.3 × 16 mm2). b SF
(0.11 × 6 mm2)
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where s tð Þ is a raw acceleration signal. Then the analytical signal, ŝ tð Þ, can be
formed by

ŝ tð Þ ¼ s tð Þ þ jH s tð Þ½ � ð7:27Þ

Thus the envelope of the raw acceleration signal can be computed by

En tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 tð Þ þ H2 s tð Þ½ �

p
ð7:28Þ

Finally, the signal computed by Eq. (7.28) is processed using the FFT to obtain the
amplitude spectrum of the acceleration signal envelope. For the defect with certain
degrees of severity, we can find that the component and its multiple components at
the fault characteristic frequency are very obvious. For example, a classical result
with medium defect of outer under middle load is shown in Fig. 7.7.

For the very small defect on the outer race, a classical results under the same
load as that in medium defect are shown in Fig. 7.8. In this example, the selected
pass band of filter is the same as that in medium defect. From Fig. 7.7, we can find
that the signature frequency component and its multiple components are invisible
and may be buried by the other unrelated components and random noise. That is to
say, under the situation of incipient fault, the only envelope spectrum analysis
cannot detect the small defect effectively and consistently.

7.4.2 SR Output of Driven by Envelope Signal

According to Eqs. (7.14) and (7.15) and the signature frequency component of outer
defect, the benchmark frequency was selected to be f = 60 Hz for normalized
scale transform of SR model. Some parameters are as follows. Added noise
intensity D = 0.0005, a = f/0.1 = 600, b = f/0.1 = 600, model calculating time step
h = 1/fs = 3.0799 × 10−5, RMS of added noise r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � D � fs
p ¼ 139:5752.
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Fig. 7.7 A segment of FFT spectrum of envelope signal with medium defect
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The envelope signal of Fig. 7.7 plus added noise signal is considered to be the
input signal and drives the model in Eq. (7.14). The corresponding results are
shown in Fig. 7.9. Because the signature components in envelope spectrum are
already obvious, the advantage of SR analysis cannot be exposed.

The envelope signal of Fig. 7.8 is considered to be the input signal and drives the
model Eq. (7.14). The corresponding results are shown in Fig. 7.10. the signature
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Fig. 7.8 A segment of FFT spectrum of envelope signal with small defect
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Fig. 7.9 The output results of SR model for vibration data of medium defect of outer
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Fig. 7.10 The output results of SR model for vibration data of small defect of outer
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component is very obvious in Fig. 7.10, in contrast, it is hard to be seen in the
normal envelop spectrum in Fig. 7.8. This then clearly shows that SR is effective to
enhance small signal component for incipient fault detection.

7.4.3 Weak Characteristic Signal Detection by SR of Adding
a Harmonic Excitation

Based on the same data sets, the performance of the SR enhancement with adding
harmonic excitation is examined. A segment of FFT spectrum of envelope signal
analyzed from acceleration signal of small defect in outer race of bearings is shown
in Fig. 7.11. The characteristic defect frequency of the outer race (about 83 Hz)
cannot be found in Fig. 7.11. When the envelope signal with small defect and added
harmonic signal drive the normalized scale transform of SR model in [12] or
Eq. (7.25), respectively, results obtained are shown in Figs. 7.12 and 7.13
respectively. In these two figures, the characteristic defect frequency component of
the outer race is relatively obvious (about 84 Hz), which shows that it is possible to
use the approach of adding harmonic content for improving the performance of the
SR based detection
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Fig. 7.11 A segment of FFT spectrum of envelope signal with small defect
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Fig. 7.12 A segment of FFT spectrum of output of scale transform of SR model in (7.12) was
driven by envelope signal with small defect and added harmonic signal with xa ¼ 2p� 100
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7.5 Conclusion

According to the essence of classical stochastic resonance theory, the prominent
role of the stochastic resonance phenomenon is that it can be used to boost weak
signals embedded in a noisy environment. But for classical stochastic resonance,
only weak signal with very low frequency can be detected in heavy noise. In this
chapter, based on our recent studies [14–17], the signal enhancement via stochastic
resonance is explained according to two main approaches. One is the scale trans-
form of classical SR model for detecting relative higher frequency signal, thus the
enhanced detection of periodic weak signal can be obtained via averaged approach.
Another work is the investigation of the alternative mechanism for enhancing SNR,
wherein the noise intensity is left unchanged but a harmonic excitation is added
instead. This mechanism is shown more effective, allowing a better SNR to be
obtained than the mechanism that of increasing the noise intensity. In addition,
corresponding numerical simulations and case studies show that the proposed
method for enhancing SNR is of more effectiveness.
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