
Introduction

Vincenzo De Risi

Today the definition of geometry as the science of space is generally accepted by
both epistemologists and mathematicians. The history of modern geometry is
entirely built around the mathematical notion of space, and different approaches to
this science, from Gauss’ studies of intrinsic curvature to the Erlangen Program,
from the discovery of General Relativity to the most recent developments in
topology (take, for instance, Thurston’s geometrization conjecture and its proof)
rely on a general understanding of mathematical space that remains constant
through different perspectives and offers a common ground for regarding all these
developments as parts of a single enterprise. Modern geometry is simply incon-
ceivable without the notion of space.

Nonetheless, the definition of geometry as the science of space, however stan-
dard, is properly speaking modern. Should we go through the thirteen books of
Euclid’s Elements, or in fact the entire corpus of ancient mathematics, we would
find almost no occurrence of spatial concepts or terms. Were we to follow the
millennial development of Classical geometry in the Middle Ages or the Renais-
sance, we would still not find any reference to space. The first (and quite rhetorical)
mention of spatium in a geometrical essay does not predate the last decades of the
sixteenth century. To see spatial notions effectively employed in geometrical rea-
soning, we have to wait for another one hundred years. Leibniz’ work on geometry
(the analysis situs) is probably the first attempt in this direction, and in any case it
ushered in a general discussion about the object of geometrical investigation. The
eighteenth century debated whether geometry had to be regarded as a science of
space, and this new idea initially attracted more opponents than supporters; by the
end of the century the spatial backers won their battle, and the nineteenth century
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declared that space was indeed the object of geometry. The mathematization of
space was then complete: classical geometry came to an end and modern geometry
was born.

In fact, even though the divide between ancient and modern geometry may be
arbitrarily demarcated into several historically distinct episodes (such as the birth of
algebraic geometry or the discovery of the infinitesimal calculus), the transformation
of geometry into a science of space is probably the most important change the
discipline underwent during the course of its development. In accepting space as its
object of investigation, geometry began to study relational structures instead of
single figures or magnitudes (like triangles or conic sections). In this sense, the entire
structuralist approach of modern mathematics is grounded in this important shift of
perspective of eighteenth-century geometry, which (to use Cassirer’s words) turned
a classical geometry of substances (i.e. figures) into a geometry of functions
(structures). As soon as space came to be regarded as a mathematical structure, in
fact, it was declined in the plural: non-Euclidean geometries, projective geometry,
and then the theory of manifolds, were all disclosed by this new approach to space,
whereas a geometry offigures could not possibly produce the idea of different global
structures. Moreover, the very spatiality of these structures was of primary impor-
tance. While the primary aim of classical geometry was the calculation of lengths,
areas and volumes of given figures, in a geometry of space the notions of position,
incidence or direction may play a central role. Once again, non-metric geometry,
projective geometry or topology were inconceivable without such a transition from a
science of figures to one of space. The transformation of the object of geometry,
moreover, had several consequences outside the strictest mathematical domain, and
the entire philosophical development of the last two centuries is scarcely under-
standable without the notion of space conceived as a mathematical structure.

This new picture of mathematics, which in many respects is still the one we have
of this science, found its beginnings in the assessment of geometry as the science of
mathematical space, and it is grounded in the long process that transformed Greek
geometry into a spatial endeavor. This evolution occurred for the most part outside
the realm of mathematics, and involved a gradual evolution of the metaphysical
conceptions of space, the epistemology of modern science, and several other
advances in various disciplines, from geography to the theory of perspective, from
mechanics to cosmology. I will now try to sketch a very brief history of the
transformation of geometry from the Greek science of figures to the nineteenth-
century science of space, with special emphasis on the philosophical aspects of the
development. This is obviously a very limited perspective on the whole matter, and
it seriously risks several oversimplifications; yet, I think that it may still be useful to
have a guiding thread to lead us through the complex history of the mathemati-
zation of space before engaging in further and more detailed investigations. To this
effect, I would distinguish four stages in the relations between geometry and space:
a geometry without space, a geometry in material extension, a geometry in space,
and finally a geometry of space.

