
Proclus’ Conception of Geometric
Space and Its Actuality

David Rabouin

The main aim of this paper is to present Proclus’ philosophy of geometric extension
not so much from the point of view of what he says about it as what he does with it.
I will henceforth pay particular attention to the role of spatial configurations in the
practice which he describes. My motivations are twofold. First, although Proclus’
philosophy of geometry has received quite a lot of attention in the scholarship, this
attention has remained mainly inspired by the philosophical doctrine expounded in
the Prologues.1 It did not engage much, at least in a systematic way, with the
material given in the actual commentary of Euclid’s propositions and the mathe-
matical practice there described. As a consequence, the complexity and the flexi-
bility of Proclus’ views on the geometric imagination were not always well
rendered. I would like to complete existing descriptions by paying more attention to
these details, although, as I will indicate, they may sometimes introduce important
nuances, if not tensions, in the philosophical system. Second, Proclus provides
indications throughout his commentary about the geometric practice which go far
beyond his own specific philosophical agenda. He deals, for example, with
objections that other mathematicians and philosophers raised against Euclid’s
proofs. These objections, which sometimes stem from views opposite to his own
(typically, Epicurean objections of an “empiricist” flavor), were taken seriously
enough to ask for answers which Proclus also mentions (or sometimes even initi-
ates). For the modern reader, these passages are precious because they provide, by
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contrast, testimonies about certain conditions of the practice which seem to have
been accepted by the various interlocutors (whatever their philosophical back-
ground may have been). I would like to reconstitute some of these conditions and
compare these reconstructions with recent works dealing with ancient Greek geo-
metric practice, especially as regards the use of diagrams.2

My approach to Proclus will therefore be partly instrumental. Instead of focusing
on the quite rigid Neoplatonic framework set up in the Prologues, which has
already received considerable attention and which in Proclus’ eyes was probably
the most important aspect of his interpretative enterprise, I will try to extract a more
flexible approach of geometric practice found throughout his commentary.3 My
handling of the question will be focused on the role of “impossible” diagrams, be
they related to the picturing of infinite or indivisible entities, to objections raised
against this or that construction or to proofs by reductio. In the first part of the
paper, I will motivate this choice with the first series of examples. As we will see, it
so happens that Proclus gives important indications on these cases about the role of
the geometric imagination. He insists on this occasion, more so than in the Pro-
logues, on the autonomous activity of the imagination and on its relative opacity to
the understanding. These two features will constitute the leitfaden of my study. In
the second part of the paper, I will show that this situation is not specific to the first
set of examples and conforms to the frequent use of other “impossible” represen-
tations in Ancient Geometry (a fact which indicates accordingly that they are by no
means “impossible”). I will document some of their appearances in Proclus, detail
how the geometric imagination is involved in these situations and indicate several
related philosophical issues. In the last part of the paper, I will focus on these
philosophical issues and compare them with recent attempts to characterize Ancient
Geometric Practice. As a conclusion, I will try to show how this description may
help us tackle broader issues dealt with in contemporary philosophy of
mathematics.

2 In particular the studies by Manders (2008b), and Netz (1999). As regards the characterization of
geometric “practice”, I follow here an insightful remark made by Netz in passing (p. 2): “what
unites a scientific community need not be a set of beliefs. Shared beliefs are much less common
than shared practices. This will tend to be the case in general, because shared beliefs require shared
practices, but not vice versa. And this must be the case in cultural settings such as the Greek, where
polemic is the rule, and consensus is the exception. Whatever is an object of belief, whatever is
verbalisable, will become visible to the practitioners. What you believe, you will sooner or later
discuss; and what you discuss, especially in a cultural setting similar to the Greek, you will sooner
or later debate. But the real undebated, and in a sense undebatable, aspect of any scientific
enterprise is its non-verbal practices”.
3 Although the extant text of Proclus’ commentary deals only with the first book of Euclid’s
Elements, my interest will not be about the practice attributed to a particular mathematician
(“Euclid”) and developed into a text entitled the Elements, but on the common practice spanning
centuries (say, at least until Proclus) by practitioners of Euclidean Geometry and which remained
quite stable through various interpretations (involving different cultural settings, conceptual deb-
ates, ideological criticisms, etc.). Moreover, what I will describe easily extends to other classical
authors such as Archimedes and Apollonius.
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1 Proclus on Geometric Space

Before entering into the flesh of Proclus’ views, a word of justification about the
choice of the topic seems to be in order. Indeed it may sound strange to aim at
studying “geometric space” in Proclus, as it does more generally for ancient Greek
mathematics. A usual claim would be, quite on the contrary, that ancient Geometry
was a science of figures in contrast with our modern Geometry which takes space
and transformations in space as its primary object of inquiry. In his seminal study
on Euclid’s Elements, Ian Mueller stresses this difference between the modern
“structural” viewpoint and that of the Ancients:

For Hilbert geometric axioms are characterized by an existent system of points, straight
lines, etc. At no time in the Grundlagen is an object brought into existence, constructed.
Rather its existence is inferred from the axioms. In general Euclid produces, or imagines
produced, the objects he needs for a proof (…). It seems fair to say then that in the
geometry of the Elements there is no underlying system of points, straight lines, etc. which
Euclid attempts to characterize. Rather, geometric objects are treated as isolated entities
about which one reasons by bringing other entities into existence and into relation with the
original objects and one another.4

A source of great confusion on this issue was the description of the birth of
“Modern Science” as characterized, to repeat Koyré’s famous wording by “the
replacement of the Aristotelian conception of space—a differentiated set of inner
worldly places, by that of Euclidean geometry—an essentially infinite and
homogenous extension—from now on considered as identical with the real space of
the world”.5 Indeed, in this picture, it seems that Euclidean Geometry is already, by
contrast to Aristotelian philosophy, a science of infinite (homogeneous) extension.
But, as emphasized by E. Grant in a manner very close to that of Mueller:

There is nothing in Euclid’s geometry to suggest that he assumed an independent, infinite,
three-dimensional, homogeneous space in which the figures of his geometry were located.
In a purely geometric sense, such a space would have been superfluous because every
geometric figure has its own internal space. Moreover, if the space of the geometric figure
and the independent space it is alleged to occupy are conceived as indistinguishable, an
infinity of spaces could be postulated in one and the same place. (…) Euclidean geometric
space was the space of geometric figures of any size whatever and when applied to material
bodies was conceived as an internal space.6

4 Mueller (1981, p. 14).
5 Koyré (1957, Preface, p. viii).
6 Grant (1981, p. 17). The last sentence of the quote is intended to show the proximity between
Euclid and Aristotle’s concept of place. This goes along with another important historical recti-
fication emphasized by Grant: “the adoption of an infinite space in the seventeenth century resulted
primarily from the divinization of space—a process begun in the fourteenth century—and to a
lesser extent, from the needs from physics and cosmology. But it did not arise from any straight-
forward application of an alleged Euclidean geometric space to the physical world” (note 49,
p. 273).
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Considering these debates, it might seem that the attribution of a doctrine of
“geometric space” to Greek mathematicians amounts to some form of anachronistic
projection of our modern “structural” viewpoint (i.e. what we now call “Euclidean
Geometry”). It is therefore worth recalling that although we have no way of
knowing what Euclid thought about the subject, there was at least one Ancient
Greek (although much later than Euclid) who had no trouble finding infinite space
in his geometry: Proclus! Moreover, he gave strong justifications for this claim.

The discussion on this topic occurs mainly in the commentary of proposition
I.12, which asks: “To a given infinite straight line, from a given point which is not
on it, to draw a perpendicular straight line” (my emphasis). Proclus remarks that the
condition (“from a given point which is not on it”) cannot be known to be satisfied
if we take an arbitrary finite segment and a point at random in the plane. Indeed we
would have no way of knowing whether or not the given point would be on the line
when produced (a situation dealt with in the previous proposition and asking for
another construction cf. In Eucl. 284).7 This is, according to him, why Euclid was
led to posit an infinite straight line given in actuality (κατ᾽ ἐνέργειαν). He insists
then on the fact that “if there is an infinite line, there will also be an infinite plane,
and infinite in actuality if the problem is to be a real one” (In Eucl. 284, 19–21).
This last stance transfers immediately to three dimensions, since proposition XI.11
of the Elements asks for the construction of a perpendicular to a plane and relies
directly on I.12. If the plane in I.12 is infinite in actuality, so will be the three
dimensional space containing it (by repeating the construction twice, if needed).

One could wonder if too much emphasis can be put on a single mention which
remains isolated in Euclid and, by consequence, in Proclus. But the commentator
also emphasizes that the Elements express at several occasions the fact that a
straight line is given as finite (prop. I.1, I.10), a specification which would be
pointless if there were no possibility for a straight line to be given as not finite. He
also indicates that the condition is not specified in certain propositions, because it is
implicit in the position of the problem (see for example In Eucl. 208, 11–12; 223,
16; 224, 4; 277, 18–24). Although these terminological remarks are not enough to
tell us about Euclid’s own conception, they certainly indicate that the acceptance of
an actual infinite in Geometry was more than a strange hapax legomenon in Pro-
clus’ discourse. Moreover, one has to remember that the construction involved in
I.12 is ubiquitous in the Elements (and more generally in Ancient Greek Geometry).

The epistemological problem raised by this description is of course that an actual
infinite space seems inconceivable if one looks either in the realm of sensible
things, in which only finite magnitudes have existence (culminating according to
Proclus with the last sphere which gives a boundary to all material entities), or in
the realm of intelligible where there is a platonic ‘idea’ of infinity, but not endowed

7 The Greek text is Proclus (1873). I will follow the English translation by Morrow (1992). For a
contemporary discussion of the problem raised by the choice of arbitrary points in the Elements
and their relation to the presupposition of an infinite system of objects, see Mumma (2012, p. 117;
for propositon I. 11 and 12, see in particular note 14).
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with spatial extension (In Eucl. 284–285). To this traditional dilemma, Proclus
proposes a solution, which is of particular interest to us:

It remains, then, that the infinite exists in the imagination, only without the imagination
knowing the infinite. For when imagination knows, it simultaneously assigns to the object
of its knowledge a form and limit, and in knowing brings to an end its movement through
the imagined object; it has gone through it and comprehend it. The infinite therefore is not
the object of knowing imagination, but of imagination that is uncertain about its object,
suspends further thinking and calls infinite all that it abandons, as immeasurable and
incomprehensible to thought. Just as sight recognizes darkness by the experience of not
seeing, so imagination recognizes the infinite by not understanding it. It produces it indeed,
because it has an indivisible power of proceeding without end. (In Eucl. 285, 5–17)

This does not contradict what Mueller told us.8 Space does not appear here as an
object of inquiry or a system of objects which would be treated mathematically as
such. Indeed Proclus insists on the fact that it is given by imagination as something
that the understanding cannot grasp. In this sense, geometric space acts only in the
background of the theory. But this background, although there is stricto sensu no
concept of it, is nonetheless presented as a necessary condition for a proper study of
geometric objects. It is not something that we know, but something that we need in
order to know.9 Hence one should not confuse the acceptance of an infinite geo-
metric space and the fact of taking it as an object of mathematical study. The
purpose of this paper is to elucidate the first of these directions by embedding it,
following Proclus, in a more general view on the role of the imagination in
Geometry and on the way space is used not as an object of study, but as a tool for
the study of mathematical objects.

