
Chapter 22
Building Dependable Electronic Systems
for Autonomous Maintenance

Richard McWilliam, Philipp Schiefer and Alan Purvis

Abstract Maintenance repair and overhaul (MRO) of high value systems is
expensive, time consuming and relies heavily upon back-to-base repair and over-
haul activity. Autonomous maintenance of repairable systems is a rapidly devel-
oping area in through-life engineering services that specifically aims to reduce both
mean time to repair and frequency of preventative maintenance. Modern engi-
neering systems must perform reliably in the event of random upset events that
threaten to induce malfunction or unpredictable behavior. These requirements are
fuelling the integration of fault-tolerant and self-repairing techniques into electronic
systems at design time. This chapter investigates emerging techniques being utilised
in electronics that bring new self-repair capability to high-value applications such as
aviation, land vehicles, renewable energy and space exploration. The cost/benefit
trade-off of self-repair strategies is analysed in terms of redundant resource allo-
cation and key performance metrics. The potential for future uptake is discussed in
the context of current and next-generation platforms.

22.1 Introduction

The emergence of built-in self-test (BIST), self-reconfiguration and mechatronic
assist technologies is driving new research and development of systems that will be
capable of self-repair. Within the electronics domain these concepts promise to
create the ability to maintain in-service operation in the presence of faults by either
masking the effects of the fault or else performing self-reconfiguration to remove
the faulty logic. The former is useful for handling random, non-permanent fault
events while the latter re-establishes a fault-free system by deactivating logic that
has suffered permanent faults. The primary benefit is that such systems become
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better able to look after themselves by performing self-maintenance tasks, thus
leading to increased availability.

A common feature present in all self-repair strategies this is that of additional
redundant resources, implemented either at the fine-grained level (e.g., transistor or
gate element) or modular sub-component level (e.g., chip or board level). Redun-
dancy has been deployed to great effect in increasing the yield of electronics
manufacturing processes for many years, especially for high density components
such as memory chips. In recent years however there has been significant rejuve-
nation of established fault masking techniques for increased fault tolerance fol-
lowing the emergence of next generation nano-electronic fabrication techniques that
will suffer lower yield than current semiconductor processes. Aside from manu-
facturing yield, there is significant interest in supporting through-life maintenance
through the provision of self-repairing capability by incorporating self-repair by
autonomous reconfiguration within both COTS FPGAs and custom ASICs.

The basic concepts of fault masking and self-reconfiguration suitable for elec-
tronics design are discussed in Sect. 22.2. Section 22.3 investigates the different
ways in which redundant resources may be deployed and identifies key perfor-
mance metrics. State of the art strategies that utilize COTS FPGA chips are dis-
cussed in Sect. 22.4. Finally, a brief commentary on the future of self-repair and key
challenges is provided in Sect. 22.5 along with a qualitative summary of key
performance metrics.

22.2 Basic Concepts and Motivation

The incorporation of fault masking, built-in test (BIT) and built-in self-repair
(BISR) functionality brings attractive potential benefits: (1) reduction of the cost
associated with MRO by assisting with efficient maintenance scheduling; (2)
increased availability of electronic components and systems; and (3) extension of
the predictable operational life time by better regulation of wear out. The funda-
mental challenge of implementing test and repair strategies stems from the fact that
redundant resources are expensive and must therefore be applied sparingly or else
the design quickly becomes unyielding and expensive. Efficient deployment of
redundant resources requires design compromise in which the expected cost/benefit
trade-off must be understood clearly in order to create an effective mitigation
strategy. There is as yet no single optimal strategy for fault-masking or self-repair
[1, 2]. Evidence of this is seen in electronic systems that incorporate boundary scan
test interfaces, which are in common for production test and repair. This type of
interface provides an effective trade-off between resource and benefit for production
yield enhancement, however its scope is somewhat limited for in-service duties
because the circuitry is not self-contained and relies upon external hardware in
order to provide full BIST capability. This special interface is not generally
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optimised for low power, but rather high speed due to the fact that in the production
environment each second of test time adds significant overhead1 to product cost [3].
Thus, implementations that enable in-service BIT, fault-masking or BISR tend to
rely upon a multitude of strategies that are constrained by minimal power and
resource overheads, but which must also provide effective fault recovery and
reporting. In the case of non-repairable faults being detected in the field, human
interaction is often necessary in order to confirm faulty hardware to repair or replace
the offending component or sub-component and such procedures are routinely
carried in the repair shops. BIT, BISR and fault masking offers the potential for
in situ diagnosis, fault monitoring and repair.

