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Abstract. Elliptic curve can be seen as the intersection of two quadratic
surfaces in space. In this paper, we used the geometry approach to
explain the group law for general elliptic curves given by intersection
of two quadratic surfaces, then we construct the Miller function over the
intersection of quadratic surfaces. As an example, we obtain the Miller
function of Tate pairing computation on twisted Edwards curves. Then
we present the explicit formulae for pairing computation on Edwards
curves. Our formulae for the doubling step are a littler faster than that
proposed by Arène et al.. Moreover, when j = 1728 and j = 0 we consider
quartic and sextic twists to improve the efficiency respectively. Finally,
we present the formulae of refinements technique on Edwards curves to
obtain gain up when the embedding degree is odd.

Keywords: Edwards curves · Tate pairing · Miller functions · Cryptog-
raphy

1 Introduction

To compute pairings efficiently is always a bottleneck for implementing pairing-
based cryptography. The basic method of computing pairings is Miller’s algorithm
[20]. Consequently, various improvements were presented in [1,13,14,17,21].
One way to improve the efficiency is to find other models of elliptic curves which
can provide more efficient algorithms for pairing computation. Edwards curves
were one of the popular models. Edwards curve was discovered by Edwards [9] and
was applied in cryptography by Bernstein and Lange [2]. Then twisted Edwards
curves which are the generalization of Edwards curves were introduced by Bern-
stein et al. in [3]. Bernstein and Lange also pointed out several advantages of
applying the Edwards curves to cryptography. Edwards curves are far superior
in elliptic curve cryptography because of fast addition formulae. Pairing compu-
tation over Edwards curves was first considered in [8,16]. In 2009, Arène et al. [1]
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gave the geometric interpretation of the group law and presented explicit formu-
lae for computing the Tate pairing on twisted Edwards curves. Their formulae are
faster than all previously proposed formulas for pairings computation on twisted
Edwards curves. Their formulae are even competitive with all published formulae
for pairing computation on Weierstrass curves.

Any elliptic curve defined over a field K with characteristic different from 2
is birationally equivalent to an Edwards curve over some extension of K, i.e. a
curve given by x2 + y2 = 1+dx2y2 with d �∈ {0, 1}. In fact, the twisted Edwards
can be seen as the intersection of two quadratic surfaces in space. That is to say
the twisted Edwards curves can be given by Sa,d : aX2+Y 2 = Z2+dW 2, XY =
ZW . For general elliptic curves given by intersection of two quadratic surfaces,
the geometric interpretation of group law had been discussed by Merriman et al.
in [19]. In some situations it is more effectively to write an elliptic curve as the
intersection of two quadratic surfaces in space. Jacobi quartic curve is another
example of the importance [7,18]. In [22], we use a straightforward way give the
elaborate geometric interpretation of the group law on twisted Edwards curves
which are seen as the intersection of two quadric surfaces in space. In this paper,
we used the geometry approach of [19] to explain the group law for general
elliptic curves given by intersection of two quadratic surfaces, then we construct
the Miller function over the intersection of quadratic surfaces. As an example,
we obtain the Miller function of Tate pairing computation on twisted Edwards
curves. Of course, you can use a similar approach to compute Tate pairing on any
elliptic curves given by intersection of two quadratic surfaces. However, for the
sake of integrity, we recalculate the explicit formulae for pairing computation
on twisted Edwards curves. The high-twists had been sufficiently studied by
Costello, Lange and Naehrig [6] on Weierstrass curves. As the result given by
[11], one elliptic curve and its quartic/sextic twist can’t both be written in a
rational twisted Edwards form, so we turn to Weierstrass curves for the high-
degree twists of twisted Edwards curves. These twists enable us to reduce the
cost of substituting to a half and a third respectively in j = 1728 case and j = 0
case. For Edwards curves, it is an interesting problem to find an efficient way to
compute ate pairing on twisted Edwards curves.

When the embedding degree is even, the traditional denominator elimina-
tion technique is used. While the denominator elimination can not be used if the
embedding degree is odd, so we consider the refinement technique to improve the
efficiency. In [5], Blake et al. presented three refinements to Miller’s algorithm
over Weierstrass curves by reducing the total number of vertical lines in Miller’s
algorithm. This method can be used for both Weil and Tate Pairing over Weier-
strass curves with any embedding degree. In [23], L. Xu and D. Lin study the
refinements formulas for Edwards curves. If we see the Edwards curves as the
intersection of two quadratic surfaces in space, our refinements over Edwards
curves cost less than the refinements of L. Xu and D. Lin [23], because in our
method we use one plane to replace two lines of the Miller function in [23].

