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Abstract. Subsequently, we introduce a novel semantics for the bi-
modal logic of subset spaces, denoted by LSS. This system was originally
invented by Moss and Parikh for the purpose of clarifying the intrinsic
relationship between the epistemic notion of knowledge and the geomet-
ric concept of topology. Focussing on the knowledge-theoretic side in this
paper, we re-adjust LSS to multi-agent scenarios. As a result, a particu-
lar dynamic logic of implicit knowledge is obtained. This finds expression
in the technical outcome of the paper, which covers soundness, complete-
ness, decidability, and complexity issues regarding the arising system.
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1 Introduction

Reasoning about knowledge constitutes an important foundational issue in Arti-
ficial Intelligence. We concentrate on some of its logical aspects in this paper. In
particular, we are concerned with the idea of implicit (or distributed) knowledge
of a group of agents.

Meanwhile, several instructive and very readable treatises on the diverse logics
of knowledge are available. While more recent publications rather stress the
dynamics of informational perceptions, including aspects of belief, desire, or
intention (BDI ) (see, e.g., [3], as well for further references), the classic textbooks
[7] and [13] can thoroughly serve as a common ground for the fundamentals of
epistemic logic needed here. Accordingly, given a finite collection G of agents, a
binary accessibility relation RA connecting possible worlds or conceivable states
of the world, is associated with every agent A ∈ G. The knowledge of A is
then defined through the validity of the corresponding formulas at all states the
agent considers possible at the actual one. Now, collecting together such ‘locally
allocated’ knowledge means ruling out those worlds that are inconceivable to
some of the agents in G. To put it another way, the implicit knowledge of the
agents under discussion is represented exactly by intersecting the respective sets
of accessible states; see [13], Sect. 2.3, or [7], Sect. 2.2 and Sect. 3.4. (Throughout
this paper, the term implicit knowledge is used, as in [13]; on the other hand,
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the term distributed knowledge is employed in the latter reference, since the idea
of awareness (and, therefore, that of explicit knowledge) enters the field there.)

Moss and Parikh’s bi-modal logic of subset spaces, LSS (see [14], [5], or Ch. 6
of [1]), may be rated as a cross-disciplinary framework for dealing with topolog-
ical as well as epistemic scenarios. This is exemplified in the single-agent case
subsequently. The epistemic state of an agent in question, i.e., the set of all
those states that cannot be distinguished by what the agent topically knows,
can be viewed as a neighborhood U of the actual state x of the world. Formulas
are then interpreted with respect to the resulting pairs x, U called neighborhood
situations. Thus, both the set of all states and the set of all epistemic states con-
stitute the relevant semantic domains as particular subset structures. The two
modalities involved, K and �, quantify over all elements of U and ‘downward’
over all neighborhoods contained in U , respectively. This means that K captures
the notion of knowledge as usual (see [7] or [13] again), and � reflects effort to
acquire knowledge since gaining knowledge goes hand in hand with a shrinkage
of the epistemic state. In fact, knowledge acquisition is this way reminiscent of a
topological procedure. The appropriate logic of ‘real’ topological spaces as well as
that of further computationally interesting spatial structures (viz tree-like ones)
were examined by Georgatos rather promptly; see [8], [9]. The ongoing research
into subset and topological spaces, respectively, is reported in the handbook [1].
More recent developments include the papers [12], [2], and [15], with the last
two forging links between subset spaces and Dynamic Epistemic Logic (DEL);
see [6].

Most papers on LSS deal with the single-agent case. Notwithstanding this, a
multi-agent version was suggested in [10] (see also [11]). The key idea behind
these papers is as follows: incorporate the agents in terms of additional modal-
ities and, apart from this variation of the logic, let the original semantics be
unchanged. However, what happens when, in contrast, the semantics is mod-
ified, and even in a way suggesting itself, namely to the effect that the agent
structure is reflected in the atomic semantic entities already? – It turns out that
the scope of the modality K has to be restricted then, but fortunately in a quite
acceptable manner: K hereby mutates to an implicit knowledge operator (and,
as will become apparent later, the logic remains the same in this case).

