
Dongdai Lin
Shouhuai Xu
Moti Yung (Eds.)

 123

LN
CS

 8
56

7

9th International Conference, Inscrypt 2013
Guangzhou, China, November 27–30, 2013
Revised Selected Papers

Information Security 
and Cryptology



Lecture Notes in Computer Science 8567

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Dongdai Lin • Shouhuai Xu
Moti Yung (Eds.)

Information Security
and Cryptology
9th International Conference, Inscrypt 2013
Guangzhou, China, November 27–30, 2013
Revised Selected Papers

123



Editors
Dongdai Lin
Chinese Academy of Sciences
Beijing
China

Shouhuai Xu
University of Texas
San Antonio, TX
USA

Moti Yung
Columbia University
New York, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-12086-7 ISBN 978-3-319-12087-4 (eBook)
DOI 10.1007/978-3-319-12087-4

Library of Congress Control Number: 2014953264

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at Inscrypt 2013: The Ninth China Inter-
national Conference on Information Security and Cryptology held during November
27–30, 2013 in Guangzhou, China. Inscrypt 2013 was collocated with the 2013
Workshop on RFID and IOT Security (RFIDsec 2013 Asia), which was held on
November 27, 2013. Since its inauguration in 2005, Inscrypt has become a well-
recognized annual international forum for security researchers and cryptographers to
exchange ideas.

The conference received 93 submissions. Each submission was reviewed by at least
three, and mostly four Program Committee members. The Program Committee decided
to accept 25 papers, including 4 short papers, and 1 full paper that was a merge of two
submissions. The overall acceptance rate was, therefore, about 26.8 %. The program
also included three invited talks.

Inscrypt 2013 was held in cooperation with the International Association of Cryp-
tologic Research (IACR), and co-organized by the State Key Laboratory of Information
Security (SKLOIS) of the Chinese Academy of Sciences (CAS), the Chinese Associ-
ation for Cryptologic Research (CACR), and Guangzhou University. Inscrypt 2013
was partly supported by the Natural Science Foundation of China (NSFC), the Institute
of Information Engineering (IIE) of the Chinese Academy of Sciences, and Guangzhou
University. Inscrypt 2013 could not have been a success without the support of these
organizations, and we sincerely thank them for their continued assistance and help.

We would also like to thank the authors who submitted their papers to Inscrypt
2013, and the conference attendees for their interest and support that made the con-
ference possible. We thank the Organizing Committee for their time and efforts that
allowed us to focus on selecting papers. We thank the Program Committee members
and the external reviewers for their hard work in reviewing the submissions; the
conference would not have been possible without their expert reviews. Last but not
least, we thank the EasyChair system and its operators for making the entire process of
the conference convenient.

November 2013 Dongdai Lin
Shouhuai Xu
Moti Yung
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A Note on Semi-bent and Hyper-bent
Boolean Functions

Chunming Tang1,2, Yu Lou2, Yanfeng Qi2,3(B), Maozhi Xu2, and Baoan Guo3

1 School of Mathematics and Information, China West Normal University,
Nanchong 637002, Sichuan, China

2 LMAM, School of Mathematical Sciences,
Peking University, Beijing 100871, China

{tangchunmingmath,qiyanfeng07}@163.com
3 Aisino Corporation Inc., Beijing 100195, China

Abstract. Semi-bent and hyper-bent funcitons as two classes of Boolean
functions with low Walsh transform, are applied in cryptography and
commnunications. This paper considers a new class of semi-bent quadratic
Boolean function and a generalization of a new class of hyper-bent Boolean
functions. The new class of semi-bent quadratic Boolean function of the

form f(x) =
∑� m−1

2 �
i=1 Trn1 (cix

1+4i)(ci ∈ F4,n = 2m) is simply character-
ized and enumerated. Then we present the characterization of a general-
ization of a new class of hyper-bent Boolean functions of the form f

(r)
a,b :=

Trn1 (axr(2m−1)) + Tr41(bx
2n−1

5 ), where n = 2m, m ≡ 2 (mod 4), a ∈ F2m

and b ∈ F16.

Keywords: Boolean function · Quadratic boolean function · Semi-bent
function · Bent function · Hyper-bent function

1 Introduction

A Boolean function is a function from F
n
2 to F2. Since finite fields have many rich

structures and properties, we often study Boolean functions as functions from
F2n to F2. Boolean functions with low Walsh transform are of great interest
because of their wide applications in cryptography and communications. For
application in cryptography, these functions can resist linear cryptanalysis on
block ciphers [15] and the fast correlation attack on stream ciphers [21]. As for
application in communications, they can be used to design m-sequnces with low
cross-correlation [9,10].

Two classes of Boolean functions with low Walsh transform are bent functions
[6,24] and semi-bent functions [5,17,22,23]. For even n, the spectra of bent
functions attains the value ±2n/2. Later, Youssef and Gong [29] introduced a
class of bent functions called hyper-bent functions, which achieve the maximal
minimum distance to all the coordinate functions of all bijective monomials. The
spectra of semi-bent functions is {0,±2�(n+2)/2�}.

c© Springer International Publishing Switzerland 2014
D. Lin et al. (Eds.): Inscrypt 2013, LNCS 8567, pp. 3–21, 2014.
DOI: 10.1007/978-3-319-12087-4 1



4 C. Tang et al.

The quadratic Boolean functions of the form

f(x) =
�n−1

2 �∑

i=1

ciTrn
1 (x1+2i), ci ∈ F2.

is studied in [2,5,7,13,14]. The Boolean function f(x) is semi-bent if and only if

gcd(c(x), xn + 1) =
{

x + 1, for odd n;
x2 + 1, for even n.

where c(x) =
∑�n−1

2 �
i=1 ci(xi + xn−i).

The bent quadratic Boolean functions of the form

f(x) =

n−2
2∑

i=1

ciTrn
1 (x1+2i) + Tr

n/2
1 (x1+2

n
2 ), ci ∈ F2;

f(x) =

m−2
2∑

i=1

ciTrn
1 (βx1+2ei) + Tr

n/2
1 (βx1+2

n
2 ), ci ∈ F2, n = em, 2|m,β ∈ F2e ;

f(x) =

m
2 −1∑

i=1

Trn
1 (cix

1+2ei) + Tr
n/2
1 (cm/2x

1+2n/2
), n = em, 2|m, ci ∈ F2e

are studied in [8,16,27,30].
The hyper-bentness of Boolean functions of the form f

(r)
a,b := Trn

1 (axr(2m−1))+

Tr21(bx
2n−1

3 ) and f
(r)
a,b := Trn

1 (ax(2m−1))+Tr41(bx
2n−1

5 ) is characterized in [18–20]
and [26] respectively.

In this paper, we first consider quadratic Boolean functions of the form

f(x) =
�m−1

2 �∑

i=1

Trn
1 (cix

1+4i), ci ∈ F4

where n = 2m. Then f(x) is semi-bent if and only if gcd(cf (x), xm + 1) = x + 1,

where cf (x) =
∑�m−1

2 �
i=1 ci(xi + xm−i). Further, for even m, f(x) is not a semi-

bent function. We give the enumeration of semi-bent functions for the case m =
2vpr, where p is not a Wieferich prime, p ≡ 3 mod 4, ordp(2) = p − 1 or p−1

2 .
The semi-bentness of f(x) is characterized by conditions of coefficients ci. In
particular, any nonzero f(x) is a semi-bent function for the case m = p, where p
is an odd prime, p ≡ 3 mod 4, ordp(2) = p − 1 or p−1

2 . Finally, we characterize
the hyper-bentness of Boolean functions defined over F2n by the form: f

(r)
a,b :=

Trn
1 (axr(2m−1)) + Tr41(bx

2n−1
5 ), where n = 2m, m ≡ 2 (mod 4), a ∈ F2m and

b ∈ F16.
This paper is organized as follows. Section 2 introduces some notations and

basic knowledge. Section 3 presents the characterization and enumeration of a
class of semi-bent quadratic Boolean functions and characterizes a class of hyper-
bent Boolean functions. Section 4 concludes for this paper.



A Note on Semi-bent and Hyper-bent Boolean Functions 5

2 Preliminaries

In this section, some notations are given first. Let F2n be the finite field with 2n

elements. Let F
∗
2n be the multiplicative group of F2n . Let e|n, the trace function

Trn
e (x) from F2n to F2e is defined by

Trn
e (x) = x + x2e + · · · + x2e(n/e−1)

, x ∈ F2n .

The trace function satisfies that
(1) Trn

e (x2e) = Trn
e (x), where x ∈ F2n .

(2) Trn
e (ax + by) = aTrn

e (x) + bTrn
e (y), where x, y ∈ F2n and a, b ∈ F2e .

2.1 Bent Functions and Semi-bent Functions

The Walsh transform of a Boolean function f(x) is defined by

f̂(λ) =
∑

x∈F2n

(−1)f(x)+Trn
1 (λx), λ ∈ F2n .

The distribution of values of the Walsh transform can define bent functions and
semi-bent functions.

Definition 1. A Boolean function f : F2n −→ F2 is called a bent function if
f̂(λ) = ±2

n
2 for all λ ∈ F2n .

Obviously, bent functions do not exist for odd n.

Definition 2. A bent function f : F2n −→ F2 is called a hyper-bent function,
if, for any i satisfying (i, 2n − 1) = 1, f(xi) is also a bent function.

Definition 3. A Boolean function f : F2n −→ F2 is called a semi-bent function
if f̂(λ) ∈ {0,±2� n+2

2 �} for all λ ∈ F2n .

2.2 Quadratic Boolean Functions

A quadratic Boolean function can be represented by trace functions. When n is
even, a quadratic Boolean function from F2n to F2 can be represented by

f(x) =

n
2 −1∑

i=0

Trn
1 (cix

1+2i) + Tr
n/2
1 (cn/2x

1+2n/2
)

where ci ∈ F2n for 0 ≤ i ≤ n
2 and cn/2 ∈ F

2
n
2
. When n is odd, f(x) can be

represented by

f(x) =

n−1
2∑

i=0

Trn
1 (cix

1+2i),

where ci ∈ F2n .
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For a quadratic Boolean function f(x), the distribution of the Walsh trans-
form can be described by the bilinear form

Qf (x, y) = f(x + y) + f(x) + f(y).

For the quadratic form Qf , define

Kf = {x ∈ F2n : Qf (x, y) = 0,∀y ∈ F2n}
and kf = dimF2(Kf ). Then 2|(n − kf ). The distribution of the Walsh transform
values of f̂(λ) is given in the following theorem [10].

Theorem 1. Let f(x) be a quadratic Boolean function and kf = dimF2(Kf ).
The distribution of the Walsh transform values of f(x) is given by

f̂(λ) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 2n − 2n−kf times

2
n+kf

2 , 2n−kf−1 + 2
n−kf

2 −1 times

−2
n+kf

2 , 2n−kf−1 − 2
n−kf

2 −1 times.

Corollary 1. When n is even, a quadratic function f(x) is a bent function if
and only if kf = 0, and f(x) is a semi-bent function if and only if kf = 2; When
n is odd, f(x) is a semi-bent function if and only if kf = 1.

The set Kf can also be described by the derivatives of f .

Definition 4. Let f(x) be a Boolean function from F2n to F2. Let z ∈ F2n . The
derivative of f(x) with respect to z is the function Dzf(x) defined by Dzf(x) =
f(x + z) + f(x). z is called a linear structure of f(x) if Dzf(x) is constant. The
set of all the linear structures is called the linear space of f .

Precisely, Kf is exact the linear space of f(x).

2.3 Hyper-bent Functions

Charpin and Gong [4] gave the following property to determine a hyper-bent
function.

Proposition 1. Let n = 2m, α be a primitive element of F2n and f be a Boolean
function over F2n satisfying f(α2m+1

x) = f(x) (∀x ∈ F2n) and f(0) = 0. Let ξ
be a primitive 2m +1-th root in F

∗
2n . Then f is a hyper-bent function if and only

if the cardinality of the set {i|f(ξi) = 1, 0 ≤ i ≤ 2m} is 2m−1.

Kloosterman sum is a powerful tool to study the hyper-bentness of some
classes of boolean functions.

Kloosterman sums on F2m are defined as

Km(a) :=
∑

x∈F2m

χ(Trm
1 (ax +

1
x

)), a ∈ F2m ,

where χ(f) is the sign function of f defined as χ(f) := (−1)f . Some properties
of Kloosterman sums are given by the following proposition.
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Proposition 2. ([11],Theorem 3.4]) Let a ∈ F2m . Then Km(a) ∈ [1−2(m+2)/2,
1 + 2(m+2)/2] and 4 | Km(a).

Quintic Weil sums on F2m are

Qm(a) :=
∑

x∈F2m

χ(Trm
1 (a(x5 + x3 + x))), a ∈ F2m .

And the value of Qm(a) is related to the factorization of the polynomial P (x) =
x5 + x + a−1 [26].

2.4 Self-reciprocal Polynomials

Definition 5. Let N be a positive integer and a be a positive integer coprime
to N . The positive integer k is called the order of a module N if k is the least
positive integer such that N |(ak − 1). And k is denoted by ordN (a).

Lemma 1. Let p be an odd prime. Then
(1) Let ordp(4) = s and p �

4s−1
p , then ordpk(4) = sk = pk−1s.

(2) ordp(4) �= p − 1. Further, ordp(4) = p−1
2 if and only if ordp(2) = p − 1

or ordp(2) = p−1
2 (p−1

2 is odd).

Proof. The proof follows immediately from [12].

If p is not a Wieferich prime, then p satisfies p �
4s−1

p . The definition of a
Wieferich prime is given below.

Definition 6. Let p be a prime. Then p is called a Wieferich prime if p|2p−1−1
p

[28].

Wieferich primes are rare. Between 1 and 17×1015, there are only two Wieferich
primes 1093 and 3511. Silverman [25] proved that there are infinite Wieferich
primes if the abc conjecture holds.

The polynomial cf (x) for determining semi-bent functions has a close relation
with self-reciprocal polynomials.

Definition 7. The reciprocal polynomial of a polynomial h(x) of degree d is
xdh( 1

x ), denoted by h∗(x). The polynomial h(x) is called a self-reciprocal poly-
nomial if h∗(x) = h(x), that is, h(x) =

∑d
i=0 aix

i with ai = ad−i.

Some results on self-reciprocal polynomials are given below.

Lemma 2. (1) Let A(x) =
∑n1

i=0 aix
i be a self-reciprocal polynomial of degree

n1. Let B(x) =
∑n2

i=0 bix
i be a polynomial of degree n2. Then A(x)B(x) is a

self-reciprocal polynomial of degree n1 +n2 if and only if B(x) is a self-reciprocal
polynomial.

(2) Let A(x), g(x) ∈ F4[x]. Let A(x) be self-reciprocal and g(x) be irreducible.
Let g(x)|A(x). Then g∗(x)|A(x), where g∗(x) is the reciprocal polynomial of g(x).
Further, if g(x) is not self-reciprocal, then g̃(x)|A(x), where g̃(x) = g(x)g∗(x).
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Proof. The proof follows immediately from the definition of self-reciprocal poly-
nomials.

Two important classes of self-reciprocal polynomials are xN + 1 and d-th cyclo-
tomic polynomials Qd(x) [1,12]. The d-th cyclotomic polynomial Qd(x), whose
roots are primitive d-th roots of unity, is a monic polynomial of degree φ(d),
where φ(·) is Euler-totient function. The following lemma gives the factorization
of cyclotomic polynomials.

Lemma 3. Let p be an odd prime. Then
(1) Let ordpk(4) = sk and tk = pk−pk−1

sk
. The pk-th cyclotomic polynomial

Qpk(x) over F4 has the following monic irreducible factorization.

Qpk(x) = h1(x) · · · htk(x),

where deg(hi(x)) = sk for 1 ≤ i ≤ tk. Further, if there exists l such that pk|(4l +
1), then hi(x) = xskhi( 1

x ), that is, hi(x) is self-reciprocal for any i. Otherwise,
the factorization of Qpk(x) is of the form

Qpk(x) = Ch1(x)h∗
1(x) · · · h tk

2
(x)h∗

tk
2

(x),

where h∗
i (x) = xskhi( 1

x ) for 1 ≤ i ≤ tk
2 and C ∈ F

∗
4.

(2) Let ordp(4) = s, p �
4s−1

p and t = p−1
s . Then Qp(x) over F4 has the

following monic irreducible factorization:

Qp(x) = h1(x) · · · ht(x),

For any k ≥ 2, Qpk(x) over F4 has the irreducible factorization:

Qpk(x) = h1(xpk−1
) · · · ht(xpk−1

).

(3) Let p be a prime such that p ≡ 3 mod 4, ordp(2) = p − 1 or p−1
2 (p−1

2 is
odd). Then Qp(x) over F4 has the following monic irreducible factorization:

Qp(x) = Ch(x)h∗(x)

Suppose that k ≥ 2. If p is not a Wieferich prime, Qpk(x) over F4 has the
irreducible factorization

Qpk(x) = Ch(xpk−1
)h∗(xpk−1

)

where h∗(x) is the self-polynomial of h(x) and C ∈ F
∗
4.

(4) xpk

+ 1 = (x + 1)Qp(x) · · · Qpk(x).

Proof. The proof follows immediately from [12] and is omitted.

3 Semi-bent Quadratic Boolean Functions
and Hyper-bent Boolean Functions

Let n = 2m for this section. And we consider semi-bent quadratic Boolean
functions and hyper-bent Boolean functions.
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3.1 The Characterization and Enumeration of Semi-bent Quadratic
Boolean Functions

In this subsection, we consider quadratic Boolean functions of the form

f(x) =
�m−1

2 �∑

i=1

Trn
1 (cix

4i+1), ci ∈ F4. (1)

Let Qm be the set of all the functions of the form (1). Let SBm be the set of all
the semi-bent quadratic Boolean functions in Qm.

The Characterization of Semi-bent Quadratic Boolean Functions. For a
quadratic Boolean function defined by (1), the derivative with respect to z ∈ F2n

is

Dzf(x) = f(x + z) + f(x) =
�m−1

2 �∑

i=1

Trn
1 (ci(z4

i

+ z4
m−i

)x) +
�m−1

2 �∑

i=1

Trn
1 (ciz

4i+1).

Then z is a linear structure of f(x) if and only if
∑�m−1

2 �
i=1 ci(z4

i

+ z4
m−i

) = 0.

We call
∑�m−1

2 �
i=1 ci(x4i +x4m−i

) the adjoint linear transformation of f(x), which
is denoted by Lf (x). Then

Kf = {x ∈ Kf : Lf (x) = 0} = Ker(Lf (x)).

The following theorem presents the characterization of the semi-bentness of
quadratic Boolean functions defined by (1).

Theorem 2. Let n = 2m. A Boolean function defined by (1) is a semi-bent
quadratic Boolean function if and only if gcd(cf (x), xm + 1) = x + 1, where

cf (x) =
�m−1

2 �∑

i=1

ci(xi + xm−i). (2)

In particular, for even m, there is no semi-bent quadratic Boolean function of
the form (1), that is, SBm = ∅.
Proof. The adjoint linear transformation of f(x) defined by (1) is

Lf (x) =
�m−1

2 �∑

i=1

ci(x4i + x4m−i

).

Then Lf (x) can be seen as a linear transformation from F2n to F2n over F4.
Take a regular element α of F2n over F4, that is, α, α4, · · · , α4m−1

is a basis of
F2n over F4. The corresponding matrix of the linear transformation Lf (x) under
this basis is
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Mf =

⎡

⎢⎢⎢⎢⎢⎣

0 c1 c2 · · · cm−1

cm−1 0 c1 · · · cm−2

cm−2 cm−1 0 · · · cm−3

...
...

... · · · ...
c1 c2 c3 · · · 0

⎤

⎥⎥⎥⎥⎥⎦

where cm−i = ci for (1 ≤ i ≤ 
m−1
2 �) and cm/2 = 0 for even m. From Corollary 1

and Kf , f(x) is semi-bent if and only if the dimension of the kernel Ker(Lf (x))
over F2 is dimF2(Ker(Lf (x))) = 2. Since Lf (x) is also a linear transformation
over F4, dimF2(Ker(Lf (x))) = 2 if and only if dimF4(Ker(Lf (x))) = 1 or the
rank of Mf is Rank(Mf ) = m − 1. Note that Mf is the generator matrix of a
cyclic code over F4 with length m and generator polynomial cf (x). From theories
of cyclic codes, Rank(Mf ) = m − deg(gcd(cf (x), xm + 1)). Hence f(x) is semi-
bent if and only if deg(gcd(cf (x), xm + 1)) = 1. Obviously deg(gcd(cf (x), xm +
1)) = 1 if and only if gcd(cf (x), xm + 1) = x + 1.

When m is even,

cf (x) =
�m−1

2 �∑

i=1

cix
i(1 + x

m
2 −i)2, xm + 1 = (x

m
2 + 1)2,

We obtain that (x + 1)2|gcd(cf (x), xm + 1) and f(x) is not semi-bent.
Hence, this theorem follows.

From Theorem 2, we just consider quadratic Boolean functions for odd m.

Corollary 2. Let n = 2m, where m is odd. The quadratic Boolean function

f(x) = Trn
1 (cx4i+1), c ∈ F

∗
4

is semi-bent if and only if gcd(i,m) = 1.

Proof. Note that cf (x) = c(xi + cm−i). Then

gcd(c(xi + xm−i), xm + 1) = gcd(x2i + 1, xm + 1) = xgcd(2i,m) + 1.

Since m is odd, then gcd(2i,m) = gcd(i,m). From Theorem 2, f(x) is semi-bent
if and only if gcd(i,m) = 1.

For further characterization, let p be not a Wieferich prime, p ≡ 3 mod 4,
ordp(2) = p−1 or p−1

2 . The following theorem presents a simpler characterization
of semi-bent quadratic Boolean functions defined by (1).

Theorem 3. Let n = 2m and m = pr, where r ≥ 2, p is not a Wieferich prime,
p ≡ 3 mod 4, ordp(2) = p − 1 or p−1

2 . The quadratic Boolean function f(x)
defined by (1) is semi-bent if and only if (xpk−1

+ 1)cf (x) �≡ 0 mod xpk

+ 1 for
any 1 ≤ k ≤ r.
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Proof. From (4) in Lemma 2,

gcd(cf (x), xpr

+ 1) = (x + 1)gcd(cf (x)/(x + 1),
r∏

k=1

Qpk(x)).

From Lemma 2, f(x) is semi-bent if and only if gcd(cf (x)/(x+1),
∏r

k=1 Qpk(x)) =
1. Note that (x + 1) �

∏r
k=1 Qpk(x). Then gcd(cf (x),

∏r
k=1 Qpk(x)) = 1. Equiv-

alently, for any 1 ≤ k ≤ r, gcd(cf (x), Qpk(x)) = 1. From (3) in Lemma 3 and
(2) in Lemma 2, gcd(cf (x), Qpk(x)) = 1 if and only if Qpk(x) � cf (x). Since
gcd(xpk−1

+ 1, Qpk(x)) = 1 and (xpk−1
+ 1) · Qpk(x) = xpk

+ 1, then cf (x) �≡ 0
mod Qpk(x) is equivalent to (xpk−1

+ 1)cf (x) �≡ 0 mod xpk

+ 1. Hence, this
theorem follows.

Lemma 4. Let m = pr, where p is an odd prime. Let cf (x) be defined by (2).
Then

(1) For any 1 ≤ k ≤ r, define ci = cpr−i(pr+1
2 ≤ i ≤ pr − 1), wi,k =

∑pr−k−1
j=0 ci+jpk(1 ≤ i ≤ pk − 1). Then wi,k = wpk−i,k for any 1 ≤ i ≤ pk − 1.

Further,

cf,k(x) ≡ cf (x) ≡
pk−1∑

i=1

wi,kxi ≡
(pk−1)/2∑

i=1

wi,k(xi + xpk−i) mod xpk

+ 1.

(2) For i = i0 + jpk and 0 ≤ i0 ≤ pk − 1, define w0,k = 0 and wi,k = wi0,k.
Then

(xpk−1
+ 1)cf (x) ≡ (xpk−1

+ 1)cf,k(x) ≡
pk−1∑

i=0

(wi,k + wi−pk−1,k)xi mod xpk

+ 1.

(3) Let Wk be the matrix
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0,k w1,k · · · w pk−1−1
2 ,k

· · · wpk−1−1,k

wpk−1,k wpk−1+1,k · · · w
pk−1+ pk−1−1

2 ,k
· · · w2pk−1−1,k

w2pk−1,k w2pk−1+1,k · · · w
2pk−1+ pk−1−1

2 ,k
· · · w3pk−1−1,k

...
...

...
...

...
...

w( p−1
2 )pk−1,k w( p−1

2 )pk−1+1,k · · · w pk−1
2 ,k

· · · w pk−1
2 + pk−1−1

2 ,k

...
...

...
...

...
...

w(p−1)pk−1,k w(p−1)pk−1+1,k · · · w
(p−1)pk−1+ pk−1−1

2 ,k
· · · wpk−1,k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let Ai,k = [Ai,k(0), Ai,k(1), · · · , Ai,k(p − 1)]′ be the i-th column of Wk, that is,
Wk =

[
A0,k, A1,k, · · · , Apk−1−1,k

]
. Then

(i) For any 1 ≤ i ≤ pk−1−1 and 0 ≤ j ≤ p−1, Ai,k(j) = Apk−1−i,k(p−1−j);
(ii) For any 1 ≤ i ≤ pk−1 − 1, Ai,k is constant if and only if Apk−1−i,k is

constant.
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Proof. The proof follows immediately from the above definitions.

Theorem 4. Let n = 2m = 2pr, where r ≥ 2, p is not a Wieferich prime, p ≡ 3
mod 4, ordp(2) = p − 1 or p−1

2 . The quadratic Boolean function f(x) defined by

(1) is semi-bent if and only if for any 1 ≤ k ≤ r, there exists 0 ≤ i ≤ pk−1−1
2

such that Ai,k is not constant.

Proof. From Theorem 3, f(x) is semi-bent if and only if for any 1 ≤ k ≤ r,

(xpk−1
+ 1)cf (x) �≡ 0 mod xpk

+ 1.

From (2) in Lemma 4, that is equivalent to that there exists 0 ≤ i ≤ pk − 1
such that wi,k + wi−pk−1,k �= 0. For i = i0 + jpk−1 and 0 ≤ i0 ≤ pk−1 − 1,
wi,k + wi−pk−1,k �= 0 is equivalent to

Ai0,k = [wi0,k, wi0+pk−1,k, · · · , wi0+(p−1)pk−1,k]′

is not constant. From (3) in Lemma 4, this theorem follows.

The Enumeration for Semi-bent Quadratic Boolean Functions. Before
the enumeration of semi-bent quadratic Boolean functions, two sets of self-
reciprocal polynomials are defined.

Let m be an odd positive integer and A(x) be a nonzero self-reciprocal poly-
nomial. Let SMm(A(x)) be the set of polynomials g(x) ∈ F4[x] such that

(i) A(x)|g(x);
(ii) deg(g(x)) = m − 1 − 2t(1 ≤ t ≤ m−1

2 );
(iii) g∗(x) = g(x).

For convenience, suppose that 0 ∈ SMm(A(x)).
Let m be odd and B(x) is a nonzero self-reciprocal polynoial. Let SRm(B(x))

be the set of polynomials g(x) ∈ F4[x] such that

(i) gcd(g(x), B(x)) = 1;
(ii) deg(g(x)) = m − 1 − 2t(1 ≤ t ≤ m−1

2 );
(iii) g∗(x) = g(x).

Let Cm be the set of cf (x) satisfying that gcd(cf (x), xm +1) = x+1, where f(x)
is defined by (1).

Lemma 5. Let notations be defined above. Then #(Cm) = #(SRm(xm+1
x+1 )).

Proof. To complete the proof, we just consider the bijection between Cm and
SRm(xm+1

x+1 ). Define a map

F : Cm −→ SRm(
xm + 1
x + 1

) cf (x) �−→ x−tcf (x)
x + 1

= c̃f (x).

where t is the least positive integer such that ct �= 0 for 1 ≤ t ≤ m−1
2 .
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We then verify the definition first. From the definition of cf (x), the integer t
naturally exists. Let ci = cm−i for m+1

2 ≤ i ≤ m − 1. Then

c̃f (x) =
x−tcf (x)

x + 1
=

1
x + 1

(cm−tx
m−2t + cm−t−1x

m−2t−1 + · · · + ct+1x + ct).

From Lemma 2, the polynomial c̃f (x) is self-reciprocal of degree deg(c̃f (x)) =
m−1−2t. Hence, c̃f (x) satisfies (ii) and (iii) in the definition of SRm(·). Finally,
we just verify that c̃f (x) satisfies (i).

gcd(c̃f (x),
xm + 1
x + 1

) = gcd(cf (x), xm + 1)/(x + 1) = 1.

Hence, the map F is well defined.
Define another map

G :SRm(
xm + 1
x + 1

) −→ Cm c̃(x) −→ (x + 1)xtc̃(x) = c(x),

where deg(c̃(x)) = m − 1 − 2t. The map G is also well defined. Then we have

F (G(c̃(x))) =c̃(x)(c̃(x) ∈ SRm(
xm + 1
x + 1

)), G(F (cf (x))) = cf (x)(cf (x) ∈ Cm).

Hence, this lemma follows.

Lemma 6. (1) Let A(x) be a monic self-reciprocal polynomial of even degree d,
where 0 ≤ d ≤ pr − 3. Then #(SMpr (A(x))) = 2pr−1−d. If d > pr − 3, then
#(SMpr (A(x))) = 1.

(2) Let p be not a Wieferich prime such that p ≡ 3 mod 4, ordp(2) = p −
1 or p−1

2 . Then

#(SRpr (
xpr

+ 1
x + 1

)) = 2pr−1
r∏

k=1

(1 − (
1
2
)pk−pk−1

).

Proof. (1) Let g(x) be a nonzero polynomial. From Lemma 2, g(x) ∈ SMpr (A(x))
if and only if h(x) = g(x)

A(x) is a self-reciprocal polynomial of degree deg(h(x)) ∈
{0, 2, · · · , pr − 5 − d, pr − 3 − d}. The number of self-reciprocal polynomials of
deg(h(x)) ∈ {0, 2, · · · , pr − 5 − d, pr − 3 − d} is

3 + 3 · 4
2
2 + · · · 3 · 4

pr−5−d
2 + 3 · 4

pr−3−d
2 = 2pr−1−d − 1.

Note that 0 ∈ SMpr (A(x)), then #(SMpr (A(x))) = 2pr−1−d.
(2) From (3) in Lemma 3 and (2) in Lemma 2, g(x) ∈ SRpr (xpr+1

x+1 ) if and
only if g(x) ∈ SMpr (1) and g(x) /∈ SMpr (Qpk(x)) for 1 ≤ k ≤ r. Note that if
1 ≤ k1 < · · · < ki ≤ r, then

⋂
1≤j≤i SMpr (Qpkj (x)) = SMpr (

∏r
j=1 Qpkj (x)).
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For convenience, let dk = deg(Qpk(x)) = pk −pk−1. Then deg(
∏r

j=1 Qpkj (x))
=

∑r
j=1 dkj

. From Result (1) and the inclusion-exclusion principle,

#(SRpr (
xpr

+ 1
x + 1

)) =2pr−1−0 + (−1)1
∑

1≤k1≤r

2pr−1−dk1 · · ·

+ (−1)i
∑

1≤k1<···<ki≤r

2pr−1−dk1−···−dki + · · ·

+ (−1)r2pr−1−d1−···−dr

=2pr−1
r∏

k=1

(1 − (
1
2
)pk−pk−1

).

Hence, this lemma follows.

Theorem 5. Let n = 2m = 2pr, where r ≥ 1, p is not a Wieferich prime, p ≡ 3
mod 4, ordp(2) = p − 1 or p−1

2 . The number of semi-bent functions of the form
(1) is

#(SBpr ) = 2pr−1
r∏

k=1

(1 − (
1
2
)pk−pk−1

).

Proof. From Theorem 2, #(SBpr ) = #(Cpr ). From Lemma 5, #(Cpr ) = #(SRpr ).
From Lemma 6, #(SBpr ) = 2pr−1

∏r
k=1(1 − ( 12 )pk−pk−1

).

Remark 1. If r = 1, it is not necessary that p is not a Wieferich prime in
Theorem 5.

Corollary 3. Let n = 2m = 2p, where p ≡ 3 mod 4, ordp(2) = p − 1 or p−1
2 .

The quadratic Boolean function defined by (1) is semi-bent, that is, SBm = Qm.

Proof. Obviously, SBm � Qm. From the definition of Qm, #(Qm) = 2p−1 − 1.
From Theorem 5, #(SBm) = 2p−1 − 1. Hence, #(SBm) = #(Qm), that is,
SBm = Qm.

The reverse of Corollary 3 also holds.

Theorem 6. Let SBm = Qm for a positive integer m. Then m is an odd prime
p such that p ≡ 3 mod 4, ordp(2) = p − 1 or p−1

2 .

Proof. From Theorem 2 and Corollary 2, m is an odd prime p.
We first prove that ordp(4) = p−1

2 . Suppose that ordp(4) = s < p−1
2 . Then

t = p−1
s > 2.

(1) When s is even, then p|(4 s
2 + 1). From (1) in Lemma 3, we have the

factorization Qp(x) = h1(x) · · · ht(x), where h∗
i (x) = hi(x) and t = p−1

s . We
take c(x) = (x + 1)x

p−1−s
2 h1(x).

(2) When s is odd, there does not exist l such that p|(4l + 1). From (1) in
Lemma 3, we have the factorization Qp(x) = h1(x)h∗

1(x) · · · h t
2
(x)h∗

t
2
(x), where

deg(h1(x)h1(x)∗) = p−1−2· p−1−2s
2 . We take c(x) = (x+1)x

p−1−2s
2 h1(x)h1(x)∗.
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It can be verified that c(x) has the form c(x) =
∑ p−1

2
i=1 ci(xi + xm−i). The

quadratic Boolean function with respect to ci is

f(x) =

p−1
2∑

i=1

Tr2p
1 (cix

4i+1).

Hence, we have

gcd(cf (x), xp + 1) = (x + 1)gcd(
c(x)
x + 1

, Qp(x))

=
(x + 1)h1(x), s ≡ 0 mod 2
(x + 1)h1(x)h∗

1(x), s ≡ 1 mod 2

From Theorem 2, f(x) /∈ SBm, which contradicts that SBm = Qm.
Hence, ordp(4) = p−1

2 . Suppose that p �≡ 3 mod 4, then p−1
2 is even. With

the similar discussion, p �≡ 3 mod 4 contradicts that SBm = Qm.
Hence, this theorem follows.

3.2 Hyper-bent Boolean Functions

In the this subsection, we consider the Boolean function

f
(r)
a,b (x) := Trn

1 (axr(2m−1)) + Tr41(bx
2n−1

5 ), (3)

where n = 2m, m ≡ 2 (mod 4), a ∈ F2m and b ∈ F16. As the cyclotomic coset
of 2 module 2n − 1 containing 2n−1

5 is { 2n−1
5 , 2 · 2n−1

5 , 22 · 2n−1
5 , 23 · 2n−1

5 }. Its
size is 4, or o(2

n−1
5 ) = 4, which means f

(r)
a,b is neither in the class considered by

Charpin and Gong [4] nor in the class studied by Mesanager [18,19].
We introduce some notations on character sums in [26]. Let ξ = α2m−1,

U =< ξ >, V =< ξ5 >. Since 5|(2m+1), V is the subgroup of U and #V = 2m+1
5 .

Let α be a primitive element of F2n , and β = α
2n−1

5 .
For any i ∈ F2m and an integer i, we define

Si =
∑

v∈V

χ(Trn
1 (aξi(2m−1)v)) =

∑

v∈V

χ(Trn
1 (aξ3iv)).

From the definition of Si, Si = Sj (mod 5).
The Hyper-bentness of Boolean Functions f

(5)
a,b (x). We consider the

hyper-bentness of f
(r)
a,b (x) with r = 5 of the form

f
(5)
a,b (x) := Trn

1 (ax5(2m−1)) + Tr41(bx
2n−1

5 ), (4)

where n = 2m, m ≡ 2 (mod 4), a ∈ F2m and b ∈ F16.
Since m ≡ 2 (mod 4), 5 | 2m + 1. For any y ∈ F2m , y2m−1 = 1. Then

f
(5)
a,b (α2m+1x) = f

(5)
a,b (x), where α is a primitive element of F2n . Further, f

(5)
a,b (0) =

0. Then, from Proposition 1 and Similar to the proof of Proposition 9 in [26],
we have the following proposition on the hyper-bentness of f

(5)
a,b (x).
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Proposition 3. Let f
(5)
a,b be the Boolean function defined by (4), where a ∈ F2m

and b ∈ F16. Define the following character sum Λ5(a, b) :=
∑

u∈U

χ(f (5)
a,b (u)). Then

f
(5)
a,b is a hyper-bent function if and only if Λ5(a, b) = 1. Further, the hyper-bent

function f
(5)
a,b lies in PSap if and only if Tr41(b) = 0.

Proposition 4. Let n = 2m and m ≡ ±2,±6 (mod 20), If b ∈ {0}⋃{βi|i =
0, 1, 2, 3, 4}, then the Boolean function f

(5)
a,b in (4) is not a hyper-bent function.

Further, if b ∈ F
∗
16\{βi|0 ≤ i ≤ 4}, f

(5)
a,b is a hyper-bent function if and only if∑

v∈V χ(Trn
1 (av)) = 1.

Proof. We have

Λ5(a, b) =
∑

u∈U

χ(f (5)
a,b (u)) =

∑

u∈U

χ(Trn
1 (au5(2m−1)))χ(Tr41(bu

2n−1
5 )).

Note that U =< ξ >, V =< ξ5 >, we have U = ξ0V
⋃

ξ1V
⋃

ξ2V
⋃

ξ3V
⋃

ξ4V.

Then Λ5(a, b) =
∑4

i=0

∑
v∈V χ(Tr41(b(ξ

iv)
2n−1

5 ))χ(Trn
1 (a(ξ5i)2

m−1v5(2m−1))).
Since (ξ5i)2

m−1 ∈ V and m ≡ ±2,±6 (mod 20), (5(2m − 1),#V ) = (5, 2m+1
5 ) =

1. Then v �−→ (ξ5i)2
m−1v5(2m−1) is a permutation of V . Hence,

Λ5(a, b) = (
4∑

i=0

χ(Tr41(bξ
i 2n−1

5 )))(
∑

v∈V

χ(Trn
1 (av))).

Since ξ
2n−1

5 = (α2m−1)
(2m−1)(2m+1)

5 = β2m−1 = β2m+1−2 = β3, then :

Λ5(a, b) = (
4∑

i=0

χ(Tr41(bβ
3i))(

∑

v∈V

χ(Trn1 (av))) = (
4∑

i=0

χ(Tr41(bβ
i))(
∑

v∈V

χ(Trn1 (av))).

When b = 0, Λ5(a, 0) = 5
∑

v∈V

χ(Trn
1 (av)). Hence, Λ5(a, 0) �= 1.

From Proposition 3, f
(5)
a,0 is not a hyper-bent function.

When b �= 0, b can be represented by b = ωβj , where ω3 = 1 and 0 ≤ j ≤
4. Then

∑4
i=0 χ(Tr41(bβ

i)) =
∑4

i=0 χ(Tr41(ωβi+j)) =
∑4

i=0 χ(Tr41(ωβi)). Since
ω3 = 1 and ω4 = ω, we have Tr41(ωβi) = Tr41(ω

4β4i) = Tr41(ωβ4i). If ω = 1,
4∑

i=0

χ(Tr41(bβ
i) =

4∑
i=0

χ(Tr41(β
i)). Since β satisfies β4 + β3 + β2 + β + 1 = 0,

Tr41(β
i) = 1. Then

4∑
i=0

χ(Tr41(bβ
i) = −3. Therefore,

Λ5(a, b) = −3
∑

v∈V

χ(Trn
1 (av)), b = βj , 0 ≤ j ≤ 4.

From Propsition 3, f
(5)
a,βj is not a hyper-bent function. When ω �= 1, we have

Tr41(ωβ) + Tr41(ωβ2) = Tr41(ω(β + β2)) = 1.
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Then χ(Tr41(ωβ))+χ(Tr41(ωβ2)) = 0. Similarly, χ(Tr41(ωβ3))+χ(Tr41(ωβ4)) = 0.
Therefore,

Λ5(a, b) =
∑

v∈V

χ(Trn
1 (av)), b = ωβj , 0 ≤ j ≤ 4, ω3 = 1, ω �= 1.

From Proposition 3, the second part of this proposition follows.

In Proposition 4, we consider the hyper-bentness of the Boolean function f
(5)
a,b

for m ≡ ±2,±6 (mod 20). The proposition below discusses the hyper-bentness
of f

(5)
a,b for m ≡ 10 (mod 20).

Proposition 5. Let n = 2m, m ≡ 10 (mod 20), a ∈ F2m , b ∈ F16. then the
Boolean function f

(5)
a,b in (4) is not a hyper-bent function.

Proof. Note that Λ5(a, b) =
∑4

i=0

∑
v∈V χ(Tr41(bξ

i 2
n−1
5 ))χ(Trn1 (a(ξ

5i)2
m−1v5(2m−1))).

Since m ≡ 10 (mod 20), 25|(2m + 1) and (5(2m − 1), 2m+1
5 ) = 5. Then v �−→

v5(2m−1) is 5 to 1 from V to V 5 := {v5|v ∈ V }. Therefore,

Λ5(a, b) = 5
4∑

i=0

∑

v∈V 5

χ(Tr41(bξ
i 2n−1

5 ))χ(Trn
1 (a(ξ5i)2

m−1v)).

Hence, 5|Λ5(a, b) and Λ5(a, b) is not equal to 1, From Proposition 3, f
(5)
a,b is not

a hyper-bent function.

From Proposition 4,
∑

v∈V χ(Trn
1 (av)) =

∑
v∈V χ(Trn

1 (av2m−1)). Note that∑
v∈V

χ(Trn
1 (av)) = S0 in [26]. From Proposition 15 in [26],

∑

v∈V

χ(Trn
1 (av)) =

1
5
[1 − Km(a) + 2Qm(a)]. (5)

Further, from Proposition 16 and 18 in [26], we have the following results.

Theorem 7. Let n = 2m, m ≡ ±2,±6 (mod 20), m ≥ 6 and b ∈ F
∗
16\{βi|0 ≤

i ≤ 4}, then f
(5)
a,b is a hyper-bent function if and only if one of the assertions (1)

and (2) holds.
(1) Qm(a) = 0, Km(a) = −4.
(2) Qm(a) = 2m1 , Km(a) = 2 · 2m1 − 4.

The Hyper-bentness of f
(r)
a,b (x). Now, we consider the general case of the

hyper-bentness of f
(r)
a,b (x). Define the character sum Λr(a, b) :=

∑
u∈U

χ(f (r)
a,b (u)).

Similarly, f
(r)
a,b (x) is a hyper-bent function if and only if Λr(a, b) = 1.

Theorem 8. Let n = 2m, m ≡ 2 (mod 4), a ∈ F2m and b ∈ F16. If (r, 2m+1
5 ) >

1, then f
(r)
a,b is not a hyper-bent function. Further, if (r, 2m+1

5 ) = 1, then
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(1) If r ≡ 0 (mod 5), then f
(r)
a,b and f

(5)
a,b have the same hyper-bentness.

(2) If r ≡ ±1 (mod 5), then f
(r)
a,b and f

(1)
a,b have the same hyper-bentness.

(3) If r ≡ ±2 (mod 5), then f
(r)
a,b and f

(2)
a,b have the same hyper-bentness.

Proof. Note that Λr(a, b) =
∑4

i=0

∑
v∈V χ(Tr41(bξ

i 2
n−1
5 ))χ(Trn1 (aξri(2

m−1)vr(2m−1))).

Let d := (r(2m − 1),#V ) = (r, 2m+1
5 ), then

Λr(a, b) = d

4∑

i=0

χ(Tr41(bξ
i 2n−1

5 ))
∑

v∈V d

χ(Trn
1 (aξri(2m−1)vr(2m−1))),

where V d = {vd|v ∈ V }. If d = (r, 2m+1
5 ) > 1, d|Λr(a, b) and Λr(a, b) �= 1.

Hence, f
(r)
a,b is not a hyper-bent function.

When d = (r, 2m+1
5

) = 1, Λr(a, b) =
∑4

i=0 χ(Tr41(bξ
i 2

n−1
5 ))

∑
v∈V χ(Trn1 (aξri(2

m−1)v)).

If r ≡ 0 (mod 5), from ξ
2n−1

5 = β3, we have

Λr(a, b) =
4∑

i=0

χ(Tr41(bβ
i))

∑

v∈V

χ(Trn
1 (av)).

Then Λr(a, b) = Λ5(a, b). Therefore, f
(r)
a,b and f

(5)
a,b have the same hyper-bentness.

If r ≡ 1 (mod 5), then Λr(a, b) =
∑4

i=0 χ(Tr41(bξ
i 2

n−1
5 ))

∑
v∈V χ(Trn1 (aξi(2

m−1)v)).

From Proposition 10 in [26], Λr(a, b) = Λ1(a, b). Hence, f
(r)
a,b and f

(1)
a,b have the

same hyper-bentness.
If r ≡ 2 (mod 5), then Λr(a, b) =

∑4
i=0 χ(Tr41(bξ

i 2
n−1
5 ))

∑
v∈V χ(Trn1 (aξ2i(2

m−1)v))

=
∑4

i=0 χ(Tr41(bβ
3i))S2i =

∑4
i=0 χ(Tr41(bβ

9i))S6i =
∑4

i=0 χ(Tr41(bβ
4i))Si. From Lemma 1

in [26], then

Λr(a, b) = χ(Tr41(b))S0 + (χ(Tr41(bβ)) + χ(Tr41(bβ
4)))S1

+ (χ(Tr41(bβ
2)) + χ(Tr41(bβ

3)))S2. (6)

Hence, Λr(a, b) = Λ2(a, b). f
(r)
a,b and f

(2)
a,b have the same hyper-bentness.

If r ≡ 3 (mod 5), Λr(a, b) =
∑4

i=0 χ(Tr41(bξ
i 2

n−1
5 ))

∑
v∈V χ(Trn1 (aξ3i(2

m−1)v))

=
∑4

i=0 χ(Tr41(bβ
3i))S3i =

∑4
i=0 χ(Tr41(bβ

i))Si. From Lemma 1 in [26],

Λr(a, b) =χ(Tr41(b))S0 + (χ(Tr41(bβ)) + χ(Tr41(bβ
4)))S1

+ (χ(Tr41(bβ
2)) + χ(Tr41(bβ

3)))S2. (7)

Hence, Λr(a, b) = Λ3(a, b). From (6) and (7), we have Λ2(a, b) = Λ3(a, b). Thus,
f
(r)
a,b and f

(2)
a,b have the same hyper-bentness.

Similarly, if r ≡ 4 (mod 5), then Λr(a, b) = Λ4(a, b) = Λ1(a, b). Thus, f
(r)
a,b

and f
(1)
a,b have the same hyper-bentness.

Above all, this theorem follows.



A Note on Semi-bent and Hyper-bent Boolean Functions 19

From Theorem 8, to characterize the hyper-bentness of f
(r)
a,b , we just consider

the hyper-bentness of f
(1)
a,b , f

(2)
a,b and f

(5)
a,b . The hyper-bentness of f

(1)
a,b is considered

in [26]. And the hyper-bentness of f
(5)
a,b is discussed before. Next, we just study

the hyper-bentness of f
(2)
a,b .

When b = 0, the hyper-bentness of f
(2)
a,0 is given in [3]. Then we just consider

the case b �= 0. We first give properties of Λ2(a, b) in the following proposition.

Proposition 6. Let a ∈ F2m and b ∈ F
∗
16, then

(1) If b = 1, then Λ2(a, b) = S0 − 2(S1 + S2) = 2S0 − Λ2(a, 0).
(2) If b ∈ {β + β2, β + β3, β2 + β4, β3 + β4}, that is, b is a primitive element

satisfying Tr41(b) = 0, then Λ2(a, b) = S0.
(3) If b = β or β4, then Λ2(a, b) = −S0 − 2S2.
(4) If b = β2 or β3, then Λ2(a, b) = −S0 − 2S1.
(5) If b = 1 + β or 1 + β4, then Λ2(a, b) = −S0 + 2S2.
(6) If b = 1 + β2 or 1 + β3, then Λ2(a, b) = −S0 + 2S1.
(7) If b = β + β4, then Λ2(a, b) = S0 + 2S2 − 2S1.
(8) If b = β2 + β3, then Λ2(a, b) = S0 − 2S2 + 2S1.

Proof. From (6) and the similar proof of Proposition 13 in [26], this proposition
follows.

Corollary 4. Let a ∈ F2m and b ∈ F
∗
16, then f

(2)
a,b and f

(1)
a,b2 have the same

hyper-bentness.

Proof. From Proposition 13 in [26] and Proposition 6, we have Λ2(a, b2) =
Λ1(a, b). Hence, f

(2)
a,b and f

(1)
a,b2 have the same hyper-bentness.

From Corollary 4, the hyper-bentness of f
(2)
a,b can be characterized by that of

f
(1)
a,b .

From the above discussion, we have the following result on f
(r)
a,b .

Theorem 9. Let a ∈ F2m and (r, 2m+1
5 ) = 1, then

(1) If 1
5 [1 − Km(a) + 2Qm(a)] = 1, then the following Boolean functions

(a) f
(r)
a,b b ∈ F

∗
16\{βi|i = 0, 1, 2, 3, 4}, r ≡ 0 (mod 5).

(b) f
(r)
a,b , r �≡ 0 (mod 5), b4 + b + 1 = 0.

are hyper-bent functions.
(2) If − 1

5 [3(1−Km(a))−4Qm(a)] = 1, then the Boolean function f
(r)
a,1 (r �≡ 0

(mod 5)) is a hyper-bent function.

Proof. From Proposition 16 in [26] and Theorem 8, Equation (5) and Proposition
4, this theorem follows.
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4 Conclusion

This paper presents a new class of semi-bent quadratic Boolean functions and
a new class of hyper-bent Boolean functions with even variable n. The semi-
bentness and hyper-bentness are characterized. Moreover, for some special cases,
the number of semi-bent quadratic Boolean functions is enumerated. The tech-
niques used in this paper can be utilized into the study of generalized bent
functions and generalized semi-bent functions.
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Abstract. Block ciphers use Substitution boxes (S-boxes) to create con-
fusion into the cryptosystems. For resisting the known attacks on these
cryptosystems, the following criteria for functions are mandatory: low
differential uniformity, high nonlinearity and not low algebraic degree.
Bijectivity is also necessary if the cipher is a Substitution-Permutation
Network, and balancedness makes a Feistel cipher lighter. It is well-
known that almost perfect nonlinear (APN) functions have the lowest dif-
ferential uniformity 2 (the values of differential uniformity being always
even) and the existence of APN bijections over F2n for even n ≥ 8
is a big open problem. In real practical applications, differentially 4-
uniform bijections can be used as S-boxes when the dimension is even.
For example, the AES uses a differentially 4-uniform bijection over F28 .
In this paper, we first propose a method for constructing a large family
of differentially 4-uniform bijections in even dimensions. This method

can generate at least
(
2n−3 − �2(n−1)/2−1� − 1

) · 22n−1
such bijections

having maximum algebraic degree n− 1. Furthermore, we exhibit a sub-
class of functions having high nonlinearity and being CCZ-inequivalent
to all known differentially 4-uniform power bijections and to quadratic
functions.

Keywords: Block cipher · Substitution box · Differential uniformity ·
CCZ-equivalence · Nonlinearity

1 Introduction and Preliminaries

In Shannon’s terms [12], the generally accepted design principles for conventional
ciphers are confusion and diffusion. These two design principles are very general
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and informal. In practice, every block cipher uses Substitution boxes (S-boxes)
to create confusion and uses some well chosen linear transformations (related to
codes of large minimum distance) to bring diffusion into the cryptosystem. If
the cipher is a Substitution-Permutation Network as in the AES, then we need
the S-boxes to be bijections (to ensure invertibility).