In this paper, we use m and s denote the costs of multiplication and squaring
in the base field Fq while M and S denote the costs of multiplication and squaring
in the extension Fqk .
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2 Tate Pairing

Let p > 3 be a prime and Fq be a finite field with q = pn. E is an elliptic
curve defined over Fq with neutral element denoted by O. r is a prime such that
r|#E(Fq). Let k > 1 denote the embedding degree with respect to r, i.e. k is the
smallest positive integer such that r|qk − 1. For any point P ∈ E(Fq)[r], there
exists a rational function fP defined over Fq such that div(fP ) = r(P ) − r(O),
which is unique up to a non-zero scalar multiple. The group of r-th roots of unity
in Fqk is denoted by μr. The reduced Tate pairing is then defined as follows:

Tr : E(Fq)[r] × E(Fqk) → μr : (P,Q) �→ fP (Q)(q
k−1)/r.

The rational function fP can be computed in polynomial time by using
Miller’s algorithm [20]. The main ideal of Miller’s algorithm is to inductively
build up such a function fP by constructing the function fn,P . The function
fn,P is defined by (fn,P ) = n(P ) − ([n]P ) − (n − 1)(O), n is an integer smaller
than r.

Let gP,T ∈ Fq(E) be the rational function satisfying div(gP,T ) = (P )+ (T )−
(O) − (P + T ), where P + T denotes the sum of P and T on E, and additions
of the form (P ) + (T ) denote formal additions in the divisor group.

If P ∈ E, define f0,P = f1,P = 1. Inductively, for n > 0, define fn+1,P :=
fn,P gP,nP , then we have

fm+n,P = fm,P · fn,P · gmP,nP .

3 Edwards Curves

In this section, we review the preliminaries of Edwards curves. Let Fq be a finite
field with characteristic greater than 3. A twisted Edwards curve is a quartic
curve over Fq, defined by

Ea,d : ax2 + y2 = 1 + dx2y2,

where a, d are distinct nonzero elements of Fq. In [3], Bernstein et al. proved
that an elliptic curve over a field K with the group 4|�E(K) if and only if E
is birationally equivalent over K to a twisted Edwards curve. The sum of two
points (x1, y1) and (x2, y2) on the twisted Edwards curve Ea,d is

(x1, y1) + (x2, y2) =
(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − ax1x2

1 − dx1x2y1y2

)
.

The point (0, 1) is the unit of the addition law. The inverse of a point (x, y)
on Ea,d is (−x, y).

In fact, the twisted Edwards curve can be seen as the intersection of two
quadric surfaces in space. That is, the twisted Edwards curve can be written as:

Sa,d : aX2 + Y 2 = Z2 + dW 2, XY = ZW. (1)
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Set O = (0 : 1 : 0 : 1) as the neutral element, the group law on (1) is given by

−(X : Y : W : Z) = (−X : Y : −W : Z)

and
(X1 : Y1 : W1 : Z1) + (X2 : Y2 : W2 : Z2) = (X3 : Y3 : W3 : Z3)

where
X3 = (X1Y2 + Y1X2)(Z1Z2 − dW1W2),
Y3 = (Y1Y2 − aX1X2)(Z1Z2 + dW1W2),

W3 = (Y1Y2 − aX1X2)(X1Y2 + X2Y1),
Z3 = (Z1Z2 − dW1W2)(Z1Z2 + dW1W2)

(2)

The point O′ = (0 : −1 : 0 : 1) has order 2. Note that the above formula is
unified, that is it can be applied to both adding two distinct points and doubling
a point. The fast arithmetic on twisted Edwards given by Sa,d can be found in
[4,15].

4 Group Law Over the Intersection of Quadratic Surfaces

Let E denote the intersection of quadratic surfaces. The group law of this kind of
curve is different from that of cubic curves. We consider projective planes which
are given by homogeneous projective equations Π = 0. In this paper, we still use
the symbol Π to denote projective planes. In fact, any plane Π intersects E at
exactly four points. Although these planes are not functions on E, their divisors
can be well defined as:

(Π) =
∑

P∈Π∩E

nP (P ) (3)

where nP is the intersection multiplicity of Π and E at P . Then the quotient
of two projective planes is a well defined function which gives principal divisor.
Let O ∈ E(Fq) be the neutral element, there must be a plane intersects E with
multiply three at O, and its fourth intersecting points with E is O′. It is also
obvious that P1, P2, P3 and P4 are coplaner if and only if P1+P2+P3+P4 = O′.

4.1 Miller Function Over the Intersection of Quadratic Surfaces

In this section we construct the Miller function over the intersection of quadratic
surfaces.