This idea will be implemented in the rest of this paper. Our aim is to give
precise definitions as related to the underlying language, state the axioms and
rules of the arising logic, prove soundness and completeness with respect to
the intended class of domains, and reason about the intrinsic effectiveness and
efficiency properties. (However, we must omit elaborate examples, due to the
lack of space; in this respect, the reader is referred to the quoted literature.)
The outcome we strive for is, in fact, an alternative modal description of im-
plicit knowledge, and in the presence of a rather general operator describing
increase of individual knowledge. (Thus, we are not ambitious in producing a
system ‘beating’ others (in particular, more differentiated ones) here. But note
that it is very desirable to have to hand distinct (e.g., differently fine-grained)
ways of seeing a subject: this would allow one to react on varying problems
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flexibly; hence such a broadening of the horizon is a widespread practice in
many mathematically oriented fields.)

The subsequent technical part of the paper is organized as follows. In the next
section, we recapitulate the basics of multi-agent epistemic logic. The facts we
need from the logic of subset spaces are then listed in Section 3. Section 4 contains
the new multi-agent setting of LSS. Our main results, including some proof
sketches, follow in the next two sections. Finally, we conclude with a summing
up and a couple of additional remarks. – An attempt has been made to keep
the paper largely self-contained. However, acquaintance of the reader with basic
modal logic has to be assumed. As to that, the textbook [4] may serve as a
standard reference.

2 Revisiting the Most Common Logic of Knowledge

All languages we consider in this paper are based on a denumerably infinite set
Prop = {p, q, . . .} of symbols called proposition variables (which should represent
the basic facts about the states of the world). Let n ∈ N be given (the number
of agents under discussion). Then, our modal language for knowledge contains,
among other things, a one-place operator Ki representing the i-th agent’s knowl-
edge, for every i ∈ {1, . . . , n}. The set KF of all knowledge formulas is defined
by the rule

α ::= � | p | ¬α | α ∧ α | Kiα | Iα,
where i ∈ {1, . . . , n}. The missing boolean connectives will be treated as abbre-
viations, as needed. The connective I is called the implicit knowledge operator.
Moreover, the modal duals of Ki and I are denoted by Li and J, respectively.

As was indicated right at the outset, each of the operators Ki comes along
with a binary relation Ri on the set X of all states of the world. The kind of
knowledge we would like to model should certainly be mirrored in the charac-
teristics of these relations. Having multi-agent systems à la [7] in mind where
‘accessibility’ means ‘indistinguishability of the local states of the other agents’,
one is led to equivalence relations actually. Furthermore, the intersection of
these equivalences is the relation associated with the implicit knowledge opera-
tor. Thus, the multi-modal frames for interpreting the above formulas are tuples
F = (X,R1, . . . , Rn, R I), where X is a non-empty set, Ri ⊆ X ×X is an equiv-
alence relation for every i ∈ {1, . . . , n}, and R I =

⋂

i=1,...,n

Ri. And a model M

based on such a frame is obtained by adding a valuation to the frame, i.e., a
mapping V from Prop into the powerset of X , determining those states where
the respective proposition variables become valid. Satisfaction of formulas is then
defined internally, i.e., in models at particular states. We here remind the reader
of the case of a modal operator, say the one for implicit knowledge:

M,x |= Iα : ⇐⇒ for all y ∈ X : if (x, y) ∈ R I, then M,x |= α,

for all x ∈ X and α ∈ KF. – The just described semantics is accompanied
by a logic which is a slight extension of the multi-modal system S5n+1. This
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means that we have, in particular, the well-known and much-debated knowledge
and introspection axioms for each of the modalities involved, for example, those
relating to the I-operator:

– Iα → α
– Iα → I Iα
– Jα → I Jα,

where α ∈ KF. The schemata

– Kiα → Iα, for every i ∈ {1, . . . , n},
designated (I), constitute the extension of S5n+1 addressed a moment ago. The
following is taken from [7], Theorem 3.4.1 (see also [13], Theorem 2.3.2).

Theorem 1. The logic S5n+1 + (I) is sound and complete with respect to the
class of models described above.

While sketching a proof of this theorem, the authors of [7] point to the dif-
ficulties related to the intersection property (i.e., R I =

⋂

i=1,...,n

Ri) on the way

towards completeness. We, too, shall encounter this problem, in Section 5 (albeit
in weakened form).