A fundamental difference between fault masking and self-repair is that the latter
requires active management of redundant resources. This is related to practice of
dynamic redundancy, in which spare components are available but held in a standby
state. When a fault condition is detected a fault detection and reconfiguration unit
initiates replacement of the faulty component. This type of strategy can be combined
with other fault masking methods, for example triple active redundant hydraulic
power systems for aircraft that also incorporate an emergency standby system.

BISR design relies upon an improved understanding of the characteristics of
component degradation and random upset events and a suitable strategy for
deployment of redundant resources. This challenge has been identified in the
context of avionics [4] but is seen in a wide variety of high value systems.
A detailed analysis of the trends in reliability of high density SRAM was carried out
by White [5] in order to better understand actual failure characteristics for SRAM
chips. The result was an apparent departure from the conventional “bath tub” curve
(Fig. 22.1), influenced in part by improved understanding of counter-wear out

Fig. 22.1 Depiction of potential failure rate versus time profiles expected for modern electronic
systems

1 An often-quoted rule of thumb is that each hour of test time contributes 5 cent to product cost.
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measures such as derating, and partly by careful modeling of fault models for
production faults, wear out faults and random upset events. In some cases it
becomes difficult to distinguish between particular wear out and random failures
that assume nominally constant rate during in-service operation. This is a very
important feature in the deployment of self-repair strategies because the selection of
optimal mitigation strategy requires intimate knowledge of the underlying fault
characteristic.

It is also important to keep in mind the robustness of wholly integrated systems
that require sensors and actuators in addition to core circuitry. A holistic view
should be formed whereby fault tolerance of sensor data and output data is included
into the redundancy scheme whenever possible. A traditional approach here is to
incorporate concurrent error detection using information redundancy, such as error
correction codes (EDC) that seek to filter incoming sensor data and remove faulty
code streams.

22.2.1 Sources of Errors

Electronic systems are bombarded by a variety of error-inducing events. Random
errors may be caused by environmental factors such as hostile electromagnetic
interference (EMI), high energy radiation particles and thermal cycling. Mitigation
against EMI is provisioned at design time by applying appropriate grounding,
shielding and transient suppression. Random events such as electromagnetic pulses
(EMP) cause errors that are difficult to predict. High energy particles interact with
semiconductor junctions and are also fundamentally random by nature [6]. Their
influence can become of great concern for space and high altitude applications, a
classic example being spurious pixels appearing in satellite imaging sensors [7].
There are however growing concerns for the susceptibility of ground-based sys-
tems, particularly those relying on SRAM chips since the error rate increases
inversely with transistor scaling [8].

22.2.2 Deployment

A natural progression of BIST is of course to begin furnishing the circuitry with
resources that enable BISR capability. This may take the form of either fault
masking or self-reconfiguration techniques of which there is a great variety. In order
to understand their relative merits, key performance factors need to be understood.
There are many examples where redundant resources are added, often in modular
fashion, for the purpose of fault masking where the goal is to preserve the correct
functionality in the presence of faulty logic [2, 9–11]. While fault masking strate-
gies may not be considered as being truly self-repair, it can be argued that they draw
upon redundant resources in order to reassert the correct internal signal and thus
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represent a step towards self-repair of information rather than logic. On the con-
trary, self-reconfiguration strategies seek to eliminate faulty logic and re-establish a
fault-free circuit and are usually more complex due to their need for both test and
repair.

22.2.3 Key Performance Metrics

As with any new capability incorporation of self-maintenance requires an evalua-
tion of cost/benefit trade-offs. The key features of self-maintenance have been
identified for FPGA and custom ASIC architectures, an example of which is shown
in Table 22.1. This classification, adopted from [12], originates from self-repair
strategies implemented using FPGAs but the concepts are common to general self-
repair strategies.

We now discuss in detail each of the metrics mentioned in Table 22.1.
Physical resources In order to incorporate self-repair capabilities, special

resources must be added that may be of different design to that of existing logic
design, hence requiring different testing and verification methods. In contrast,
implementations for FPGAs commandeer a fraction of the available resources,
which are then no longer available for application specific tasks. An example is
online fault tolerance in FPGAs that require spare PLBs for built-in test and repair

Table 22.1 Evaluation metrics for self-repair

Metric Description

Physical
resources

Additional resources involved in implementing fault handling capability

Critical
components

Additional components that must be assumed fault-free

Fault coverage The type of fault manifestation to be handled and hardware involved e.g.,
permanent, transient faults that occur in logic blocks, interconnect,
memory, IO resources

Fault capacity Resources necessary to handle a second additional fault event. Used to
quantify efficiency of redundant resources

Detection
latency

Time incurred to detect presence and location of fault

Recovery time Time during which system is not available or else executes at reduced
speed while repair is carried out

Performance
impact

Reduction of overall system performance as a consequence of including
repair-mechanism

Recovery
granularity

Smallest constituent part of system that can be repaired

Fault
exploitation

Ability to reuse defective resources
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that could otherwise have been utilised to increase the performance of the main
task.