These remarks are of great importance from a historiographical point of view.
Even if modern scholars are more cautious than their predecessors with regards to
diagnosing “revolutions” in science, they often leave untouched the above men-
tioned thesis, according to which the birth of an infinite mathematical space in the
Renaissance was an important breakthrough (the existence of an infinite physical
space being already present in certain Ancient philosophers). In this regard, it

8 It does seem, however, to directly contradict Grant’s declarations: according to Proclus, we
certainly need an actual infinite extension to perform Euclidean geometry.
9 “The understanding from which our ideas and demonstrations proceed does not use the infinite
for the purpose of knowing it, for the infinite is altogether incomprehensible to knowledge; rather it
takes it hypothetically and uses only the finite for demonstration; that is, it assumes the infinite not
for the sake of the infinite, but for the sake of the finite” (In Eucl. 285–286). Compare with
Mumma (2012, p. 117): “In the construction stage, most steps produce unique geometric objects
from given ones and so can be represented logically by functions. Yet one kind does not: the free
choice of a point satisfying non-metric positional conditions. Such points have an indefinite
character within proofs. Their precise identity is not fixed relative to other given objects in the
configuration. The natural logical representation for what licenses their introduction are thus
existential statements, asserting the existence of a point satisfying certain non-metric positional
conditions. And so, though the geometric reasoning in Eu is always performed with a particular
finite diagram, it still seems to presuppose a domain of geometric objects, i.e. the domain over
which the quantifiers of these propositions range” (my emphasis). The link between “indefinite”
objects and the presupposition of an infinite domain of objects is of particular interest.
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should be recalled not only that it was a possibility foreseen in Ancient times, but
that, symmetrically, such an idea was controversial amongst early modern thinkers.
Moreover the Proclean position of the problem, which distinguishes between what
is given to understanding and what is given to imagination, has strong echoes in
these discussions. In particular, one has to keep in mind that Descartes, one of the
alleged “heroes” of the modern identification between mathematical space and the
real world, rejected the idea of an infinite extension as conceptually given and
introduced the idea of “indefinite” for what is given as infinite to the imagination.10

It should also be stressed that in Proclus one can find not only the acceptance of an
infinite extension given by imagination, but a dynamical conception of geometric
space in which transformations are brought to the fore (in contrast to the study of
properties of static figures, often presented as a characteristic of Ancient geometry).
In fact, the history of the “Euclidean” tradition shows continuous evolution toward
this view11 and produced as early as Ibn al-Haytham and al-Sijzi presentations of
Geometry in which space and transformations became of primary importance.12

It is no big surprise that geometric space makes its appearance in the case of
entities such as the infinite straight line or points taken at random in the plane (i.e.
not as intersection of given lines or circles).13 It provides us with a typical situation
in which the spatial proxy acting in the background of the theory and the conceptual
apparatus operating on its surface are not in perfect accordance—whereas other
regular situations (but hardly all of them, as I will argue in Sect. 2) could let us
think that they evolve in a perfect parallelism. There are spatial configurations
which, so to speak, do not “correspond” to conceptual configurations. This relative
opacity of space, as I will call it following the Proclean metaphor of darkness and
sight, will be the leading topic of my inquiry. Note however that the problem here is
not presented in the form which a modern reader could expect: it does not come
from the fact that we, human beings with finite resources, are unable to properly
represent an actual infinite. Quite on the contrary since Proclus credits human
knowledge with being able to represent infinity thanks to imagination! What is

10 “I do distinguish here between ‘indefinite’ and ‘infinite’; strictly speaking, I designate only that
thing to be ‘infinite’ in which no limits of any kind are found. In this sense God alone is infinite.
However, there are things in which I discern no limit, but only in a certain respect (such as the
extension of imaginary space, a series of numbers, the divisibility of the parts of a quantity, and the
like). These I call ‘indefinite’ but not ‘infinite,’ since such things do not lack a limit in every
respect.” (“Reply to First Set of Objections”, translation in Ariew 2000, p. 155; AT 7: 113). The
close connection between the concept of ‘indefinite’ and imagination is emphasized as early as Le
Monde (AT 11: 31–33, transl. Ariew 2000, p. 36) and persists until the Principles of Philosophy
(I § 26–27, AT 8a: 15, transl. Ariew 2000, pp. 237–238). On Newton’s proximity with Proclus at
the time of the De gravitatione, see Domski (2012).
11 See Vitrac (2005, pp. 1–56), which gives a prominent role to Proclus.
12 See Rashed (2001, Introduction, pp. 1–11 and Chap III, pp. 655–685: “Ibn Al-Haytham et la
géométrisation du lieu”), Crozet (2010), De Vittori (2009).
13 The word used in the Elements is τυχὸν σημεῖον. Before I.12, it appears in I.5, I.9 and I.11.
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particularly interesting is precisely that we are able to represent something to which
we have no conceptual access.

�

The commentary of Eucl. I.12 provides the occasion to recall the general epis-
temological framework set up by Proclus in the Prologues. It also allows us to
identify important nuances introduced in the details of the commentary. This is
particularly the case with the autonomous activity which the imagination acquires
with increasing clarity as the commentary unfolds.

In the beginning of the book (Prologue 1), under the guise of an orthodox
Neoplatonism, Proclus has emphasized the intermediate nature of mathematical
entities which are neither simple nor dispersed in the uncontrolled diversity of
Becoming, neither mere objects of intellect (nous) nor of opinion (doxa) (In Eucl.
3–5). In the second Prologue, however, paying closer attention to geometric
objects, he introduces a more original view in which this intermediary position is
not linked solely to the position of discursive thinking (dianoia), but to the inter-
vention of a kind of “matter” identified with imagination (hylè phantastikè cf. In
Eucl. 51–52). Here, Proclus is very clear about the fact that he is not following an
orthodox platonic doctrine.14 He then goes so far as to assert that dianoia is unable
to access geometric ideas by itself and needs the help of imagination to seize them:

When, therefore, geometry says something about the circle or its diameter, or about its
accidental characteristics, such as tangents to it or segments of it and the like, let us not say
that it is instructing us either about the circles in the sense world, for it attempts to abstract
from them, or about the form in the understanding. For the circle [in the understanding] is
one, yet geometry speaks of many circles, setting them forth individually and studying the
identical features in all of them; and that circle [in the understanding] is indivisible, yet the
circle in geometry is divisible. Nevertheless we must grant the geometer that he is inves-
tigating the universal, only this universal is obviously the universal present in the imagined
circles. Thus while he sees one circle [the circle in imagination], he is studying another, the
circle in the understanding, yet he makes his demonstrations about the former. For the
understanding contains the ideas but, being unable to see them when they are wrapped up,
unfolds and exposes them and presents them to the imagination sitting in the vestibule; and
in imagination, or with its aid, it explicates its knowledge of them, happy in their separation
from sensible things and finding in the matter of imagination a medium apt for receiving its
forms. (In Eucl. 54–55, my emphasis)

We find here for the first time the crucial idea that imagination provides dianoia
with a knowledge which it is unable to access by itself. At this stage, however, it
would still be possible to understand this doctrine as a mere complement to what
has been stated in the first prologue. One could claim that the discursive movement
remains attached only to dianoia, imagination being just a proxy on which this

14 “We are not unaware of what the philosopher Porphyry in hisMiscellaneous Inquiries and most
of the Platonists have set forth, but we believe that what we have said is more in agreement with
the principles of geometry and with Plato’s declaration that the objects of geometry are underst-
andables” (In Eucl. 56).
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movement is transcribed and which allows the manifestation of pure and simple
ideas. The famous metaphor of the projection on the “receptacle” of imagination
seems to go in this direction:15

We invoke the imagination and the intervals that it furnishes, since the form itself is without
motion or genesis, indivisible and free of all underlying matter, though the elements latent
in the form are produced distinctly and individually on the screen of imagination. What
projects the images is the understanding; the source of what is projected is the form in the
understanding; and what they are projected in is this “passive nous”16 that unfolds in
revolution about the partlessness of genuine Nous. (In Eucl. 56)

This seems even clearer in the metaphor of the surface on which the under-
standing writes its mathematical concepts (or “ratios” since Proclus designates both
as logoi). Imagination is then presented as a plane mirror17 on which discursive
knowledge contemplates itself: “We must think of the plane as projected and lying
before our eyes and the understanding as writing everything upon it, the imagi-
nation becoming something like a plane mirror to which the ideas of the under-
standing send down impressions of themselves” (In Eucl. 121).

One important thing to notice in these various declarations is that imagination is
identified with the spatial support, Proclus establishing a strong connection between
what could appear as a faculty of the soul and what I have designated above as a
form of “geometric space”. In this sense, space is not just a screen on which the
dianoia projects its concepts, it is also, and by the same token, a screen on which
the soul recognizes its rational activity. But, in any case, the activity seems situated
on the discursive side, the apparent activity on the surface being just a reflection of
the dianoetic activity. This idea is well expressed in the description of the geometric
“figure” where the mirror is presented as a surface on which the seer and the seen
coincide (because in the mirror I see myself seeing):

Therefore just as nature stands creatively above the visible figures, so the soul, exercising
her capacity to know, projects on the imagination, as on a mirror, the ideas of the figures;
and the imagination, receiving in pictorial form these impressions of the ideas within the
soul, by their means affords the soul an opportunity to turn inward from the pictures and
attend to herself. It is as if a man looking at himself in a mirror and marveling at the power
of nature and at his own appearance should wish to look upon himself directly and possess
such a power as would enable him to become at the same time the seer and the object seen.
(In Eucl. 141)

15 On Proclus’s “projectionism”, see Mueller in Morrow (1992, p. xxvi), Mueller (1987) and
O’Meara (1989).
16 This is the way Aristotle designates imagination in De Anima 430a24. As explained a few pages
earlier by Proclus, this expression should be taken cum grano salis since there is no such thing as a
passive nous in his view (In Eucl. 52).
17 A metaphor coming from Plato (especially Timaeus 70e–f) and elaborated by Plotinus, see
Claessens (2012, where the relevant literature is mentioned).
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However, as we have seen in I.12, imagination does not limit itself to reflecting a
dynamic coming from outside. It is also endowed with a dynamic of its own.18 In
the case of infinity, no reflexivity is allowed since the dynamic attached to it is
presented as irreducible to conceptualization: with infinite entities (be they straight
lines, planes, three dimensional space), imagination provides knowledge with forms
of representation which must remain opaque to it. This is why I talked about
important nuances introduced in the course of the commentary.