(1) A geometry without space. The first stage encompasses Greek geometry in
the Classical and Hellenistic Ages. Here Geometry is completely devoid of any
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spatial content or reference. The objects of geometrical investigations are individual
figures (triangles, circles, and so on), which are conceived as reciprocally unrelated
and are not embedded in any spatial background. They may be regarded as Platonic
ideas or Aristotelian abstractions from material substances (or in several other
ways), but in any case these singular figures are the sole objects of geometrical
enquiry. Accordingly, their definitions are considered to be the true principles of
demonstration and theorems only deal with the properties of these figures.

In the epistemology of Plato we do not find any general characterization of the
object of geometry since mathematics is for him defined through its method
(hypothetical and diagrammatic) much more than through its subject matter. Still,
one can easily understand that he regarded form and shape (εἴδος and σχήμα) as the
main features of geometrical objects. In the age of Plato or shortly thereafter,
however, a first general theory of magnitudes and proportions was developed. This
theory, which is often attributed to Eudoxus and was later embedded (as Book Five)
in the Euclidean Elements, was general enough to state and prove theorems that
uniformly apply to any kind of continuous extension (be it a line, a plane figure or a
solid). In this way, the manifold objects of geometrical (or stereometrical) inves-
tigation were reduced to a common genus, and it comes as no surprise that Aristotle
was able to define geometry through its subject matter (rather than its method)
stating that the object of geometrical investigation is continuous quantity, or
magnitude (μέγεθος). This definition immediately acquired paramount importance,
and was unfailingly repeated by mathematicians and philosophers for more than
two thousand years. Even though Aristotle and his successors clearly conceived
magnitudes as shaped extensions, and thus as classical geometrical figures (since no
abstract or numerical notion of a continuous magnitude was available), shape, form
or position were simply regarded as accidents and properties of geometrical objects
essentially conceived as concrete magnitudes. The Aristotelian definition bent
geometry in the direction of a science of measure, whose principal aims were to
compute length, areas and volumes of given magnitudes. In this respect, it con-
cealed the possibility of a mathematical development of the notions of geometrical
form or shape, or the (purely spatial) concept of reciprocal position (θέσις) of
geometrical objects. Even though we actually find several uses of the concepts of
shape and position in most ancient Greek geometry (for instance: a treatment of
similarity in Thales, a wide employment of the concept of position in Pythagore-
anism, the notion of form in Plato, and all of these in the Euclidean treatise on
Data), we are not allowed to suppose, of course, that without Aristotle’s influence
this science actually had the possibility of developing toward non-metrical (and
possibly spatial) outcomes. The advancements of Classical geometry as a theory of
measurement are largely independent of any epistemological claim, and seem to be
essential to this science, which was born (at least in words) to measure the Earth.
Yet, it is certainly true that the Aristotelian definition of geometry as a science of
magnitudes, so widely accepted in the following centuries, acted as a powerful
constraint to later attempts (in the Renaissance or the Early Modern Age) to
transform geometry into a science of space, positions and configurations, that could
supersede a metric theory of measure; and even Kant, at the very end of our story,
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could not but define geometry through the category of quantity—as Aristotle had
done.

In the Classical Age, spatial notions remained mostly extraneous to geometry.
While Plato had understood geometrical objects as pure ideas, the later Greek
philosophers, who regarded them as magnitudes (something that in principle might
be located somewhere), usually strongly denied that they are in space and claimed
that mathematical objects are nowhere (τὰ μαθηματικὰ οὐ πού).