Critical components In addition to the correctly functioning circuitry, any fault
repair or making strategy must reply upon additional fault-free resources that may
be called upon in response to a fault. This includes redundant resources and any
logic required to carry out repair. Examples include the majority voter in a spatial
redundancy scheme and built-in reconfiguration units. Identification of critical
components is especially important for reconfigurable chips that are provisioned
with a finite set of resources.

Fault coverage Fault coverage refers to the type of hardware protected by the
scheme and may include logic, interconnect, IO logic or memory. It may also relate
to the essential characteristic of the fault event itself, be it transient or permanent,
singular or persistent in nature. The nature of the design dictates the class of fault
that can be tolerated, and for each case the most effective strategy is selected. It has
been observed that interconnect failures are somewhat neglected in comparison to
logic failures [12].

Fault capacity Once furnished with suitable resources the design is able to
recover from certain fault events. Fine-grained fault masking strategies are designed
to tolerate single random fault events at any location within a logic sub-circuit, but
do not address multiple persistent fault events that accumulate over time. Thus their
fault coverage is usually limited to random SEU or single permanent fault events.
By contrast, self-repair strategies target cumulative errors by continuously cir-
cumventing faulty logic at the expense of consuming resources. As such their fault
capacity is often quantified according to the necessary elemental redundant resource
needed to address an additional fault. This resource may be allocated at design time
(spare configurations) or else enlisted at runtime (spare configurable logic blocks).

Detection latency Many repair strategies need dependable fault detection cir-
cuitry in order to generate efficient repair configurations. Detection latency is an
important metric defined as the period of time elapsed between the occurrence of a
fault (during which the system is potentially untrustworthy) and completion of the
fault repair operation. Fault detection must become an intrinsic design element and
be optimised for the particular repair strategy. Also it is not necessarily the case that
lengthy detection time will result in poor overall repair performance: roving self-
testing areas (STARs) [13] incur high detection latency however faults are auto-
matically quarantined once detected, enabling normal execution to continue whilst
repairs are carried out.

Recovery time The speed of repair is critical in most applications, especially if
when the system clock is frozen during repair. This results in a period after the fault
event during which the outputs are inoperative or untrustworthy. An attempt is
made by Parris to compare the recovery time for different FPGA-based strategies
[12]. However, establishing a clear distinction between detection latency and
recovery time can be challenging in some cases.

Performance impact Fault masking often achieves little or no performance
reduction in the event of faults but at the expense of significant redundancy over-
head. Self-repair strategies attempt to use resources in a more strategic manner,
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although performance degradation is still common. Normal operation may be halted
whilst the repair is carried out or by conversion of existing resources into redundant
resources.

Recovery granularity The smallest constituent part that is repairable using
redundant resources is specified by the recovery granularity. For example, TMR is
often applied at the component level where each module comprises a complex
electronic sub-system such as a flight control computer. In this case repairs proceed
by masking or replacing a faulty module and further investigative work is then
needed to identify the precise cause of fault. Fine-grained approaches operate at the
gate or even transistor level and offer a more diverse variety of repair mechanisms.

Fault exploitation Operates at the logic block, gate or transistor level, where it
is possible to detect that a stuck-at or bridge fault has occurred. In this case it is
sometimes possible to reuse the offending fault signal within the existing design,
e.g. when a stuck-at high level does not affect the output behavior. Self-repair
strategies for FGPA platforms are able to achieve fault exploitation, particularly
when based upon evolutionary algorithms.

22.3 Deployment of Redundant Resources

Modern maintenance procedures rely upon BIT mechanisms coupled with human
maintenance actions in order to find faults and carry out repair operations. In the
production environment test and repair is often automated since the conditions are
carefully controlled. An example of this is the test and repair of electronic memory
chips containing defective transistors that would otherwise be discarded. The
procedure involves detection and bypassing of defective cells using spare redundant
cells. In order to achieve test and repair capability special circuitry specifically
designed for BIST is inserted into the chip design that enables execution of test
patterns within the chip and results to be relayed to external test equipment. The
results provide an indication of defective cells that are subsequently deactivated and
replaced by spare cells, often by laser-activation of fuses for a permanent recon-
figuration. This process has many variations and boundary scan methods are
applied in many production test situations.