This autonomous and irreducible activity of imagination appears in other situ-
ations. In fact, it could be detected as early as the first definition of the first Book,
which will serve me as a second basic example. As is well known, def. 1 of the
Elements defines the point as “what has not part”. A traditional difficulty here is to
determine how the geometer could represent in a spatial diagram, endowed de jure
with infinite divisibility, an indivisible entity (a problem which, like for the infinite
line, immediately transfers to higher dimensions: length without breadth, surface
with length and breadth only). This is a symmetrical, and more traditional, problem
than the one posed by I.12: we have here a clear concept, but no possible image of
it. What is interesting is Proclus’ answer, which once again amounts to stress the
irreducible role of imagination in its dynamical aspect (phantastikès kinesis):

But someone may object: How can the geometer contemplate a partless something, a point,
within the imagination if the imagination always apprehends things as shaped and divisi-
ble? For not only ideas in the understanding, but also the impressions of intellectual and
divine forms, are accepted by the imagination in accordance with its peculiar nature, which
furnishes forms to the formless and figures to what is without figure. To this difficulty we
reply that the imagination in its activity is not divisible only, neither is it indivisible. Rather
it moves from the undivided to the divided, from the unformed to what is formed. (In Eucl.
94–95)

Although it is not entirely clear what Proclus has in mind when claiming that
imagination is “not divisible, neither indivisible” (literally: “not divided, neither
undivided”), the insistence on the dynamical aspect is striking. It brings to the fore
the role of the action (in this case: division) which generates objects (the indivis-
ible), in contrast to the object given as such to dianoia and necessarily endowed
with non-incompatible properties (either divided, or undivided). As images (unlike
concepts-logoi, given solely by definitions), “points” carry information about what
we can or cannot do (in this case: divide any further), although they are endowed
with properties allowing us to do what they forbid.19 What I would like to stress is,

18 Reflecting in the first Prologue on the famous Aristotelian metaphor of the soul as a wax tablet,
Proclus objects that it is rather a tablet “writing itself”, a first occurrence of the idea of an active
surface (In Eucl. 16, 10: γράφον ἑαυτὸ). On the autonomy of imagination in Proclus, see Claessens
(2012).
19 For a modern reading of “points” in Euclidean Plane Geometry insisting on the role of division,
see Panza (2012, p. 73). According to Panza: “geometrical points are not represented by elementary
diagrams. They are rather represented by extremities or intersections of lines, some of which are
possibly elementary diagrams, whereas others are parts of such elementary diagrams resulting from
dividing them through intersection”. For the problems arising from such a view see Mumma (2012)
quoted note 10.

Proclus’ Conception of Geometric Space … 113



once again, the relative opacity attributed to geometric imagination. It manifests
itself in the fact that the dynamic of imagination is not presented as a projection of
some discursive reasoning here. Quite the contrary since imagination allows us to
circulate between properties (“not divided, neither undivided”) which are concep-
tually incompatible.

In this regard, the discussion on the bisection of a line segment (prop. I.10) is
also interesting. Proclus begins by recalling that the very act of bisecting seems to
contradict a view on geometric entities as constituted by multiplicities of points.20

A multiplicity being something which can be numbered, it would not be possible to
cut in two parts a segment composed of an odd number of points (In Eucl. 278). But
Proclus also refuses to consider infinite divisibility as an assumption entailed in the
position of continuous magnitudes. All we need, according to him, is mere conti-
nuity described in terms of contact and possibility of action (division).21 Infinite
divisibility is then inferred as a consequence of this possibility by the (provable)
fact that there exist incommensurable magnitudes (i.e. for which the alternate
subtraction of one from the other cannot be a finite process cf. Elements X.2). Once
again, we see imagination circulating between indivisibility and divisibility, but
refraining from fixing these features into objective forms (a line constituted of
points or an actual infinite division attached to continuous magnitude in and of
itself). This makes it possible to relieve the traditional paradox of positing at the
same time divisibility with no end and indivisible entities—or, better, in parallel to
I.12, it transfers the paradoxical aspect to a dynamic of imagination which does not
have to be fully transparent to conceptual determinations.

The infinite straight line and the point are however a very particular type of
representations. If along with Peirce we define a diagram as a type of “icon”
characterized by the fact that certain relations in the situation represented are carried
by the representamen, they lead to the following paradoxical situation: the very
nature of the representamen forbids us from mapping what are supposed to be the
characterizing properties of the objects under study (non-divisibility for the point;
actual infinity for the infinite straight line). For this very reason, it may look as if
they constitute exceptions, related to the mysterious treatment of the infinite and
indivisibility. As such, they could be treated with particular conventions of repre-
sentation. What I would like to argue in the next section is that they are far from
being isolated cases, although they may have pushed Proclus to explicate things
which would have otherwise remained implicit (the autonomous position of geo-
metric space and its relative opacity). Proclus’ commentary is full of other diagrams
which raise the same type of issues, and for a very good reason: so is ancient Greek
geometry.

20 An argument already put forward by Sextus Empiricus (Adv. Math. IX 282–283) and coming
from the Epicureans, although they used it in an opposite strategy (in order to show that one cannot
follow geometers in their claims) cf. Benatouïl (2010, pp. 156–157).
21 This would go in the same direction as Panza’s general discussion on continuity (see note 19
above and Panza 2012, Sect. 1.3.1, p. 72 sq.).
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2 Geometric Imagination in Practice

Let us look at the very first proposition of the first book of Euclid’s Elements and
what Proclus has to tell us about it. As is well known, this proposition asks to
construct an equilateral triangle on a given finite straight line. The resolution goes
on to construct the two circles whose centres are the extremities of the given
segment and whose radius is the given segment. As was made famous by objections
from modern geometers such as Pasch or Hilbert, a hidden assumption in the
construction is that the two circles meet in a point which will serve as apex for the
sought triangle (in Euclid’s construction, only one of the two points of intersection
is considered). What is less well known, however, is that a similar objection was
already raised in ancient times. It is attributed by Proclus to Zeno of Sidon (In Eucl.
214), an Epicurean philosopher from the first century BC, and it deals not so much
with the existence of the point of intersection as with its being well determined.
How are we to be sure that we are not in a situation in which AC and AB have a
segment in common and the apex of the sought triangle is not well determined?
(Fig. 1).

The objection may strike us as odd, since it relies on a diagram in which straight
lines are represented as not straight. Of course we know that geometric drawings are
not to be taken as exact representations. But even if we don’t pay attention to the
drawing itself (as was certainly the case for Proclus who repeatedly dismisses any
direct relation between mathematics and perception), the situation would remain
problematic. Indeed one main difference between ancient and modern geometry is
that some information has nonetheless to be retrieved from the diagram, be it
interpreted as the concrete drawing or as some form of idealized counterpart.22

These pieces of information typically feature inclusions of one region into

Fig. 1 Zeno’s objection to
I.1 (diagram from Barozzi
1560, p. 122)

22 For a survey on this question, see Manders (2008a).
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another.23 Yet by allowing straight lines to be imagined as broken, we seem to run
into serious difficulties when conducting this type of argument.

To make this point clear, let us read a typical Euclidean proposition. Consider,
for example, prop. I.16 which states that “in any triangle, if one side is produced,
then the exterior angle is greater than either of the interior and opposite angles”. The
demonstration asks us to bisect AC at E, join BE and produce it “in a straight line”
to F. We then make EF equal to BE to obtain a triangle EFC similar to ABE, so that
the angle BAE is equal to ECF. At that stage, we rely on the fact that ECD is greater
than the angle ECF and we can therefore conclude that the angle ACD is greater
than ECF (equal to BAE). The last information (ECD is greater than ECF) is a
typical example of diagrammatic attribution (inclusion from one region into another
leading to the conclusion that one is greater than the other). Let now suppose that
we imagine another diagram allowing the “straight line” EF to be broken (as in the
diagram on the right). In this case, angle ECF will contain angle ECD and a crucial
step in the demonstration would not hold (Fig. 2).

Considering this situation, it may sound safe to reject the alternative diagram,
and by the same token Zeno’s objection, on the ground that the diagrams are not
admissible. This is not, however, what Proclus does (nor, apparently, any of his
predecessors).24 He takes Zeno’s objection seriously and answers by a proof.
In order to do so, he first relies on the Euclidean definition of the straight line,
which he takes to involve that the line is the shortest path and hence unique

Fig. 2 Elements I.16 (left) and an alternative diagram with broken lines (right). As is well known,
we do not have access to ancient Geometric diagrams and have to rely on late copies. For a survey
on the question in the first books of Euclid’s Elements, see Saito (2006) and more recently Saito
and Sidoli (2012).

23 This belongs to the class of what Ken Manders has described as “co-exact” attributes: “The only
claims based on diagram appearance in a demonstration recognize conditions that are insensitive to
the effects of a range of variation in diagram entries: lines and circles that are not perfectly straight
or circular, and cannot be taken to be without thickness. As we distort the ‘circles’ in I.1, their
intersection point C may shift but it does not disappear. Such conditions I call co-exact. They
include: part-whole relations of regions, segments bounding regions, and lower-dimensional
counterparts” (Manders 2008a, p. 6).
24 Other authors before him considered Zeno’s objections and Proclus mentions a complete book
written by Posidonius on this issue (see In Eucl. 216, 20).
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(In Eucl. 215).25 The reason for this strategy, in which the diagram is not rejected
from the outset, seems to be not so much that Proclus realizes the difficulty hidden
in the question of intersection and the interest of Zeno’s objection, but that such a
diagram is admissible as such in Euclid (and more generally in Ancient Geometry).
Indeed in many demonstrations in which the Elements proceed ad absurdum, they
involve situations in which straight lines have to be imagined as not straight.26

Take for example El. I.14 which states that: “If with any straight line, and at a
point on it, two straight lines not lying on the same side make the sum of the
adjacent angles equal to two right angles, then the two straight lines are in a straight
line with one another”. The demonstration proceeds ad absurdum by supposing that
the two lines CB and BD, touching AB in B and satisfying the conditions on angles,
are not on a straight line (although they are drawn in a straight line in the extant
diagrams!). Then a line BE is introduced, which is supposed to be “in a straight
line” with CB (but not represented as such!). One then shows that the resulting
conditions on the angles are contradicted by the fact that the angle BE is contained
in the angle BD. This last condition seems to work only because the “straight line”
CBE has been imagined as broken and CBD not. It does not seem possible to get rid
of this representation (for example, exchange the representation of CBD with CBE
or represent both of them as broken lines) and maintain the argument as it stands
(Fig. 3).

Another famous example of reductio is given by prop. I.27 which states that “if a
straight line falling on two straight lines makes the alternate angles equal to one
another, then the straight lines are parallel to one another”. In the course of the

Fig. 3 Elements I.14

25 After this first rejection, Proclus also proposes a reductio ad absurdum of the fact that two lines
may have a common segment by showing that this contradicts the fact, which he demonstrated
before, that a circle will be cut in two by its diameter (In Eucl. 216).
26 In what follows, one should keep in mind that proofs by reductio are widespread in the
Elements. By modern standards, their ratio in the total number of proofs seems even very high
(around one fourth). Although not all of them involve absurd representations (see note 58 below),
the latter constitute a significant number of them, especially in Elements Book III where they are
numerous (nearly 50 % of the proposition are proven by reductio), see Vitrac (2012).
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proof, one assumes that the two straight lines meet and that they hence form a
triangle with the one falling on them. The most common way to represent this
situation is that presented in Fig. 4. In this representation, we see that considering a
“triangle” whose sides are represented by broken lines, as I did in my alternative
diagram to I.16 and as Zeno did in his objection to I.1, does not seem inadmissible.