Let E be the intersection of two quadratic surfaces, O is the neutral element;
P1 and P2 be two different points on E, ΠP1,P2,O′ denote the projective plane
passing through P1, P2 and O′. The group law given above shows that −P1 −P2

is the third intersection, by (3) we can get:

(ΠP1,P2,O′) = (P1) + (P2) + (−P1 − P2) + (O′)

Similarly, ΠT+P,O,O′ intersects with E at P1 + P2, O′, O and −P1 − P2. Then:

(ΠP1+P2,O,O′) = (P1 + P2) + (O) + (O′) + (−P1 − P2)
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Thus,

(
ΠP1,P2,O′

ΠP1+P2,O,O′
) = (P1) + (P2) − (P1 + P2) − (O)

The geometry interpolation derives the formula of Miller’s function directly. The
Miller’s function with divisor (P1) + (P2) − (P1 + P2) − (O) can be given

gP1,P2 =
ΠP1,P2,O′

ΠP1+P2,O,O′
(4)

In Miller’s algorithm, P is always a fixed point, T is always nP for some integer
n. For the addition steps, Miller function gT,P over E can be given by setting
P1 = T, P2 = P . For the doubling steps, Miller function gT,T over E is given by
setting P1 = P2 = T .

Note that the planes appear in the formula always pass through O′. Particu-
larly, if P1, P2 and O′ are pairwise distinct points on Sa,d. We use the equation
CXX +CY Y +CZZ +CW W = 0 to denote a projective plane. By solving linear
equations, we get the coefficients of the plane ΠP1,P2,O′ in Miller function of
twisted Edwards curves as follows:

CX = W2(Z1 + Y1) − W1(Z2 + Y2),
CY = X2W1 − X1W2,
CW = X1(Y2 + Z2) − X2(Z1 + Y1)

(5)

In the case that P1 = P2, we have

CX = Y1Z1 − aX2
1 , CY = X1Z1 − X1Y1, CW = dX1W1 − Z2

1 . (6)

5 Pairing Computation on Sa,d with Even Embedding
Degrees

In this section, we analysis computation steps in Miller’s algorithm explicitly.
The results in this section are mainly from [22]. For an addition step or doubling
step, each addition or doubling steps consist of three parts: computing the point
T + P or 2T and the function gT,P or gT,T , evaluating gT,P or gT,P at Q,
then updating the variable f by f ← f · gT,P (Q) or by f ← f2 · gT,T (Q).
The updating part, as operation in Fqk , costs 1M for addition step and 1M +
1S for doubling step. For the evaluating part, some standard methods such as
denominator elimination and subfield simplification can be used, as we introduce
below.

As usual, we choose P ∈ Sa,d(Fq)[r] and Q ∈ Sa,d(Fqk), where k > 1 is the
embedding degree. In fact as stated in [13], Q can be chosen from a subgroup
which is given by a twist of Sa,d. More precisely, for d = #Aut(Sa,d), there
is degree-d twist of Sa,d over Fqk/d denoted as E′ such that Q ∈ ψ(E′(Fqk/d))
with ψ : E′ → Sa,d an isomorphism over Fqk/d . It is noticeable that E′ is not
necessary to have a twisted Edwards model.

In this part, we assume that embedding degree k is even. Let δ be a gen-
erator of Fqk over Fqk/2 with δ2 ∈ Fqk/2 . Suppose Q′ = (X0 : Y0 : W0 : Z0) ∈
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Saδ−2,dδ−2(Fqk/2), we can see that Q = (X0 : δY0 : W0 : δZ0) ∈ Sa,d(Fqk). If
P3 = P1 + P2 �= O,O′, for evaluation of gP1,P2(Q), we have

gP1,P2(Q) =
ΠP1,P2,O′(Q)
ΠP3,O,O′(Q)

=
CXX0 + CY δ(Y0 + Z0) + CW W0

W3X0 − X3W0

=
CX

X0
Y0+Z0

+ CY δ + CW
W0

Y0+Z0

(W3X0 − X3W0)/(Y0 + Z0)
∈ (CXθ + CY δ + CW η)F∗

qk/2 ,

where θ = X0
Y0+Z0

and η = W0
Y0+Z0

. It is clearly that (W3X0 − X3W0)/(Y0 +
Z0) in F

∗
qk/2 , then it can be discarded in pairing computation thanks to the

final exponentiation, This fact is usually called the denominator elimination
technique.

In generally, Let Fq be an ordinary elliptic curve with neutral elements O ∈
E(Fq), then Miller function gP1,P2 =

ΠP1,P2,O′
ΠP1+P2,O,O′ =

ΠP1,P2,O′/ΠO,O,O′
ΠP1+P2,O,O′//ΠO,O,O′ . let

E′/Fq is a degree-d twist of E/Fq with d even, thus the isomorphism φ : E′ → E
is defined over Fqd . Then for any Q′ ∈ E′(Fq) and P �= O ∈ E(Fq), the value of
function ΠP,O,O′/ΠO,O,O′ ∈ Fq(E) at Q = φ(Q′) ∈ F

∗
qd/2 if Q �= ±P . Thus it is

eliminated by the final exponential.
Note that θ, η ∈ Fqk/2 are fixed during pairing computation, so they can be

precomputed. The coefficients CX , CY and CW are in Fq, thus the evaluation at
Q given the coefficients of the plane can be computed in km (multiplications by
θ and η need k

2m each).