Given two integers n and m, any S-box with n input bits and m output bits,
which is often called an (n,m)-function or a vectorial Boolean function if the
values n and m are omitted, can be viewed as a function G from the vectorial
space F

n
2 to the vectorial space F

m
2 . Particularly, G is called a Boolean function

when m = 1. We denote by Bn the set of Boolean functions of n variables. The
basic representation of any Boolean function f ∈ Bn is by its truth table, i.e.,

f =
[
f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(0, 1, · · · , 1), f(1, 1, · · · , 1)

]
.

We say that a Boolean function f ∈ Bn is balanced if its truth table contains
an equal number of ones and zeros, that is, if its Hamming weight equals 2n−1,
where the Hamming weight of f , denoted by wt(f), is the number of nonzero
values in its truth table. Given two Boolean functions f and g on n variables, the
Hamming distance between f and g is defined as dH(f, g) = |{x ∈ F

n
2 | f(x) �=

g(x)}|.
Let G be an (n,m)-function, the Boolean functions g1(x), · · · , gm(x) defined

by G(x) = (g1(x), · · · , gm(x)) are called the coordinate functions of G. Further,
the Boolean functions, which are the linear combinations, with non all-zero coef-
ficients of the coordinate functions of G, are called component functions of G.
The component functions of G can be expressed as a · G where a ∈ F

m∗
2 . If

we identify every element of F
m
2 with an element of finite field F2m , then the

component functions of G can be expressed as trn
1 (αG), where α ∈ F

∗
2n and

trn
1 (x) =

n−1∑
i=0

x2i

is the trace function from F2n to F2. To resist the known

attacks on each model of block cipher (and hopefully, to resist future attacks),
the S-boxes used in ciphers should satisfy various design criteria simultaneously.
The design criteria on S-boxes result in necessary properties of the component
functions and of the vectorial function itself.

Let x = (x1, x2, · · · , xn) and α = (α1, α2, · · · , αn) both belong to F
n
2 and

let x · α be any inner product, for instance the usual one, defined as x · α =
x1α1 ⊕ x2α2 ⊕ · · · ⊕ xnαn, then the Walsh transform of G at (a, b) ∈ F

m∗
2 × F

n
2

is defined as

WG(a, b) =
∑

x∈F
n
2

(−1)a·G(x)+b·x.

Usually, we call extended Walsh spectrum of G the multi-set of their absolute
values. To resist linear cryptanalysis [10], S-boxes used in cryptosystems should
have high nonlinearity. The nonlinearity nl(G) of an (n,m)-function G is the
minimum Hamming distance between all the component functions of G and all
affine functions on n variables. According to the definition of Walsh transform,
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we have

nl(G) = 2n−1 − 1
2

max
(a,b)∈F

m∗
2 ×F

n
2

|WG(a, b)|

= 2n−1 − 1
2

max
(α,β)∈F

∗
2m×F2n

|WG(α, β)|.

It is well-known that the nonlinearity nl(G) is upper-bounded by 2n−1 − 2
n−1
2

when n = m and the best known value of nl(G) is 2n−1 − 2
n
2 when n = m is

even.
Any (n,m)-function G can be represented in univariate form:

G(x) =
2n−1∑

i=0

aix
i, ai ∈ F2n .

The algebraic degree, denoted by deg(G), equals the maximal 2-weight of the
exponent i such that ai �= 0, where the 2-weight of a given integer i is the number
of ones in its binary expansion. It is known that the maximum algebraic degree
of bijective functions in dimension n is n − 1. Functions used as S-boxes should
have high (or at least not low) algebraic degree to withstand the higher order
differential attack [7] which is described by Knudsen when the degree is 2 but a
degree 3 seems still insufficient and a degree at least 4 is safer.

The differential attack introduced by Biham and Shamir [1] is a powerful
cryptanalytic method for attacking block ciphers. For measuring the ability of
a given function to resist the differential attack [1], Nyberg [11] introduced a
concept which is called differential δ-uniformity:

Definition 1. An (n,m)-function G is called differentially δ-uniform if, for
every nonzero a ∈ F

n
2 and every b ∈ F

m
2 , the equation G(x) + G(x + a) = b

has at most δ solutions.

For every a ∈ F
n∗
2 and every b ∈ F

m
2 , if we denote by δG(a, b) the size of the set

{x ∈ F
n
2 |G(x) + G(x + a) = b}, then we can see that δ equals the maximum

value of δG(a, b). The multi-set [δG(a, b) | a ∈ F
n∗
2 , b ∈ F

m
2 ] is called the differential

spectrum of G. The smaller δ is, the better is the contribution of G to a resistance
to differential attack. When m = n, the smallest possible value of δ is 2 (since if x
is a solution of equation G(x)+G(x+ a) = b then x+ a is also a solution, hence
the values of δ are even); the functions achieving this value are called almost
perfect nonlinear (APN) functions. APN functions have the lowest differential
uniformity. Up to now, there is only one sporadic example of APN bijection for
n = 6, found in [3] and it is a big open problem to know whether there exist
APN bijections over F2n for even n ≥ 8. So, for resisting differential attacks in
even dimension, we need to choose differentially 4-uniform bijections as S-boxes
(differential 4-uniformity is not optimal but it can withstand differential attacks
in an efficient way; for example, the AES uses a differentially 4-uniform bijection
with 8 input bits). For the convenience of the readers, we give in Sect. 2 a brief
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description of known APN bijections and differentially 4-uniform bijections in
even dimensions.

These notions are preserved by extended affine equivalence (in brief, EA
equivalence) and Carlet-Charpin-Zinoviev equivalence (CCZ-equivalence): two
(n, n)-functions G and H are called affine equivalent if one is equal to the other,
composed on the left and on the right by affine permutations; they are called EA-
equivalent if one is affine equivalent to the other, added with an affine function;
they are called CCZ-equivalent if their graphs {(x, y) ∈ F

n
2 ×F

n
2 | y = G(x)} and

{(x, y) ∈ F
n
2 × F

n
2 | y = H(x)} are affine equivalent, that is, if there exists an

affine automorphism L = (L1, L2) of Fn
2 × F

n
2 such that y = G(x) ⇔ L2(x, y) =

H(L1(x, y)) (where L1 and L2 are two affine functions from F
n
2 × F

n
2 to F

n
2 ). It

is well-known that EA equivalence implies CCZ-equivalence, but the converse
is false. Both EA and CCZ-equivalence preserve the differential spectrum and
extended Walsh spectrum. But CCZ-equivalence does not respect the algebraic
degree, while EA equivalence does.

Ideally, the dimension n of bijections used in cryptosystems should be a power
of 2 for an efficient implementation in both hardware and software since it allows
decomposing optimally the computation of the output in F2n into computations
in subfields. This is also more convenient for the design of the whole cipher, for
instance the number of input bits of the AES is 8. In practice, S-boxes used in
cryptosystems should satisfy a tradeoff between security and efficient implemen-
tation simultaneously. Therefore, it is very interesting to construct bijections
with good cryptographic properties in even dimensions. In the present paper,
we construct a family of differentially 4-uniform bijections of even dimensions
n ≥ 6 by concatenating two (n− 1, n)-functions. For every even n ≥ 6, this fam-
ily includes at least

(
2n−3 − �2(n−1)/2−1� − 1

) · 22
n−1

bijections, all of algebraic
degree n−1. We also mathematically prove that, for any even n ≥ 8, bijections in
this family are CCZ-inequivalent to the Gold functions, the Kasami functions,
the functions discussed in [2] and to quadratic functions. Further, we show a
subclass of the family which has nonlinearity at least 2n−1 −2�2(n+1)/2�−4 and
is CCZ-inequivalent to all known differentially 4-uniform power bijections and
to quadratic functions.

The paper is organized in the following way: Sect. 2 summarizes the known
differentially 4-uniform bijections in even dimensions. A family of differentially
4-uniform bijections is presented in Sect. 3, and its algebraic degree, Walsh spec-
trum and CCZ-equivalence with known functions is studied. In Sect. 4, we give
a subclass of differentially 4-uniform bijections with good cryptographic proper-
ties. Finally, Sect. 5 concludes the paper.

2 The Known Bijections with Low Differential Uniformity
in Even Dimensions

Up to now, only a few classes of bijections with very low differential uniformity
in even dimensions have been found, some of them are listed in [4,14]. We sum-
marize them here for the convenience of the reader. It is clear that the functions
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xd and x2id are affine equivalent for every i, so we only list one value of d for
each cyclotomic coset of 2 mod 2n − 1. Besides, we also omit d−1 when d is co-
prime with 2n−1 since arbitrary bijection is CCZ-equivalent to its compositional
inverse.

– There is only one example of APN bijection on 6 variables, which is found by
J. Dillon in [3], and the problem whether there exist APN bijections over F2n

for even n ≥ 8 is still open. This example is CCZ-equivalent to a quadratic
function (which may represent a risk with respect to the higher order differen-
tial attack) and its expression is complex (this leads to inefficient implemen-
tation in both hardware and software).

– The inverse function x2n−2 is differentially 4-uniform when n is even (and is
APN when n is odd) [11]; it is used as the S-box of the AES with n = 8.
It has best known nonlinearity 2n−1 − 2n/2 and maximum algebraic degree
n − 1. But the inverse function satisfies the bilinear relation x2y = x where
y = x2n−2, which is the core of the algebraic attacks and so may represent a
thread.

– The Gold functions x2i+1 such that gcd(i, n) = 2 are differentially 4-uniform.
Functions in this class are bijective when gcd(2i +1, 2n − 1) = 1, but they are
quadratic and can not be used as S-boxes.

– The Kasami functions x22i−2i+1 such that n is divisible by 2 but not by 4 and
gcd(i, n) = 2 are differentially 4-uniform. Functions in this class have best
known nonlinearity 2n−1 − 2n/2 (in fact, they have same Walsh spectrum as
the Gold functions and we do not know whether this can represent a weakness)
and are bijective when gcd(22i − 2i + 1, 2n − 1) = 1. This class of functions
never reaches the maximum algebraic degree n − 1. Note that 22i − 2i + 1 =
23i+1
2i+1 and 2i + 1 is co-prime with 2n − 1 when n is divisible by 2 but not
by 4 and gcd(i, n) = 2. This means that the Kasami functions have the form
F (x) = Q1(Q−1

2 (x)) where Q1 and Q2 are quadratic permutations, which
has some similarity with a function CCZ-equivalent to a quadratic function.
Maybe this could be used in an extended higher order differential attack.

– The function x2n/2+n/4+1
is differentially 4-uniform [2] and has best known

nonlinearity 2n−1 − 2n/2 as well. This class of functions is bijective if n is
divisible by 4 but not by 8. It has algebraic degree 3 which is too low.

– In [8], the authors modified the method introduced in [4], initially designed
for constructing differentially 4-uniform bijections in odd dimensions, to con-
struct differentially 4-uniform bijections in even dimensions.They obtained
three classes of differentially 4-uniform bijections with best known nonlinear-
ity 2n−1−2n/2 and algebraic degree (n+2)/2. Those functions are interesting
but the authors did not discuss whether they are CCZ-equivalent to power
functions and quadratic functions.

– Recently, a construction has been introduced in [14] to build differentially
4-uniform bijections in even dimensions by adding some special Boolean func-
tions to the inverse function. Based on it, the authors have discovered two
infinite classes of differentially 4-uniform bijections. The first class of func-
tions is of the form x2n−2 + trn

1 (x2(x + 1)2
n−2), which has optimal algebraic
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degree n−1 and the nonlinearity is no less than 2n−1−2n/2+1−2. The second
one is of the form x2n−2 + trn

1

(
x(2n−2)d + (x2n−2 + 1)d

)
, where d = 3(2t + 1),

2 ≤ t ≤ n/2 − 1. The latter has algebraic degree n − 1 as well and the nonlin-
earity is at least 2n−2 − 2n/2−1 − 1. The authors didn’t mathematically prove
whether their functions are CCZ-inequivalent to the inverse function (but we
can easily check, with the help of computer, that those two classes of func-
tions are CCZ-inequivalent to the inverse function for even n = 6, 8, 10, 12).
These two classes of functions are interesting and they are worthy of a further
investigation.

We can see from above that except for the inverse function (which has how-
ever a potential weakness), the Kasami functions (whose algebraic degree is
enough to resist the higher order differential attack but which is not maximum,
whose Walsh spectrum is the same as that of the Gold function and which
seems related with quadratic functions - in a way which could not be used yet
to design attacks, though), the functions proposed in [8] (which have not been
proven CCZ-inequivalent to power functions) and the functions constructed in
[14] (which have not been proven CCZ-inequivalent to the inverse function),
there is no known bijection with low differential uniformity, which can be used
as S-box. Hence, finding more bijections with all the desired features is very
interesting from theoretical and practical viewpoints.

3 A Family of Differentially 4-Uniform Bijections

For any finite field F2n we define 0−1 = 0 by convention (we shall always use this
convention in the sequel). Any finite field F2n can be viewed as an n-dimensional
vector space over F2; each of its elements can be identified with a binary vector of
length n, the element 0 ∈ F2n is identified with the all-zero vector. From now on,
any given element x = (x1, · · · , xn−1, xn) ∈ F

n
2 can be identified with (x′, xn) ∈

F2n−1 ×F2, where x′ ∈ F2n−1 is identified with the vector (x1, · · · , xn−1) ∈ F
n−1
2 .

Construction 1. Let n ≥ 6 be an even number. For any element c ∈ F2n−1 \
{0, 1} such that trn−1

1 (c) = trn−1
1 (1/c) = 1, we define an (n, n)-function F as

follows:

F (x1, · · · , xn−1, xn) =
{

(1/x′, f(x′)), if xn = 0
(c/x′, f(x′/c) + 1), if xn = 1 .

where x′ ∈ F2n−1 is identified with (x1, · · · , xn−1) ∈ F
n−1
2 and f is an arbitrary

Boolean function defined on F2n−1 .

3.1 Bijectivity

Theorem 1. The function F defined in Construction 1 is bijective.
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Proof. We first prove that F is an injection. For any two elements x, y ∈ F
n
2 , if

xn = yn and x �= y, then we can easily see that F (x) �= F (y) since 1/x′, c/y′ are
two bijections on F2n−1 . If xn = yn+1, then without loss of generality, we assume
that xn = 0 and yn = 1. We can see that F (x) = F (y) leads to 1/x′ = c/y′

which is equivalent to y′ = cx′. Note that the last bit of F (x) is f(x′) and the
last bit of F (y) equals f(y′/c) + 1 = f(cx′/c) + 1 = f(x′) + 1, which does not
equal f(x′). So F is an injection. Therefore, F is bijective. 
�

3.2 Differential 4-Uniformity

In this subsection, we will prove that F is differentially 4-uniform. For doing this,
we first need a few preliminary results. The following lemma is well known.

Lemma 1. [9]. Let n be a positive integer. For any (a, b) ∈ F
∗
2n × F2n let us

define the polynomial μ(x) = ax2 + bx + c ∈ F2n [x], then the equation μ(x) = 0
has 2 solutions if and only if trn

1 (b−2ac) = 0.

The proof of the differential 4-uniformity of our functions will be based on
the following lemma.

Lemma 2. Let n be an even integer and c ∈ F2n−1 \{0, 1} such that trn−1
1 (c) =

trn−1
1 (1/c) = 1, let us consider the following four equations defined on F2n−1 :

1/x′ + 1/(x′ + a′) = b′ (1)
c/x′ + c/(x′ + a′) = b′ (2)

where (a′, b′) ∈ F
∗
2n−1 × F2n−1 , and

1/x′ + c/(x′ + a′) = b′ (3)
c/x′ + 1/(x′ + a′) = b′ (4)

where (a′, b′) ∈ F2n−1 × F2n−1 . Then the following statements hold:

(1) For a′b′ �= 1, (1) has two solutions on F2n−1 if b′ �= 0 and trn−1
1 (1/(a′b′)) = 0

and has no solution otherwise. For a′b′ = 1, (1) has two distinct solutions
0, a′.

(2) For a′b′ �= c, (2) has two solutions on F2n−1 if b′ �= 0 and trn−1
1 (c/(a′b′)) = 0

and has no solution otherwise. For a′b′ = c, (2) has two distinct solutions
0, a′.

(3) For any x′
0 ∈ F2n−1 , x′

0 is a solution of (3) if and only if x′
0+a′ is a solution

of (4). Furthermore:
– for a′b′ �= 0, 1, c, both of (3) and (4) have two solutions if trn−1

1 (a′b′/(a′b′+
c + 1)) = 0 and have no solution otherwise;

– for a′b′ = 1, (3) has unique solution a′ and (4) has unique solution 0;
– for a′b′ = c, (3) has unique solution 0 and (4) has unique solution a′;
– for a′b′ = 0, both (3) and (4) have unique solution.
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Proof. Our proof mainly relies on Lemma 1.

(1) If a′b′ �= 1, which is equivalent to saying that both 0 and a′ are not solutions
of (1), then (1) is equivalent to b′x′2 + a′b′x′ + a′ = 0. By Lemma 1, this
new equation has two solutions if b′ �= 0 and trn−1

1 (1/(a′b′)) = 0. Note
that (1) has no solution if b′ = 0 since a′ �= 0. Therefore, for a′b′ �= 1, (1)
has two solutions if b′ �= 0 and trn−1

1 (1/(a′b′)) = 0 and has no solution
otherwise. If a′b′ = 1 then trn−1

1 (1/(a′b′)) = trn−1
1 (1) = 1 and therefore

b′x′2 + a′b′x′ + a′ = 0 has no solution. This implies that (1) has only two
solutions 0, a′ when a′b′ = 1.

(2) If a′b′ �= c, which is equivalent to saying that both 0 and a′ are not solutions
of (2), then (2) is equivalent to b′x′2+a′b′x′+ca′ = 0, which, by Lemma 1, has
two solutions if b′ �= 0 and trn−1

1 (c/(a′b′)) = 0 and has no solution otherwise
since (2) has no solution for b′ = 0. If a′b′ = c then trn−1

1 (c/(a′b′)) =
trn−1

1 (1) = 1, which implies that b′x′2 + a′b′x′ + ca′ = 0 has no solution.
Thus, (2) has only two solutions 0, a′ for a′b′ = c.

(3) We can directly check that, for any x′
0 ∈ F2n−1 , if x′

0 is a solution of (3) then
x′
0 + a′ is a solution of (4) and the converse is true.

If a′b′ �= 1, c in (3), which is equivalent to saying that both 0 and a′ are not
solutions of (3), then (3) is equivalent to b′x′2 + (a′b′ + c + 1)x′ + a′ = 0.
Note that a′b′ �= 0 gives b′ �= 0. Hence, for a′b′ �= 0, 1, c, b′x′2 + (a′b′ + c +
1)x′ + a′ = 0 has two solutions if trn−1

1 (a′b′/(a′b′ + c + 1)2) = 0 and has no
solution if trn−1

1 (a′b′/(a′b′ + c + 1)2) = 1 by Lemma 1. Note that a′b′ = 1
implies that trn−1

1 (a′b′/(a′b′+c+1)2) = trn−1
1 (1/c) = 1 and a′b′ = c leads to

trn−1
1 (a′b′/(a′b′+c+1)2) = trn−1

1 (c) = 1. Hence, (3) has unique solution a′ if
a′b′ = 1 and has unique solution 0 if a′b′ = c. If a′b′ = 0, we can easily check
that (3) has unique solution for b′ �= a′ = 0, a′ �= b′ = 0 and a′ = b′ = 0,
respectively. Then the statement for (4) is direct.


�
Now we are ready to prove our main theorem.

Theorem 2. For any even n ≥ 6, the bijection F defined in Construction 1 is
differentially 4-uniform.

Proof. Let us check that

F (x) + F (x + a) = b (5)

has at most 4 solutions for every fixed (a, b) ∈ F
n∗
2 ×F

n
2 . Let us write x = (x′, xn),

a = (a′, an) and b = (b′, bn). Then Eq. (5) is equivalent to

F (x′, xn) + F (x′ + a′, xn + an) = (b′, bn), (6)

s If an = 0 and a′ �= 0 then the solutions of Eq. (6) are constituted by (x′, 0)
such that

1/x′ + 1/(x′ + a′) = b′, f(x′) + f(x′ + a′) = bn (7)
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and by (x′, 1) such that

c/x′ + c/(x′ + a′) = b′, f(x′/c) + f((x′ + a′)/c) = bn. (8)

If an = 1 then the solutions of Eq. (6) are constituted by (x′, 0) such that

1/x′ + c/(x′ + a′) = b′, f(x′) + f((x′ + a′)/c) = bn + 1 (9)

and by (x′, 1) such that

c/x′ + 1/(x′ + a′) = b′, f(x′/c) + f((x′ + a′)) = bn + 1. (10)

For an = 0 and a′ �= 0, by (1) and (2) of Lemma 2, we can see that the
sum of the numbers of solutions of Eqs. (7) and (8) is at most 4. Similarly, for
an = 1, it follows from (3) of Lemma 2 that the sum of the numbers of solutions
of Eqs. (9) and (10) is at most 4. This completes the proof. 
�
Remark 1. Given an integer n, let us define T (n) as the number of c ∈ F2n such
that trn

1 (c) = trn
1 (1/c) = 1. Then there are T (n)−1 elements c ∈ F2n \{0, 1} such

that trn
1 (c) = trn

1 (1/c) = 1 when n is odd, since trn
1 (0) = 0 and trn

1 (1) = 1. Let
Kn(a) =

∑
x∈F2n

(−1)trn
1 (1/x+ax), where a ∈ F

∗
2n , be the so-called Kloosterman

sums on F2n . Note that Kn(1) =
∑

x∈F2n
(−1)trn

1 (x+1/x) = 2n − 2wt
(
trn

1 (x) +
trn

1 (1/x)
)

= 2n − 2wt(trn
1 (x)) − 2wt(trn

1 (1/x)) + 4T (n) = −2n + 4T (n). We
have T (n) = 2n−2 + Kn(1)/4, which is at least 2n−2 − �2n/2−1� according to
Lemma 3 (see below). Hence, for any even n ≥ 6, Construction 1 can generate
(T (n − 1) − 1) · 22n−1 ≥ (2n−3 − �2(n−1)/2−1� − 1) · 22n−1

differentially 4-uniform
bijections.

In fact, our method for constructing differentially 4-uniform bijections on n
variables can be viewed as concatenating the value-tables of two almost bent
bijections on n−1 variables and completing each value by concatenating it with
the value of a Boolean function. Some work to find new infinite classes of APN or
differentially 4-uniform functions (not bijective) has been done by concatenation
method [5,6], but the concatenation was on two functions in n variables whose
outputs have length n/2.

3.3 Algebraic Degree

We shall now show the algebraic degree of F .

Theorem 3. For every even n ≥ 6, F with any Boolean function f ∈ Bn−1 has
algebraic degree n − 1.

Proof. It is obvious that F has algebraic degree at most n−1 since F is bijective.
So we only need to prove that F has algebraic degree at least n − 1. Let a0 ∈
F2n be an element which is identified with (a′, 0) such that a′ �= 0. Then the
component function a0 · F is identified with trn−1

1 (a′F (x′, xn)). This implies
that a0 · F (x′, xn) = (1 + xn)trn−1

1 (a′/x′) + xntrn−1
1 (a′c/x′) = xntrn−1

1 ((a′ +
a′c)/x′) + trn−1

1 (a′/x′). Note that a′ + a′c �= 0 since a′ �= 0 and c �= 1. So
we have the component function a0 · F has algebraic degree n − 1 thanks to
trn−1

1 ((a′ + a′c)/x′) has degree n− 2. Therefore, F has algebraic degree n− 1. 
�
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3.4 Walsh Transform

Theorem 4. Let n ≥ 6 be an integer and f ∈ Bn−1 be the function defined in
Construction 1. For any (a, b) ∈ F

n∗
2 × F

n
2 , we have

WF (a, b) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
x′∈F2n−1

(−1)trn−1
1 (a′/x′+b′x′) +

∑
x′∈F2n−1

(−1)trn−1
1 (a′c/x′+b′x′), if an = 0, bn = 0

∑
x′∈F2n−1

(−1)trn−1
1 (a′/x′+b′x′) − ∑

x′∈F2n−1

(−1)trn−1
1 (a′c/x′+b′x′), if an = 0, bn = 1

∑
x′∈F2n−1

(−1)trn−1
1 (a′/x′+b′x′)+f(x′) − ∑

x′∈F2n−1

(−1)trn−1
1 (a′c/x′+b′x′)+f(x′/c),

if an = 1, bn = 0∑
x′∈F2n−1

(−1)trn−1
1 (a′/x′+b′x′)+f(x′) +

∑
x′∈F2n−1

(−1)trn−1
1 (a′c/x′+b′x′)+f(x′/c),

if an = 1, bn = 1

where a is identified with (a′, an) and b is identified with (b′, bn), where a′, b′ ∈
F2n−1 .

Proof. Note that the linear function (b1, · · · , bn−1, bn) ·(x1, · · · , xn−1, xn) can be
identified with trn−1

1 (b′x′)+ bnxn and the component function a ·F , denoted by
ga(x1, · · · , xn−1, xn), can be identified with ga(x′, xn), where ga(x′, xn) is defined
as ga(x′, xn) = trn−1

1 (a′/x′)+anf(x′) if xn = 0 and ga(x′, xn) = trn−1
1 (a′c/x′)+

an(f(x′/c) + 1) if xn = 1. Therefore, we have

WF (a, b) =
∑

x∈F
n
2

(−1)a·F+bx

=
∑

(x′,xn)∈F2n−1×{0}
(−1)trn−1

1 (a′/x′)+anf(x′)+trn−1
1 (b′x′)+bnxn

+
∑

(x′,xn)∈F2n−1×{1}
(−1)trn−1

1 (a′c/x′)+an(f(x′/c)+1)+trn−1
1 (b′x′)+bnxn

=
∑

x′∈F2n−1

(−1)trn−1
1 (a′/x′+b′x′)+anf(x′)

+
∑

x′∈F2n−1

(−1)trn−1
1 (a′c/x′+b′x′)+anf(x′/c)+bn+an .

Then our assertion follows from above equality. 
�
Remark 2. By Theorem 4, we can see that the nonlinearity of F can take value
0 if the Boolean function f used in Construction 1 is an affine function.

3.5 CCZ-inequivalence

In this subsection, we will prove that, for any even n ≥ 8, F is CCZ-inequivalent
to the Gold functions, the Kasami functions, the functions discussed in [2] and
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to quadratic functions. With the help of computer, we checked that for even n
ranging from 8 to 16, F is CCZ-inequivalent to the inverse function.

Here and subsequently, I denotes the inverse function. We need the nonlin-
earities of component functions of I.

Lemma 3 [13]. For any positive integer n and arbitrary a ∈ F
∗
2n , the Walsh

spectrum of trn
1 (ax−1) defined on F2n can take any value divisible by 4 in the

range [−2n/2+1 + 1, 2n/2+1 + 1].

We now study the CCZ-inequivalence of F .

Theorem 5. For every even n ≥ 8, F is CCZ-inequivalent to the Gold func-
tions, the Kasami functions, the functions discussed in [2] and quadratic func-
tions.

Proof. Note that the extended Walsh spectrum is a CCZ-invariant parameter.
It is well known that, for even n, the elements of the extended Walsh spectra
of the Gold functions, the Kasami functions and the functions discussed in [2]
belong to the set {0,±2n/2,±2n/2+1} and that the elements of the extended
Walsh spectrum of quadratic functions can be divisible by 2n/2 (indeed, the
component functions of any quadratic function have algebraic degree at most
2. We know that the nonlinearity of any affine function is equal to 0 and the
Walsh spectrum of any quadratic Boolean function is ±2n/2 or 0,±2n/2+l, where
l ≥ 1). Hence, for proving F is CCZ-inequivalent to those functions, we only need
to prove that F has different extended Walsh spectrum compared to theirs.
Let us take a′ = 1 in Theorem 4. Then there must be an element b′

0 ∈ F2n−1

such that
∑

x′∈F2n−1
(−1)trn−1

1 (1/x′+b′
0x′) = 4, according to Lemma 3. Define

λ =
∑

x′∈F2n−1
(−1)trn−1

1 (c/x′+b′
0x′). It follows from Theorem 4 that 4 + γ and

4 − γ belong to the extended Walsh spectra of F . We can see that, for even
n ≥ 8, 4 + γ and 4 − γ can not be divisible by 2n/2 simultaneously. This is the
desired conclusion. 
�
Theorem 6. Let n ≥ 8 be an even integer. Define f3 ∈ Bn on variables x1, · · · , xn

as f3 = (1+xn)f1+xnf2, where f1, f2 ∈ Bn−1 are defined as f1 = trn−1
1 (1/x) and

f2 = trn−1
1 (c/x) where c ∈ F2n−1 \ {0, 1} is such that trn−1

1 (c) = trn−1
1 (1/c) = 1.

If nl(f3) < 2n−1 − 2n/2, then F with any f ∈ Bn−1 is CCZ-inequivalent to the
inverse function and therefore F is CCZ-inequivalent to all known differentially
4-uniform power functions and to quadratic functions.

Proof. Let us take a′ = 1 ∈ F2n−1 and an = 0 in the function ga(x1, · · · , xn−1, xn)
which is defined in the proof of Theorem 4. Then we can see that ga(x1, · · · , xn−1,
xn) is equal to f3 and so f3 is a component function of F . If nl(f3) < 2n−1 −2n/2,
then we have nl(F ) < 2n−1 − 2n/2 and therefore F is CCZ-inequivalent to the
inverse function since the nonlinearity is a CCZ-invariant parameter and nl(I) =
2n−1 − 2n/2. The rest of proof follows from Theorem 5. 
�
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Remark 3. By computer investigation, we checked that nl(f3) < 2n−1 − 2n/2

(but the nonlinearity of f3 is very close to 2n−1 − 2n/2 and we will show below a
class of highly nonlinear bijections by choosing a special Boolean function f in
Construction 1) for even n ranging from 8 to 16, where f3 is defined in Theorem
6. This implies that F is CCZ-inequivalent to all known differentially 4-uniform
power functions and to quadratic functions when 8 ≤ n ≤ 16.

4 A Class of Differentially 4-Uniform Bijections with
Good Cryptographic Properties

Hereinafter, for any even integer n ≥ 6, we define F1 as the function F with
f(x′) = trn−1

1 (1/(x′ + 1)). By Theorems 1 and 2, we can see that F1 is a differ-
entially 4-uniform bijection. It follows from Theorem 3 that F1 has maximum
algebraic degree n − 1. In what follows, we will prove that the function F1

has high nonlinearity and is CCZ-inequivalent to known differentially 4-uniform
power functions and to quadratic functions.

We first give a lower bound on the nonlinearity of F1. For doing this, we need
the following lemma.

Lemma 4 [14]. Let n be a positive integer such that n ≥ 4, then we have∑
x∈F2n

(−1)trn
1 (ax+bx−1+x2(x+1)−1)| ≤ 2�2n/2+1� + 4 for any (a, b) ∈ F2n × F2n .

Note that x2(x + 1)−1 = x + 1 + (x + 1)−1. Then Lemma 4 is equivalent to:

Corollary 1. For any n ≥ 4, we have |∑x∈F2n
(−1)trn

1 (ax+bx−1+(x+1)−1)| ≤
2�2n/2+1� + 4 for any (a, b) ∈ F2n × F2n .

We are now ready to give a lower bound on the nonlinearity of F1.

Theorem 7. For any even n ≥ 6, we have nl(F1) ≥ 2n−1 − 2�2(n+1)/2� − 4.

Proof. For any (a, b) ∈ F
n∗
2 × F

n
2 , we identify a with (a′, an) and b with (b′, bn).

By Lemma 4, we have

WF (a, b) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
x′∈F2n−1

(−1)trn−1
1 (a′/x′+b′x′) +

∑
x′∈F2n−1

(−1)trn−1
1 (a′c/x′+b′x′), if an = 0, bn = 0

∑
x′∈F2n−1

(−1)trn−1
1 (a′/x′+b′x′) − ∑

x′∈F2n−1

(−1)trn−1
1 (a′c/x′+b′x′), if an = 0, bn = 1

∑
x′∈F2n−1

(−1)trn−1
1

(
a′/x′+1/(x′+1)+b′x′

)

− ∑
x′∈F2n−1

(−1)trn−1
1

(
a′/x′+1/(x′+1)+b′cx′

)
, if an = 1, bn = 0

∑
x′∈F2n−1

(−1)trn−1
1

(
a′c/x′+1/(x′+1)+b′x′

)

+
∑

x′∈F2n−1

(−1)trn−1
1

(
a′/x′+1/(x′+1)+b′cx′

)
, if an = 1, bn = 1

.
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Table 1. The exact values of nl(F1) on small number of variables

n 6 8 10 12

2n−1 − 2n/2 24 112 480 1984

nl(F1) 20 94 436,438,440,442 1888,1892,1894,1896,1898,1900,1902

Our lower bound 6 80 418 1864

By Lemma 3 and Corollary 1, we have

|WF (a, b)| ≤
{

2�2(n+1)/2�, if an = 0, bn ∈ F2

4�2(n+1)/2� + 8, if an = 1, bn ∈ F2
.

This implies that nl(F1) ≥ 2n−1 − 2�2(n+1)/2� − 4. 
�
With the help of computer, we get the exact values of nl(F1) for even numbers

of variables ranging from 6 to 12, which are given in the following table.

4.1 CCZ-inequivalence

We shall now show that F1 is CCZ-inequivalent to known differentially 4-uniform
power functions and to quadratic functions.

To prove our main result, we need the following lemma.

Lemma 5. Let n ≥ 7 be an integer. For any γ ∈ F
∗
2n and βi, αi ∈ F2n where

1 ≤ i ≤ 3, we have

|
∑

x∈F2n

(−1)trn
1

(
α1

x+β1
+

α2
x+β2

+
α3

x+β3
+γx

)
| ≤ 3�2n

2 +1� + 6.

Proof. Define S = {(x, y) ∈ F2n × F2n | y2 + y = α1
x+β1

+ α2
x+β2

+ α3
x+β3

+ γx}.
Then we have

∑

x∈F2n

(−1)trn
1 (

α1
x+β1

+
α2

x+β2
+

α3
x+β3

+γx) = |S| − 2n, (11)

since trn
1 (z) = 0 if and only if there exists an element y ∈ F2n such that z =

y2 + y, and y �→ y2 + y is a 2-to-1 mapping. Let us consider the function field
K = F2n(x, y) with defining equation

y2 + y =
α1

x + β1
+

α2

x + β2
+

α3

x + β3
+ γx. (12)

Then we can deduce that the genus g of K is equal to

g =

⎧
⎨

⎩

1, if β1 = β2 = β3

2, if β1 = β2 �= β3 or β1 �= β2 = β3 or β1 = β3 �= β2

3, if β1 �= β2 �= β3 �= β1

. (13)
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Denote by N the number of the places with degree one of K/F2n . Then by Serre
bound, we have

|N − (2n + 1)| ≤ g�2n/2+1�. (14)

In what follows, we compute the points at infinity of (12). We first con-
sider the case that α1, α2, α3 are pairwise distinct. The homogeneous equation
of Equation (12) is equal to

(
Y

Z
)2 +

Y

Z
=

α1Z

X + β1Z
+

α2Z

X + β2Z
+

α3Z

X + β3Z
+ γ

X

Z
. (15)

If we multiply both sides of Eq. (15) by Z2, we get

Y 2 + Y Z = [
α1Z

X + β1Z
+

α2Z

X + β2Z
+

α3Z

X + β3Z
]Z2 + γXZ. (16)

Multiply both sides of Eq. (16) by (X + β1Z)(X + β2Z)(X + β3Z) and then let
Z = 0, we have X3Y 2 = 0. Hence, there are two points at infinity satisfying the
Eq. (15), which are (0 : 1 : 0) and (1 : 0 : 0). We now compute the multiplicity
of roots of (0 : 1 : 0) and (1 : 0 : 0), respectively. Let us first consider (0 : 1 : 0),
i.e., Y = 1. We can use

(
1
z
)2 +

1
z

=
α1z

x + β1z
+

α2z

x + β2z
+

α3z

x + β3z
+ γ

x

z
(17)

to calculate the multiplicity of root. It should be note that (0 : 1 : 0) is corre-
sponding to (0, 0). Multiply Eq. (17) by z2, we get

1 + [
α1

x + β1z
+

α2

x + β2z
+

α3

x + β3z
]z3 = z + γxz.

Multiply this new equation by (x + β1z)(x + β2z)(x + β3z), we have

(x + β1z)(x + β2z)(x + β3z) + R(x, z) = 0,

where R(x, z) is a polynomial such that its every monomial has algebraic degree
at least 3. This gives (0 : 1 : 0) is a root of multiplicity 3. For the point (1 : 0 : 0),
i.e. X = 1, we can use

(
y

z
)2 +

y

z
=

α1z

1 + β1z
+

α2z

1 + β2z
+

α3z

1 + β3z
+ γ

1
z

(18)

to calculate the multiplicity of root. Similar with Eq. (17), Eq. (18) can be
deduced as

γz + (Y 2 + yz) + [
α1

1 + β1z
+

α2

1 + β2z
+

α3

1 + β3z
]z3 = 0.

Multiply this new equation by (1 + β1z)(1 + β2z)(1 + β3z). Two cases can then
occur, according to the values of γ.
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• Forγ �= 0, we have γz + R1(y, z) = 0, where R1(y, z) is such that its every
monomial has algebraic degree at least 1. This implies that (1 : 0 : 0) is a root
of multiplicity 1.

• For γ = 0, we can deduce that (y2 + yz) + R2(y, z) = 0 where R2(y, z) is
such that its every monomial has algebraic degree at least 2, which implies
(1 : 0 : 0) is a root of multiplicity 2.

Therefore, Eq. (12) has at most five points at infinity in the case that α1, α2, α3

are pairwise distinct. Then

N ≥ S − 5. (19)

Similarly, we can deduce that Eq. (12) has at most four points at infinity if
α1, α2, α3 are not pairwise distinct. So we have

N ≥ S − 4. (20)

Equations (11), (14), (19) and (20) combined give our statement. 
�
We are ready now to state and prove the main result of this subsection.

Theorem 8. For any even n ≥ 8, F1 is CCZ-inequivalent to all known differ-
entially 4-uniform power functions and to quadratic functions.

Proof. By Theorem 5, we can see that F1 is CCZ-inequivalent to the Gold func-
tions, the Kasami functions, the functions discussed in [2] and to quadratic
functions. So, for proving our statement, we only need to prove that F1 is CCZ-
inequivalent to the inverse function. It is well-known that the number of pairs
(a, b) ∈ F

n∗
2 × F

n
2 such that I(x) + I(x + a) = b has 4 solutions is 2n − 1. Recall

that the differential spectrum is a CCZ-invariant parameter. So we only need to
prove that the number of pairs (a, b) ∈ F

n∗
2 ×F

n
2 such that F1(x)+F1(x+a) = b

has 4 solutions is at least 2n.
We identify a with (a′, an) and b with (b′, bn). Let us first give a sufficient

condition for the sum of the numbers of distinct solutions (9) and (10) to equal
4. For every a′ ∈ F

∗
2n−1 and for every fixed x0 ∈ F2n−1 \ {0, a′, a′/(c + 1)}, if we

assume that x0 is a solution of 1/x′ + c/(x′ + a′) = b′ which is equivalent to

b′x′2 + (a′b′ + c + 1)x′ + a′ = 0 (21)

thanks to x0 �= 0, a, then we have b′x0
2 + (a′b′ + c + 1)x0 + a′ = 0 and hence

b′ = (a′ + (c + 1)x0)/(x0
2 + a′x0) which is nonzero since x0 �= a′/(c + 1), 0, a′.

Further, we can deduce that the other solution of (21) is x1 = x0+a′+(c+1)/b′ =
ca′2/

(
(c + 1)(cx0 + x0 + a′)

)
+ a′/(c + 1). For ensuring x0 �= x1, a′ + (c + 1)/b′

should not be equal to 0, which is equivalent to saying that x0 should not be
a solution of equation (a′ + (c + 1)x′)/(x′2 + a′x′) = (c + 1)/a′. This implies
that x0 �= a′(c + 1)2

n−2
. Hence, for every a′ ∈ F

∗
2n−1 , then for every fixed x0 ∈

F2n−1 \ {0, a′, a′(c + 1)2
n−2

, a′/(c + 1)}, equation 1/x′ + c/(x′ + a′) = b′ with
b′ = (a′+(c+1)x0)/(x0

2+a′x0) has two distinct solutions x0, x1. Further, by (3)
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of Lemma 2, x0+a′, x1+a′ are two distinct solutions of c/x′+1/(x′+a′) = b′. We
can see that x1+a′ �= x0 since (c+1)/b′ �= 0. This gives that x0, x1, x0+a′, x1+a′

are four distinct elements. Therefore, for every a′ ∈ F
∗
2n−1 and for every fixed

x0 ∈ F2n−1 \ {0, a′, a′(c + 1)2
n−2

, a′/(c + 1)}, (9) and (10) have four pairwise
distinct solutions if f(x′) + f((x′ + a′)/c) = f(x′/c) + f((x′ + a′)), in which
b′ = (a′+(c+1)x0)/(x0

2+a′x0) and bn = f(x′)+f((x′+a′)/c), and therefore (6)
has four distinct solutions. For every a′ ∈ F

∗
2n−1 , let us define Ta′ = {x ∈ F2n−1 \

{0, a′, a′(c+1)2
n−2

, a′/(c+1)}|f(x′)+f((x′ +a′)/c)+f(x′/c)+f((x′ +a′)) = 0}.
Note that (21) has at most two solutions when a′, b′ are fixed. Thus, for every
a′ ∈ F

∗
2n−1 , there are at least Ta′/2 distinct pairs (a, b) =

(
(a′, 1), (b′, bn)

)
such

that (6) has four distinct solutions.
We now show that the number of pairs (a, b) ∈ F

n∗
2 × F

n
2 such that F1(x) +

F1(x + a) = b has 4 solutions is not less than 2n. We replace f(x′) in Ta′ by
trn−1

1 (1/(x′+1)), then Ta′ becomes Ta′ = {x0 ∈ F2n−1\{0, a′, a′(c+1)2
n−2

, a′/(c+
1)}|trn

1

(
1/(x0 +1)+1/((x0 + a′)/c+1)+1/(x1 +1)+1/((x1 + a′)/c+1)

)
= 0}.

Recall that x1 = x0 + a′ + (c + 1)/b′ = ca′2/
(
(c + 1)(cx0 + x0 + a′)

)
+ a′/(c + 1).

Then for every a′ ∈ F2n \ {0, 1 + c, (c + 1)2
n−2}, we have

Ta′ =
{

x0 ∈ F2n−1 \ {0, a
′
, a

′
(c + 1)

2n−2
, a

′
/(c + 1)}|trn−1

1

( c
(a′+c+1)2

x0 + 1
a′+c+1

+

ca′2
(a′2+c+1)2

x0 + a′+c+1
a′2+c+1

+

a′2
(c+1)2

x0 + a′+c+1
c+1

+ x0 +
c

a′ + c + 1
+

ca′2

(a′ + c + 1)(a′2 + c + 1)
+

a′2

(a′ + c + 1)(c + 1)

)
= 0
}

.

Therefore, the number of pairs (a, b) ∈ F
n∗
2 ×F

n
2 such that F1(x)+F1(x+a) = b

has 4 solutions is greater than (2n−1−3)Ta′/2, which is not less than 2n −1 since
Ta′ ≥ 2n−2 − 3

2�2n−1
2 +1� − 7 for every a′ ∈ F2n \ {0, 1 + c, (c + 1)2

n−2} according
to Lemma 5. This completes the proof. 
�
Remark 4. By computer investigation, we checked that the extended Walsh spec-
trum of F1 for even numbers of variables ranging from 6 to 12 are different from
those of all the known differentially 4-uniform bijections listed in Sect. 2. This
implies that functions F1 are CCZ-inequivalent to all known differentially 4-
uniform bijections in the dimensions ranging over even integers from 6 to 12.

5 Conclusion

In this paper, we first presented a construction of differentially 4-uniform bijec-
tions on F2n , where n ≥ 6 is even. For any even n ≥ 6, this construction can
generate at least

(
2n−3 − �2(n−1)/2−1� − 1

) · 22
n−1

bijections having algebraic
degree n − 1. In addition, we exhibited a subclass of these bijections which have
high nonlinearity and are CCZ-inequivalent to all known differentially 4-uniform
power bijections and to quadratic functions. The research of finding more sub-
classes with high nonlinearity from our construction is very interesting and is
worthy of a further investigation.
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Abstract. Counting the number of active S-boxes is a common way to
evaluate the security of symmetric key cryptographic schemes against dif-
ferential attack. Based on Mixed Integer Linear Programming (MILP),
Mouha et al. proposed a method to accomplish this task automatically
for word-oriented symmetric-key ciphers with SPN structures. However,
this method can not be applied directly to block ciphers of SPN struc-
tures with bitwise permutation diffusion layers (S-bP structures), due
to its ignorance of the diffusion effect derived collaboratively by nonlin-
ear substitution layers and bitwise permutation layers. In this paper we
extend Mouha et al.’s method for S-bP structures by introducing new
representations for exclusive-or (XOR) differences to describe bit/word
level differences simultaneously and by taking the collaborative diffusion
effect of S-boxes and bitwise permutations into account. Our method
is applied to the block cipher PRESENT-80, an international standard
for lightweight symmetric key cryptography, to automatically evaluate
its security against differential attacks. We obtain lower bounds on the
numbers of active S-boxes in the single-key model for full 31-round
PRESENT-80 and in related-key model for round-reduced PRESENT-80
up to 12 rounds, and therefore automatically prove that the full-round
PRESENT-80 is secure against single-key differential attack, and the
cost of related-key differential attack on the full-round PRESENT-80 is
close to that of an exhaustive search: the best related-key differential
characteristic for full PRESENT-80 is upper bounded by 2−72.

Keywords: Block cipher · SPN structure · Differential attack · Active
S-box · Mixed-integer linear programming

1 Introduction

Differential cryptanalysis [6] and linear cryptanalysis [20] are two of the most
important attacks on symmetric-key cryptographic schemes, based on which
a whole bunch of techniques for analysing block ciphers are devised, such as
related-key differential attack [4], impossible differential attack [5] and zero cor-
relation attack [8]. Resistance against differential and linear attacks is a basic
requirement for today’s design of block ciphers.
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After the introduction of the wide trail strategy [13] by the designers of
AES, provable security against differential cryptanalysis comes from a similar
argument for almost all newly designed block ciphers. That is, the designers
provide a very small upper bound for the probability of the best differential
characteristic of the cipher by showing a lower bound on the number of active
S-boxes for any consecutive r rounds of the cipher. Therefore, how to find the
minimum number of active S-boxes is of great interest.

Actually, lots of works have been done in this direction for both classes of
block ciphers with substitution-permutation network (SPN) and Feistel struc-
tures. These methods can be classified into two categories.

In the first category, the lower bound is proved mathematically. In [14], the
wide trail design strategy ensures that there are at least 25 active S-boxes for
any 5-round AES, and the designers of PRESENT [7] proved that any 5-round
differential characteristic of PRESENT-80 had a minimum of 10 active S-boxes.
Results concerning block ciphers with Feistel or generalized Feistel structure can
be found in [17,24,27,29]. This kind of methods is tricky, and sometimes many
possible cases of the differential propagation must be considered.

In the second category, algorithms are designed to count the number of active
S-boxes automatically. In [3], Aoki et al. used a variant of Matsui’s algorithm [21]
to compute a lower bound on the minimal number of active S-boxes for the block
cipher Camellia, and therefore proved its security against differential attack. The
minimum number of active S-boxes for generalized Feistel structure was obtained
in [24] by an algorithm which searches word-based truncated differentials. Sareh
Emami et al. proved that no related-key differential characteristic exists with
probability higher than 2−64 for the full-round PRESENT-80 by a new method
called extended split approach [23]. Highly automatic methods employing Mixed
Integer Liner Programming (MILP) were presented in [22,26] to determine the
minimum number of active S-boxes for SPN structures and Feistel structures
with SPN round functions.

In this paper, we are mostly interested in the methods based on MILP since
they are the most automatic methods and require less programming effort com-
pared with other methods. Using this method, what an analyst need to do is just
to write a program to generate the MILP instance with suitable objective func-
tion and constraints imposed by the differential propagation of the cipher. The
remaining work for determining the bounds can be done by a highly optimized
open-source or commercially available software such as CPLEX [12], SCIP [1]
and Gurobi [15].

Contribution of this Paper. In this paper, we focus on how to determine
the minimum number of active S-boxes in the single-key or related-key model
for block ciphers of SPN structures with bitwise permutation diffusion layers
(S-bP structures). We point out that Mouha et al.’s method is not applicable to
block ciphers with bitwise permutations or non-MDS, even almost MDS diffusion
layers. By extending Mouha et al.’s method, we propose an MILP based app-
roach to prove the security of block ciphers of S-bP structures against single-key
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or related-key differential attacks automatically. Compared with other proving
methods like that presented in [7], it is highly automatic.

We have implemented our method on a personal computer: a Python module
was developed to generate the MILP instances, and the Gurobi optimizer [15]
was employed as the underlying MILP solver. Experimental results showed that
we can automatically prove that the block cipher PRESENT-80 is secure against
single-key differential attack within only 222 s. We have also found that there
are at least 15 active S-boxes in any related-key differential characteristic for
12-round PRESENT-80, and the probability of the best related-key differential
characteristic for the full 31-round PRESENT-80 is at most 2−72, which leads
to the conclusion that the workload of related-key differential attack on the
full-round PRESENT-80 is close to that of an exhaustive search.

The paper is organized as follows. In Sect. 2 we recall the Mixed Integer Linear
Programming and its applications to analysing word-oriented block ciphers. In
Sect. 3 we extend Mouha et al.’s method to block ciphers of S-bP structures with
bitwise permutation diffusion layers. We apply our method to the block cipher
PRESENT-80 in Sect. 4. Section 5 is the discussion and conclusion.

2 MILP and Mouha et al.’s Method

Mixed integer linear programming is an optimization method that tries to min-
imize or maximize a linear objective function of several variables subjected to
certain linear constraints on the variables. An MILP problem can be formally
stated as follows.

MILP: Given A ∈ R
m×n, b ∈ R

m and c1, · · · , cn ∈ R
n, find an x ∈ Z

k ×R
n−k ⊆

R
n with Ax ≤ b, such that the linear function c1x1+c2x2+· · ·+cnxn is minimized

(or maximized) with respect to the linear constraint Ax ≤ b.
This kind of problems arises in many areas and the study of linear program-

ming can be traced back, at least, to World War II [18]. However, it is only in
recent years that MILP was applied in cryptographic research.

In [10], Borghoff et al. devised a general method to transform the problem
of solving a system of quadratic equations over F2 into a mixed-integer lin-
ear programming problem. With this method, the authors of [10] were able to
recover the internal state of the stream cipher Bivium A within 4.5 h. The same
method was also employed in [2] to analyze polynomial systems with noises aris-
ing in the context of cold boot key recovery attacks [16]. In [11], Bulygin and
Walter investigated the invariant coset attack on PrintCipher [19] by finding
invariant projected subsets with techniques of mixed integer linear programming.
A technique of MILP was also employed in optimizing the guessing strategies
for algebraic attack on EPCBC [25].

Mouha et al. [22] and Wu et al. [26] applied MILP to automatically determine
lower bounds of the numbers of active S-boxes for some word-oriented symmetric-
key ciphers. In the following we give a description of Mouha et al.’s method
introduced in [22].
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Mouha et al.’s method uses 0–1 variables to describe the word-level differen-
tials propagating through r rounds of the cipher. These variables are subjected to
constraints imposed by the specific operations and structures of the cipher under
consideration. Assume a block cipher consists of the following three operations:

1. S-box, S : Fω
2 → F

ω
2 ;

2. XOR, ⊕ : Fω
2 × F

ω
2 → F

ω
2 ; and

3. Linear transformation L : Fm
2ω → F

m
2ω . The branch number of L is defined as

BL = min
a�=0

{wt(a||L(a)) : a ∈ F
m
2ω}

where wt(a||L(a)) is the number of non-zero entries of the 2m-dimensional
vector a||L(a) ∈ F

2m
2ω .

Representation of active S-boxes and objective function. For an input
difference Δi ∈ F2ω of each S-box appearing in the schematic diagram of the
cipher, Mouha et al. introduced a new 0–1 variable Ai to describe the corre-
sponding S-box is active or not, i.e., Ai = 1 or Ai = 0 depending on Δi �= 0
or Δi = 0. Then, the total number of active S-boxes,

∑
i

Ai, is chosen as the

objective function to be minimized subjecting to constraints imposed by the
operations of the cipher.