Fault masking strategies seek to restore reliable operation in the presence of
faulty transistors, gates and cells and, while common in some designs, are not
considered by themselves as being self-repairing. They could instead be viewed as
initiating restoration of logic signals propagating though the network using
redundant elements incorporated at design-time. Redundancy is deployed at many
different levels of design. Some examples are depicted in Fig. 22.2, where repli-
cation of transistor, gates, design cells (logic units) and modules are applied within
a design. The three fundamental types of redundancy are: spatial, temporal and
information, each of which may be applied in isolation or in combination.

Aside of fault masking, redundant resources are required by repair strategies that
seek to restore a fault-free circuit i.e., to remove the presence of faulty logic. While
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fault masking offers the capacity to ‘hide’ a limited sequence of simultaneous
transient or successive permanent fault events, self-repair draws upon additional
built-in reconfiguration capabilities to continually restore a fully correct network
that is able to sustain repeated faults. A combination of both approaches is clearly
desirable in some situations, especially where the operating conditions result in the
occurrence of both SEU events and accumulation of permanent faults.

Fig. 22.2 Examples of redundancy deployed at various design levels including transistor, gate,
cell and sub-component levels

Production 
test and repair

Laser fuses

Redundant interconnect

Spare row logic

FPGA architectures for built-in 
repair

Cellular block structures

Redundant grid and segment 
structures

SRAM shifting

Fig. 22.3 Common repair methods used for yield enhancement (adapted from [1])
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22.3.1 Spatial Redundancy

Spatial redundancy involves direct replication of physical resources that are used to
mask faults or to replace faulty logic. Several well-known spatial redundancy
schemes exist including triple modular redundancy (TMR), quadded logic and quad
transistors. They are particularly attractive for SEU prone conditions since recovery
is virtually instantaneous, however their fault capacity is generally low in the
presence of cumulative permanent faults. Yield enhancement methods invariably
rely upon spatial redundancy in order to provide a fixed set of resources available
during production test and repair (Fig. 22.3). Here efforts are directed towards
eliminating defects occurring during fabrication rather than random failures or wear
out. This leads to a prediction of the defect tolerance of the given circuit that
depends on the component failure rate and the effective deployment of redundant
resources.

Considering once more random failures that occur in-service, a comparison
between the reliability of common spatial strategies can be carried out using simple
reliability analysis. A simple example is shown in Fig. 22.4, which compares the
redundant strategies of TMR, two spares and quad design. Such comparisons are
often analysed in the context of production yield since the probability of component
failure, p, can be determined by the process quality. However we may also
extrapolate this information into the corresponding in-service domain provided we
assume that SEU events are random (i.e., statistically independent) and that the
resulting failure condition is analogous to the condition of a manufacturing defect.

In Fig. 22.4 The line labeled “single part” shows the predicted reliability, R, of a
non-redundant design. The line labeled “TMR” shows the probability that 2 out of 3
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Fig. 22.4 Reliability characteristics for common fault tolerant design strategies, depending on
probability of component failure, p
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parts are functional and does not take into account the reliability of the majority
vote logic. In this case:

R ¼ 1� pð Þ2þ3p 1� pð Þ2: ð22:1Þ

A further method labeled “Two spares” is also shown, which requires at least 1
out of 3 functional components:

R ¼ 1� pð Þ2þ3p 1� pð Þ2þ3p2 1� pð Þ2: ð22:2Þ

Equations 22.1 and 22.2 are evaluated by the well-known Binomial distribution
[14] applied to system level reliability analysis. Finally, a method specific to
transistor level fault tolerance labeled “Quad transistor” is calculated (see also
Fig. 22.5) that that requires 3 out of 4 transistors to be functional. In this final case,
the reliability is derived as:

R ¼ 1� 3
2
p2 þ 1

2
p3: ð22:3Þ

By taking into account the individual suck-at high (SaH), stuck-at low (SaL) and
bridging failures, El-Maleh et al. [10]. further examined the theoretical reliability of
similar strategies that use N^2 redundant transistors.

Comparisons such as those in Fig. 22.4 lead to several observations. The TMR
approach is most effective for small values of p and a poor choice for p > 0.5. The
two spares approach does yield higher reliability, however this approach does not
provide error detection and should be considered inferior to TMR for in-service
fault handling (assuming that a reliable majority voter is available). Spares are
commonly used in the production environment wherein a sophisticated test machine
is able to detect faulty components and replace them with available spares. The
quad transistor method exploits the failure characteristics of a quad network such
that stuck-at conditions do not cause overall failure. Explicit fault detection does not
occur however. This comparison demonstrates the importance of understanding the
properties of the applied mitigation strategy and application requirements.