Addition Steps. Let P1 = T and P2 = P be distinct points with Z1Z2 �= 0. By
variant of formula (2) and (5), the explicit formulas for computing P3 = T + P
and CX , CY , CW are given as follows:

A = X1 · X2, B = Y1 · Y2, C = Z1 · W2,D = Z2 · W1, E = W1 · W2,

F = (X1 − Y1) · (X2 + Y2) − A + B,G = B + aA,H = D − C,

I = D + C,X3 = I · F, Y3 = G · H,Z3 = F · G,W3 = I · H,

CX = (W1 − Y1) · (W2 + Y2) − E + B + H,CW = X2 · Z1 − X1 · Z2 − F,

CY = (X1 − W1) · (X2 + W2) − A + E.

With these formulas T + P and CX , CY , CW can be computed in 14m + 1mc,
where 1mc is constant multiplication by a. For a mixed addition step, in which
the base point P is chosen to have Z2 = 1, the costs reduce to 12m + 1mc.
Therefore, the total costs of an addition step are 1M+ km+ 14m+ 1mc, while
a mixed addition step costs 1M + km + 12m + 1mc.

Doubling Steps. For P1 = P2 = T , P3 = 2T . By the formulae of (2) and
(6), our explicit formulas for computing P3 = 2T and CX , CY , CW are given as
follows:
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A = X1
2, B = Y1

2, C = Z1
2,D = aA,E = B + D,F = 2C − E,

G = (X1 + Y1)2 − A − B,H = (Y1 + Z1)2 − B − C,

X3 = G · F, Y3 = E · (B − D), Z3 = E · F,W3 = G · (B − D),
2CX = H − 2D, 2CY = (X1 + Z1)2 − A − C − G,

2CW = d((X1 + W1)2 − A) − C − E.

By the above formulae, 2T and CX , CY , CW can be computed in 4m+7s+2mc,
where 2mc are constant multiplications by a and d. So total costs of our formulae
for a doubling step are 1M+1S+km+4m+7s+2mc. While the total costs of the
formulae for the doubling step proposed in [1] are 1M+1S+km+6m+5s+2mc,
where 2mc are both constant multiplication by a.

The following table shows the concrete comparison for doubling step(DBL),
mixed addition step (mADD) and addition step (ADD).

DBL mADD ADD

Arène et.al. [1] 1M + 1S + km 1M + km 1M + km

+6m + 5s + 2mc +12m + 1mc +14m + 1mc

This paper 1M + 1S + km 1M + km 1M + km

+4m + 7s + 2mc +12m + 1mc +14m + 1mc

5.1 Pairing Computation on Sa,d with Twists of Degree 4 or 6

Let d|k, an elliptic curve E′ over Fqk/d is called a twist of degree d of E/Fqk/d

if there is an isomorphism ψ : E′ → E defined over Fqk , and this is the small-
est extension of Fqk/d over which ψ is defined. Depending on the j-invariant
j(E) of E, there exist twists of degree at most 6, since char(Fq) > 3. Pairing
friendly curves with twists of degree higher than 2 arise from constructions with
j-invariants j(E) = 0 and j(E) = 1728.

The twisted Edwards curve ax2+y2 = 1+dx2y2 has j-invariant ja,d = 16(a2+
14ad + d2)3/ad(a − d)4, hence, the j-invariant of Ea,−a : ax2 + y2 = 1 − ax2y2

equal to 1728, thus, there exist twists of degree 4. The case a = 1 is the “classical”
Edwards curve x2 + y2 = 1 − x2y2 with complex multiplication D = −4 [12].
Furthermore, ja,d = 0 if and only if a = (−7 ± 4

√
3)d. Note that 3 is a square

in finite field Fq if and only if q ≡ ±1 (mod 12). Now we assume that q ≡ ±1
(mod 12) and a, d satisfy the relation a = (−7 ± 4

√
3)d. Then Edwards curve

Ea,d : ax2+y2 = 1+dx2y2 has j-invariant equal to 0, hence, there exist twists of
degree 6. The case a = 1 is the Edwards curve x2 + y2 = 1− (7+4

√
3)x2y2 with

complex multiplication D = −3 [12]. But Galbraith showed one elliptic curve
and its quartic/sextic twist can’t both be written in a rational twisted Edwards
form [11], so we turn to Weierstrass curves for the high-degree twists of twisted
Edwards curves.
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Twists of Degree 4

Lemma 1 ([22], Lemma 2). Assume that 4|k, δ is a generator of Fqk over
Fqk/4 and δ4 ∈ Fqk/4 , which implies δ2 ∈ Fqk/2 . Then the Weierstrass curve
Wa : 2

av2 = u3+ 1
δ4 u is a twist of degree 4 over Fqk/4 of Ea,−a. The isomorphism

can be given as

ψ : Wa −→ Ea,−a, (u, v) �−→ (x, y) =
(
u/δv, (δ2u − 1)/(δ2u + 1)

)
.