On the other hand, the concept of space itself is altogether missing from the
cultural background of Antiquity. The Platonic notion of χώρα seems to refer to a
material extension rather than to a proper spatial container (although the interpre-
tation is controversial). The void of pre-Socratic atomism seems to mean much
more a mere nothingness than a positive spatial extension, while the void of Epi-
curean atomism may be extended, but has a few features in common with matter (it
moves away when atoms arrive and it is not properly filled by them); in sum, the
vacuum of Greek atomism is a spaceless void rather than a prefiguration of space.
Both Stoics and Epicureans, apparently, also had a notion of space as something
extended that may be filled or not, but they did not even have a name for such an
entity which they labeled “the intangible nature” or “what can be occupied by a
body”; no properties of such a thing were ever spelled out, nor does it seem they
were in any way connected to quantity or mathematics. We do have, of course,
several important philosophical treatments of the concept of place (τόπος), which is
however an ecological notion rather than a geometrical one and is related to ori-
entation in the environment, geographical position, or cosmic localization (to be in
a place is to be in the market, on a boat, in Athens, in a vessel, in the outermost
heaven). In all these cases, the place of a body is just another body which is
regarded as having the role of a place. Accordingly, there is no space as an inde-
pendent being that may be quantified, or measured, or otherwise mathematized.
Even geography, which developed several mathematical techniques to represent the
world, was mostly concerned with the measurement of an object, the Earth or
perhaps the Ecumene, rather than its place. It cannot be denied, however, that the
plurality of the representational techniques employed in geography and astronomy
already in Antiquity (produced by the impossibility of isometrically projecting a
sphere on a map) trespassed on the simple conception of measuring given mag-
nitudes, and paved the way for understanding how different geometrical structures
may be employed to capture the world. The lack of a veritable concept of space,
however, still prevented the possibility of regarding these different geometrical
representations as realizations of space structures, or of conceiving them as any-
thing more than an application of the geometry of magnitudes to a specific cosmic
object.

(2) A geometry in material extension. This very general metaphysical picture,
however, began to change already in the Neoplatonic philosophy of Late Antiquity.
Aristotelian ontology regarded quantity (and thus magnitude) as an accident of a
given individual substance; and this was in perfect agreement with the idea of a
geometry of individual figures. Neoplatonic metaphysics, on the other hand,
admitted different ontological stratifications, and might conceive (in a few authors)
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that quantity is not an accident of the substance, but an accident of matter itself.
Matter was thus regarded as quantified and extended, or at least endowed with
magnitude as its primary property. This notion of an extended matter, that came
from Plato’s conception of the Receptacle, had nonetheless acquired an Aristotelian
bent, as magnitude was now conceived by Neoplatonists as a positive property that
may be geometrically investigated rather than (as in Plato) the unknowable material
substrate in which Forms appear. The immediate consequence is that extended
matter is in fact the substrate of geometrical objects and their ontological condition,
and that this matter exists (in some sense) before being formed in the particular
shapes of the individual geometrical figures. This insubstantial extension is thus a
kind of background in which geometrical objects have their seat. It is not yet space,
as it is a material extension and it is not explicitly connected with any local or
positional property; moreover, the material extension is itself devoid of any geo-
metrical property, and geometry remains the science of those definite and individual
magnitudes that are made up by this extension: the latter is the condition, rather
than the object, of geometry. Yet, this Neoplatonic quantified matter in which
geometrical magnitudes are first delineated is the ancestor of the modern concept of
space.

This conception of an extended matter as the substrate of geometrical magni-
tudes is quite general, and it received very different treatments by different meta-
physicians and schools. There is no need here to go into the many different
perspectives that very different authors held on this topic, as we are only interested
in this conception of matter as a prehistory of the notion of space. It needs to be
said, however, that while several philosophers intended quantified matter as cor-
poreal matter (the matter of the world) and thus connected the ontology of math-
ematical objects to that of cosmic extension (possibly through an abstractionist
theory of mathematical entities inspired by Aristotle), a few authors from Late
Antiquity on regarded the matter of extended mathematical objects as “intelligible
matter” (another term taken from Aristotle), or imaginative matter (ὑ ́λη
φανταστική). In this way, they advanced an ontology of geometrical objects as ideal
entities that are constructed by the mathematician in the imagination. Imagination is
conceived as a sort of blackboard on which figures are drawn. Even though, once
again, the blackboard itself is not thematized as an object of geometrical investi-
gation, its relevance for the history of the concept of mathematical space is enor-
mous. The main supporter of this view in Late Antiquity was Proclus, who
developed an important theory of mathematical “projective” imagination in his
philosophical commentary to the First Book of Euclid’s Elements, but the idea that
imagination is the proper faculty of geometry (a conception that was absent from
the Greek thought of the Classical Age) had a widespread diffusion in the centuries
to come.