Fault masking will become especially relevant for next generation nanoscale
technologies, where the basic resources of transistors and interconnections will be

Fig. 22.5 Quad transistor circuit topology
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fabricated with high density but subject to lower low yield than achieved by current
manufacturing processes. This has led to considerable activity in the area of online
fault tolerant methods, which use massive redundancy to bring improvements to
overall system availability [14, 15]. These strategies could be viewed as achieving
the creation of reliable circuits in the presence of many faults as per Von Neu-
mann’s early work on the principle of building reliable computational networks.
The primary benefits are twofold: built-in fault tolerance at the point of manufac-
ture, and SEU fault masking. Note however that the allocation of redundant
resource is allocated at design-time and hence there is a fixed resource for both
manufacturing test and repair and in-service fault tolerance.

Fine-grained approaches In the case of fine-grained strategies such as the N^2
transistor design circuit, fault rate modelling should take into account behavior at
both underlying transistor structure and gate level. In [10] it was demonstrated that
fine-grained redundant methods offer favorable failure rates in comparison to gate
and cell based redundancy for certain designs. An alternative detailed gate-level
fault model presented in [16] accounts for transistor and interconnect level faults
specific to CMOS NOR gates. This was used to build an accurate fault injection
model for CMOS fault rate analysis. The properties of a gate-level redundancy
scheme were investigated in [17] by adopting a simple fault injection model and
insertion of various open and short circuit conditions. This enabled evaluation of
detectable and undetectable fault conditions and potential repair mechanisms.

22.3.2 Temporal Redundancy

Circuits that incorporate temporal redundancy generate majority signals with
minimal hardware by repeated use of logic units to calculate several results over
time. If no faults have occurred during the time frame, then a fault-free network is
assumed. This leads to reuse of physical hardware but requires a minimum time
period before a valid majority vote signal becomes available. Hence detection
latency can be considerable. Temporal and spatial redundancy can be combined in
order to provide more flexible self-checking capabilities. For example, repeated
operations across multiple identical hardware cells provides additional integrity
checking beyond purely TMR implementations.

22.3.3 Information Redundancy

Concurrent error detection relies upon information redundancy in the form of
additional information added to data patterns stored in memory. This enables
recovery from corrupted data bit exploiting additional information redundancy
placed into the data pattern. The additional information is referred to error detection
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and correction (EDC) codes. Commonly implemented for communication channels,
this approach has also been implemented to protect embedded hardware design. In
distributed cellular architectures, where special codes analogous to DNA sequences
are stored locally in every cell, reconstruction of the correct data occurs continu-
ously even in the presence of multiple upsets [18].

For digital logic whose functional behavior captured in the form of a state
transition table, EDC can be applied to protect the data (and hence the functional
behaviour). Finite state machines (FSMs) may be protected in this way mapping
their state table to a suitable look-up table (LUT) stored in regular memory, which
can in turn be protected using EDC codes [19]. When stored in read-only memory
(ROM), high-speed compact hardware implementations result although additional
(and vulnerable) execution logic is needed to implement the memory address look
up and input/output interfacing. ROM-based FSMs have become prevalent in ASIC
design [20] but also in FPGA implementations due to their speed and compactness
[21]. Even so, the additional logic necessary to run the state machine is not neg-
ligible and must also be protected from faults. An elegant solution here is state
mapping, where the original state codes themselves are modified to include single
error correction (SEC) redundancy codes. This implementation, illustrated in
Fig. 22.6, is able to tolerate SEUs present in the LUT and in the next state logic but
cannot directly protect the EDC logic used to remove single errors present in the
next state. Rochet observed [22] that the vast majority of random errors occurring in
the EDC logic are fixed by the single error correction (SEC codes), however the
resource overhead associated with additional LUT entries and the error decode logic
leads to ever more complex designs [19]. This can ultimately lead to poor overall
resource deployment in contrast to simpler strategies such as TMR, therefore
careful consideration of the repair method is once again important.

LUT

01 0A 83 82 11
02 0B 00 10 20
03 0C 00 00 55
...

Address register

Output
decoder

Output

Input Next address logic

Fig. 22.6 Block diagram of ROM based FSM with LUT contents protected by EDC codes. The
FSM requires minimal execution logic for next address generation and input/output interfacing
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22.4 Platforms for Self-repair