3 The Language and the Logic of Subset Spaces

In this section, we first fix the language for subset spaces, L. After that, we link
the semantics of L with the common relational semantics of modal logic. (This
link will be utilized later in this paper.) Finally, we recall some facts on the logic
of subset spaces needed subsequently. – The proceeding in this section is a bit
more rigorous than that in the previous one, since L and LSS are assumed to be
less established.

To begin with, we define the syntax of L. Let the set SF of all subset formulas1

over Prop be defined by the rule

α ::= � | p | ¬α | α ∧ α | Kα | �α.

Here, the duals of K and � are denoted by L and �, respectively. In view of our
considerations in the introduction, K is called the knowledge operator and � the
effort operator.

Second, we examine the semantics of L. For a start, we define the relevant
domains. We let P(X) designate the powerset of a given set X .

Definition 1 (Semantic Domains)

1. Let X be a non-empty set (of states) and O ⊆ P(X) a set of subsets of X.
Then, the pair S = (X,O) is called a subset frame.

1 The prefix ‘subset’ will be omitted provided there is no risk of confusion.
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2. Let S = (X,O) be a subset frame. Then the set NS := {(x, U) | x ∈
U and U ∈ O} is called the set of neighborhood situations of S.

3. Let S = (X,O) be a subset frame. An S-valuation is a mapping V : Prop →
P(X).

4. Let S = (X,O) be a subset frame and V an S-valuation. Then, M :=
(X,O, V ) is called a subset space (based on S).

Note that neighborhood situations denominate the semantic atoms of the bi-
modal language L. The first component of such a situation indicates the actual
state of the world, while the second reflects the uncertainty of the agent in
question about it. Furthermore, Definition 1.3 shows that values of proposition
variables depend on states only. This is in accordance with the common practice
in epistemic logic; see [7] or [13] once more.

For a given subset space M, we now define the relation of satisfaction, |=M ,
between neighborhood situations of the underlying frame and formulas from SF.
Based on that, we define the notion of validity of formulas in subset spaces. In
the following, neighborhood situations are often written without parentheses.

Definition 2 (Satisfaction and Validity). Let S = (X,O) be a subset frame.

1. Let M = (X,O, V ) be a subset space based on S, and let x, U ∈ NS be a
neighborhood situation. Then

x, U |=M � is always true
x, U |=M p : ⇐⇒ x ∈ V (p)
x, U |=M ¬α : ⇐⇒ x, U 	|=M α
x, U |=M α ∧ β : ⇐⇒ x, U |=M α and x, U |=M β
x, U |=M Kα : ⇐⇒ ∀ y ∈ U : y, U |=M α
x, U |=M �α : ⇐⇒ ∀U ′ ∈ O : [x ∈ U ′ ⊆ U ⇒ x, U ′ |=M α] ,

where p ∈ Prop and α, β ∈ SF. In case x, U |=M α is true we say that α
holds in M at the neighborhood situation x, U.

2. Let M = (X,O, V ) be a subset space based on S. A subset formula α is
called valid in M iff it holds in M at every neighborhood situation of S.

Note that the idea of knowledge and effort described in the introduction is
made precise by Item 1 of this definition. In particular, knowledge is defined as
validity at all states that are indistinguishable to the agent here, too.

Subset frames and spaces can be considered from a different perspective, as
is known since [5] and reviewed in the following. Let a subset frame S = (X,O)
and a subset space M = (X,O, V ) based on S be given. Take XS := NS as a
set of worlds, and define two accessibility relations RK

S and R�
S on XS by

(x, U)RK
S (x′, U ′) : ⇐⇒ U = U ′ and

(x, U)R�
S (x′, U ′) : ⇐⇒ (x = x′ and U ′ ⊆ U),

for all (x, U), (x′, U ′) ∈ XS . Moreover, let VM(p) := {(x, U) ∈ XS | x ∈ V (p)},
for every p ∈ Prop. Then, bi-modal Kripke structures SS :=

(
XS , {RK

S , R
�
S }

)

and MM :=
(
XS , {RK

S , R
�
S }, VM

)
result in such a way that MM is equivalent to

M in the following sense.
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Proposition 1. For all α ∈ SF and (x, U) ∈ XS, we have that x, U |=M α iff
MM, (x, U) |= α.