At this point, one could object that this is not necessarily related to Proclus’ view
on the role of geometric imagination, since he is just here collecting objections
without endorsing them or assuming that they are legitimate.27 On this issue, let me
first recall that “objection” is presented by him as a technical term of geometric
discourse, on a par with “lemma”, “case”, “diorism”, etc. (In Eucl. 212). According
to the characterization given here, “objection” involves accepting counter-argu-
ments attacking either the demonstration or the construction without proof.28 In this
sense, it is already unclear what an “illegitimate” objection would be and what
grounds Proclus may have to reject an objection. It seems that any counter-argu-
ment based on an alternative diagram has to be accepted by the geometer, with the
burden of proof lying on him. As we just have seen, there are good reasons for this
principle of tolerance: considering the very functioning of reductio ad absurdum in
the ancient geometric context, there seems to be no way of rejecting a diagram as
illegitimate once and for all. A geometer who would answer to Zeno’s argument by

Fig. 4 Elements I.27 from
the Bodleian copy (MS
D’Orville 301)

27 Think of the objections related to the fact that there may not be “enough room” around a given
diagram (In Eucl. 225, 16; 275, 7; 289, 21), which seems to come from an “empiricist”
interlocutor.
28 “An ‘objection’ (enstasis) prevents an argument from proceeding on its way by opposing either
the construction or the demonstration. Unlike the proposer of a case, who has to show that the
proposition is true of it, he who makes an objection does not need to prove anything; rather it is
necessary [for his opponent] to refute the objection and show that he who uses it is in error (In
Eucl. 212).
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saying that what he represented as a triangle (or straight lines) could not be a
triangle (or straight lines) would likewise have to block “regular” Euclidean proofs
such as I.14 or I.27. On the other hand, it is clear that not all the alternative
diagrams could be admissible, if we want the geometer to do something other than
painstakingly answer any absurd configurations which could cross the mind of his
objector.

I will come back to this issue below. Let me just note for now that even if it were
the case that Proclus did not assume some of these objections as legitimate, it so
happens that he also appeals in his own name to situations in which broken “straight
lines” are involved. Commenting on propositon I.15, for example, he proposes to
prove its converse by a reductio involving exactly the same type of diagram as the
one used in I.14 (In Eucl. 302–305). In the diagram below CF is supposed to lie “on
a straight line” with CD. Accepting this kind of representation naturally leads to
accepting Zeno’s objection as a serious one. What Zeno is doing is just transporting
this type of representation, used by the geometer in some proof, in others (Fig. 5).

Another example of straight line represented as “non straight” and used by
Proclus is given in the course of the commentary on I.4. There he criticizes the fact
that Euclid assumed without proof that two lines cannot enclose a space (this is a
crucial assumption in proofs by superposition such as I.4 or I.8 and was even
incorporated in the “common notions” in some versions of the Elements).29 Proclus
undertakes to provide the missing argument and proceeds ad absurdum by relying
on the following diagram (Fig. 6). In this case, straight lines are represented by arcs,

Fig. 5 Proclus’s lemma in
I.15 (Barozzi 1560, p. 172)

29 Note that the problem is not unrelated to Zeno’s objection. If we accept triangles with sides
represented as “unstraight”, we could make two triangles coincide on two of their sides and the
angle contained by them without coinciding on the third. This will ruin the demonstrations “by
superposition”. The admissibility of such a diagram seems to be attested in the discussion about
the curious “four sided” triangle, to which Proclus alludes in In Eucl. 329. Barozzi (1560, p. 189)
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a situation which is once again to be found in Euclidean proofs (see, for example,
III.2)30 and raises similar issues as broken lines do.

What I would like to emphasize with these examples is the following. If we pay
close attention to the practice described by Proclus, be it in ordinary Euclidean
proofs which he comments or in objections raised by him or by others, we see that
there is nothing exceptional about the situation sketched in the preceding section.
The very functioning of a reductio proof involves a clear distinction between two
regimes which are not fully transparent to each other: geometric imagination on the
one hand, which provides diagrammatic configurations which are admissible prima
facie, and discursive reason on the other hand, which analyses these configura-
tions.31 The same holds for objections and, as I have shown above, there is an
interesting interplay between the two situations: it does not seem possible to reject
certain obviously “absurd” objections at first glance precisely because we need

Fig. 6 Two “straight lines”
which enclose a space
(Barozzi 1560, p. 136)

(Footnote 29 continued)

With such a diagram, we could easily demonstrate the contradictory of I.4 by supposing that two
triangles coincide on two sides (and the angle containing them) and then realize that one is
nonetheless contained in the other. This possibility is ruled out by the fact that it would presuppose
admitting two straight lines enclosing a space.
30 Diagram in Saito (2008).
31 I deliberately mimic Proclus’ terminology (distinction between phantasia and dianoia, realm of
the logoi). However, it should be clear at this point that “conceptual analysis” may involve
information taken from the diagrams.
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them to be admissible, at least hypothetically, in order to conduct regular reductio
proofs.

All of these cases provide us with a geometric imagination which is therefore at
the same time necessary, autonomous and opaque.32 This could be understood in a
quite straightforward way: imagination produces configurations which the con-
ceptual process cannot recognize as legitimate. This is precisely why it may reject
them after analysis.33 We saw a more positive side of this opacity in the first section
(it provides a possibility for representing infinite or indivisible entities), we now see
its more negative side (although very useful for certain kind of proofs) and the
dangerous game of objections without proof into which the geometer enters by
allowing room for it in its practice.

If we take “figures” in a broad sense (including straight lines, points, angles, etc.)
to be either the objects of ancient geometry or faithful representations of these
objects,34 the diagrams provided in our examples cannot be “figures” (or collections
of “figures”): there is no such thing as a “triangle” formed by two straight lines and
a third making equal alternate angles with them (El. I.27), no “circle” which cuts
another in more than two points (El. III.10), no “straight line” joining two points of
a circle and falling outside it (El. III.2), no “straight lines” enclosing a space or

32 Considering the above example, it does not seem possible to claim, as Nikulin (2008, p. 160)
does when presenting Proclus’ concept of imagination, that “geometrical figures must be perfect,
i.e. adequately represent their corresponding properties. Thus, a straight physical line is never
straight, and a bodily circle is never round, whereas a geometrical straight line cannot be anything
else but straight, and a circle nothing but perfectly round, which follows from their definitions.
Therefore, sense perception, or aisthesis, cannot be the faculty responsible for the adequate rep-
resentation of geometrical figures. Discursive reason, however, conceives geometrical objects in
their properties as logoi which are not extended. This means that there has to be a distinct cognitive
faculty capable of representing geometrical objects as figures, i.e. as extended and perfect.”.
33 This discrepancy between imagination and dianoia is paradoxically rendered obvious by recent
reconstructions of Euclid’s theory as a system in which the conceptual and the diagrammatic
regimes are supposed to evolve in a perfect parallelism. In M. Panza (2012), for example, it is
stated that the determination of the centre of a circle in El. III.1 is “in tension” with the rule of EPG
(Panza’s reconstruction of Euclidean Plane Geometry), because EPG provides “no possibility of
constructing a circle without having previously constructed its centre, unless a rule for circles
analogous to R.0 is admitted” (i.e. unless we accept that circles can be given as such, without any
underlying construction). The problem is that we need the centre of a circle not to be given to
perform the reductio proof in III.5 and III.6. In fact, the diagrams of III.5 and III.6 are simply not
compatible with what Panza presents as a rule of construction for admissible diagrams of circles:
“If two points are given, then two and only two concrete lines, each of which represents a circle
having its centre in one of the given points and passing through the other, can be drawn” (p. 89). In
Mumma (2006), many reductio proofs of book III concerning intersection and tangency (such as
III.2 and III.13) are rejected from the outset, since the properties which they describe are conse-
quences of the rule of construction of circles (see for example p. 26 where the convexity condition
on representation of circles is stated). Same thing in the system proposed by Miller (2001), where
III.2 and III.10 are presented as rules of formation for admissible diagrams (what Miller calls
“nicely well-formed” diagrams, see Definition 2.1.5 p. 20 and Miller 2007, p. 26, Sect. 2, Defi-
nition 5).
34 Calling a representation “faithful” when it preserves what are considered as the characterizing
properties of the representatum.
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having a common segment (without coinciding), etc.35 This is precisely what re-
ductio proofs prove. It is therefore legitimate to distinguish the figure, in the sense
mentioned above, from the diagrammatic configuration presented to our imagina-
tion in order to conduct the proof.36 The spatial proxy in which the latter occur is
what Proclus calls geometric imagination and what he identifies with geometric
space (usually two-dimensional space, since he deals here with plane geometry).
One difficulty for the modern reader is that we tend to put geometric space and its
various determinations in an objective position, fully captured by conceptual
determinations (precisely because we tend to identify the consideration of space in
mathematics with the fact of taking it as a proper object of study, see Sect. 1). This
tendency can result in a considerable amount of confusion when attempting to
comprehend a practice in which this was not done. Moreover, as I will try to
indicate in the conclusion of this paper, it is not clear that our modern “structural”
geometry relates to space only as an object or a system of objects. Quite on the
contrary, one main feature of modern usages of space may well be that spatial
configurations are used very generally not only as objects of study per se but as
ways of acquiring information about objects of a non-geometric nature (in the sense
in which, for example, a given non-geometric structure can be “equipped” with a
topology).

�

Another interest of Proclus’ testimony is to present us with a context of
“objections and replies” which seems, from the examples collected and the names
mentioned by him, quite widespread. The continuity between this dialogical context
and the practice of reductio is nicely expressed in the discussion of I.7 where the
Euclidean proof ad absurdum gives rise to the following discussion: “maybe per-
haps some persons, notwithstanding all these scientific restrictions, will be bold
enough to object and say that what our geometer calls impossible is possible” (In
Eucl. 262, 5–6). The core of the objection is simply to present another diagram in
which the conditions expressed in the Euclidean proof are not satisfied. Symmet-
rically, Proclus often replies to objections by showing that they lead to absurdity

35 Note that this has nothing to do with the usual distinction between an imperfect physical
drawing, either actually drawn or imagined, and a figure which would be its ideal counterpart. In
our case, there is simply no ideal counterpart.
36 See similar remarks by Manders, mentioned in the next section, against the “semantic” role
spontaneously ascribed to diagrams and contradicted by the practice of reductio. See also Netz’s
remarks about the “make believe” elements contained in these proofs: one natural way to describe
the situation is that we have a spatial configuration pretending to be such and such (a circle, a
straight line, a parallel…) and conceptual analysis ruling out this hypothesis. Interestingly enough,
Arab mathematicians had two different words for designating these two entities: the figure as
representation and the figure as object, see Crozet (1999). This is related to an issue which I will
not tackle in this paper, but which is another entrance in the question of spatial representations, that
of the possibility of various configurations (“cases”) representing one and the same geometric
proposition.
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(see the answer to Zeno In Eucl. 216, but also the answer to the objection to I.7 just
mentioned In Eucl. 262–263).