Constraints imposed by XOR operations. Assume that a, b ∈ F
ω
2 are the

input differences of the XOR operation, and c ∈ F
ω
2 is the output difference.

Then we have ⎧
⎪⎪⎨

⎪⎪⎩

a + b + c ≥ 2d⊕
d⊕ ≥ a
d⊕ ≥ b
d⊕ ≥ c

(1)

where d⊕ is a dummy variable taking values from {0, 1}.

Constraints imposed by linear transformation. Suppose {i0, · · · , im−1}
and {j0, · · · , jm−1} are permutations of {0, · · · ,m − 1}. Let xik

and yjk
, k ∈

{0, 1, . . . ,m − 1}, be 0–1 variables to denote the word-level input and output
differences respectively for a linear transformation. Then these variables are
subjected to the following constraints

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
k=0

(xik
+ yjk

) ≥ BLdL

dL ≥ xi0

· · ·
dL ≥ xim−1

dL ≥ yj0

· · ·
dL ≥ yjm−1

(2)
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where dL is a dummy variable taking values in {0, 1} and BL is the branch num-
ber of the linear transformation L.

With the objective function and constraints presented as above, the problem
of calculating a lower bound of the number of active S-boxes is modelled as an
MILP instance which can be solved by the CPLEX [12] optimizer. The minimum
numbers of active S-boxes were obtained in [22] for r-round Enocoro-128V2
(r ≤ 96) and full-round AES. We refer the reader to [22] for more information.

These results are impressive especially for that Mouha et al.’s method is able
to show the resistance of AES against related-key differential attacks automat-
ically. However, Mouha et al.’s method is not applicable to SPN ciphers with
bitwise permutation diffusion layers since it does not consider the collabora-
tive diffusion effect of the S-box layer and bitwise permutation linear diffusion
layer. In the next section, we will extend Mouha et al.’s method by introducing
new representations linking bit-level and word-level differentials and adding new
constraints concerning the diffusion effect of S-boxes to make it suitable to SPN
ciphers with bitwise permutation diffusion layers.

3 Calculating the Minimum Number of Active S-boxes
for S-bP Structures

In this section, we consider an r-round SP block cipher with n-bit block size, ω×ω
S-box, and a bitwise permutation diffusion layer. We call this is a block cipher of
S-bP(n, ω, r) structure. Under this notation, PRESENT-80 is an S-bP(64, 4, 31)
structure, PRINTCIPHER is an S-bP(32, 3, 48) structure, and EPCBC(48,96)
is an S-bP(96, 4, 32) structure.

Each round of an S-bP(n, ω, r) structure consists of a key addition (XOR)
layer, a substitution layer where the n input bits are divided into n/ω words
which will be substituted by new ones according to the underlying S-boxes, and
a bitwise permutation layer that permutes the position of the output bits of the
substitution layer (Fig. 1).

3.1 Representation of the Differentials

Bit-level representation. For every bit-level difference in S-bP structure, we
introduce a new 0–1 variable to denote it if necessary. For differences that can be
represented by variables already introduced (e.g., the r-th round input difference
is the bitwise permutation of the (r −1)-th round output difference in single-key
differential analysis), we do not introduce new variables. The reason is that we
should make the number of variables as small as possible in the resulting MILP
instance.

Word-level representation. For every S-box in the schematic diagram (includ-
ing the encryption process and the key schedule algorithm) of the block cipher,
we introduce a new 0–1 variable Aj .
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Fig. 1. Two consecutive rounds of the PRESENT-80 encryption algorithm

3.2 Constructing the MILP Instance for S-bP Structure

If we follow the way of variable usage introduced in Subsect. 3.1 and obey the
rules of variable assignment as follows:

xi =
{

0, there is no bit level difference at this position,
1, otherwise,

Ai =
{

0, the Sbox marked by Ai is not active,
1, otherwise,

then it is natural to choose the objective function f as
∑

Aj , which will be
minimized to determine the lower bound of the number of active S-boxes for S-
bP(n, ω, r) structure. The tricky part is to pinpoint the constraints under which
the objective function f should be minimized.

Constraints Imposed by XOR Operations. For every XOR operation that
may receive more than one nonzero input difference, we add the constraints (1)
presented in Sect. 2, here the corresponding input and output variable should be
changed to bit-level representation.

Constraints Describing the S-box Operation. Assume (xi0 , · · · , xiω−1) and
(yj0 , . . . , yjω−1) are the input and output bits of an S-box marked by At respec-
tively. Firstly, to ensure At = 1 when any one of xi0 , . . . , xiω−1 is 1, we require

⎧
⎪⎪⎨

⎪⎪⎩

xi0 − At ≤ 0
xi1 − At ≤ 0
· · ·
xiω−1 − At ≤ 0

(3)
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Secondly, when At = 1, one of xi0 , . . . , xiω−1 must be 1:

xi0 + xi1 + · · · + xiω−1 − At ≥ 0 (4)

Thirdly, input difference must result in output difference and vice versa:
{

ωyj0 + ωyj1 + · · · + ωyjω−1 − (xi0 + xi1 + · · · + xiω−1) ≥ 0
ωxi0 + ωxi1 + · · · + ωxiω−1 − (yj0 + yj1 + · · · + yjω−1) ≥ 0 (5)

Here we stress that similar constraints must be added for invertible linear trans-
formation L : Fm

2ω → F
m
2ω with branch number BL < ω + 1. For example, the

block cipher PRINCE in [9] applies an almost-MDS linear diffusion layer L with
BL = ω.

In Mouha et al.’s method, the variables representing input and output dif-
ferences of a linear diffusion transformation are subjected to (2). It is easy to
check that the following assignment

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dL = 1
xi0 = 1
...
xim−1 = 1
yj0 = 0
...
yjm−1 = 0

does not violate (2) if BL < ω + 1. However, this contradicts the invertibility of
L since a nonzero input difference must result in a nonzero output difference.
This defect can be remedied by adding (5) as additional constraints.

Finally, since a single active S-box may lead to more than one active S-box in
the next round in S-bP structure, the collaborative diffusion effect of the S-boxes
and bitwise permutations can not be ignored.

Definition 1. The branch number BS of an ω ×ω S-box S : Fω
2 → F

ω
2 is defined

as follows
BS = min

a�=b
{wt((a ⊕ b)||(S(a) ⊕ S(b)) : a, b ∈ F

ω
2 }

where wt(·) is the Hamming weight of a 2ω-bit word.

Similarly to the constraints describing the diffusion effect of linear transfor-
mations in Mouha et al.’s method, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω−1∑
k=0

(xik
+ xjk

) ≥ BSdt

dt ≥ xi0

· · ·
dt ≥ xiω−1

dt ≥ yj0

· · ·
dt ≥ yjω−1

(6)
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Additional Constraints. Add an extra constraint to ensure nonzero input
difference to rule out the trivial result where zero input difference results in 0
active S-box. Let (x1, · · · , xn) be the input difference, we require a constraint
that x1 + · · · + xn ≥ 1.

0–1 Variables Vs Mixed-Integer Linear Programming. If we restrict all
variables appearing in the objective function and constraints to be 0–1, the
resulting instance is a pure integer programming problem. In practice, as sug-
gested in [10], we only require all variables representing differences of plaintexts
and all dummy variables to be 0–1 whilst other variables are only required to be
real numbers, this may lead to a faster solving process.

4 Applications to the Block Cipher PRESENT-80

The increasing popularity of small computing devices with restrictive cost, power
and size makes it a crucial task to design lightweight block ciphers. However,
designing a secure lightweight block cipher suitable for extremely constrained
devices is still a challenging goal.

Some designers employ the well understood SPN structure to meet the light-
weight requirement with smaller S-boxes and bitwise permutation diffusion lay-
ers, both of which can be implemented in hardware with very low cost. For
example, PRESENT [7] and EPCBC [28] use 4 × 4 S-boxes, and PrintCipher
[19] uses 3 × 3 S-boxes. All these schemes have bitwise permutation diffusion
layers. It is remarkable that the PRESENT cipher has become an international
standard for lightweight cryptography. Hence, it is of great importance to eval-
uate the security of S-bP structures.

In [23], Sareh Emami et al. examined the security of the 64-bit lightweight
block cipher PRESENT-80 against related-key differential attacks. With a com-
puter search they proved that no related-key differential characteristic exists with
probability higher than 2−64 for the full-round PRESENT-80. In the following
subsection, we analyze the security of PRESENT-80 with regard to differential
attack using the MILP approach.

4.1 Experimental Results for PRESENT-80

The numbers of differentially active S-boxes in the single-key and related-key
model are summarized in Tables 1 and 2 respectively. The MILP instances were
generated by a Python script and solved by the Gurobi5.5 optimizer running
on a PC with Intel(R) Core(TM) Quad CPU (2.83 GHz, 3.25 GB RAM), and to
make full use of the CPU, all computations were performed parallelly with four
threads.

From Table reftab1 we know that the MILP instance corresponding to the
full-round PRESENT-80 in the single-key model consists of 1056 0–1 variables,
1984 continuous variables, and 7937 constraints. This instance can be solved
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Table 1. Results for the single-key differential analysis

Rounds #Variables #Constraints #Active S-boxes Timing (in seconds)

1 96 + 64 257 1 1

2 128 + 128 513 2 1

3 160 + 192 769 4 1

4 192 + 256 1025 6 1

5 224 + 320 1281 10 1

6 256 + 384 1537 12 1

7 288 + 448 1739 14 2

8 320 + 512 2049 16 5

9 352 + 576 2305 18 3

10 384 + 640 2561 20 6

11 416 + 704 2817 22 14

12 448 + 768 3073 24 13

13 480 + 832 3329 26 14

14 512 + 896 3585 28 17

15 544 + 960 3841 30 22

16 576 + 1024 4097 32 27

17 608 + 1088 4353 34 35

18 640 + 1152 4609 36 33

19 672 + 1216 4865 38 46

20 704 + 1280 5121 40 39

21 736 + 1344 5377 42 43

22 768 + 1408 5633 44 82

23 800 + 1472 5889 46 69

24 832 + 1536 6145 48 88

25 864 + 1600 6401 50 107

26 896 + 1664 6657 52 105

27 928 + 1728 6913 54 116

28 960 + 1792 7169 56 140

29 992 + 1856 7425 58 165

30 1024 + 1920 7681 60 262

31 1056 + 1984 7937 62 222
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Table 2. Results for related-key differential analysis

Rounds #Variables #Constraints #Active S-boxes Timing (in seconds)

1 97 + 277 530 0 1

2 130 + 474 1058 0 1

3 163 + 671 1586 1 1

4 196 + 868 2114 2 1

5 229 + 1065 2642 3 3

6 262 + 1262 3170 4 10

7 295 + 1459 3698 6 26

8 328 + 1656 4226 8 111

9 361 + 1853 4754 9 171

10 394 + 2050 5282 12 1540

11 427 + 2247 5810 13 8136

12 460 + 2444 6338 15 18102

13 493 + 2641 8192 – > 5 days

within 222 s and the number of active S-boxes is 62. Since the S-box of PRESENT-
80 achieves a maximum probability of differentials 2−2, the maximum probability
for differentials of the PRESENT-80 cipher is roughly (2−2)62 = 2−124, which is
less than 2−80, the probability of success for an exhaustive search, thus, we have
proved that PRESENT-80 is secure against single-key differential attack.

For PRESENT-80 in the related-key differential attack, we are only able
to obtain the results for its round-reduced version up to 12 rounds within a
reasonable timing, and the results are listed in Table 2. For example, the prob-
ability of the best related-key differential characteristics for 7-round and 12-
round PRESENT-80 are upper bounded by (2−2)6, and (2−2)15 respectively.
From these results, the probability of the best related-key differential character-
istic for full 31-round PRESENT-80 is upper bounded by (2−2)15+15+6 = 2−72.
Although this is slightly larger than the probability of success for an exhaus-
tive search, we conjecture that the actual minimum number of active S-boxes is
greater than 40. How to reduce the gap and completely prove the security of the
full-round PRESENT-80 against related-key differential attack is still an open
question.

5 Conclusion and Discussion

In this paper, we extended Mouha et al.’s method and propose an approach
for automatically computing a lower bound on the number of active S-boxes
for block ciphers with S-bP structures based on mixed-integer linear program-
ming (MILP). We applied this method to the PRESENT-80 block cipher and
successfully obtained the minimal numbers of active S-boxes in any single-key
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differential characteristic for the full-round PRESENT-80, and any related-key
differential characteristic for its round reduced versions. We proved that
PRESENT-80 is secure against the single-key differential attack, and that the
cost of related-key differential attack against the full-round PRESENT-80 is
close to the cost of an exhaustive search.

Finally, we would like to mention some related topics that deserve further
investigation: 1. Completely prove the security of the full-round PRESENT-80
with respect to the related-key differential attack. A direct approach is to solve
the MILP instance generated from the 31-round PRESENT-80 in the related-key
model. However, according to our experiment, we are not even able to solve the
MILP instance corresponding to 13-round PRESENT-80 within 5 days. 2. The
MILP instances generated from cryptographic problems are in general very hard
to solve compared to usual MILP instances coming from other fields. To practi-
cally solve the MILP instances derived from the full-round PRESENT-80 against
related-key differential attack, it is an interesting research topic to develop meth-
ods to utilize specific structures in the MILP instances generated from cryptog-
raphy and speed up the solving process.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments and suggestions. The work of this paper was supported by
the National Key Basic Research Program of China (2013CB834203), the National
Natural Science Foundation of China (Grants 61070172, 10990011, and 61272477), and
the Strategic Priority Research Program of Chinese Academy of Sciences under Grant
XDA06010702.

References

1. Achterberg, T.: SCIP-a framework to integrate constraint and mixed integer pro-
gramming. Report 04–19, Zuse Institute, Berlin (2004)

2. Albrecht, M., Cid, C.: Cold boot key recovery by solving polynomial systems with
noise. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 57–72.
Springer, Heidelberg (2011)

3. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-bit block cipher suitable for multiple platforms - design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

4. Biham, E.: New types of cryptanalytic attacks using related keys. J. Crypt. 7(4),
229–246 (1994)

5. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Crypt. 4(1), 3–72 (1991)

7. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)



50 S. Sun et al.

8. Bogdanov, A., Rijmen, V.: Zero correlation linear cryptanalysis of block ciphers.
IACR Eprint Archive report 123 (2011)
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Abstract. Edon80 is a hardware binary additive synchronous stream
cipher submitted to the third and last phase of the eSTREAM project.
It’s properties are: (1) The internal structure is highly pipelined; (2) It
is highly parallelizable, making it scalable from the speed of processing
point of view; (3) Its design principles offer possibilities to achieve signif-
icant speed asymmetry — it belongs to a family of stream ciphers that
in hardware can have a constant speed of one bit per clock cycle, but in
software implementation on popular modern CPUs can be made as slow
as needed. Since its first description in 2005, it has been analyzed by
several cryptographers, have been implemented in a more compact way
and a MAC functionality have been added. The key stream generator
of Edon80 employed four quasigroups of order 4. The quasigroups are
chosen by experiments and the period probabilities of the key stream
are also discussed by experiments. In this paper, we research the period
probabilities of Edon80 with mathematical theory, and also we discuss
quasigroups with larger periods factors.

Keywords: Stream cipher · Edon80 · Key-stream period · Quasigroup ·
Latin square

1 Introduction

A quasigroup is an ordered pair (Q, ∗), where Q is a set and ∗ is a binary
operation on Q such that the equations a ∗ x = b and y ∗ a = b are uniquely
solvable for every pair of elements a, b in Q. A Latin square on a set Q is an
|Q|×|Q| array such that every symbol occurs in every row once, and also in every
column once. It is fairly well known that (e.g., see [1]) the multiplication table
of a quasigroup defines a Latin square; that is, a Latin square can be viewed
as the multiplication table of a quasigroup with the headline and the sideline
removed. Therefore the notions of a quasigroup and a Latin square will be freely
interchanged in this paper.

Consider an alphabet (i.e. a finite set) Q, and denote by Q+ the set of all
nonempty words (i.e. finite strings) formed by the elements of Q. The elements
of Q+ will be denoted by x1x2 · · · xm, where xi ∈ Q (i = 1, 2, · · · ,m). Let ∗ be a

c© Springer International Publishing Switzerland 2014
D. Lin et al. (Eds.): Inscrypt 2013, LNCS 8567, pp. 55–69, 2014.
DOI: 10.1007/978-3-319-12087-4 4
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quasigroup operation on set Q, i.e. consider a quasigroup (Q, ∗). For each a ∈ Q,
we define a function Ea,∗: Q+ → Q+ as follows. ∀ X = x1x2 · · · xm ∈ Q+,

Ea,∗(x1x2 · · · xm) = y1y2 · · · , ym,

where {
y1 = a ∗ x1,

yi+1 = yi ∗ xi+1, i = 1, 2, · · · ,m − 1

The function Ea,∗ is called an e-transformation of Q+ based on the operation ∗
with leader a. And the graphical representation of Ea,∗ is shown in Fig. 1.

x1 x2 · · · xm−1 xm

↗ ↓ ↗ ↓ · · · ↓ ↗ ↓
a 1 y2 · · · ym−1 ym

Fig. 1. Graphical representation of the transformation Ea,∗

Edon80 was submitted to the eSTREAM project as a hardware stream cipher
under the Profile 2. It was designed by Gligoroski, Markovski, Kocarev, and
Gusev and its original description is given in [2]. It has a unique design among
known stream cipher designs: it concatenates 80 basic building blocks derived
from four small quasigroups of order 4 in Fig. 2.

•0 0 1 2 3

0 0 2 1 3
1 2 1 3 0
2 1 3 0 2
3 3 0 2 1

•1 0 1 2 3

0 1 3 0 2
1 0 1 2 3
2 2 0 3 1
3 3 2 1 0

•2 0 1 2 3

0 2 1 0 3
1 1 2 3 0
2 3 0 2 1
3 0 3 1 2

•3 0 1 2 3

0 3 2 1 0
1 1 0 3 2
2 0 3 2 1
3 2 1 0 3

Fig. 2. Quasigroups used for the design of Edon80

Edon80 process e-transformations to the initial string consisting of letters
“0 1 2 3 0 1 2 3 0 ...” in 80 steps and output every second letter that forms the
keystream of the stream cipher (see Fig. 3). The processing in every step is done
by a quasigroup ∗i operation in {•1, •2, •3, •4} and a leader ai ∈ {0, 1, 2, 3},
i = 0, 1, · · · 79 chosen in the IVSetup process that have the property to map
the initial 80-bit key (40 2-bit letters) and initial 64-bit IV (32 2-bit letters)
equiprobable in the space {0, 1, 2, 3}80.

For the four quasigroup operations in Fig. 2, it is indicated in [2] that:

1. •0 in average increases the period of an input string by factor of 2.66.
2. •1 in average increases the period of an input string by factor of 2.48.
3. •2 in average increases the period of an input string by factor of 2.43.
4. •3 in average increases the period of an input string by factor of 2.37.
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∗i 0 1 2 3 0 1 2 3 0 · · ·
∗0 a0 a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 a0,8 · · ·∗1 a1 a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 · · ·
...

...
...

...
...

...
...

...
...

...
...

...∗79 a79 a79,0 a79,1 a79,2 a79,3 a79,4 a79,5 a79,6 a79,7 a79,8 · · ·

Fig. 3. Representation of quasigroups e-transformation of Edon80 during the
Keystream mode

Thus, in average, each e-transformation increases the period of an input
string by factor of 2.48. The projected period of the keystream in Edon80 after
applying 80 e-transformation is 1

22.4880 ≈ 2103.
The attack on Edon80 presented in [3] is based on analyzing (key, state) pairs

(concrete assignment of working quasigroups ∗i and initial values for ai) that
give small periods. The small period probabilities summary of his findings are
given in Table 1.

Table 1. Summary periods probabilities in [3]

Periods less then Probability Period less then Probability

263 2−60 255 2−71

262 2−66 254 2−78

261 2−75 253 2−88

Gligoroski et al. [4] gives more small periods probabilities as shown in Table 2.

Table 2. Summary periods probabilities in [4]

Periods less then Probability Period less then Probability

280 2−4.48 248 2−35.02

276 2−6.57 244 2−41.24

272 2−9.13 240 2−48.03

268 2−12.16 236 2−55.46

264 2−15.67 232 2−63.59

260 2−19.70 228 2−72.46

256 2−24.25 224 2−82.14

252 2−29.35 220 2−92.86

All the above probabilities are obtained by experiments of performing e-trans-
formations. It can be seen that the probabilities in Table 1 and in 2 are not
coherent.
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A precise mathematical description of the periods of the keystreams of
Edon80 was attempt to get in [5], but the distributions of the random vari-
ables were still obtained by numerous numerical experiments of performing
e-transformations. In this paper, we discuss the period probabilities of the key-
stream of Edon80 based on mathematical theory, especially the theory of
permutation groups.

The structure of this paper is as follows. Section 2 give the concept and
the probability distributions of the period factors of a quasigroup in general.
The period factors probability distributions of the four quasigroups employed in
Edon80 are discussed in Sect. 3. The period probabilities of Edon80 are given
in Sect. 4. In Sect. 5, more suitable quasigroups for the key-stream generator are
discussed from the point of view of periods of the key stream. Finally, conclusions
are given in Sect. 6.

2 The Period Factors of Quasigroups

Let X = x1x2 · · · xm ∈ Q+. If there exist positive integers k and p such that
xi+p = xi when i ≥ k, then we say that X is eventually periodic. If k = 0, then
we say that X is periodic. If p is the least number of such integers, then p is
called the period of X.

Definition 1. Let Q be a n-set and σ be a permutation on Q. ∀ x ∈ Q, the
period of sequence x σ(x) σ2(x) · · · σi(x) · · · is called the period factor of σ at
x and denoted by fσ(x).

For example, if Q = {1, 2, 3, 4} and σ = (1)(2 3 4), then fσ(1) = 1, fσ(2) =
fσ(3) = fσ(4) = 3. It is easy to see that if x ∈ Q is in a cycle of σ of length k,
then fσ(x) = k.

It is obvious that fσ(x) is an integer and 1 ≤ fσ(x) ≤ n. The function fσ =
fσ(x) with domain Q is a random variable with sample space N = {1, 2, · · · , n}.

The following is a restatement of Theorem 3 in [6].

Theorem 1. Let Q be an n-set and Y (0) = y
(0)
1 y

(0)
2 · · · y(0)

m ∈ Q+, ∗1, ∗2, · · · , ∗p

be p quasigroup operations on Q, and a1, a2, · · · , ap be p letters in Q. Let
{

y
(k)
1 = ak ∗k y

(k−1)
1 ,

y
(k)
i+1 = y

(k)
i ∗k y

(k−1)
i+1 , i = 1, 2, · · · ,m − 1

for k = 1, 2, · · · , p recursively and denote Y (p) = y
(p)
1 y

(p)
2 · · · y(p)

m . Let l be an
integer with 1 ≤ l ≤ p(we suppose that l, p 	 m). Then the distribution of
substrings of length l in Y (p) is uniform.

Let Y = y1y2y3 · · · ∈ Q+ be a sequence get by an e-transformation defined in
Sect. 1. From Theorem 1 we know that the appearance probability of each letter
x ∈ Q at any place of Y is 1/|Q|.
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Theorem 2. Suppose Q is an n-set and σ is a permutation on Q. If the type
of σ is 1λ12λ2 · · · nλn , i.e., σ has λi cycles of length i (i = 1, 2, · · · , n), and the
probability distribution of the letters in Q is uniform: {P (x) = 1

n : x ∈ Q}, then
the probability distribution of fσ

(
1 2 · · · n

P (fσ = 1) P (fσ = 2) · · · P (fσ = n)

)
=

(
1 2 · · · n
λ1
n

2λ2
n · · · nλn

n

)
.

Proof. Let Qi = |{x ∈ Q | fσ(x) = i}|, then Q = ∪n
i=1Qi and P (fσ = i) = |Qi|

|Q|
= 1

n · i · λi for i = 1, 2, · · · , n. ��
Definition 2. Let Q = {1, 2, · · · , n} and (Q, ∗) be a quasigroup, L = (lij)n×n

be the Latin square of the multiplication table of (Q, ∗). ∀ i ∈ Q, the permutation

σi =
(

1 2 · · · n
l1i l2i · · · lni

)
=

(
1 2 · · · n

1 ∗ i 2 ∗ i · · · n ∗ i

)

is called the ith column permutation of L (or (Q, ∗)).

Theorem 3. Let Q = {1, 2, · · · , n}, (Q, ∗) be a quasigroup and σ1, σ2, · · · , σn

be the column permutations of (Q, ∗). Suppose X = x1x2 · · · xm · · · ∈ Q+ is
periodic with period p. Ea0,∗ is the e-transformation function of Q+ based on the
operation ∗ with leader a0 ∈ Q and

Y = y1y2 · · · ym · · · = Ea0,∗(x1x2 · · · xm · · · ).

If a0 is in a cycle of length k of the permutation σ = σxp
σxp−1 · · · σx1 , then Y is

periodic and the period of Y is k · p.

Proof. Suppose (a0 a1 a2 · · · ak−1) is a cycle of σ = σxp
σxp−1 · · · σx1 . From the

definition of e-transformation we know
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 = a0 ∗ x1 = σx1(a0),
y2 = y1 ∗ x2 = σx2σx1(a0),

...
yp = yp−1 ∗ xp = σxp

σxp−1 · · · σx1(a0) = σ(a0) = a1,

and ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y2p = σx2pσx2p−1 · · · σxp+1(a1) = σ(a1) = a2,
y3p = σx3pσx3p−1 · · · σx2p+1(a2) = σ(a2) = a3,

...
ykp = σxkp

σxkp−1 · · · σx(k−1)p+1(ak−1) = σ(ak−1) = a0,

(2.1)

Let i be a positive integer and denote i = sp + r, where s and r are non-
negative integers with r < p, then
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yi = σxr
σxr−1 · · · σx1(σ

s(a)) = σxr
σxr−1 · · · σx1(as (mod k)),

yi+kp = σxr
σxr−1 · · · σx1(as+k (mod k))

= σxr
σxr−1 · · · σx1(as (mod k))

= yi.

Suppose the period of Y is t, t must be a divisor of kp and we denote kp = �t.
Then we have

yt = y2t = · · · = y�t = ykp = a0
�
= y0. (2.2)

Since
yi−1 ∗ xt+i = yt+i−1 ∗ xt+i = yt+i = yi = yi−1 ∗ xi

and ∗ is a quasigroup operation, we have

xt+i = xi.

So, t must be a multiple of p, the period of X. Suppose t = sp, by Formulas
(2.2) and (2.1) we have

a0 = yt = ysp = as (mod k).

From the minimality of t we s = k and the period of Y is t = kp. ��
Definition 3. Suppose Q is an n-set, (Q, ∗) is a quasigroup and L is the Latin
square of the multiplication table of (Q, ∗), σ1, σ2, · · · , σn are the column per-
mutations of L and S∗ = {σ1, σ2, · · · , σn}. For any positive integer p, let Sp

∗ =
{σipσip−1 · · · σi1 : 1 ≤ i1, i2, · · · , ip ≤ n} be a multi-set. ∀ (σ, x) ∈ Sp

∗ × Q, the
period of sequence x σ(x) σ2(x) · · · σp(x) · · · is the period factor of σ at x. The
function f

(p)
∗ (σ, x) = fσ(x) with domain Sp

∗ ×Q is a random variable with sample
space N = {1, 2, · · · , n}. f

(p)
∗ (σ, x) is called the period factor of degree p of L

(or (Q, ∗)) and denoted by f
(p)
∗ .

Theorem 4. Suppose Q is an n-set and (Q, ∗) is a quasigroup, and S∗ =
{σ1, σ2, · · · , σn} is from Definition 3. Let {τ1, τ2, · · · , τv} = 〈S∗〉 be the per-
mutation group generated by S∗ and suppose the type of τi is 1λi12λi2 · · · nλin

(i = 1, 2, · · · , v). Suppose the probability distribution of the letters in Q is uni-
form: {P (x) = 1

n : x ∈ Q}. For any positive integer p, if the multi-set Sp
∗ =

{σipσip−1 · · · σi1 : 1 ≤ i1, i2, · · · , ip ≤ n} = {n
(p)
1 · τ1, n

(p)
2 · τ2, · · · , n

(p)
v · τv},

then the probability distribution of f
(p)
∗ is

⎛

⎝
1 2 · · · n

1
np+1

v∑
i=1

n
(p)
i λi1

2
np+1

v∑
i=1

n
(p)
i λi2 · · · n

np+1

v∑
i=1

n
(p)
i λin

⎞

⎠ .
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Proof. Let Pk = {(σ, x) ∈ Sp
∗ × Q | f

(p)
∗ (σ, x) = k} be a multi-set, then

Pk = {(σ, x) ∈ Sp
∗ × Q | fσ(x) = k}

=
v⋃

i=1

n
(p)
i {x ∈ Q | fσi

(x) = k}.

Apply Theorem 2 we get

P (f (p)
∗ = k) =

|Pk|
|Sp

∗ × Q|

=
1

np+1

v∑

i=1

n
(p)
i kλik.

This completes the proof. ��
Definition 4. Let L be a Latin square based on set Q = {1, 2, · · · , n} with
column permutations σ1, σ2, · · · , σn, and denote L = L(σ1, σ2, · · · , σn). Suppose
i1, i2, · · · , in is a permutation of 1, 2, · · · , n, then L(σi1 , σi2 , · · · , σin) is also a
Latin square. We call the set

A(L) = {L(σi1 , σi2 , · · · , σin) | i1, i2, · · · , in is a permutation of 1, 2, · · · , n}
the column isomorphism class of L.

It is easy to see that if L is a Latin square of order n, then |A(L)| = n!.
Let L1 = L(σ1, σ2, · · · , σn) and τ is a permutation on Q. Then L2 = L(τσ1τ

−1,
τσ2τ

−1, · · · , τσnτ−1)) is also a Latin square. L2 is said to be a column conjugate
of L1 and denote L2 = τL1τ

−1.
Suppose A1 and A2 are two column isomorphism classes of Latin squares on

set Q. If there exist L1 ∈ A1, L2 ∈ A2 and a permutation τ on Q such that
L2 = τL1τ

−1, then we say the A2 is a conjugate of A1 and denoted by A2 � A1.
It is easy to see that the map ψ : L �→ τLτ−1 is a bijection from A1 to A2 and
each column isomorphism classes is a conjugate of itself.

Definition 5. Let L be a Latin square, the set of all conjugates of A(L)

C(L) =
⋃

A�A(L)

A

is called the column conjugate class of L.

Let S = {σ1, σ2, · · · , σn} and T = τSτ−1 = {τσ1τ
−1, τσ2τ

−1, · · · , τσnτ−1},
then T p = τSpτ−1. The following is a restatement of Theorem 2.9 in [7].

Theorem 5. Permutations ξ and ξ′ on Q have the same cycle structure, i.e.,
have the same type, if and only if there exists a permutation τ on Q such that
ξ′ = τξτ−1.

Combine Theorems 4 and 5, we have the following theorem.

Theorem 6. L1 and L2 are two Latin squares on Q, if L2 is in the column
conjugate class of L1, then L1 and L2 have the same period factors of degree p
for every positive integer p.
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3 The Period Factors Probability Distribution of the
Four Quasigroups Used in Edon80

In this section, we discuss the period factor distribution of the four quasigroups
used in Edon80. Let Q = {0, 1, 2, 3} be a set and ΩQ be the symmetric group
on Q. We denote the elements of ΩQ as shown in Table 3.

Table 3. Elements of symmetric group ΩQ

τ1 = 1 τ5 = (12) τ9 = (021) τ13 = (032) τ17 = (02)(13) τ21 = (0213)

τ2 = (01) τ6 = (13) τ10 = (013) τ14 = (123) τ18 = (03)(12) τ22 = (0231)

τ3 = (02) τ7 = (23) τ11 = (031) τ15 = (132) τ19 = (0123) τ23 = (0312)

τ4 = (03) τ8 = (012) τ12 = (023) τ16 = (01)(23) τ20 = (0132) τ24 = (0321)

Denote the Latin square of order 4 with the lexicographic number m by L#m,
then the multiplication table of (Q, •0) shown in Fig. 2 is L#61. Let M0 ={15,
35, 61, 85, 105, 129, 167, 187, 215, 239, 257, 281, 298, 322, 352, 376, 394, 422,
436, 460, 488, 512, 530, 558}. Then the column isomorphism class

A0 = A(L#61) = {L#m | m ∈ M0}.

The multiplication table of (Q, •1) is L#241. Let M1 ={10, 34, 64, 88, 108,
136, 149, 173, 199, 219, 241, 265, 312, 336, 358, 378, 404, 428, 441, 469, 489, 513,
543, 567}. Then

A1 = A(L#241) = {L#m | m ∈ M1}.

The multiplication table of (Q, •2) is L#350. Let M2 ={23, 45, 72, 94, 115,
140, 158, 180, 204, 227, 251, 273, 304, 326, 350, 373, 397, 419, 437, 462, 483, 505,
532, 554}. Then

A2 = A(L#350) = {L#m | m ∈ M2}.

The multiplication table of (Q, •3) is L#564. Let M3 ={12, 38, 58, 81, 109,
131, 165, 191, 214, 236, 261, 286, 294, 317, 344, 366, 387, 413, 443, 465, 493, 518,
538, 564}. Then

A3 = A(L#564) = {L#m | m ∈ M3}.

It can be easily check that

L#61 = τ3L#265τ
−1
3 = τ12L#94τ

−1
12 = τ4L#131τ

−1
4 .

So, Ai �A0 for i = 1, 2, 3. From Theorem 6 we know that (Q, •0), (Q, •1), (Q, •2),
(Q, •3) have the same period factor of degree p for every positive integer p, and
we need only to calculate the period factors probability distribution of (Q, •0).

The column permutations of (Q, •0) are σ0 = τ5, σ1 = τ12, σ2 = τ20, σ3 = τ11.
The permutation multiplications σiτj (0 ≤ i ≤ 3, 1 ≤ j ≤ 24) are shown
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in Table 4. Let S = {σ0, σ1, σ2, σ3}, and denote Sp = {σipσip−1 · · · σi1 : 1 ≤
i1, i2, · · · , ip ≤ 4} be a multi-set, then it is easy to get

{
S2 = {τ1, τ2, τ3, τ6, τ7, τ9, τ10, τ13, τ14, τ16, τ17, τ18, τ19, τ21, τ23, τ24},
S3 = 2 · S2 ∪ 4 · {τ4, τ5, τ8, τ11, τ12, τ15, τ20, τ22}.

(3.1)

For any positive integer p, denote

Sp = {n
(p)
i · τi | i = 1, 2, · · · , 24}.

From Table 4 we have the recursion Eq. (3.2).

Table 4. Permutation multiplication table

· τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12

σ0 τ5 τ8 τ9 τ18 τ1 τ14 τ15 τ2 τ3 τ19 τ23 τ21

σ1 τ12 τ22 τ7 τ3 τ19 τ21 τ4 τ14 τ16 τ17 τ9 τ13

σ2 τ20 τ15 τ10 τ16 τ17 τ13 τ8 τ21 τ6 τ24 τ7 τ2

σ3 τ11 τ4 τ23 τ6 τ24 τ2 τ22 τ13 τ18 τ1 τ10 τ14

· τ13 τ14 τ15 τ16 τ17 τ18 τ19 τ20 τ21 τ22 τ23 τ24

σ0 τ24 τ6 τ7 τ20 τ22 τ4 τ10 τ16 τ12 τ17 τ11 τ13

σ1 τ1 τ18 τ10 τ11 τ15 τ8 τ23 τ6 τ20 τ24 τ5 τ2

σ2 τ19 τ3 τ23 τ5 τ4 τ22 τ9 τ18 τ11 τ1 τ12 τ14

σ3 τ17 τ16 τ9 τ12 τ8 τ15 τ7 τ3 τ5 τ19 τ20 τ21

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n
(p+1)
1 = n

(p)
5 + n

(p)
13 + n

(p)
22 + n

(p)
10 , n

(p+1)
13 = n

(p)
24 + n

(p)
12 + n

(p)
6 + n

(p)
8 ,

n
(p+1)
2 = n

(p)
8 + n

(p)
24 + n

(p)
12 + n

(p)
6 , n

(p+1)
14 = n

(p)
6 + n

(p)
8 + n

(p)
24 + n

(p)
12 ,

n
(p+1)
3 = n

(p)
9 + n

(p)
4 + n

(p)
14 + n

(p)
20 , n

(p+1)
15 = n

(p)
7 + n

(p)
17 + n

(p)
2 + n

(p)
18 ,

n
(p+1)
4 = n

(p)
18 + n

(p)
7 + n

(p)
17 + n

(p)
2 , n

(p+1)
16 = n

(p)
20 + n

(p)
9 + n

(p)
4 + n

(p)
14 ,

n
(p+1)
5 = n

(p)
1 + n

(p)
23 + n

(p)
16 + n

(p)
21 , n

(p+1)
17 = n

(p)
22 + n

(p)
10 + n

(p)
5 + n

(p)
13 ,

n
(p+1)
6 = n

(p)
14 + n

(p)
20 + n

(p)
9 + n

(p)
4 , n

(p+1)
18 = n

(p)
4 + n

(p)
14 + n

(p)
20 + n

(p)
9 ,

n
(p+1)
7 = n

(p)
15 + n

(p)
3 + n

(p)
11 + n

(p)
19 , n

(p+1)
19 = n

(p)
10 + n

(p)
5 + n

(p)
13 + n

(p)
22 ,

n
(p+1)
8 = n

(p)
2 + n

(p)
18 + n

(p)
7 + n

(p)
17 , n

(p+1)
20 = n

(p)
16 + n

(p)
21 + n

(p)
1 + n

(p)
23 ,

n
(p+1)
9 = n

(p)
3 + n

(p)
11 + n

(p)
19 + n

(p)
15 , n

(p+1)
21 = n

(p)
12 + n

(p)
6 + n

(p)
8 + n

(p)
24 ,

n
(p+1)
10 = n

(p)
19 + n

(p)
15 + n

(p)
3 + n

(p)
11 , n

(p+1)
22 = n

(p)
17 + n

(p)
2 + n

(p)
18 + n

(p)
7 ,

n
(p+1)
11 = n

(p)
23 + n

(p)
16 + n

(p)
21 + n

(p)
1 , n

(p+1)
23 = n

(p)
11 + n

(p)
19 + n

(p)
15 + n

(p)
3 ,

n
(p+1)
12 = n

(p)
21 + n

(p)
1 + n

(p)
23 + n

(p)
16 , n

(p+1)
24 = n

(p)
13 + n

(p)
22 + n

(p)
10 + n

(p)
5 .

(3.2)

From Eq. (3.1) we have

n
(2)
i =

{
1, i ∈ {1, 2, 3, 6, 7, 9, 10, 13, 14, 16, 17, 18, 19, 21, 23, 24},
0, i ∈ {4, 5, 8, 11, 12, 15, 20, 22}.
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n
(3)
i =

{
2, i ∈ {1, 2, 3, 6, 7, 9, 10, 13, 14, 16, 17, 18, 19, 21, 23, 24},
4, i ∈ {4, 5, 8, 11, 12, 15, 20, 22}.

Let
N1 = {1, 2, 3, 6, 7, 9, 10, 13, 14, 16, 17, 18, 19, 21, 23, 24},

N2 = {4, 5, 8, 11, 12, 15, 20, 22}.

If

n
(p)
i =

{
a(p), i ∈ N1,
b(p), i ∈ N2,

then from Eq. (3.2) we obtain

n
(p+1)
i =

{
2a(p) + 2b(p), i ∈ N1,
4a(p), i ∈ N2.

So, we have ⎧
⎪⎪⎨

⎪⎪⎩

a(p + 1) = 2a(p) + 2b(p),
b(p + 1) = 4a(p),
a(3) = 2,
b(3) = 4.

(3.3)

The solution of Eq. (3.3) is

a(p) =

⎧
⎪⎪⎨

⎪⎪⎩

2p−2
(
1 +

(p−4)/2∑
i=0

22i+1
)
, if p ≥ 4 is even,

2p−2
(p−3)/2∑

i=0

22i, if p ≥ 5 is odd,

(3.4)

b(p) =

⎧
⎪⎪⎨

⎪⎪⎩

2p−1
(p−4)/2∑

i=0

22i, if p ≥ 4 is even,

2p−1
(
1 +

(p−5)/2∑
i=0

22i+1
)
, if p ≥ 5 is odd,

(3.5)

Suppose the type of τi is 1λi12λi23λi34λi4 (i = 1, 2, · · · , 24). Applying
Theorem 4, when p ≥ 4 is even we have

P (f (p)
•0 = 1) =

1
4p+1

24∑

i=1

n
(p)
i λi1

=
1

4p+1

(
16a(p) + 8b(p)

)

=
1
4

P (f (p)
•0 = 2) =

2
4p+1

24∑

i=1

n
(p)
i λi2

=
2

4p+1

(
10a(p) + 2b(p)

)

=
1
4

+
1

2p+2
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P (f (p)
•0 = 3) =

3
4p+1

24∑

i=1

n
(p)
i λi3

=
3

4p+1

(
4a(p) + 4b(p)

)

=
1
4

− 1
2p+2

P (f (p)
•0 = 4) =

4
4p+1

24∑

i=1

n
(p)
i λi4

=
4

4p+1

(
4a(p) + 2b(p)

)

=
1
4

So, the probability distribution of f
(p)
•0 is

(
1 2 3 4
1
4

1
4 + 1

2p+2
1
4 − 1

2p+2
1
4

)

when p ≥ 4 is even (it is also true when p = 2).
Similarly, we can get the probability distribution of f

(p)
•0 is

(
1 2 3 4
1
4

1
4 − 1

2p+2
1
4 + 1

2p+2
1
4

)

when p ≥ 1 is odd. So, the probability distribution of f•0 = lim
p→∞ f

(p)
•0 is

(
1 2 3 4
1
4

1
4

1
4

1
4

)

4 The Period Probabilities of Edon80

Every application of an e-transformation in Edon80 can be viewed as a random
variable ξ that receives values from the set {1, 2, 3, 4}. Since Edon80 has 80
e-transformations, we have 80 random variables ξ1, ξ2, · · · , ξ80 and every ξi

(1 ≤ i ≤ 80) has the same probability distribution as f
(p)
•0 with p ≥ 4 and

approximately the distribution of f•0 :
(

1 2 3 4
1
4

1
4

1
4

1
4

)

Denote Y80 the period of the sequence get by 80 e-transformations to the initial
sequence, then Y80 = 1

2 · 4ξ1ξ2 · · · ξ80.
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In a process of 80 e-transformations in Edon80, let rk = |{ξi | ξi = k, 1 ≤ i ≤
80}| for k = 1, 2, 3, 4 and suppose that Y80 ≤ 2r, then 2 · 1r12r23r34r4 ≤ 2r, i.e.,

r2 + log2 3r3 + 2r4 ≤ r − 1 (4.1)

Each ξi has four possibilities, so, the probability of the event Y80 ≤ 2r

P (Y80 ≤ 2r) =
1

480
∑

(r1,r2,r3)∈R

(
80
r2

)(
80 − r2

r3

)(
80 − r2 − r3

r4

)
(4.2)

Where R is the solution set of inequation (4.1). Apply Eq. (4.2) we get the period
probabilities of Y80 shown in Table 5, it ia quite different with the probabilities
shown in Table 1. Compared with Table 2, the probabilities in Table 5 are smaller
when the upper bounds of the period are large, and are larger when the upper
bounds are small.

Table 5. Periods probabilities of Edon80

Periods less then Probability Period less then Probability

2161 1 252 2−29.164

2100 0.8611 248 2−34.514

280 2−5.019 244 2−40.391

276 2−7.118 240 2−46.829

272 2−9.649 236 2−53.863

268 2−12.625 232 2−61.530

264 2−16.055 228 2−69.895

260 2−19.949 224 2−79.076

256 2−24.316 220 2−89.237

5 Order 4 Quasigroups Suitable for E-Transformations

5.1 The Column Conjugate Class of L#61

Let M4 ={6, 30, 56, 76, 98, 122, 153, 177, 207, 231, 249, 277, 310, 330, 360, 384,
402, 426, 434, 458, 482, 510, 536, 560},

M5 ={8, 32, 50, 74, 104, 124, 162, 186, 210, 238, 264, 288, 289, 313, 339, 367,
391, 415, 453, 473, 503, 527, 545, 569};

M6 ={13, 39, 59, 84, 112, 134, 164, 190, 211, 233, 260, 283, 291, 316, 341,
363, 386, 412, 446, 468, 496, 519, 539, 565};

M7 ={16, 36, 62, 86, 106, 130, 168, 188, 216, 240, 258, 282, 297, 321, 351,
375, 393, 421, 435, 459, 487, 511, 529, 557};

M8 ={17, 41, 67, 95, 119, 143, 151, 175, 193, 217, 247, 267, 300, 328, 346,
370, 400, 424, 455, 479, 501, 521, 547, 571};
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M9 ={19, 47, 65, 89, 117, 141, 155, 183, 201, 225, 255, 279, 296, 320, 338,
362, 390, 410, 448, 472, 492, 516, 542, 562};

M10 ={20, 48, 66, 90, 118, 142, 156, 184, 202, 226, 256, 280, 295, 319, 337,
361, 389, 409, 447, 471, 491, 515, 541, 561};

M11 ={22, 44, 69, 91, 114, 137, 159, 181, 205, 230, 254, 276, 301, 323, 347,
372, 396, 418, 440, 463, 486, 508, 533, 555}.
Then Ai = {L#m | m ∈ Mi} (4 ≤ i ≤ 11) are eight different column isomorphism
classes. It can be easily check that

L#61 = τ10L#6τ
−1
10 = τ6L#74τ

−1
6 = τ20L#565τ

−1
20 = τ2L#321τ

−1
2

= τ9L#175τ
−1
9 = τ16L#472τ

−1
16 = τ7L#118τ

−1
7 = τ8L#418τ

−1
8 ,

where τ10, τ6, τ20, τ2, τ9, τ16, τ7, τ8 are from Table 3. So, Ai � A0 for 1 ≤ i ≤ 11,
where Ai (i = 0, 1, 2, 3) are the column isomorphism classes in Sect. 3. This
implies that

⋃11
i=0 Ai ⊆ C(L#61), the column conjugate class of L#61.

The proof of
⋃11

i=0 Ai ⊇ C(L#61) is tedious, but, by a computer program, it
can be easily check that except the Latin squares in

⋃11
i=0 Ai, there is no other

Latin square has the same period factor of degree p as that of L#61 has for every
positive integer p. This conclude that

⋃11
i=0 Ai = C(L#61) and there are just 288

Latin squares have the same period factor of degree p shown in Sect. 3.
There are 576 quasigroups of order 4. By the experiments of Gligoroski et al.

[8], most suitable for Edon80 are the following 64 (given by their lexicographic
numbers): 12, 19, 23, 30, 32, 58, 59, 61, 74, 76, 85, 90, 115, 117, 134, 136, 143,
149, 155, 158, 162, 167, 173, 177, 188, 190, 204, 205, 226, 231, 241, 255, 265,
286, 319, 320, 339, 350, 358, 362, 366, 384, 386, 391, 394, 404, 413, 419, 424, 428,
446, 459, 487, 493, 496, 503, 512, 513, 519, 530, 541, 558, 562, 564. These Latin
squares are all in C(L#61). By the above discussion, all the Latin square in the
column conjugate class C(L#61) have the same “period property”.

5.2 Quasigroups of Order 4 with Better Period Factors

Figure 4 is the quasigroup (Q, ∗) with multiplication table L#309. The column
permutations are σ0 = (02)(13), σ1 = 1, σ2 = (0123), σ3 = (0321). Since
〈σ0, σ1, σ2, σ3〉 = {σ0, σ1, σ2, σ3}, we have

{σ0, σ1, σ2, σ3}p = 4p−1{σ0, σ1, σ2, σ3},

P (f (p)
∗ = 1) =

1
4p+1

4p−1 · 4 =
1
4
,

P (f (p)
∗ = 2) =

2
4p+1

4p−1 · 2 =
1
4
,

P (f (p)
∗ = 3) =

3
4p+1

4p−1 · 0 = 0,

P (f (p)
∗ = 4) =

4
4p+1

4p−1 · 2 =
1
2
,
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and the probability distribution of f
(p)
∗ is

(
1 2 4
1
4

1
4

1
2

)

for all positive integer p. The expected value E(f (p)
∗ ) = 2.75 is quite larger than

that of f
(p)
•0 :

E(f (p)
•0 ) =

{
2.5 − 1

2p+2 , if p is even,
2.5 + 1

2p+2 , if p is odd.

Let N1 ={5, 29, 55, 75, 97, 121, 154, 178, 208, 232, 250, 278, 309, 329, 359,
383, 401, 425, 433, 457, 481, 509, 535, 559},

N2 ={2, 25, 52, 78, 99, 125, 148, 171, 198, 224, 245, 271, 307, 333, 356, 382,
407, 432, 449, 475, 498, 524, 549, 574},

N3 ={7, 49, 31, 73, 103, 123, 161, 185, 209, 237, 263, 287, 290, 314, 340, 368,
392, 416, 454, 474, 504, 528, 546, 570},

Then Bi = {L#m | m ∈ Ni} (1 ≤ i ≤ 3) are eight different column isomor-
phism classes. It can be easily check that

L#309 = τ4L#171τ
−1
4 = τ7L#454τ

−1
7 .

So, B1 � B2 � B3. It can be proved that C(L#309) = B1 ∪ B2 ∪ B3, and so there are
just 72 Latin squares of order 4 have period factors the same as L#309.

∗ 0 1 2 3

0 2 0 1 3
1 3 1 2 0
2 0 2 3 1
3 1 3 0 2

Fig. 4. Quasigroup of L#309

6 Conclusion

Based on the theory of permutation groups, we can give a precise mathematical
description of the periods of the keystreams of Edon80.

There are 576 quasigroups of order 4. By the experiments of Gligoroski
et al. [8], 384 of them are suitable, and 64 of them are very suitable. By our
investigations, all the four quasigroup use in Edon80 are in the same column
conjugate class C(L#61) which contains 288 quasigroups, all the 288 quasigroups
have the same period probability distributions and the same period expected
value approximately equal to 2.5.

There are 72 quasigroups in column conjugate class C(L#309) and they have
the same period expected value 2.75. From the point of view of periods, the
quasigroups in C(L#309) are more suitable for key stream generators.
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Abstract. The linear complexity of a sequence has been used as an
important measure of keystream strength, hence designing a sequence
with high linear complexity and k-error linear complexity is a popu-
lar research topic in cryptography. In this paper, the concept of stable
k-error linear complexity is proposed to study sequences with stable and
large k-error linear complexity. In order to study linear complexity of
binary sequences with period 2n, a new tool called cube theory is devel-
oped. By using the cube theory, one can easily construct sequences with
the maximum stable k-error linear complexity. For such purpose, we
first prove that a binary sequence with period 2n can be decomposed
into some disjoint cubes. Second, it is proved that the maximum k-error
linear complexity is 2n − (2l − 1) over all 2n-periodic binary sequences,
where 2l−1 ≤ k < 2l. Finally, continuing the work of Kurosawa et al., a
characterization is presented about the minimum number k for which the
second decrease occurs in the k-error linear complexity of a 2n-periodic
binary sequence s.

Keywords: Periodic sequence · Linear complexity · k-error linear
complexity · Stable k-error linear complexity · Cube theory

1 Introduction

It is well known that stream ciphers have broad applications in network security.
The linear complexity of a sequence s, denoted as L(s), is defined as the length
of the shortest linear feedback shift register (LFSR) that can generate s. The
concept of linear complexity is very useful in the study of the security for stream
ciphers. A necessary condition for the security of a key stream generator is that it
produces a sequence with large linear complexity. However, high linear complex-
ity can not necessarily guarantee the sequence is secure. The linear complexity
of some sequences is unstable. If a small number of changes to a sequence greatly

c© Springer International Publishing Switzerland 2014
D. Lin et al. (Eds.): Inscrypt 2013, LNCS 8567, pp. 70–85, 2014.
DOI: 10.1007/978-3-319-12087-4 5



Cube Theory and Stable k-Error Linear Complexity 71

reduce its linear complexity, then the resulting key stream would be cryptograph-
ically weak. Ding, Xiao and Shan in their book [1] noticed this problem first, and
presented the weight complexity and sphere complexity. Stamp and Martin [10]
introduced k-error linear complexity, which is similar to the sphere complexity,
and proposed the concept of k-error linear complexity profile. Suppose that s is
a sequence over GF (q) with period N . For k(0 ≤ k ≤ N), the k-error linear com-
plexity of s, denoted as Lk(s), is defined as the smallest linear complexity that
can be obtained when any k or fewer of the terms of the sequence are changed
within one period. It is worthy to mention that Lk(s) = min{SCk(s), L(s)},
where SCk(s) is the sphere complexity and L(s) is the linear complexity. Hence
the k-error linear complexity is the minimum of the two complexities proposed
earlier.