The inverse transformation is (x, y) �→ ((1 + y)/(δ2(1 − y)), (1 + y)/(δ3x(1 −
y))). For Q′ ∈ Wa(Fqk/4), we have (xQ, yQ) = ψ(Q′) ∈ Ea,−a(Fqk). Then its
corresponding point Q ∈ Sa,−a(Fqk) can be given as (XQ : YQ : WQ : ZQ) =
(xQ : yQ : xQyQ : 1). One can check by substitution that:

XQ + WQ

YQ + ZQ
= xQ =

u

δv
,

XQ − WQ

YQ + ZQ
= xQ · 1 − yQ

1 + yQ
=

1
δ3v

.

For θ = u
2v and η = 1

2v , we have XQ

YQ+ZQ
= θδ−1+ηδ−3 and WQ

YQ+ZQ
= θδ−1−ηδ−3

with θ, η ∈ Fqk/4 . Then for the evaluation of gP1,P2(Q) with P3 = P1+P2 �= O,O′,
we get

gP1,P2(Q) =
ΠP1,P2,O′(Q)
ΠP3,O,O′(Q)

=
CX

XQ

YQ+ZQ
+ CY + CW

WQ

YQ+ZQ

W3
XQ

YQ+ZQ
− X3

WQ

YQ+ZQ

=
CX(θδ−1 + ηδ−3) + CY + CW (θδ−1 − ηδ−3)

W3(θδ−1 + ηδ−3) − X3(θδ−1 − ηδ−3)

=
(CX − CW )η + (CX + CW )θδ2 + CY δ3

(W3 + X3)η + (W3 − X3)θδ2

∈ ((CX − CW )η + (CX + CW )θδ2 + CY δ3)F∗
qk/2 .

So we can reduce gP1,P2(Q) to (CX −CW )η+(CX +CW )θδ2+CY δ3. Moreover
we may precompute θ and η since they are fixed during the whole computation.
When CX , CY , CW ∈ Fq and θ, η ∈ Fqk/4 are given, the evaluation at Q can be
computed in k

2m, with k
4m each for multiplications by θ and η.

Consider Fqk as an Fqk/4-vector space with basis 1, δ, δ2, δ3. Then an arbitrary
element α ∈ Fqk can be denoted as a0 + a1δ + a2δ

2 + a3δ
3 with ai ∈ Fqk/4 , i =

0, 1, 2, 3. And the reduced value of g(Q) we’ve gotten above can be denoted as
β = b0+b2δ

2+b3δ
3, where b3 ∈ Fq and b0, b2 ∈ Fqk/4 . This special representation

may lead to some optimization of the main multiplication in Fqk , but when using
the field towering the cost will remain approximately 1M.

Therefore, the addition step costs 1M + (k
2 + 14)m + 1mc, where 1mc is

constant multiplication by a. For a mixed addition step, the costs reduce to
1M+(k

2 +12)m+1mc. The doubling step costs 1M+1S+(k
2 +4)m+7s+2mc,

where 2mc are constant multiplications by a and d.
When using the Schoolbook method, multiplying α by β costs 4 · k

4m for
computing ai · b3, i = 0, 1, 2, 3 and costs 8(k

4 )2m for ai · b0 and ai · b2. The total
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cost (k2

2 + k)m equals to ( 12 + 1
k )M, considering that a general multiplication in

Fqk costs M = k2m. Namely the quartic twist may reduce the cost of the main
multiplication in Miller’s algorithm to (12 + 1

k )M. Therefore, the addition step
costs ( 12 + 1

k )M+ (k
2 + 14)m+ 1mc, where 1mc is constant multiplication by a.

For a mixed addition step, the costs reduce to (12 + 1
k )M + (k

2 + 12)m + 1mc.
The doubling step costs (12 + 1

k )M+ 1S+ (k
2 + 4)m+ 7s+ 2mc, where 2mc are

constant multiplications by a and d.
By the way, according to the definition of Ate pairing, the point addition and

doubling are performed in Fqk . Thanks to the Lemma 1, we can choose Q′ ∈ Wa

such that Q = ψ(Q′) ∈ Sa,−a. So, is there a efficient way to compute ate pairing
on twisted Edwards curves?

Twists of Degree 6. We denote M = 2(a+d)
a−d and N = 4

a−d when given a, d.

Lemma 2 ([22], Lemma 3). Assume that 6|k, δ is a generator of Fqk over Fqk/6

with δ6 ∈ Fqk/6 , which implies δ2 ∈ Fqk/2 and δ3 ∈ Fqk/3 . Then the Weierstrass
elliptic curve WM,N : v2 = u3 − M3N3

27 δ6 is a twist of degree 6 over Fqk/6 of Ea,d.
The isomorphism can be given as

ψ : Wa −→ Ea,d, (u, v) �−→ (x, y) =

(
Nδ(3u − MNδ2)

3v
,
3u − MNδ2 − 3Nδ2

3u − MNδ2 + 3Nδ2

)
.