More generally, this situation seems to be related to a common practice amongst
practitioners in which one imagines a problem solved or a theorem proved and
represents it in a diagram without knowing whether it is even possible to solve or to
prove it—one of the meanings of “analysis” in a broad sense. In this regard, it is
very striking that Proclus embeds his commentary on reductio in the following
context:

Every reduction to impossibility takes the contradictory of what it intends to prove and
from this as a hypothesis proceeds until it encounters something admitted to be absurd and,
by thus destroying its hypothesis, confirms the proposition it set out to establish. In general,
we must understand that all mathematical arguments proceed either from or to the starting-
points, as Porphyry somewhere says. (…) Those that proceed to the starting-points are
either affirmative of them or destructive. But those that affirm first principles are called
‘analyses’ (…); when they are destructive, they are called ‘reductions to impossibility’, for
it is the function of this procedure to show that something generally accepted and self-
evident is overthrown. (In Eucl. 255–256)

Here we might also recall Pappus’ famous description of “problematic analysis”
in which he evokes the fact that, even in the process of analysis stricto sensu, one
can stumble upon impossibilities.37 An interesting piece of evidence for the con-
tinuity between these various aspects is given by “analyses” leading to cases under
which a problem reveals itself “impossible” to solve. Although we do not have
many testimonies on this practice in Ancient Greek Geometry (since we do not have
many testimonies on analyses anyway), we do have some.38 They tend to indicate
an important role attributed to impossible configurations in the determination of the
conditions under which a problem would be solvable. This corresponds to one of
the senses of “diorism” whose purpose, according to Proclus, was “to determine
when a problem under investigation is capable of solution and when it is not” (In
Eucl. 66, 22).39

37 Pappus, Collection 7.2.24–12: “We assume the proposition as something we know, then,
proceeding through its consequences, as if true, to be something established, if the established
thing is possible and obtainable, which is what mathematicians call ‘given’, the required thing will
also be possible, and again the proof will be the reverse of the analysis; but should we meet with
something established to be impossible, then the problem too will be impossible” (translation
Jones 1986, pp. 82–83). Note that according to this description, only a possible geometric conf-
iguration can be considered as “given”.
38 Examples of this kind of analyses can be found in Apollonius (see, for example Conica II. 54)
or in Eutocius commenting Archimedes (On the Sphere and the Cylinder II.4). On many occas-
ions, including I.7 already mentioned, Proclus insists on the precision of the conditions expressed
in the Euclidean propositions and mentions to this effect the impossibility encountered when they
are not specified (In Eucl. 260–261).
39 See also In Eucl. 202, 3–8 where Proclus explains that this is the place where geometry asks
questions such as: “does the object exist as defined?” This passage is important to counter a
widespread view on ancient diagrams according to which they are supposed to attest to the
existence of the objects: if I can ask if the object exists as characterized in a proof, it may happen
that the answer is ‘no’ (if not, why ask?). I shall come back to this issue later on.
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I emphasize these aspects, because they indicate that the opacity of geometric
space is not the result of some metaphysical views here, but of a certain practice.
Opacity is a natural outcome of ignorance and ignorance a condition of discovery
and progress. When we pose a question without knowing the answer, it is normal
procedure to imagine the question solved and see what will result from there. It may
happen that we can reduce opacity into knowledge, but it may happen that we
cannot. In other words, we have represented something which is stricto sensu
impossible to conceive. This is still a very useful situation, since it can help us
either to show that the contradictory proposition of an assumed theorem is true, or
to rule out a problem as impossible to solve, or to specify conditions under which a
more specific proposition/problem may be true/solvable. This general setting may
help us to explain why geometers may have been led to accept objections without
proofs. It is normal standard in geometric practice to propose situations in which we
do not know in advance if they admit a solution or under which conditions they
do.40 This is part of the game and a condition of progress. Hence it seems a normal
aspect of ancient geometric practice that one can produce a diagram without
knowing if this diagram is consistent with the conceptual determinations given by
the geometric discourse. This spatial configuration which is not already known in
every respect to us is another way to designate what I have pointed to repeatedly as
a form of “opacity”.

It is worth noting that Proclus expresses no reservation at all regarding the
practice described in the present section. As I explained before, he takes various
objections seriously and accepts that an objection does not even need the support of
a proof. When explaining the process of reductio, he raises no criticism whatsoever
against this way of proving (In Eucl. 255–256). He even presents it as the most
natural way to prove converse theorems.41 This may sound puzzling at first, since

40 Note that it seems to remain true in a modern setting. One can ask, for example, what is the
shape of the right angle triangle built on the bisectors of a given isosceles triangle. It also looks
isosceles, but is it really?

With a little reflection, one may come to the conclusion that such a triangle is, in fact, “impos-
sible”. This problem, which I took from a study in Mathematics Education, works in Ancient and
“structural” presentations of Euclidean Geometry, see Richard (2000).
41 See especially the commentary on El. I.19: “It was obviously from a desire to avoid complexity
in the order of demonstration that the author of the Elements avoided this method of proof [scil. an
alternative direct proof mentioned by Proclus], preferring to proceed by division and reduction to
impossibility, because he wished to establish the converse of the preceding theorem without any-
thing intervening. (…). It is preferable to prove a converse theorem by the reduction to impossibility
while preserving continuity than to break the continuity with the preceding demonstration. This is
why he almost always proves a converse by reduction to impossibility” (In Eucl. 321.9–20).
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Proclus is also well known for having emphasized the role of geometric con-
structions as a testimony for the existence of geometric objects.42 This is often taken
as being a distinctive feature of the ancient epistemology of mathematics, as
opposed to “modern” approaches in which the symbolic means no longer give us
evidence for the existence of objects.43 Moreover, Proclus strongly correlated the
constructive aspect of geometric proofs with their explicative power and did not
hesitate to criticize Euclid in that regard.44 This question played a very important
historical role in the debate over the nature of mathematical explanation, especially
at the beginning of the Early Modern Age, and does not seem without relation to
(the first?) strong rejections of reductio proofs.45 It also plays a pivotal role in the
widespread parallel drawn by modern commentators between Proclus’ and Kant’s
forms of “productive imagination” (sometimes along with Descartes).46

Hence the need to remember that criticisms against reductio are not to be found
in Proclus (whereas they play a crucial role in Descartes and Kant, for example).
Moreover Proclus’ “constructivism” should be balanced by the fact that it appears
only in very specific examples. In the discussion on the fact that geometric proofs
can be causal (202, 9–25), Proclus explicitly states, without expressing any form of
discontent, that this is not the case for the proofs by absurdum so widely used by
geometers.47 When mentioning the fact that Euclid used “both proof founded on
causes and proof based on signs”, he hastens to add: “but all of them impeccable,
exact and appropriate to science” (In Eucl. 69, 10–13, my emphasis).48

An interesting passage on the role of “porism” makes it clear that one should not
conflate the role of geometric imagination in general with that of construction, if we
understand the latter in terms of “geneses” expressing causal processes:

42 See the famous comment on the fact that in the Elements the problems concerning construction
of triangles precede the first Theorem (I.4), which Proclus comments in this way: “For unless he
had previously shown the existence of triangles and their mode of construction, how could he
discourse about their essential properties?” (In Eucl. 233–235). In her paper critically discussing
the widespread “existential” interpretation of constructions in Euclid, Harari (2003, p. 5) recalls
that “the main evidence in supporting the existential interpretation is found in Proclus’ commentary
on the first book of Euclid’s Elements, where he accounts for the sequential priority of problems
over theorems in existential terms”.
43 See Detlefsen (2005).
44 See the famous discussion on El. I.32, mentioned in In Eucl. 206.12–26, and the related issue in
the commentary of El. I.16 and I.17 (In Eucl. 309–312), cf. Harari (2008).
45 Mancosu (1996).
46 “The part played by imagination is Proclus’ main addition to the Platonic theory, an addition
which anticipates, it need hardly be pointed out, Kant’s doctrine of schematism of the understan-
ding” (Morrow 1992, p. lix). See also Bouriau (2000).
47 “It is true that, when the reasoning employs reduction to impossibility, geometers are content
merely to discover an attribute” (by contrast to establishing the reason for a given fact, In Eucl.
202.19–21).
48 Note also what he says further: “if you add or take away any detail whatever, are you not
inadvertently leaving the way of science and being led down the opposite path of error and
ignorance?” (In Eucl. 69.27–70.1).
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Bisecting an angle, constructing a triangle, taking away or adding a length—all these
require us to make something. But to find the centre of a given circle, or the greatest
common measure of two given commensurable magnitudes, and the like—these lie in a
sense between problems and theorems. For in these inquiries, there is no construction
(γενέσεις) of the things sought, but a finding of them.49 Nor is the procedure purely
theoretical; for it is necessary to bring what is sought into view and to exhibit it before the
eyes (δεῖ γὰρ ὑπ᾽ ὄψιν ἀγαγεῖν καὶ πρὸ ὀμμάτων ποιήσασθαι τὸ ζητούμενον). Such are the
porisms that Euclid composed and arranged in three books. (302, 3–13)

This offers a nice setting not only to develop a more nuanced view of Proclus’s
concept of imagination, but also to understand why it appears at once in an active and
a passive role.50 Imagination allows the representing and exploring of the conceptual
realm of objects with the resources proper to it. But at the same time it may offer some
resistance to conceptualization. This last feature seems incompatible with the kind of
productive imagination which was put forward by later philosophers—and is still
quite widespread in various “constructivist” readings of Ancient geometry.

3 Philosophical Issues

Reflecting on the case of the reductio proof in Ancient Geometry, Ken Manders has
claimed that traditional philosophical questions about the nature of geometric
objects were ill posed because they assumed a semantic role of the diagrams which
is simply incompatible with the practice of ancient geometers:

Artifacts in a practice that gives us a grip on life are sometimes thought of in semantic terms
—say, as representing something in life. There is, of course, an age-old debate on how
geometrical diagrams are to be treated in this regard. Long-standing philosophical diffi-
culties, on the nature of geometric objects and our knowledge of them, arise from the
assumption that the geometrical text is in an ordinary sense true of the diagram or a ‘perfect
counterpart’. These difficulties aside, a genuinely semantic relationship between the geo-
metrical diagram and text is incompatible with the successful use of diagrams in proof by
contradiction: reductio contexts serve precisely to assemble a body of assertions which
patently could not together be true; hence no genuine geometrical situation could in a
serious sense be pictured in which they were. (Manders 2008b, p. 84)

From this “simple minded objection”, Manders concluded that “the problem of
the relationship between diagram and geometric inference here turns out to be one
of standards of inference not reducible in a straightforward way to an interplay of
ontology, truth, and approximate representation” (Manders 2008b, p. 86, my
emphasis). This went along with a program of “inferential analysis of diagram-
based geometrical reasoning” which resulted in a very nice and clear-cut result.
Indeed, some inferences appear to be licensed by the diagrams and by the diagrams

49 Note that the first example, the finding of the centre of a circle (El. III.1) is precisely the one
which Panza found to be “in tension” with his reconstruction of Euclidean Plane Geometry (see
note 33).
50 On this issue, see Claessens (2012, especially p. 6, where the relevant literature is mentioned);
Nikulin (2008, p. 164).
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only (Manders coined the attribution on which they rely “co-exact”), whereas other
inferences are licensed by the discourse and by the discourse only (“exact”).51 The
main question is then to understand how the two inferential regimes (diagrams and
text) can adjust so that one can have a good control over their interplay (especially
as regards the range of admissible variations in the diagrams since the “co-exact-
ness” criterion is not precise enough to rule out many apparently inappropriate
configurations). We know that ancient geometry was not only a success, but also an
efficient piece of machinery for producing results which are still considered, for
good or bad reasons, to be true. But we do not know exactly why. This is one
important aspect of what Manders has called the problem of “diagram control”.52