For small k, Niederreiter [9] presented some sequences over GF (q) which
possess high linear complexity and the k-error linear complexity. By using the
generalized discrete Fourier transform, Hu and Feng [5] constructed some peri-
odic sequences over GF (q) which possess very large 1-error linear complexity.

One important result, proved by Kurosawa et al. in [6] is that the mini-
mum number k for which the k-error linear complexity of a 2n-periodic binary
sequence s is strictly less than the linear complexity L(s) is determined by
kmin = 2WH(2n−L(s)), where WH(a) denotes the Hamming weight of the binary
representation of an integer a. In [7], for the period length pn, where p is an odd
prime and 2 is a primitive root modulo p2, the relationship is showed between the
linear complexity and the minimum value k for which the k-error linear complex-
ity is strictly less than the linear complexity. In [11], for sequences over GF (q)
with period 2pn, where p and q are odd primes, and q is a primitive root modulo
p2, the minimum value k is presented for which the k-error linear complexity
is strictly less than the linear complexity. For k = 1, 2, Meidl [8] characterized
the complete counting functions on the k-error linear complexity of 2n-periodic
binary sequences with the maximal possible linear complexity 2n. Fu et al. [4]
studied the linear complexity and the 1-error linear complexity of 2n-periodic
binary sequences, and then characterized such sequences with the 1-error linear
complexity. For k = 2, 3, Zhu and Qi [13] further derived the complete counting
functions on the k-error linear complexity of 2n-periodic binary sequences with
linear complexity 2n − 1. The complete counting functions for the number of
2n-periodic binary sequences with the 3-error linear complexity are given by
Zhou and Liu recently in [12].

The motivation of studying the stability of linear complexity is that changing
a small number of elements in a sequence may lead to a sharp decline of its linear
complexity. Therefore we really need to study such stable sequences in which
even a small number of changes do not reduce their linear complexity. The stable
k-error linear complexity is introduced in this paper to deal with this problem.
Suppose that s is a sequence over GF (q) with period N . For k(0 ≤ k ≤ N), the
k-error linear complexity of s is defined as stable when any k or fewer of the
terms of the sequence are changed within one period, the linear complexity does
not decline.
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Algebra [4,7,8,13] and discrete Fourier transform [5] are two important tools
to study the k-error linear complexity for periodic sequences. Etzion et al. [2]
studied the sequences with only two k-error linear complexity values exactly,
namely its k-error linear complexity is only L(s) or 0. To further investigate
this concept, we present a new tool called cube theory to study the stable
k-error linear complexity of binary sequences with period 2n. By using the cube
theory, we are capable of investigating the k-error linear complexity for peri-
odic sequences from a new perspective. One significant benefit is that one can
construct sequences with the maximum stable k-error linear complexity. Some
examples are also given to illustrate the approach. As a by product, it is proved
that a binary sequence with period 2n can be decomposed into some disjoint
cubes. With such decomposition, it is proved that the maximum k-error lin-
ear complexity is 2n − (2l − 1) over all 2n-periodic binary sequences, where
2l−1 ≤ k < 2l. Continuing the work of Kurosawa et al. in [6] with different
approaches, a characterization is presented about the minimum number k for
which the second decrease occurs in the k-error linear complexity.

The rest of this paper is organized as follows. In Sect. 2, some preliminary
results are presented. In Sect. 3, the definition of cube theory and our main
results are presented. Our conclusion is presented in Sect. 4.

2 Preliminaries

We will consider sequences over GF (q), which is the finite field of order q. Let
x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be vectors over GF (q). Then we
define

x + y = (x1 + y1, x2 + y2, · · · , xn + yn).
The Hamming weight of an N -periodic sequence s is defined as the number

of nonzero elements in per period of s, denoted by WH(s). Let sN be one period
of s. If N = 2n, sN is also denoted as s(n). The distance of two elements is
defined as the difference of their indexes. Specifically, for an N -periodic sequence
s = {s0, s1, s2, s3, · · · , }, the distance of si, sj is j − i, where 0 ≤ i ≤ j ≤ N .

The generating function of a sequence s = {s0, s1, s2, s3, · · · , } is defined by

s(x) = s0 + s1x + s2x
2 + s3x

3 + · · · =
∞∑

i=0

six
i

The generating function of a finite sequence sN = {s0, s1, s2, · · · , sN−1, } is
defined by sN (x) = s0 + s1x+ s2x

2 + · · ·+ sN−1x
N−1. If s is a periodic sequence

with the first period sN , then,

s(x) = sN (x)(1 + xN + x2N + · · · ) =
sN (x)
1 − xN

=
sN (x)/ gcd(sN (x), 1 − xN )

(1 − xN )/ gcd(sN (x), 1 − xN )

=
g(x)
fs(x)

where fs(x) = (1 − xN )/ gcd(sN (x), 1 − xN ), g(x) = sN (x)/ gcd(sN (x), 1 − xN ).
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Obviously, gcd(g(x), fs(x)) = 1,deg(g(x)) < deg(fs(x)). fs(x) is called the
minimal polynomial of s, and the degree of fs(x) is called the linear complexity
of s, that is deg(fs(x)) = L(s).

Suppose that N = 2n, then 1 − xN = 1 − x2n = (1 − x)2
n

= (1 − x)N . Thus
for binary sequences with period 2n, to find its linear complexity is equivalent
to computing the degree of factor (1 − x) in sN (x).

For k(0 ≤ k ≤ N), the k-error linear complexity of s is defined as stable
when any k or fewer of the terms of the sequence are changed within one period,
the linear complexity does not decline. Therefore, the k-error linear complexity
of s is its linear complexity in this case.

The following three lemmas are well known results on 2n-periodic binary
sequences. Please refer to [4,8,12,13] for details.

Lemma 2.1. Suppose that s is a binary sequence with period N = 2n, then
L(s) = N if and only if the Hamming weight of a period of the sequence is odd.

If an element one is removed from a sequence whose Hamming weight is
odd, the Hamming weight of the sequence will be changed to even, so the main
concern hereinafter is about sequences whose Hamming weights are even.

Lemma 2.2. Let s1 and s2 be binary sequences with period N = 2n. If L(s1) �=
L(s2), then L(s1 + s2) = max{L(s1), L(s2)}; otherwise if L(s1) = L(s2), then
L(s1 + s2) < L(s1).

Suppose that the linear complexity of s can decrease when at least k elements
of s are changed. By Lemma 2.2, the linear complexity of the binary sequence,
in which elements at exactly those k positions are all nonzero, must be L(s).
Therefore, for the computation of the k-error linear complexity, we only need
to find the binary sequence whose Hamming weight is minimum and its linear
complexity is L(s).

Lemma 2.3. Suppose that Ei is a 2n-periodic binary sequence with one nonzero
element at position i and 0 elsewhere in each period, 0 ≤ i ≤ N . If j − i =
2r(1 + 2a), a ≥ 0, 0 ≤ i < j < N, r ≥ 0, then L(Ei + Ej) = 2n − 2r.

Denote Eij by a binary sequence with period 2n, and it has only 2 nonzero
elements in a period. If there are only 2 adjacent positions with nonzero elements
in Eij , then its linear complexity is 2n − 1, namely Eij is a sequence with even
Hamming weight and the largest linear complexity. According to Lemma2.2, if
sequence s can be decomposed into the superposition of several Eijs, in which
each has linear complexity 2n − 1, and the number of Eijs is odd, then L(s) =
2n − 1. After a symbol of s is changed, its Hamming weight will be odd, so its
linear complexity will be 2n, namely the 1-error linear complexity of sequence s
is 2n − 1.

Proposition 2.1. If s is a binary sequence with period 2n, then its maximum
1-error linear complexity is 2n − 1.

In order to discuss the maximal 2-error linear complexity of a binary sequence
with period 2n, we now consider a binary sequence which has only 4 positions
with nonzero elements. Please refer to [12] for the proof of Lemma2.4.
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Lemma 2.4. If s is a binary sequence with period N = 2n and there are only
four non-zero elements, thus s can be decomposed into the superposition of Eij

and Ekl. Suppose that non-zero positions of Eij are i and j with j−i = 2d(1+2u),
and non-zero positions of Ekl are k and l with l − k = 2e(1 + 2v), i < k, k − i =
2c + 1. If d = e, the linear complexity is 2n − (2d + 1), otherwise the linear
complexity is 2n − 2min(d,e).

More specifically, we have the following result.

Lemma 2.5. If s is a binary sequence with period 2n and there are only 4 non-
zero elements, and s can be decomposed into the superposition of Eij and Ekl,
in which each has linear complexity 2n − 1, then the linear complexity of s is
2n − (2d + 1) or 2n − 2d, d > 0.

Proof. Suppose that the non-zero positions of Eij are i and j, whose linear
complexity is 2n − 1, j − i = 2a + 1, and non-zero positions of Ekl are k and l,
whose linear complexity is also 2n − 1, i < k, l − k = 2b + 1.

Next we will investigate the problem with the following 6 cases:
(1) i < k < l < j, and k − i = 2c.
As j − i = 2a + 1, l − k = 2b + 1, so

j − l = 2a + 1 − (2b + 1 + 2c) = 2(a − b − c)

If j − l = 2d + 2u2d, k − i = 2e + 2v2e, without loss of generality, assume
d < e, by Lemma 2.2, L(s) = 2n − 2d, d > 0.

If d = e, by Lemma 2.4, since l − i = 2(b + c) + 1, so L(s) = 2n − (2d + 1).
(2) i < k < l < j, and k − i = 2c + 1.
As j− i = 2a+1, l−k = 2b+1, so l− i = 2b+1+2c+1 = 2(b+c+1), j−k =

2a + 1 − (2c + 1) = 2(a − c)
If j − k = 2d + 2u2d, l − i = 2e + 2v2e, without loss of generality, assume

d < e, by Lemma 2.2, L(s) = 2n − 2d, d > 0.
Since k − i = 2c + 1, by Lemma 2.4, if d = e, then L(s) = 2n − (2d + 1).
(3) i < k < j < l, and k − i = 2c.
As j − i = 2a+1, l− k = 2b+1, so j − k = 2a+1− 2c = 2(a− c)+ 1, l− j =

2b + 1 − [2(a − c) + 1] = 2(b + c − a)
If l − j = 2d + 2u2d, k − i = 2e + 2v2e, without loss of generality, assume

d < e, by Lemma 2.2, L(s) = 2n − 2d, d > 0.
Since j − i = 2a + 1, by Lemma 2.4, if d = e, then L(s) = 2n − (2d + 1).
(4) i < k < j < l, and k − i = 2c + 1.
As j− i = 2a+1, l−k = 2b+1, so j−k = 2a+1− (2c+1) = 2(a− c), l− i =

2b + 1 + 2c + 1 = 2(b + c + 1).
If l − i = 2d + 2u2d, j − k = 2e + 2v2e, without loss of generality, assume

d < e, by Lemma 2.2, L(s) = 2n − 2d, d > 0.
Since k − i = 2c + 1, by Lemma 2.4, if d = e, then L(s) = 2n − (2d + 1).
(5) i < j < k < l, and k − i = 2c.
As j− i = 2a+1, l−k = 2b+1, so k− j = 2c− (2a+1) = 2(c−a)−1, l− j =

2b + 1 + [2(c − a) − 1] = 2(b + c − a)
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If l − j = 2d + 2u2d, k − i = 2e + 2v2e, without loss of generality, assume
d < e, by Lemma 2.2, L(s) = 2n − 2d, d > 0.

Note that j − i = 2a+ 1, by Lemma 2.4, if d = e, then L(s) = 2n − (2d + 1).
(6) i < j < k < l, and k − i = 2c + 1.
As j− i = 2a+1, l−k = 2b+1, so k− j = 2c+1− (2a+1) = 2(c−a), l− i =

2b + 1 + 2c + 1 = 2(b + c + 1)
If l − i = 2d + 2u2d, k − j = 2e + 2v2e, without loss of generality, assume

d < e, by Lemma 2.2, L(s) = 2n − 2d, d > 0.
Note that k − i = 2c + 1, by Lemma 2.4, if d = e, then L(s) = 2n − (2d + 1).
Based on above 6 cases, we conclude that the lemma can be established. ��

Corollary 2.1. Suppose that s is a binary sequence with period 2n and there
are only 4 non-zero elements, and s can be decomposed into the superposition
of Eij and Ekl. If non-zero positions of Eij are i and j, j − i is an odd number,
and non-zero positions of Ekl are k and l, l − k is also an odd number, and
i < k, k − i = 4c + 2, |l − j| = 4d + 2, or |k − j| = 4c + 2, |l − i| = 4d + 2, then
the linear complexity of s is 2n − 3.

Proof. According to case (1), (3) and (5) of Lemma2.5, if k− i = 4c+2, |l−j| =
4d+2, then |l−j| = 2+4d, k−i = 2+4c. By Lemma 2.4, noting that j−i = 2a+1,
so L(s) = 2n − (2 + 1).

According to case (2), (4) and (6) of Lemma 2.5, if |k − j| = 4c + 2, |l − i| =
4d+2, then it is easy to know that k−i is odd, thus |k−j| = 2+4c, |l−i| = 2+4d.
By Lemma 2.4, L(s) = 2n − (2 + 1). ��
Corollary 2.2. If s is a binary sequence with period 2n and there are only 4
non-zero elements, and s can be decomposed into the sum of two Eij , in which
each has linear complexity 2n − 2, then the linear complexity of s is 2n − (2 + 1)
or 2n − (2d + 1)2, d > 0 or 2n − 2d, d > 1.

Proof. Suppose that non-zero positions of the first Eij are i and j, j−i = 4a+2,
and non-zero positions of the second Eij are k and l, l−k = 4b+2, where i < k.

If k − i = 2c + 1, according to Lemma 2.4, then L(s) = 2n − (2 + 1).
If k − i = 2c, the corresponding polynomial of Ei +Ej +Ek +El is given by
xi + xj + xk + xl = xi(1 + xj−i + xk−i + xl−k+k−i)
Therefore, we only need to consider
1+xj−i +xk−i +xl−k+k−i = 1+(x2)2a+1 +(x2)c +(x2)2b+1+c = 1+y2a+1 +

yc + y2b+1+c

According to Lemma 2.5, L(s) = 2n − (2d + 1)2, d > 0 or 2n − 2d, d > 1. ��
Now we can obtain the following conclusions according to Lemma2.5 and

Corollary 2.2.

Proposition 2.2. Suppose that s is a binary sequence with period 2n and there
are four non-zero elements, then the necessary and sufficient conditions for the
linear complexity of s being 2n − 3 are given by: s can be decomposed into
the superposition of Eik and Ejl, in which each has linear complexity 2n − 2.
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Further, if non-zero positions of Eik are i and k, with k−i = 4c+2, and non-zero
positions of the second Ejl are j and l, with l − j = 4d + 2, where i < j, then
j − i = 2a + 1(or |l − k| = 2b + 1 or |l − i| = 2e + 1 or |k − j| = 2f + 1).

k l
2b + 1

i j
2a + 1

4d + 2

2f + 1

4c + 2

2e + 1

Fig. 1. A graphic illustration of Proposition 2.2

We can also illustrate this with a graph in Fig. 1. The only 4 non-zero posi-
tions of sequence s are i, j, k and l. As k − i = 4c + 2, l − j = 4d + 2, and
j − i = 2a + 1, so l − k = l − j + j − i − (k − i) = 4d + 2 + 2a + 1 − (4c + 2) is
odd. Next we give a result on the stable sequence.

Proposition 2.3. Suppose that s is a binary sequence with period 2n and its
Hamming weight is even, then the maximum stable 2-error linear complexity of
s is 2n − 3.

Proof. Assume that L(s) = 2n − 1, then s can be decomposed into the sum
of several Eijs and the number of Eijs with linear complexity 2n − 1 is odd.
According to Lemma 2.2, if an Eij with linear complexity 2n − 1 is removed,
then the linear complexity of s will be less than 2n −1, namely the 2-error linear
complexity of s is less than 2n − 1.

Assume that L(s) = 2n−2, then s can be decomposed into the sum of several
Eijs and the number of Eijs with linear complexity 2n − 2 is odd. If an Eij with
linear complexity 2n − 2 is removed, then the linear complexity of s will be less
than 2n − 2, namely the 2-error linear complexity of s is less than 2n − 2.

Assume that L(s) = 2n−3, without loss of generality, here we only discuss the
case that s has 4 non-zero elements: ei, ej , ek and el, and L(Ei+Ej +Ek +El) =
2n −3. If any two of them are removed, by Proposition 2.2, the linear complexity
of remaining elements of the sequence is 2n − 1 or 2n − 2. From Fig. 1, after ei
and el are changed to zero, we can see that the linear complexity of the sequence
composed by ej and ek is 2n − 1.

If the position of one element from ei, ej , ek and el is changed, then there
exist two elements, of which the position difference remains unchanged as odd,
thus L(s) ≥ 2n − 3.
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If two nonzero elements are added to the position outside ei, ej , ek and el,
namely an Eij with linear complexity 2n − 2d is added to sequence s, according
to Lemma 2.2, the linear complexity will be 2n − 1, 2n − 2 or 2n − 3.

Summarizing all above discussions, the proof is completed. ��
The following is an example to illustrate Proposition 2.3.
The linear complexity of 11110· · · 0 is 2n − 3
The linear complexity of 01010· · · 0 or 10100· · · 0 is 2n − 2
The linear complexity of 01100· · · 0 or 10010· · · 0 is 2n − 1
If two additional nonzero elements are added to 11110· · · 0, namely an Eij

whose linear complexity is 2n − 2d is added to it, according to Lemma2.2, the
linear complexity will become 2n − 1, 2n − 2 or 2n − 3.

For instance, suppose that 1110· · · 010· · · 0 is the addition of 11110· · · 0 and
0001· · · 010· · · 0. We here only consider the case that the position difference of
the last two nonzero elements is 2c + 1. According to case (5) of Lemma 2.5,
j − i = 1, l − k = 2c + 1, so k − j = 1, l − j = 2(c + 1).

Noticed that k − i = 2, if l − j = 2d(2u + 1), according to Lemma 2.2,
L(s) = 2n − 2 when d > 1.

If d = 1, since j − i = 1, according to Lemma 2.4, L(s) = 2n − 3.

3 Cube Theory and Main Results

Before presenting main results, we first give a special case.

Lemma 3.1. Suppose that s is a binary sequence with period 2n and there are 8
non-zero elements, thus s can be decomposed into the superposition of Eij , Ekl,
Emn and Epq. Suppose that non-zero positions of Eij are i and j, j − i = 2a+1,
and non-zero positions of Ekl are k and l, l−k = 2b+1, and k−i = 4c+2, l−j =
4d+2, and non-zero positions of Emn are m and n, non-zero positions of Epq are
p and q, and m− i = 4+8u, n− j = 4+8v, p−k = 4+8w, q− l = 4+8y, where
a, b, c, d, u, v, w and y are all non-negative integers, then the linear complexity of
s is 2n − 7.

Proof. According to Corollary 2.1, L(Ei + Ej + Ek + El) = 2n − 3.
As m − n = m − i − (n − j) − (j − i), p − q = p − k − (q − l) − (l − k), thus

both m − n and p − q are odd numbers.
As p − m = p − k − (m − i) + (k − i), q − n = q − l − (n − j) + (l − j), thus

both p − m and q − n are multiples of 2, but not multiples of 4. According to
Corollary 2.1, L(Em + En + Ep + Eq) = 2n − 3.

Similar to the proof of Lemma 2.4 [12], the corresponding polynomial of Ei +
Ek + Em + Ep is given by

xi + xk + xm + xp

= xi(1 − x4)[(1 + x4 + x2·4 + · · · + x2u·4)
+xk−i(1 + x4 + x2·4 + · · · + x2w·4)]

= xi(1 − x4)[1 + xk−i + (x4 + x2·4 + · · · + x2u·4)
+xk−i(x4 + x2·4 + · · · + x2w·4)]
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= xi(1 − x4)[1 + x4c+2 + (x4 + x2·4 + · · · + x2u·4)
+xk−i(x4 + x2·4 + · · · + x2w·4)]

= xi(1 − x)6[(1 + x2 + x4 + · · · + x4c)
+(x4 + x3·4 + · · · + x(2u−1)·4)(1 + x)2

+xk−i(x4 + x3·4 + · · · + x(2w−1)·4)(1 + x)2]

The corresponding polynomial of Ej + El + En + Eq is given by

xj + xl + xn + xq

= xj(1 − x4)[(1 + x4 + x2·4 + · · · + x2v·4)
+xl−j(1 + x4 + x2·4 + · · · + x2y·4)]

= xj(1 − x)6[(1 + x2 + x4 + · · · + x4d)
+(x4 + x3·4 + · · · + x(2v−1)·4)(1 + x)2

+xl−j(x4 + x3·4 + · · · + x(2y−1)·4)(1 + x)2]

The corresponding polynomial of Ei + Ej + Ek + El + Em + En + Ep + Eq

is given by

xi + xj + xk + xl + xm + xn + xp + xq

= xi(1 − x)6{(1 + x2 + x4 + · · · + x4c)
+(x4 + x3·4 + · · · + x(2u−1)·4)(1 + x)2

+xk−i(x4 + x3·4 + · · · + x(2w−1)·4)(1 + x)2

+xj−i[(1 + x2 + x4 + · · · + x4d)
+(x4 + x3·4 + · · · + x(2v−1)·4)(1 + x)2

+xl−j(x4 + x3·4 + · · · + x(2y−1)·4)(1 + x)2]}
= xi(1 − x)6{1 + xj−i + (x2 + x4 + · · · + x4c)

+(x4 + x3·4 + · · · + x(2u−1)·4)(1 + x)2

+xk−i(x4 + x3·4 + · · · + x(2w−1)·4)(1 + x)2

+xj−i[(x2 + x4 + · · · + x4d)
+(x4 + x3·4 + · · · + x(2v−1)·4)(1 + x)2

+xl−j(x4 + x3·4 + · · · + x(2y−1)·4)(1 + x)2]}
= xi(1 − x)7{1 + x + x2 + · · · + x2a

+x2(1 + x)(1 + x4 + · · · + x4(c−1))
+(x4 + x3·4 + · · · + x(2u−1)·4)(1 + x)
+xk−i(x4 + x3·4 + · · · + x(2w−1)·4)(1 + x)
+xj−i[x2(1 + x)(1 + x4 + · · · + x4(d−1))
+(x4 + x3·4 + · · · + x(2v−1)·4)(1 + x)
+xl−j(x4 + x3·4 + · · · + x(2y−1)·4)(1 + x)]}
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Fig. 2. A graphic illustration of Lemma 3.1

The number of items in (1+x+x2 + · · ·+x2a) is odd, thus there is no factor
(1 + x) in (1 + x + x2 + · · · + x2a).

gcd((1 − x)2
n

, xi + xj + xk + xl + xm + xn + xp + xq) = (1 − x)7

It is followed by L(s) = 2n − 7. ��
For the convenience of presentation, we introduce some definitions.

Definition 3.1. Suppose that the difference of positions of two non-zero ele-
ments of sequence s is (2x + 1)2y, both x and y are non-negative integers, then
the distance between the two elements is defined as 2y.

Definition 3.2. Suppose that s is a binary sequence with period 2n, and there
are 2m non-zero elements in s, and 0 ≤ i1 < i2 < · · · < im < n. If m = 1, then
there are 2 non-zero elements in s and the distance between the two elements is
2i1 , so it is called as a 1-cube. If m = 2, then s has 4 non-zero elements which
form a rectangle, the lengths of 4 sides are 2i1 and 2i2 respectively, so it is called
as a 2-cube. In general, s has 2m−1 pairs of non-zero elements, in which there
are 2m−1 non-zero elements which form a (m − 1)-cube, the other 2m−1 non-
zero elements also form a (m − 1)-cube, and the distance between each pair of
elements are all 2im , then the sequence s is called as an m-cube, and the linear
complexity of s is called as the linear complexity of the cube as well.

Definition 3.3. A non-zero element of sequence s is called a vertex. Two ver-
texes can form an edge. If the distance between the two elements (vertices) is
2y, then the length of the edge is defined as 2y.

Now we consider the linear complexity of a cube.
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Theorem 3.1. Suppose that s is a binary sequence with period 2n, and non-
zero elements of s form a m-cube, if lengths of edges are i1, i2, · · · , im (0 ≤ i1 <
i2 < · · · < im < n) respectively, then L(s) = 2n − (2i1 + 2i2 + · · · + 2im).

Proof. Similar to the proof of Lemma 3.1, it is easy to prove Theorem 3.1 with
mathematical induction.

Based on Games-Chan algorithm [3], we give another proof from different
perspective.

In the kth step, 1 ≤ k ≤ n, if and only if one period of the sequence can not be
divided into two equal parts, then the linear complexity should be increased by
half period. In the kth step, the linear complexity can be increased by maximum
2n−k.

Suppose that non-zero elements of sequence s form a m-cube, lengths of
edges are i1, i2, · · · , im (0 ≤ i1 < i2 < · · · < im < n) respectively. Then in the
(n− im)th step, one period of the sequence can be divided into two equal parts,
then the linear complexity should not be increased by 2im .

· · · · · ·
In the (n − i2)th step, one period of the sequence can be divided into two

equal parts, then the linear complexity should not be increased by 2i2 .
In the (n − i1)th step, one period of the sequence can be divided into two

equal parts, then the linear complexity should not be increased by 2i1 .
Therefore, L(s) = 1 + 1 + 2 + 22 + · · · + 2n−1 − (2i1 + 2i2 + · · · + 2im) =

2n − (2i1 + 2i2 + · · · + 2im).
The proof is complete now. ��
There is a 3-cube in Fig. 2. L(s) = 2n − (1 + 2 + 4), and lengths of edges are

1, 2 and 4 respectively. Next we give a decomposition result.

Theorem 3.2. Suppose that s is a binary sequence with period 2n, and L(s) =
2n − (2i1 +2i2 + · · ·+2im), where 0 ≤ i1 < i2 < · · · < im < n, then the sequence
s can be decomposed into several disjoint cubes, and only one cube has the
linear complexity 2n − (2i1 + 2i2 + · · · + 2im), other cubes possess distinct linear
complexity which are all less than 2n − (2i1 + 2i2 + · · · + 2im). If the sequence s
consists of only one cube, then the Hamming weight of s is 2m.

Proof. The mathematical induction will be applied to the degree d of sN (x). For
d < 3, by Lemma 2.3, the theorem is obvious.

We first consider a simple case.
(A) Suppose that L(s) = 2n−(2i1 +2i2 +· · ·+2im +2im+1), and the Hamming

weight of s is the minimum, namely L(s) �= 2n − (2i1 + 2i2 + · · · + 2im + 2im+1)
when we remove 2 or more non-zero elements. Next we prove that s consists of
one (m + 1)-cube exactly. Let

sN (x) = (1 − x2i1 )(1 − x2i2 ) · · · (1 − x2im )(1 − x2im+1 )
[1 + f(x)(1 − x)]

Then tN (x) = (1 − x2i1 )(1 − x2i2 ) · · · (1 − x2im )[1 + f(x)(1 − x)] corresponds
to a sequence t whose linear complexity is L(t) = 2n − (2i1 + 2i2 + · · · + 2im).
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The degree of tN (x) is less than the degree of sN (x), so the mathematical induc-
tion can be applied.

In the following, we consider two cases. We will prove that the second case
is equivalent to the first case.

(1) The Hamming weight of sequence t is 2m. By mathematical induction,
t is an m-cube. Since sN (x) = tN (x)(1 − x2im+1 ) = tN (x) + x2im+1

tN (x), and
0 ≤ i1 < i2 < · · · < im < im+1 < n, so s is a (m + 1)-cube and its Hamming
weight is 2m+1.

(2) The Hamming weight of sequence t is 2m+2y. By mathematical induction,
the sequence t can be decomposed into several disjoint cubes, and only one cube
has the linear complexity 2n − (2i1 + 2i2 + · · · + 2im). Thus

tN (x) = (1 − x2i1 )(1 − x2i2 ) · · · (1 − x2im )[1 + g(x)(1 − x) + h(x)(1 − x)], and
uN (x) = (1 − x2i1 )(1 − x2i2 ) · · · (1 − x2im )[1 + g(x)(1 − x)], corresponds to an
m-cube, its non-zero elements form a set denoted by A.

vN (x) = (1 − x2i1 )(1 − x2i2 ) · · · (1 − x2im )h(x)(1 − x) corresponds to several
cubes, whose 2y non-zero elements form a set denoted by B.

Assume that b ∈ B, bx2im+1 ∈ A, we swap b and bx2im+1 , namely let b ∈
A, bx2im+1 ∈ B. It is easy to show that the linear complexity of the sequence to
which uN (x) corresponds remains unchanged. The new uN (x) is still an m-cube.

sN (x) = tN (x)(1 − x2im+1 ) = uN (x) + vN (x) − uN (x)x2im+1 − vN (x)x2im+1 ,
uN (x)x2im+1 corresponds to 2m non-zero elements which form a set denoted by
C. vN (x)x2im+1 corresponds to 2y non-zero elements which form a set denoted
by D.

By definition, set A and set C disjoint, set B and set D disjoint.
Suppose that set A and set D intersects. Thus there exists b ∈ B, such that

bx2im+1 ∈ A, which contradicts the assumption that b ∈ A, bx2im+1 ∈ B. So set
A and set D disjoint.

As set A and set B disjoint, we know that set C and set D disjoint.
We now prove that Set C and B disjoint by contradiction approach.
Suppose that b ∈ B, b = ax2im+1 ∈ C, a ∈ A, then ax2(2im+1 ) must be in D,

so sequence s has non-zero elements a and ax2(2im+1 ). The linear complexity of
the sequence with only non-zero elements a and ax2(2im+1 ) is

2n − 2 · 2im+1 < 2n − (2i1 + 2i2 + · · · + 2im + 2im+1).

By Lemma 2.2, if the two non-zero elements are changed to zero, the linear
complexity of s remains unchanged. This contradicts to the assumption that the
Hamming weight is the minimum, so A and C form a (m+ 1)-cube exactly, and
its linear complexity is 2n − (2i1 + 2i2 + · · · + 2im + 2im+1).

By the assumption of Case (A), s has minimum Hamming weight, so s con-
sists of a (m + 1)-cube exactly.

(B) Let sN (x) = uN (x) + vN (x), where the Hamming weight of uN (x) is the
minimum, and

L(u) = 2n − (2i1 + 2i2 + · · · + 2im + 2im+1).
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From Case (A), uN (x) consists of a (m + 1)-cube exactly.
Let vN (x) = yN (x) + zN (x), where the Hamming weight of yN (x) is mini-

mum, and L(y) = L(v). By Case (A), yN (x) consists of only one cube exactly.
By analogy, we can prove that s consists of several cubes, and only one cube has
the linear complexity of 2n − (2i1 + 2i2 + · · · + 2im + 2im+1), other cubes possess
distinct linear complexity which are all less than 2n−(2i1+2i2+· · ·+2im+2im+1).

This completes proof. ��
The following examples can help us understand the proof of Theorem3.2.
(1+x)(1+x2)[1+x5(1+x2)] = 1+x+x2+x3+x5+x6+x9+x10 corresponds

to a sequence in which there are 8 non-zero elements. It consists of two 2-cubes:
(1 + x)(1 + x2) and (1 + x)(1 + x4)x5.

(1+x)(1+x2)[1+x5(1+x2)](1+x4) = 1+x+x2 +x3 +x4 +x7 +x13 +x14

corresponds a sequence in which there are also 8 non-zero elements, but only
one 3-cube. The linear complexity is 2n − (1 + 2 + 4), and the lengths of edges
are 1, 2 and 4 respectively.

Suppose that the linear complexity of s can reduce when at least k elements
of s are changed. By Lemma 2.2, the linear complexity of the binary sequence,
in which elements at exactly those k positions are all nonzero, must be L(s).
According to Theorems 3.1 and 3.2, it is easy to achieve the following conclusion.

Corollary 3.1. Suppose that s is a binary sequence with period 2n, and L(s) =
2n − (2i1 + 2i2 + · · · + 2im), where 0 ≤ i1 < i2 < · · · < im < n. If kmin is
the minimum, such that kmin-error linear complexity is less than L(s), then
kmin = 2m.

Corollary 3.1 was first proved by Kurosawa et al. [6], and later it was proved
by Etzion et al. [2] with different approaches.

Obviously, previous Propositions 2.2 and 2.3 are also corollaries of Theo-
rems 3.1 and 3.2.

Consider a k-cube, if lengths of edges are 1, 2, 22, · · · , and 2k−1 respectively,
and the linear complexity is 2n − (2k − 1). By Theorems 3.1 and 3.2, we can
obtain the following results on stability.

Corollary 3.2. Suppose that s is a binary sequence with period 2n and its
Hamming weight is even, then the maximum stable 2k−1, · · · , (2k−2) or (2k−1)-
error linear complexity of s are all 2n − (2k − 1)(k > 0).

The following is an example to illustrate Corollary 3.2.

Let s be the binary sequence

2k︷ ︸︸ ︷
11 · · · 11 0 · · · 0. Its period is 2n, and there are

only 2k continuous nonzero elements at the beginning of the sequence. Then it
is a k-cube, and the 2k−1, · · · , (2k − 2) or (2k − 1)-error linear complexity of s
are all 2n − (2k − 1).

After at most e(0 ≤ e ≤ 2k − 1) elements of a period in the above sequence
are changed, the linear complexity of all new sequences are not decreased, so the
original sequence possesses stable e-error linear complexity.

According to Lemma 2.2, if a sequence whose linear complexity is less than
2n − (2k − 1) is added to the sequence with linear complexity 2n − (2k − 1),
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then the linear complexity of the new sequence is still 2n − (2k − 1), and the
2k−1, · · · , (2k −2) or (2k −1)-error linear complexity of the new sequence are all
2n − (2k − 1).

By combining Corollaries 3.1 and 3.2, we can achieve the following theorem.

Theorem 3.3. For 2l−1 ≤ k < 2l, there exists a 2n-periodic binary sequence s
with stable k-linear complexity 2n − (2l − 1), such that

Lk(s) = max
t

Lk(t)

where t is any 2n-periodic binary sequence.
It is reminded that CELCS (critical error linear complexity spectrum) is

studied by Etzion et al. [2]. The CELCS of the sequence s consists of the ordered
set of points (k, Lk(s)) satisfying Lk(s) > Lk′(s), for k′ > k; these are the points
where a decrease occurs in the k-error linear complexity, and thus are called
critical points.

Let s be a binary sequence with period 2n and it has only one m-cube. Then
s has only two critical points: (0, l(s)), (2m, 0).

In the following, we will study binary sequences with several cubes. By The-
orem 3.2, if s is a 2n-periodic binary sequence, then it can be decomposed into
several disjoint cubes. The following examples show that the cube decomposition
of a sequence is not unique.

For example, 1 + x + x3 + x4 + x7 + x8 can be decomposed into a 1-cube
1 + x, whose linear complexity is 2n − 1, and a 2-cube x3 + x4 + x7 + x8, whose
linear complexity is 2n − (1 + 4).

It can also be decomposed into a 1-cube x3 + x4, whose linear complexity is
2n − 1, a 1-cube x + x7, whose linear complexity is 2n − 2, and another 1-cube
1 + x8, whose linear complexity is 2n − 8.

It can also be decomposed into a 1-cube x7 + x8, whose linear complexity is
2n − 1, a 1-cube x + x3, whose linear complexity is 2n − 2, and another 1-cube
1 + x4, whose linear complexity is 2n − 4.

It can also be decomposed into a 1-cube 1 + x3, whose linear complexity is
2n − 1, a 1-cube x + x7, whose linear complexity 2n − 2, and another 1-cube
x4 + x8, whose linear complexity is 2n − 4.

· · · · · ·
In fact, we do not know how many possible ways for such decomposition.

However, in order to achieve the maximal decrease of the linear complexity of
the new sequence by superposing another sequence over the original one, a direct
method is, if possible, that the linear complexity of the first cube is changed to
the same as the linear complexity of the second cube.

As an illustrative example, noting that the linear complexity of x3 + x4 +
x7 + x8 is 2n − 5, thus in order to achieve the maximum decrease of linear
complexity, we superpose x12 + x13 over 1 + x + x3 + x4 + x7 + x8, so that the
linear complexity of 1 + x + x12 + x13 is also 2n − 5. As a result, the linear
complexity of 1 + x + x3 + x4 + x7 + x8 + x12 + x13 is reduced to 2n − 6, which
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can be decomposed into a 2-cube x + x3 + x7 + x13, whose linear complexity is
2n −6, and another 2-cube 1+x4 +x8 +x12, whose linear complexity is 2n −12.

To construct the sequence possessing high stable k-error linear complexity,
both the first cube and the second cube should possess higher linear complexity.
Specifically, it is easy to verify the following.

Theorem 3.4. Suppose that s is a binary sequence with period 2n, the linear
complexity of the largest cube of s is L(s) = 2n − (2i1 + 2i2 + · · · + 2im), where
0 ≤ i1 < i2 < · · · < im < n, and the linear complexity of the second largest cube
of s is 2n − (2j1 +2j2 + · · ·+2jl), where 0 ≤ j1 < j2 < · · · < jl < n. If the largest
cube of s is unique, then 2m +2l is the minimum number k for which the second
decrease occurs in the k-error linear complexity of s. Namely,

L(s) > L2m(s) > L2m+2l(s).

For example, 1 + x + x3 + x4 + x7 + x8 has a 1-cube 1 + x, whose linear
complexity is 2n − 1. It also has 1-cube x3 + x4 and x7 + x8, all with linear
complexity 2n − 1. So Theorem 3.4 can not be applied to this sequence. In fact,
L(s) > L2(s) > L4(s) > 0.

4 Conclusion

A small number of element changes may lead to a sharp decline of linear com-
plexity, so the concept of stable k-error linear complexity has been introduced in
this paper. By studying the linear complexity of binary sequences with period
2n, especially the linear complexity may decline when the superposition of two
sequences with the same linear complexity is operated. In this paper, a new app-
roach to construct the sequence with stable k-error linear complexity based on
cube theory has been derived. It has been proved that a binary sequence whose
period is 2n can be decomposed into several disjoint cubes, so a new approach
to study k-error linear complexity has been given.

In future, by using methods similar to that of the binary sequence, we may
study a sequence with period pn over Fp, where p is a prime number. The
polynomial 1−xpn

= (1−x)p
n

over Fp. Thus for a sequence with period pn over
Fp, its linear complexity is equal to the degree of factor (1 − x) in sN (x).

The following are some similar conclusions, whose proofs are omitted here.

Lemma 1. Suppose that s is a sequence with period pn over Fp. Necessary and
sufficient conditions for L(s) < pn are: the element sum of one period of the
sequence s is divisible by p.

Lemma 2. Both s1 and s2 are sequences with period pn over Fp. If L(s1) �=
L(s2), then L(s1+s2) = max{L(s1), L(s2)}. If L(s1) = L(s2), then L(s1+s2) ≤
L(s1).

Lemma 3. Suppose that s is a sequence with period pn over Fp, and sN (x) =
axk(1−xl), a �= 0(mod p), l = bpm, b �= 0(mod p), then both the linear complexity
and 1-error linear complexity of sequence s are pn − pm.
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Abstract. Let p, q (p < q) be two odd primes with gcd(p−1, q−1) = 6.
In this paper, based on the Whiteman generalized cyclotomy, new gener-
alized cyclotomic sequences with order six and length pq are constructed.
We first calculate the autocorrelation values of these sequences and get
conditions of p and q such that they are four-valued. Besides, we find
some specific examples such that the autocorrelation function takes on
only a few values.

Keywords: Whiteman generalized cyclotomy · Generalized cyclotomic
sequences · Pseudo-random sequences · Stream cipher

1 Introduction

Pseudo-random sequences are used extensively for their high speed and security
level and less errors. As a branch, the cyclotomic sequences and the general-
ized ones are studied widely because of their simple mathematical structures
and excellent pseudo-random properties [1,2,6]. The autocorrelation function of
Pseudo-random sequence is used to measure the similarity between a sequence
and its shift sequence, which is an important indicator of randomness. Sequences
with low autocorrelation values and uniform distribution have wide applications
in stream cipher, software testing and radar navigation and other fields [2],
the construction and analysis are important parts in the sequence construction
theory.

In this paper, we always assume p, q (p < q) are two odd primes with
gcd(p − 1, q − 1) = 6. Based on the Whiteman generalized cyclotomy [3,7], new
generalized cyclotomic sequences with order six and length pq are constructed.

let D0,D1,D2,D3,D4,D5 be generalized cyclotomic classes with Z∗
pq =

5∪
i=0

Di.
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let R = {0}, P = {p, 2p, ..., (q − 1)p}, Q = {q, 2q, ..., (p − 1)q}, we compute
the periodic autocorrelation function ACs(w) of binary sequences {si} from
D = P ∪ D0 ∪ D1 ∪ D3, and give conditions of p and q such that ACs(w) are
four-valued. Besides, we find specific examples from another perspective such
that the autocorrelation function takes on only a few values.

2 Preliminaries

Let p, q (p < q) be two odd primes with gcd(p − 1, q − 1) = d and let N =
pq, e = (p − 1)(q − 1)/d, by the Chinese Remainder Theorem, there exists a
common primitive root g of both p and q. In fact, suppose that m is a primitive
root modulo p, and n a primitive root modulo q, then g should satisfy the
simultaneous congruences

g ≡ m(mod p),g ≡ n(mod q)

we get the common primitive root

g ≡ qiqm + pipn(mod pq)

where qiq ≡ 1(mod p) and pip ≡ 1(mod q). Let x̄ be an integer satisfying the
simultaneous congruences

x̄ ≡ g(mod p) , x̄ ≡ 1(mod q).

The existence and uniqueness of x̄ modulo pq are guaranteed by the Chinese
Remainder Theorem.

Since g is a primitive root of both p and q, by the Chinese Remainder The-
orem once more

ordN (g) = lcm(ordp(g), ordq(g)) = lcm(p − 1, q − 1) = e

where ordm(g) denotes the multiplicative order of g modulo m, and lcm(a, b)
denotes the lowest common multiple of a and b.

In ZN = {0, 1, ..., N − 1}, the residue class ring modulo N , the Whiteman’s
generalized cyclotomic classes of order d are defined by

Di = {gsx̄i : s = 0, 1, ..., e − 1}, i = 0, 1, ..., d − 1

It is easy to see that

Z∗
N =

d−1⋃

i=0

Di, Di ∩ Dj = ∅, i �= j

where ∅ denotes the empty set and Z∗
N the multiplicative group of the ring ZN .

The corresponding generalized cyclotomic numbers of order d are defined by

(i, j) = |(Di + 1) ∩ Dj |, i, j = 0, 1, ..., d − 1;
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Here and hereafter we define A + a = {x + a : x ∈ A} and aA = {ax : x ∈ A}
for any subset A of ZN and a ∈ ZN .

When d = 6, gcd(p − 1, q − 1) = 6, i.e., p ≡ 1mod 6, q ≡ 1mod 6, matrices
Ā, B̄ are of size 6 × 6, and

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

A B C D E F
G H I E C I
H J G F I B
A G H A G H
G F I B H J
H I E C I G

⎤

⎥⎥⎥⎥⎥⎥⎦
B =

⎡

⎢⎢⎢⎢⎢⎢⎣

A B C D E F
B F G H I G
C G E I J H
D H I D H I
E I J H C G
F G H I G B

⎤

⎥⎥⎥⎥⎥⎥⎦

where the ith row and jth column represents the generalized cyclotomic number
(i − 1, j − 1), i, j ∈ {1, 2, 3, 4, 5, 6}. We have the following lemmas about the
generalized cyclotomic numbers of order six [9].

Lemma 1. When (p− 1)(q − 1)/36 is even, the generalized cyclotomic numbers
of order six are determined by matrix Ā, together with the relations

72A = 12Ṁ + 20 − 8x − 2a + 2c
72B = 12Ṁ − 4 − 3a − c − 9b + 9d
72C = 12Ṁ − 4 − 8x + a − c + 24y − 3b − 9d
72D = 12Ṁ − 4 + 24x + 6a + 2c
72E = 12Ṁ − 4 − 8x + a − c − 24y + 3b + 9d
72F = 12Ṁ − 4 − 3a − c + 9b − 9d
72G = 12Ṁ + 8 + 4x + a − c + 12y + 3b + 9d
72H = 12Ṁ + 8 + 4x + a − c − 12y − 3b − 9d
72I = 12Ṁ − 4 + 4x − 2a + 2c
72J = 12Ṁ − 4 − 12x + 6a + 2c

where pq = x2 + 3y2, 6Ṁ = (p − 2)(q − 2) − 1 and 4pq = a2 + 3b2 = c2 + 27d2.

Lemma 2. When (p − 1)(q − 1)/36 is odd, the generalized cyclotomic numbers
of order six are determined by matrix B̄, together with the relations

72A = 12Ṁ + 32 + 6a − 24x + 2c
72B = 12Ṁ + 8 + a + 3b + 8x + 24y − c + 9d
72C = 12Ṁ + 8 − 3a + 9b − c − 9d
72D = 12Ṁ + 8 − 2a + 8x + 2c
72E = 12Ṁ + 8 − 3a − 9b − c + 9d
72F = 12Ṁ + 8 + a − 3b + 8x − 24y − c − 9d
72G = 12Ṁ − 4 − 2a − 4x + 2c
72H = 12Ṁ − 4 + a + 3b − 4x − 12y − c + 9d
72I = 12Ṁ − 4 + a − 3b − 4x + 12y − c − 9d
72J = 12Ṁ − 4 + 6a + 12x + 2c

where pq = x2 + 3y2, 6Ṁ = (p − 2)(q − 2) − 1 and 4pq = a2 + 3b2 = c2 + 27d2.
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Proof. Matrix B̄ can be obtained by Lemma3(b)(c) of p. 86 in [9], and by
Lemma3(d), we have the four linear relations

⎧
⎪⎪⎨

⎪⎪⎩

A + B + C + D + E + F = Ṁ + 1
B + F + 2G + H + I = Ṁ

C + E + G + H + I + J = Ṁ

2D + 2H + 2I = Ṁ

Further, a reduced set of R(m,n) for d = 6 is R(1, 1), R(1, 2), R(2, 2). By Lemma
11(b) of p. 99 in [9], setting

2R(1, 1) = 2
5∑

k=0

γk
5∑

h=0

γ−2h(k, h) = a + i
√
3b.

R(1, 2) =
5∑

k=0

γ2k
5∑

h=0

γ−3h(k, h) = −x + i
√
3y

2R(2, 2) = 2
5∑

k=0

γ2k
5∑

h=0

γ−4h(k, h) = c + 3i
√
3d

We obtain the additional six equations
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2A + B − 3C − 2D − 3E + F − 4G + 2H + 2I + 4J = a
B + 3C − 3E − F + 2H − 2I = b
A − B − D − F + G + H + I − J = −x
B − F − H + I = y
2A − 3B − 3C + 6D − 3E − 3F + 12G − 6H − 6I + 4J = c
B − C + E − F + 2H − 2I = d

The simultaneous solution of the above ten equations in ten unknowns is given
in the statement of the lemma.

With notations as above, given two odd primes p, q (p < q) with gcd(p −
1, q − 1) = 6, suppose that pq = x2 + 3y2 = x′2 + 3y′2, 4pq = a2 + 3b2 =
a′2 + 3b′2 and 4pq = c2 + 27d2 = c′2 + 27d′2, then a change in the choice of g
may lead to the replacement of x, y, a, b, c, d by x′, y′, a′, b′, c′, d′ respectively in
Lemmas 1 and 2. If g is fixed, we cannot determine how to choose x, y, a, b, c, d.
In the following part, we will first calculate the exact autocorrelation values of
corresponding sequences theoretically without considering the choice of g, i.e.,
we take the autocorrelation values only as the function of x, y, a, b, c, d. Next,
consider only the choice of g, we find some examples of (p, q,m, n, g, x̄) , such
that the autocorrelation function is four-valued, five-valued, or six-valued by a
computer calculation.
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3 Autocorrelation Values

In this section, we discuss autocorrelation values of a new Whiteman’s general-
ized cyclotomic sequence of order six. Let gcd(p − 1, q − 1) = 6, we define

C0 = R ∪ Q ∪ D2 ∪ D4 ∪ D5, C1 = P ∪ D0 ∪ D1 ∪ D3

The new generalized cyclotomic sequences s∞ of order six with respect to the
primes p and q (denoted by NGCS6) is defined by

si =
{
1, if (imod N) ∈ C1,
0, if (imod N) ∈ C0.

The periodic autocorrelation function of the binary sequence s∞ is defined by

ACs(w) =
∑

i∈ZN

(−1)si+w−si ,w ∈ ZN .

The main results of this correspondence are summarized in the following two
theorems. The proofs will be given later.

Theorem 1. With notations as Lemma 1.
Let (p − 1)(q − 1)/36 be even, then (q − p)/6 is odd, and the autocorrelation

function of NGCS6 is

ACs(w) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q − p − 3, w ∈ P
p − q + 1, w ∈ Q
−3 + (4x − 12y + a − 3b + 3c + 27d)/18, w ∈ D0 ∪ D3

−1 − (4x + a + 3c)/9, w ∈ D1 ∪ D4

1 + (4x + 12y + a + 3b + 3c − 27d)/18, w ∈ D2 ∪ D5

(1)

Theorem 2. With notations as Lemma 2.
Let (p − 1)(q − 1)/36 be odd, then (q − p)/6 is even, and the autocorrelation

function of NGCS6 is

ACs(w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q − p − 3, w ∈ P
p − q + 1, w ∈ Q
−3 + (16x + 5a + 9b + 3c + 27d)/18, w ∈ D0

−3 − (8x + 48y − 2a − 12b + 6c)/18, w ∈ D1

1 − (8x − 24y + 7a − 3b − 3c + 27d)/18, w ∈ D2

−3 − (8x + 24y + 7a + 3b − 3c − 27d)/18, w ∈ D3

1 − (8x − 48y − 2a + 12b + 6c)/18, w ∈ D4

1 + (16x + 5a − 9b + 3c − 27d)/18, w ∈ D5

(2)

By Theorem1, we have the following conclusion.

Corollary 1. Define M := 4x+ a+ 3c, N := 12y + 3b − 27d, h := q − p − 2. If
(p − 1)(q − 1)/36 is even, then ACs(w) is at most four-valued if and only if one
of the following systems of equations holds:
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M = −9h, and N = −27h − 36
M = 18h, and N = −36
M = −9h, and N = 27h − 36
M = 9h, and N = 27h − 36
M = −18h, and N = −36
M = 9h, and N = −27h − 36
M = 0, and N = −36
M = 9h, and N = −9h − 36
M = 0, and N = −18h − 36
M = 9h/2, and N = −27h/2 − 36
M = −9h, and N = 9h − 36
M = −9h, and N = −9h − 36
M = −9h, and N = −36
M = 0, and N = 18h − 36
M = 9h, and N = 9h − 36
M = 9h/2, and N = 27h/2 − 36
M = −9h/2, and N = 27h/2 − 36
M = 9h, and N = −36
M = −9h/2, and N = −27h/2 − 36
Especially, when M = 0 and N = −36, ACs(w) = −1 for each w ∈ Z∗

pq.

Proof. Let (p− 1)(q − 1)/36 be even, by Theorem1, we will find conditions such
that several values of ACs(w) can be equal. For convenience, we give labels for
the values of ACs(w) as follows:

U := q − p − 3, V := p − q + 1, W := −3 + (M − N)/18
X := −1 − M/9, Y := 1 + (M + N)/18

Now we will find conditions such that ACs(w) is at most four-valued.
If U = W = X, or U = W = Y , or U = X = Y , or V = W = X, or

V = W = Y , or V = X = Y , or W = X = Y , then ACs(w) is at most
four-valued, from which we can get the first seven systems of equations.