The inverse transformation is (x, y) �→ ((y(MNδ2 −3Nδ2)− (MNδ2 +3Nδ2))/3
(y − 1),−N2δ3(1 + y)/x).

Similarly with the twists of degree 4 case, for the evaluation of gP1,P2(Q)
with P3 = P1 + P2 �= O,O′, we get

gP1,P2(Q) =
ΠP1,P2,O′(Q)
ΠP3,O,O′(Q)

=
CX

XQ

YQ+ZQ
+ CY + CW

WQ

YQ+ZQ

W3
XQ

YQ+ZQ
− X3

WQ

YQ+ZQ

=
CX(θδ−5 + (3 − M)ηδ−3) + CY + CW (θδ−5 − (3 + M)ηδ−3)

W3(θδ−5 + (3 − M)ηδ−3) − X3(θδ−5 − (3 + M)ηδ−3)

=
(CX + CW )θ + (3(CX − CW ) − M(CX + CW ))ηδ2 + CY δ5

(W3 − X3)θ + (3(W3 + X3) − M(W3 − X3))ηδ2

∈ ((CX + CW )θ + (3(CX − CW ) − M(CX + CW ))ηδ2 + CY δ5)F∗
qk/2 .

So we can reduce gP1,P2(Q) to the representative in the last line. Moreover we
may precompute θ and η since they are fixed during the whole computation.
When CX , CY , CW ∈ Fq and θ, η ∈ Fqk/6 are given, the evaluation at Q can
be computed in k

3m + mc, with k
6m each for multiplications by θ and η and a

constant multiplication by M = 2(a+d)
a−d .

Furthermore, the reduced g(Q) can be denoted as β = b0 + b2δ
2 + b5δ

5,
where b5 ∈ Fq and b0, b2 ∈ Fqk/6 . The cost of main multiplication is still 1M
with some possibilities of further optimization. Therefore, the addition step costs
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1M + (k
3 + 14)m + 2mc. For a mixed addition step, the costs reduce to 1M +

(k
3 + 12)m + 2mc. The doubling step costs 1M + 1S + (k

3 + 4)m + 7s + 3mc.
Likewise, when using the Schoolbook method, multiplying α by β costs 6· k

6m
for computing ai ·b5, i = 0, 1, 2, 3 and costs 12(k

6 )2m for ai ·b0 and ai ·b2. The total
cost (k2

3 + k)m equals to ( 13 + 1
k )M, considering that a general multiplication in

Fqk costs M = k2m. Namely the sextic twist may reduce the cost of the main
multiplication in Miller’s algorithm to (13 + 1

k )M. Therefore, the addition step
costs ( 13+ 1

k )M+(k
3+14)m+2mc, where 2mc are multiplications by a and 2(a+d)

a−d .
For a mixed addition step, the costs reduce to (13 + 1

k )M + (k
3 + 12)m + 2mc.

The doubling step costs (13 + 1
k )M+ 1S+ (k

3 + 4)m+ 7s+ 3mc, where 3mc are
multiplications by a, d and 2(a+d)

a−d .
The following table shows the total cost of Tate pairing computation on

twisted Edwards curves with j = 1728 or j = 0.

DBL mADD ADD

This paper 1M + 1S + k
2
m 1M + k

2
m 1M + k

2
m

j = 1728 +4m + 7s + 2mc +12m + 1mc +14m + 1mc

This paper 1M + 1S + k
3
m 1M + k

3
m 1M + k

3
m

j = 0 +4m + 7s + 3mc +12m + 2mc +14m + 2mc

6 Refinements Over Twisted Edwards Curves

When the embedding degree is odd, to improve the efficiency we may use the
refinements technique to reduce the cost of the multiplication and squaring in
the extension field Fqk . The refinements technique is first prosed by [5]. In [23],
L. Xu and D. Lin study the refinements formulas for Edwards curves. From
formula (4), the iterative formula over the intersection of quadratic surfaces can
be rewritten as:

fn,P · fm,P · gnP,mP = fn,P · fm,P · ΠnP,mP,O′

Π(n+m)P,O′,O

In fact, we can study the refinements over Edwards curves based on the following
observations.

Theorem 1.