In any case, the significance of the ontology of quantified matter (be it corporeal
or imaginary) went well beyond the strictest Neoplatonic doctrines, and was gen-
erally accepted in the Middle Ages. Especially through the Averroistic tradition, the
doctrine of the dimensiones indeterminatae of matter (a matter endowed with
extension and indeterminate magnitude but without a determinate shape) enjoyed
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diffusion and acquired relevance in the West (think of Aquinas’ materia signata
quantitate) and formed the basic geometric ontology for several centuries. In the
Renaissance, most Late Scholastic authors still conceived matter as essentially
extended and regarded it as the ontological condition for the existence of the proper
mathematical objects (the shaped magnitudes). The connection of geometry with
the imagination remained strong during the Middle Ages, even though the original
writings of Proclus were unknown and the Scholastics had to rely on secondary
sources. The debate on quantified matter in imagination however reached its
highpoint in the Renaissance, when Alessandro Piccolomini (in 1547) interpreted
the recently rediscovered Proclus and engendered the so-called quaestio de certit-
udine mathematicarum, a quarrel among metaphysicians and epistemologists that
continued for more than a century.

A few philosophers were ready to endorse the Averroistic tradition of quantified
corporeal matter as the substrate of geometrical entities to the point of rejecting
several Euclidean principles and theorems that cannot be accommodated to bodily
magnitudes, since the latter are (for instance) necessarily tridimensional (leaving no
space for a pure plane geometry), or since they may not be infinitely divisible; a
vast number of indivisibilist mathematicians, in fact, ranging from the Middle Ages
(Gerard of Odo or Nicholas d’Autrecourt) to the Early Modern Age (Bruno, Ar-
riaga), grounded their rejection of infinite divisibility and (in some cases) a new
finitistic mathematics on their views about the features of bodily extension.

Many others, however, followed Proclus and appealed to the imagination in
order to ground the possibility of ideal geometrical constructions. This conception
was especially widespread among professional mathematicians, from Peletier to
Clavius, Barrow or Borelli, but was shared by several philosophers as well.

Descartes was able to encompass both traditions, with a complex mathematical
ontology that conceived geometrical objects as parts of the res extensa, but which
also stressed their connection with the faculty of imagination. It is remarkable how,
in the hands of a great mathematician, the metaphysics of geometrical extension
yielded important mathematical outcomes. The algebraization of geometry, in fact,
required geometrical figures to be conceived as embedded in a larger (indefinite)
extension, that can be captured in a system of coordinates. Such a fundamental
mathematical development was not possible in the classical ontology of individual
figures, and was in need of an ontology of quantified matter. A few further issues
and techniques in geometry, like the theory of loci or the use of motion in a proof,
acquired new meanings in the wake of this ontological transformation.

Yet, in the innumerable disputes that divided both Scholastics and new phi-
losophers at the end of the Renaissance, and produced such different metaphysical
systems, the conception of geometry remained firmly chained to these two pillars: it
was the science of magnitudes, as Aristotle had said; and these magnitudes were to
be conceived as parts and chunks of an originally extended and quantified matter.

Another development, however, was maturing in the Neoplatonic tradition: the
ancient conception of place as an ecological notion was substituted by a concept of
space as a three-dimensional extension. This conception is generally ascribed to the
Aristotelian commentators Philoponus and Simplicius in Late Antiquity, who first
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worked it out at some length (with a few differences between them) disavowing
their master’s opinion. During the Middle Ages the notion was further developed,
even though its acceptance always remained controversial, given the authority of
Aristotle who had opposed it; but in the Renaissance it gained numerous followers
among new philosophers and Aristotelians as well. From this perspective, the three-
dimensional extension of place was still conceived as an accident dependent on the
existence of the (individual) located substance, rather than an all-encompassing
space ontologically independent of the bodies in it. This notwithstanding, the
extension of place was quantified and could be measured like any other magnitude
(which was not the case of the classical “ecological” place), and this was an
important step forward toward the mathematization of space. Nevertheless, three-
dimensional place had no special link with quantity or geometry, and it remained
one magnitude among others. It was considered measurable, in fact, only by virtue
of its capacity to receive matter, since matter only (as we have seen) is the onto-
logical substrate of magnitude.