If both U = W and V = X, or both U = W and V = Y , or both U = W
and X = Y , or both U = X and V = W , or both U = X and V = Y , or both
U = X and W = Y , or both U = Y and V = W , or both U = Y and V = X,
or both U = Y and W = X, or both V = W and X = Y , or both V = X and
W = Y , or both V = Y and W = X, then ACs(w) is also at most four-valued,
from which we can get the last twelve systems of equations.

The converse is true as well.

Example 1: With notations as Lemma1. Let (p − 1)(q − 1)/36 be even, by
the last part of Lemma3, we find some examples of (p, q) such that M = 0 and
N = −36, i.e., ACs(w) = −1 for each w ∈ Z∗

pq(See Table 1 in Appendix)1.
To prove Theorems 1 and 2, we need the following lemmas. Define

ds(i, j;w) = |Ci ∩ (Cj + w)|, w ∈ ZN ,i, j = 0, 1.

1 We only list part of the results, many others can be found by a computer calculation.
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Lemma 3. With notations as before. In the residue class ring ZN , we have
(1) If a ∈ P , then aP = P , aQ = {0}.
(2) If a ∈ Q, then aP = {0}, aQ = Q.
(3) If a ∈ Dj, then aP = P , aQ = Q, aDi = Di+j(modd), i, j = 0, 1, ..., d − 1.

Lemma 4. For each w �= 0(mod N), ACs(w) = N − 4ds(1, 0, w).

Proof. See Lemma1 of [4].

For NGCS6, note that

ds(1, 0;w) = |C1 ∩ (C0 + w)|
= |P ∩ (R ∪ Q + w)| + |P ∩ (D2 + w)| + |P ∩ (D4 + w)|
+ |P ∩ (D5 + w)| + |D0 ∩ (R ∪ Q + w)| + |D1 ∩ (R ∪ Q + w)|
+ |D3 ∩ (R ∪ Q + w)| + |D0 ∩ (D2 + w)| + |D0 ∩ (D4 + w)|
+ |D0 ∩ (D5 + w)| + |D1 ∩ (D2 + w)| + |D1 ∩ (D4 + w)|
+ |D1 ∩ (D5 + w)| + |D3 ∩ (D2 + w)| + |D3 ∩ (D4 + w)|
+ |D3 ∩ (D5 + w)|.

Hence we only need to determine values of |P ∩ (R ∪ Q + w)|, |P ∩ (Di + w)|,
|Dj ∩ (R ∪ Q + w)| and |Dj ∩ (Di + w)|, where i = 2, 4, 5, j = 0, 1, 3.

A proof of the following lemma can be found in [4].

Lemma 5

|P ∩ (R ∪ Q + w)| =
⎧
⎨

⎩

1, w ∈ P
0, w ∈ Q
1, w ∈ Z∗

N

To determine |P ∩ (Di + w)|, i = 2, 4, 5, we need the following Generalized
Chinese Remainder Theorem [8].

Lemma 6. Let m1,m2, ...,mt be positive integers. For a set of integers a1, a2, ...,
at, the system of congruences

x ≡ ai(mod mi), i = 1, 2, ..., t

has solutions if and only if

ai ≡ aj(mod gcd(mi,mj)), i �= j, 1 ≤ i, j ≤ t (3)

If (3) is satisfied, the solution is unique modulo lcm(m1,m2, ...,mt).

Lemma 7. If (q − p)/6 is even, −1 ∈ D0; If (q − p)/6 is odd, −1 ∈ D3.

Proof. −1 ∈ Di if and only if there is an integer s with 0 ≤ s ≤ e − 1 such that

gsx̄i ≡ −1(mod pq) (4)
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Which is by the Chinese Remainder Theorem equivalent to

gsx̄i ≡ −1(mod p), gsx̄i ≡ −1(mod q)

That is gs+i ≡ −1(mod p), gs ≡ −1(mod q). Since g is a common primitive root
of p and q, we have

g(p−1)/2 ≡ −1(mod p), g(q−1)/2 ≡ −1(mod q)

Thus (4) is further equivalent to

gs+i−(p−1)/2 ≡ 1(mod p), gs−(q−1)/2 ≡ 1(mod q)

Which is equivalent to
{

s + i − (p − 1)/2 ≡ 0(mod p − 1)
s − (q − 1)/2 ≡ 0(mod q − 1)

By Lemma6, (4) has a solution if and only if (q − p)/2 ≡ −i(mod 6), then
we get the conclusion.

Since |P ∩ (Di +w)| = |(P ∪ R)∩ (Di +w)| − |R ∩ (Di +w)|, i = 2, 4, 5, then
we will compute |(P ∪ R) ∩ (Di + w)| and |R ∩ (Di + w)| respectively.
Lemma 8

|(P ∪ R) ∩ (Di + w)| =
{
0, w ∈ P ∪ R
(q − 1)/6, otherwise

Proof. The first part is clear. We now prove the second part.
If w /∈ P ∪ R, then an element z = gsx̄i + w ∈ P ∪ R if and only if

gsx̄i + w ≡ 0(mod p) (5)

Note that x̄ ≡ g(mod p). Let v be the inverse of w(mod p). Since g is a primitive
root of p, there must be an integer t with 0 ≤ t ≤ p−1 such that v ≡ gt(mod p).
Thus (5) is equivalent to

gs+t+i ≡ −1(mod p)

Note that g(p−1)/2 ≡ −1(mod p), then (5) is also equivalent to

gs+t+i−(p−1)/2 ≡ 1(mod p)

Which is further equivalent to

s + i + t − (p − 1)/2 ≡ 0(mod p − 1)

It follows that the number of solution s of (5) with 0 ≤ s ≤ e − 1 is e/(p − 1) =
(q − 1)/6.
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Lemma 9

|R ∩ (Di + w)| =

⎧
⎪⎪⎨

⎪⎪⎩

0, w ∈ Q
1, w ∈ Di, and(q − p)/6 is even
1, w ∈ Di+3,and (q − p)/6 is odd
0, otherwise

Proof. The first part and last part are clear.
If (q − p)/6 is even, by Lemma7, −1 ∈ D0. Further more, if w ∈ Di, by

Lemma 3, −w ∈ Di. Thus |R ∩ (Di + w)| = 1.
Similarly, we know that |R ∩ (Di +w)| = 1 if (q − p)/6 is odd and w ∈ Di+3.

By Lemmas 8 and 9, we get the following Lemma.

Lemma 10

|P ∩ (Di + w)| =

⎧
⎪⎪⎨

⎪⎪⎩

0, w ∈ P
(q − 7)/6, w ∈ Di, and (q − p)/6 is even
(q − 7)/6, w ∈ Di+3, and (q − p)/6 is odd
(q − 1)/6, otherwise

Similar to the proof of Lemma8, we can get the following result.

Lemma 11

|Dj ∩ (R ∪ Q + w)| =
{
0, w ∈ Q ∪ R
(p − 1)/6, otherwise

Lemma 12. Suppose that w ∈ Di, then w−1 ∈ Di+j if and only if 2i + j ≡
0(mod 6).

Proof. Since w ∈ Di, there is an integer s with 0 ≤ s ≤ e − 1 such that w ≡
gsx̄i(mod pq), which is by the Chinese Remainder Theorem equivalent to

w ≡ gsx̄i(mod p), w ≡ gsx̄i(mod q)

that is w ≡ gs+i(mod p) and w ≡ gs(mod q).
Similarly, w−1 ∈ Di+j if and only if there is an integer k with 0 ≤ k ≤ e − 1

such that
w−1 ≡ gk+i+j(mod p), w−1 ≡ gk(mod q) (6)

Thus (6) is equivalent to

1 ≡ w · w−1 ≡ gk+s+2i+j(mod p)
1 ≡ w · w−1 ≡ gk+s(mod q)

Which is further equivalent to
{

k + s + 2i + j = 0(mod p − 1)
k + s = 0(mod q − 1)

By Lemma6, (6) has a solution if and only if 2i+ j = 0(mod 6), then we get the
conclusion.
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Lemma 13

|Dj ∩ (Di + w)| =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p − 1)(q − 1)/36, w ∈ P ∪ Q
(i, j), w ∈ D0

(i + 5, j + 5), w ∈ D1

(i + 4, j + 4), w ∈ D2

(i + 3, j + 3), w ∈ D3

(i + 2, j + 2), w ∈ D4

(i + 1, j + 1), w ∈ D5

Proof. The first part is clear.
For the second part, note that if w /∈ P ∪ Q, then |Dj ∩ (Di + w)| = |(w−1 ·

Di + 1) ∩ w−1 · Dj |. We get the conclusion by Lemma3 and Lemma12.

We are now ready to prove Theorems 1 and 2.
Proof of Theorem 1: Define m1,m2,m3,m4,m5,m6 as follows.

m1 =
∑ i ∈ {2, 4, 5}

j ∈ {0, 1, 3}(i, j), m2 =
∑ i ∈ {1, 3, 4}

j ∈ {5, 0, 2}(i, j)

m3 =
∑ i ∈ {0, 2, 3}

j ∈ {4, 5, 1}(i, j), m4 =
∑ i ∈ {5, 1, 2}

j ∈ {3, 4, 0}(i, j)

m5 =
∑ i ∈ {4, 0, 1}

j ∈ {2, 3, 5}(i, j), m6 =
∑ i ∈ {3, 5, 0}

j ∈ {1, 2, 4}(i, j)

By Lemmas 5, 10, 11, 13, if (p − 1)(q − 1)/36 is even, then

ds(1, 0;w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(pq + p − q + 3)/4, w ∈ P
(pq − p + q − 1)/4, w ∈ Q
(p + q)/2 + m1, w ∈ D0

(p + q − 2)/2 + m2, w ∈ D1

(p + q − 2)/2 + m3, w ∈ D2

(p + q)/2 + m4, w ∈ D3

(p + q)/2 + m5, w ∈ D4

(p + q − 2)/2 + m6, w ∈ D5

By Lemma1, we have

72m1 = 108Ṁ − 4x + 12y − a + 3b − 3c − 27d
72m2 = 108Ṁ + 36 + 8x + 2a + 6c
72m3 = 108Ṁ − 4x − 12y − a − 3b − 3c + 27d
72m4 = 108Ṁ − 4x + 12y − a + 3b − 3c − 27d
72m5 = 108Ṁ − 36 + 8x + 2a + 6c
72m6 = 108Ṁ − 4x − 12y − a − 3b − 3c + 27d

Formula (1) then follows from

ACs(w) = N − 4ds(1, 0;w), w �= 0(modN).

Similarly, we can prove Theorem2.
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4 Experimental Results

In this section, consider only the choice of g, we present some specific experi-
mental results, such that the autocorrelation function takes on only a few values.

Let the symbols be the same as above, given fixed (p, q,m, n, g, x̄), the White-
man’s generalized cyclotomic classes of order six defined by Di = {gsxi : s =
0, 1, ..., e−1}, i = 0, 1, ..., 5 is fixed, then the corresponding NGCS6 is also deter-
mined. Actually, for a given g, m and n are both determined by m ≡ g(modp)
and n ≡ g(modq), x̄ is also determined by both x̄ ≡ g(modp) and x̄ ≡ 1(modq).

Example 2: Let p, q (p < q) be two odd primes with gcd(p − 1, q − 1) = d.
By a computer calculation, we find some specific results of (p, q,m, n, g, x̄) such
that ACs(w) is four-valued, five-valued or six-valued. We list in the last column
whether ACs(w) = −1 for each w ∈ Z∗

pq(see Table 2 in Appendix) (see Foot-
note 1).

5 Conclusion

In this paper, we constructed the new generalized cyclotomic sequences with
order six and length pq, and determined the autocorrelation values of the cor-
responding sequences. Besides, we found examples involving p, q such that the
autocorrelation function takes on only a few values.

Theorem1 shows that the sequences have six-valued autocorrelations when
(p − 1)(q − 1)/36 is even, while Theorem2 shows that the sequences have nine-
valued autocorrelations when (p − 1)(q − 1)/36 is odd. In the former case, we
got conditions of p, q such that the autocorrelation function ACs(w) is four-
valued. Besides, consider only the choice of g, primitive root of both p and q, we
present some specific experimental results such that the autocorrelation function
takes on only a few values. The construction contributes to the understanding
of the periodic autocorrelation structure of cyclotomically-constructed binary
sequences.
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6 Appendix

We list in Table 1 part of the results in Example 1, and Table 2 part of the results
in Example 2.
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Table 1. Some result that ACs(w) = −1 for each w ∈ Z∗
pq

Period N = p ∗ q x, y, a, b, c, d in Lemma 1 Property

91 = 7 ∗ 13 4, 5, 16,−6,−11, 3 four-valued

91 = 7 ∗ 13 4, 5, 17,−5,−11, 3 four-valued

91 = 7 ∗ 13 −8, 3,−11,−9, 16, 2 four-valued

91 = 7 ∗ 13 −8, 3,−16,−6, 16, 2 four-valued

427 = 7 ∗ 61 −20, 3,−40,−6, 40, 2 four-valued

427 = 7 ∗ 61 −20,−3,−40, 6, 41, 1 four-valued

511 = 7 ∗ 73 22, 3, 44,−6,−44, 2 four-valued

511 = 7 ∗ 73 22,−3, 37, 15,−44, 2 four-valued

247 = 13 ∗ 19 10, 7,−25, 11,−4, 6 four-valued

403 = 13 ∗ 31 16, 7,−17, 21,−17, 7 four-valued

403 = 13 ∗ 31 −20,−1,−32, 14, 37, 3 four-valued

559 = 13 ∗ 43 −14, 11, 28, 22, 7, 9 four-valued

559 = 13 ∗ 43 22,−5, 47,−3,−47,−1 four-valued

1339 = 13 ∗ 103 16, 19,−41, 35,−8, 14 four-valued

1147 = 31 ∗ 37 −8, 19, 49, 27,−5, 13 four-valued

1591 = 37 ∗ 43 −2, 23, 59, 31,−17, 15 four-valued

9991 = 97 ∗ 103 58, 47, 17, 115,−83, 35 four-valued

13483 = 97 ∗ 139 −116, 3,−232,−6, 232, 2 four-valued

21823 = 139 ∗ 157 34, 83, 185, 133,−107, 53 four-valued

31243 = 157 ∗ 199 −116, 77,−115, 193, 193, 57 four-valued

107143 = 307 ∗ 349 214, 143, 275, 343,−377, 103 four-valued

Table 2. some results that ACs(w) is four, five or six-valued

Primes p, q Choice of g m, n, x̄ Property ACs(w) = −1 for each w ∈ Z∗
pq

7, 13 80 3, 2, 66 four-valued no

7, 13 54 5, 2, 40 four-valued no

13, 19 162 6, 10, 58 four-valued no

61, 67 2 2, 2, 3418 four-valued no

67, 97 1950 7, 10, 2620 four-valued no

73, 103 2787 13, 6, 1546 four-valued no

79, 97 6800 6, 10, 3008 four-valued no

7, 13 45 3, 6, 66 four-valued yes

7, 61 124 5, 2, 306 four-valued yes
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Table 2. (Continued)

Primes p, q Choice of g m, n, x̄ Property ACs(w) = −1 for each w ∈ Z∗
pq

7, 73 159 5, 13, 439 four-valued yes

13, 151 1371 6, 12, 1813 four-valued yes

13, 379 2 2, 2, 2654 four-valued yes

19, 409 21 2, 21, 819 four-valued yes

43, 157 2841 3, 15, 6281 four-valued yes

67, 181 4362 7, 18, 10861 four-valued yes

67, 373 2 2, 2, 11191 four-valued yes

67, 373 1066 61, 320, 21635 four-valued yes

67, 373 14533 61, 359, 21635 four-valued yes

73, 211 5488 13, 2, 7386 four-valued yes

97, 139 975 5, 2, 10287 four-valued yes

7, 19 40 5, 2, 96 five-valued no

31, 43 476 11, 3, 259 five-valued no

7, 19 59 3, 2, 115 six-valued no

7, 31 166 5, 11, 187 six-valued no
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Abstract. Encryption is increasingly used in network communications,
especially by malicious software (malware) to hide its malicious activi-
ties and protect itself from being detected or analyzed. Understanding
malware’s encryption schemes helps researchers better analyze its net-
work protocol, and then derive the internal structure of the malware.
However, current techniques of encrypted protocol analysis have a lot of
limitations. For example, they usually require the encryption part being
separated from message processing which is hardly satisfied in today’s
malware, and they cannot provide detailed information about the encryp-
tion parameter such as the algorithm used and its secret key. Therefore,
these techniques cannot fulfill the needs of today’s malware analysis.

In this paper, we propose a novel and enhanced approach to auto-
matically detect and analyze encryption and encoding functions within
network applications. Utilizing dynamic taint analysis and data pattern
analysis, we are able to detect encryption, encoding and checksum rou-
tines within the normal processing of protocol messages without prior
knowledge of the protocol, and provide detailed information about its
encryption scheme, including the algorithms used, secret keys, cipher-
text and plaintext. We can also detect private or custom encryption
routines made by malware authors, which can be used as signature of
the malware. We evaluate our method with several malware samples to
demonstrate its effectiveness.

Keywords: Network protocols · Encryption detection · Data analysis ·
Reverse engineering

1 Introduction

Today protocol reverse engineering is widely used in many security applications,
especially in malware detection and analysis. To fully understand the intention
and behavior of malware, security analysts usually have to obtain detailed net-
work protocol information. However, current circumstance of the wider use of
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sophisticated encryption schemes in malware’s network communication renders
it very difficult to analyze the protocol directly. Several techniques were pro-
posed to solve this problem [3,15,19], however these techniques have several
critical weaknesses which make them inadequate in the analysis of current mal-
ware. First, these techniques usually require encryption or decryption to be in
a separated phase from normal processing of protocol messages. This condition
is hardly satisfied in today’s malware, which usually uses several layers of dif-
ferent encryption or encoding schemes. Second, they usually detect encryption
routines by the ratio of bitwise or arithmetic instructions. This condition also
cannot be met when malware uses weaker but simpler encoding scheme instead
of encryption, or with the existence of obfuscation. And third, these techniques
only detect the existence of encryption routines but not the parameters such
as the secret key. The lack of this information makes it very difficult to give a
comprehensive view of the malware’s internal structure.

We propose an in-depth approach to detect and analyze the encryption,
encoding and checksum routines within a program using dynamic taint analysis
[16] and dynamic data pattern analysis [23], and then uncover the complete struc-
ture of malware’s protocol messages. First we construct the hierarchical structure
of a protocol message using its procedure-level execution context. Then, we per-
form dynamic taint analysis on the possible procedures to discover encryption
and encoding routines. After that, dynamic data pattern analysis is used to
reveal the parameters of encryption or decryption, and to produce possible sub-
messages. At last, we reconstruct sub-messages to the original protocol message
to provide comprehensive analysis result of encrypted protocol content.

Some of our contributions are listed below.

– We use dynamic taint analysis as the primary tool to locate encryption or
encoding within the message processing, eliminating the former requirement of
the separation of encryption and message processing. We also propose methods
to distinguish different layers of encryption, revealing the internal structure
of encrypted message.

– Dynamic data pattern analysis is used to extract the high-value parameters
of encryption, including the algorithm used, secret keys, ciphertext, plaintext,
etc. This information is valuable to security analysts, and can be used as
signature to malware detection and classification.

– We provide methods to detect non-public or custom made encryption or
encoding routines used in malware’s protocols automatically, with no prior
knowledge of the malware. Some of the parameters used in custom algorithms
can be extracted at the same time.

– We use entropy metrics and data characteristics as powerful supplements
to distinguish encryption routines (focusing on confusion and diffusion) and
encoding routines (focusing on transformation). The entropy metrics provide
a convenient way to discover the underlying nature of detected algorithm.

– We evaluate our method with custom programs as well as several real world
malware samples to show the effectiveness of our approach, including ZeuS
P2P botnet, Mega-D botnet, Storm botnet, etc.
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2 Background and Related Work

Protocol reverse engineering has gained significant attention in recent years.
Polyglot [4] took the first step to automatically reverse engineer the message for-
mat using dynamic program analysis techniques. Utilizing dynamic taint analy-
sis, it can discover different kinds of message fields such as direction fields and
keywords. AutoFormat [14] took a step further to detect the structural infor-
mation about protocol messages. The work by Wondracek et al. [20] combined
multiple messages together to deduce the internal structure of messages. All
these approaches worked on plain unencrypted messages. There are other sys-
tems [6,7] proposed to automatically infer the protocol state machine using pro-
gram analysis techniques. The first effort to reverse engineer encrypted protocol
content automatically was made by the system ReFormat [19], and then Dis-
patcher [3]. They took similar approaches with the assumption of the separation
of decryption and message processing, and used instruction characteristics to
detect the decryption function. The lack of flexibility and detailed information
about cryptographic parameters limited their usages. There are other approaches
[8,17,18] that used network traces to analyze protocols. These approaches are
mostly probabilistic and require prior knowledge about the protocol, which are
less accurate than the program analysis based approaches.

Automatic detection and analysis of cryptographic algorithms is also a hot
topic of security research in recent years. Gröbert’s work [11] took the first
step to detect cryptographic primitives in software using dynamic data analysis
techniques. Zhao et al. [22,23] extended this work using dynamic data pattern
analysis, which is more effective and accurate. The system Aligot [5] focused on
detecting cryptographic algorithms in obfuscated software using loop detection
techniques. CipherXRay [13] used the avalanche effect of cryptographic algo-
rithms and dynamic taint analysis to detect the input-output dependency of
cryptographic algorithms.

In this paper, we combine protocol reverse engineering techniques with cryp-
tographic algorithm detection techniques to provide in-depth and comprehen-
sive detection and analysis of encrypted protocol messages. We also extend the
cryptographic algorithm detection to encoding functions and propose informa-
tion entropy based metrics to distinguish encryption and encoding functions.
Our approach requires no prior knowledge of the protocol or the algorithms,
and tries to detect generic patterns and reveal complete structures of encrypted
messages.

3 System Description

3.1 System Overview

Our system is designed to automatically extract the detailed internal structure
and data protection schemes of an encrypted protocol message. Given a sample
of a program, our system runs it within the execution monitor, and outputs
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the complete structure of encrypted network messages, with detailed informa-
tion about its encryption, hashing and checksums used in different layers of the
processing of the message. To achieve this goal, our system takes the follow-
ing steps: (a) Run the program in the execution monitor (emulator) and obtain
runtime traces containing low-level context data. (b) Upon receiving a message,
our system analyzes the procedure call hierarchy and the message structure. (c)
Analyze possible encryption (or decryption), encoding (or decoding) and check-
sum routines with the message processing. The decrypted (or decoded) data is
extracted as sub-messages. (d) We continue step (b) on all sub-messages and sub-
sequent messages until the analysis is complete, and output all analysis result.
An overview of the architecture of our system is shown in Fig. 1.

Execu on 
Monitor

Program
Sample

Procedure 
Call Hierarchy

Message 
Structure 

Constructor

Taint Analysis 
Engine

Data Pa ern 
Analysis 
Engine

Algorithm Analyzer

Sub-message 
Reconstructor

Analysis 
Result

Fig. 1. System architecture

Dynamic Execution Monitoring. In order to obtain program runtime data,
the program to be analyzed is run in a formerly available program emulation sys-
tem [22]. Fine-grained information, including CPU instructions, register values,
memory accesses and parameters of system API calls, can be visited conve-
niently. All networking APIs are hooked to notify our system when a network
message is received, including the message data and context information. All
subsequent processing of the message is monitored by our system to analyze
possibly encrypted message content. The analysis and program execution are
done simultaneously for better performance.

3.2 Message Structure Inference

The first step during analysis is to construct the internal hierarchical structure of
a message into a tree structure. The message tree is later used to reconstruct the
meaningful hierarchy of an encrypted message and its sub-messages. To achieve
this, our system is based on the simple observation: Most functionality units of a
program are implemented as procedures, especially encryption routines, hashing
routines and checksums. This fact accords with the software engineering principle
of modularized design, and is common in today’s software even in malware.

During program execution, our message structure analyzer maintains a vir-
tual call stack to track current procedure call hierarchy. Whenever message data
is accessed (to byte granularity), we record its call stack context, and append it
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Fig. 2. A sample message tree

to the message tree properly. All message data with the same context are merged
in the final tree. A sample of constructed message tree is shown in Fig. 2.

The sole purpose of message structure reconstruction is for the reconstruction
of decrypted or decoded sub-messages. We can also analyze message field format
in this step, which has been extensively studied [3,4,9,14,20]. So here we omit
the analysis of message field format and focus on encrypted data.

3.3 Data-Oriented Analysis and Algorithm Detection

After the inference of message structure, we conduct data-oriented analysis on
each of the possible procedures. The data analysis mainly includes dynamic data
taint analysis for the detection of data dependency, and dynamic data pattern
analysis for the detection of specific algorithms. We’ll discuss this in detail in
Sect. 4.

3.4 Sub-message Generation

A sub-message is an encrypted or encoded partial message which is embedded
within its parent message. A sub-message often indicates a new layer of the orig-
inal message, which usually has different semantic meanings and is processed
in different routines. After each successful detection of an algorithm in the pre-
vious step, we spot the beginning of a sub-message starting at the completion
point of the algorithm. We then analyze the sub-message recursively until all
sub-messages are detected and analyzed.

3.5 Message Reconstruction

Upon the completion of analysis of each sub-message, we discard the original
analysis of the sub-message in its parent message and append the newly gener-
ated sub-message. The final result is a tree-like structure where all layers of the
processing of the original message and the conversions of message data are clear
to analysts. Examples of our final result are shown in Sect. 5.
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4 Data Dependency and Data Pattern Analysis

On acquiring the procedure call hierarchy, we are able to conduct data flow
analysis on each of the procedure call that possibly contains encryption, encoding
or checksum. For any deterministic algorithm, we argue that the relationship
between its input and output data is uniquely decided, which means the output
of an algorithm is predetermined for any fixed input data. This is the key concept
in the whole analysis phase.

For each trace of procedure call, we conduct dynamic taint analysis first to
test if the input-output data dependency satisfies the characteristics of a certain
algorithm. We use every byte of the received message as the taint source, and
track the flow of the message in each procedure. For those whose output data is
tainted, we perform further analysis on it to test if a specific algorithm exists.
This approach has the limitation that not all input parameters of an algorithm
can be tainted in the same procedure. This limitation can be resolved using
dynamic data pattern analysis.

To certify the existence of an algorithm, we conduct dynamic data pattern
analysis on selected procedures. For each procedure, all possible combinations of
input and output data are iterated to see if the data pattern is satisfied. In the
meantime, the parameters of an algorithm can be extracted as side products.
We further discuss the analysis details using these techniques for different kinds
of algorithms.

4.1 Detecting Block Ciphers

For block ciphers, we use the avalanche effect as theoretical basis for our analysis.
The avalanche effect says that flipping a single bit in input results in about half
of the output bits being flipped in a well-designed block cipher. In fact, if we
consider the situation for each byte, the possibility of an output byte not being
affected by any one of the input byte is so low that it cannot happen in one
experiment, even for a short 64-bit block [13]. Hence, we argue that every byte
in the output data of a block cipher is dependent on every byte of its input
data. Dynamic taint analysis is just the right tool to detect this dependency.
Whenever we found a block of output data being completely tainted by a block
of input data, we further analyze this block using data pattern analysis to verify.
A demonstration of the data dependency of block ciphers is shown in Fig. 3.

Key Scheduling. Before actual encryption of a block cipher, a program must
perform key scheduling first to generate the sub-keys. In most of the malware,
the secret key is embedded in its binary, thus won’t be tainted in procedure
input. We use the strategy of retainting the input using some special taint tags,
and test if every byte of the possible sub-key is tainted by a subset of input key.
Then data pattern analysis is performed to verify its belonging to an algorithm.
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Tag 0 Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7

Tag 0-7 Tag 0-7 Tag 0-7 Tag 0-7 Tag 0-7 Tag 0-7 Tag 0-7 Tag 0-7

8-byte Input Block, taint tag 0-7 in each byte

8-byte Output Block, taint tag 0-7 in all bytes

Fig. 3. Block cipher data dependency

Modes of Operation. With the power of taint analysis and data pattern
analysis, detecting modes of operation of block ciphers is fairly straightforward.
We demonstrate how some of modes of operation is detected.

Electronic Codebook (ECB). There’s no initialization vector (IV) in ECB
mode, so it can be detected using taint analysis only.

Cipher-Block Chaining (CBC). In CBC mode, the IV is first XORed with
plaintext, and then encrypted to produce the ciphertext. We first detect the
block encryption and get the actual input, which is the XORed result. We
then perform XOR with the tainted message input, and get the IV used in
encryption.

Cipher Feedback (CFB) and Output Feedback (OFB). In CFB and OFB
mode, the IV is encrypted and then XORed with the plaintext to produce the
ciphertext. For most of the malware implementations, the IV is embedded in
the malware’s binary, just like the secret key. So we detect the IV first using
data pattern analysis in the first block, and detect subsequent encryptions
using taint analysis.

Counter (CTR). In CTR mode, each block input can be untainted in our
analysis, so we detect all blocks using data pattern analysis.

4.2 Detecting Stream Ciphers

Most stream ciphers don’t have a strong data dependency like the block ciphers.
The plaintext of stream ciphers is usually XORed with some value to produce the
ciphertext. Hence, each byte of the ciphertext of stream ciphers must be tainted
by at least the corresponding byte in plaintext. We then use data pattern analysis
to verify the data dependency.

Key Scheduling. Stream ciphers like RC4 may also have a key scheduling
process. This process is actually quite similar to the key scheduling of block
ciphers where each byte of the scheduled key is tainted by a part of the secret
key. As most of the secret keys are untainted in our analysis, we also detect them
using data pattern analysis (Fig. 4).
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Tag 0 Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7

8-byte Input Block, taint tag 0-7 in each byte

8-byte Output Block, taint tag 0-7 in each corresponding byte

Tag 0 Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7

Fig. 4. Stream cipher data dependency

4.3 Detecting Hash Functions

Like block ciphers, well designed hash functions also have the property of the
avalanche effect. Unlike block ciphers, they produce the same length of output
regardless of the length of their input. The strong data dependency is a notable
signature of hash functions. We take similar approaches as before to detect hash
functions.

4.4 Detecting Encoding Functions

The encoding functions we refer to are used to transform data into another
format for network transmission, such as the widely used Base64. They don’t
have cryptographic characteristics and their encoded message can be decoded
easily. However, they still remain some weak data dependency which is similar to
stream ciphers, and can be used as a signature to detect these functions. Some
of the encoding functions produce different length of output to the input, so we
modify the method used in stream ciphers to handle variable length of output
data.

Some of the malware authors don’t care much about the security of their
encryption functions, and just use a simpler encoding scheme instead. However,
this approach is usually good enough to bypass most of the intrusion detection
systems or black-box analysis [10]. We further describe this situation in Sect. 4.6.

4.5 Detecting Checksums

Malware usually uses checksums to detect errors or modifications of network
data. Unlike hash functions, checksums usually have a small length and can
be easily forged. Most of the checksums don’t exceed 32-bit, and can fit into
a register of x86 CPUs. Therefore, we detect checksum routines using register
values as well as memory data, to see if a small-size datum is dependent on the
whole input block. Data pattern analysis includes common checksum algorithms
like CRC-32, Alder-32, bitwise XOR and arithmetic sum.
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4.6 Inferring Private Algorithms

Apart from using standard algorithms, many malware authors choose to use
custom or modified algorithms to avoid detection. Doing so further increases the
difficult to reverse engineer the malware samples or to analyze network traffic.
It’s of great importance to detect these kinds of algorithms, since they provide
valuable information to security analysts. Here we discuss the techniques we use
to detect custom or private encryption and encoding algorithms.

Although the details of private algorithms remain unknown prior to our
analysis, they do exhibit many of the features of standard algorithms mentioned
earlier. We still use data analysis techniques as weapons to uncover the nature
of these algorithms. Since many of the details are unavailable to our analysis, we
have to introduce extra techniques to extract them. We introduce information
entropy based metrics for algorithm classification, and discuss in detail about
the detection of each kind of algorithms.

Entropy Metrics. In information theory, entropy is used to quantify the
expected value of the information contained in a message. We use Shannon
entropy here for the measurement of the randomness of data. Given a block of
binary data d(length n > 0), and ci(0 ≤ i < 256) denoting the total occurrences
of byte i in d, we defined the normalized entropy H(d) as:

H(d) = −
∑255

i=0
ci
n log2

ci
n

log2 n
(0 < H(d) ≤ 1)

Unencrypted messages or texts usually have a low H(d) value, yet encrypted
binary data tends to have a high (nearly 1) H(d) value. In this way, we further
define the quotient of the entropy of the output data do and the input data di
for a procedure trace p as:

Q(p) =
H(do)
H(di)

For short messages, the H(d) or Q(p) value may not be meaningful, as infor-
mation entropy is a statistical concept. However, our experiments suggest that
for medium length (tens or hundreds of bytes) messages, the H(d) and Q(p)
value can be used to measure the randomness indeed. We’ll discuss the usages
of entropy metrics below, and show our experiment results in Sect. 5.

Block Ciphers. For the detection of private block ciphers, we use taint analy-
sis to discover the data dependency. The key scheduling and modes of operation
(other than ECB), however, cannot be easily detected because of the unavailabil-
ity of data pattern analysis. For most of block cipher decryptions, the Q value
is usually below 0.8, which is the lowest among all kinds of algorithms.
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Stream Ciphers and Encoding Functions. Private stream ciphers and
encoding functions exhibit almost the same features in our analysis, as they all
show byte-to-byte mapping in our data dependency analysis. The first difference
is that encoding (or decoding) functions may have input and output data with
different lengths, yet in stream ciphers the length is always the same. Another
difference is that the Q value of stream ciphers is generally lower than encoding
functions. We use an empirical Q value of 0.9 as the boundary, where procedures
of Q below 0.9 as stream ciphers and above as encoding functions.

Many malware authors use XOR-based encryption schemes. There are mainly
two kinds of XOR-based encryptions: one is chained-XOR, where each byte is
XORed with previous value to get the encrypted byte; the other one is keyed-
XOR, where each byte is XORed with a short custom-scheduled key (similar to
RC4). In our analysis, we treat the chained-XOR as encoding, whereas the keyed-
XOR as encryption, which is supported by the experiment results of entropy
metrics.

Hash Functions and Checksums. Hash functions have very distinguishable
data characteristics. They have a strong data dependency, and their Q value
is usually above 1.1. Checksum routines share the data characteristics of hash
functions, except that their output is too short for entropy metrics.

5 Implementation and Evaluation

We implemented our system as a plugin module of the LochsEmu emulator
[21,22], which can be used to analyze 32-bit Windows programs. This infrastruc-
ture enables us to conduct efficient and convenient data-oriented analysis. Other
available frontend options include QEMU [2] and PIN [1], but they usually
require tracing the intermediate result into hard disk first, which introduces
considerable performance deduction. We implemented the taint analysis engine,
the data pattern analysis engine and algorithm analyzers as loosely coupled sub-
modules with about 10k lines of C++ code.

We chose some custom made programs for test purposes, and some vari-
ants or self-compiled versions of real-world malware (botnet) for validation and
evaluation, including ZeuS P2P botnet, Mega-D, Storm, ZeroAccess, Festi and
Mariposa. Most of the test samples are botnet clients which have extensive net-
work communication. Our target algorithms include block cipher DES (ECB,
CBC and CFB modes), stream cipher RC4 and chained XOR, hash function
MD5, encoding function Base64 and checksum functions CRC32 and Alder32.
We also detect private or custom algorithms which we call generic symmetric
ciphers, generic stream ciphers and generic encoding/decoding algorithms. An
overview of our evaluation result is in Table 1.
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Table 1. Evaluation result overview

Sample Result

Mega-D DES key schedule; DES-ECB decryption

ZeuS P2P Chained XOR; MD5; RC4 key schedule; RC4 decryption

Storm Generic decoding; Checksum (XOR 8-bit); Checksum (ADD 8-bit)

ZeroAccess Generic stream decryption; Checksum (CRC32)

Festi Generic stream decryption

Mariposa Generic stream decryption

Test Sample 1 DES key schedule; DES-CBC decryption; DES-CFB decryption

Test Sample 2 Base64 decoding

5.1 Entropy Metrics

We use entropy metrics for the distinguishing of encryption and encoding. The
Q values of the samples above are shown in Fig. 5.

Fig. 5. Values of Q function

There’s a huge gap between MD5 hash function and other algorithms because
MD5 acts like encryption which makes entropy higher, while others are decryp-
tion or decoding which reduces entropy. Generally, we treat procedures with Q >
1.1 as encryption functions or hash functions. We set the Q range 0.9 < Q ≤ 1.1
for encoding and decoding. All detected decoding routines fell into this range
with Q values near 1.0. All decryption routines met the condition that Q ≤ 0.9,
generally within the range from 0.75 to 0.85. These decryption routines include
both symmetric ciphers and stream ciphers.
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5.2 Case Study

ZeuS P2P Botnet. The C2 message (type 0xCC) is the most complicated
encrypted message we analyzed. It contains three layers of encryption or encoding,
and two MD5 hash data blocks used as checksums. The layout of a ZeuS C2
message is shown in Fig. 6, and the complete structure of a ZeuS message is in
AppendixA.

Fig. 6. ZeuS message layout

The chained XOR algorithm is a fundamental algorithm used in ZeuS botnet,
and the outmost layer of every ZeuS message is encoded using chained XOR.
This algorithm uses a single fixed byte as initialization byte, and each byte is
XORed with the previous byte to get the encoded byte, as shown below.

void _visualEncrypt (void *buffer, DWORD size)
{

for (DWORD i = 1; i < size; i++)
((LPBYTE)buffer)[i] ^= ((LPBYTE)buffer)[i - 1];

}

The result of entropy metrics of the XOR algorithm shows that it’s more
of an encoding algorithm rather than encryption, which is predictable since
chained XOR only introduces very limited security. However, this simple scheme
is enough to evade most black-box network trace based analysis.

The C2 message also has a layer of RC4 encryption. It uses standard RC4
algorithm, and we’re able to successfully detect the RC4 key schedule as well
as the encryption. The Q function value of the RC4 procedure is about 0.85,
which is a little bit high for the reason that the decrypted message still contains
encoded binary data. Two MD5 hashes are used in the message to check the
message’s integrity. They’re both successfully detected and their occurrences are
linked with MD5’s output, shown in AppendixA.

With the information above, security analysts can easily grasp the high-level
structure of a large complicated message, and focus on an interesting point to
do further manual analysis. This information can also be used to study the
evolvement of a particular malware.
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Fig. 7. The Mega-D message Fig. 8. The storm message

Mega-D Botnet. The Mega-D botnet uses DES-ECB encryption to protect its
network communication. A sample analysis result of Mega-D message is shown
in Fig. 7.

The Mega-D messages begin with a two-byte field specifying the number of
DES blocks. The example above shows that there’re 4 blocks in this message.
The decryption is detected including its secret key, ciphertext and plaintext. The
decrypted plaintext is further divided into several parts, and in this example they
indicate some ID fields.

One thing worth mentioning is that Mega-D encrypts its message with embed-
ded secret key ‘abcdefgh’, however the detected secret key is ‘abbddggh’. That’s
because ‘abbddggh’ is the parity-fixed value of ‘abcdefgh’, and obviously they
produce the same S-box for DES decryption after fixing parity.

Storm Botnet. The Storm botnet uses a encoding algorithm which is similar
to Base64 [12]. The plaintext is first padded and separated into 6-bit units and
then each unit is added with 0x21 to get the encoded byte. The decoded data
contains two bytes for checksum, one is 8-bit sum modulo 256 and the other is
8-bit bitwise XOR, as shown in Fig. 8.

ZeroAccess, Festi and Mariposa. The encryption schemes for these three
botnet samples are all custom XOR-based stream ciphers. ZeroAccess uses a
custom scheduled 256-byte S-box, which is similar to RC4. It also uses a CRC32
checksum within the decrypted message to validate integrity, shown in
Fig. 9.

Festi uses a 4-byte embedded key, and performs bitwise XOR of the plaintext
and the key every 4 bytes to get the ciphertext. Mariposa uses a 2-byte key
derived from the plaintext. It’s easy to see that these encryption algorithms are
not cryptographically secure, but very easy to implement and use. There’s really
no point in using the encryption algorithms that are proven to be secure under
the circumstance that the software binary can be obtained and analyzed, so this
kind of simple encryption schemes is widely used by malware authors.
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Fig. 9. The ZeroAccess message

6 Conclusion

In this paper, we present a novel encrypted protocol analysis technique that can
be used to reveal the complicated encrypted message structure of today’s mal-
ware. We first infer the message structure using runtime context, and reconstruct
the message into a tree hierarchy. We then use data-oriented analysis techniques
including taint analysis and data pattern analysis to detect encryption, encoding
and checksum routines and extract possible sub-messages. At last, we analyze
recursively on all sub-messages to uncover the complete structure of an encrypted
message.

With the power of dynamic taint analysis and dynamic data pattern
analysis, we’re able to detect public encryption and encoding algorithms such
as DES, RC4 and Base64. We can also locate possible custom or private algo-
rithms, which are widely used by malware. The use of entropy metrics makes
it possible to find out the data characteristics and distinguish encryption and
encoding functions. We evaluate our technique using 6 malware samples as well
as some custom made test programs. The evaluation result shows that our tech-
nique is reliable and accurate to detect both public and private algorithms, and
to extract the complete structure of messages with complicated encryption and
encoding schemes.
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A ZeuS Botnet Message Format

See Fig. 10.

Fig. 10. ZeuS message format
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Abstract. With the rapid popularization of Android system around the world,
of the increase in Android malwares post serious threats to the security of users’
Android device and the privacy stored in it. At the same time, many trusted third
party institutions (such as military, government institutions) need to customize
the security policy of their Android devices according to their regulations, but
most of them do not have this capability. This paper proposed an environment
adaptive security mechanism for Android platform called EAdroid, which
providing a simple way for trusted third party institutions to customize the
security policy of their Android devices. EAdroid reforms the framework layer
of Android system and synthetically applies Smack security module of Linux.
At the same time, the security rules of framework layer and kernel layer in
EAdroid can adapt to the current environment context. Series of tests show that
EAdroid can efficiently protect the security of user’s devices and privacy with
negligible overhead of performance.

Keywords: Environment adaptive � Security � Android system � Access
control

1 Introduction

In recent years, the Android devices have become increasingly popular [1]. At the same
time, due to the shortage of Android’s default security mechanism, the number of
the Android malwares is in fast growth too, and they have posted serious threats to the
security of users’ Android device and the privacy stored in it.

The Android system is developed based on Linux kernel. In addition to the fine
process isolation mechanism, discretionary access control (DAC) and other security
mechanisms inherited from Linux system, Android also provides a Permission
Mechanism to classify the behaviors of applications and control them by different
permissions. Developers have to specify the corresponding permissions in the instal-
lation package based on the functionality of their applications. Users will get the
permissions information of the applications and decide if the applications will be
installed or not.

Although Android used a variety of security mechanisms to protect mobile devi-
ces, the imperfection of these security mechanisms leads to the rapidly spread of
malwares. First, most users do not have the ability to judge the security of the
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applications they are going to install based on the permission information; Even
assuming that the users have the ability above, the way of granting permission (for
example, install or not) in Android system is still coarse-grained. Users will likely
choose to use of applications and ignore the security. More importantly, Android’s
security mechanisms were based on the DAC mechanism of Linux kernel, which
consigns the security management capabilities of the files and other objects to their
owner user. The process started by the user has the same permissions as the user. If the
programs that run as root contains vulnerabilities, malwares may gain the root privi-
lege through them [2, 3].

Beyond that, only some mobile phone manufacture and mobile telecom carrier have
the abilities to develop and customize Android system. Some trusted third party (TTP),
such as government agencies, military, scientific research departments, commercial
organizations, need to allot Android device for their staffs. Nevertheless, they don’t
have the capacities to customize Android system according to their security regulations,
which means the behavior of the APPs in their Android devices cannot be controlled by
their regulations.

Motivated by these problems, this paper proposes a mobile-device oriented, fine-
grained and environment adaptive security mechanism called EAdroid, which bring
users or TTP institutions a simple way to customize the security policy of their devices.
Our main contributions are that:

• We present an environment adaptive security mechanism called EAdroid, which
can protect users against malwares according to the environment context. It means
EAdroid can bring TTP or normal users with a more flexible and fine-grained way
to control their Android devices.

• We build a prototype system of EAdroid to control the behavior of Android
applications on both framework layer and kernel layer. Moreover, we have unified
the control in the both layers seamlessly.

• Experiments show the effectiveness of EAdroid in protecting against a variety of
attacks including privacy leakage, money stealing and root exploit with negligible
performance overhead.

The paper is organized as follows: Sect. 2 shows the detailed design of EAdroid in
policy forms and architecture. In Sect. 3 we present some obstacles when implementing
EAdroid and our methods to solve them. Section 4 describes the evaluation of EAdroid.
Related works are discussed in Sects. 5 and 6 concludes.

2 Environment Adaptive Security Mechanism for Android

EAdroid aims to provide an environment adaptive security mechanism for Android
system. With this mechanism, users or TTP can specify their security regulations as
EAdroid rules on their Android devices. In addition, the rules can control the behaviors
of the applications according to the environment. For example, users can make the
applications labeled with “untrusted” unable to send SMS during 8:00 am to 8:00 pm.
The policy forms and the architecture of EAdroid are described below.
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2.1 Policy Forms

To make the policy rules for EAdroid, the users first need to know the forms of the rule.
EAdroid defines the forms of the rule as follow:

Definition 1. R = (<L>, <P>, <E>, <C>) is the set of all the possible rules. And the
single rule belongs to R is represented as r = (l, p, e, c). “L” is the set of all
applications’ labels “l”, where L ::= system|trusted|untrusted. “P” is the set of all the
permissions “p” controlled by EAdroid (such as android.permission.INTERNET).
“E” is the set of all environment types “e” that can be detected by EAdroid, where
E ::= time|location. “C” is the set of all possible environments context “c”, and the
content of “c” is decided by the value of “e”.

The three values of “L” represent three categories of applications, which are system
applications (system), trusted applications (trusted) and untrusted applications (un-
trusted). The “system” label corresponds to the applications that are installed by default
in the system and are necessary to the completeness of the device functions, such as
telephone, message, browser, etc. Label “trusted” corresponds to the applications that
preset by TTP for their terminal and are used to complete specific tasks. “Untrusted”
label corresponds to the applications download and installed by the actual users of
device. The three labels is a general division of the APPs in security levels. The value
of “E” is not fixed. The values of “L” will be extended in future work.

The set “P” includes permissions that may affect users’ privacy together with the
security of device, such as sending text messages, making phone calls, collecting
contact information, setting system options etc. Users can choose permissions from P to
control when they are setting each rule.

If the user selects “time” as the “e” of rule “r”, then he need to set the beginning and
ending time that the rule takes effect at the “c”. For the same reason, if the user selects
“location” as “e”, then he need to set the range of the location (latitude and longitude)
that the rule takes effect at the “c”. The two environment types are the most common
ones in the regulations of the TTP. Therefore, it can apply to most of the scenarios.
Rule-makers only need to set “c” to zero in order to make the rule take effect
permanently.

2.2 EAdroid Architecture

Android has hierarchical structure. In order to improve the security of the system and
defense against various attacks, EAdroid adds some modules to both framework layer
and kernel layer of Android. EAdroid uses user-generated security rules to guide
the acts of these modules, and brings unity control on multi-layers of Android. The
architecture of EAdroid is shown in Fig. 1.

The bold frames in Fig. 1 are the primary modules of EAdroid. When a new
application is installed, the application initialization module will allot label for the
application and label the process of it. The permission control module will intercept
the behavior of the application and enquire the policy management module about
whether to block the behavior. Except for responding to the permission control module,
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the policy management module keeps detecting the environment and updates the
current policy in framework layer and kernel layer. We use and modify Smack module
in kernel layer. Smack is a mandatory access control module inside Linux kernel [4].
On one hand, the Smack security module using the default smack rules to protect the
root, and on the other hand, Smack control the behavior of applications in kernel layer
according to the rules provided by policy management module.

During installing an application, the Android system will make a series of
operations on apk packages, some of the operations are implemented in the class
com.android.server.pm.Setting. The application initialization module judges the type of
the application to be installed according to user’s configuration, and allot corre-
sponding label to the application, and all the above logic are implemented inside the
installation related methods of class Setting. When the application is launched into a

Fig. 1. The architecture of EAdroid
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process, the application initialization module will label the processes for Smack
security module to distinguish. In addition, the label procedure is implemented inside
Zygote daemon (a background process in Android that is in charge of forking a process
for an App and loading the byte code of the App into the process).

The class com.android.server.pm.PackageManagerService of Android includes
some methods involving permission checking. We insert the interception functionality
of permission control module into these methods. Therefore, the interception func-
tionality will take effect before every behavior of the applications.

We add a new class com.android.server.PolicyManager to realize the functionality
of the policy management module. The correspondence between UID and label is
stored in a hash map called uidToLabel and the current policy will be stored in a hash
map called labelToAccess. Both of the hash maps are member variables of class
PolicyManager. Moreover, there will be an independent thread to update labelToAccess
according to the environment. The thread also copies the policy to smack to get the
unity control in kernel layer.

Smack security module in Fig. 1 is a Linux security module based on the LSM
(Linux Security Module) framework [4], which can control the access from subjects
(such as Linux processes) to objects (such as files, sockets). Each Android application
run as a Linux process and all its behaviors are the access of objects or the commu-
nication with the system service process. EAdroid labels important resource objects in
advance, and control the access from Android process to resource objects or the
communication to system process according to the rules provided by the policy
management module. At the same time, EAdroid provides a default Smack security
policy that protects root authorities through controlling the acts of root processes (such
as zygote).

3 Implementation

3.1 Application Initialization Module

Allot Label for Application. Before controlling the behaviors of applications,
EAdroid should first identify different applications, and then label them. Android
system is a single-user-oriented system, but Linux that it based on is multi-user-
oriented. To distinguish different users, Linux allocates a user ID (UID) to each user.
Android takes advantage of this mechanism and allocates a UID to each application
or to minority applications. Application’s UID will not change until it is uninstalled.
Android system also use the user-isolation mechanism of Linux to isolate applications.

EAdroid use UID to identify applications, and allocate corresponding labels to
them. Two tables are used to record the correspondence between UID and label. One of
them is the hash map uidToLabel mentioned above, which is stored in main memory as
primary search target while another one is a table in a database as a permanent storage.

By modifying class Setting, we can initialize and update uidToLabel together with
the database, Method AddUserIdLPw of class Setting is used to load UID information
of applications during system’s boot time. In this method, EAdroid adds codes to copy
the content of database to the hash map uidToLabel, which complete the initialization
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of the hash map. Method NewUserIdLPw of class Setting is used to load UID
information in the process of newly installed applications. In this method, EAdroid uses
the UID to search the database for the corresponding label. If there is any related
record, EAdroid will update the hash table. If there is not any record in database,
EAdroid will use UID and “untrusted” as a key-value pair and write it to the hash map
and database.

Label the Application Process. To make the unity control in both framework layer
and kernel layer, the label of an application must be the same to the different modules
in the different layers. Smack provide a way for a native process to inherit the label
stored in the extended attributes of its binary program file. Nevertheless, the
mechanism is only applicable to the native programs like vold (volume daemon), rild
(radio interface layer daemon), and so on, and it doesn’t fit for the ordinary Android
applications installed with apk file. Which means, even giving a label to the dex file of
an application, the process forked from it will not have the same label.

The reason is that the startup procedures between the native executable file and the
Android application are different. The Android application executes fork() system
call to create a subprogram through the zygote process, and loads dex file of the
application to make it a different process. The exec() system call was not called, so
the extended attributes of the executable file was not read. Therefore, if EAdroid cannot
label Android application process, it can’t use Smack security module to control the
behavior of the Android applications.

To solve the problem, we modify the codes of zygote to add a function that can give
label to the application process. Firstly, the function read the database mentioned
above, then get the label of the application and write it into the /proc/self/attr/current
interface, which means writing the label into the security field of the task_struct kernel
object corresponding to the process.

3.2 Permission Control Module

In the framework layer of Android system, method checkPermission and method
checkUidPermission included in class PackageManagerService are responsible for
checking the permissions of application’s behavior. The way to implement permission
control module is to call the method checkPermission of class PolicyManager in these
methods, provide it with the parameters needed, and judge that if the application has
the permission to implement the act according to the return value.