Reviel Netz, in his seminal study on the shaping of deduction in Greek Math-
ematics, also put some emphasis on the reductio proof in order to discard a naïve
“semantic” view of diagrams. But he reached a slightly more dramatic conclusion:
“We seem to have reached a certain impasse. On the one hand, the Greeks speak as
if the object of the proposition is the diagram. Verbs signifying spatial action must
be taken literally. On the other hand, Greeks act in a way which precludes this
possibility (quite regardless of what their ontology may have been!), and the verbs
signifying spatial action must, therefore, be counted as metaphors” (Netz 1999,
p. 54). He proposed to solve this puzzle by emphasizing the “make believe” ele-
ment entailed in this kind of proof:

The proof, of course, proceeds with the aid of a diagram. But this is a strange diagram: for
good geometric reasons, proved in this very proposition, such a diagram is impossible.
Euclid draws what is impossible; worse, what is patently impossible. For, let us remember,
there is reason to believe a circle is one of the few geometric objects a Greek diagram could
represent in a satisfying manner. The diagram cannot be; it can only survive thanks to the
make-believe which calls a ‘circle’ something which is similar to the oval figure in Fig. 7.
By the force of the make-believe, this oval shape is invested with circlehood for the course
of the reductio argument. The make-believe is discarded at the end of the argument, the
bells of midnight toll and the circle reverts to a pumpkin. (Netz 1999, p. 55)

51 Exact attributes “are those which, for at least some continuous variation of the diagram, obtain
only in isolated cases”. The latter “are those […] which are unaffected by some range of every
continuous variation of a specified diagram” (Manders 2008b, p. 92). For a detailed and critical
discussion of these criteria, see Panza (2012).
52 The whole Sect. (4.1) is entitled “Euclidean diagrams: artifacts of control or semantics?” (pp.
82–87). It is introduced in the following manner: “At its most basic, a mathematical practice is a
structure for cooperative effort in control of self and life. In geometry, this takes many forms,
starting with the acceptance of postulates, and the unqualified assent to stipulations—and as it
appears, for now, to conclusions—required of participants. Successes of control may be seen in the
way we can expect the world to behave according to the geometer’s conclusions; the way one
geometer centuries later can pick up where another left off; the way geometers can afford not to
accept contradiction. When the process fails to meet the expectations of control to which the
practice gives rise, I speak of disarray, or occasionally, impotence. Such occurrences are disruptive
of mathematical practices; they tend to reduce the benefits to participants and to deter participation.
At best, they motivate adjusting artefact use, modifying the practice to give similar benefits with
less risk of disarray.”.
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But the “make believe” element, although undeniable and often mentioned when
dealing with the reductio context, gives us no clue about the rules of the game.53

Remember my alternative diagram to I.16: when are we to accept such a repre-
sentation and when are we to reject it? There seem to be some fictions harder to
swallow than others.

It is not sufficient to answer that “impossible” diagrams are only admissible in
the framework of reductio (as does the “make believe” argument), since this is just
begging the question: why not forge new proofs with new “impossible” diagrams
and prove in this manner some propositions incompatible with Euclid’s ones? This
is the real question raised by my alternative diagram: by mimicking Euclid’s rea-
soning, one could now show by absurdum that the exterior angle is not greater than
one of either the interior and opposite angles. One just needs to suppose that it is
greater, draw the alternative diagram following Euclid’ instructions (but with the
representation of a broken line) and reach the absurd conclusion that ECD is at the
same time greater than ECF (equal to BAE) and contained in it. If one objects that
we do not have the right to retrieve this last information from the diagram, we will
reply that this is precisely the kind of information that Euclid retrieves from his own
configuration. If one objects that we do not have the right to imagine a straight line
in such a way, we will reply that this is what Euclid does in I.14. There is clearly a
problem of “diagram control” here and this problem occurs inside the general
regime of fictitious configurations (Fig. 8).

An hypothesis often mentioned is that such “impossible” diagrams may have
been temporarily admissible precisely because they allowed the excluding of forms
of representation and therefore progressively the limiting of the range of admissible
variations. Diagram control and the reductio proof would then go hand by hand.54

Fig. 7 Euclid’s Elements
III.10 (diagram from Saito
2008, p. 59)

53 In a subsequent paper, Netz himself emphasized the fact that the role of imagination in ancient
mathematics is quite widespread and not limited to impossible diagrams. In all of these cases, the
“make believe” elements are of first importance (Netz 2009).
54 “Diagram control theory invokes our ability, using geometrical constructions, to produce
reasonably accurate physical diagrams, and so limit the diagram appearance outcomes to be
considered by physical diagram production rather than discursive argument. Conversations with
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But we already know by the example of Zeno’s objection that this does not seem
to be the case: if we exclude the diagram in I.14 and not before, we will solve the
difficulty for I.16, but not for I.1 (Zeno’s objection); and if we reject it as early as I.1
(for example, following the reasons developed by Proclus), we would have to reject
it in I.14. Helped by the larger view presented in the preceding section, we can
easily generalize this dilemma. We just have to play the same trick as Zeno’s by
retrojecting one of the “impossible” diagrams taken from a reductio in a previous
proof where it is still supposed to be, according to the above mentioned view,
admissible. If one then objects that what it shows is that the diagram was already
non admissible at that stage, the later proof from which it was taken will become
itself non-admissible.

Take, for example, III.13 which states that “A circle does not touch another
circle at more than one point whether it touches it internally or externally”. It relies
on a diagram of the following type (Fig. 9) in which we suppose circles touching in
two points.

We can plug this diagram (for example for the case of circles touching inter-
nally) into a previous proposition such as III.6 which states that “if two circles
touch another, they do not have the same centre”. The result will amount to
blocking what produces the contradiction in the known Euclidean proof, that is to
say that ZE is shown to be at the same time equal to ZB (by the fact that the two
circles have the same centre Z) and less than ZB (by inclusion in the diagram: this
condition is satisfied in the diagram on the left, but not in the alternative diagram on
the right, see Fig. 10).55

I leave it to the reader to play this game with other propositions. We have
already seen that we can shortcut with broken “straight lines” (or “four sided
triangles”) the extant proof of I.4 or I.8, which are of pervasive use in the Elements;
the same for I.16, which is needed for I.17 and I.18, themselves used in I.19 and

Fig. 8 Elements I.16 (left) and an alternative diagram with broken lines (right)

(Footnote 54 continued)
specialists suggest this is the basic tool of ancient practice, with reductio argument for the
exclusion of putative alternatives as backup” (Manders 2008b, pp. 70–71, my emphasis).
55 There may, of course, be discussions about whether to exclude the alternative diagram, for
example by emphasizing that ZB and ZE are chosen in a particular position. But, even in this case,
the demonstration would be different than the one given in the Elements.
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I.20, etc. Many propositions of Book III rely on these results and when they do not,
they are subject to the problems presented above in the case of III.6, which is easily
generalized. Bit by bit, the whole edifice of the first books of the Elements appears
in danger of collapsing, if not by contradiction, at least by multiplication of
“impossible” diagrams to rule out at each step.

Of course, there is no real danger here. One will always be in the position to
reject one of the diagrams presented so far through conceptual analysis. This is the
very reason why we called them “absurd” or “impossible”: they exhibit features
which contradict the characteristic properties of the geometric configurations under
study (in III.6, for example, it is easy to indicate by inclusion of one segment in
another that we have radii in the inside circle whose distance to the centre have to
be unequal). This is what Proclus first undertakes to show when he wants to answer
an objection. But something is worth stressing at this point: if the result of con-
ceptual analysis leading to this rejection is then considered to be a rule for the
admissibility of diagrams, then many of the reductio used by Euclid will hence have

Fig. 9 Elements. III.13
(diagram from Saito (2008),
p. 62)]

Fig. 10 Elements. III.6 and
an alternative diagram derived
from III. 13
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to be rejected according to that very standard.56 If, on the contrary, some other
norm allows the introduction of the diagram, it will also allow it in situations in
which it has to be rejected. This may be, according to my account, one of the
reasons why objections were taken seriously. This is also why it seems so difficult,
if at all possible, to determine a set of rules that precisely fix the range of variation
for diagrams in ancient Geometric practice. If no information were retrieved from
absurd diagrams, this would be unproblematic. Unfortunately, as we have now seen
in many examples, this is not the case.

Neglecting however the quest for a complete system of rules, there may be an
easy way out of the preceding dilemma. Indeed one can always introduce an absurd
diagram and answer to possible criticisms that one knows (“by concepts”) that this
diagram is absurd. In the case of reductio, the objection against the diagram would
then not be sufficient to block the proof. Indeed we could easily reply that this
absurdity is precisely what we want to establish. In other words, we would agree
with our interlocutor on the “absurdity” of the diagram, which is just an illustration
of the absurdity of the premise. If the objector still maintains that we don’t have the
right to assume such an absurdity, what she or he will be criticizing will not be the
representation, but the structure of the proof. But this seems to imply that the
“control” over diagrams will involve in a substantial manner some form of semantic
regulation (an “illustrative” role for diagrams). In particular, it would impose further
constraints on the “make believe” component: the absurdity of the diagram will be
admissible if and only if it is directly related to (if it “illustrates”) the claim which
we want to refute. Yet it so happens that this condition is not fulfilled in my
alternative diagram to I.16 (even when the proposition is recast into the form of a
reductio) or in Zeno’s objection to I.1. In both cases, the absurdity of the diagram is
not related to the particular claim in play. We hence have no reason to accept it if it
enters in conflict with conceptual analysis and this is precisely what Proclus intends
to show.57

56 Not all of them however, since they do not all rely on “impossible” diagrams in the sense
mentioned here. I.6, for example, represents two equal segments as unequal, which is normal
practice. Even I.27 does not seem to be inadmissible since we do not really need the absurd
diagram (with broken lines) and can just draw two straight lines which meet in a “regular” triangle
(as is drawn in one of the diagrams in the Bodleian copy, MS D’Orville 301). These examples
should not be put on the same footing as I.14 or III.2 (pace Panza (2012), p. 82, n. 53).
57 Let me make this argument more explicit. In the case of Zeno’s objection, Proclus’ first reaction
is to reply that the diagram contradicts the condition imposed on what it is to be a straight line. As I
have tried to argue above, this reply does not justify an immediate rejection of the diagram and this
is no surprise since we need this diagram to be admissible in other cases (typically I.14). The
question is then: how is it that the diagram of I.14 is not ruled out on the same grounds? My
interpretation is that the diagram remains admissible in I.14 after conceptual analysis, because
what it shows is precisely what the proposition claims: it is not possible to draw a line satisfying
the conditions on angles and not being “in a straight line” with the given one. In any reductio of
that form, we will be forced to represent a “straight line” by a non-straight one: this is no objection,
this is the claim!.
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Of course, one will always be in a position to emphasize the “make believe”
elements and claim that there is no real absurdity involved in this kind of repre-
sentation. Of course, one is just pretending that what is apparently not a circle or a
straight line in the diagram is a circle or a straight line. This does not seem different
from claiming that what does not appear as an indivisible entity or an infinite one is.
Since points without part and lines without breadth are pervasive in plane Geom-
etry, what we are describing here is just the regular functioning of the geometric
imagination. These are strange representations, since they exhibit features incom-
patible with what they represent, but this is simply the general problem of geo-
metric representation. Moreover, the “inferential analysis of diagram-based
geometrical reasoning” helps give a precise contour to a fact which is widely
accepted: in geometry, we do not need representations to be faithful, but trust-
worthy. For that purpose we only need diagrams to carry certain kind of infor-
mation. There is no more difficulty in the fact that they exhibit properties
incompatible with the property of the objects they represent than in the fact of
writing “red” in green ink and “green” in red ink. So far so good. But I would like
to emphasize that this general view leaves the problems raised above untouched.
What seems to have escaped attention until now is that the same diagram must be
admitted in some proofs and rejected in others. In other words, diagrams of the sort
that we are dealing with are not trustworthy. As a consequence, the problem of
“diagram control” does not seem to be solvable by fixing a range of variation once
and for all (since the same variant will have to be admissible in some proofs and not
in others); neither will it be solved by stating a set of fixed rules of construction.58