A further development coming from the Middle Ages was the introduction of the
concept of an imaginary space (spatium imaginarium). This notion also came from
the Averroistic tradition, and hinted at the fact that the imagination cannot help but
conceive further extension beyond the boundaries of heaven. The debate on the
nature of imaginary space was wide ranging, but we need only observe that it had
several advantages over the three-dimensional concept of place: it was a veritable
space, in the sense that it was not limited to the extension of the individual located
body, but rather it encompassed an infinite (or, shall we say, indefinite) extension;
and it was a creation of the imagination, which again hinted toward a connection of
it with the ontology of mathematical objects as proper products of the phantasia.
However, this possible connection remained unexplored in the Middle Ages and the
Renaissance since the imaginary spaces were conceived as purely local construc-
tions, which had nothing to do with quantity in the proper sense; indeed, several
authors insisted that being devoid of matter, imaginary spaces have no quantity
whatsoever. Even Hobbes, well into the seventeenth century, was still claiming that
while geometry may have a substrate in imaginary space, this only comes from the
corporeal origin of imaginary space itself—since extension and quantity are nothing
but bodily features.

(3) A geometry in space. By the end of the Renaissance, however, these manifold
traditions were ripe enough to merge into something new. In particular, the Phi-
loponian conception of three-dimensional place and the notion of an infinite
imaginary space finally met the ontology of quantified matter and geometrical
objects. The hint may have come from Ficino, who translating Plotinus’ Enneads
and dealing with the Neoplatonic treatment of quantified matter (ὀ ́γκος, mass)
realized that this was just pure extension (primary matter plus quantity) rather than
bodily extension, and thus ventured to translate the term as spatium. Ficino did not
draw any consequence from his own translation, and continued to profess a stan-
dard Neoplatonic philosophy of mathematics and an Aristotelian conception of
place. Several years later, however, Francesco Patrizi, a Neoplatonic disciple of
Ficino and a vigorous renewer of metaphysics, followed the hint and superimposed
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the metaphysics of quantified matter onto that of three-dimensional space. The
result was a new conception of space as a three-dimensional infinite extension
which is independent of matter and bodies, and is pre-exististent to them as a
condition of their own existence. Patrizi’s new metaphysics was probably more
suggestive than well argued, and was developed in the same years that others
(Bruno, in particular) were also elaborating similar views. However, Patrizi was
alone in stressing a new conception of mathematics. He claimed that space is
originally and essentially quantified and extended, whereas matter and bodies are
quantified only because they are embedded in space. He was thus turning the
preceding conception upside down by claiming that the possibility of mathema-
tizing the natural world depends on the possibility of applying geometry to space
itself. To his essay On Physical Space Patrizi added a treatise On Mathematical
Space, and an entire book On a New Geometry (Della nuova geometria, 1586), in
which he explicitly asserted that “the general subject of mathematics is space” and
he tried to rewrite a portion of Euclid’s Elements in such a way as to reflect the
change in the object of study. To my knowledge, this is the first occurrence of such
a claim in a book of geometry, and almost the birth of the idea of a geometry of
space.

We should add, however, that there is not much more here than an idea and a
project. Patrizi’s skills as a mathematician were very scarce, and in any case he was
not able to foster any real improvement in Classical geometry. Patrizi was still
discussing straight lines and circles, not space, and he was not conceiving space as a
structure that could be investigated. His claim that space is essentially quantity had
allowed him to think of it as the substrate of geometry (a big step forward), but had
also imprisoned his “new geometry” in the usual cage of a science of magnitudes
(rather than spatial relations), and Patrizi did not really question the Aristotelian
tenet that magnitudes are the objects of geometrical investigations. He only changed
the ontology, stating that these magnitudes are not just chunks of matter, but rather
regions of the all-encompassing space. In sum, his is not a geometry of space, but a
geometry of figures and magnitudes in space.