Here (and later on as well), the non-indexed symbol ‘|=’ denotes the usual
satisfaction relation of modal logic (as it was the case in Section 2 already). –
The proposition is easily proved by induction on α. We call SS and MM the
Kripke structures induced by S and M, respectively.2

We now turn to the logic of subset spaces, LSS. Here is the appropriate ax-
iomatization from [5], which was proved to be sound and complete in Sect. 1.2
and, respectively, Sect. 2.2 there:

1. All instances of propositional tautologies
2. K(α → β) → (Kα → Kβ)
3. Kα → (α ∧ KKα)
4. Lα → KLα
5. (p → �p) ∧ (�p → p)
6. � (α → β) → (�α → �β)
7. �α → (α ∧��α)
8. K�α → �Kα,

where p ∈ Prop and α, β ∈ SF. – The last schema is by far the most interesting
in this connection, as the interplay between knowledge and effort is captured
by it. The members of this schema are called the Cross Axioms since [14]. Note
that the schema involving only proposition variables is in accordance with the
remark on Definition 1.3 above.

As the next step, let us take a brief look at the effect of the axioms from
the above list within the framework of common modal logic. To this end, we
consider bi-modal Kripke models M = (X,R,R′, V ) satisfying the following
four properties:

– the accessibility relation R of M belonging to the knowledge operator K is
an equivalence,

– the accessibility relation R′ of M belonging to the effort operator � is re-
flexive and transitive,

– the composite relation R′ ◦ R is contained in R ◦ R′ (this is usually called
the cross property), and

– the valuation V of M is constant along every R′-path, for all proposition
variables.

Such a model M is called a cross axiom model (and the frame underlying
M a cross axiom frame). Now, it can be verified without difficulty that LSS is
sound with respect to the class of all cross axiom models. And it is also easy to
see that every induced Kripke model is a cross axiom model (and every induced
Kripke frame a cross axiom frame). Thus, the completeness of LSS for cross
axiom models follows from that of LSS for subset spaces (which is Theorem 2.4
in [5]) by means of Proposition 1. This completeness result will be used below,
in Section 6.
2 It is an interesting question whether one can identify the induced Kripke structures
amongst all bi-modal ones; see the paper [12] for an answer to this.
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4 A Multi-agent Semantics Based on Subset Spaces

In this section, subset spaces for multiple agents are shifted into the focal point
of interest. We first introduce the class of domains we consider relevant in this
connection. The members of this class turn out to be slightly different from
those ‘multi-agent structures’ that were taken as a basis in the paper [10]. The
main difference, however, concerns the semantic atoms, into which the actual
knowledge states of the agents are incorporated now. In what follows, we discuss
the possible ways of interpreting knowledge or subset formulas within the new
framework. We argue why we should confine ourselves to formulas from SF here,
and how implicit knowledge comes into play then. Finally in this section, we
prove that the logic LSS is sound with respect to the novel semantics.

For a start, we modify Definition 1 accordingly. Let n ∈ N be the number of
the involved agents again.

Definition 3 (Multi-agent Subset Spaces)

1. Let X be a non-empty set and Oi ⊆ P(X) a set of subsets of X, for every
i ∈ {1, . . . , n}. Then, the tuple S = (X,O1, . . . ,On) is called a multi-agent
subset frame.

2. Let S = (X,O1, . . . ,On) be a multi-agent subset frame. Then the set

KS := {(x, U1, . . . , Un) | x ∈ Ui and Ui ∈ Oi for all i = 1, . . . , n}
is called the set of knowledge situations of S.

3. The notion of S-valuation is the same as in Definition 1.
4. Let S = (X,O1, . . . ,On) be a multi-agent subset frame and V an S-valuation.

Then, M := (X,O1, . . . ,On, V ) is called a multi-agent subset space (based
on S).

The second item of Definition 3 deserves a comment. Clearly, the meaning of
every component of a knowledge situation remains unaltered in principle; but
each individual agent is taken into account now. The name, however, is changed
because the epistemic aspect, compared to the spatial one, comes more to the
fore here.