Before examining the features specific to self-repair strategies, is it useful to briefly
consider recent developments in compatible hardware platforms. The most common
platform is the field programmable gate array (FPGA), which is essentially an ASIC
chip furnished with a large pool of sophisticated reconfigurable logic resources,
memory and interconnect routing. These chips are popular due to their in situ
reconfigurability, wherein a bitstream file is loaded into chip in order to organise its
resources at runtime. The resulting die is extremely densely populated with logic,
SRAM and routing resources necessitating extensive production test and repair in
order to enhance manufacturing yield. Because of this device-level (DL) fault
tolerant methods are used that are transparent to the end user. To overcome this
imitation, a large variety of configuration-level (CL) methods have been devised
that seek to reuse the FPGA’s resources for dynamic in-service repair [1, 2, 12].
Reconfigurations are carried by alteration of the configuration bitstream. Alternative
full custom chip designs have been also proposed that are furnished with new
redundant resources specifically tailored for fault mitigation rather than production
test and repair. Strategies include fine-grained [23] and cell-based [24] redundancy.
Another class of ASIC is the fully customised chip having a non-reconfigurable
design that is constrained according to speed, efficiency and size restrictions. These
designs may be equipped with fault tolerant resources at design-time however their
target application is more likely to be performance sensitive hence highly optimised
implementations are needed.

22.4.1 Key Strategies

Self-repair requires a combination of BIT and self-reconfiguration in order to detect
and eliminate faulty logic using redundant resources. The principle of self-repair as
autonomous design has been discussed at length [25], and principally involves the
actions of detect-divert or detect-replace in order to circumvent fault logic. Another
potential feature is self-preservation, which attempts to inhibit future degradation.
Efficient maintenance scheduling relies on having a detailed knowledge of expected
fault events and actions to be taken. An important feature of self-repair strategies is
the provision of built-in logging (and possibly classification) of both random fault
events. Accurate records of SEU and permanent errors are thought to be extremely
valuable in gauging the remaining fault capacity and for refinement of overhaul
work scheduling.

Considering strategies that are specific to FPGAs, numerous comparisons of
resource-performance trade-offs have been reported, in most cases by estimating the
key metrics described in Sect. 22.2.3 (primarily relating to detection latency,
recovery time and resource overhead) [1]. A comparison of the relative benefits has
also been presented in the form of a number of “sustainability metrics” that include
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fault capacity, granularity, interconnect fault handling and critical fault resources
[12]. A further survey has considered fault detection as being an essential part of the
self-repair process [26]. Findings from these studies have suggested that no single
method is optimal and that the application priorities must be carefully evaluated in
order to select an effective fault tolerant approach. This is true not only FPGAs but
even more so for custom ASIC designs that must be optimised according to power
and speed constraints. Figure 22.7 provides a summary of prominent methods
reported in the literature, classified according to strategy. Pre-allocated and dynamic
reconfiguration methods feature heavily in FPGA strategies, where their ability
to alter the configuration bitstream is exploited to circumvent faulty logic. Pre-
allocation utilises alternative configurations defined at design time in the form of
spare configurations or spare logic. Spare configurations are allocated at design time
and comprise a collection of alternative bitstream configurations that can be loaded
in response to a faulty condition. These schemes depend upon effective BIT in order
to determine the most appropriate replacement configuration that is most likely to
circumvent the faulty logic. Similarly, spare resources are made available at design
time and are activated upon detection of a faulty logic block. This results in a direct
substitution of the block with a nearby spare block. Spare blocks are arranged at a
finer granularity than spare configurations but their distribution must be allocated
carefully in order to provide sufficient fault capacity.

By contrast, dynamic methods are able to generate new configurations in the
field as a direct response to faults. Offline methods seek to derive a new configu-
ration using an algorithm that attempts to process fault information, assess available
resources and generates a new configuration. An FPGA’s normal operation must
be halted in order to reconfigure the device and in some cases to provide additional

Fig. 22.7 Strategies for self-repair at point of manufacture and for in-service reconfiguration (see
[1, 12, 27]). PLB Programmable logic block; SRAM Static random access memory; STAR Self-test
area
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on-chip resources for calculation of the new configuration. Genetic algorithms have
also been demonstrated to be capable of achieving impressive fault capacity with
efficient resource usage and even fault exploitation. However, their recovery time
tends to become unbounded due to the nature of the algorithms involved. Online
methods seek to preserve active operation while BIT and reconfiguration operation
are carried out. These approaches are somewhat complex due to their need for real-
time bitstream manipulation. That said, the TMR with recovery method simplifies
the complexity at the expense of performance reduction due to the need for high
spatial redundancy within the active configuration. Application performance is also
compromised by the STAR method approach. A detailed examination of this can be
found in [13], where the performance penalty for a various design using STARs is
quantified in terms of maximum clock speed and spare resource overhead. For the
sample designs considered, the maximum design clock speed was reduced by some
2.5–15.1 % when 20 % of the chip was reserved for STARs. However, this penalty
is countered by important benefits including the ability to deal with of dormant
faults by adaptive re-usage of resources and incremental fault tolerance that esca-
lates the provision of redundant resources as faults become more aggressive and
frequent.