Patrizi’s metaphysics of space enjoyed a wide diffusion, and informed the new
atomistic philosophy of the seventeenth century (Gassendi was very familiar with
his work), as well as further Neoplatonic developments (such as those of the
Cambridge Platonists), and directly or indirectly the new metaphysics spread during
the course of the century. Newton himself may be regarded as an heir of these
Renaissance metaphysical conceptions of space, and in the De gravitatione, in
particular, he gives a description of space and the figures existing in it which are
reminiscent of several passages of Patrizi’s. The idea that the objects of geometry
are spatial figures gradually spread, and in a few decades it became commonplace in
several circles. The two opposing views that geometrical objects are material or
rather spatial entities battled with each other over the next hundred years, and if at
the beginning of the seventeenth century nearly everyone had advocated the former
position, by the end of the century only a few indomitable Cartesians (or very late
Aristotelians) were opposing the latter. The battle was purely metaphysical, though,
as all of the participants were still working within the framework of the classical
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geometry of figures, and (almost) no mathematical consequences were drawn from
their different geometric ontologies. Newton, for one, considered himself a classical
geometer, and his innovations in the field do not at all concern the subject matter of
geometrical investigations (even though his conception of space may have influ-
enced his geometrical endeavors).

Among the several developments that contributed to the discovery of space as a
structure, we may at least mention here the development of a mathematical geog-
raphy and cosmography, as well as the tradition of perspectival studies.

In his celebrated essay on Perspektive als symbolischer Form, Panofsky claimed
that the modern concept of space was born in the Renaissance treatises on per-
spective. At least from the time of Giotto or Duccio, to be sure, a new form of
spatial organization may be found in pictorial representations. But this new way of
representing space was only codified much later, in the late fifteenth century, when
a mathematical reflection on those painting techniques began to be available in the
works of Alberti, and then Piero della Francesca, Albrecht Dürer, and many others.
In the sixteenth century, we find an explosion of geometrical essays on the theory of
perspective that explicitly discuss the mathematical structure of place and space.
The humanist Pomponio Gaurico, in his book De sculptura (1504), claimed that the
painter should first depict the locus of the represented things, and only then the
things themselves, since place is prior to located objects. He simply meant that the
perspectival technique (the locus) should be selected in advance; but his choice of
words shows a conception of place that is not an object but rather a mathematical
structure which is a condition and an order of objects. Different structures (different
spaces) with different mathematical properties may be employed to represent the
very same things. While ancient paintings may have depicted single objects in
perspective, juxtaposing certain objects with others (each object, I mean, with its
own perspective and vanishing point), a modern painter might offer what Gaurico
calls a perspective which ad totum opus pertinet encompassing the whole scene in a
single space. In this respect we moved from a perspective of substances (figures) to
a perspective of structures and relational systems.

It is true that this use of the word “locus” to mean a perspectival technique may
seem quite eccentric, and it was at first confined to the treatises on this discipline
without acquiring any more general sense. The essays on perspective, however,
became more and more mathematical over the years, and by the end of the sixteenth
century they had already transformed from painters’ handbooks into studies for
mathematicians (think of Guidobaldo del Monte’s Perspectivae libri sex in 1600).
When Desargues and then Pascal or La Hire in the seventeenth century applied
perspectival techniques to prove classical geometrical theorems, the development
was complete: and the perspectivists’ conception of place or space as a structure
and an order had became a tool for “real” mathematics. For the first time a few
purely spatial notions, like those of position or situation of points and lines, and the
study of spatial incidence and configurations, became an object of geometrical
enquiry.

(4) A geometry of space. The synthesis of all these different trends toward a
geometry of space was first realized in Leibniz’ work on analysis situs. Leibniz had

Introduction 9



the opportunity to read Pascal’s lost treatise on conic sections in manuscript (where
Pascal had probably employed the notions of space and situation to ground pro-
jective techniques in geometry) and devoted himself to the task of developing a new
geometry entirely based on the spatial notion of situation (situs).