More generally, many questions are raised by our detour through Proclus about
the role of these “constructions” in Euclidean Geometric practice. If we take El.
III.6 seriously, we can draw a circle without knowing where its centre is. If we take
El. III.2 seriously, we can join two points on a circle by a straight line without
knowing where the straight line stands relative to the given circle. How would these
claims be consistent with a constructive reading of lines and circles?59 More
generally what do I “construct” when imagining two “circles” intersecting in more
than two points or touching internally in more than two points? What do I “con-
struct” when representing a “straight line” which does not coincide with the line
making angles equal to two right angles at a given point on another straight line?
Many modern philosophical interpretations of Ancient Geometry seem too imbued
with a view in which constructions are essential because they are supposed to give
evidence for the possibility of concepts and/or existence of objects. But this is far
from obvious as soon as one realizes that it was standard practice in Ancient

58 This is also why we cannot be fully satisfied with overly general rules such as the Euclidean
postulates, which allow “impossible” diagrams without specifying the cases in which they have to
be rejected. If the first postulate allows us to represent a “straight line” by a broken line, as it
seems, or if the third postulate allows us to represent a circle with an eccentric “centre”, they allow
“constructions” which will have to be prohibited in some other proofs.
59 Remember that postulate III asks us to draw a circle from any centre and radius: Καὶ παντὶ
κέντρῳ καὶ διαστήματι κύκλον γράφεσθαι.
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Geometry (and not only in Ancient Geometry!) to imagine a situation which is not
known in advance to be even possible (i.e. “constructible”, if possibility and
construction of objects are equated). In my view, a recognition of what I have
designated (following Proclus) as the “opacity” of space and the autonomous
functioning of the geometric imagination offers a more promising account.

Another way to designate this opacity would be to stress that (“spatial”) images
and (“geometric”) concepts do not evolve in a perfectly parallel manner and that
this is not something that we have to fix. It is true that this discrepancy may sound
strange at first. As I have recalled above, the usual expectation would be that spatial
images (“diagrams”) are, if not faithful, at least, trustworthy. Unfortunately, this
does not seem to be the case, at least in a straightforward way. But much of this
strangeness may vanish if one realizes that the coupling of heterogeneous entities
that relate one to the other, but do not evolve in perfect parallelism is a common
situation in semiotic systems.60 In this regard, it is very interesting to note that, up
to now, nobody seems to have succeeded in coming up with a complete system of
rules fixing the range of the tremendous variations occurring in the writing and/or
pronouncing of one and the same phoneme in a given language. The complexity of
automatic recognition systems are good evidence for that. They still rely massively
on the statistical method and on a control operated a posteriori by the knowledge of
the linguistic “content”—as opposed to systems of rules fixing a priori the variation
of graphemes or phonemes in and of themselves.61 This is not the place to enter into
the fascinating questions related to these systems of co-variation, but let me just
emphasize here that stabilization does not seem to occur in symbolic systems only
through a complete and fixed system of parallel rules (although there are some
structural rules on both levels). It also usually involves in a substantial manner the
interplay between the different levels. As I have tried to indicate in this section, this
seems to be the kind of “control” which is at stake in Ancient Geometric practice.
The fascination for “formal language”, in which this interplay is carefully shortcut,
and the (false) conviction that it offers a model for any symbolic systems used in
mathematical sciences may explain why we still have difficulty applying this
description to mathematical symbolic systems.

This way of approaching Proclus by laying emphasis on the interplay between
image and concept is of particular interest when faced with the epistemological
issues which we have encountered so far. Let me first summarize them. On the one
hand, we have the fact that geometric texts talk about something which, on their

60 Beginning with the coupling of acoustic images and concepts in natural languages, one of
Saussure’s deep insights when launching the “structuralist” approach to language, see Maniglier
(2006).
61 Crettez and Lorette (1998). Even in very standardized systems such as typographical ones, we
encounter not only important variations for the same grapheme, but also graphical signs which can
be very similar for different graphemes (such as and , for example). Symmetrically, one could
note the similarity of graphical signs used in one and the same system for representing different
graphemes (such as and ).
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surface grammar, is the diagram;62 the reductio proofs, however, make it clear that
the surface grammar is misleading here and that geometric texts cannot talk about
the actual configuration which they exhibit; at the end of the argument, as Netz puts
it, “the bells of midnight toll and the circle reverts to a pumpkin”. Call this the
semantic problem or Netz’s “impasse”. On the other hand, one could declare the
approach in terms of “objects” to be misleading and consider that one has to focus
mainly on the inferences carried with the help of our two resources: texts and
diagrams. In the absence of semantic rigidity, what we need now is a good
adjustment of two inferential regimes which are presented as evolving in a parallel
and complementary way. The problem, which I have been pointing out regularly in
this paper, is that the variation of diagrams does not appear to be intrinsically
regulated: one and the same diagram has to be accepted in one proof and rejected in
another; moreover, this seems to depend on the “content” of the proposition in play,
that is to say… on a “semantic” regulation. Call this a (dramatic) variant of the
problem of “diagram control”.

Proclus’s position falls so to speak in between these two options. It may even
help us to rephrase them in a more positive way. Let me, for example, restate the
first dilemma in a Proclean manner: contrary to a lazy and narrow Platonist inter-
pretation, it is not possible to say that Geometry deals only with ideal figures, the
diagram being just a dispensable auxiliary. This is made obvious, amongst other
reasons, by cases in which one has to represent a geometric situation to which no
ideal entities correspond in the conceptual setting (be it an infinite straight line, a
circle intersecting another circle in more than two points, two straight lines
enclosing a space, etc.). However, and for the very same reason, it is not possible to
avoid the distinction between entities characterized by concepts and diagrams.
Remember that at the end of the argument, the circle reverts to a pumpkin. In other
words, the circle, as presented by the definition in the text (and propositions
exhibiting such and such of its properties), has to be something different from what
was represented as such in the diagram. There is no impasse here if one accepts that
mathematical knowledge stabilizes itself in the interplay between these two regimes
which Proclus calls “discursive reasoning” and “imagination”.63 This means to
accept that imagination has a form of autonomy and does not limit itself to

62 This aspect is documented in great detail in Netz’s book. This relation is the basis of the
“ontological” issues then engaged in order to assess the link between concrete diagrams and
possible abstract objects.
63 The interest of a semiotic approach is to detach the role of imagination from its geometric origin
and reveal its more general nature. When, for example, one supposes in abstract algebra that the
centre of a p-group is trivial (reduced to identity) in order to show that it leads to absurdity, the
usual proof proceeds as follows: one decomposes the group in its conjugacy classes and obtains an
equation of the form pk = 1 + pi + pj +⋯ + pm (pk being the order of the group). This latter formula
is an “impossible diagram” (since it represents a p which is supposed to divide both side of the
equation) in much the same sense as the one we encountered in this study (see van der Waerden
2003, p. 153 for this classical proof in abstract algebra). The opacity of geometric space transfers
immediately to the opacity of symbolic writings, as was remarkably seen by Leibniz who called
both of them “characters” and associated them with “symbolical” or “blind” knowledge.
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illustrating some purely conceptual process. As regards the second problem, Pro-
clus clearly emphasizes the dynamical aspect internal to the two regimes and the
fact that they provide complementary systems of inferences, but he also points out
another aspect of particular importance: the fact that imagination occasionally
provides situations which are opaque to knowledge. As I have tried to document
above, this is another very important role of diagrams: they not only help us to
prove propositions, but also to represent situations which we do not know in
advance to be possible. In this sense, the control cannot stem from an internal
system of rules fixing the kind of information which can be retrieved from dia-
grams. It also needs the regulation of conceptual knowledge.

4 Conclusion

As a conclusion, I would like to sketch, as announced in the title of this paper, what
I take to be the actuality of some of Proclus’s insights on geometric space. Before
doing so, let me summarize the principle results of this study. We have seen that
geometric imagination (phantasia), which Proclus identifies with geometric space
or a form of “receptacle” on which discursive thinking (dianoia) projects its con-
ceptual determinations, is not limited to a passive role of illustrating or picturing. It
also has an autonomous activity, which manifests itself in the form of a possible
opacity to conceptual knowledge. The metaphor comes directly from Proclus who
mentions that sight can paradoxically recognize what escapes its power: darkness.
Between complete obscurity, evoked in the case of the diagrammatic representation
of actual infinity, and the bright light of concepts stand many other situations in
which some parts of our representations are clear and some are not, many forms of
chiaroscuro, so to speak. Moreover, not only can we picture darkness, but we can
picture with darkness in order to make what has to be visible visible. What I have
tried to do in the second section of the paper is to document this art of chiaroscuro
in Proclus and show that it seems to correspond to a standard practice in Ancient
Geometry. This allows us to provide to Proclus’ conceptions not only with an
immediate context, but also with a first actuality. When related to geometric
practice, Proclus conception of space appears as a fruitful framework that can be
used to solve certain difficulties encountered in philosophical reconstructions of
ancient geometry, because they don’t pay enough attention to this specific func-
tioning of geometric imagination. What I have tried to emphasize in the third
section is that this may even help us to overcome certain epistemological
“impasses” in which recent studies seem to be stuck.