Now, we would like to evaluate formulas in multi-agent subset spaces M. For
that purpose, let x, U1, . . . , Un be a knowledge situation of some multi-agent
subset frame S (on which M is based). As no difficulties are raised in the propo-
sitional cases, we may proceed to the modalities directly. First, the case Kiα is
considered, where i ∈ {1, . . . , n}. In order to retain the intended meaning, Ki

should quantify across all the states that agent i considers possible at the world
x, i.e., across Ui. But for some y ∈ Ui it could be the case that y, U1, . . . , Un does
not belong to KS , for the simple reason that y /∈ Uj for some j ∈ {1, . . . , n}.
Thus, such a quantification is impossible in general. We conclude that we must
drop formulas of the type Kiα because of the new semantics (unless we add addi-
tional agent-specific modalities as in [10]). However, note that the knowledge of
the individual agents is still represented, namely by the corresponding domains
and, in particular, the semantic atoms.
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Fortunately, the just detected problem does not appear in the case of the
operator I . In fact, quantification now concerns states from the intersection of
all the actual knowledge states; hence every such state leads to a knowledge
situation as defined above. Thus, we let

x, U1, . . . , Un |=M Iα : ⇐⇒ ∀ y ∈
⋂

i=1,...,n

Ui : y, U1, . . . , Un |=M α.

Regarding formulas from KF, we have got a restricted correspondence between
the syntax and the semantics that way. But what can be said in the case of SF?
– An easy inspection shows that the knowledge operator K causes as much a
problem as Ki : because of the semantic defaults, quantifying is only possible
over those states that are common to all of the agents. But doing so obviously
means turning K into I . Consequently, we really set

K = I

henceforth. This is additionally justified by the fact that both operators share
the same properties of knowledge (expressed by the S5-axioms).

The remaining case to be treated is that of the effort operator �. It becomes
clear on second thought that this knowledge increasing modality should represent
a system component here and may have an effect on each of the agents thus. For
this reason, we define

x, U1, . . . , Un |=M �α : ⇐⇒
{∀U ′

1 ∈ O1 · · · ∀U ′
n ∈ On :

[
x ∈ U ′

i ⊆ Ui for
i = 1, . . . , n ⇒ x, U ′

1, . . . , U
′
n |=M α

]
.

In this way, the definition of the multi-agent semantics based on subset spaces
is completed. The set SF has proved to be the relevant set of formulas, after
identifying K and I .3

We are going to show that the logic LSS is sound for multi-agent subset spaces.

Proposition 2 (Soundness). All formulas from LSS are valid in every multi-
agent subset space.

Proof. We only care about the Cross Axioms, since everything else is quite
straightforward. Actually, we consider the dual schemata. Let M be an arbi-
trary multi-agent subset space and x, U1, . . . , Un a knowledge situation of the
underlying frame. Suppose that x, U1, . . . , Un |=M �Jα. Then there are U ′

1 ∈
O1, . . . , U

′
n ∈ On such that x ∈ U ′

i ⊆ Ui for i = 1, . . . , n and x, U ′
1, . . . , U

′
n |=M

Jα. This means that there exists some y ∈ ⋂

i=1,...,n

U ′
i for which y, U ′

1, . . . , U
′
n |=M

α. The world y is also contained in the intersection
⋂

i=1,...,n

Ui. Thus, the tuple

y, U1, . . . , Un is a knowledge situation satisfying y, U1, . . . , Un |=M �α. Conse-
quently, x, U1, . . . , Un |=M J�α. This proves the validity of �Jα → J�α. It
follows that all Cross Axioms are valid in every multi-agent subset space.

3 We retain the notation SF although we shall use I in place of K (and J in place of
L, respectively) as from now.
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The much more difficult question of completeness is tackled in the following
section.

5 Completeness

As in the single-agent case, an infinite step-by-step construction is used for prov-
ing the completeness of LSS with respect to the new semantics, too; cf. [5],
Sect. 2.2 (and [4], Sect. 4.6, for the method in general).4 For that, it is nat-
ural to bring the canonical model of LSS into play in some way. Thus, we fix
several notations concerning that model first. Let C be the set of all maximal

LSS-consistent sets of formulas. Furthermore, let
I−→ and

�−→ be the accessibil-
ity relations induced on C by the modalities I and �, respectively. Let α ∈ SF
be a non-LSS-derivable formula. Then, a multi-agent subset space falsifying α is
to be built incrementally. In order to ensure that the resulting limit structure
behaves as desired, several requirements on the approximations have to be met
at every stage.