3.3 Policy Management Module

Responding the Permission Control Module. In order to control an application’s
behavior, EAdroid searches corresponding UID in uidToLabel to get the label, and then
use the label to inquire in labelToAccess hash map to find whether it has the
permission. If there is not any related rule in the hash map, the access is granted,
otherwise corresponding results will be returned according to specific rules.
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Environment Adaptive. The content in labelToAccess is the specific expression of
user‘s rules under current environment context. To be environment adaptive, the
content of labelToAccess has to change according to the change of the environment
context. There is an inner class in class PolicyManager called ContextDetector, which
launch an independent thread to detect environment context periodically and update
labelToAccess according to the user rules. There is an example to show it: If the user
wants to make a rule like “applications labeled with untrusted are not allowed accessing
the permission android.permission.SEND_SMS between 8:00 and 18:00”, the standard
form of the rule r is as follows:

r = (untrusted, android.permission.SEND_SMS, time, 8:00:18:00)

When the current time changes from 7:59 to 8:00, the thread that the instance of
ContextDetector class launched will add a rule to labelToAccess table. The rule shows
that the accesses from “untrusted” labeled applications to android.permission.
SEND_SMS are all denied. If an application labeled “untrusted” want to send SMS at
9:00, then the rule added in labelToAccess table will be inquired and rejection decision
will be returned. When current time changes from 18:00 to 18:01, the thread will delete
the rule. After that, all SMS sending behavior by untrusted labeled application will be
allowed. It is worth noting that the thread updates the labelToAccess periodically, and
the modification of the user rules will take effect at the next thread updating.

The Unity of Security Rules. In order to prevent the malwares from bypassing the
permissions mechanism in the Android framework layer, EAdroid unities the rules of
Smack module in the kernel layer with the security rules of framework layer. So even if
the malware has bypassed the permissions mechanism in framework layer, its
malicious behavior can still be blocked by Smack security module.

Inner class ContextDetector of class PolicyManager mentioned above provides an
independent thread, which updates labelToAccess hash map in class PolicyManager
according to the rules set by the user and the current environment context. In fact, this
thread also copy the content of labelToAccess hash table into the /Smack/load interface
with the Smack-module-accepted format, which achieves the unity of the security rules
between the kernel and framework layers.

3.4 Smack Security Module

Adding New Hook into Binder IPC. Binder IPC mechanism is a communication
mechanism of Android system [21]. It provides applications with remote process call to
the methods or functions in system service processes. In fact, the Android system
applications call the service system mainly through Binder IPC. Therefore, EAdroid
modified the LSM framework, added a new hook function specific to Binder IPC
mechanism. In addition, the Binder IPC mechanism was modified to cooperate with the
new LSM hook.

Binder IPC mechanism relies on a kernel driver named Binder drive. In binder
driver, the system services are represented in the form of binder_node structure.
Applications’ access to system services can be regarded as the access to the
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corresponding binder_node. There are some LSM hooks existing in Binder driver to
control a process’s access to the service-providing process. However, a service process
can provide a variety of services in Android system (such as the media service process),
and these services can’t be respectively controlled by the existing hook functions.
The new LSM hook we added can control the process’s access to the binder_node.

We assign ID for all services related to security and privacy, and extend the
definition of binder_node structure by adding a service ID of integer. When the server
process registers each service, it shall provide the name corresponding to the service,
and the service ID is written into its binder_node. In this way, the corresponding
relationship between the binder_node and the name of its representative service is
maintained. When an access from a process to a binder_node is captured, the service
ID number in the binder_node is mapped to the corresponding service name as the
label of the object. Moreover, the label of the process is used as the label of subject.
The labels of object and subject are provided to the newly added hook as parameters for
access decision. We modify Smack module to implement the decision logic of
the newly added hook function, and modify the security_operations structure of the
module, to link this function with the hook function.

Default Mandatory Access Control Rules. One of the dangerous security threats in
Android is the abuse of root privilege. Malwares can obtain root by exploiting the
vulnerabilities in the system process that run as root. The behavior of the system
process running as root is relatively fixed, so we use Smack module and formulate a set
of default mandatory access control rules that limit the behavior of the system process.
Notably, this default policy does not change with environmental context.

When labeling the system process and key resources, the challenge is that the labels
adding to the extended attributes of the files under “/” and “/system” will be lost when
the device reboots. In order to solve this problem, we first record the path of the
programs and key resources and their corresponding labels in a file. Then we added a
local program smackinit to label the key system program file and resources according to
this file during system’s startup. To ensure that the rules can be loaded in the early stage
of the boot process, we adopt a local program smackload to write the rules of the file to
the /smack/load interface.

In order to make smackinit and smackload programs launched before other system
programs, we modified the init.rc file to make them start instantly after the file systems
were mounted. Through the above changes, the default mandatory access control rules
could be loaded and the root in the device can be protected when the device boots.

4 Evaluation

4.1 Security

To test the protect capability of EAdroid, we created two scenarios where Android
device could be compromised. Under the first scenario, a malware from real world
collects private information stored in the device and performs money stealing
through SMS. Under the second scenario, another malware tries to gain root access.
This section describes the results of analysis and testing performed to assess the
effectiveness of EAdroid in defending these threats.
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Privacy Leakage and Money Stealing. As [11] shown, the main motivations of
android malwares is money-stealing and privacy collection. To check the capability
of EAdroid against these threats, we choose a malware called HippoSMS that can’t be
detected by some leading mobile AV [12]. The malware collects information about the
device and incurs additional phone charges by sending SMS messages to a hard-coded
premium-rated number, and it also blocks/removes short messages from legitimate
mobile phone service providers (whose number start with 10) to prevent users from
knowing about the additional charges [13]. In attracting users to download it, the
malware pretends itself as a popular video client called Ku6 and provides user with a
user interface that is similar to the real one. When HippoSMS is installed, it requests for
permissions listed in Table 1.

In order to defense against the malware, rules as below were added to EAdroid.
untrusted, android.permission.SEND_SMS, time, 8:00:18:00
untrusted, android.permission.READ_SMS, time, 8:00:18:00
untrusted, android.permission.WRITE_SMS, time, 8:00:18:00
untrusted, android.permission.RECEIVE_SMS, time, 8:00:18:00
With all these rules, we intended to restrict all SMS related behaviors of all

applications labeled with “untrusted” between 8:00 and 18:00. When the time of the
device is between 8:00 and 18:00, we tried to launch HippoSMS and we found that
there was not any access from HippoSMS to isms in binder driver. We sent SMS to the
device again, and we found that all SMS could be found in SMS box no matter what
number it was sent from, which revealed that EAdroid blocked the behaviors of
HippoSMS.

When the time was 18:05, we did all tests above again. We found that all the SMS
sent from “10XXXXX” were gone. Moreover, the access from HippoSMS to isms in
binder driver showed again. Further, we changed the environment condition from time
to location and tested it again. All the malicious behaviors of HippoSMS were gone
when the location of device moved into the boundary set in rules.

The test showed that EAdroid could protect the Android device against the
malicious behaviors like privacy leakage and money stealing.

Table 1. The permissions requested by HippoSMS and related behaviors.

Permissions Related behaviors

android.permission.SEND_SMS Send SMS messages
android.permission.RECEIVE_BOOT_COMPLETED Automatically start at boot
android.permission.WRITE_SMS Edit SMS or MMS
android.permission.ACCESS_NETWORK_STATE View network status
android.permission.RECEIVE_SMS Receive SMS
android.permission.INTERNET Full Internet access
android.permission.
MOUNT_UNMOUNT_FILESYSTEMS

Mount/unmount file systems

android.permission.WRITE_EXTERNAL_STORAGE Modify/delete SD card contents
android.permission.READ_SMS Read SMS or MMS
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Root Exploits. EAdroid was developed based on Android 4.2.2 for which no
documented vulnerabilities or root exploits are released. Therefore, we developed a
native daemon with a vulnerability similar to GingerBreak and a malware exploiting
the vulnerability. CVE-2011-1823 describes the GingerBreak vulnerability in vold’s
handling of the net link messages [14]. The GingerBreak exploit code is able to
dynamically survey the device in order to find all of the information it needs to launch a
successful attack on vold. It first obtains the PID of the vold process from the proc file
system, and it also changes the binary code of vold to change its GOT table and replace
the address of strcmp() and atoi() with the address of system() to create root shell.

According to the above steps, the malware we developed does three things, which
will read proc file system, write /system/bin/vold, create net link socket and send its
UID in its message to vold. To simplify the exploit process, the native daemon we
developed did two things, which were listening to the net link socket and creating a
setuid-root shell to the UID written in the payload received.

EAdroid labels dir “/proc” with label “procdir”, and labels files “/dev/socket/vold”
and “/system/bin/vold” with “vold”, and labels file “/system/bin/sh” with “shell” during
the boot process. To defend the above attack, we add three Smack rules in EAdroid: The
malware’s proc directory reading is blocked by the smack rule “untrusted procdir -”,
and the /system/bin/vold writing and payload sending are blocked by the rule “untrusted
vold -”, and the setuid-root shell creating was blocked by “vold shell -”. In summary,
EAdroid can block the exploit and made it impossible for the malware to gain root
privilege.

4.2 Overhead

This section describes the performance overheads introduced by EAdroid compared with
AOSP version. The AOSP images were built from the android 4.2.2 for the emulator
with 1 GB RAM and a 1 GB SD card. The EAdroid images were built for the same
emulator and from the same source code branch with our all modifications. The results
for SEAndroid images are compared against the AOSP results to determine the overhead
introduced by EAdroid.

We ran for 100 times the AnTuTu benchmark applications [19] on both AOSP and
EAdroid, and the results are shown in Table 2. It is necessary to note that only the tests
involving system call could be affected by EAdroid, the tests of memory, integer, float,
3d and 2d would not be affected by EAdroid. The tests of sdwrite and sdread perform
writes and reads of the SD card storage, measuring the data transfer rate. The test of
database I/O exercises the functionality of Android SQLite database. We expect some
small overhead from EAdroid due to the need of Smack security module to create and
fetch the extended attributes for file security labeling and due to the additional
permission checking performed by EAdroid. For most of the tests, the EAdroid shows
negligible overhead and the result of EAdroid is within one standard deviation of the
AOSP result.

We finished 100 runs of the Benchmark by Softweg benchmark [20] on both AOSP
and EAdroid, and the results are shown in Table 3. The memory, CPU and the graphics
scores would not be affected by EAndroid either. The write and read tests of filesystem
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measured the speed (M/sec) of writing and reading 1 M. The files create and delete tests
in Table 3 were a measure of the time (seconds) it took to create and delete 1000 empty
files. These create and delete tests can be viewed as the worst case overhead for
EAdroid since the overhead of creating and removing extended attribute is not
amortized over any real usage of the file. For most of the tests, the EAdroid result
shows negligible overhead and is within one standard deviation of the AOSP result.

Table 2. AnTuTu benchmarking comparison

Test AOSP EAdroid
Mean SD Mean SD

Total score 1189.8 103.25 1191.91 114.2
Memory 330.7 32.77 330.92 27.59
Integer 321.4 30.05 321.55 24.48
Float 70.36 8.73 70.71 10.25
2D 54.14 7.25 54.2 5.31
3D 34.6 1.28 34.22 1.19
SDread 52 2.95 51.62 4.16
SDwrite 197.3 9.33 196.81 11
Database 133 13.56 131.88 11.74

Table 3. Softweg benchmarking comparison

Test AOSP EAdroid
Mean SD Mean SD

Total memory 162.42 33.58 161.83 30.8
Copy memory 140.13 29.71 141.78 32.15
Total CPU 706.31 72.07 696.22 68.244
MFLOPS DP 5.99 0.536 5.88 0.72
MFLOPS SP 13.19 0.12 12.51 0.283
MWIPS DP 43.23 1.003 41.9 1.15
MWIPS SP 48.33 1.24 47.84 1.23
VAX MIPS DP 42.67 2.05 42.53 2.16
VAX MIPS SP 42.93 1.986 42.42 1.877
Graphics scores
Total score 131.39 4.28 130.92 4.57
Opacity 43.48 3.55 42.75 4.57
Transparent 39.96 4.87 40.26 4.92
Filesystem scores
Total score 112.438 16.5 111.33 19.24
Create files 3.186 0.13 3.57 0.34
Delete files 1.313 0.52 1.392 0.37
Read file 222.22 18.99 216.96 16.73
Write file 3.99 0.21 3.876 0.34
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Table 4 shows the result of overhead ratio comparison between EAdroid and SE
Android. We compare SE Android with EAdroid because they both use LSM security
module in their kernel level. To stress the key point, we only listed the tests that were
affected by EAdroid and SEAndroid. As we can see from the table, EAdroid, even with
additional security mechanism in framework layer, shows its advantages over SE
Android in overhead. In some tests like “SD read” and “Read file” the overhead ratio of
EAdroid is even higher. However, it is hard to provide a completely fair comparison,
since the tests of EAdroid and SEAndroid are executed on different devices and
different Android versions (in fact, SEAndroid was tested with a higher configuration
machine and a lower Android version), Therefore, we only use overhead ratio as
comparison index which can eliminate the differences above to some extent. The
overhead tests and comparison above show that the overhead introduced by EAdroid is
negligible and acceptable.

We will carry out power consumption test in future. For now, the Sensor-Hub chip
in devices like Samsung S4 and Apple iPhone 5s can effectively reduce the power
consumption of the sensors. The technology is believed to become widespread soon.

5 Related Work

The majority of research related to securing Android focused on security policy
extension and enforcement for Android. AppGuard [22] and XPrivacy [23] imple-
mented their policy enforcement on application layer and brought more flexibility in
permission mechanism. TaintDroid [5] tainted private data to detect leakage of users’
private information. TaintDroid modified both Binder and the Dalvik VM, but
extended only partially to native code. Quire [6] used provenance to track permissions
across application boundaries through the IPC call chain to prevent permission
escalation of privilege attacks. CREePE [7] allowed access to system services only in a
certain context at runtime. Similarly, Apex [8] used user-defined runtime rules to
regulate applications’ access to system services. AppFence [9] blocked imperious
applications’ behaviors that demand information unnecessary to perform their
advertised functionality, and covertly substitute shadow data in place. These researches

Table 4. Overhead ratio comparison

Test SEAndroid EAdroid

AnTuTu
SD read 0.052 % 0.73 %
SD write 0.26 % 0.248 %
Database 3.81 % 0.84 %
Softweg
Create files 15.79 % 12.05 %
Delete files 8.7 % 6.01 %
Read file 1.9 % 2.36 %
Write file 3.31 % 2.85 %
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together with the ones like Kirin [15], SAINT [16], Porscha [17] and IPC Inspection
[18] paid close attention to one layer of Android system, but didn’t take the ability of
the security mechanism into multi-layers, especially the kernel level, to protect the root,
which made them possible to be bypassed.

SEAndroid (Security-Enhanced Android) ported the mandatory access control
module SELinux from Linux to Android [10]. It can strengthen the Android operating
system’s access control of the App and establish the isolation similar to sandbox, which
ensure the independence between each App. Therefore, it can prevent the malicious
App’s attack to the system or other applications. SEAndroid is similar to the EAdroid
that both protect the Android system through the framework layer and the kernel layer.
However, compared with EAdroid, the TE model used by SEAndroid is too complex.
If users want to set the security rules for device with SEAndroid, they need to spend
a lot of energy to learn the specific configuration method and define protection rules.

6 Conclusion and Future Work

This paper proposed an environment adaptive security mechanism for Android plat-
form called EAdroid, which providing a simple way for users to customize their
security policies. EAdroid improves the framework layer of Android system and
integrated uses Smack security module of Linux. At the same time, the security rules of
the framework layer and kernel layer in Android system can adapt to the current
environment context. Series of tests show that EAdroid can efficiently protect the
security of user’s devices and privacy against malwares with small overhead of
performance.

In future, we will focus on providing a complete mechanism for the TTP to define,
update, and distribute the security rules. Under this mechanism, the security policy will
be defined by specific security administrator of the TTP, and sent through Internet or
text message to every device. We will also test the power consumption and extend the
set of application labels of EAdroid.
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Abstract. We propose an effective scheme for controlling usage of secure
signature creation devices (SSCD). With cryptographic means we assure
that an inspector can check whether an (ordered) list of signatures at
hand is the complete list of signatures created by the device. Our scheme
is devoted to some applications like automatic creation of invoices or con-
tract signing by a legal representative of a company.

The inspection procedure is probabilistic with no false-negatives and
low probability of false-positives. It requires extra private keys known
only by the inspector. So it cannot be executed by the holder of an
SSCD – this has to prevent testing integrity of the list after list manip-
ulations searching for a false-positive result.

Our solution works for a wide class of signatures based on Discrete
Logarithm Problem without any changes of the signature format.

We provide formal security proofs as well as discuss implementation
issues.

Keywords: Secure signature creation device (sscd) · Smart card · Qual-
ified signature · Controlled usage · Discrete Logarithm Problem · Diffie-
Hellman Problem · ElGamal signature · Schnorr signature · DSA ·
ECDSA

1 Introduction

The security concept of digital signatures (or advanced electronic signatures as
named by European Directive [8]) is based on three factors:

1. strength of an asymmetric cryptographic signature scheme,
2. security of the private key stored in a dedicated hardware unit, which is called

secure signature creation device (SSCD for short) in [8],
3. guarding physical access to the SSCD.

From the three factors the strongest one are cryptographic algorithms. There is
a lot of research devoted to these issues, despite that the cryptographic part does
not contribute the most significant risks for using digital signatures in practice.
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In turn, the security of SSCD is mainly in focus of R&D work of the hard-
ware manufacturers. Their approach is quite different: many technical details for
securing the chips are kept secret and we have to do with a kind of race between
the hardware manufacturers and the attackers. In order to be able to recognize
which device is suited (secure enough) for a particular application, Common
Criteria framework [6] has been introduced. However, a Common Criteria eval-
uation does not provide security guarantees but only testifies conformance with
certain development procedures that should support creating a secure product.
Nevertheless, in many cases the manufacturers provide just a declaration of con-
formance of their products with the rules imposed e.g. by [8], and are liable for
any design faults.

The third factor - protection of an SSCD against illegitimate use – is the
most critical issue. There is a tradeoff between the ease of use and the unit price
on one hand and security on the other hand. The dominant solution is to use
a secret PIN number to activate the device. However, the effectiveness of this
solution is limited:

– As SSCD devices with an integrated input channel are rare, typically the PIN
number is entered through a keyboard of a PC. So the PIN can be leaked.

– A third person may learn a PIN number by observing the owner of an SSCD
during activation of the SSCD. This is a major problem since a large number of
smart card users do not follow even fundamental rules of the PIN protection.

– Occasionally, some people provide own signature cards together with the PIN
to other people for doing some work on behalf of them.

Once a PIN is not secret anymore, the only defense is keeping control over
the device. However, this is not always possible. A typical case is a lunch time
attack : a secretary uses the SSCD left in the office of his or her boss to sign some
documents.

One approach to deal with these problems is to provide own input channel
for the SSCD. For example, smart cards with two buttons have been developed
and studied in the context of the German personal identity card (finally, this
solution has not been deployed). However this solves only the first problem.
Another approach is biometric identification. In this case the major problems
are costs, usability and high false acceptance/rejection rates.

Problem Statement. In this paper we do not attempt to provide new
techniques that could replace PIN protection. Instead we provide means of
monitoring usage of the SSCD devices. Our goal is to provide an effective pro-
cedure that would protect against illegitimate use of an SSCD.

Note that our goal is much broader than preventing problems arising from
insufficient protection via the PIN. In many application scenarios the adversary
is the SSCD owner himself. This may sound strange (as it makes no sense to steal
own money), however in many cases the SSCD is restricted for use in specific
situations and all signed documents must be available to some parties.

One example of this kind is using an SSCD by a representative of a legal
person for signing legally binding obligations. There are many legal rules that
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prohibit hiding documents of this kind. However, the real life is full of violations
of the law, just as in the case of ENRON, where the frauds would be prevented
if one could easily detect that some documents are missing in the official book-
keeping.

Another application case are all kinds of registries that provide reference
data, but where the entries are created and signed by a certain official. In this
case an SSCD of the official should be used exclusively in a strictly defined scope
and we have to make sure that all documents are indeed included in the registry.

Similar requirements apply for many procedures in the court and law enforce-
ment practice, where all steps of the procedure are strictly regulated and the
complete documentation has to be maintained.

Note that the traditional digital signatures framework does not guarantee
that:

– the holder of the SSCD enters all signed documents to the system,
– the signatures are created in the sequence indicated by the signing time

entered on the document.

In particular, the holder of the SSCD may replace an old document with a
new one.

Our solution is an inspection procedure that takes a list of signatures created
by a device within some time – allegedly a complete one – and checks whether
some signatures created by the device have been omitted.

1.1 Simple Solutions and Related Work

Counters. The first possible solution is to add an internal counter to an SSCD
and append the counter value to the text before signing. This approach has obvi-
ous advantages but also critical disadvantages. The first one is leaking how many
messages have been signed by the device to every recipient of a signature. This
is unacceptable in most business cases. The second problem is that introducing
such a field might be incompatible with the current legal framework. Namely,
[8] states that:

Secure signature-creation devices must not alter the data to be signed
or prevent such data from being presented to the signatory prior to the
signature process.

The third problem is that the smart card gets no document to be signed but its
hash value. So the counter value should be appended to the hash value of the
document. Then we would have to hash again before applying algebraic signing
operations as, in general, these operations should not be applied to plaintexts.

Another approach is to add an encrypted value of the counter. In this case
the information is hidden from unauthorized viewers. However, again there are
legal concerns. Moreover, in this case the problem is even more acute as the
SSCD adds an information field that cannot be inspected by the signatory.

On the other hand, there is an easy implementation in case of RSA-PSS
signatures created according to PKCS#1 standard [17]. Recall that the hash
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value of the document to be signed is augmented by a bit string (salt) that
might be set arbitrarily – e.g. it may contain the encrypted value of the counter.
What is more, this bit string is recoverable during the signature verification
process. Note that this approach does not require any change of the standard
and of the verification software. However, the solution is limited to the RSA-PSS
signatures.

Mediated Signatures. Mediated signatures [4] have been proposed for elim-
inating a single point of trust failure in the system of electronic signatures.
Creating a mediated signature requires cooperation of at least two holders of
corresponding secret keys. A single key does not even suffice to create a digital
proof that this key has been used: the public key of the signatory is useless for
this purpose. Elegant constructions for mediated signatures exist for RSA [4]
and Schnorr signatures [15].

The main advantage of the mediated signatures is that they provide effective
control means over SSCD usage, allowing for instance immediate blocking the
SSCD when the owner looses control over it or monitoring detects suspicious
activities. Their disadvantage is that some infrastructure is required and no
simple solution for signatures such as ECDSA is known.

Stamp and Extend. According to [14] the signatures are created and stored
in a form of a list with a hidden tree structure. If n signatures are created, then
simultaneously there are n commitments for the next n signatures to be created
by the device. The scheme enables to check whether a given list of n signatures is
the list of all first n signatures created by the device. If an attacker replaces one
of the signatures of the list with another signature that can be verified positively,
then the private signing key gets revealed. So the protection mechanism in [14]
is quite aggressive. While it is well suited for time-stamping (nobody would ruin
own business), in case of regular users instant invalidation of all signatures in
case of a forgery is not always welcome.

1.2 Design Objectives

The CTRL-Sign scheme designed in this paper has to provide the following
features:

– If the owner of an SSCD presents an incomplete list of signatures created
with it, then the entitled verifier can detect that some signatures have been
omitted.

– The entitled verifier should be able to recognize positions of missing signatures,
if there are any.

In order to get a solution easy to apply in practice, we impose the following
requirements:

– the signatures created with the scheme should be standard ones, so that no
adjustment of the verification process would be necessary,
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– the signed values may not contain additional fields such as serial numbers,
additional signatures, ciphertexts and so on,

– unless some secret keys are used, it should be infeasible to distinguish between
the SSCD devices with supervision mechanism from the regular SSCDs.

1.3 Some Applications

Let us describe a few application areas where the proposed inspection procedures
of CTRL-Sign might be of significant importance.

Electronic seals: the primary application field of electronic signatures is
authenticating documents created automatically in IT systems. (In this case
the term electronic seal is used (see [7]), but exactly the same technology can
be used as for electronic signatures.) For instance, an overwhelming major-
ity of invoices is created in the electronic form. Electronic seals may be used
to authenticate and protect their integrity. One of important problems is
that sometimes the invoices are deleted in order to hide some transactions
from the tax authorities. The SSCD devices implementing the mechanism
proposed provide an effective inspection mechanism for the tax authorities
against certain tax frauds.

Financial records: Progress in hardware design makes it possible to use asym-
metric cryptography for securing the financial transactions. In particular,
issuing signatures for transactions would be a great help against frauds.
However, the instrument holder could claim that the secret key installed by
a financial organization in the electronic authentication device has a copy
retained by the organization and that certain signatures have been created
with this key. The CTRL-Sign mechanism prevents undetected insertion of
new signatures in the list.

Controlling staff activity: if a corporation provides SSCD devices to own
staff members, then it might be necessary to check whether all signed doc-
uments are stored in the data system of the corporation and no documents
are created without awareness of the corporation.

2 Description of the CTRL-Sign Scheme

2.1 Setup

Algebraic Setup. Let G be an abelian group of prime order q, in which the
Discrete Logarithm Problem is hard. Let us fix an arbitrary generator g of G.
We use multiplicative notation for group G. Unless otherwise specified the oper-
ations are executed in the group G. If we are performing algebraic operations on
exponents of elements of G we assume silently that the operations are performed
modulo q.

We use independent hash functions Hash1, Hash2, Hash3, Hash4 and Hash5
with appropriate range following from the context. We assume that the hash
functions are strong in the cryptographic sense.
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System Actors and their Keys. There are the following actors in the sys-
tem: the Card Issuer, the signatories holding SSCDs, the Certification Authority
(CA), and the Inspection Authority (IA).

The following keys are associated with each of the actors:

Inspection Authority: the IA has a long period secret key kmaster, the secret
inspection key ins, and the public inspection key Ins. For a user U , the IA
determines the control key cU := Hash1(U, kmaster).

Card Issuer: for a user U , the Card Issuer obtains the keys cU and Ins from
the IA and installs them in the SSCD issued for U .

Signatories: the SSCD of a user U holds the preinstalled keys cU and Ins as
well as the private signature key xU created at random by the SSCD, and
the public key XU = gxU . (Note that the SSCD does not hold the private
inspection key ins).

Certification Authority: the CA has standard keys for issuing certificates
for the public keys of the users, just as in PKI built according to the X.509
framework.

The SSCD of a user U and the IA share the secret cU . It serves as a seed
for a PRNG, thereby SSCD of the user U and the IA share a string RANDU =
PRNG(cU ). The string RANDU is divided into d-bit substrings, where d is a
small integer (e.g. d = 4), say RANDU = ρ1Uρ2U . . .. The substring ρiU is a control
sequence for the ith signature created by the SSCD of the user U .

2.2 Creating a Signature

In our construction we may use any signature scheme based on the Discrete
Logarithm Problem, where one if the components included in the final signature
is gk for k chosen at random – as for ElGamal signatures. Alternatively, we may
apply a signature scheme where r = gk is not included in the final message but
can be derived from it. This is the case for DSA, ECDSA [1,11,13,16], Guillou-
Quisquater signatures [10]) and Schnorr signatures [18].

In order to fix our attention let recall the process of creating a Schnorr
signature for a message M :

1. choose k ∈ [1, q − 1] uniformly at random,
2. r := gk,
3. e := Hash(M, r),
4. s := (k − x · e)mod q.
5. output signature (e, s).

Recall that gsye = gkg−xegxe = gk = r, where y = gx is the public key corre-
sponding to x. Hence, as claimed, r can be easily recovered from the signature.

The general approach of CTRL-Sign is as follows:

1. generate k at random,
2. check the hidden footprint of k; if it is incorrect return to step 1,
3. proceed signing steps of the basic procedure Sign for the parameter k chosen.
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First we present the construction of the hidden footprints borrowed from [20]:

Generating fU (k) - a hidden footprint for k and user U .
input: Ins, k
f := Hash3(Insk);
output d least significant bits of f

For the inspection procedure carried out by Inspection Authority there is an
alternative way for computing fU (k) (this is essential, since k is an ephemeral
value existing only on the SSCD):

Alternative generation of fU (k).
input: ins, r = gk

f := Hash3(rins);
output d least significant bits of f

Note that the both methods of computing the footprint are equivalent, as

rins = gk·ins = (gins)k = Insk .

Abusing notation we also write fU (r) instead of fU (k). Also, given a signature
S = (r, s), with r = gk, we write fU (S) instead of fU (k).

Creating the ith signature by SSCD of user U for message M .
input: a message M , signing key xU , RANDU

“choose k at random so that fU (k) = ρiU”
proceed with the signing algorithm Sign with

the first signature component r = gk

Let us explain what does it mean “choose k at random so that fU (k) = ρiU”. We
apply the following procedure:

Choosing k at random so that fU (k) = ρiU .
input: i, cU , d
compute ρiU as the ith d-bit block of PRNG(cU );
choose k at random;
R := Insk;
while Hash3(R) �= ρiU do

k =: k + 1;
R := R · Ins

Signature verification.
We apply the standard verification procedure of Sign.

2.3 Inspection Procedure of CTRL-Sign

Below we describe an inspection of a signature list created by a user.

1. User U presents a list S1, S2, . . . , St of allegedly all signatures created with
his SSCD, according to the order in which they have been created.
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2. Apart from the regular verification of each signature Si, the Inspection
Authority checks all footprints. Namely, for each signature Sj = (rj , sj),
j ≤ t, the IA computes the footprint ωj := fU (rj).

3. If (ω1, ω2, . . . , ωt) = (ρ1U , ρ2U , . . . , ρtU ), then inspection result is positive.

For the extended inspection procedure, the user has to create some number of
additional signatures for void messages and append them to the list S1,S2, . . . ,
St before the IA starts the inspection.

2.4 Inspection Result in Case of Manipulations

Below we consider diverse cases of manipulations of the list of signatures. We
assume that the SSCD is secure so we do not discuss here what happens if the
adversary can manipulate or clone the SSCD.

The general observation is the following: if the original list is S1, . . . , St while
the signatory presents for inspection a list S′

1, . . . , S
′
w of valid signatures, then

the fraud remains undetected with probability approximately 2−dN , where N
is the number of indexes j ≤ w such that Sj �= S′

j . This follows from the fact
that it is infeasible to guess the footprint with probability non-negligibly higher
than 2−d (see Sect. 4), while on the other hand the probability that an SSCD
ever creates two signatures with the same component r = gk is negligible and
therefore we may assume that the signatory never gets two signatures that he
knows that they have the same fingerprint.

Below we discuss some chosen manipulation scenarios.

Omitting a Signature: a user U takes the list of signatures S1, S2, . . . , St

created by his SSCD and removes at least one of signatures before the inspection.
Assume that the omitted signatures are Sj1 , . . . , Sjb

, where j1 < j2 < . . . <
jb < t. Assume that the inspection procedure yields the positive result for the
reduced list of signatures. Hence in particular fU (Sj1+i) = ρj1+i−1

U for j1+i < j2.
On the other hand, fU (Sj1+i) = ρj1+i

U due to the construction. So ρj1U = ρj1+1
U =

. . . = ρj2−1
U .

Analogously, we get

ρj2−1
U = ρj2+1

U = ρj2+3
U = . . . = ρj2+1+2a2

U

where a2 is the biggest j2 + 1 + 2a2 < j3, and

ρj2U = ρj2+2
U = ρj2+4

U = . . . = ρ
j2+2a′

2
U

where a′
2 is the biggest index such that j2 + 2a′

2 < j3. Proceeding in this way,
for each ρjU , j > j1, j �= j2, j3, . . . , jb we may assign one equality with some ρj

′
U ,

where j′ < j. So in total there are t − j1 − b + 1 equations to be satisfied.
We see that an attack of this kind requires a very careful choice of the sig-

natures removed. However, the user does not see the footprints, so it is hard to
make decisions which signatures can be removed.
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As we see, the only safe choice for the signatory is to truncate the list of
signatures. Then of course no irregularities will be detected. However, then the
extended inspection procedure helps a lot and we are back in the previous sce-
nario where omissions occur not at the end of the list. If m extra signatures
are added, then we have at least m equations on d-bit values to be satisfied.
Probability of an undetected fraud is then 2−dm. So for d = 4 and m = 15 we
get probability 2−60, which is much better than we need.

Changing the Order of the Signatures: Assume that an adversary permutes
the signatures using a permutation π. As π is a superposition of disjoint cycles,
the attack succeeds if in each cycle the values of the footprints are fixed. So if
the attacker fails to guess a footprint in at least one position, then the attack
becomes detected.

Adding Forged Signatures: adding signatures without removing the old ones
causes the same problems for the adversary as removing signatures and requires
fulfilling quite many equations between the footprints. The analysis is similar
as in the first case.

3 Security of CTRL-Sign Scheme

The proposed scheme CTRL-Sign changes substantially the signature creation
process, since the choice of the parameter k is not fully random, since the foot-
print created with k has to satisfy certain conditions. Potentially, this may con-
vert a secure signature scheme into an insecure one. We show that this is not
the case. For the proof we apply the security games framework from [19].

3.1 Key Privacy

We consider the following attack models for deriving the private signing key xU

of the user U . The attacker has access to the following data:

Model 1: a list of signatures S1, . . . , St, the inspection key ins and RANDU ,
Model 2: a list of signatures S1, . . . , St, the inspection key ins and cU .

Note that in real life the adversaries have typically less data, e.g. only the list
S1, . . . , St. Note also that there is a subtle difference between the Model 1 and
the Model 2: in the second case the signatures are created in some particular
way and having a list of signatures created in a regular way we usually cannot
find a matching cU .

Model 1. First we define a game describing an attack for breaking the signing
key:

Game 0
choose xU , ins at random
choose cU at random
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RANDU := PRNG(cU )
create S1, . . . , St with xU , ins, RANDU

b := F (xU )
b̄ := A(S1, . . . , St,RANDU , ins)

The adversary wins, if b̄ = b, i.e. if the property F of xU has been correctly
derived. If Pr(F (xU ) = 1) = p, then in case of a random answer b̄ the probability
to win is 2p(1 − p). Hence the advantage of the adversary may be defined as
|Pr(b̄ = b) − 2p(1 − p)|.

Let us transform the game to the following form:

Game 1
choose xU , ins at random
choose cU at random
choose RANDU at random RANDU := PRNG(cU )
create S1, . . . , St with xU , ins, RANDU

b := F (xU )
b̄ := A(S1, . . . , St,RANDU , ins)

If there is any no-negligible difference between advantages for the Game 0
and the Game 1, then we can easily build a distinguisher that for a candidate
string C decides with a fairly high probability whether C has been created at
random, or it has been computed as C := PRNG(c) for some c chosen at random.

Game 2
choose xU , ins at random
choose RANDU at random
create S1, . . . , St with xU , ins, RANDU

reconstruct RANDU from the signatures S1, . . . , St and ins according to
the inspection procedure

b := F (xU )
b̄ := A(S1, . . . , St,RANDU , ins)

Note that the Game 2 creates RANDU with exactly the same probability
distribution as the Game 1. Therefore the advantage of the adversary does not
change.

Since in the Game 2 the random key ins does not influence the signature
creation and is used to compute RANDU , we may remove it from the game and
ask the adversary to create them during the procedure A. Thereby we get the
following game with exactly the same advantage:

Game 3
choose xU at random, choose ins at random
create S1, . . . , St with xU

reconstruct RANDU from the signatures S1, . . . , St and ins according to
the inspection procedure

b := F (xU )
b̄ := A(S1, . . . , St ,RANDU , ins )

Note that the Game 3 describes the security of the signing key in the regular
model.
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Theorem 1. If the adversary has a non-negligible chance to break the signing
key in the Model 1 for CTRL-Sign, then the same applies for the underlying
signature scheme, provided that the PRNG creates strings indistinguishable from
the random strings.

Model 2. We show that given a set of signatures S1, . . . , St we can create a
case for the Model 2. However, during the reduction the number of signatures
decreases. Let us describe the reduction:

choose ins at random
choose cU at random
RANDU := PRNG(cU ), put RANDU = (ρ1U , ρ2U , . . .),
choose a sequence v1 < v2 < . . . < vm ≤ t such that ρjU equals the last

d bits of Hash3(rinsvj
) for j ≤ m, where Svj

= (rvj
, svj

)
For finding v1, v2, . . . , vm we apply the greedy procedure. After finding vj−1

we look for the smallest l > vj−1 such that the last d bits of Hash3(rinsl ) are
equal to ρjU .

The number m is a random variable. It is easy to see that the greedy proce-
dure leads to the biggest possible m. The value of m can be estimated as follows:
Consider j < m. Let χj denote vj − vj−1. We may assume that the process of
generating RANDU is a lazy random process, that is, after finding vj−1 we gen-
erate ρjU at random. Then we generate the next signatures S = (r, . . .) with r
generated at random. The process of finding a match behaves in the same way
for each value of ρjU , so we may assume without loss of generality that each ρjU
is an all-zero string. Thereby, the probability distribution of m is the same as
for the number of zeroes in a string of length t, where the entries are chosen at
random from the set 0, 1, . . . , 2d − 1. The expected number of zeroes in such a
string equals t/2d, and according to the Chernoff Bounds

Pr[m <
t

2d
(1 − δ)] < e− δ2t

2d+1 .

Theorem 2. The advantage of an adversary attacking the basic signature scheme
for a list of signatures of length t is not lower then the advantage of an adversary
attacking in Model 2 for a list of signatures of length m where m is a random vari-
able denoting the number of zeroes in a random string of length t consisting of
elements chosen uniformly at random from the set {0, 1, . . . , 2d − 1}.

3.2 Forging a Signature

As the process of signature creation is based on the regular signature creation
(with some signatures dropped) forging a signature is not easier than in the
regular case.
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4 Secrecy of Footprints – an Enhanced CTRL-Sign
Scheme

The aim of the construction is to make a SSCD implementing CTRL-Sign indis-
tinguishable from a regular SSCD under the assumption that the SSCD is a
black box device. This implies in particular that no guess about footprint values
can be obtained.

Intuitively, a signature S = (r, s), where r = gk, reveals no information about
Insk. Computing any information about Insk is closely related to the Decisional
Diffie-Hellman Problem: one could take an instance (g, ga,gb, z) of the Decisional
Diffie-Hellman Problem, assign r = ga, Ins = gb, derive some information about
Insk = gab, and compare it with the same information related to z. However, this
argument is not formally correct, since the adversary is also given the second
component s of the signature S, which depends on the private signing key xU and
the exponent k. So in the reduction argument it would be necessary to construct
the signature component s. However, the reduction cannot use a signing key
xU chosen by the reduction algorithm, as it would enable to compute k from s.
On the other hand, if xU is unknown for the reduction algorithm, then such a
construction would create electronic signatures without the secret key xU , which
is infeasible.

The problem that we are faced with is whether it is possible to derive any
information about yk, given r = gk and a signature, say s = k +H(M, r) ·x (the
Schnorr signature), and the public key gx. The parameter y is here random and
independent from gx – the public verification key for the signatures. It seems
that a Schnorr signature does not enable to derive any information about yk.
However, in order to be on the safe side we present below a slight modification
of CTRL-Sign scheme for which there is a formal indistinguishability argument.

Note that a somewhat related problem arises in [2], where YA = gyA from the
Diffie-Hellman key exchange is reused for creating a Schnorr signature authen-
ticating the smart card executing the protocol. The workaround used in [2] for
security of the session key is that it is derived as a hash of the key obtained via
the Diffie-Hellman algorithm. Thereby, one can apply Random Oracle Model
arguments and hide the problem via application of this model.

Main Idea. The main concern is the second component of the signature. To
make the hidden footprint completely independent from the second component
of the signature we use a decomposition trick. Namely, for the ith signature we
use k = k1 + k

(i)
2 , where k

(i)
2 is derived from a key shared by the SSCD and the

IA; the key k1 is chosen at random. On the other hand, for the footprint the
exponent k1 is used. Note that Inspection Authority will be able to derive gk1 ,
since gk1 = r/gk

(i)
2 .

Enhanced CTRL-Sign Scheme. There is another key bU shared by the
Inspection Authority and a SSCD of user U . For instance, we may set bU =
Hash4(U, kmaster).
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Creation of the ith signature by user U with Enhanced CTRL-Sign
input: i, message M , secret keys bU , cU , xU , public key Ins
recompute RANDU := PRNG(cU ) and extract ρiU from RANDU

k
(i)
2 := Hash5(bU , i)

choose k1 at random
z := Insk1

while the last d bits of ρiU and Hash3(z) are not the same do
k1 =: k1 + 1,
z := z · Ins

k := k1 + k
(i)
2

r := gk

generate a signature S = (r, s) for the message M using k and r

For the ith signature S = (r, s) of user U the inspection procedure computes
the footprint value as d last bits of

Hash3(rins/InsHash5(bU ,i)) .

Sketch of the Indistinguishability Proof. Again we consider a sequence of
games, where the starting game describes the enhanced CTRL-Sign scheme. The
adversary is given Ins and the whole string RANDU – as it can facilitate the
attack trying to recover the footprints.

Game 0 this is the same as the original procedure for creating the ith signature
by Enhanced CTRL-Sign, appended with the extra step representing information
extraction by the adversary:

out := A(M,S, i,XU , ins,RANDU )
Only the key bU is not given to the adversary.

Now we use the fact that k
(i)
2 is created by a kind of pseudorandom number

generator. Therefore the output of the Game 0 must be indistinguishable from
the output of the following game:

Game 1
input: i, message M , secret keys bU , cU , xU , public key Ins

recompute RANDU := PRNG(cU ) and extract ρiU from RANDU

choose k
(i)
2 at random k

(i)
2 := Hash5(bU , i)

choose k1 at random
z := Insk1

while the last d bits of ρiU and Hash3(z) are not the same do
k1 =: k1 + 1,
z := z · Ins

k := k1 + k
(i)
2

r := gk

generate a signature S = (r, s) for the message M using k and r
out := A(M,S, i,XU , ins,RANDU )
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Now let us consider the probability distribution of the exponents k gener-
ated by the Game 1. First observe that the probability distribution of k1 is
non-uniform and depends very much on ρiU . However, k

(i)
2 has the uniform dis-

tribution and therefore k = k1 + k
(i)
2 has the uniform probability distribution as

well. So we conclude that from the point of view of the adversary we may replace
the complicated method of generating k by the following simple algorithm:

Game 2
input: i, message M , secret keys bU , cU , xU , public key Ins

recompute RANDU := PRNG(cU ) and extract ρiU from RANDU

choose k
(i)
2 at random

choose k1 at random
z := Insk1

while the last d bits of ρiU and Hash3(z) are not the same do
k1 =: k1 + 1,
z := z · Ins

choose k at random k := k1 + k
(i)
2

r := gk

generate a signature S = (r, s) for the message M using k and r
out := A(M,S, i,XU , ins,RANDU )

Now observe that the Game 2 describes the adversary holding an SSCD
that implements electronic signatures in a regular way, without the inspection
features and adjusting the exponents k. So we may conclude that the output
out is indistinguishable between the cases of a regular SSCD and the case of an
enhanced CTRL-Sign SSCD.

The above proof can be easily extended to the case that the adversary is
given multiple signatures and may ask a device to sign messages of his choice.
Thereby we get the following theorem:

Theorem 3. Assume that Hash4(b, i) is a PRNG with seed b which produces
outputs indistinguishable from the random numbers in the range of the order of
group G used for creating electronic signatures. Then it is infeasible to distinguish
an SSCD implementing the enhanced CTRL-Sign scheme from the regular SSCD
implementing the same signature scheme, given all public values (the signatures
and the public key XU ) as well as the secret inspection parameter ins.

Corollary 1. Assume that the assumptions of Theorem 3 hold. Then given a list
of signatures created by the enhanced CTRL-Sign SSCD, it is infeasible to derive
any non-negligible amount of information about the footprints for the signatures.

Proof. Assume conversely that there is an algorithm A that can derive such
information. Then we use A to construct an adversary A′ that contradicts the
claim of Theorem 3. Indeed, given RANDU and a sequence of signatures, we
can present the signatures to A, get the output from A and compare the data
obtained for compliance with RANDU . If the data do not fit to each other,
then A′ says that the SSCD is a regular device. Otherwise A′ claims that
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SSCD implements enhanced CTRL-Sign scheme. Obviously, if the information
obtained by A is non-negligible, then A′ is a distinguisher with a non-negligible
advantage. ��

5 Chosen Implementation Issues

Since in quite many cases signatures are created by cryptographic smart cards,
we have to consider additional computational effort due to CTRL-Sign imple-
mentation on these weak devices. Note that the computational complexity is not
a problem for the inspection procedure, as presumably it will be executed by a
server. For generating a signature the extra effort is:

– generating the current footprint ρiU ,
– computing R := Insk for the exponent k chosen at random,
– some number of iterations of the following loop:

while Hash3(R) �= ρiU do
k =: k + 1;
R := R · Ins

Note that it is not necessary to compute gk at each iteration of the while loop.
We either compute it once the final value of k has been found, or compute r := gk

and R := Insk together before starting the while loop (we take advantage of
the fact that one can save time when computing these two powers at once), and
then updating r := r · g at each iteration of the loop.

An important question is how many executions of the while loop are neces-
sary in order to find a k yielding the correct value. If we treat Hash3 according
to the Random Oracle Model, then the probability that in N = 2d ·h executions
of the loop we do not get an appropriate k equals

(1 − 1
2d

)N ≈ 1
eh

.

For d = 4 and 160 loop executions the probability of not finding the proper k
is about 0.00003. The question is how long it takes to execute this number of
loops.

The best way to check the efficiency of CTRL-Sign would be to implement it
directly on a smart card using an open architecture such as Java Card with the
efficient elliptic curve arithmetic. However, the problem is that the cryptographic
functions are implemented in a secure way and there is no access to modify their
code or get access to intermediate values such as the exponent k of r = gk.
Moreover, there is no direct way of adding two points of the elliptic curve.
Implementing such operations on application layer is usually too slow and a good
solution is to find a workaround – an implementation using hardware supported
operations (see e.g. [3]). However, an implementation of CTRL-Sign has to use
point addition in the protected section of the card for the sheer reason that k
must not leave this section (otherwise the signing key might be exposed). So a
reasonable implementation must use the native code in the protected section.
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As there is no public data on the execution time of all low level primitives we
may derive some data indirectly. We have tested Gemalto Java Cards equipped
with Infineon and NXP processors. Example results are presented in Table 1.

Table 1. Some experimental results on Gemalto Java cards and 256-bit elliptic curve

Operation MultiApp ID Dual Citizen MultiApp ID

144 K CC v2.0 (Infineon) 144 KECC

v2.1 (NXP)

Scalar multiplication 186 ms 104 ms

ECDSA signature with SHA1 191 ms 111 ms

ECDSA signature with SHA256 194 ms 112 ms

Verification of ECDSA with SHA1 140 ms 112 ms

Verification of ECDSA with SHA256 141 ms 115 ms

SHA-1 computation 4 ms 4 ms

SHA-256 computation 8.6 ms 6.4 ms

One can see that computing the hash functions in the while loop is not very
costly concerning the execution time. The question is how long it take to add
points of an elliptic curve.

The longer computation times for a signature creation than for a signature
verification may follow from countermeasures against side channel time analysis.
This indicates that for the signature creation the Montgomery ladder algorithm
might have been used. In this case the computation consists of add operations
and double operations, and the number of these operations is logarithmic in the
scalar. This in turn would suggest that the addition of elliptic curve points takes
a few milliseconds on the cards inspected. Thereby, the whole execution would
take about half a second at average, and less than 1.5 s with probability 0.99997.
Of course, due to time analysis attacks, a fixed number of iterations of the loop
should be executed. If no appropriate k is found in this time, then the card
should restart with a fresh k.

6 Conclusions and Future Work

CTRL-Sign has to be implemented in the protected areas of a smart card. Today,
the smart card manufacturers give no access to these areas for the third parties,
so an implementation attempt would be technically difficult and would violate
intellectual property rights.

Particularly interesting would be choosing the best implementation of CTRL-
Sign against time analysis. However this depends very much on the card specific
data.

Finally, let us note that similar constructions are possible for some other
schemes, like for instance Feige-Fiat-Shamir [9] and Nyberg-Rueppel [12] schemes.
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Thereby, we see that with an exception for RSA all algorithms recommended by
German authorities for practical use (see the list [5]) admit control mechanisms
proposed in this paper.
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Abstract. MIFARE Classic is the world’s most widely deployed RFID
(radio-frequency identification) technology. It was claimed to be crypto-
graphically protected by the proprietaryCrypto-1 streamcipher.However,
it proved inadequate after weaknesses in the design and implementation of
Crypto-1 and MIFARE Classic started surfacing since late 2007
[7,8,12–17]. Some operators of MIFARE Classic-based systems reacted by
upgrading to more secure alternatives such as MIFARE DESFire. How-
ever, many (especially in Asia) opted to “patch” MIFARE Classic instead.
Their risk analysis might have gone as follows: “The most serious threat
comes from efficient card-only attacks, where the attacker only needs an
off-the-shelf reader and a PC to tamper a target tag. All efficient card-only
attacks depend on certain implementation flaws. Ergo, if we just fix these
flaws, we can stop the most serious attacks without an expensive infrastruc-
ture upgrade.” One such prominent case is “EasyCard 2.0,” today accepted
in Taiwan as a means of electronic payment not only in public transporta-
tion but also in convenient stores, drug stores, eateries, cafes, supermar-
kets, book stores, movie theaters, etc. Obviously, the whole “patching”
approach is questionable becauseCrypto-1 is fundamentally aweak cipher.
In support of the proposition, we present a new card-only attack based on
state-of-the-art algebraic differential cryptanalytic techniques [1,2]. Still
using the same cheap reader as previous attacks, it takes 2–15 min of com-
putation on a PC to recover a secret key of EasyCard 2.0 after 10–20 h of
data collection. We hope the new attack makes our point sufficiently clear,
and we urge that all MIFARE-Classic operators with important transac-
tions such as electronic payment upgrade their systems to the more secure
alternatives soon.

Keywords: RFID security · MIFARE Classic · Card-only attack · Alge-
braic cryptanalysis

1 Introduction

MIFARE Classic, a brand owned by the NXP Semiconductors, is the most
widely used RFID technology in the world today, with billions of chips sold
c© Springer International Publishing Switzerland 2014
D. Lin et al. (Eds.): Inscrypt 2013, LNCS 8567, pp. 150–164, 2014.
DOI: 10.1007/978-3-319-12087-4 10
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worldwide. It is used in many public-transportation ticketing systems in, e.g.,
Beijing, Chongqing, Guangzhou, Boston, the Netherlands, London, Seoul, Taipei,
etc. In recent years, it has even found its way into electronic payment systems
in several Asian countries including China and Taiwan.

The proprietary Crypto-1 stream cipher is designed to provide cryptographic
protection to MIFARE Classic. NXP Semiconductors has never made public the
detailed algorithm of Crypto-1. Nevertheless, starting from late 2007 in a series
of papers, the specifications and several weaknesses of the cipher have been
found via reverse engineering and cryptanalysis [7,8,12,13,15–17]. As Courtois
et al. concluded: “The security of this cipher is therefore close to zero” [8]. Users
of MIFARE Classic around the world responded differently to this incident.
Some kept silent, while others promptly announced plans of replacing MIFARE
Classic—unfortunately not always with more secure technologies.

In this paper, we shall investigate in detail one such replacement being
deployed in Taipei, an early adopter and aggressive user of MIFARE Classic.
Branded under the name “EasyCard,” more than 35 million cards have been
issued in Taipei since the official release in 2002, with more than 4.6 million
transactions per day in 2012. Starting from 2010, the card is also accepted as
a means of electronic payment by almost all convenient store chains, as well
as drug stores, eateries, cafes, supermarkets, book stores, movie theaters, etc.
Similar use of MIFARE Classic is reported in several cities in China including
Beijing, Chongqing, and Guangzhou.

In a nutshell, not only does Crypto-1 use way too short a key (48 bits)
by today’s standards, its cipher structure also allows very easy recovery of its
internal state (and hence the secret key) if the attacker learns a small number
of contiguous keystream bits [12]. This allows a sniffer to recover the secret key
if it is placed in proximity when a pair of legitimate reader and tag are in a
transaction.