ΠT,T,O′

Π2T,O′,O
· Π2T,P,O′

Π2T+P,O′,O
=

ΠT,T,O′

Π−2T,−P,O′
· ΠP,O′,O

ΠO′,O,O

Proof. By the group law described in Sect. 4, we can get

(
ΠT,T,O′

Π2T,O′,O
· Π2T,P,O′

Π2T+P,O′,O
) = 2(T ) + (P ) − (2T + P ) − 2(O)
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we reconstruct the divisor 2(T ) + (P ) − (2T + P ) − 2(O) as:

(T ) + (T ) + (O′) + (−2T ) + (P ) + (O′) + (O) + (−P )
(−2T ) + (−P ) + (O′) + (2T + P ) + (O) + 3(O′)

while, from the formula (3) the above divisor is exactly

(
ΠT,T,O′

Π−2T,−P,O′
· ΠP,O′,O

ΠO′,O,O
)

Since, in the Miller’s algorithm we choose all the rational functions to be nor-
malized. Thus,

ΠT,T,O′

Π2T,O′,O
· Π2T,P,O′

Π2T+P,O′,O
=

ΠT,T,O′

Π−2T,−P,O′
· ΠP,O′,O

ΠO′,O,O

	

Theorem 2.

Π4T,riP,O′

Π4T+riP,O′,O
· Π2T,2T,O′

Π4T,O′,O
· Π2

T,T,O′

Π2
2T,O′,O

=
Π2

T,T,O′

Π−2T,−2T,O′ · Π4T+riP,O′,O
· Π4T,riP,O′

ΠO′,O,O

Proof. By the group law described in Sect. 4, we can get

(
Π4T,riP,O′

Π4T+riP,O′,O
· Π2T,2T,O′

Π4T,O′,O
· Π2

T,T,O′

Π2
2T,O′,O

) = 4(T ) + (riP ) − (4T + riP ) − 4(O)

we reconstruct the divisor 4(T ) + (riP ) − (4T + riP ) − 4(O) as:

2(T ) + 2(T ) + 2(O′) + 2(−2T ) + (4T ) + (riP ) + (O′) + (−4T − riP )
2(−2T ) + (O′) + (4T ) + (4T + riP ) + (O′) + (O) + (−4T − riP ) + (O′) + 3(O)

while, by the formula (3) we can get the above divisor is exactly

(
Π2

T,T,O′

Π−2T,−2T,O′ · Π4T+riP,O′,O
· Π4T,riP,O′

ΠO′,O,O
)

since, in the Miller’s algorithm we choose all the rational functions to be nor-
malized. So we have:

Π4T,riP,O′

Π4T+riP,O′,O
· Π2T,2T,O′

Π4T,O′,O
· Π2

T,T,O′

Π2
2T,O′,O

=
Π2

T,T,O′

Π−2T,−2T,O′ · Π4T+riP,O′,O
· Π4T,riP,O′

ΠO′,O,O

	

2T+P-form Refinement. In the ith basic Miller iteration of Algorithm 1, we
can displace the explicit formula of f as follows:

f ← f2 · ΠT,T,O′(Q)
Π2T,O′,O(Q)

· Π2T,P,O′(Q)
Π2T+P,O′,O(Q)
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Our 2T + P -form refinement is based on Theorem 1, the formula of f in the ith
basic Miller iteration in our algorithm is:

f ← f2 · ΠT,T,O′(Q)
Π−2T,−P,O′(Q)

· ΠP,O′,O(Q)
ΠO′,O,O(Q)

4T+riP–form Refinements. When ri = 0, 1, 2, 3, in the ith basic Miller
iteration of Algorithm 4.1 in [5], we can display an explicit formula of f in the
ith basic Miller iteration as follows:

f ← f4 · fri,P · Π4T,riP,O′(Q)
Π4T+riP,O′,O(Q)

· Π2T,2T,O′(Q)
Π4T,O′,O(Q)

· Π2
T,T,O′(Q)

Π2
2T,O′,O(Q)

where f2,P = ΠP,P,O′
Π2P,O′,O

, f3,P = Π2P,P,O′
Π3P,O′,O

· ΠP,P,O′
Π2P,O′,O

, 2P and 3P can be precalcu-
lated. When ri = 0, the above formula turns to:

f ← f4 · Π2T,2T,O′(Q)
Π4T,O′,O(Q)

· Π2
T,T,O′(Q)

Π2
2T,O′,O(Q)

Our 4T + riP -form refinement is based on Theorem 2. The original formula of
updating f in the ith basic Miller’s iteration can be replaced as:

f ← f4 · fri,P · Π2
T,T,O′(Q)

Π−2T,−2T,O′(Q) · Π4T+riP,O′,O(Q)
· Π4T,riP,O′(Q)

ΠO′,O,O(Q)

When ri = 0 the above formula turns to:

f ← f4 · Π2
T,T,O′(Q)

Π−2T,−2T,O′(Q) · ΠO′,O,O(Q)

6.1 Pairing Computation on Sa,d with Odd Embedding Degrees

For a projective line Π, we define Π(Q) to be the value of Π
Z (Q), which is

actually the value of Π when substituting the coordinates of Q with ZQ = 1. If
we precalculate the coordinates of Q such that ΠO′,O,O(Q) = 1 (this can easily
be done in practice), then the plane ΠO′,O,O can be eliminated in our formulae.
In this case, we can save one multiplication. In most cases (see 3T + riP and
4T +riP -form refinements), the total number of the planes which present in each
new formula is smaller than that in original formula. This also can save some
multiplications of the extension field F

k
q .