Suppose that ¬α ∈ Γ ∈ C, i.e., Γ is to be realized. We choose a denu-
merably infinite set of points, Y (the possible worlds of the desired model),
fix an element x0 ∈ Y , and construct inductively a sequence of quadruples(
Xm, (P 1

m, . . . , Pn
m), (j1m, . . . , jnm), (t1m, . . . , tnm)

)
such that, for all m ∈ N and

i ∈ {1, . . . , n},
1. Xm is a finite subset of Y containing x0,
2. P i

m is a finite set carrying a partial order ≤i
m, with respect to which there

is a least element ⊥ ∈ Xm,
3. jim : P i

m → P (Xm) is a function such that p ≤i
m q ⇐⇒ jim(p) ⊇ jim(q), for

all p, q ∈ P i
m,

4. tim : Xm × P i
m → C is a partial function such that, for all x, y ∈ Xm and

p, q ∈ P i
m,

(a) tim(x, p) is defined iff x ∈ jim(p); in this case it holds that

i. if y ∈ jim(p), then tim(x, p)
I−→tim(y, p),

ii. if p ≤i
m q, then tim(x, p)

�−→ tim(x, q),

(b) tim(x0,⊥) = Γ .

The next four conditions say to what extent the final model is approximated by
the structures

(
Xm, (P 1

m, . . . , Pn
m), (j1m, . . . , jnm), (t1m, . . . , tnm)

)
. Actually, it will

be guaranteed that, for all m ∈ N and i ∈ {1, . . . , n},
5. Xm ⊆ Xm+1,
6. P i

m+1 is an end extension of P i
m (i.e., a superstructure of P i

m such that no
element of P i

m+1 \ P i
m is strictly smaller than any element of P i

m),
7. jim+1(p) ∩Xm = jim(p) for all p ∈ P i

m,
8. tim+1 |Xm×P i

m
= tim.

4 Due to the lack of space, we can only give a proof sketch here; however, some of the
technical differences will be highlighted below.
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Finally, the construction complies with the following requirements on existential
formulas: for all n ∈ N and i ∈ {1, . . . , n},
9. if Jβ ∈ tim(x, p), then there are m < k ∈ N and y ∈ jik(p) such that β ∈

tik(y, p),
10. if �β ∈ tim(x, p), then there are m < k ∈ N and p ≤i

k q ∈ P i
k such that

β ∈ tik(x, q).

With that, the final model refuting α can be defined easily. Furthermore, a
relevant Truth Lemma (see [4], 4.21) can be proved for it, from which the
completeness of LSS with respect to the multi-agent semantics follows imme-
diately. Thus, it remains to specify, for all m ∈ N, the approximating structures(
Xm, (P 1

m, . . . , Pn
m), (j1m, . . . , jnm), (t1m, . . . , tnm)

)
in a way that all the above re-

quirements are met. This makes up one of the crucial parts of the proof.
Since the case m = 0 is rather obvious, we focus on the induction step.

Here, some existential formula contained in some maximal LSS-consistent set
tim(x, p) must be made true, where x ∈ Xm and p ∈ P i

m; see item 9 and item 10
above. We confine ourselves to the case of the implicit knowledge operator. So
let Jβ ∈ tim(x, p). We choose a new point y ∈ Y and let Xm+1 := Xm∪{y}. The
sets P 1

m, . . . , Pn
m remain unchanged (and the associated partial orders therefore

as well), i.e., we define P i
m+1 := P i

m for i = 1, . . . , n. However, the mappings
j1m, . . . , jnm are modified as follows. We let jim+1(q) := jim(q) ∪ {y}, for all q ∈
P i
m satisfying q ≤i

m p and all i ∈ {1, . . . , n}. The latter requirement obviously
guarantees that the new point is really in the intersection of the local knowledge
states. Finally, the mappings t1m, . . . , tnm are adjusted. From the Existence Lemma
of modal logic (see [4], 4.20) we know that, for every i ∈ {1, . . . , n}, there is