In addition, there are two serious implementation flaws which also cause
weaknesses: (i) parity bits are computed over plaintext and then encrypted ; (ii) the
32-bit tag nonces used in the authentication satisfy a degree-16 linear recur-
rence relation and can be controlled by appropriately timing the authentication
attempts. Furthermore, there is a convenient way for the attacker to extract infor-
mation on keystream bits from (i), as a tag would respond differently depending
on whether the parity bits are correct or not. Together, they allow extremely
efficient attacks even when the attacker only has access to the tag [13].

Compared with sniffer-based attacks, these efficient card-only attacks are
arguably much more serious because of the low entry barriers. All the attacker
needs is a PC and a cheap, off-the-shelf reader, so any ordinary person can
launch such an attack in private by downloading the appropriate software from
the Internet.

In late 2012, the EasyCard Corporation rolled out “EasyCard 2.0,” a dual-
interface smart card that is compatible with existing EasyCard readers, yet with
all implementation flaws fixed. The tag nonces seem random, both unpredictable
and uncontrollable, and the tag responses are indistinguishable whether the par-
ities sent by the reader are correct or not. This renders all existing efficient
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card-only attacks [7,8,12,13,15] ineffective, as we have verified through exper-
iments. This does not stop, of course, brute-force attacks, which are arguably
less threatening because it takes years of computation on an ordinary PC. The
attacker would need to have access to expensive supercomputers, e.g., GPU or
FPGA clusters, in order to recover the keys within a reasonably short amount
of time [5]. As a result, the EasyCard Corporation seems confident that Easy-
Card 2.0 can be “reasonably secure,” as the computational power required by
brute-force attacks is way beyond the reach of an ordinary person.

In this paper, we will show that such a sense of security is false. Namely, we
will present a new card-only attack based on state-of-the-art algebraic differential
cryptanalytic techniques [1]. The attack is highly practical: it uses the same
cheap reader as previous attacks [7,8,12,13,15] and takes 2–15 min on a PC
to recover the secret key of EasyCard 2.0 or other similar implementations of
MIFARE Classic. The extra price the attacker needs to pay for the new attack is
a slightly longer time for data collection, typically 10–20 h. We note that this is
not atypically long for differential attacks and still makes the new attack a serious
threat because the data collection can be done by the attacker in private without
needing access to a legitimate reader. Overall, this is a significant improvement
over the brute-force attacks, which would take about 4 years on the same PC.

The rest of this paper is organized as follows. In Sect. 2, we will first give
some background information on the cipher itself and the cryptanalytic tech-
niques we have used to attack it. We will then present our new attack in Sect. 3
and experiment results in Sect. 4. Finally, we will discuss the implications and
conclude this paper in Sect. 5.

2 Background and Related Work

2.1 Crypto-1 and the MIFARE Classic Authentication Protocol

Crypto-1 is a stream cipher used to provide cryptographic protection to MIFARE
Classic tags and contactless smart cards. For more than a decade, its design
was kept secret by NXP, along with the rest of MIFARE Classic. After the details
of MIFARE Classic was reverse-engineered in 2007 [12,16,17], many weaknesses
have been discovered, and with them many attacks. These attacks vary greatly
in efficacy. The first few key-recovery attacks exploit the weaknesses of the cipher
and gather the required information either by direct communication with a legit-
imate reader or by eavesdropping a communication session. Although some sys-
tem vendors argue even today that these attacks are impractical, the cipher itself
was by then considered cryptographically broken.

A few months later, better, card-only attacks were published [13]. These
exploit several properties in the authentication protocol of MIFARE Classic as
well as flaws in generating tag nonces.

For the sake of completeness, we include here a brief description of Crypto-1
and its use in the authentication protocol of MIFARE Classic. Crypto-1 uses a
48-bit linear feedback shift register (LFSR) with nonlinear output filter [12]. The
feedback function of the LFSR is F (s0, s1, . . . , s47) := s0 ⊕ s5 ⊕ s9 ⊕ s10 ⊕ s12 ⊕
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Fig. 1. The structure of the Crypto-1 stream cipher

s14⊕s15⊕s17 ⊕s19 ⊕s24⊕s25 ⊕s27⊕s29 ⊕s35⊕s39 ⊕s41⊕s42 ⊕s43. With every
tick of the clock, 20 bits from the LFSR are fed into the function f to generate
one new bit of the keystream. Then the LFSR shifts one bit to the left, and the
new rightmost bit is filled by the output of F—or, if the operational phase calls
for inputs, F XORed with an input bit. F is primitive: the LFSR has a period of
248 − 1, the maximum possible.

The function f or output filter consists of two layers of nonlinear functions.
The first layer is a mixed combination of two 4-input nonlinear functions fa and
fb, and the second layer is a 5-input function fc. Here, fa = 0x2c79, fb = 0x6617,
fc = 0x7907287b in “table form” (collating the output bits as the input goes
lexicographically over its range), and f can then be expressed as

f(s0, . . . , s47) := fc(fa(s9, s11, s13, s15),
fb(s17, s19, s21, s23), fb(s25, s27, s29, s31),
fa(s33, s35, s37, s39), fb(s41, s43, s45, s47)). (1)

Note that each has an equal number of 0 and 1 bits and hence outputs 0 or 1 each
with probability 1/2 if input bits are independently and uniformly distributed
over F2 [13].

On being powered up by the reader’s electromagnetic field, the tag sends its
unique identifier uid to the reader to start the anti-collision phase. The reader
may then request to authenticate a specific block. On receiving the request,
the tag loads the secret key for the block as the initial state of the cipher and
sends a randomly chosen challenge nonce nT to the reader. Meanwhile, nT ⊕ uid
is shifted into the LFSR. All subsequent communication is encrypted with the
keystream, and we will use the notation {X} to represent the ciphertext of X,
i.e., X ⊕ keystream. Next, the reader picks its challenge nR, which will also be
shifted into the LFSR, and sends {nR} followed by the answer {aR} to the tag’s
challenge. Finally, the tag replies with its answer {aT } to conclude the authenti-
cation procedure (see Fig. 2). If the tag and the reader used the same secret key
for the initial state of their ciphers, this authentication procedure should bring
the ciphers on either side to the same internal state, and the two keystreams
generated by both ends will be henceforth in synchronization.

2.2 Existing Card-Only Attacks Against MIFARE Classic

The best known attacks have been summarized by Garcia et al. [13], which we
will recapitulate here for the sake of completeness. The card-only attacks mainly
exploited the following weaknesses.
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nT

{nR}{aR}
{aT }

uid

auth(block)

Fig. 2. The authentication protocol in MIFARE Classic

1. The communication of MIFARE Classic follows the ISO 14443-A standard,
which requires that a parity bit be sent after every 8 bits of transmission.
However, in MIFARE Classic, these parity bits are computed over the plain-
text, and the keystream bit used to encrypt the parity bits is reused to encrypt
the next bit of plaintext. Furthermore, during authentication, the tag would
not reply anything if the received messages have incorrect parity, i.e., the
tag checks the authenticity of the reader’s answer only if the parity bits are
correct.

2. If all parity bits are correct but the encrypted answer {aR} to the tag’s nonce
cannot be correctly verified, the tag responds with an encrypted 4-bit NACK
code. Since the NACK code is fixed, this leaks 4 keystream bits.

3. The 32-bit tag nonce is actually generated by a 16-bit LFSR that runs in
a deterministic cycle after it powers up, i.e., timing is used as the source
of randomness to the internal random number generator (RNG). Therefore,
controlling or measuring when the reader sends every authentication request
basically gives us control or a very good guess to the next tag nonce.

4. When a reader is already communicating with a tag (i.e., having authenticated
to certain sector), the protocol of a subsequent authentication for a new sector
differs slightly from the initial one in that the tag nonce will be encrypted by
the new sector key before transmitted to the reader. Since the first tag nonce
was sent in plaintext, and the timing between two authentication attempts
is known, the attacker can guess the second tag nonce and recover 32 bits of
keystream with high accuracy.

Taking advantage of the weakness in the parity bits, the attacker can ask to
authenticate for a sector of the tag at hand and answer the tag’s challenge with
random {nR} and {aR} (totally 8 bytes) accompanied with 8 random parity bits.
On average, one out of 256 trials will the attacker receive the encrypted NACK
code from the tag. Each such trace reveals 12 bits of information (8 from parity
bits and 4 from NACK code) on the secret key. In practice, six traces are enough
for the offline brute-force check of the secret key. It takes 6 ·256 = 1536 trials on
average to gather these traces and can be accomplished within a minute. The
offline part of this attack is to check which key out of the 248 possible keys gener-
ates all “correct” parity and NACK code bits in these traces, and the computing
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time depends on the implementation realized by the attacker. Pessimistically,
the run-time of checking on a powerful FPGA cluster like COPACOBANA is
around half an hour.

Two other attacks try to trade online communication for the offline com-
puting time using the weakness that tag nonces nT can be controlled precisely
by timing the authentication requests. The attacker may substantially reduce
offline search space by fixing either tag or reader nonce while varying the other,
and look for specific properties.

In the second card-only attack [13], the tag nonce nT is fixed. The attacker
searches for a reader nonce nR such that flipping the last bit in each byte of
nR also flips the following encrypted parity bit, which averages around 28500
authentication attempts or 15 min. Such an nR let us cut approximately 15
bits from the offline search space, enabling a standard desktop to finish the
computation in around 1 min.

For the third attack [13], the attacker fixes response of the reader to {nR} =
0 = {aR} = 0, and searches for an nT such that the tag responds with the desired
encrypted NACK code. For example, it might be desired that the keystream bits
are all zero, which means that the ciphertext would be identical to the plaintext.
Such search takes 4096 attempts on average since we need 12 bits (8 parity
plus 4 keystream bits) to be exactly zero. The direct offline search in a huge
precomputed table (with around 236 entries) of the cipher states that could lead
to such pattern may take about one day. However, with some further attempts
to find the parity bits that correspond to the same nT but different nR and aR

(e.g., {nR} = {aR} = 0xffffffff), one can split the table into 4096 parts. This
not only makes it easier to store and read the table but also speeds up the offline
search significantly.

A fourth attack [13] tries to derive from a known sector key 32 keystream bits
generated by another unknown sector key. Because Crypto-1 is structured such
that the internal state can be separated into odd- and even-numbered bits, this
allows us to further reduce the search space in exploiting the parity-bit weakness.
As a result, the attacker can determine the second sector key in less than a second
of computation time after about three nested authentication attempts.

Impact and current countermeasures. The last attack is particularly critical as
it takes very little time to recover additional keys once a first key is known,
making it feasible to “pickpocket” a card wirelessly if a deployed system leaves
unused sectors with default keys or does not diversify keys. In response to the
attacks outlined above, several countermeasures have been implemented in newer
versions of MIFARE Classic cards, such as EasyCard 2.0, that are still compatible
with legacy systems.

First and most importantly, the generator of the tag nonce is replaced by
a better RNG such that we can no longer control or predict nT . From our
experiments, it seems a true 32-bit RNG instead of having a period of 216. This
improvement breaks almost all efficient card-only attacks depicted above except
the brute-force attack, as all the techniques to reduce search space make use
of the flaw in tag nonce generation. Furthermore, these new cards now always
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reply with encrypted NACK code if the authentication fails, whether the parity
bits are correct or not. This closes the last loophole of the brute-force attack
described above, as it is no longer possible to gather the required information to
attack the parity-bit weakness.

2.3 Algebraic Differential Cryptanalysis

Algebraic cryptanalysis brings the concept of applying algebraic techniques to
attack various cryptographic primitives, e.g., block ciphers, stream ciphers, and
public key systems. It is usually done in two major steps. First, a set of mul-
tivariate polynomial equations over a finite field is constructed to describe the
cryptographic scheme. This system of equations is formulated in a way that its
solutions correspond to certain secret information of the cryptographic scheme.
The second step is then to solve the system using techniques such as SAT solvers
or Gröbner-basis algorithms. As a result, the efficiency of this category of attacks
is strongly related to the quality of the constructed equations as well as the per-
formance of the system-solving technique in use.

The idea of algebraic cryptanalysis is not new. Back in 1949, Shannon already
noted the relationship between breaking a good cipher and solving a complex
system of equations [18]. Shannon was probably thinking about how to build
a good cipher, but this concept gives us a hint of checking possible weaknesses
of cryptosystems using algebraic techniques. However, it was not until the huge
progress in the efficiency of system solving, especially the solving of multivariate
polynomial systems, that people started to consider system-solving as legiti-
mate attacks. The invention of F4 [10], XL [6], F5 [11], and their variants greatly
boosted the speed of solving multivariate polynomial systems. Also, the sub-
stantial advances in the performance of SAT solvers [9,19] provides us with an
alternative, namely to transform problems into boolean formulas and search for
solutions.

Differential cryptanalysis exploits information leaked by special pairs of input
and output differences, called differentials, in a block cipher to distinguish its
output from random or to recover (some of) its key bits [3]. Such an attack is
statistical in nature and usually requires a large number of plaintext-ciphertext
pairs, especially in the context of known-plaintext or ciphertext-only attacks, for
which the attacker cannot freely choose the plaintexts. Even before its publica-
tion, differential cryptanalysis has played a very important role in cipher design.
It is so successful that today’s standard procedures for designing a new cipher
include checking differential immunity.

In the recent seminal work [1], Albrecht and Cid tried to incorporate the infor-
mation obtained from differential characteristics into algebraic attacks. They
proposed three methods, labeled simply as Attack A, B, and C, of obtaining and
using such information. Even though Attack B was not very effective against the
PRESENT cipher [20], it did inspire our attack, which we will describe in more
detail in Sect. 3.
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3 Construction of Attacks

In this section, we illustrate the proposed attack against the patched MIFARE
Classic cards based on modern cryptanalysis techniques. The critical step of
a successful algebraic attack is to construct as many informative multivariate
equations as possible. Three types of algebraic equations are collected in our
attack, namely NACK equations, differential equations, and filter equations.

3.1 NACK Equations

As mentioned in Sect. 2.2, the patched MIFARE Classic cards, e.g., EasyCard 2.0,
blocks all existing efficient card-only attacks by incorporating better RNG and
replying every authentication error with encrypted NACK while maintaining
compatibility with legacy readers. Since the plaintext of the 4-bit NACK code
is fixed (0x0 for EasyCard 2.0), replying encrypted NACK codes leaks four
keystream bits per authentication failure. The data collected in each failed
authentication attempt is called a trace and can be used to construct a set
of four algebraic equations as the following.

Let x = (x0, . . . , x47) denote the initial state of the LFSR, i.e., the secret key.
The new state of the LFSR after an input of n-bit sequence i can be written in
a form like:

Ai(x) = Lnx + vi, (2)

where L is a linear transformation that depends only on the LFSR’s feedback
function F , and vi is a 48-bit vector that depends on the input i (and, of course,
the LFSR’s feedback function F ). Here the important thing to note is that
vi does not depend on the secret key and hence can be computed based on
the information available in a trace. Then the keystream bit generated by the
nonlinear filter right after the input i can be obtained by

ai = f(Ai(x)). (3)

Both uid and nT are transmitted in plaintext. It is then easy to express
the LFSR state after the input of uid⊕ nT in terms of the unknowns x0, . . . , x47

using Eq. (2). Although only the encrypted reader nonce is available (in fact, it is
generated by the attacker in card-only attacks), it is still possible to decrypt {nR}
using the keystream bits obtained by Eq. (3) and derive subsequent LFSR states
and keystream bits in the form of polynomials of x0, . . . , x47. By equating the
4 keystream bits to their corresponding polynomials, we get 4 NACK equations
per trace of failed authentication session. It is then possible, at least in theory,
to collect sufficiently many equations (≥ 12) and solve the resulted system using
Gröbner-basis or SAT solvers.

In practice, however, the main difficulty of the algebraic attack described
above lies in the last step, namely, solving the resulted polynomial system. In
fact, the degree of such systems saturates due to the nonlinearity introduced by
the recurrent decryption of {nR}. In order to speed up the solving procedure,
we need to extract more information from the traces using algebraic differential
cryptanalytic techniques.
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3.2 Differential Equations

From Eq. (2), we can see that the difference of two LFSR states that descend
from a common initial state would be Ai(x) ⊕ Aj(x) = vi ⊕ vj if i and j are
two input bit streams of the same length. It means that we can know the LFSR
state difference after two different tag nonces even though we cannot control
them. This is easy to circumvent, however, as one can keep authenticating with
a card at hand, hoping that the desired differences will eventually show up. For
example, we are interested in those pairs that have only one bit difference in the
LFSR state after an input of uid⊕nT , especially when the different bit lies at the
leftmost possible position. As will be clear later, the reason why we are interested
in such pairs is because such pairs of difference are easy to “cancel,” which gives
more information in recovery of the secret key. More specifically, let ynT

, yn′
T

denote the LFSR states after inputting two different tag nonces nT and n′
T , then

our targets would be the pairs such that Δy = ynT
⊕ yn′

T
= 0x000080000000.

Since nT has only 32 bits, one bit difference at position 16 (cf. Fig. 1) is the
furthest we can get. Thanks to the birthday paradox, it does not take too long
to gather sufficiently many such pairs.

Once such a pair is observed, we then try to “cancel” the state difference by
properly manipulating the reader’s nonce in the second trace. This could be done
by carefully selecting and guessing {n′

R} in the second trace according to {nR}
in the first trace because the reader’s nonces are transmitted in ciphertext and
we, as the attacker, do not have the secret key to produce the correct keystream
bits. More specifically, our goal in this stage is to keep pushing bits with zero
difference into the LFSR. Since there is only one bit of difference at position 16
of the LFSR state at the beginning of this stage, we only need to keep our eyes
on it. When it is shifted to a position that is not part of input to the nonlinear
filter function f , the output keystream bits of these two traces should be the
same. In this case, we can obtain the exact difference in the corresponding bits
of {nR} by simply inspecting the feedback function of LFSR and then cancel
it by altering the input accordingly. However, for positions 15, 13, 11, and 9
(cf. Fig. 1), we need to guess the output keystream bits of the nonlinear function
f . If all four guesses are correct, we will arrive at a target pair of traces with
identical LFSR states.

Figure 3 demonstrates how the first three bits of {n′
R} are decided or guessed

by showing the differential view of the LFSR states of target pairs. Let zk, z′
k

be the LFSR states of the pair after shifting in k bits (including nT ). For any
target pair of traces, we have

Δz32 = z32 ⊕ z′
32 = vnT

⊕ vn′
T

= 0x000080000000. (4)

In this state, both the outputs of the feedback function and the filter function
are identical for these two traces, so the first bit of {n′

R} should be the same
as {nR} (cf. the zero values in Fig. 3a). When the bit difference is pushed to
position 15, we can only choose the second bit of {n′

R} by guessing since the
difference of f(z33) and f(z′

33) cannot be obtained purely from this differential
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(a) Before inputting the first bit of the reader’s nonce (Δz32).
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(b) Before inputting the second bit of the reader’s nonce (Δz33).
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(c) Before inputting the third bit of the reader’s nonce (Δz34).

Fig. 3. Differential view of Crypto-1’s LFSR states

view (cf. Fig. 3b). For the third bit, the difference of {nR} and {n′
R} should be

1 because of the feedback function (cf. Fig. 3c).
Following similar procedure, we push the bit difference out of the LFSR

and hope to cancel the differences in the input bits. Such cancellation of input
difference could be examined by checking whether the tag responds with an
identical encrypted NACK code. In other words, the four keystream bits obtained
after each authentication failure are used as an oracle for confirming whether our
guesses in {n′

R} successfully produce the desired differential or not. There are, of
course, false positives from this oracle due to collision in practice, and we leave
the discussion about this issue to Sect. 3.4.

If the guessed bits successfully cancel the differences, the following 4 differ-
ential equations, corresponding to the four guessed bits, should hold.

f(z′
k) ⊕ f(zk) = f(zk ⊕ e48−k) ⊕ f(zk) =

∂f

∂z48−k
(zk) = δk, (5)

where ek is the 48-bit vector with 1 in the k-th position and 0 elsewhere, and δk

is the guessed difference, for k = 33, 35, 37, 39.

3.3 Filter Equations

In addition to Eq. (5), by taking a closer look at state z33, we devise the following
formula as the filter equation to further reduce the search space of our attack.

(
∂f

∂z15
(z33) ⊕ δ33

) (
∂2f

∂z15∂z47
(z33) ⊕ 1

)
= 0. (6)
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Any state assignment that does not satisfy Eq. (6) would result in ∂f
∂z15

(z33) �= δ33

and ∂2f
∂z15∂z47

(z33) = 0 at the same time. This means, no matter what the value
of the newly input bit (z47) is, the output of f would not be equal to our guessed
value, which contradicts with the fact that we have already reached the same
LFSR state in both traces at the end of the authentication session. As a result,
we can include Eq. (6) from each successful pair of traces to the final system of
equations, and each such equation is expected to work as a filter that eliminates
1/4 of the solution space.

Empirically, there is a high degree of dependency among the equations acquired
from different traces, but it does not take too long to collect sufficiently many pairs
such that only a few candidate solutions can pass all filters. Based on our experi-
ence, these filters help tremendously in solving the nonlinear system.

3.4 Dealing with False Positives

Up until this point, we have assumed that our oracle can 100 % accurate in telling
whether two internal states are the same or not. This does not hold in practice:
as we can only observe four keystream bits, it is possible for two traces to have
the same keystream bits yet different internal states. In our experiments, around
26 % of the cases where the four keystream bits agree are actually false positives.
As a result, not all the collected differential relations, i.e., Eqs. (5) and (6), can
be incorporated in the final system to solve. In this section, we will describe how
we deal with this problem by more aggressive filtering.

We note that only 18 bits (z9, z11, z13, z17, z19, . . . , z45) might have an effect
on the evaluation of Eq. (6). Random assignments to these 18 bits should be in
the solution space of the filter equation with probability q = 3/4, given that
the filter function f is unbiased. Additionally, the correct assignment should
be a solution to those filter equations collected from the true positive results.
If we collect sufficiently many pairs and rank all 218 possible assignments by
their number of correct evaluations to the collected filter equations, the correct
assignment should be very close to the top of the list with high probability.
Therefore, the list serves as a good guide for guessing the 18 bits in the resultant
system of equations. We can substitute the 18 variables with the bit assignments
according to the list and try solving the system using SAT solvers. Note that we
should eliminate the equations derived from the traces where Eq. (6) evaluates
to false while trying each 18-bit assignment. According to our empirical results,
it takes around 2 to 15 min for CryptoMiniSat to solve the system if the 18 bits
are assigned with correct values.

The next question is how many pairs are sufficient to put the correct assign-
ment at the top of the list with high probability. Assume that in total N such
differential pairs are collected, among which Ñ are true positives. The number
of filter equations that the correct assignment would evaluate to true, denoted
by N1, should have the following probability mass function.

Pr[N1 = n] =
(

N − Ñ

n − Ñ

)
qn−Ñ (1 − q)N−n, n = Ñ , . . . , N. (7)
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Furthermore, if we denote the rank of the correct assignment in the list by ρ,
then we have

Pr[ρ = k|N1 = n] =
(

M − 1
k − 1

)
a(n)M−k[1 − a(n)]k−1, (8)

where M = 218 and a(n) =
∑n−1

i=0

(
N
i

)
qi(1 − q)N−i is the probability that an

incorrect assignment evaluates less than n filter equations to true. Using Eqs. (7)
and (8), it is straightforward to compute the probability function of the rank of
the correct assignment by

Pr[ρ = k] =
N∑

n=Ñ

Pr[ρ = k|N1 = n]Pr[N1 = n]. (9)

We compute the percentiles of the rank of the correct bit assignments for
various numbers of filter equations and summarize the most useful results in
Table 1. This gives us an estimate of how many pairs would be sufficient to
substantially reduce the expected number of trials we have to perform before
finally solving the system. For example, given 150 filter equations collected, we
are able to solve the system in less than 7 trials with a probability of 99 %.
This is a very good result because in most cases, we just need to repeat the
computation a few times before we can recover the key.

3.5 The Complete Attack

We summarize our attack procedure as follows.

1. Initiate (failing) authentication sessions with the target tag and record in a
database each nT received, vnT

, and four keystream bits s used to encrypt
the returned NACK code.

2. For each (nT ,vnT
, s) received, check whether vnT

⊕0x000080000000, matches
any vn′

T
already recorded. If so go to Step 3, having found a pair of nT ’s

that produce the state difference Δy = 0x000080000000. Otherwise, repeat
Step 1.

3. Guess four δk’s and manipulate {nR} accordingly. Check whether we see
the same four keystream bits. If so, record the four differential relations
(cf. Eq. (5)) thus found.

Table 1. The percentiles of ρ (Ñ/N = 74 %)

Number of filter equations (N) Percentile Rank(ρ)

90 75 11

110 90 8

130 95 4

150 99 6
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4. Repeat Steps 1–3 until we have collected enough differential relations (about
600–1000, or 150 to 250 successful attempts), then we use the method from
Sect. 3.4 to remove the false positives.

5. Feed the differential equations, along with (i) some NACK equations, to a
Gröbner-basis or SAT solver, and (ii) the 18-bit solution to the filter equations
(cf. Sect. 3.4) as hint bits, to the solver and solve for the key. Empirically, we
need about 1 NACK equation for every 4–5 differential equations.

4 Empirical Results and Discussion

We have tried several different solvers including the built-in Gröbner-basis solver
in Maple, as well as PolyBoRi [4]. Empirically, CryptoMiniSat outperforms the
other solvers by a large margin. Hence we only report the timings obtained using
CryptoMiniSat for the rest of the paper. The results also show that the hint
bits are extremely helpful to CryptoMiniSat, usually resulting in a tremendous
speed-up.

We also note that the differential relations, as a system of equations, tend to
be highly redundant and have multiple solutions. It is to avoid ending up with
such a wrong solution, that in step 5 we must add a few equations on keystream
bits in order to obtain a unique solution with high probability.

A submarine patch. We had bought a fair number of EasyCards on the streets
of Taipei between 2009 and 2012 trying to track there were different editions of
EasyCards. Surprisingly, we discovered that EasyCard 2.0 was actually not the
first “patch” attempted by the EasyCard Corporation. There is actually another
different kind of EasyCard, that we shall refer to as EasyCard 1.5, which has
been surreptitiously in circulation since late 2010 or early 2011.

Although to all outward appearances EasyCard 1.5 is identical to
EasyCard 1.0, it has a better RNG which makes nT neither predictable nor
controllable based on timing. This already defeats some (but not all) existing
card-only attacks, even though EasyCard 1.5 performs otherwise identically to
the original. For example, since the parities attack relies on the capability of con-
trolling nT , such an improved RNG already makes the attack time much longer
if still possible at all. We represent this fact using a question mark in Table 3, in
which we summarize the time required to carry out various attacks. It is perhaps
surprising that the EasyCard Corporation managed to resist the temptation of
announcing a security upgrade and kept this modification under wraps for so
long. The differences among the three types of EasyCards are summarized in
Table 2.

From Table 3, it is clear that our attack is the most practical one among the
effective attacks against EasyCard 2.0 in the sense that our attack can be carried
out by an ordinary person in private with an off-the-shelf reader and a PC.

In Table 3, the GPU result is taken from Chih et al. [5], while all other
experiments are all carried out on a PC with 2.3 GHz AMD CPU. The data
collection, on the other hand, is performed on a laptop PC with 2.0 GHz Intel
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Table 2. Types of EasyCards attacked in our experiments

Card type Parities checked nT generation

EasyCard 1.0 Yes Predictable

EasyCard 1.5 Yes Somewhat random

EasyCard 2.0 No (always 0x0) Random

Table 3. Timing comparison of all known attacks

Attack type Online time Compute time 1.0 1.5 2.0

Sniffing attack 2 s < 2 s
√ √ √

GPU brute-force [5] 5 s 14 h
√ √ √

CPU brute-force 5 s 4 years
√ √ √

Parities attack > 3 min < 30 s
√

?

Nested authentications 15–75 s 25–125 s
√ √

Our attack 10–20 h 2–15 min
√

CPU. For CPU brute-force attack, we obviously have not run it to completion
but extrapolate based on the timing result of a partial run instead. We use open-
source software whenever possible, but we have also implemented and optimized
some of the attacks.

5 Concluding Remarks

In this paper, we have demonstrated a highly practical attack against the Easy-
Card 2.0, which is marketed as having patched the vulnerabilities of previous
implementations of MIFARE Classic. By applying algebraic differential crypt-
analysis techniques, our card-only attack can recover the secret key of EasyCard
2.0 within one day. This includes the time for online data collection and offline
computation, both of which can be carried by a working platform that costs
no more than a few hundreds of US dollars and is affordable even to the least
wealthy attacker. This again shows the weakness of the Crypto-1 cipher, and
highlights the unfortunate the fact that “security” protocols based on unsound
ciphers, such as MIFARE Classic, is not suitable for important transactions such
as electronic payment.
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Abstract. The omega pairing is proposed as a variant of Weil pairing on
special elliptic curves using automorphisms. In this paper, we generalize
the omega pairing to general hyperelliptic curves and use the pairing
lattice to construct the optimal omega pairing which has short Miller loop
length and simple final exponentiation. On some special hyperelliptic
curves, the optimal omega pairing could be super-optimal.

Keywords: Pairing-based cryptography · Hyperelliptic curves · Auto-
morphism · Omega pairing · Super-optimal pairing

1 Introduction

In recent years, the pairing-based cryptography is regarded as an attractive area
in public key cryptography. Since the implementation of pairing-based cryptosys-
tems involves pairing evaluation, the development of efficient pairing calculations
becomes a significant topic of research.

The most common pairings used in applications are the Tate and Weil pair-
ings on elliptic curves over finite fields. They are calculated by an iterative algo-
rithm called Miller’s algorithm [1]. The Miller iteration loop of the Tate and
Weil pairings is roughly log2 r, where r is the order of the bilinear cyclic group.
Motivated by shortening Miller loop length, various variants of Tate pairing are
proposed, such as eta pairing [3], Ate pairing [4], Atei pairing [5] and R-ate
pairing [6]. Zhao et al. [7] used the automorphisms to propose a super-optimal
pairing called omega pairing based on Weil pairing on two families of ordinary
elliptic curves. Vercauteren [2] introduced the concept of an optimal pairing and
gave an algorithm to construct optimal ate pairings. Generally, if the Miller iter-
ation loop is roughly log2 r/ϕ(k), where k is the embedding degree of elliptic
curves and ϕ is the Euler function, the pairing is called optimal. And if the
number of the Miller iteration loop is less than log2 r/ϕ(k), the correspond-
ing pairing is called super-optimal. Meanwhile, Vercauteren gave the Optimality
c© Springer International Publishing Switzerland 2014
D. Lin et al. (Eds.): Inscrypt 2013, LNCS 8567, pp. 167–184, 2014.
DOI: 10.1007/978-3-319-12087-4 11
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Conjecture: any non-degenerate pairing on an elliptic curve without efficiently
computable endomorphisms different from powers of Frobenius requires at least
O(log2 r/ϕ(k)) basic Miller iterations. Hess [8] provided a mathematical frame-
work that encompasses almost all known pairing functions and proved the Opti-
mality Conjecture. So far, the theory of pairings on elliptic curves has become
mature.

As an alternative to that on elliptic curves, pairings on hyperelliptic curves
have been also investigated. Granger et al. [9] generalized Ate pairing on ordi-
nary elliptic curves to non-supersingular hyperelliptic curves. Zhang [10] pro-
posed Atei pairing and twisted Ate pairing on hyperelliptic curves. Fan et al.
[11] implemented pairing computation on genus 2 hyperelliptic curves with effi-
ciently computable automorphisms. Tang et al. [13] improved some results of
[11]. Balakrishnan et al. [14] generalized the work of Hess [8] and Vercauteren
[2] to Tate pairing for hyperelliptic curves and constructed HV pairings. At the
same time, they proposed some open problems on hyperelliptic pairings, asking
whether there are other non-degenerate, bilinear hyperelliptic pairings which are
not part of the HV framework and exploring more improvements in loop length
by using the automorphisms.

In fact, our work gives part solutions about above open problems. In this
paper, we generalize the omega pairing originally defined on elliptic curves to
hyperelliptic curves. The strategy of construction for hyperelliptic omega pairing
is similar to [7], but from points to divisors, many technical problems must be
solved. On the other hand, we utilize the idea of pairing lattice to construct
many new pairings and even give optimal omega pairings in some curves. As the
variants based on Weil pairing, all these pairings are different from HV pairings,
which are variants based on Tate pairing. On the other hand, our new pairings
are obtained by using automorphisms and the HV pairings are obtained by using
the powers of Frobenius endomorphism. The Miller iteration loop of the optimal
pairing in HV pairings is roughly log2 r/ϕ(k). And the Miller iteration loop of
the optimal omega pairing is roughly log2 r/ϕ(n), where n is the order of the
automorphism. If ϕ(n) > ϕ(k), the optimal omega pairing will be super-optimal.
For most ordinary elliptic curves, ϕ(n) ≤ ϕ(k), so the optimal omega pairing
does not generally give an improved loop length. However, hyperelliptic curves
have a larger automorphism group Aut(C) and the case ϕ(n) > ϕ(k) is easy
to satisfied, so it would be worth-while to study the omega pairing. Not only
the short Miller loop length, the optimal omega pairing also has simple final
exponentiation. Therefore, if the final exponentiation of the variants based on
Tate pairing is complex enough, the optimal omega pairing will be faster than all
of them. The example in Sect. 5 shows that, the omega pairing is more efficient
than most hyperelliptic pairings.

This paper is organized as follows: Sect. 2 provides some fundamental defi-
nitions; Sect. 3 presents the main results; Sect. 4 shows how the omega pairing
can be constructed on some genus 2 hyperelliptic curves over large prime fields;
Sect. 5 analyze an example curve; Sect. 6 concludes the paper and the appendix
provides detailed proofs of all lemmas in Sect. 3.
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2 Preliminaries

In this section, we recall the arithmetic on hyperelliptic curves, the definitions of
the Tate-Lichtenbaum, Weil pairings, and the omega pairing on elliptic curves.

2.1 Hyperelliptic Curves and Their Jacobians

Let C be a nonsingular curve of genus g defined over a finite field Fq with q = pn

elements. In this paper, we assume that C has a unique point P∞ at infinity and
the affine part is in the form

y2 + h(x)y = f(x)

where h, f ∈ Fq[x],deg(h) ≤ g, f monic and deg(f) = 2g + 1. For any algebraic
extension Fqk of Fq, the set

C(Fqk) := {(x, y) ∈ Fqk × Fqk | y2 + h(x)y = f(x)} ∪ {P∞}
is called the set of Fqk -rational points on C. The hyperelliptic involution on the
set C(Fqk) is defined by ι(x, y) = (x,−y − h(x)) and the Frobenius morphism
πq : C −→ C is given by πq(x, y) = (xq, yq). Since the set C(Fqk) for g ≥ 2 does
not form a group, we embed C into an abelian variety of dimension g called the
Jacobian of C and denoted by JC .

A divisor D on C is a formal sum of points over the algebraic closure Fq,
denoted by

D =
∑

P∈C(Fq)

nP (P ),

with only finitely many non-zero coefficients nP ∈ Z. The degree of the divisor D
is defined as deg(D) =

∑
P∈C(Fq)

nP . The definition of the divisor class group of
degree zero divisors Div0

C/PrinC can be found in [9]. Here we introduce an impor-
tant relation that JC = Div0

C/PrinC and JC(Fqk) = Div0
C(Fqk)/PrinC(Fqk).

In fact, each divisor class of degree zero D in JC can be uniquely represented
by a so called reduced divisor, i.e. a divisor in the form

m∑

i=1

(Pi) − m(P∞),m ≤ g

where Pi = (xi, yi) ∈ C(Fq), Pi �= P∞ and Pi �= ι(Pj) for i �= j. Then we
can introduce two maps on JC : given a divisor class D, we define ρ(D) the
unique reduced divisor in D and ε(D) the effective part of ρ(D), i.e. ρ(D) =
ε(D) − deg(ε(D))(P∞). Given a Fqk -rational divisor D and an integer n, a
Miller function fn,D ∈ Fqk(C) is any function for which div(fn,D) = nD−[n]D,
where [n]D := ρ(nD).

In practice, the Mumford representation [16] is often used. Any reduced
Fqk -rational divisor admits a Mumford representation [u(x), v(x)], i.e. a pair
of polynomials u, v ∈ Fqk [x], with u =

∏m
i=1(x − xi),deg(v) ≤ deg(u) ≤ g and

u | v2 + vh − f . Cantors algorithm [15] can be used to compute the Mumford
representation of the sum of two reduced divisors.
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2.2 Pairings on Hyperelliptic Curves

Let r be a prime with r | �JC(Fq) and gcd(r, q) = 1. Let k be the smallest integer
such that r | (qk − 1), then k is called the embedding degree with respect to r.
This implies that the r-th roots of unity are contained in Fqk and in no strictly
smaller extension of Fq. The r-torsion points on JC defined over Fqk is denoted
by JC(Fqk)[r]. Let h(x) =

∑d
i=0 hix

i ∈ Z[x] with h(n) ≡ 0(mod r). Define
a generalized Miller function fn,h,D ∈ Fqk(C) is any function with divisor∑d

i=0 hiρ(niD). For the properties of function fn,h,D, please refer to [14]. In the
remainder of the paper, we will assume that all Miller functions are normalised.

Let D1 ∈ JC(Fqk)[r] be represented by a divisor D1, then the function fr,D1 ∈
Fqk(C)∗ has divisor div(fr,D1) = rD1 − [r]D1 = rD1. Let D2 ∈ JC(Fqk)[r]
be represented by a divisor D2, and supp(D1) ∩ supp(D2) = ∅. The Tate-
Lichtenbaum pairing of the divisor classes D1 and D2 is then defined by

(·, ·) : JC(Fqk)[r] × JC(Fqk)/rJC(Fqk) → F
∗
qk/F

∗r
qk ,

(D1,D2) �→ fr,D1(D2).

This pairing is bilinear, non-degenerate and the result is independent of the
choice of representatives of the divisor classes. If the function fr,D1 is normalised,
the Tate pairing can simply be computed as fr,D1(ε(D2)) [21]. For cryptographic
applications, one often requires a unique pairing value in the group of r-th roots
of unity μr. So one can define the reduced Tate-Lichtenbaum pairing as

e(D1,D2) = fr,D1(ε(D2))
qk−1

r .

The Weil pairing is another non-degenerate and bilinear pairing, which is
defined as [17]

er(·, ·) : JC(Fqk)[r] × JC(Fqk)[r] → μr,

(D1,D2) �→ (−1)rm1m2 fr,D2 (D1)

fr,D1 (D2)
,

where m1 = deg(ε(D1) and m2 = deg(ε(D2). Lemma 2.1 in [7] stated that if
fr,D1 and fr,D2 are normalized functions and the supports of ε(D1) and ε(D2)
are disjoint, then

er(D1,D2) = (−1)rm1m2
fr,D2(ε(D1))
fr,D1(ε(D2))

.

Let Fq be the algebraic closure of the field Fq. Let πq denote the endomor-
phism on the divisor class group JC(Fq) induced by the Frobenius morphism
πq on C. Since JC(Fq)[r] is a vector space with dimension 2g over Fr, so the
endomorphism πq can be viewed as linear transformations on JC(Fq)[r]. Let
G1 = JC(Fq)[r] ∩ Ker(πq − [1]), Gq = JC(Fq)[r] ∩ Ker(πq − [q]) denote the
1-eigenspace and q-eigenspace of πq on JC(Fq)[r]. In order to improve the effi-
ciency, many pairings are defined on G1 and Gq, such as Ate pairing [21], twisted
Ate pairing [10], HV pairings [14].
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2.3 Omega Pairing on Elliptic Curves

In [7], Zhao et al. constructed an efficient pairing based on the Weil pairing,
which they called the omega pairing. The omega pairing is constructed for two
special classes of ordinary elliptic curves. Here we only introduce the pairing for
one class.

Suppose p is a prime such that p ≡ 1(mod 3), and E1 is an ordinary elliptic
curve over Fp. It’s equation is E1 : y2 = x3 +B. Let r be a large prime satisfying
r | �E1(Fp) and r2 � �E1(Fp). And assume that E1 has the embedding degree
k = 2 with respect to r. Let β be an element of order three in Fp. Then there
are two automorphisms φ and φ̂ of E1 given by φ : E1 −→ E1, (x, y) −→ (βx, y)
and φ̂ : E1 −→ E1, (x, y) −→ (β2x, y), respectively. Assume that λ is a root of
the equation x2 + x + 1 = 0(mod r) such that φ(P ) = λ, φ̂(Q) = λQ. Let a be
the integer such that ar = λ2 + λ + 1. Then we have the following results: the
function

ω(P,Q) =
(

fλ,P (Q)
fλ,Q(P )

)p−1

defines a bilinear pairing.

3 Omega Pairing on Hyperelliptic Curves

In this section, we construct the hyperelliptic omega pairing and give a general
algorithm of the pairing.

3.1 Construction of the Omega Pairing

In this subsection, we give our main results. By using the automorphisms on
hyperelliptic curves, we propose an efficient variant of Weil pairing. Since the
new pairing on hyperelliptic curves can be regarded as a generation of the omega
pairing on elliptic curves, we call it hyperelliptic omega pairing. Furthermore,
we use the idea of pairing lattice to give more new pairings and even the optimal
omega pairing.

Balakrishnan et al. [14] discussed hyperelliptic HV pairings and the twisted
Ate pairing. All of them are variants of the Tate pairing restricted on the
eigenspaces of the Frobenius endomorphism. In a different way, the hyperelliptic
omega pairing is the improvement of the Weil pairing restricted on two special
eigenspaces of the automorphism on JC [r] whose corresponding eigenvalues are
reciprocal. The main result is concluded in the following theorem.

Theorem 1. Let C be a hyperelliptic curve over Fq and r | #JC(Fq) be a large
prime number with (r, q − 1) = 1. Let φ be a Fq-rational automorphism of order
n on JC(Fq) and have two eigenvalues λ and λ−1 on JC [r]. The corresponding
eigenspaces are denoted by Gλ = 〈D1〉 and Gλ−1 = 〈D2〉, where D1 ∈ JC(Fq)[r]
and D2 ∈ JC(Fq)[r]. Suppose m ∈ Z satisfies mr = λn − 1 and supp(ε(D1)) ∩
supp(ε(D2)) = ∅, then
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ω : Gλ × Gλ−1 → μr, (D1,D2) �→
(

fλ,D1(ε(D2))
fλ,D2(ε(D1))

)q−1

with D1 = ρ(D1) and D2 = ρ(D2), defines a bilinear pairing called the hyperel-
liptic omega pairing. Furthermore, the pairing will be non-degenerate if the Weil
pairing restricted on Gλ × G

−1
λ is non-degenerate and r � m.

In order to prove the theorem, we need the following three lemmas. Due to
space constraints, the proofs of all lemmas are given in the appendix.

Lemma 1. Suppose D1 is a Fq-rational reduced divisor and D2 is a reduced
divisor, then for i, j ∈ Z, we have

(
fi,D1(ε([j]D2))
fj,D2(ε([i]D1))

)q−1

=

(
f j

i,D1
(ε(D2))

f i
j,D2

(ε(D1))

)q−1

.

Lemma 2. With notation as above, for i ∈ Z, we have

(
fλ,D1(ε([λ

i]D2))
fλ,D2(ε([λi]D1))

)q−1

=
(

fλ,D1(ε(D2))
fλ,D2(ε(D1))

)λi(q−1)

.

Lemma 3. With notation as above, we have
(

fλ,D1 (ε(D2))

fλ,D2 (ε(D1))

)q−1

∈ μr.

Now we can prove the statement of Theorem 1.

Proof of Theorem 1: For D1 is reduced, then div(fλn−1,D1) = (λn − 1)D1 −
[λn − 1]D1 = λnD1 − D1 − [λn]D1 + D1 = λnD1 − [λn]D1 = div(fλn,D1). So we
can take fλn−1,D1 = fλn,D1 . According to Lemma 2 in [11], it’s easy to obtain
that

fλn,D1 =
n−1∏

i=0

fλi

λ,[λn−i−1]D1
.

Since fλ,[λ]D1 = αfλ,D1 ◦ φ̂ and α ∈ Fq, we can calculate that

(fm
r,D1

(ε(D2)))q−1 = fmr,D1(ε(D2))q−1

= fλn−1,D1(ε(D2))q−1

= fλn,D1(ε(D2))q−1

=
∏n−1

i=0 fλi

λ,[λn−i−1]D1
(ε(D2))q−1

=
∏n−1

i=0 fλi

λ,D1
(ε(φ̂n−i−1(D2)))q−1

=
∏n−1

i=0 fλi

λ,D1
(ε([λn−i−1]D2))q−1.

(1)

By using the same reasoning, we obtain

(fm
r,D2

(ε(D1)))q−1 =
n−1∏

i=0

fλi

λ,D2
(ε([λn−i−1]D1))q−1.
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From Lemma 2.1 in [7], we know that the Weil pairing

er(D1,D2) = er(D1,D2) = (−1)rm1m2
fr,D2(ε(D1))
fr,D1(ε(D2))

.

Then Lemma 2 shows that

((−1)rm1m2e−1
r (D1,D2))m(q−1) =

(
fm

r,D1
(ε(D2))

fm
r,D2

(ε(D1))

)q−1

=
∏n−1

i=0 fλi

λ,D1
(ε([λn−i−1]D2))

q−1

∏n−1
i=0 fλi

λ,D2
(ε([λn−i−1]D1))q−1

=
∏n−1

i=0

(
fλ,D1 (ε([λ

n−i−1]D2))

fλ,D2 (ε([λ
n−i−1]D1))

)λi(q−1)

=
(

fλ,D1 (ε(D2))

fλ,D2 (ε(D1))

)nλn−1(q−1)

So we obtain

((−1)rm1m2e−1
r (D1,D2))m(q−1) =

(
fλ,D1(ε(D2))
fλ,D2(ε(D1))

)nλn−1(q−1)

.

Suppose M = (nλn−1)−1(mod r) and consider Lemma 3, then it follows that

ω(D1,D2) =
(

fλ,D1(ε(D2))
fλ,D2(ε(D1))

)q−1

= ((−1)rm1m2e−1
r (D1,D2))m(q−1)M .

All bilinear pairings forms a group [24], so ω(D1,D2) defines a bilinear pairing
and its non-degeneracy depends on Weil pairing. ��
Remark 1. When C is an elliptic curve, E[r] is a vector space with dimension
2 over Fr. And the endomorphisms πq and φ have the same two eigenspaces.
We can assum Gλ = G1 and Gλ−1 = Gq. Obviously the Weil pairing defined on
G1 × Gq is non-degenerate.

For ordinary elliptic curves, Hess [8] proposed pairing lattices as a convenient
mathematical framework to use existing pairing to construct new pairings. The
pairing lattice may contain efficient pairings whose Miller loop length are short
or even optimal. For the details, please refer to [8]. Following the idea of pairing
lattice, we can use the omega pairing ω to construct new pairings ωλ,h. When
the Miller iteration loop is roughly log2 r/ϕ(n), the corresponding pairing ωλ,h is
called optimal omega pairing. In order to give our result, we recall the following
Theorem.

Theorem 2. [8] Assume that r is a prime number, that n is co-prime to r and
that s is a primitive n-th root of unity modulo r2. Let

as : I(1) −→ Wn, h �−→ as,h
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be a map with the following properties:

1. as,g+h = agah for all g, h ∈ I(1),
2. as,hx = as

s,h for all h ∈ I(1) with as,h ∈ W bilin
n ,

3. as,r ∈ W bilin
n \ {1} and as,t−s = 1.

Then im(as) = W bilin
n and ker(as) = I(2). More precisely,

as,h = ah(s)/r
s,r

for all h ∈ I(1). There exists an efficiently computable h ∈ I(1),ϕ(n) with ‖h‖1 =
O(r1/ϕ(n)) and as,h �= 1. The O-constant depends on n. Any h ∈ I(1) with
as,h �= 1 satisfies ‖h‖1 ≥ r1/ϕ(n).

Theorem 3. We use the notations of Theorems 1 and 2. Let λ be a primitive
n-th root of unity modulor r2. Let h(x) =

∑n
i=0 hix

i with h(λ) ≡ 0(mod r). Then

ωλ,h : Gλ × Gλ−1 → μr, (D1,D2) �→
(

fλ,h,D1(ε(D2))
fλ,h,D2(ε(D1))

)q−1

defines a bilinear pairing. Furthermore, the pairing will be non-degenerate if
and only if gcd(h(λ)/r, r) = 1. There exists an efficiently computable h ∈ Z[x]
with h(λ) ≡ 0(mod r),deg(h) ≤ ϕ(n) − 1 and ‖h‖1 = O(r1/ϕ(n)) such that the
above pairings are non-degenerate. Any h such that ωλ,h(·, ·) are non-degenerate
satisfies ‖h‖1 ≥ r1/ϕ(n).

Proof. The proof of this theorem is similar with the proof of Theorem 3 in [8].
Here we have the function

ωλ : I(1) → W1, h �→ ωλ,h.

It is sufficient to show that the function ωλ satisfies the three properties of
Theorem 2. Propertys 1 and 2 are clear for ωλ, since the function fλ,h,R satisfies
fλ,h+g,R = fλ,h,Rfλ,g,R and fλ,hx,R = fλ,h,λR for any h, g ∈ I(1) with ωλ,h ∈
W bilin

1 and R ∈ E(Fqk)[r].
Since the divisors D1 and D2 reduced, (fλ,r,D1) = rρ(D1) = rD1 = fr,D1

and (fλ,r,D2) = rρ(D2) = rD2 = fr,D2 . Furthermore,

ωλ,r(D1,D2) =
(

fλ,r,D1(ε(D2))
fλ,r,D2(ε(D1))

)q−1

= er(D1,D2)−(q−1).

So that we have ωλ,r = e
−(q−1)
r ∈ W1 \ {1}. In fact, the pairing ω in Theorem 1

is equal to the function ωλ,x−λ. Because λn ≡ 1(mod r2), so ωλ,x−λ = ω = 1. So
Property 3 is also satisfied. This concludes the proof of Theorem 3. ��

Theorem 2 shows that, the pairing lattice based on the omega pairing con-
tains pairings with Miller iterations not less than log2 r/ϕ(n). If there exists
the optiaml pairing with Miller iteration log2 r/ϕ(n) and ϕ(n) > ϕ(k), then the
optimal omega pairing is super-optimal.
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3.2 Algorithm of the Omega Pairing

In this subsection, we give the general algorithm of computing the omega pairing.
For the explicit cases, the algorithm could be simplified because some special
optimization techniques can be used.

Assume Gλ ⊆ JC(Fq), Gλ−1 ⊆ JC(Fqk′ ) with k′ even. There is an easy fact
that: if x ∈ Fqk′ , we can replace inversions with conjugations, i.e.

(
1
x

)q
k′
2 −1

=
(

1
a + bi

)q
k′
2 −1

= (a − bi)q
k′
2 −1 = xq

k′
2 −1,

where x = a+bi ∈ Fqk′ and a, b ∈ F
q

k′
2

. This fact can be used to avoid computing

the denominator. If (r, q
k′
2 − 1) = 1, we can raise the final exponentiation of

omega pairing from q − 1 to q
k′
2 − 1. Then the final exponentiation of fq

k′
2 −1

can be finished by an inversion and an multiplication, i.e.fq
k′
2 −1 = f · 1

f .
Since the final exponentiation of hyperelliptic omega pairing is very simple,

so computing the pairing is mainly an evaluation of fλ,D1 (ε(D2))

fλ,D2 (ε(D1))
. The explicit

algorithm is given below.