In fact, the plane ΠT,O′,O is the equation WT X − XT W = 0. For any point
Q, if we precalculate its coordinates with WQ = 1, then:

ΠT,P,O′(Q) = CXXQ + CY (YQ + ZQ) + CW , ΠT,O′,O(Q) = WT XQ − XT .

so, it takes 2km to evaluate ΠT,P,O at Q, and km to evaluate ΠT,O′,O at Q.
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If we calculate the coordinates of Q such that XQ − WQ = 1, that is
ΠO′,O,O(Q) = 1, then:

ΠT,P,O′(Q) = CX+CY (YQ+ZQ)+(CW +CX)WQ, ΠT,O′,O(Q) = (WT −XT )XQ+XT .

so, it takes 2km to evaluate ΠT,P,O at Q, and km to evaluate ΠT,O′,O at Q.
The cost of updating points in our formulae is the same with the original

ones, so we ignore this cost in the base field in the following table.

Iteration forms 2T + P 3T 4T

Original algorithm 2S + 4M + 6km 2S + 4M + 6km 4S + 4M + 6km

Our algorithm 2S + 3M + 4km 2S + 3M + 5km 4S + 2M + 4km

Iteration forms 4T + P 4T + 2P 4T + 3P

Original algorithm 4S + 6M + 9km 4S + 8M + 9km 4S + 8M + 9km

Our algorithm 4S + 4M + 7km 4S + 6M + 7km 4S + 6M + 7km

The refinements over Edwards curves in [23] are corresponding to our 4T +
riP -refinements. Our 4T and 4T +P -refinement cost less than the “00” and “01”
cases in [23]. By combining their two lines into one plane we can reduce one M.
Comparing to their “10” and “11” cases, our 4T +2P and 4T +3P -refinement use
precalculation to get more improvements. See the comparison in the following
table.

4T (case“00”) 4T + P (case“01”) 4T + 2P (case“10”) 4T + 3P (case“11”)

Result 1 [23] 5S + 3M 4S + 7M 4S + 7M 4S + 11M

Result 2 [23] 5S + 3M 4S + 8M 4S + 8M 4S + 10M

Result this paper 4S + 2M 4S + 4M 4S + 6M 4S + 6M

Acknowledgment. This work was supported by National Natural Science Founda-
tion of China (No. 11101002, No. 11271129 and No. 61370187) and Beijing Natural
Science Foundation (No. 1132009).

A Examples of Pairing-Friendly Edwards Curves

We list some pairing friendly Edwards curves with various k=6,12,24. We use
construction 6.6 in [10] to present it. h = #S1,d(Fp)/r, ρ = log2(p)/ log2(r).

k =6, ρ = 1.99, �log2(p)� = 511, �log2(r)� = 257, �log2(p
k)� = 3063,

p =4469269309980865699858008332735282459011729442283504212242920046
5254107669101255894363776709837049695943172869161549919107677836
20776600027887471085196217,
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r =1157920892373161954235709850086879132491274769309617791781887340
53461721558841,

h =26 · 3 · 114 · 312 · 156598375332 · 2413758894233920819865272,
d =3664251552441012307564539365366691396566209647164298880039621750

3855065157940074941206695810480629869345608774421066373731513792
25747580224215243612885716.

k =12, ρ = 1.48, �log2(p)� = 239, �log2(r)� = 161, �log2(p
k)� = 2861,

p =5889490310694441330739011548712381814951849552463124431529211730
78632117,

r =1461501653010476419563824324075703470606892615001,

h =24 · 3 · 132 · 192 · 3312 · 11207112,
d =3039686049194322977578848038674418249362581181730689600918590539

56432956.

k =12, ρ = 1.49, �log2(p)� = 383, �log2(r)� = 257, �log2(p
k)� = 4589,

p =1313400206546489077704631059395345592330370814691407061669418717
8169845236078372714249135715340284274851981554471437,

r =1157920892373165737821551871767212460418194942614239462794724036
61265709211401,

h =24 · 35 · 32455032 · 526276468912,
d =2086750387520096896070418610187776681469852959441702575044395173

987802972703740715028995508138402551966362217924268.

k =24, ρ = 1.24, �log2(p)� = 319, �log2(r)� = 257, �log2(p
k)� = 7642,

p =7120003282946788688767832825047892963122039770343506948090350241
49143440464464180057177127640101,

r =1157926942199022831048968574721142864333630419694136944823750216
16015000100401,

h =24 · 33 · 54 · 172 · 2807172,
d =6563654562067688285838956119740898916476600058476145431602456870

2651596101614445130173618550273.
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