some point Γi of C such that tim(x, p)
I−→ Γi and β ∈ Γi. Thus, we define

tim+1(y, p) := Γi. Moreover, the maximal consistent sets which are to be assigned
to the pairs (y, q) where q ≤i

m p and q 	= p, are obtained by means of the cross
property (which in fact holds on the canonical model); for all other pairs (z, r) ∈
Xm+1 × P i

m+1, we let tim+1(z, r) := tim(z, r). This completes the definition of(
Xm+1, (P

1
m+1, . . . , P

n
m+1), (j

1
m+1, . . . , j

n
m+1), (t

1
m+1, . . . , t

n
m+1)

)
in the case under

consideration.
We must now check that the validity of the properties stated in items 1 –

8 above is transferred from m to m + 1. Doing so, several items prove to be
evident from the construction. In some cases, however, the particularities of the
accessibility relations on C (like the cross property) have to be applied. Further
details regarding this must be omitted here.

As to the validity of item 9 and item 10, it has to be ensured that all possible
cases are eventually exhausted. To this end, processing must suitably be sched-
uled with regard to both modalities. This can be done with the aid of appropriate
enumerations. The reader is referred to the paper [5] to see how this works in
the single-agent case. – In the following theorem, the above achievements are
summarized.

Theorem 2 (Completeness). If the formula α ∈ SF is valid in all multi-agent
subset spaces, then α is LSS-derivable.
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Proposition 2 and Theorem 2 together constitute the main result of this paper,
saying that LSS is sound and complete with respect to the class of all multi-agent
subset spaces.

6 Remarks on Decidability and Complexity

While the soundness and the completeness of a logic depend on the underlying
semantics by definition, decidability is a property of the logic (as a set of for-
mulas) by itself. Thus, this property could be established by using a different
semantics, and this is actually the case with LSS.

At the end of Section 2, it was stated that LSS is sound and complete for cross
axiom models. In addition, LSS satisfies the finite model property with respect
to this class of models, as was shown in [5], Sect. 2.3. Now, it is known from
modal logic that both properties together imply decidability (see [4], Sect. 6.2).
Thus, we can readily adopt this fact with reference to the present context.

Theorem 3 (Decidability). LSS is a decidable set of formulas.

And what is true of decidability is just as true of complexity: being a property
of the logic alone. Unfortunately, the precise complexity of LSS has not yet been
determined. Quite recently, the weak logic of subset spaces, which results from
LSS by forgetting the Cross Axioms, was proved to be PSPACE-complete; see
[2]. Thus, we have a partial corollary at least. The general case, however, still
awaits a solution.

7 Conclusion

In this paper, we have introduced a new description of the implicit knowledge
of a group of agents on the basis of subset spaces. Actually, the usual logic
of implicit knowledge and Moss and Parikh’s logic of subset spaces have been
synthesized. The result is a novel semantics for implicit knowledge first, where the
actual knowledge states of the individual agents are represented by the semantic
atoms. We have argued that, relating to this framework, the implicit knowledge
operator I takes over the role of the knowledge operator K from the language
L for (single-agent) subset spaces. Thus, subset space formulas can speak about
implicit knowledge and its dynamic change when interpreting them in multi-
agent subset spaces.

The second outcome of this paper is a meta-theorem on the logic accompa-
nying this non-standard semantics of I . We have proved that the logic of subset
spaces, LSS (see Section 3), is sound and complete with respect to multi-agent
subset spaces, too. Moreover, this logic is even decidable, which is obtained as a
consequence of earlier results.

It has been argued here and there that subset spaces provide an alternative
basis for reasoning about knowledge, complementing the most common and well-
established epistemic logic as proposed, e.g., in [13]. It appears to us that the
present paper as well makes a contribution underpinning this thesis.
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An important open problem regarding LSS was addressed near the end of
Section 6. Yet a lot remains to be done beyond answering that question. In
particular, one should try to bring subset spaces into line with as many theoret-
ical or practice-oriented epistemic concepts as possible, according to the thesis
which has just been mentioned. (An additional justification for such a project
was already indicated above, right before the final section of the introduction.)
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