This overall picture conforms to two features of Proclus’ philosophy which I had
no space to develop in this paper, but which are of tremendous importance to situate
his thought. First, Proclus, along with Jamblichus, disagreed with other members of
the Neoplatonic School, such as Porphyry, on the role of logic in its relation to
mathematics. The latter considered, in an Aristotelian vein, that logic is a universal
science, attached to the structure of predication and governing the rules of
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reasoning, which has therefore to be learned before any particular science, such as
mathematics. The former argued that mathematics is the proper place to learn the
general art of reasoning (“dialectic”), which extends far beyond what logic in the
above sense can teach us.64 This is related to the fact that mathematics involves
other elements of discursive thinking than mere deduction, such as definitions,
divisions (of cases) or analyses.65 A second distinctive feature of Proclus’ philos-
ophy concerns where he diverges from Jamblichus, that is: on where to situate the
universal mathematical science. Whereas the former conceived of it, following a
Neopythagorean tradition, in close connection to arithmetic, Proclus and his pupils
considered it to be closely connected to Geometry. This is made clear in Marinus’
commentary on Euclid’s Data where he states that this treatise does not belong to
any particular mathematical theory, but to the “universal mathematics”; he then
emphasizes the fact that Euclid has presented other aspects of this general mathe-
matics in Book V of the Elements (dealing with ratios and proportions), but under
the guise of a geometric presentation.66

As I have tried to argue elsewhere, we have here different visions of what it
means to give “foundations” to mathematics.67 It would not seem exaggerated to
state that the first direction was the leading option in terms of foundations from the
middle of the nineteenth century to the middle of the twentieth century. It is not
surprising that it accompanied a debate focusing on the disagreement between those
who held that mathematics starts with logic and those who held that it starts with
(basic) arithmetic and systems of numbers. Although there were always mathe-
maticians who resisted that general tendency (and even more mathematicians not
interested in foundational issues!), not many of them protested that geometry was
the proper place for foundations. Things began to change significantly in the 1960s,
when the unexpected relationship between geometry and logic began to emerge. In
a philosophical “manifesto” entitled “Logic as a geometry of cognition” Jean-Yves
Girard, a leading protagonist of this evolution, has called it—following a suggestion

64 See Jamblichus De com. Math., Chap. 29; Proclus, In Eucl. Chap. XIV and 69, 8 sq; for a
commentary: O’Meara (1989), pp. 47–48 and Chap. 8.
65 One may find surprising that Proclus credits Euclid’s Elements for exhibiting forms of analysis,
since according to the standard picture of the treatise, it seems the prototype of the synthetic
method. But I hope to have given elements to better understand this claim: in a broad sense,
analysis designates any way back to the principles. This is not what Proclus calls analysis strictly
speaking in In Eucl. 255–256, but this broader sense is clearly stated in other places such as In
Eucl. 8.9 and 57.19. In these passages, analysis is characterized more loosely as the method of
proceeding from complex to simple, from things we seek to know to things better known. As
regards division of cases, it should be noted that it is another entry into the question of the
discrepancy between spatial representation and geometric object, which I could not deal with in
this paper. Interestingly enough, this path was followed by Arab mathematicians who distingui-
shed several meanings of “figures”, see Crozet (1999).
66 Marinus, Com. in Euclidis Data, 254, 5–27 and Rabouin (2009).
67 Rabouin (2009), Chaps. I–III.
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by Samuel Tronçon—a “geometric turn” (by contrast to the “linguistic turn”).68

I cannot resist quoting the incipit of this provocative paper:

I. ‘Les Grands cimetières sous la lune’
To place philosophy again at the centre of scientific activity, to rehabilitate philosophy of

science, what a program! In order to do so, we propose to reactivate the central tool of logic
by extracting it from the narrow path of the ‘linguistic turn’; this reactivation would operate
with the tool of geometry, a ‘geometric turn’ so to speak (p. 15).69

This is not the place to comment upon this evolution, which has many facets and
parallel developments. But it is certainly a task for the philosophers of our time to
understand what it might signify. Supporters of the “logico-arithmetical view” had a
very nice story to tell about their construction, a story going all the way back to
Aristotle and justifying the foundation in terms of building from the more general to
the more particular (whether in terms of sciences dealing with general forms, as
opposed to science dealing with specific domains of objects, or in terms of domains
of objects simpler than others and needed for their construction). First logic, then
arithmetic, then geometry—the pending question being when exactly does math-
ematics start in this overall picture (think of the ambiguous status of Set Theory).
But what kind of story, if any, could support the universality of geometry?

Proclus is not very explicit about this issue, but his general strategy makes it
clear that in his eyes, geometry exhibits universal structures which not only can be
useful for dealing with continuous magnitudes and numbers, but can also enrich the
tools considered by logic (tools which remain invisible as long as one only con-
siders the structure of predication and of direct deduction). This directly contradicts
the picture according to which the “above” science is completely independent from
the sciences “below”. This is, so to speak, a universality “from below”, from the
point of view of what is transversal to the whole science considered. The point
which I would like to insist on is that this view seems to be related to the issues
tackled in this paper. Indeed, it amounts to considering spatial configurations not
only as related to domains of objects, as is the case in geometry stricto sensu, but
also as useful tools for studying other kinds of mathematical objects, including
geometric objects themselves! In this picture, space acts in an ambivalent position:
either as a framework in which one studies objects or as a means with which we
study them. Call it the passive and the active role of geometric space. Moreover, as
a tool, space need not to be fully transparent to one of the identified domains of
objects.

It is worth noting that this kind of story about the universality of space was
heavily emphasized in recent times by mathematicians involved in the “geometric
turn”. Alexander Grothendieck, when commenting on his idea of introducing
“generalised spaces” declared:

68 Girard (2007).
69 My translation, except for the title of the section which is taken from a book by Georges
Bernanos and which I left in French.
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La notion d’‘espace’ est sans doute une des plus anciennes en mathématique. Elle est si
fondamentale dans notre appréhension ‘géométrique’ du monde, qu’elle est restée plus ou
moins tacite pendant plus de deux millénaires. C’est au cours du siècle écoulé seulement
que cette notion a fini, progressivement, par se détacher de l’emprise tyrannique de la
perception immédiate (d’un seul et même ‘espace’ qui nous entoure), et de sa théorisation
traditionnelle (‘euclidienne’), pour acquérir son autonomie et sa dynamique propres. De nos
jours, elle fait partie des quelques notions les plus universellement et les plus couramment
utilisées en mathématique, familière sans doute à tout mathématicien sans exception.
Notion protéiforme d’ailleurs s’il en fut, aux cents et mille visages, selon le type de
structures qu’on incorpore à ces espaces (Grothendieck (1985–86), p. 52).70

Interestingly enough, it so happened that the concept of topos revealed itself as
one of the forms in which logic and geometry appear as intimately related one to
each other.71 My intention, once again, is certainly not to comment upon these
highly technical questions, which I am far from fully understanding, nor to claim
that we have here the “right” candidate for foundations in mathematics. The mere
fact that we have already two very different proposals (Girard, as he explains in his
paper, is influenced by non-commutative geometry, not by topos theory),72 and in
fact two amongst many others, should make it clear that “foundations” is a locus of
an internal debate in mathematics—a debate which structurally appears to have no
definitive winner—and not a place for philosophers to validate (let alone dictate!)
what should be the “right” set of choices. My only aim is to give a context where
the questions raised in this paper could find interesting prolongations. In the quote
from Grothendieck, one is surprised by the presence of many ideas, which are not
so common in philosophical views on space, but are presented as widely accepted
by mathematicians: the fact that space is universally present in mathematics; the
fact that it has an autonomy and a proper dynamic; the fact that it is proteiform,
precisely because it is not limited to such and such a structure under study, but
changes faces by “incorporation” with other structures. All of these insights played
a crucial role in the arguments developed in this paper.

70 The new idea of space or topos is then clearly presented as unifying the realm of continuous
magnitudes and numbers: “Cette idée englobe, dans une intuition topologique commune, aussi
bien les traditionnels espaces (topologiques), incarnant le monde de la grandeur continue, que les
(soi-disant) ‘espaces’ (ou ‘variétés’) des géomètres algébristes abstraits impénitents, ainsi que
d’innombrables autres types de structures, qui jusque-là avaient semblé rivées irrémédiablement au
‘monde arithmétique’ des agrégats ‘discontinus’ ou ‘discrets’.” (Grothendieck (1985–86), p. 54).
71 “A startling aspect of topos theory is that it unifies two seemingly wholly distinct mathematical
subjects: on the one hand, topology and algebraic geometry, and on the other hand, logic and set
theory. Indeed a topos can be considered both as a ‘generalized space’ and as a ‘generalized
universe of sets’. These different aspects arose independently around 1963: with A. Grothendieck
in his reformulation of sheaf theory for algebraic geometry, with William F. Lawvere in his search
for an axiomatization of the category of sets and that of ‘variable`̀ sets’, and with Paul Cohen in
the use of forcing to construct new models of Zermelo-Fraenkel set theory.” (Mac Lane and
Moerdijk 1992, p. 1).
72 He also makes it clear that he is not criticising the linguistic turn, which was so fruitful for
logic, but is proposing to complete it.
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Another way to state the “proteiform” nature of the notion of space would be to
simply say that we do not know exactly what space is. Contrary to what is too often
assumed by philosophers (by relying on such and such examples: metric spaces,
manifolds, topological spaces, topos…), space does not have “a” fixed structure.73

It is not transparent to concepts. As we can see in Grothendieck’s passage, this has
nothing to do with some form of metaphysical assumption, but with the very
functioning of the geometric imagination which pervades all of mathematics. As
soon as we use space in order to know some other structure, we open two important
possibilities: first of all (and this was the general case in ancient Geometry), we may
us space in order to know… spatial entities (think of my example with the real line
above); this leads immediately to an irreducible duality between space as repre-
sented and space as tool of representation; second, the fact that we use space in
order to know other mathematical objects structurally involves a form of opacity: in
the case when we do not obtain a fully transparent representation, there is no way to
know if the difficulty is due to the tools or is a structural impossibility, a problem
coming from some restricted condition or, on the contrary, some excessively loose
stipulations in the data of the problem, etc.74

In this regard, I would like to conclude this paper by mentioning a very inter-
esting inquiry undertaken by the mathematicians John Gratus and Timothy Porter in
a paper entitled: “A Geometry of Information”.75 Let me just quote the very first
sentence of their study: “Spatial representation has two contrasting but closely
related aspects: (i) representation of spaces and (ii) representation by spaces”.76 The
paper is very interesting for what it proposes as a unifying structure for these
“spaces” of various sorts. But it is also interesting as symptom: in 2005, it was still
possible to consider that mathematical space has a dual nature, neatly expressed by
the distinction between “representation of spaces” and “representation by spaces”;

73 A very basic example may render this clearer: if we take the usual “real line”, we may have the
impression of being faced with a simple form of one-dimensional metric space. But this depends
on the choice of what we take as basic open sets. If, for example, we consider the topology based
on open sets of the form [0, a] for any real a in the unit interval [0, 1], we obtain a simple example
of a topology which is not separated (hence not metric, any metric space being separated). This last
feature contradicts what were often considered as the characterizing properties of “spaces” (being
partes extra partes). Moreover, it raises the question: what is the spatial form of the real line?
74 One can think, for example, of the story told by Grothendieck in the passage quoted above. Its
background was the way in which algebraic geometers stumbled upon difficulties in their use of
usual topologies and were led to introduce more exotic ones, such as Zariski’s topology. At the end
of the process, it is topology itself which revealed itself too narrow and had to make room for
“topos” and “sites”.
75 Gratus and Porter (2005).
76 This duality is then explained in the expected manner: “The first is, classically, based firmly in
geometry, and topology and assumes some ‘space’ is given, whilst its aim is to study the ‘attri-
butes’ of the space - essentially its geometry and topology, or more precisely those parts that are
amenable to study by the usual tools of geometry and topology! The other aspect represents some
configuration by a space. This ‘configuration’may be a formal situation modelling some relationship
between some objects and attributes, or perhaps a physical context such as the space of physical
configurations of a molecule”.
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but, more interestingly, one could realize on those grounds that it still has no unified
conceptualization. Although it would be wildly exaggerated—if not totally ridic-
ulous—to claim that Proclus’ philosophy could help us answer these questions,
which are, of course, the prerogative of mathematicians, it can nonetheless aid us in
understanding why they are still pertinent.
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