22.5 Potential Impact and Uptake of Autonomous-
Maintenance

To date, no single fault masking or self-repair strategy has proved all encom-
passing; each particular design option must be evaluated in order to determine the
best strategy. A wider understanding of cost/benefit trade-offs at different levels
design level granularity of would be of great benefit in this area. A key issue is that
accurate evaluations of fault rate behavior generally lead to complex and protracted
analysis, resulting in lengthy design verification. This may be alleviated by
developing useful optimisation metrics capable of exploring complex combinations
of redundant strategies and application constraints. This process should begin by
evaluating key metrics against the top-level strategies of fault masking and self-
repair, then classifying the benefits brought about through each specific approach.

Table 22.2 provides a starting point for this process, however a common
resource allocation model would be needed in order to generate different combi-
nations of redundancy strategies.

Whether the characteristics of a particular self-repair strategy are considered
acceptable depends on the application and the cost/trade-offs evident in Table 22.1.
By example, the STAR strategy exerts a long detection latency amounting to
several seconds typical for complex roving BIT mechanisms. However since test
and repair coverage is 100 % and utilises only non-active logic at any single point
in time, there is no actual down-time incurred for the self-checking process as far as
the active logic is concerned. Should a fault strike then the worst-case effective
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detection and recovery time could be unacceptable long, and redundant fault-
masking resources may be needed at a more finely-grained design level. Conversely
TMR fault-masking strategy offers negligible detection and recovery time however
requires expensive triplicate structures and reliable majority voting logic in com-
parison to around 10–20 % spare resource for STAR implementations.

Another factor is the necessary complexity of the underlying fault-tolerant
resources: FPGAs commonly employed for self-repair strategies are composed of
blocks containing complex arrangements of logic and interconnect (albeit with awell-
understood and regular structure). Fault masking strategies tend to be implemented
using very simple logic that is no more complex than the non-redundant design. N-
modular redundancy principles have been reported at the extremely fine-grained
transistor and gate level [17]. The TMR principle is sufficiently flexible for FPGA
design that use multiple configurations when combined with standby configurations
[28]. Indeed, the replication of entire components or sub-components is commonly
adopted in mission critical situations such as navigation and mission control com-
puters, although there is great interest in exploring less resource-expensive strategies
that achieve equivalent reliability through self-repair using COTS components.

22.5.1 Test and Verification

There are three key aspects testing of self-repair methods. First, verification of the
core functionality is necessary in order to ensure that the fault tolerant mechanism
operates as intended. Second, an evaluation of key metrics (Sect. 22.2.3) will lead
to better understanding of resource/performance trade-offs. Third, test and verifi-
cation of the complete sub-component is needed in order to ensure that its behavior
is predictable. Self-repair systems must be able to adapt and continue in the pres-
ence of faults, as well as maintain predictable behavior at all times. For

Table 22.2 Comparison between key metrics of fault masking and self-repair strategies

Metric Fault masking Self-repair

Mitigation
strategy

Faulty logic is tolerated without error
in output behavior

Faulty logic is circumvented or
reused

Fault
capacity

Limited capacity for SEU errors.
Resources may be able to handle
second additional fault—but only in
limited locations

Resources designed to generate sig-
nificant fault capacity

Detection
latency

No explicit detection provided, but
majority vote errors could be used

Varies from 100’s μs to many
seconds

Recovery
time

Virtually instantaneous Between 10’s of milliseconds and
several seconds (or even unbounded)

Fault
reporting

Not inherent, but majority vote offers
limited reporting

Event data available, but most solu-
tions not sufficiently developed for
reporting or logging
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mission-critical applications autonomy raises concerns regarding predictability in
addition to serviceability and certification, requiring that new standards be devel-
oped that set out suitable qualification procedures. The concept of design for full
fault coverage using built in test is relevant here [29]. In production test, BIT logic
must be able to cover every critical test combination in order to provide full repair
of defect logic. Similarly, complete coverage is necessary when testing fault
masking or reconfiguration strategies.