Leibniz’ conception of space, which he famously opposed to Newton’s absolute
space, was that of a system of situational relations (an ordre de situations), and thus
a structure. The new analysis situs, in developing a geometry of situations, had to
study the structure of space itself. This was the first time in history that space was
conceived as a structure and geometry as its science. In fact, Leibniz’ work on
analysis situs revolves around the definition and interrelation of a few structural
properties of space, like uniformity (our isotropy), homogeneity (our manifold
structure), dimensionality, continuity, connectedness, flatness, and so forth, that had
been never studied before. The possibility and properties of every figure should be
reduced to those of the ambient space, which is the only real object of geometrical
investigation. Leibniz’ aim with his analysis situs is in fact to show that only one
all-encompassing spatial structure is possible, thus to ground on absolute founda-
tions the existence of a three-dimensional, uniform, homogeneous, continuous,
connected, Euclidean space. And if his goals were unreachable, his endeavors were
nevertheless quite interesting as they show how a geometer could forsake the
classical geometry of figures and ruler-and-compass constructions and attempt a
much more abstract study of the structural properties of a system of relations.

The concept of situation is generally reduced to that of distance (a situation
between two points being expressed by their distance), and this fact prevented
Leibniz from developing a truly non-metrical geometry (a projective geometry, for
instance). This notwithstanding, geometry is for Leibniz first a science of position
and place, and only derivatively a science of quantity. He attempted, in fact, to
develop a wide-ranging theory of similarity that should have been (partially) free
from metrical considerations. Leibniz’ relational conception of space also offered a
new solution to the problem of the composition of the continuum, which stated that
whereas a set of unextended points (however numerous) could never build up a
continuous extension, a set of points endowed with situational relations (that is,
points considered as terms of relations of distance) may nonetheless be extended,
since extension and continuity themselves are nothing but structural properties of
such a set. This approach, which was very modern and had never before been
attempted, opened the way for a general set-theoretical and structural view of space.

However promising, Leibniz’ attempts at a geometry of space remained
unpublished, and the eighteenth century only caught a few glimpses of this new
science. The Leibnizian program in geometry, however, was well known, and it
sparked a lasting debate (especially in Germany) on the objects and methods of
geometry. It opposed traditional geometers, who still claimed that figures in space
are the object of geometry and appealed to the authority of Euclid, to Leibnizians
who advocated the advantages of a geometry of space but could not show any
significant consequence of this new science (Wolff, for one, stated that geometry is
the science of space but was unable to produce any result that went beyond Euclid).

10 V. De Risi



The same seeds that had engendered Leibniz’ analysis situs in the seventeenth
century, however, continued to bear fruit in the eighteenth century. The develop-
ments of a mathematical theory of perspective ended up with Monge’s and Ponc-
elet’s first attempts at a veritable descriptive and projective geometry, which
required an array of spatial and local concepts and tools, and could not help but rely
on the idea of a science of space. Closely related to these mathematical develop-
ments, the theory of visual perception also pushed a few philosophers on the same
shore. The geometrization of visual space had already begun (I mean, with full
philosophical awareness) in Descartes’ Dioptrique and theory of perception, which
represented a fundamental step forward toward a mathematization of the world
accomplished through a (kind of) spatial structure. But this géométrisation du
regard continued in the eighteenth century in the works of Berkeley, Hume and
Reid (among others), who discussed the manifold properties (and alleged differ-
ences) of visual and tactile spaces; and while Berkeley seems to aim at a projective
conception of visual space that may not be captured by a geometrical theory,
Hume’s conceptions of perceptual minima (also stemming from Berkeley) may tend
toward a finitistic geometry, and Thomas Reid’s (quasi) axiomatization of spherical
geometry as the geometry of sight professes that space is nothing but a perceptual
structure, that a plurality of such structures is possible, and that they can be dif-
ferently treated from a mathematical point of view.

In the same years, other mathematicians were developing their first essays on
non-Euclidean geometry. Saccheri in 1733 was still unable to recognize his “obtuse
angle hypothesis” as an instance of spherical geometry (the same that was discussed
by Reid), since he was a hyper-classicist mathematician who considered his own
studies on the Parallel Postulate to be a Euclidean exercise in a geometry of figures.
As early as 1766, however, Lambert realized that the Parallel Postulate does not
concern parallel or incident lines, but the deeper structure of space itself. Wallis had
shown that the Postulate is in fact equivalent to the possibility of transformations in
space through similarity, and the latter is clearly a “second order” property about
figures rather than the property of a single figure (or a couple of lines). This allowed
Lambert (who had also worked on perspective) to recognize spherical geometry as a
description of a non-Euclidean space, thus opening the way to conceive an abstract
model for hyperbolic space as well. And while Lambert had written a Theorie der
Parallellinien, János Bolyai, at the culmination of the non-Euclidean revolution,
would later write a Scientia spatii (1832), or Raumlehre, fully realizing that his
researches disclosed the science of a different space rather than a new theory of
parallel lines.

