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1.1  Introduction

The first cytochrome P450 structure, P450cam 
or CYP101A1, was solved in the early 1980s [1, 
2], followed by the second, P450BM3, in 1993 
[3]� At the time of the 3rd edition of this book 
published in 2004, there were a total of 13 unique 
P450 crystal structures deposited in the Protein 
Data Bank (PDB)� As of April 2014, the PDB 
lists 449 entries with the name P450 in the title 
and of these about 54 are unique structures� The 
many new structures solved since the 3rd edi-
tion include various substrate/ligand complexes, 
P450s in various conformational states, and a few 
new P450-redox protein complexes� This wealth 
of new structural information has been particu-
larly useful in a better understanding of P450 dy-
namics and how the P450 active site adapts to 
substrates of diverse sizes and shapes�

1.2  Overall Architecture

There now are a sufficient number of structures 
to safely state that the overall P450-fold is quite 
conservative� While it remains the case that there 
are no nonheme proteins that exhibit the P450-
fold, there now are a small handful of examples 
of enzymes that exhibit the P450-fold but do not 
catalyze traditional P450 chemistry� These in-
clude the NO reductase, P450nor [4, 5], prosta-
cyclin synthase [6–8], allene oxide synthase [8–
11], P450BSβ [12], and a related peroxygenase, 
CYP152L1 [13], which hydroxylates fatty acids 
but does so using H2O2 as the oxidant�

The structures of six P450s are shown in 
Fig� 1�1, while Fig� 1�2 highlights some of the 
key secondary structural elements� Although the 
overall fold is maintained, the precise position-
ing of various structural elements differs substan-
tially� In general, the closer to the heme, the more 
conserved the structure, especially helices I and 
L, which directly contact the heme� As expected, 
those regions controlling substrate specificity dif-
fer the most, especially the B′ helix. For example, 
in P450eryF, the B′ helix is oriented about 90° 
from the orientation observed in P450cam� The 
effect is a substantial change in local environ-
ment, which is required for substrate selectivity�

Not too surprisingly, the most conserved ele-
ments of the P450 structure center on the heme–
thiolate oxygen activation chemistry� The most 
noteworthy is the β-bulge segment housing the 
Cys ligand (Fig� 1�3), just prior to the L helix� 
This rigid architecture is required to both protect 
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that Cys ligand and hold it in place in order to 
be within H-bonding distances of two peptide 
NH groups, although the H-bonding geometry is 
good for only one H-bond� This arrangement is 
not only found in all P450s but also in two close-
ly related enzymes, nitric oxide synthase (NOS) 

and chloroperoxidase (CPO)� Both NOS and 
CPO are heme–thiolate enzymes that, like P450s, 
catalyze monooxygenation reactions� Like  P450, 
the Cys ligand in CPO is near peptide bond NH 
groups [14]� NOS is similar, except that an H-
bond is provided by the indole ring N atom of a 

Fig. 1.1  A representative example of known P450 structures illustrating the common three-dimensional fold
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conserved Trp residue [15–17]� Such an H-bond-
ing arrangement is not unique to heme–thiolate 
proteins, but is a characteristic feature of proteins 

containing Cys–Fe ligation, and was first ob-
served in the ferredoxins [18]� These H-bonds aid 
in regulating the heme iron redox potential [19, 
20]� Without such H-bonds, the redox potential 
would be too low for reduction by redox partners� 
Thus, it appears that the protein must provide a 
suitable electrostatic environment around the Cys 
ligand in order to maintain the redox potential in 
a physiologically accessible range� The same is 
true for a close cousin to P450, the peroxidases� 
Here histidine (His) serves as the axial ligand, 
but, in this case, it is necessary to increase rather 
than decrease the redox potential [21]� As a re-
sult, the His ligand H-bonds with a buried Asp 
residue that imparts greater imidazolate character 
to the His, thus lowering the heme iron redox po-
tential [22–26]�

The other highly conserved region involved 
in O2 activation is the portion of helix I near the 
heme Fe (Fig� 1�4)� Thr252 is involved in a local 
helical distortion in P450cam such that the threo-
nine (Thr) side-chain OH donates an H-bond to a 
peptide carbonyl oxygen that would normally be 
involved in an α-helical H-bond. This Thr is not 
strictly conserved� For example, P450eryF con-
tains an Ala instead of a Thr [27] and P450cin has 
an Asn [28]� Even so, these outliers also exhibit a 
similar distortion in the I helix� This arrangement 
is thought to be quite important for the proper 
delivery of protons to the iron-linked oxygen re-
quired for cleavage of the O–O bond, thus gener-
ating the active Fe–O hydroxylating species� The 
growing consensus is that ordered solvent at the 
active site serves as the direct proton donor to the 
iron-linked dioxygen [29–32]� P450–oxy com-
plexes tend to be rather unstable, which is why 
there are only two crystal structures of P450–oxy 
complexes: P450cam [31, 33] and P450eryF 
[34]� In the P450cam–oxy complex, the I helix 
opens up slightly which provides sufficient room 
for two new waters to move into the active site� 
These waters form an H-bonded network that is 
thought to be important for the proper delivery 
of protons to dioxygen in order to promote het-
erolytic cleavage of the O–O bond (Fig� 1�4)� 
While the positioning of new waters in the ac-
tive site requires changes in the I helix, there are 
no changes in the P450eryF–oxy complex except 

Fig. 1.3  The Cys ligand “loop” in P450cam� The dashed 
lines indicate key hydrogen bonding interactions that aid 
in stabilizing the Cys ligand� Cys cysteine

 

Fig. 1.2  The structure of P450cam (PDB: 5CP4) with 
key helical segments labeled� PDB Protein Data Bank
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for the repositioning of a water molecule� Since 
the conserved Thr252 found in P450cam is re-
placed by Ala in P450eryF (Fig� 1�5), the I helix 
is already in an open conformation similar to that 
of P450cam–oxy� It appears that P450eryF uses 
a substrate-assisted mechanism [35] since a sub-
strate OH anchors the key water in place via H-
bonding and is essential for activity� While the 
details of the proton shuttle machinery may differ 
from one P450 to the next, the surrounding pro-
tein groups and, in at least one case, the substrate, 
generally position solvent in the active site for 

proton delivery to dioxygen resulting in cleavage 
of the O–O bond�

1.3  Structural Features for 
Membrane Binding

In contrast to prokaryotic P450s, eukaryotic 
P450s are generally membrane-bound proteins� 
Most eukaryotic P450s are incorporated into the 
endoplasmic reticulum� However, several mam-
malian P450s that participate in the synthesis of 

Fig. 1.5  A comparison of the solvent-mediated hydrogen 
bonding network in oxy-P450eryF (PDB: 1Z8O) and the 
oxy complex of P450cam� Unlike in P450cam, there is 
very little movement of the I helix in P450eryF when O2 

binds� This is probably because Thr252 in P450cam is re-
placed by Ala245 in P450eryF� As a result, the I helix is 
already more open in P450eryF

 

Fig. 1.4  A comparison of the I helix region in ferric and 
oxy-P450cam (PDB: 2A1M)� When O2 binds, the I helix 
opens up and the H-bond between Thr252 and Glu248 is 

broken� This opening enables additional waters to move 
into the active site that are thought to be critical for com-
pleting a protein relay network required for O2 activation
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sterols, steroids, and bile acids are located on 
the matrix side of the mitochondrial inner mem-
brane� A longer N-terminal polypeptide chain of 
roughly 30–50 amino acids precedes the cata-
lytic domain in eukaryotic P450s and mediates 
membrane targeting� In the case of mitochondrial 
P450s, the targeting sequences are cleaved dur-
ing import of the protein into the mitochondrion 
[36]� In contrast, the leader sequences of micro-
somal P450s are retained and inserted into the 
endoplasmic reticulum during protein synthe-
sis [37]� The insertion process stops at the end 
of a hydrophobic stretch of roughly 20 amino 
acid residues, which are likely to form a helix in 
order to reduce the energetic costs of placing the 
polar peptide backbone in the nonpolar core of 
the bilayer [38]� A short linker region of about 
ten amino acids, which often includes positively 
charged amino acid residues, connects the trans-
membrane helix (TMH) to a generally conserved 
proline at the N-terminus of the structurally con-
served P450-fold� The length of the 20 amino 
acid TMH corresponds roughly to the 3-nm 
width of the hydrocarbon core of the bilayer [39]� 
Additionally, the polar head groups of the phos-
pholipids add another 1 nm outer layer on each 
side of the hydrophobic core, suggesting that a 
portion of the linker region resides in the polar 
head group layer�

The TMH is not required for function, as illus-
trated by the expression and successful reconsti-
tution of several P450 monooxygenases in which 
this region was deleted [40–44]� Almost all of the 
currently available crystal structures have been 
determined for microsomal P450s expressed and 
crystallized without the TMH [45]� Initial struc-
tures of the human aromatase, CYP19A1, are an 
exception� Although the full-length aromatase 
was crystallized, the TMH and linker regions 
were disordered in the crystal [46]� Subsequently, 
engineered mutants of aromatase were expressed 
in Escherichia coli without the TMH, and these 
structures were not significantly affected by the 
absence of TMH [47]�

Recently, additional evidence for the helical 
nature of the TMH was obtained from solid-
state nuclear magnetic resonance (NMR)  stud-
ies of rabbit microsomal CYP2B4 incorporated 

into magnetically oriented bicelles [48] and 
from a crystal structure reported for full-length, 
Saccharomyces cerevisiae CYP51A1, a sterol 
14α-demethylase [49]� This crystal structure in-
cludes the linker region, TMH, and an additional 
amphipathic helix at the N-terminus� Interac-
tions of the latter with a neighboring molecule in 
the crystal lattice contributed to a well-ordered 
N-terminus for structure determination� As a re-
sult, the predicted helical secondary structure of 
the TMH was confirmed, and a role for the ad-
ditional amphipathic N-terminal helix in mem-
brane binding to the distal leaflet of the bilayer 
was proposed, as illustrated in Fig� 1�6� Although 
the N-terminal amphipathic helix is not a general 
feature of microsomal P450s, this structure sug-
gests that some P450s with extended N-terminal 
sequences could exhibit additional membrane 
interactions with the distal leaflet of the bilayer� 
In the S� cerevisiae CYP51A1 structure, the C-
terminal end of the 24-residue TMH lies along 
the surface of the catalytic domain and passes 
from the proximal face to the distal face of the 
P450 along a trajectory that is roughly parallel 
with β-sheet 1, Fig. 1�6� The C-terminal end of 
the TMH helix corresponds to the linker region 
and is amphipathic with polar residues exhibiting 
hydrogen-bonding interactions with the catalytic 
domain and hydrophobic residues on the outer 
surface� This suggests that the observed trajec-
tory is likely to be maintained when the enzyme 
is bound to the membrane [49]� As depicted in 
Fig� 1�6, a portion of the catalytic domain is like-
ly to protrude into the membrane when the TMH 
resides in the lipid core� The surface of the cata-
lytic domain surrounding this region is relatively 
hydrophobic for CYP51A1 (Fig� 1�7) as well as 
other membrane P450s [45, 50], which is likely 
to facilitate interactions with the lipid core of the 
bilayer�

This hydrophobic surface is formed by the 
N-terminal portion of the catalytic domain to-
gether with the helix F–G region, and there are 
distinctive structural differences between mam-
malian P450s and soluble prokaryotic P450s for 
this portion of the catalytic domain� The initial 
comparison of the first structure of a microsomal 
P450, CYP2C5, with structures of CYP102 and 
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Fig. 1.7  Surface rendering of full-length, Saccharomyces 
cerevisiae CYP51A1, (PDB: 4KOF) with acidic and basic 
residues colored black and gray, respectively� Note the rela-
tive absence of charged residues on the surface of the catalyt-

ic domain surrounding the entrance channel and the TMH� 
Itraconazole is depicted as a stick figure in the entrance 
channel� The hydrophobic surface surrounding the entrance 
channel is oriented toward the membrane in Fig� 1�6� efj1

 

Fig. 1.6  Hypothetical model for the membrane binding 
of microsomal P450s� The cartoon depicts the experi-
mentally determined fold of full-length, Saccharomyces 
cerevisiae CYP51A1 (PDB: 4KOF)� For reference, the 
structure of the TMH is flanked by modeled arrays of 
phospholipid molecules depicted as CPK atoms� The am-
phipathic N-terminal helix is positioned at the transition 

of the polar head group and the hydrophobic layers with 
its hydrophobic surface oriented toward the lipid layer� 
The heme and bound inhibitor, itraconazole, are also 
rendered as CPK atoms� Itraconazole passes out of the 
access channel between helices A′ and F′, which are ori-
ented toward the lipid portion of the bilayer� TMH trans-
membrane helix
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CYP101 [50, 51] indicated that the N-terminal 
portion of the catalytic domain from the linker 
region and to the helix B–C loop of CYP2C5 is 
shifted significantly toward the proximal face 
when compared to structures of prokaryotic 
P450s (Fig� 1�8)� The generality of this observa-
tion was established by a retrospective analysis 
of a larger number of structures from diverse 
eukaryotic and soluble prokaryotic P450s by 
Denisov et al� [52]� As a result of this shift in 
position, the heme A-ring propionate is oriented 
toward the proximal side of the heme plane in 
most mammalian membrane P450s, where it 
often interacts with basic amino acid side chains� 
Notable exceptions are eukaryotic CYP51A1 
and the non-monooxygenases, CYP8A1, a pros-
tacyclin synthase and CYP74A1, a plant allene 
oxide synthetase� The heme A-ring propionate 
resides more typically on the distal side of the 
heme plane in prokaryotic P450s, with some ex-
ceptions. This shifted N-terminal/β-sheet domain 
resides near the connector between helices F and 
G, which is typically longer in eukaryotic P450s 
than in soluble, prokaryotic P450s� The structure 
of the F–G helical region varies extensively be-
tween mammalian P450s and often exhibits two 

short helices, F′ and G′. Together these elements 
form the hydrophobic surface near the N-termi-
nus of the catalytic domain that is likely to be 
inserted into the membrane [45, 50]�

The orientation of the hydrophobic surface 
toward the membrane is supported by studies 
indicating that antibody epitopes in this region 
are inaccessible to the antibody when CYP2B4 
is in its native membrane [53], whereas epitopes 
on other portions of the molecule react with their 
respective antibodies� These and other epitope-
mapping studies indicate that extensive por-
tions of the surfaces of drug-metabolizing P450s 
are accessible to the antibodies when bound to 
membranes, as shown in Fig� 1�9 and reviewed 
in more detail [54]� Atomic force microscopy ex-
periments estimate that the height of microsomal 
CYP2B4 above a model phospholipid membrane 
is roughly 35–45 nm [55]� This would require a 
portion of the protein to be buried in the mem-
brane, which is likely to be the hydrophobic 
region near the N-terminus of the catalytic do-
main� Additionally, studies of the association of 
CYP2B4 with Langmuir–Blodgett phospholipid 
monolayers indicate that the protein displaces an 
area that is larger than a single TMH [56]� This 

Fig. 1.8  Superposition of CYP101A1 ( light gray) and 
CYP2C8 ( dark gray)� The hemes are shown as stick fig-
ures with oxygen atoms colored black� The heme iron is 
depicted by a sphere� Although helices I through K su-

perimpose well, the N-terminal region is shifted outward 
for CYP2C8 relative CYP101� Different orientations are 
evident for the heme A-ring propionates
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result would be consistent with the penetration 
of the hydrophobic surface of the protein into the 
adjacent leaflet of the lipid bilayer�

Molecular dynamics (MD) simulations of the 
binding of human microsomal P450s with phos-
pholipid bilayers, reported initially for CYP2C9 
[57–59] and CYP3A4 [52, 60], observed stable 
binding orientations for the catalytic domains 
with the hydrophobic surface of the catalytic 
domain immersed in the proximal leaflet of the 
phospholipid bilayer, Fig� 1�10� The structure of 
the catalytic domain was reported to be stable 
and exhibiting dynamic motion with root-mean-
square deviation (RMSD) values of less than 
2�5 Å from the starting structures�

The maximum heights of the catalytic do-
mains above the membrane surface in these MD 
simulations are similar to that of 35–45 nm deter-
mined by atomic force microscopy for CYP2B4 
[55]� Additionally, the tilt of the heme plane rela-
tive to the membrane normal, Fig� 1�10, in the 
models of membrane-binding interactions can be 
compared to results from biophysical studies for 
this angle� This tilt angle has been estimated for 
CYP17A1 and CYP21A2 based on the anisotro-
pic decay of the absorption spectrum following 
photodissociation of carbon monoxide complex-
es by polarized light� This approach gives two 
solutions for the angle of the orientation of the 
heme plane relative to the membrane normal of 
either 43° or 27° and 52° or 12°, respectively for 

the two enzymes [61]� The larger values are simi-
lar to a single value for tilt angle of 59�7 ± 4�1° 
estimated from the dichroic ratio observed for 
the absorption of visible light by the heme chro-
mophore of P450 3A4 bound to nanodisc mem-
branes� Tilt angles for the heme in the initial MD 
simulations for P450 2C9 were reported to be 
55 ± 5° [58], and in additional MD simulations 
for P450s 1A2, 2A6, 2C9, 2D6, 2E1, and 3A4, 
using similar conditions, the heme-tilt angles 
differed between P450s and ranged from 56 ± 5° 
for CYP3A4 to 72 ± 6° for CYP2D6 [59]� Differ-
ences between P450s are not unexpected, as the 
distal surfaces of microsomal P450s differ signif-
icantly, and these differences are likely to affect 
the angle tilt and extent of membrane insertion�

Heme-tilt angles observed for CYP3A4 in 
MD simulations from two different studies were 
reported to be 68�7°–75�9° [60] and 56 ± 5° [59]� 
The reported differences between the two MD 
simulations could reflect differences in the model 
membranes used in the simulations, as well as 
different initial models for the N-terminus used 
in the MD simulations� As structures for the na-
tive N-terminal domains were not available for 
CYP3A4, and the other proteins characterized in 
these studies, they were modeled de novo with 
the hydrophobic portion of the N-terminus mod-
eled as a TMH� The structure of the linker region 
in these proteins is less certain, and is likely to 
vary between P450s� X-ray crystal structures of 

Fig. 1.9  CPK rendering of the proximal (a) and distal 
surfaces (b) of CYP2C5 (PDB: 1N6B)� Antibody epit-
opes recognized when the P450s are bound to microsom-
al membranes are colored dark gray, as reviewed [54]� 
Several conserved amino acid side chains that have been 
implicated in P450 reductase interactions with CYP2B4 

[156] are colored medium gray� The orientation of the 
protein is similar to that depicted in Fig� 1�6 efj-1 with 
the N-terminus of the catalytic domain positioned toward 
the bottom of the figure� (Reproduced from Cytochrome 
P450, Third Edition with permission from Springer 
Science+Business Media)
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mammalian microsomal P450s have generally 
been determined for proteins without their N-ter-
minal TMH, and, in most cases, the native linker 
regions of family 2 P450s were modified to cor-
respond to the linker region of CYP2C3, as de-
scribed for CYP2C5, [40, 41, 50]� Moreover, the 
structures of these short N-terminal regions have 
not been defined for many P450s� CYP3A4 is an 
exception [62, 63], and the native linker region 
exhibits an Aʺ helix following a turn that directs 
the polypeptide chain along β-sheet 1 from the 
N-terminus of the catalytic domain near the hy-
drophilic proximal face toward the hydrophobic 
distal surface� This trajectory is similar, but not 
identical, to that observed more recently for the 
structure of full-length S� cerevisiae CYP51A1, 
Fig� 1�6� The initial model used by Baylon et al� 
[60] incorporated a flexible link between helix Aʺ 
and the TMH, which provides some flexibility 
for the orientation of the TMH independently of 
the catalytic domain during the MD simulation� 

The initial model used by Berka et al� [59] for the 
N-terminus CYP3A4 was based on their earlier 
equilibrated CYP2C9 model obtained following 
a 0.25 μs MD simulation [58]� Interestingly, the 
helix Aʺ region and the TMH of the initial model 
of P450 2C9 were built as a continuous helix, but 
a kink developed between helix Aʺ region and the 
TMH during the MD simulation that allowed the 
polar Arg side chains in the linker region to reside 
in the polar region of the bilayer, and the TMH 
to span the lipid core of the membrane, as illus-
trated in Fig� 1�10 by a 1 μs equilibrated model 
from a later study [59]. Helix Aʺ may not be a 
generally conserved feature for linker regions, 
as the same segment of the native linker regions 
does not exhibit an Aʺ helix in the structure of 
human CYP1A2 [64], and is not evident in the 
MD simulation model of CYP1A2 [59]� Both 
CYP1A2 and CYP3A4 exhibit short N-terminal 
helices that are roughly orthogonal to the TMH 
and that are positioned at the interface between 

Fig. 1.10  Immersion of CYP2C9 in a dioleoylphos-
phatidylcholine (DOPC) lipid bilayer. ( Left) Overlaid 
snapshots of CYP2C9 taken at 0.1 and 1 μs molecular 
dynamics (MD) simulations showing that the catalytic 
domain is immersed in a membrane depression framed 
by lipid phosphate groups (shown as orange spheres)� 
Water molecules are not shown for clarity� The N-termi-
nal helix shows precessional movement about the bilayer 
normal� The fold of the catalytic domain is conserved 
and agrees with that observed in X-ray crystallography 
experiments. ( Right) Snapshot taken at 1 μs of MD sim-
ulation showing positions of active site access and egress 

channels computed from the heme moiety using MOLE 
2.0.20. The water channel ( white) points toward the cy-
tosolic environment, whereas solvent channel S ( blue) 
points above the lipid head groups� All other channels 
point inside the bilayer� Channels 2e, 2c, and 3 point into 
the lipid head group region, whereas channels 4 and 2ac 
point below the lipid head groups� The heme tilt angle 
θ (between the heme plane and the bilayer normal z, 
i�e�, defined according to Baylon et al� [60] is depicted� 
(Reprinted with permission from [59], copyright 2013 
American Chemical Society� The channels are designat-
ed as described [93])
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the polar head group and lipid layers of the dis-
tal leaflet of the bilayer in the MD simulations 
of Berka et al� [59]� These models are similar to 
the bimodal membrane binding proposed for full-
length S. cerevisiae CYP51A1 [49]�

Although the MD simulations generally sup-
port the notion that a portion of the distal surface 
is embedded in the membrane surface, the results 
of biophysical experiments and topology studies 
often show differences that are difficult to recon-
cile with a single model� Fluorescent quenching 
of tryptophan residues introduced on the surface 
of CYP2C2 by site-directed mutagenesis sug-
gested that residues 36 and 69 flanking helix A 
and 380 in β-sheet 2 of CYP2C2 are inserted into 
the fatty acyl core of the bilayer, while residue 
80 on helix B and 225 at the turn between helices 
F′ and G′ are in the polar region of the phospho-
lipid bilayer [65], leading the authors to propose 
a more vertical orientation for CYP2C2 than was 
observed in the MD simulations for the closely 
related CYP2C9 [57, 58]� Experimental evidence 
indicates that P450s are present as both mono-
mers and dimers in membranes [66, 67], and a 
more vertical orientation relative to the mem-
brane surface would be consistent with models 
for the dimerization of the catalytic domain of 
N-terminally truncated P450 2C8 in aqueous so-
lution that involve interactions of the helix F–G 
loop region [63]� This model for the dimerization 
of 2C8 is supported by cross-linking studies for 
the membrane-bound full-length CYP2C8 [68]� 
Additionally, these cross-linking studies impli-
cated the linker region and TMH in the dimer-
ization of membrane-bound, full-length CYP2C8 
expressed in mammalian cells or in E� coli mem-
branes� Cys-scanning mutagenesis indicated that 
reactive cysteines reside on a single side of the 
TMH, whereas several consecutive residues were 
reactive in the linker region suggestive of a more 
flexible structure� This flexibility is necessary 
for reorientation of the proximal faces relative 
to TMH in order to form a P450 dimer through 
interactions of the helix F–G region� P450 di-
merization in membranes is thought, in some 
cases, to inhibit reduction by the microsomal 
cytochrome P450 reductase, so the monomer is 

likely to be the predominant functional form of 
the enzyme [66]�

As mitochondrial P450s lack the N-terminal 
TMHs found in microsomal P450s, the inter-
actions of the catalytic domain with the matrix 
side of the inner membrane are likely to be the 
predominant membrane interaction� Consistent 
with a role for the helix A′, F′, and G′ regions in 
membrane binding, these regions exhibit nonpo-
lar, exterior surfaces in structures of mitochon-
drial P450s 11A1 [69, 70], 11B1 [71], and 24A1 
[72]� Moreover, substitutions of more polar resi-
dues for hydrophobic residues on the F′ and G′ 
surfaces increase salt extractability and solubility 
of mitochondrial P450 27A1 [73]� The helix F–G 
region of mitochondrial P450 11A1 is also pro-
tected from chemical modification by membrane 
association [74]� Similarly, microsomal P450s 
expressed without their TMH retain capacities to 
bind to phospholipid membranes, and mutations 
made to the helix F′ and G′ regions of micro-
somal P450s 2C5 [41], 2D6 [75], and 7A1 [76] 
facilitate extraction in high salt buffers� These 
observations suggest the extended loop between 
helices F and G in eukaryotic P450s contributes 
to membrane binding for both mitochondrial and 
microsomal P450s�

1.4  Conformational Dynamics for 
Substrate Access

Many P450 structures are in the so-called closed 
state with no obvious way that substrates can 
gain access to the active site� As a result, sub-
strate entry and product egress may involve 
rather large conformational changes� Once the 
P450cam structure became available, an imme-
diate puzzle was how camphor gains access to 
the active site since the substrate is buried, and 
there is no obvious opening� The substrate-free 
and bound structures showed no differences, al-
though substrate-free P450cam exhibited higher 
thermal motion in the B′, F, and G helices, sug-
gesting that these regions must move to allow 
substrate to enter the active site [77]� The first 
clear indication that conformational changes are 
important in substrate binding was the struc-
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ture of palmitoleic acid bound to P450BM3 
[78], which was followed by a higher-resolution 
structure [79]� Interestingly, the experimentally 
observed conformational change was correctly 
predicted based on computational methods [80, 
81] before the substrate-bound crystal structure 
was solved� The main motion involves the F and 
G helices sliding over the surface of the I helix� 
This motion closes off the entry channel, indicat-
ing that substrates enter near the F/G loop region 
that is similar to that of P450cam�

There now are a handful of P450 structures 
in the open and closed forms and in all of them, 
the F and G helices and the F/G loop undergo 
large changes� Not surprisingly, the most exten-
sive analysis has been with P450cam� In the open 
form [82], the F and G helices move, and the 
B′ helix region becomes disordered. It also has 
been possible to trap the P450cam access channel 
using a series of tethered compounds where the 
substrate is attached to a long linker that extends 
out of the active site [83, 84]� A principal compo-
nent analysis of 30 different tethered compound 
structures indicates that there are three dominant 
conformational states available to P450cam: 
closed, partially open, and fully open [84]�

Two close homologues to P450cam with 
about 46 % sequence identity with P450cam, 
CYP101D1 [85] and CYP101D2 [86], have now 
been characterized� Both catalyze exactly the 
same reaction as P450cam, but there are sub-
stantial differences with respect to the open and 
closed states and the relationship between spin-
state and substrate binding� For example, CY-
P101D2 has been crystallized only in the open 
state, but camphor can be soaked into the crystals 
and binds in the active site [86]� The camphor, 
however, does not bind in a productive mode, 
but instead the carbonyl O atom of the substrate 
H-bonds with the water coordinated to the heme 
iron (Fig� 1�11)� MD simulations of CYP101D2 
show that this P450 can adopt various confor-
mational states, mainly by motions of the F/G 
helical substrate access channel, and provides a 
dynamic picture of substrate binding consistent 
with other P450s [87]� Perhaps the most unex-
pected difference between P450cam and its close 
cousins is that camphor binding to CYP101D1 

gives only about 40 % high spin even with excess 
substrate� In addition, the Fe2S2 ferredoxin that 
supports CYP101D1 catalysis, Arx, is able to re-
duce substrate-free 100 % low-spin CYP101D1, 
while only high-spin substrate-bound P450cam 
can be reduced by its redox partner, Pdx� In ad-
dition, Pdx can support CYP101D1 catalysis, 
while only Pdx can support P450cam catalysis 
[88]� There is nothing obvious in the structures 
that can explain these differences other than the 
fact that in CYP101D2 the substrate can bind to 
the low-spin open state, albeit in a nonproduc-
tive binding mode (Fig� 1�11)� One simple way of 
rationalizing these differences is to hypothesize 
that CYP101D1 can bind camphor in various 
orientations that are consistent with a water mol-
ecule remaining coordinated to the heme iron, 
as in CYP101D2, thus giving a substrate-bound 
mostly low-spin complex� Upon reduction of 
the heme iron, the water ligand is displaced and 
the substrate can “relax” to a productive binding 
mode� This hypothesis requires that CYP101D1 
is “looser” than P450cam and can more readily 
adopt the open conformation� The static X-ray 
structures do not reveal anything obvious to sup-
port this scenario, and proof one way or the other 
must await other approaches more in tune with 
measuring dynamic differences�

Fig. 1.11  The open substrate-binding channel in CY-
P101D2 (PDB: 3NV6) [86]� The substrate camphor binds 
but is not oriented in the productive binding mode� In-
stead, the camphor carbonyl O atom H-bonds with the 
water coordinated to the iron
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1.5  Substrate Access to Membrane 
P450s

Similar to prokaryotic P450s, membrane P450s 
have been crystallized in both open and closed 
conformations� For example, rabbit microsomal 
CYP2B4 and human CYP2B6 have been crystal-
lized in closed forms, as illustrated in Fig� 1�12, 
by a CYP2B6 4-(4-chlorophenyl)-imidazole 
complex [89] and in open forms, as illustrated 
by a complex of CYP2B6 with one molecule of 
amlodipine coordinated to the heme iron and a 
second molecule bound in the entry channel and 
protruding between helix F′ and A′ [90]� These 
two conformations of CYP2B6 differ in the 
positions of the helices A′, A, B′, F, F′, and G. 
Open forms of rabbit CYP2B4 have also been 
determined where the helix F′–G′ and helix B–C 
regions are displaced to a much greater extent 
by ligand and detergent interactions [91, 92]� 
Mammalian drug-metabolizing enzymes such 
as CYP2B4 bind a wide-range of compounds, 
and conformational changes are often associated 
with the capacities of these enzymes to facilitate 
the metabolic clearance of many compounds by 
accommodating large compounds in an open ac-

cess channel [45]� Mitochondrial P450s also ex-
hibit open and closed structures� CYP11A1 and 
CYP11B1 exhibit closed structures for substrate 
complexes with the helix F and F′ region block-
ing the substrate access channel described earlier 
for CYP101, Fig� 1�13� In contrast, mitochondrial 
CYP24A1 was crystallized in an open conforma-
tion with a large cleft between helices A′ and he-
lices F′–G′. As discussed in the previous section, 
these helices are likely to bind to the membrane, 
and the hydrophobic substrates cholesterol and 
vitamin D3, respectively, could enter each en-
zyme from the membrane� Most P450 substrates 
exhibit partition coefficients that favor the hydro-
phobic environment of the bilayer over the aque-
ous phase, which suggests that the concentration 
of substrate in the membrane may be higher than 
in solution under physiological conditions�

Structures obtained with bound ligands are 
often closed, and substrate access channels re-
main closed during MD simulations that are of 
short duration compared to substrate dissociation 
rates� Nevertheless, a number of solvent channels 
have been identified in X-ray crystal structures 
and during MD simulations in an aqueous me-
dium for soluble and truncated membrane P450s 

Fig. 1.12  Open (PDB: 3UA5) and closed (PDB: 3IBD) 
conformations of human CYP2B6� The open structure has 
two molecules of amlodipine ( spheres) with one molecule 
of amlodipine bound to the heme iron via nitrogen coor-
dination and the second amlodipine in the open-substrate 
access channel� The closed structure has one molecule of 

4-(4-chlorophenyl)imidazole ( spheres) coordinated to the 
heme iron with a closed substrate entrance channel� The 
heme is rendered as a stick figure with the iron shown as a 
sphere� Nitrogen and oxygen atoms are colored light gray 
and black, respectively
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[93]� As shown in Fig� 1�10, several of these 
channels are oriented into the lipid portion of 
the bilayer in MD simulations� Comparisons of 
the duration and extent of opening during MD 
simulations, for the catalytic domains in an aque-
ous environment and bound to membranes, are 
qualitatively similar and reveal differences in the 
frequency and duration of channel opening that 
reflect interactions between the catalytic domain 
and the membrane [57–60]� These solvent chan-
nels are thought to open and coalesce to form 
substrate access channels as seen for open con-
formations of soluble and membrane P450s de-
termined by X-ray crystallography [93]�

1.6  Substrate Complexes: Specific 
P450s

A fascinating structural feature of P450s is the 
ability to adapt to substrates of various sizes and 
shapes, yet retain the overall P450-fold and P450 
electron transfer and O2 activation chemistries� 
Most of our detailed understanding of protein–
substrate interactions derives from highly spe-
cific P450s that bind their respective substrates 
tightly and thus generate crystals that diffract 
well� Several substrates for various specific 
P450s are shown in Fig� 1�14� The size and shape 

of the various substrates shown in Fig� 1�14 are 
sufficiently diverse that the structural basis for 
what controls substrate specificity can, at least in 
part, be understood� As expected, all substrates 
are situated such that the atom to be hydroxylated 
is within 4–5 Å of the heme iron� Thus, regio- 
and stereoselective hydroxylation by the Fe(IV)-
O species is achieved by specific protein–sub-
strate interactions that hold the substrate in the 
correct position� The exception is P450BM3� The 
structure of the P450BM3 heme domain with 
palmitoleic acid [78] and N-palmitoylglycine 
[79] show that the fatty acid substrate is ≈ 7–8 Å 
from the iron which is too far for hydroxylation� 
However, NMR results indicate that the substrate 
moves to be within 3 Å of the iron upon reduction 
from Fe(III) to Fe(II) [94]� Precisely how reduc-
tion is linked to such a large repositioning of the 
substrate remains unknown�

P450cam and P450epoK [95] represent 
the two extremes of substrate size and shape� 
Hence, a comparison between these two struc-
tures provides some insights on which regions 
of the structure change most in response to the 
requirements of substrate specificity� The two 
regions that differ the most between P450epoK 
and P450cam are the F, G, B′ helices, and the 
F/G loop (Fig� 1�15). The B′ helix is rotated 90° 
in P450epoK compared to P450cam� This re-

Fig. 1.13  Open (PDB: 3KNV) and closed (PDB: 3NAO) 
conformations of mitochondrial rat CYP24A1 and bo-
vine CYP11A1, respectively� The heme is rendered as 

a stick figure with the iron shown as a sphere� Nitrogen 
and oxygen atoms are colored light gray and black, re-
spectively
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orientation opens the substrate-binding pocket, 
thus making room for the thiazole ring of the 
substrate� The F and G helices do not superim-

pose well, and the F/G loop adopts a substantially 
different conformation� There also are examples 
where a second substrate molecule is trapped in 
the access channel possibly because crystalliza-
tion favors a partially open active site, thus leav-
ing room for an additional molecule� Anecdotal 
observations not usually published show that E. 
coli “mystery” molecules will sometimes bind in 
the access channel or active site� This likely re-
flects the general hydrophobic nature of P450 ac-
tive sites and the open/close dynamics that might 
make it possible for even specific P450s to bind 
different molecules present in the growth media�

An unusual example of a P450–substrate in-
teraction is CYP107H1 (P450BioI)� P450s par-
ticipate in polyketide biosynthesis, and these 

Fig. 1.15  A comparison of the P450cam and P450epoK 
(PDB: 1PKF) active sites� The very different size and 
shape of the substrates illustrate how the active site sub-
stantially differs from one P450 to the next

 

Fig. 1.14  Substrates bound to the active site of various P450s
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pathways involve multiple enzymatic steps that 
process a growing fatty acid-like chain into the 
array of complex and well-known antibiotics and 
other natural products� In many of these systems, 
an acyl carrier protein (ACP) forms a covalent 
bond with the substrate and transfers the sub-
strate from one enzyme to the next� Where hy-
droxylation reactions are required, P450s often 
are involved, which means that in some of these 
systems the substrate is delivered to the P450 by 
the carrier protein� One well-characterized sys-
tem is from the biotin biosynthetic pathway in B. 
subtilis [96]� P450BioI catalyzes the formation of 
pimelic acid through the oxidative cleavage of a 
fatty acid carbon–carbon bond, which then pro-
ceeds on to biotin [97, 98]� There is now a crystal 
structure of such fatty acid acylated ACP protein 
complexed with the P450 (Fig� 1�16) [99]� Struc-
turally, P450BioI is a typical P450, yet here the 
substrate entry pocket has been adapted to bind 
ACP� Note that the substrate enters the active site 
near the connection between the F and G helices 
that is the main entry point for substrates in many 
P450s�

There is one final example of P450 substrate 
adaptability, but in this case there may be two dif-
ferent active sites and two enzyme activities� CY-
P170A1 from Streptomyces coelicolor catalyzes 
the oxidation of epi-isozizaene to an epimeric mix 
of 5-albaflavenol (Fig� 1�17)� The structure shows 
that there are two substrate molecules bound, one 
in the expected location just above the heme and 
a second in the substrate access channel [100]� 
What was most unexpected is the finding that 
the conversion of farnesyl diphosphate to epi-
isozizaene is catalyzed by CYP170A1� Sequence 
comparisons between known sesquiterpene syn-
thase enzymes pointed toward a particular region 
of CYP170A1 that might be involved (arrow in 
Fig� 1�17)� Subsequent mutagenesis in this region 
eliminated the synthase activity but not the P450 

activity [100]� Given that we are accustomed to 
viewing enzymes as requiring a relatively large 
size to properly form the active site, it might at 
first seem odd that such a small region of a P450, 
or any enzyme, could serve a catalytic function� 
However, sesquiterpene synthase enzymes ap-
pear not to operate by typical acid–base catalysis 
requiring suitably positioned active site groups to 
move protons [101]� Instead, it appears that metal 
ions and the substrate diphosphate are the keys to 
catalysis and that the enzyme may serve a more 
passive role, providing a template for substrate 
and metal ion binding�

Fig. 1.16  The crystal structure of P450BioI (PDB: 3EJB) 
[99]. ACP ( darker molecule) binds such that the fatty 
acid substrate attached to ACP extends into the active site 
of the P450� The opening near the F/G loop region that 
enables substrate entry is the same as observed in many 
other P450s� ACP acyl carrier protein
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1.7  Active Site Diversity of 
Mammalian P450s

As with prokaryotic P450s, active site diversity 
underlies the unique roles of P450s in mamma-
lian physiology� Structures now are available 
for several of the enzymes that hydroxylate the 
aliphatic side chains of cholesterol and vitamin 
D3� P450 11A1 catalyzes three successive oxy-

genation reactions to produce sequentially 22R-
hydroxycholesterol, 22R,20R-dihydroxycholes-
terol, and an unstable product that undergoes 
carbon–carbon bond scission to produce the 
21-carbon steroid, pregnenolone, and isocapro-
aldehyde� It is thought that the peroxyanion in-
termediate that precedes formation of the oxene 
is the reactive intermediate for the third reaction 
[102]� The crystal structure of human mitochon-

Fig. 1.17  The CYP170A1 (PDB: 3DBG) crystal struc-
ture [100] and reaction� Substrate 1 binds near the heme 

as expected, while substrate molecule 2 binds in the open 
access channel� The site thought to be responsible for the 
sesquiterpene cyclase activity is indicated by the arrow
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drial CYP11A1 with cholesterol bound [70] indi-
cates that the tetracyclic sterol moiety is bound 
in the entrance channel to the substrate-binding 
cavity under the helix F–F′ region and above 

β-sheet 1 with C22 of the aliphatic side chain po-
sitioned closest to the heme iron, Fig� 1�18a� Ad-
ditional structures of P450 11A1 [69, 70] with the 
first and second products of the reaction, 22R-

Fig. 1.18  Substrate and inhibitor binding to human P450s 
that catalyze key steps in steroid metabolism� The sub-
strates, inhibitor, and heme are shown as stick figures with 
the heme iron depicted as a sphere� Nitrogen and oxygen 
atoms are colored light gray and black, respectively� The 
dotted lines represent the distance from the heme iron for 

sites of metabolism labeled with the identity of the site 
of metabolism and the distance� The CYP17A1 inhibitor 
abiraterone binds directly to the heme iron� For reference, 
a portion of helix I and the helix B–C loop are shown� 
The topology and length of the helix B–C loops exhibit 
significant variation between proteins
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hydroxycholesterol and 22R,20R-dihydroxycho-
lesterol, indicate that the tetracyclic sterol moiety 
is positioned similarly to that of cholesterol in 
each case, with changes in the dihedral angles of 
the side chain positioning the appropriate site of 
metabolism close to the heme iron� The structure 
of CYP46A1 [103] indicates that cholesterol sul-
fate binds similarly, but the aliphatic side chain 
is positioned with C24 closest to the heme iron, 
Fig� 1�18b� In contrast, an X-ray crystal structure 
of P450 2R1 [104] reveals that the sterol moiety 
of vitamin D3 is located under helix G near he-
lices I and B′ with the site of metabolism, C25, 
positioned closest to the heme iron, Fig� 1�18c�

Other steroid biosynthetic enzymes catalyze 
reactions that modify the rigid tetracyclic steroid 
ring system� Three enzymes, P450s 7A1, 7B1, 
and 39A1, insert an oxygen atom into the 7α C–H 
bond to produce 7α-hydroxylated intermediates 
in the formation of bile acids� A structure of P450 
7A1 with the cholesterol analog, cholest-4-en-
3-one (PDB code 3SN5), indicates that the 7α 
C–H bond is positioned closest to the heme iron 
and that the plane of the sterol ring is parallel to 
the plane of the heme, Fig� 1�18d� The aliphatic 
side–chain passes out of the substrate-binding 
cavity between helix I and the helix B′–C loop. 
Structures of P450s 19A1 [105] and 11B1 [71] 
also place the tetracyclic steroid ring system of 
androst-4-ene-3,20-dione and 21-hydroxypro-
gesterone in a similar location, but with the C19 
methyl group, Fig� 1�18e, and the 11β C–H bond, 
respectively, oriented toward the heme iron� P450 
19A1 catalyzes three successive oxidations of the 
19-methyl group with the product rearranging to 
produce formic acid and the unsaturated A ring of 
the estrogen, estrone�

Other reactions catalyzed by steroid biosyn-
thetic enzymes target the ends of the steroid 
ring system� The structure of the adrenal 21-hy-
droxylase [106] with 17α-hydroxyprogesterone 
bound reveals that the tetracyclic steroid is ori-
ented almost perpendicular to the plane of the 
heme with the 17β-side chain positioned near 
the heme iron� P450 17A1, which catalyzes the 
17α-hydroxylation of progesterone and cleav-
age of the 17β-side chain of the pregnenolone to 
form androstenedione, has been crystallized with 
abiraterone [107] in the active site, Fig� 1�18f� 

Abiraterone is used clinically for the treatment 
of prostate cancer via inhibition of androgen 
formation catalyzed by P450 17A1� The ste-
roid moiety of abiraterone is oriented similarly 
to 17α-hydroxyprogesterone in the P450 21A2 
structure, with abiraterone coordinated to the 
heme iron through a heterocyclic nitrogen group� 
Structures of human CYP51A1 with inhibitors 
bound in the active site are also available to aid 
in the development of CYP51A1 inhibitors that 
will target these enzymes in pathogens without 
inhibiting the human enzyme [108, 109]�

As is evident in Fig� 1�18, P450’s have evolved 
to catalyze these reactions by positioning the 
substrates for site-selective metabolism, and, in 
doing so, different portions of the P450 structure 
are utilized for substrate binding� This, in turn, 
reflects differences in the sizes and properties of 
the amino acids that occupy the active site cav-
ity as well as changes in protein conformation� 
Examples of these conformational differences 
are readily apparent when comparing the helix 
B–C loop regions depicted in the six panels of 
Fig� 1�18�

In contrast, P450s in families 1A, 2A, 2B, 2C, 
2D, 2E, 2J, and 3A frequently contribute to the 
metabolic clearance of drugs and other xenobiot-
ics� In the absence of evolutionary selection to 
optimize the binding of these compounds, many 
xenobiotic substrates are likely to exhibit rela-
tively poor fits in P450 active sites and several 
isoenergetic binding poses may be possible, as 
suggested by the formation of multiple metabo-
lites� Reaction rates are likely to reflect probabili-
ties for binding to specific enzymes, relative re-
activity of potential sites of reaction, and proba-
bilities for placement of the sites of reaction near 
the oxene intermediate, leading to uncoupling, 
multiple metabolites and poor catalytic efficien-
cies� Fortunately, the enzymes that catalyze these 
reactions exhibit significant active site diversity 
that provides protection from a wide range of 
structurally diverse xenobiotics�

Family 1 and 3 enzymes exhibit very different 
active-site cavities� The enzymes in family 1 typ-
ically metabolize polynuclear aromatic hydro-
carbons, and the structures of human CYP1A1 
[110], 1A2 [64], and 1B1 [111] exhibit narrow 
active-site cavities that complement the size and 
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planarity of polynuclear aromatic hydrocarbons, 
as illustrated for CYP1A2 in Fig� 1�19a� These 
narrow active-site cavities are reinforced by a 
kink in helix F, which directs a portion of helix 
F and helix F′ between the active site and the 
N-terminal domain� This is likely to add rigid-
ity to the narrow active site cavity� In contrast, 
CYP3A4 exhibits a large and open active site 
cavity (Fig� 1�19b) with a much larger exposure 
of the heme surface to substrates than seen in 
other xenobiotic metabolizing enzymes [62, 112]� 
This difference underlies the capacity of 3A4 to 
catalyze oxygenation of the steroids at carbons 6 
or 7 in the center of the ring system as seen for 
steroidogenic CYP7A1 in Fig� 1�18� CYP3A4 is 

also unusual because helix F is short and does not 
cross above the active site� As a result, the active 
site can expand and contract by the flexible mo-
tion of the long connector between helix F and F′ 
and changes in the positions of helices F′ and G′ 
[113]� The active-site cavities of human family 
2 P450s range from small for P450s 2E1 [114, 
115], 2A6 [116] Fig� 1�19c, 2A13 [117], and 2B6 
[89, 90] to large for 2C8 [63], Fig� 1�2C9 [118, 
119], 2C19 [120], and 2D6 [75, 121], and they 
can vary due to conformational changes associat-
ed with ligand access and binding [45]� As such, 
these enzymes contribute diverse capacities for 
xenobiotic metabolism�

Fig. 1.19  Portions of the structures of the complex of 
CYP1A2 with α-naphthoflavone (PDB:2HI4), CYP3A4 
with ritonavir (PDB:3NXU), CYP2A6 with coumarin 
(PDB:1Z10), and CYP2C8 with montelukast (PDB:2NNI) 
are shown as cartoons displaying secondary structures� 

The heme and ligands are depicted as stick figures with 
the heme iron shown as a sphere� The surfaces of the 
active-site cavities were calculated using VOIDOO [157] 
and rendered as a transparent surface� Nitrogen and oxy-
gen atoms are colored light gray and black, respectively
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1.8  Electron Transfer Complexes

P450s do not operate alone but must form a com-
plex with a redox partner for electron transfer� 
Protein redox complexes, including those involv-
ing P450s, are designed not to be very tight or 
long-lived� A complex that is too tight will have 
a slow dissociation rate, which precludes rapid 
turnover� Nature thus must strike a balance be-
tween specificity, affinity, and high turnover� 
Such complexes have proven quite difficult to 
crystallize, which is why there are very few pro-
tein–protein redox complexes in the PDB and, to 
date, there are only three crystal structures of a 
P450 complexed with a redox partner�

The first structure of a redox complex to be 
solved was that between the heme and FMN 
domains of P450BM3� Although P450BM3 is a 
bacterial enzyme, P450BM3 is more closely re-
lated in sequence, structure, activity, and redox 
partner to microsomal P450s than to other bac-
terial P450s� The unique feature of P450BM3 
is that the diflavin P450 reductase is linked to 
the C-terminal end of the heme domain, thus 
giving a catalytically self-sufficient enzyme� 
Crystals were obtained by removing the FAD 
domain [122]� The structure (Fig� 1�20) shows 

that the FMN domain docks on the proximal 
surface of the P450, which was expected, based 
on complementary electrostatic surfaces and 
mutagenesis studies� The linker connecting the 
heme and FMN domains had been proteolyzed 
during crystallization, thus raising the possibil-
ity that the structure is an artifact of crystalliza-
tion� Further experiments were carried out to test 
the functional validity of the model� Residues 
found at the interface were probed by mutagen-
esis [123]� Replacing Leu104 of P450BM3 with 
a Cys (Fig� 1�20) at the interface should not alter 
binding or electron transfer because replacing 
Leu with a smaller side chain should not cause 
any steric problems in forming the proper com-
plex� However, covalent modification of the mu-
tant Cys104 side chain with a large fluorophore 
should interfere with electron transfer� For these 
studies, laser flash photolysis was used wherein a 
laser flash photoreduced a potent reductant, deaz-
ariboflavin, which in turn reduces the FMN in the 
complex� The reduced FMN semiquinone then 
reduces the P450 heme� As predicted, mutation 
of Leu104 to Cys had no effect, while chemical 
modification of Cys104 dramatically decreased 
the FMN-to-heme electron transfer rate, thus 

Fig. 1.20  Crystal structure of the P450BM3 electron-transfer complex (PDB: 1BVY) [122]� The closest contact at the 
interface is between Gln387 in the heme domain and the FMN
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implicating Leu104 as an important residue in 
forming the proper electron transfer complex�

A second prediction from the P450BM3 elec-
tron-transfer complex structure that can be tested 
is the electron transfer path� The heme–FMN do-
main interface is shown in Fig� 1�20� The closest 
point of contact between the two domains plac-
es the FMN about 4 Å from the peptide back-
bone of Gln387� The peptide chain from Gln387 
to the heme ligand, Cys400, could constitute 
an electron transfer path� To test this hypoth-
esis, Gln387 was converted to Cys and modi-
fied with (4-bromomethyl-4′-methylbipyridine)
[bis(bipyridine)]ruthenium(II) [124]� The cova-
lently attached Ru(II) is photoreduced, and the 
rate of reduction of the heme Fe(III) to Fe(II) 
by the photo-generated Ru(I) was followed� The 
same experiment was carried out with Ru(II) at-
tached to Cys62� Both Cys62 and Cys387 are 
about the same distance from the heme, but 
electron transfer from Cys60-Ru(II) must make 
“through-space” jumps, while there is a continu-
ous covalent connection between Cys386-Ru(II) 
and the heme ligand, Cys400� In the case of 
Cys387-Ru(II), the heme iron was reduced at a 
rate of 4�6 × 105 s− 1, while Cys60-Ru(II) did not 

reduce the heme iron� These results indicate that 
if the crystal structure of P450BM3 electron-
transfer complex is functionally relevant, then 
the electron-transfer reaction can readily proceed 
along the direct point of contact between the 
FMN and heme domain�

The structure of the complex formed between 
adrenodoxin (Adx) and P45011A1, which con-
verts cholesterol to pregnenolone, also has been 
solved� The crystal structure of the complex was 
solved by fusing adrenodoxin to the N-terminal 
end of CYP11A1 [70]� Although a good part of 
the Adx was disordered and not visible in elec-
tron-density maps, the interface with CYP11A1 
was well defined (Fig� 1�21)� The interface is 
dominated by electrostatic interactions and those 
residues involved are consistent with mutagen-
esis and chemical modifications studies [125–
127]� A comparison between the free enzyme 
[69] and the enzyme complexed with Adx are es-
sentially identical, so Adx binding does not result 
in any significant structural change�

The most recent structure to be determined 
is the P450cam–Pdx complex crystal [128, 129] 
and NMR structures [128]� The P450cam–Pdx 
complex has received considerable attention es-

Fig. 1.21  Crystal structure of the complex formed be-
tween CYP11A1 and adrenodoxin (Adx; PDB: 3N9Y) 
[70]� Only part of the Adx is visible in electron-density 

maps� The interface is dominated by ionic interactions� 
Adx binding does not result in any major structural 
change in CYP11A1
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pecially since it was established some time ago 
that P450cam is not only very selective for Pdx 
but Pdx also plays an effector role by inducing 
structural changes required for electron transfer 
and O2 activation [130–132]� Prior to the re-
cent crystal structure of the P450cam–Pdx com-
plex, Pochapsky et al� developed a model of the 
P450cam–Pdx complex using NMR and molec-
ular modeling [133] that is supported by muta-
genesis data [134–138]� A wealth of spectral data 
shows that when Pdx binds on the proximal side 
of the heme, spectral changes ensue that are asso-
ciated with the opposite distal substrate-binding 
pocket� These changes include resonance Raman 
[139], infrared [138, 140], and NMR [141–143]� 
NMR studies [144–146] showed that Pdx bind-
ing results in changes in the B′, C, F, and G heli-
ces that are well removed from where Pdx binds 
(Fig� 1�22). The B′ helix provides key contacts 
with the substrate, while large movements of 
the F and G helices are the main features of the 
open/close transition [82]� Pdx binding to oxy-
P450cam decreases the stability of the oxy com-
plex 150-fold [147], while oxidized Pdx shifts 
oxidized P450cam to the low-spin state [148]� All 
these observations point to significant structural 
changes in P450cam when Pdx binds�

The crystal structure of the P450–Pdx com-
plex [128, 129] shows that P450cam adopts the 
open conformation, which is consistent with pre-
vious spectroscopic studies� The structure of the 
reduced form of the complex has four P450–Pdx 
molecules in the asymmetric unit and in three of 
these, the product, hydroxycamphor, is bound 
[129]� This means that the open form in the com-
plex is active in O2 activation and hydroxylation� 
Interactions at the interface are consistent with 
earlier NMR studies [145] and mutagenesis data 
[43, 137, 138, 149–153]� PdxAsp38 interacts with 
P450camArg112 (Fig� 1�22), which requires little 
movement in either protein in the vicinity of the 
ion pair� However, interactions involving Pdx-
Trp106, which has been known for some time to be 
a critical residue [131], require movement of the 
C helix (Fig� 1�22)� In effect, the C helix moves 
“up” about 2–3 Å in order to form nonpolar and 
H-bonding interactions with PdxTrp106� This mo-
tion of the C helix is coupled to movements in the 
B′, I, F, and G helices, all of which are involved 
with substrate access or direct contacts with both 
substrates, camphor and O2� This motion results 
in a large movement of the F and G helices and 
the F/G loop, which effectively opens the active 
site to bulk solvent� This open conformation is 

Fig. 1.22  Structure of the P450cam–Pdx complex (PDB: 
4JX1) [129]� A key interaction is between PdxTrp106 and 
the C helix in P450cam� The C helix moves “up” in order 

to optimize interactions with PdxTrp106� This motion is 
coupled to an opening of the active site access channel on 
the opposite side of the protein (F/G helical region)
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the same as observed by Lee et al� [82] The main 
difference is that in the structure solved by Lee 
et al� [82] the B′ helix is disordered, while in a 
complex with Pdx the entire P450cam is highly 
ordered and the key interactions between cam-
phor and the local environment remain, by and 
large, unchanged from the closed conformation� 
The main driving force for the conformational 
change appears to be PdxTrp106, which could not 
form tight interactions with P450cam without the 
structural switch�

The central question is why such Pdx-induced 
changes are important for activity� A possibly im-
portant part of the Pdx-induced structural change 
centers on the I helix near the O2-binding site� 
The switch in the I helix in going from the closed 
to open state results in opening of the I helix simi-
lar to what happens when O2 binds (Fig� 1�5)� The 
closed to oxy-complex opening of the I helix is 
about midway between the extremes of the closed 
to fully open switch� This opening of the I helix 
is required to enable the catalytic waters to move 
into place for proton transfer to dioxygen [31, 
33]� Thus, Pdx binding helps to stabilize the more 
oxy-like conformation of the I helix� However, 
the oxy-P450cam structure probably does not 
represent the final active state since Pdx binding 
perturbs the oxy-P450cam spectrum and results 

in a 150-fold destabilization of the oxy complex 
[147]� It has been argued that Pdx “pushes” the 
oxy complex more toward the active form that is 
probably the more open conformation� Pdx also 
alters the electronic properties of the thiolate li-
gand [147, 148], which could be due to a shorten-
ing of the peptide NH-thiolate H-bond observed 
in the P450cam–Pdx crystal structure�

Another large change that occurs when Pdx 
binds involves Asp251� Asp251 is part of the I 
helix and is usually Asp or Glu in many other 
P450s� Asp251 is essential for activity in P450cam 
[154], P450cin [155], and CYP101D1 [88]� The 
Asp251Asn mutant in P450cam exhibits a two-
orders-of-magnitude decrease in activity, yet re-
mains tightly coupled [154]� That is, nearly all 
the electrons funneled into the P450cam mutant 
are utilized for substrate hydroxylation and not 
the wasteful production of water or peroxide� 
This mutant also exhibits a kinetic solvent iso-
tope effect of 10 compared to 1�8 for wild-type 
P450cam [32]� This strongly implicates Asp251 
as being intimately involved with the proper de-
livery of protons to dioxygen required for het-
erolytic cleavage of the O–O bond� The problem 
with this view, however, is that Asp251 is tied 
up with Arg187 and Lys178 in two strong ion 
pairs (Fig� 1�23)� However, in the Pdx complex, 

Fig. 1.23  The region around Asp251 in P450cam with 
and without Pdx bound� In the Pdx-free closed state, 
Asp251 is tied up in strong ion pairs with Arg186 and 
Lys178� When Pdx binds these ionic interactions are bro-

ken, thereby releasing Asp251 for its role in shuttling sol-
vent protons to the iron-linked O2 molecule required for 
O–O bond cleavage and thus, O2 activation
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these ion pairs are broken, which frees Asp251 to 
serve its proposed role in shuttling protons from 
bulk solvent into the active site� It thus appears 
that an important part of Pdx binding may be to 
“arm” the proton delivery machinery required for 
proton-coupled electron transfer�

The next obvious question is whether or not 
this sort of redox partner-mediated conforma-
tional change required for activity is a general 
property of all P450s or is limited to P450cam� 
The weight of the evidence so far indicates that 
P450cam may be an outlier� A number of P450s 
are known to be supported by nonphysiological 
redox partners and some redox partners, such as 
P450 reductase, service a large number of P450s� 
The only structural comparisons that can be made 
to address this question are the P450cam–Pdx 
and CYP11A1–Adx complexes [69]� CYP11A1 
does not change to the open form in the complex 
but remains closed [69, 70]� However, Asp290 
(corresponds to Asp251 in P450cam) is not tied 
up in ion pairs and is exposed to bulk solvent� 
Hence, no structural changes are required to free 
Asp290 for catalysis, although it has yet to be es-
tablished if Asp290 is essential for CYP11A1 ca-
talysis� Given that Nature has so many P450s, it 
is doubtful that P450cam is the only P450 where 
selective redox partner binding coupled with 
conformational selection is required for activity� 
It should only be a matter of time before similar 
P450s are uncovered and analyzed in depth� Just 
as interesting a question is the biological basis for 
such control� What is the evolutionary advantage, 
if any, of P450cam exhibiting such specificity, 
while very closely related P450s do not?

1.9  Conclusion

The large increase in P450 crystal structures over 
the past few years is due in large part to tech-
nological advances in protein expression and 
purification� Just as important are the increasing 
genome databases which now makes it relatively 
easy to “discover” new P450s� The sophistication 
of user-friendly crystallization robots, software, 
and synchrotron data collection has opened up 
crystallography to the nonexpert which also has 

been a major contributor to the ever-expanding 
number of structures deposited in the protein da-
tabase� In fact, the field is now at the stage where 
expression, purification, characterization, and 
crystal structure determination can outpace func-
tional and biological studies� Many structures 
now are being solved before one knows much 
about function� We thus must start using structur-
al information to guide functional and biological 
studies� This could be particularly important with 
orphan P450s that will continue to increase in 
number as more and more P450s are discovered 
in new and interesting places� Such advances 
coupled with powerful computational resources 
that can be used for molecular modeling and in 
silico screening of potential substrates can sig-
nificantly contribute to a better understanding 
of function� Recent advances in defining vari-
ous conformational states also is quite important 
since which conformational state one uses for 
virtual screening of substrate/inhibitors is obvi-
ously quite important� Now, however, we have a 
better idea on the various conformational states 
available to P450s which will further sharpen 
predictive computational tools� We thus antici-
pate that P450 structural biology will continue to 
move quickly but that much less time and energy 
will be devoted to the actual structure determina-
tion and instead, will be focused on function�
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