A useful technique for testing performance and compliance of autonomous self-
repair is fault injection. This takes the form of asserting fault conditions within the
circuit in a random fashion in order build up a statistical picture of its fault behavior.
For example, the fault injection algorithm proposed in [30] involves temporarily
setting fault conditions in a sequential manner where it is assumed that the DUT
design remains unchanged during the test procedure. Chip production and in-field
diagnostics exploit boundary scan logic [31] which can be used for testing of self-
repair mechanisms. However the test at system level can become complex since
appropriate resources must allocated for built-in test and control lines [32]. Pro-
duction yield test and repair machines utilise highly optimised test-repair algo-
rithms, allowing them keep track of permanently faulty logic resulting from
manufacturing defects. Although the test requirements appear similar in nature,
online reconfiguration strategies seek to alter the configuration of the DUT in
response to multiple fault events, some of which may be permanent by nature.
Hence a suitable fault injection tool must create a combination of transient and
permanent fault conditions, and keep track of the complex sequence of faults during
test. Due to the complexity of design for self-repair, proxy hardware is often
employed during development that simulates the design before committing to ASIC
manufacture. This is generally achieved using FPGA platforms that are configured
to emulate the design. Whether used for emulation or test bench interfacing, the
underlying proxy hardware must be sufficiently reliable and bug-free so that it may
be assumed error-free.

22.5.2 Potential Impact and Uptake

Within the context of assisted-maintenance the problem addressed by self-repair
strategies is that of increasing the robustness of sub-components that would
otherwise perform unpredictably or else fail entirely in the presence of random and
permanent failures. In the latter case, the hope is to achieve a graceful degradation
that prolongs operational lifetime and provides valuable monitoring of remaining
fault capacity as an indication of impending end of life at the sub-component level.
Strategies for self-repair draw partly upon techniques developed for production
yield enhancement. This means that the end customer is never aware of production-
related repairs. However self-repair strategies must operate without access to
external test hardware equipment and thus maintaining customer transparency is
more challenging. In some instances the repair strategy relies on customer-level
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tools such as vendor-supplied synthesis and layout for FPGAs. It could be argued
however that a sustainable model (in the context of predictability, serviceability and
certification) is one in which fault tolerance operates at a guaranteed “self-repair
hardware level” that is transparent to the customer and hence may be regarded as
autonomic. Such concepts are especially conducive to custom ASIC designs.

Ongoing developments in autonomous maintenance aim to achieve in-service
“on the wing” active repair during operation or perhaps during predicable periods of
downtime. They would no longer be limited to scheduled maintenance periods.
Aside from those online reconfiguration methods discussed (Sect. 22.4.1), there are
other examples of in-service models. For example a self-tuning analogue RF circuit
has been demonstrated capable of online self-correction actions and thus is able to
sustaining optimal performance without minimal degradation [33]. In this case an
in situ BIT mechanism is incorporated that constantly monitors and performs self-
correction of parameters that would otherwise drift out of specification. This
example might be considered as being self-optimising rather than self-repairing,
however the concept is similar since both rely on self-contained detect-restore
actions.

Briefly revisiting the classic model of component lifetime discussed in
Sect. 22.2, for some systems random and wear out failures are difficult to differ-
entiate and hence great care is needed when allocating self-repair strategies such
that they target the correct failure mechanism (i.e., presumably prioritising random
rather than wear out failures). With this mind, we must ask the question: how to we
select the most appropriate mitigation strategy and prove its efficacy? Clear and
conclusive assessment of the metrics discussed above combined with effective test
and verification are essential.

The next question is then: who should carry out this task? This is a complex
systems design problem since it is not obvious as to what level of autonomy and
transparency is most beneficial. Abstraction from application specific development
tools may seem appropriate in terms of resource allocation, however acceptable
limits on impact to performance, power and timing are very much application
dependent. One final design aspect is that self-maintaining systems will be expected
record and report fault history and thus assist planning of MRO scheduling. Fault
event logging is already present in many systems, for example in automotive
Engine control units (ECUs). However, additional information is needed such as
remaining fault capacity and should be reported in a sensible format that is easily
understood. An example would be when a sub-component that is experiencing
aggressive fault conditions, necessitating an escalation of resource allocation in
order to maintain fault-free operation. Reporting of remaining capacity (and indeed
trending of this information) provides valuable information to both maintenance
scheduling and decision-making about when to replace depleted resources. An key
benefit is be the ability distinguish between exhaustion of fault capacity and general
wear out, which would better inform decisions involving whether to replace
complete sub-component or to whether to carry out overhaul to replace depleted
boards and modules contained therein.
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Our demand for ever-increasing performance and efficiency of engineering
system is driving the adoption of COTS components even for mission critical
applications. This is fuelling the uptake of concepts in self-repair and autonomy that
for example achieves similar design robustness to that achieved through component
screening. Self-repair concepts are also generating significant interest in the area of
next-generation nano electronics where transistor and interconnect reliability is
expected to be much lower than of current technology. In the widest context, self-
repair seeks to increase the robustness of cost-sensitive, high value systems and
therefore bring about cheaper maintenance through autonomous strategies. How-
ever a better understanding the cost/benefit trade-offs and effective design meth-
odology is essential for its uptake.
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