Yet another line of enquiry and discussion concerned the role of principles in
geometry. Definitions had been considered as the true principles of demonstration
from Antiquity to the Eighteenth century, reflecting the idea that the objects of
geometry are individually defined figures. From this perspective, axioms were
generally regarded as immediate consequences of the definitions. In the eighteenth
century, a few mathematicians began to claim that axioms should be the true
principles of geometry, and definitions should follow from them (an instance of this
attitude is once again in Lambert). This new epistemological claim mirrored the
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growing awareness that only the complete system of figures and objects, that is the
space structure as such, is the true subject of investigation; as well as the awareness
that a plurality of such structures (defined by different systems of axioms) are in fact
possible.

In sum, just as the seventeenth century had witnessed the battle between sup-
porters of a science of material figures against supporters of spatial figures, so the
eighteenth century was divided among those who still professed a geometry of
figures (in space) and those who looked for a new geometry of space.

The century’s richest and most developed epistemology of mathematics, that of
Immanuel Kant, still reflected these quarrels. Kant’s philosophy of mathematics
may be easily seen as the culminating point of several philosophical traditions that
we have mentioned so far. His theory of productive imagination and its application
to geometry, in particular, clearly draws from the Proclean tradition of a projective
phantasia, while the idea of the applicability of mathematics to the phenomenal
world through the mathematization of space comes from the Neoplatonic tradition
of the Early Modern Age. And yet all these elements (and many more) are merged
together into a new synthesis that seems to push them to their maximum conceptual
strength. In many respects, in the epistemology of mathematics Kant appears to be
the last philosopher of the classical age, and to be advancing a complex and
consistent theory of geometry as a Euclidean science of figures, rather than a
modern science of space. Not only did he strongly attack Leibniz’ point of view on
the essence of space (now conceived as a pure intuition) and the nature of a
mathematical proof (based on synthetic a priori judgments rather than analytical
statements), but his entire positive theory of mathematics is grounded on a con-
structivist stance that makes use of the synthesis in imagination for the composition
(Zusammensetzung) of individual finite figures in space. These figures are the
objects of investigation in geometry, as in the classical tradition; more than that,
they fall under the category of quantity and are called magnitudes, as in the
Aristotelian tradition. Space itself is regarded as the condition of geometry much
more than its proper object: a formal intuition which is needed as the background of
the productive activity of the imagination. This space has a unity and may be
regarded as the product of a sui generis synthetic act, which is an intellectual but
pre-categorial “putting together” (Zusammenfassung) of the spatial manifold. This
act, which gives a unitary structure to geometrical space, is not a synthesis of
imagination ruled by the category of quantity (a “composition” in the proper sense),
and thus the structure of space as a whole does not fall under the scrutiny of
geometry. Yet, the very concept of this act, which is explicitly (albeit peripherally)
thematized in Critical philosophy, distances it from the classical Neoplatonic tra-
dition, and reflects the idea that space as a whole may have a unitary logical
structure.

In any event, the first generation of Kantian followers no longer had any doubt
that space has a given geometrical structure, and in this respect Kantianism (often
blended with Leibnizianism) became an important cultural force (perhaps against
the will of Kant himself) to foster the idea of a new science of space. It was through
these transformations and philosophical quarrels that the modern party eventually
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won out against old Euclid, and by the dawn of the nineteenth century it was so
common to state that geometry is the science of space that almost no one realized
that a different opinion had been possible in the past.

The history of the mathematization of space was in fact much more complex
(and less linear) than the idealized picture given above. I hope that the essays
presented in this book, which illustrate a few episodes of this history in great detail,
will help the reader to understand the long development that transformed Greek
geometry into Modern mathematics. They also show the many and various epis-
temological contributions that went into this conceptual development, and point to a
few of the several disciplines and figures involved in the “spatial turn” of geometry.
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