Algorithm 1. Miller’s Algorithm for fλ,D1 (ε(D2))

fλ,D2 (ε(D1))
with even k′

Input: D1 ∈ Gλ,D2 ∈ Gλ−1 , λ = [el, el−1, ..., e0]2, where el �= 0
Output: fλ,D1 (ε(D2))

fλ,D2 (ε(D1))

1: T ← D1, R ← D2, f ← 1, g ← 1
2: for i from l − 1 down to 0 do
2.1: compute T ′ and GT,T (x, y) = cT,T

dT,T
where T ′ = 2T − div(GT,T )

compute R′ and GR,R(x, y) = cR,R

dR,R
where R′ = 2R − div(GR,R)

2.2: T ← 2T,R ← 2R

2.3: f ← f2 · GT,T (ε(D2)) · GR,R(ε(D1)), g ← g · lc∞(GR,R(x, y))
2.4: if ei = 1 then
2.4.1: compute T ′ and GT,D1 = cT,D1

dT,D1
where T ′ = T + D1 − div(GT,D1)

compute R′ and GR,D2 = cR,D2
dR,D2

where R′ = R + D2 − div(GR,D2)
2.4.2: T = T ⊕ D1, R = R ⊕ D2

2.4.3: f ← f · GT,D1(ε(D2)) · GR,D2(ε(D1)), g ← g · lc∞(GR,D2(x, y))
3: f ← f · gm1

4: return f

To estimate the theoretical complexity of Algorithm 1, we need some nota-
tions. Let

– TDi
: time for doubling divisor Di

– TAi
: time for adding divisor Di

– TGi
: time for evaluation of G defined by Di at effective part

– Tmk′ , Tsk′ : time for squaring and multiplication in Fpk′

– T3 : time for Step 3
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Assume the hamming weight of λ is l
2 , i.e. 1

2 log2(λ). Then the total cost of
Algorithm 1 is given by

log2(λ)(TD1 + TD2 + TG1 + TG2 + 3Tmk′ + Tsk′)

+
1
2

log2(λ)(TA1 + TA2 + TG1 + TG2 + 3Tmk′) + T3,

where T3 = Tmk′ +Tsk′ when D1 is general and T3 = Tmk′ when D1 is degenerate.

4 Genus 2 Hyperelliptic Curves over Large Prime Fields

In this section, we recall two families of non-supersingular genus 2 curves over
large prime field Fp, which have been studied by Fan et al. [11]. We show that
the omega pairing can be constructed on them by using automorphisms.

4.1 Family I

We first discuss a family of hyperelliptic curves defined by the equation

C : y2 = x5 + ax, a ∈ F
∗
p, p ≡ 1(mod 8),

where the embedding degree is 4. However our results can be generalised eas-
ily to other curves in this form with the embedding degree k is divisible by 4.
Curves of this form have automorphisms φ : (x, y) �→ (ζ82x, ζ8y) and φ̂ : (x, y) �→
(ζ8−2x, ζ8

−1y), where ζ8 is a primitive 8-th root of unity in Fp. A rational auto-
morphism on C induces an automorphism on the divisor class group JC(Fp). φ
induces a non-trivial automorphism of order 8, which is also denoted by φ.

φ : JC(Fp) −→ JC(Fp),
[x2 + u1x + u0, v1x + v0] �−→ [x2 + ζ8

2u1x − u0, ζ8
−1v1x + ζ8v0],

[x + u0, v0] �−→ [x + ζ8
2u0, ζ8v0],

0 �−→ 0.

Similarly, φ̂ also induces an automorphism on JC(Fp).

φ̂ : JC(Fp) −→ JC(Fp),
[x2 + u1x + u0, v1x + v0] �−→ [x2 + ζ8

−2u1x − u0, ζ8v1x + ζ8
−1v0],

[x + u0, v0] �−→ [x + ζ8
−2u0, ζ8

−1v0],
0 �−→ 0.

It’s easy to check that φ ◦ φ̂ = φ̂ ◦ φ = [1]. Tang et al. [13] studied this
family of curves carefully, here we cite some useful facts. πp, φ and φ̂ have the
same eigenspaces on JC(Fp)[r] and two eigenvalues of φ and φ̂ on the same
eigenspace are reciprocal. Since φ and φ̂ have the same characteristic polynomial
P (t) = t4 +1, so all eigenvalues of φ and φ̂ are primitive 8-th root of unity in Fr.
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Let G1 and Gp denote the 1-eigenspace and p-eigenspace of πp acting on
JC(Fp)[r], where G1 = 〈D1〉 and Gp = 〈D2〉. Let D1 = ρ(D1) and D2

= ρ(D2). The proof of Theorem 3.2 in Tang et al. [13] suggested that, if φ(D1) =
[λ]D1, φ̂2(D2) = [p]D2 = [λ2](D2). It follows that φ̂(D2) = [λ](D2) or φ̂(D2) =
[−λ](D2). Here we can prove the former is correct.

Lemma 4. With notation as above, we have φ̂(D2) = [λ](D2).

Proof. Since the eigenvalue of φ̂2 on Gp is λ2, so the eigenvalue of φ2 on Gp is
(λ2)−1. On the other hand, the eigenvalue of φ2 on G1 is λ2 because φ2(D1) =
[λ2]D1. Therefore, for the automorphism φ2, the eigenspace Gλ2 = G1 and the
eigenspace Gλ−2 = Gp. Then we can use Theorem 1 in Sect. 3 to obtain that

((−1)rm1m2e−1
r (D1,D2))m(p−1) =

(
fλ2,D1(ε(D2))
fλ2,D2(ε(D1))

)4λ6(p−1)

.

If φ̂(D2) = [−λ], then f−λ,[−λ]D2 = f−λ,D2 ◦ φ up to a scalar multiply in Fp.
Following Lemma 1 we have

(
fλ2,D1

(ε(D2))

fλ2,D2
(ε(D1))

)p−1

=
(

fλ2,D1
(ε(D2))

f(−λ)2,D2
(ε(D1))

)p−1

=
(

fλ
λ,D1

(ε(D2))

f−λ
−λ,D2

(ε(D1))

fλ,[λ]D1 (ε(D2))

f−λ,[−λ]D2 (ε(D1))

)p−1

=
(

fλ
λ,D1

(ε(D2))

f−λ
−λ,D2

(ε(D1))

fλ,D1 (ε([−λ]D2))

f−λ,D2 (ε([λ]D1))

)p−1

=
(

fλ
λ,D1

(ε(D2))

f−λ
−λ,D2

(ε(D1))

f−λ
λ,D1

(ε(D2))

fλ
−λ,D2

(ε(D1))

)p−1

= 1

Then ((−1)rm1m2e−1
r (D1,D2))m(p−1) =

(
fλ2,D1

(ε(D2))

fλ2,D2
(ε(D1))

)4λ6(p−1)

= 1. It fol-
lows that the Weil pairing restricted on G1 ×Gp is degenerate. That’s incorrect.
So φ̂(D2) = [λ]D2. ��

Therefore, on this family of curves, we can get Gλ = G1 and Gλ−1 = Gp and
use automorphism φ to define the omega pairing. Therefore, the new pairing is
non-degenerate since the Weil pairing on G1 × Gp is non-degenerate.

4.2 Family II

In this subsection, we study another family of non-supersingular hyperelliptic
curves defined by the equation [11]

C : y2 = x5 + a, a ∈ F
∗
p, p ≡ 1(mod 5),

where the embedding degree is 5. In this case, our results also can be generalised
easily to other curves in this form with the embedding degree k is divisible by



178 S. Chen et al.

5. Curves of this form have automorphisms φ : (x, y) �→ (ζ5x, y) and φ̂ : (x, y) �→
(ζ5−1x, y), where ζ5 is a primitive 5-th root of unity in Fp. Then φ induces a
non-trivial automorphism of order 5, which is also denoted by φ.

φ : JC(Fp) −→ JC(Fp),
[x2 + u1x + u0, v1x + v0] �−→ [x2 + ζ5u1x + ζ5

2u0, ζ5
−1v1x + v0],

[x + u0, v0] �−→ [x + ζ5u0, v0],
0 �−→ 0.

Similarly, φ̂ also induces an automorphism on JC(Fp).

φ̂ : JC(Fp) −→ JC(Fp),
[x2 + u1x + u0, v1x + v0] �−→ [x2 + ζ5

−1u1x + ζ5
−2u0, ζ5v1x + v0],

[x + u0, v0] �−→ [x + ζ5
−1u0, v0],

0 �−→ 0.

It’s easy to check that φ ◦ φ̂ = φ̂ ◦ φ = [1]. With the similar reasons as the
first family of curves, πp, φ and φ̂ have the same eigenspaces on JC(Fp)[r] and
two eigenvalues of φ and φ̂ on the same eigenspace are reciprocal. Since φ and
φ̂ have the same characteristic polynomial P (t) = t4 + t3 + t2 + t + 1, so all
eigenvalues of φ and φ̂ are primitive 5-th root of unity in Fr.

Let G1 and Gp denote the 1-eigenspace and p-eigenspace of πp, where G1 =
〈D1〉 and Gp = 〈D2〉. Let D1 = ρ(D1) ,D2 = ρ(D2) and φ(D1) = [λ]D1. Then
we can prove φ̂(D2) = [λ](D2).

Lemma 5. With notation as above, we have φ̂(D2) = [λ](D2).

Proof. Suppose the eigenvalues of φ̂ on Gp is ν such that φ̂(D2) = [ν](D2). Since
the embedding degree is 5, p5 ≡ 1(mod r). Therefore, p, ν and λ are primitive
5-th roots of unity in Fr. Let ν = pj(mod r) with j ∈ Z, then φ̂(D2) = [ν](D2) =
[pj ]D2 = πp

j(D2). Let mr = λ5 − 1 with m ∈ Z. Following Eq. (1), we know the
power of the Tate pairing

et(D1,D2)m = fm
r,D1

(ε(D2))
p5−1

r

=
∏4

i=0 fλi

λ,D1
(ε(φ̂4−i(D2)))

p5−1
r

=
∏4

i=0 fλi

λ,D1
(ε(πj(4−i)

p (D2)))
p5−1

r

= fλ,D1(ε(D2))Σ4
i=0λipj(4−i) p5−1

r .

It’s easy to check that, Σ4
i=0λ

ipj(4−i) �= 0(mod r) if and only if λ = pj(mod r).
Since the Tate pairing is non-degenerate, so λ = pj . Thus φ̂(D2) = [ν](D2) =
[pj ]D2 = [λ](D2). ��

The result above shows that, on this family of curves, we can also use auto-
morphism φ to define the omega pairing over G1 × Gp.
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5 Efficiency Analysis

Generally, the Tate pairing can be computed more efficiently than the Weil
pairing because the latter involves two Miller iteration loops. However, the Weil
pairing computation does not need the final exponentiation. So when the Miller
iterations is less costly than the final exponentiation, the Weil pairing could be
faster than the original Tate pairing. As a variant based on the Weil pairing, the
omega pairing has advantages that its Miller loop length is very short and the
final exponentiation is simple.

In the following, we analysis an example curve in Family I proposed by Fan
et al. [11] which is given by the equation

C : y2 = x5 + 9x,

and the hexadecimal representation of parameters are as follows

p = 0000016b 953ca333 acf202b3 0476f30f ff085473 6d0a0be4
c542fa48 66e5afba 7bc6cd6d 21ca9fad eef796f1 (329 bits),

r = 00000006 a37991af 81ddfa3a ead6ec83 1ca0fc44 75d5add9 (163 bits),
λ = 243 + 210.

For this curve we have Gλ = Gp ⊆ JC(Fp4). According to Algorithm 1 in
Sect. 3.2, the total cost of computing this omega pairing is given as

43 · (TD1 + TD2 + TG1 + TG2 + 3Tm4 + Ts4)

+2(TA1 + TA2 + TG1 + TG2 + 3Tm4) + 2Tm4 + Ts4 + I4,

where I4 denotes the inversion in Fp4 .
Choie and Lee [19] showed that the Miller rational function is G(x, y) =

y−l(x)
u3(x)

. Suppose that the above divisors D1 = [u1(x), v1(x)],D2 = [u2(x), v2(x)]
are general. since π2

p(D2) = [p2](D2) = [−1](D2), then u2(x) ∈ Fp2 [x]. Denote
[n]Di = [uin(x), vin(x)] with n ∈ Z, we can similarly obtain u1n(x) ∈ Fp[x],
u2n(x) ∈ Fp2 [x]. Then denominator elimination can be applied to avoid the
computation of u3(x) when we evaluate G(x, y) for both D1 and D2.

In [19], Choie and Lee gave costs of doubling and adding general divisors
for the most common case in affine coordinates. Although Fan et al. [12] has
improved the results in project coordinates, the corresponding Miller rational
function G(x, y) is only efficient for the Tate-like pairings. Here we need to com-
pare Tate-like and Ate-like pairings, so we utilize the costs from [19] for our rough
estimation. Let Ms, Ss, Is denote multiplication, squaring and inversion in the
finite field Fqs . If we use the pairing-friendly fields with s = 2i3j , then we esti-
mate Ms = 3i5jM1, Ss = 3i5jS1 [4]. Follwing above relations, the corresponding
costs in Algorithm 2 are given as follow

– TD1 = I + 4S + 22M , TD2 = I + 38S + 164M
– TA1 = I + 3S + 23M , TA2 = I + 23S + 149M
– TG1 = 21M , TG2 = 33M ,

where M,S, I denote multiplication, squaring and inversion in the finite field Fp.
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Generally, the final exponentiation of the Tate pairing f
p4−1

r can be divided
into two parts. The easy part is to compute fp2−1, which costs I4 + M4. The
hard part f

p2+1
r can be obtained by Lucas Exponentiation. The specific details

of the analysis can be found in [20,22].
In order to show the efficiency of the omega pairing, we estimate the costs

of the original Tate pairing, the improved Tate pairing, the optimal Ate pairing,
Weil pairing and the omega pairing in Table 1. In [13], the authors improved the
original Tate pairing and computed costs for degenerate divisors in project coor-
dinates. Here we use the same pairing and computed costs for general divisors.
The hyperelliptic Ate pairing has no final exponentiation, but its Miller loop is
log2 p = 329. Therefore, the whole costs is obviously more expensive than that of
other pairings. So we omit the hyperelliptic Ate pairing and consider the optimal
Ate pairing. Since the specific form of the optimal Ate pairing is unknown, we
estimate the costs roughly by supposing the Miller loop is r

ϕ(k) ≈ 82 and the
hamming weight of Mliier loop is 41.

Table 1. Costs of Computing Pairings for General Divisors.

Pairing Doubling Adding Miller Loop Final Expo. Total

original Tate I + 13S + 52M I + 3S + 53M 163 I + 1493S + 1502M 253I + 3879S + 14695M

Tate [13] I + 22S + 82M I + 3S + 83M 43 I + 1493S + 1502M 46I + 2445S + 5470M

optimal Ate I + 47S + 215M I + 23S + 200M 82 I + 1493S + 1502M 124I + 6299S + 27341M

Weil 2I + 51S + 267M 2I + 26S + 253M 163 no cost 504I + 10636S + 66047M

Omega 2I + 51S + 267M 2I + 26S + 253M 43 I + 8S + 17M 91I + 2262S + 12013M

Table 1 shows that, as a super-optimal pairing, the omega pairing is more
efficient than other pairings except the improved Tate pairing. This result is
mainly benefits from its short Miller loop. Since the embedding degree in the
example is small and the final exponentiation is not expensive, the simple expo-
nentiation of the omega pairing hasn’t made great contribution. Therefore, when
the Miller loop of the improved Tate pairing becomes as short as its Miller loop,
the omega pairing loses competitiveness. So when the embedding degree is large
and the final exponentiation of the Tate pairing is very expensive, the omega
pairing may be more competitive.

6 Conclusion and Future Work

In this paper, we generalize the omega pairing on elliptic curves to hyperelliptic
curves. As the variant of the Weil pairing, the omega pairing has advantages
that its Miller loop length is very short and the final exponentiation is simple.
So it can be faster than most pairings in some hyperelliptic curves.

Generally speaking, the Tate-like pairings are always more efficient than
the Ate-like pairings on hyperelliptic curves. Because the costs of doubling and
adding general divisors in extension field are many times more expensive than
in the base field. Though the optimal omega pairing has short Miller loop length
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and simple final exponentiation, it is slower than the improved Tate pairing.
So the research on how to use high degree twists for faster computations of
hyperelliptic pairings is one of our future work.

On the other hand, this is the first time to construct the variant of weil
pairing using authorphisms on hyperelliptic curve. Since the authorphisms group
on hyperelliptic curves are large and complex, it would be worth to study how
to speed up pairing computation using automorphisms. That’s also a direction
of our future work.
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A Explicit Proofs

Proof of Lemma 1: We denote Dl = ε(Dl) − ml(P∞) for l = 1, 2 and [k]Dl =
ε([k]Dl)−mlk(P∞) for k = i, j. Let u∞ be a Fq-rational uniformizer for P∞ and
assume supp(div(u∞)) ∩ supp(ε(D1)) = ∅. Thus

supp(div(fi,D1)) ∩ supp((jm2 − m2j)(P∞) + div(
1

u∞(jm2−m2j)
)) = ∅.

Since fi,D1 is a Fq-rational function, so
(

fi,D1((jm2 − m2j)(P∞) + div(
1

u∞(jm2−m2j)
))

)q−1

= 1

by Fermat’s Little Theorem. According to Weil reciprocity [23] , we have
(
fi,D1(ε([j]D2))f

−j
i,D1

(ε(D2))
)q−1

=
(
fi,D1(ε([j]D2) − jε(D2) + (jm2 − m2j)(P∞) + div( 1

u∞(jm2−m2j) ))
)q−1

=
(
fi,D1([j]D2 − jD2 + div( 1

u∞
(jm2−m2j) ))

)q−1

=
(
fi,D1(div((fj,D2u∞(jm2−m2j))−1))

)q−1

=
(
(fj,D2u∞(jm2−m2j))−1(div(fi,D1))

)q−1

=
(
fj,D2u∞(jm2−m2j)([i]D1 − iD1)

)q−1

= (fj,D2(ε([i]D1) − iε(D1)))
q−1 (

u∞(jm2−m2j)(ε([i]D1) − iε(D1))
)q−1

· (fj,D2u∞(jm2−m2j)((im1 − m1i)(P∞))
)q−1

=
(
fj,D2(ε([i]D1))f−i

j,D2
(ε(D1))

)q−1

.

In fact, u∞ and reduced divisor D1 are Fq-rational, so
(
u∞(jm2−m2j)(ε([i]D1) − iε(D1))

)q−1

= 1.
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On the other hand, ordP∞(fj,D2u∞(jm2−m2j)) = 0 shows that this function is
defined on P∞. Then fj,D2u∞(jm2−m2j) is normalised implies that

fj,D2u∞(jm2−m2j)(P∞) = lc∞(fj,D2u∞(jm2−m2j)) = 1. (2)

So the last indentity holds and it is followed by the equation

(
fi,D1(ε([j]D2))
fj,D2(ε([i]D1))

)q−1

=

(
f j

i,D1
(ε(D2))

f i
j,D2

(ε(D1))

)q−1

.

��
Proof of Lemma 2: Let φ be the Fq-rational automorphism defined in Theorem
1, then [λ]D1 = φ(D1). Since the automorphism is also an isogeny, so we can
denote its daul isogeny as φ̂, where φ ◦ φ̂ = [1] and φ̂ is also Fq-rational. Thus
[λ]D2 = φ̂(D1). According to Lemma 3 in [11], we have fλ,[λ]D1 = αfλ,D1 ◦ φ̂
with α ∈ Fq. By mathematical induction, the identity can be obtained. Following
Lemma 1, let i = j = λ, we have

(
fλ,D1(ε([λ]D2))
fλ,D2(ε([λ]D1))

)q−1

=
(

fλ,D1(ε(D2))
fλ,D2(ε(D1))

)λ(q−1)

.

Suppose the identity in Lemma 2 holds for i, we can prove it also holds for i+1.
In fact,

(
fλ,D1 (ε([λ

i+1]D2))

fλ,D2 (ε([λ
i+1]D1))

)q−1

=
(

fλ,D1 (ε(φ̂
i([λ]D2)))

fλ,D2 (ε([λ][λ
i]D1))

)q−1

=
(

fλ,D1 (φ̂
i(ε([λ]D2)))

fλ,D2 (ε([λ][λ
i]D1))

)q−1

=
(

fλ,[λi]D1
(ε([λ]D2))

fλ,D2 (ε([λ][λ
i]D1))

)q−1

=
(

fλ,[λi]D1
(ε(D2))

fλ,D2 (ε([λ
i]D1))

)λ(q−1)

=
(

fλ,D1 (ε([λ
i]D2))

fλ,D2 (ε([λ
i]D1))

)λ(q−1)

=
(

fλ,D1 (ε(D2))

fλ,D2 (ε(D1))

)λi+1(q−1)

.

The mathematical induction gives the result of this lemma. ��
Proof of Lemma 3: To prove the result, it suffices to show that((

fλ,D1 (ε(D2))

fλ,D2 (ε(D1))

)q−1
)r

= 1. As is stated in Lemma 1, u∞ is a Fq-rational uni-

formizer for P∞. For the similar reasons with Equation (2),

fλ,D2u∞((λ−1)m2)(P∞) = fr,D2u∞rm2(P∞) = 1.
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Assume div(u∞) = P∞ + D∞ and supp(D∞) ∩ supp(div(fr,D1)) = ∅. According
to Weil reciprocity [23] and Fermat’s Little Theorem, we have

(
fλ,D1 (ε(D2))

fλ,D2 (ε(D1))

)(q−1)r

=
(

fλ,D1 (ε(D2)−m2(P∞)+div(um2∞ ))

fλ,D2u∞(λ−1)m2 (ε(D1)−m1(P∞))

)(q−1)r

=
(

fλ,D1 (rD2+div(urm2∞ ))

fλ,D2u∞(λ−1)m2 (rD1)

)(q−1)r

=
(

fr,D2u∞rm2 (λD1−[λ]D1)

fr,D1 (λD2−[λ]D2+div(u
(λ−1)m2∞ ))

)q−1

=
(

fr,D2 (λε(D1)−ε([λ]D1))u∞rm2 (λε(D1)−ε([λ]D1))fr,D2u∞rm2 (−(λ−1)m1(P∞))

fr,D1 (λε(D1)−ε([λ]D1))fr,D1 (D∞)

)q−1

=
(

fr,D2 (λε(D1))

fr,D1 (λε(D2))

fr,D1 (ε([λ]D2))

fr,D2 (ε([λ]D1))

)q−1

=
(

fr,D2 (ε(D1))

fr,D1 (ε(D2))

)λ (
fr,[λ]D1 (ε(D2))

fr,D2 (ε([λ]D1))

)q−1

=
(
(−1)rm1m2er(D1,D2)λ(−1)rm1m2er(D2, [λ]D1)

)q−1

=
(
er(D1,D2)λer(D2,D1)λ

)q−1

= 1

This complete the proof of Lemma 3.
��
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Abstract. Elliptic curve can be seen as the intersection of two quadratic
surfaces in space. In this paper, we used the geometry approach to
explain the group law for general elliptic curves given by intersection
of two quadratic surfaces, then we construct the Miller function over the
intersection of quadratic surfaces. As an example, we obtain the Miller
function of Tate pairing computation on twisted Edwards curves. Then
we present the explicit formulae for pairing computation on Edwards
curves. Our formulae for the doubling step are a littler faster than that
proposed by Arène et al.. Moreover, when j = 1728 and j = 0 we consider
quartic and sextic twists to improve the efficiency respectively. Finally,
we present the formulae of refinements technique on Edwards curves to
obtain gain up when the embedding degree is odd.

Keywords: Edwards curves · Tate pairing · Miller functions · Cryptog-
raphy

1 Introduction

To compute pairings efficiently is always a bottleneck for implementing pairing-
based cryptography. The basic method of computing pairings is Miller’s algorithm
[20]. Consequently, various improvements were presented in [1,13,14,17,21].
One way to improve the efficiency is to find other models of elliptic curves which
can provide more efficient algorithms for pairing computation. Edwards curves
were one of the popular models. Edwards curve was discovered by Edwards [9] and
was applied in cryptography by Bernstein and Lange [2]. Then twisted Edwards
curves which are the generalization of Edwards curves were introduced by Bern-
stein et al. in [3]. Bernstein and Lange also pointed out several advantages of
applying the Edwards curves to cryptography. Edwards curves are far superior
in elliptic curve cryptography because of fast addition formulae. Pairing compu-
tation over Edwards curves was first considered in [8,16]. In 2009, Arène et al. [1]
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gave the geometric interpretation of the group law and presented explicit formu-
lae for computing the Tate pairing on twisted Edwards curves. Their formulae are
faster than all previously proposed formulas for pairings computation on twisted
Edwards curves. Their formulae are even competitive with all published formulae
for pairing computation on Weierstrass curves.

Any elliptic curve defined over a field K with characteristic different from 2
is birationally equivalent to an Edwards curve over some extension of K, i.e. a
curve given by x2 + y2 = 1+dx2y2 with d �∈ {0, 1}. In fact, the twisted Edwards
can be seen as the intersection of two quadratic surfaces in space. That is to say
the twisted Edwards curves can be given by Sa,d : aX2+Y 2 = Z2+dW 2, XY =
ZW . For general elliptic curves given by intersection of two quadratic surfaces,
the geometric interpretation of group law had been discussed by Merriman et al.
in [19]. In some situations it is more effectively to write an elliptic curve as the
intersection of two quadratic surfaces in space. Jacobi quartic curve is another
example of the importance [7,18]. In [22], we use a straightforward way give the
elaborate geometric interpretation of the group law on twisted Edwards curves
which are seen as the intersection of two quadric surfaces in space. In this paper,
we used the geometry approach of [19] to explain the group law for general
elliptic curves given by intersection of two quadratic surfaces, then we construct
the Miller function over the intersection of quadratic surfaces. As an example,
we obtain the Miller function of Tate pairing computation on twisted Edwards
curves. Of course, you can use a similar approach to compute Tate pairing on any
elliptic curves given by intersection of two quadratic surfaces. However, for the
sake of integrity, we recalculate the explicit formulae for pairing computation
on twisted Edwards curves. The high-twists had been sufficiently studied by
Costello, Lange and Naehrig [6] on Weierstrass curves. As the result given by
[11], one elliptic curve and its quartic/sextic twist can’t both be written in a
rational twisted Edwards form, so we turn to Weierstrass curves for the high-
degree twists of twisted Edwards curves. These twists enable us to reduce the
cost of substituting to a half and a third respectively in j = 1728 case and j = 0
case. For Edwards curves, it is an interesting problem to find an efficient way to
compute ate pairing on twisted Edwards curves.

When the embedding degree is even, the traditional denominator elimina-
tion technique is used. While the denominator elimination can not be used if the
embedding degree is odd, so we consider the refinement technique to improve the
efficiency. In [5], Blake et al. presented three refinements to Miller’s algorithm
over Weierstrass curves by reducing the total number of vertical lines in Miller’s
algorithm. This method can be used for both Weil and Tate Pairing over Weier-
strass curves with any embedding degree. In [23], L. Xu and D. Lin study the
refinements formulas for Edwards curves. If we see the Edwards curves as the
intersection of two quadratic surfaces in space, our refinements over Edwards
curves cost less than the refinements of L. Xu and D. Lin [23], because in our
method we use one plane to replace two lines of the Miller function in [23].

In this paper, we use m and s denote the costs of multiplication and squaring
in the base field Fq while M and S denote the costs of multiplication and squaring
in the extension Fqk .
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2 Tate Pairing

Let p > 3 be a prime and Fq be a finite field with q = pn. E is an elliptic
curve defined over Fq with neutral element denoted by O. r is a prime such that
r|#E(Fq). Let k > 1 denote the embedding degree with respect to r, i.e. k is the
smallest positive integer such that r|qk − 1. For any point P ∈ E(Fq)[r], there
exists a rational function fP defined over Fq such that div(fP ) = r(P ) − r(O),
which is unique up to a non-zero scalar multiple. The group of r-th roots of unity
in Fqk is denoted by μr. The reduced Tate pairing is then defined as follows:

Tr : E(Fq)[r] × E(Fqk) → μr : (P,Q) �→ fP (Q)(q
k−1)/r.

The rational function fP can be computed in polynomial time by using
Miller’s algorithm [20]. The main ideal of Miller’s algorithm is to inductively
build up such a function fP by constructing the function fn,P . The function
fn,P is defined by (fn,P ) = n(P ) − ([n]P ) − (n − 1)(O), n is an integer smaller
than r.

Let gP,T ∈ Fq(E) be the rational function satisfying div(gP,T ) = (P )+ (T )−
(O) − (P + T ), where P + T denotes the sum of P and T on E, and additions
of the form (P ) + (T ) denote formal additions in the divisor group.

If P ∈ E, define f0,P = f1,P = 1. Inductively, for n > 0, define fn+1,P :=
fn,P gP,nP , then we have

fm+n,P = fm,P · fn,P · gmP,nP .

3 Edwards Curves

In this section, we review the preliminaries of Edwards curves. Let Fq be a finite
field with characteristic greater than 3. A twisted Edwards curve is a quartic
curve over Fq, defined by

Ea,d : ax2 + y2 = 1 + dx2y2,

where a, d are distinct nonzero elements of Fq. In [3], Bernstein et al. proved
that an elliptic curve over a field K with the group 4|�E(K) if and only if E
is birationally equivalent over K to a twisted Edwards curve. The sum of two
points (x1, y1) and (x2, y2) on the twisted Edwards curve Ea,d is

(x1, y1) + (x2, y2) =
(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − ax1x2

1 − dx1x2y1y2

)
.

The point (0, 1) is the unit of the addition law. The inverse of a point (x, y)
on Ea,d is (−x, y).

In fact, the twisted Edwards curve can be seen as the intersection of two
quadric surfaces in space. That is, the twisted Edwards curve can be written as:

Sa,d : aX2 + Y 2 = Z2 + dW 2, XY = ZW. (1)
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Set O = (0 : 1 : 0 : 1) as the neutral element, the group law on (1) is given by

−(X : Y : W : Z) = (−X : Y : −W : Z)

and
(X1 : Y1 : W1 : Z1) + (X2 : Y2 : W2 : Z2) = (X3 : Y3 : W3 : Z3)

where
X3 = (X1Y2 + Y1X2)(Z1Z2 − dW1W2),
Y3 = (Y1Y2 − aX1X2)(Z1Z2 + dW1W2),

W3 = (Y1Y2 − aX1X2)(X1Y2 + X2Y1),
Z3 = (Z1Z2 − dW1W2)(Z1Z2 + dW1W2)

(2)

The point O′ = (0 : −1 : 0 : 1) has order 2. Note that the above formula is
unified, that is it can be applied to both adding two distinct points and doubling
a point. The fast arithmetic on twisted Edwards given by Sa,d can be found in
[4,15].

4 Group Law Over the Intersection of Quadratic Surfaces

Let E denote the intersection of quadratic surfaces. The group law of this kind of
curve is different from that of cubic curves. We consider projective planes which
are given by homogeneous projective equations Π = 0. In this paper, we still use
the symbol Π to denote projective planes. In fact, any plane Π intersects E at
exactly four points. Although these planes are not functions on E, their divisors
can be well defined as:

(Π) =
∑

P∈Π∩E

nP (P ) (3)

where nP is the intersection multiplicity of Π and E at P . Then the quotient
of two projective planes is a well defined function which gives principal divisor.
Let O ∈ E(Fq) be the neutral element, there must be a plane intersects E with
multiply three at O, and its fourth intersecting points with E is O′. It is also
obvious that P1, P2, P3 and P4 are coplaner if and only if P1+P2+P3+P4 = O′.

4.1 Miller Function Over the Intersection of Quadratic Surfaces

In this section we construct the Miller function over the intersection of quadratic
surfaces.

Let E be the intersection of two quadratic surfaces, O is the neutral element;
P1 and P2 be two different points on E, ΠP1,P2,O′ denote the projective plane
passing through P1, P2 and O′. The group law given above shows that −P1 −P2

is the third intersection, by (3) we can get:

(ΠP1,P2,O′) = (P1) + (P2) + (−P1 − P2) + (O′)

Similarly, ΠT+P,O,O′ intersects with E at P1 + P2, O′, O and −P1 − P2. Then:

(ΠP1+P2,O,O′) = (P1 + P2) + (O) + (O′) + (−P1 − P2)
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Thus,

(
ΠP1,P2,O′

ΠP1+P2,O,O′
) = (P1) + (P2) − (P1 + P2) − (O)

The geometry interpolation derives the formula of Miller’s function directly. The
Miller’s function with divisor (P1) + (P2) − (P1 + P2) − (O) can be given

gP1,P2 =
ΠP1,P2,O′

ΠP1+P2,O,O′
(4)

In Miller’s algorithm, P is always a fixed point, T is always nP for some integer
n. For the addition steps, Miller function gT,P over E can be given by setting
P1 = T, P2 = P . For the doubling steps, Miller function gT,T over E is given by
setting P1 = P2 = T .

Note that the planes appear in the formula always pass through O′. Particu-
larly, if P1, P2 and O′ are pairwise distinct points on Sa,d. We use the equation
CXX +CY Y +CZZ +CW W = 0 to denote a projective plane. By solving linear
equations, we get the coefficients of the plane ΠP1,P2,O′ in Miller function of
twisted Edwards curves as follows:

CX = W2(Z1 + Y1) − W1(Z2 + Y2),
CY = X2W1 − X1W2,
CW = X1(Y2 + Z2) − X2(Z1 + Y1)

(5)

In the case that P1 = P2, we have

CX = Y1Z1 − aX2
1 , CY = X1Z1 − X1Y1, CW = dX1W1 − Z2

1 . (6)

5 Pairing Computation on Sa,d with Even Embedding
Degrees

In this section, we analysis computation steps in Miller’s algorithm explicitly.
The results in this section are mainly from [22]. For an addition step or doubling
step, each addition or doubling steps consist of three parts: computing the point
T + P or 2T and the function gT,P or gT,T , evaluating gT,P or gT,P at Q,
then updating the variable f by f ← f · gT,P (Q) or by f ← f2 · gT,T (Q).
The updating part, as operation in Fqk , costs 1M for addition step and 1M +
1S for doubling step. For the evaluating part, some standard methods such as
denominator elimination and subfield simplification can be used, as we introduce
below.

As usual, we choose P ∈ Sa,d(Fq)[r] and Q ∈ Sa,d(Fqk), where k > 1 is the
embedding degree. In fact as stated in [13], Q can be chosen from a subgroup
which is given by a twist of Sa,d. More precisely, for d = #Aut(Sa,d), there
is degree-d twist of Sa,d over Fqk/d denoted as E′ such that Q ∈ ψ(E′(Fqk/d))
with ψ : E′ → Sa,d an isomorphism over Fqk/d . It is noticeable that E′ is not
necessary to have a twisted Edwards model.

In this part, we assume that embedding degree k is even. Let δ be a gen-
erator of Fqk over Fqk/2 with δ2 ∈ Fqk/2 . Suppose Q′ = (X0 : Y0 : W0 : Z0) ∈
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Saδ−2,dδ−2(Fqk/2), we can see that Q = (X0 : δY0 : W0 : δZ0) ∈ Sa,d(Fqk). If
P3 = P1 + P2 �= O,O′, for evaluation of gP1,P2(Q), we have

gP1,P2(Q) =
ΠP1,P2,O′(Q)
ΠP3,O,O′(Q)

=
CXX0 + CY δ(Y0 + Z0) + CW W0

W3X0 − X3W0

=
CX

X0
Y0+Z0

+ CY δ + CW
W0

Y0+Z0

(W3X0 − X3W0)/(Y0 + Z0)
∈ (CXθ + CY δ + CW η)F∗

qk/2 ,

where θ = X0
Y0+Z0

and η = W0
Y0+Z0

. It is clearly that (W3X0 − X3W0)/(Y0 +
Z0) in F

∗
qk/2 , then it can be discarded in pairing computation thanks to the

final exponentiation, This fact is usually called the denominator elimination
technique.

In generally, Let Fq be an ordinary elliptic curve with neutral elements O ∈
E(Fq), then Miller function gP1,P2 =

ΠP1,P2,O′
ΠP1+P2,O,O′ =

ΠP1,P2,O′/ΠO,O,O′
ΠP1+P2,O,O′//ΠO,O,O′ . let

E′/Fq is a degree-d twist of E/Fq with d even, thus the isomorphism φ : E′ → E
is defined over Fqd . Then for any Q′ ∈ E′(Fq) and P �= O ∈ E(Fq), the value of
function ΠP,O,O′/ΠO,O,O′ ∈ Fq(E) at Q = φ(Q′) ∈ F

∗
qd/2 if Q �= ±P . Thus it is

eliminated by the final exponential.
Note that θ, η ∈ Fqk/2 are fixed during pairing computation, so they can be

precomputed. The coefficients CX , CY and CW are in Fq, thus the evaluation at
Q given the coefficients of the plane can be computed in km (multiplications by
θ and η need k

2m each).

Addition Steps. Let P1 = T and P2 = P be distinct points with Z1Z2 �= 0. By
variant of formula (2) and (5), the explicit formulas for computing P3 = T + P
and CX , CY , CW are given as follows:

A = X1 · X2, B = Y1 · Y2, C = Z1 · W2,D = Z2 · W1, E = W1 · W2,

F = (X1 − Y1) · (X2 + Y2) − A + B,G = B + aA,H = D − C,

I = D + C,X3 = I · F, Y3 = G · H,Z3 = F · G,W3 = I · H,

CX = (W1 − Y1) · (W2 + Y2) − E + B + H,CW = X2 · Z1 − X1 · Z2 − F,

CY = (X1 − W1) · (X2 + W2) − A + E.

With these formulas T + P and CX , CY , CW can be computed in 14m + 1mc,
where 1mc is constant multiplication by a. For a mixed addition step, in which
the base point P is chosen to have Z2 = 1, the costs reduce to 12m + 1mc.
Therefore, the total costs of an addition step are 1M+ km+ 14m+ 1mc, while
a mixed addition step costs 1M + km + 12m + 1mc.

Doubling Steps. For P1 = P2 = T , P3 = 2T . By the formulae of (2) and
(6), our explicit formulas for computing P3 = 2T and CX , CY , CW are given as
follows:
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A = X1
2, B = Y1

2, C = Z1
2,D = aA,E = B + D,F = 2C − E,

G = (X1 + Y1)2 − A − B,H = (Y1 + Z1)2 − B − C,

X3 = G · F, Y3 = E · (B − D), Z3 = E · F,W3 = G · (B − D),
2CX = H − 2D, 2CY = (X1 + Z1)2 − A − C − G,

2CW = d((X1 + W1)2 − A) − C − E.

By the above formulae, 2T and CX , CY , CW can be computed in 4m+7s+2mc,
where 2mc are constant multiplications by a and d. So total costs of our formulae
for a doubling step are 1M+1S+km+4m+7s+2mc. While the total costs of the
formulae for the doubling step proposed in [1] are 1M+1S+km+6m+5s+2mc,
where 2mc are both constant multiplication by a.

The following table shows the concrete comparison for doubling step(DBL),
mixed addition step (mADD) and addition step (ADD).

DBL mADD ADD

Arène et.al. [1] 1M + 1S + km 1M + km 1M + km

+6m + 5s + 2mc +12m + 1mc +14m + 1mc

This paper 1M + 1S + km 1M + km 1M + km

+4m + 7s + 2mc +12m + 1mc +14m + 1mc

5.1 Pairing Computation on Sa,d with Twists of Degree 4 or 6

Let d|k, an elliptic curve E′ over Fqk/d is called a twist of degree d of E/Fqk/d

if there is an isomorphism ψ : E′ → E defined over Fqk , and this is the small-
est extension of Fqk/d over which ψ is defined. Depending on the j-invariant
j(E) of E, there exist twists of degree at most 6, since char(Fq) > 3. Pairing
friendly curves with twists of degree higher than 2 arise from constructions with
j-invariants j(E) = 0 and j(E) = 1728.

The twisted Edwards curve ax2+y2 = 1+dx2y2 has j-invariant ja,d = 16(a2+
14ad + d2)3/ad(a − d)4, hence, the j-invariant of Ea,−a : ax2 + y2 = 1 − ax2y2

equal to 1728, thus, there exist twists of degree 4. The case a = 1 is the “classical”
Edwards curve x2 + y2 = 1 − x2y2 with complex multiplication D = −4 [12].
Furthermore, ja,d = 0 if and only if a = (−7 ± 4

√
3)d. Note that 3 is a square

in finite field Fq if and only if q ≡ ±1 (mod 12). Now we assume that q ≡ ±1
(mod 12) and a, d satisfy the relation a = (−7 ± 4

√
3)d. Then Edwards curve

Ea,d : ax2+y2 = 1+dx2y2 has j-invariant equal to 0, hence, there exist twists of
degree 6. The case a = 1 is the Edwards curve x2 + y2 = 1− (7+4

√
3)x2y2 with

complex multiplication D = −3 [12]. But Galbraith showed one elliptic curve
and its quartic/sextic twist can’t both be written in a rational twisted Edwards
form [11], so we turn to Weierstrass curves for the high-degree twists of twisted
Edwards curves.
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Twists of Degree 4

Lemma 1 ([22], Lemma 2). Assume that 4|k, δ is a generator of Fqk over
Fqk/4 and δ4 ∈ Fqk/4 , which implies δ2 ∈ Fqk/2 . Then the Weierstrass curve
Wa : 2

av2 = u3+ 1
δ4 u is a twist of degree 4 over Fqk/4 of Ea,−a. The isomorphism

can be given as

ψ : Wa −→ Ea,−a, (u, v) �−→ (x, y) =
(
u/δv, (δ2u − 1)/(δ2u + 1)

)
.

The inverse transformation is (x, y) �→ ((1 + y)/(δ2(1 − y)), (1 + y)/(δ3x(1 −
y))). For Q′ ∈ Wa(Fqk/4), we have (xQ, yQ) = ψ(Q′) ∈ Ea,−a(Fqk). Then its
corresponding point Q ∈ Sa,−a(Fqk) can be given as (XQ : YQ : WQ : ZQ) =
(xQ : yQ : xQyQ : 1). One can check by substitution that:

XQ + WQ

YQ + ZQ
= xQ =

u

δv
,

XQ − WQ

YQ + ZQ
= xQ · 1 − yQ

1 + yQ
=

1
δ3v

.

For θ = u
2v and η = 1

2v , we have XQ

YQ+ZQ
= θδ−1+ηδ−3 and WQ

YQ+ZQ
= θδ−1−ηδ−3

with θ, η ∈ Fqk/4 . Then for the evaluation of gP1,P2(Q) with P3 = P1+P2 �= O,O′,
we get

gP1,P2(Q) =
ΠP1,P2,O′(Q)
ΠP3,O,O′(Q)

=
CX

XQ

YQ+ZQ
+ CY + CW

WQ

YQ+ZQ

W3
XQ

YQ+ZQ
− X3

WQ

YQ+ZQ

=
CX(θδ−1 + ηδ−3) + CY + CW (θδ−1 − ηδ−3)

W3(θδ−1 + ηδ−3) − X3(θδ−1 − ηδ−3)

=
(CX − CW )η + (CX + CW )θδ2 + CY δ3

(W3 + X3)η + (W3 − X3)θδ2

∈ ((CX − CW )η + (CX + CW )θδ2 + CY δ3)F∗
qk/2 .

So we can reduce gP1,P2(Q) to (CX −CW )η+(CX +CW )θδ2+CY δ3. Moreover
we may precompute θ and η since they are fixed during the whole computation.
When CX , CY , CW ∈ Fq and θ, η ∈ Fqk/4 are given, the evaluation at Q can be
computed in k

2m, with k
4m each for multiplications by θ and η.

Consider Fqk as an Fqk/4-vector space with basis 1, δ, δ2, δ3. Then an arbitrary
element α ∈ Fqk can be denoted as a0 + a1δ + a2δ

2 + a3δ
3 with ai ∈ Fqk/4 , i =

0, 1, 2, 3. And the reduced value of g(Q) we’ve gotten above can be denoted as
β = b0+b2δ

2+b3δ
3, where b3 ∈ Fq and b0, b2 ∈ Fqk/4 . This special representation

may lead to some optimization of the main multiplication in Fqk , but when using
the field towering the cost will remain approximately 1M.

Therefore, the addition step costs 1M + (k
2 + 14)m + 1mc, where 1mc is

constant multiplication by a. For a mixed addition step, the costs reduce to
1M+(k

2 +12)m+1mc. The doubling step costs 1M+1S+(k
2 +4)m+7s+2mc,

where 2mc are constant multiplications by a and d.
When using the Schoolbook method, multiplying α by β costs 4 · k

4m for
computing ai · b3, i = 0, 1, 2, 3 and costs 8(k

4 )2m for ai · b0 and ai · b2. The total
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cost (k2

2 + k)m equals to ( 12 + 1
k )M, considering that a general multiplication in

Fqk costs M = k2m. Namely the quartic twist may reduce the cost of the main
multiplication in Miller’s algorithm to (12 + 1

k )M. Therefore, the addition step
costs ( 12 + 1

k )M+ (k
2 + 14)m+ 1mc, where 1mc is constant multiplication by a.

For a mixed addition step, the costs reduce to (12 + 1
k )M + (k

2 + 12)m + 1mc.
The doubling step costs (12 + 1

k )M+ 1S+ (k
2 + 4)m+ 7s+ 2mc, where 2mc are

constant multiplications by a and d.
By the way, according to the definition of Ate pairing, the point addition and

doubling are performed in Fqk . Thanks to the Lemma 1, we can choose Q′ ∈ Wa

such that Q = ψ(Q′) ∈ Sa,−a. So, is there a efficient way to compute ate pairing
on twisted Edwards curves?

Twists of Degree 6. We denote M = 2(a+d)
a−d and N = 4

a−d when given a, d.

Lemma 2 ([22], Lemma 3). Assume that 6|k, δ is a generator of Fqk over Fqk/6

with δ6 ∈ Fqk/6 , which implies δ2 ∈ Fqk/2 and δ3 ∈ Fqk/3 . Then the Weierstrass
elliptic curve WM,N : v2 = u3 − M3N3

27 δ6 is a twist of degree 6 over Fqk/6 of Ea,d.
The isomorphism can be given as

ψ : Wa −→ Ea,d, (u, v) �−→ (x, y) =

(
Nδ(3u − MNδ2)

3v
,
3u − MNδ2 − 3Nδ2

3u − MNδ2 + 3Nδ2

)

.

The inverse transformation is (x, y) �→ ((y(MNδ2 −3Nδ2)− (MNδ2 +3Nδ2))/3
(y − 1),−N2δ3(1 + y)/x).

Similarly with the twists of degree 4 case, for the evaluation of gP1,P2(Q)
with P3 = P1 + P2 �= O,O′, we get

gP1,P2(Q) =
ΠP1,P2,O′(Q)
ΠP3,O,O′(Q)

=
CX

XQ

YQ+ZQ
+ CY + CW

WQ

YQ+ZQ

W3
XQ

YQ+ZQ
− X3

WQ

YQ+ZQ

=
CX(θδ−5 + (3 − M)ηδ−3) + CY + CW (θδ−5 − (3 + M)ηδ−3)

W3(θδ−5 + (3 − M)ηδ−3) − X3(θδ−5 − (3 + M)ηδ−3)

=
(CX + CW )θ + (3(CX − CW ) − M(CX + CW ))ηδ2 + CY δ5

(W3 − X3)θ + (3(W3 + X3) − M(W3 − X3))ηδ2

∈ ((CX + CW )θ + (3(CX − CW ) − M(CX + CW ))ηδ2 + CY δ5)F∗
qk/2 .

So we can reduce gP1,P2(Q) to the representative in the last line. Moreover we
may precompute θ and η since they are fixed during the whole computation.
When CX , CY , CW ∈ Fq and θ, η ∈ Fqk/6 are given, the evaluation at Q can
be computed in k

3m + mc, with k
6m each for multiplications by θ and η and a

constant multiplication by M = 2(a+d)
a−d .

Furthermore, the reduced g(Q) can be denoted as β = b0 + b2δ
2 + b5δ

5,
where b5 ∈ Fq and b0, b2 ∈ Fqk/6 . The cost of main multiplication is still 1M
with some possibilities of further optimization. Therefore, the addition step costs
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1M + (k
3 + 14)m + 2mc. For a mixed addition step, the costs reduce to 1M +

(k
3 + 12)m + 2mc. The doubling step costs 1M + 1S + (k

3 + 4)m + 7s + 3mc.
Likewise, when using the Schoolbook method, multiplying α by β costs 6· k

6m
for computing ai ·b5, i = 0, 1, 2, 3 and costs 12(k

6 )2m for ai ·b0 and ai ·b2. The total
cost (k2

3 + k)m equals to ( 13 + 1
k )M, considering that a general multiplication in

Fqk costs M = k2m. Namely the sextic twist may reduce the cost of the main
multiplication in Miller’s algorithm to (13 + 1

k )M. Therefore, the addition step
costs ( 13+ 1

k )M+(k
3+14)m+2mc, where 2mc are multiplications by a and 2(a+d)

a−d .
For a mixed addition step, the costs reduce to (13 + 1

k )M + (k
3 + 12)m + 2mc.

The doubling step costs (13 + 1
k )M+ 1S+ (k

3 + 4)m+ 7s+ 3mc, where 3mc are
multiplications by a, d and 2(a+d)

a−d .
The following table shows the total cost of Tate pairing computation on

twisted Edwards curves with j = 1728 or j = 0.

DBL mADD ADD

This paper 1M + 1S + k
2
m 1M + k

2
m 1M + k

2
m

j = 1728 +4m + 7s + 2mc +12m + 1mc +14m + 1mc

This paper 1M + 1S + k
3
m 1M + k

3
m 1M + k

3
m

j = 0 +4m + 7s + 3mc +12m + 2mc +14m + 2mc

6 Refinements Over Twisted Edwards Curves

When the embedding degree is odd, to improve the efficiency we may use the
refinements technique to reduce the cost of the multiplication and squaring in
the extension field Fqk . The refinements technique is first prosed by [5]. In [23],
L. Xu and D. Lin study the refinements formulas for Edwards curves. From
formula (4), the iterative formula over the intersection of quadratic surfaces can
be rewritten as:

fn,P · fm,P · gnP,mP = fn,P · fm,P · ΠnP,mP,O′

Π(n+m)P,O′,O

In fact, we can study the refinements over Edwards curves based on the following
observations.

Theorem 1.

ΠT,T,O′

Π2T,O′,O
· Π2T,P,O′

Π2T+P,O′,O
=

ΠT,T,O′

Π−2T,−P,O′
· ΠP,O′,O

ΠO′,O,O

Proof. By the group law described in Sect. 4, we can get

(
ΠT,T,O′

Π2T,O′,O
· Π2T,P,O′

Π2T+P,O′,O
) = 2(T ) + (P ) − (2T + P ) − 2(O)
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we reconstruct the divisor 2(T ) + (P ) − (2T + P ) − 2(O) as:

(T ) + (T ) + (O′) + (−2T ) + (P ) + (O′) + (O) + (−P )
(−2T ) + (−P ) + (O′) + (2T + P ) + (O) + 3(O′)

while, from the formula (3) the above divisor is exactly

(
ΠT,T,O′

Π−2T,−P,O′
· ΠP,O′,O

ΠO′,O,O
)

Since, in the Miller’s algorithm we choose all the rational functions to be nor-
malized. Thus,

ΠT,T,O′

Π2T,O′,O
· Π2T,P,O′

Π2T+P,O′,O
=

ΠT,T,O′

Π−2T,−P,O′
· ΠP,O′,O

ΠO′,O,O

	

Theorem 2.

Π4T,riP,O′

Π4T+riP,O′,O
· Π2T,2T,O′

Π4T,O′,O
· Π2

T,T,O′

Π2
2T,O′,O

=
Π2

T,T,O′

Π−2T,−2T,O′ · Π4T+riP,O′,O
· Π4T,riP,O′

ΠO′,O,O

Proof. By the group law described in Sect. 4, we can get

(
Π4T,riP,O′

Π4T+riP,O′,O
· Π2T,2T,O′

Π4T,O′,O
· Π2

T,T,O′

Π2
2T,O′,O

) = 4(T ) + (riP ) − (4T + riP ) − 4(O)

we reconstruct the divisor 4(T ) + (riP ) − (4T + riP ) − 4(O) as:

2(T ) + 2(T ) + 2(O′) + 2(−2T ) + (4T ) + (riP ) + (O′) + (−4T − riP )
2(−2T ) + (O′) + (4T ) + (4T + riP ) + (O′) + (O) + (−4T − riP ) + (O′) + 3(O)

while, by the formula (3) we can get the above divisor is exactly

(
Π2

T,T,O′

Π−2T,−2T,O′ · Π4T+riP,O′,O
· Π4T,riP,O′

ΠO′,O,O
)

since, in the Miller’s algorithm we choose all the rational functions to be nor-
malized. So we have:

Π4T,riP,O′

Π4T+riP,O′,O
· Π2T,2T,O′

Π4T,O′,O
· Π2

T,T,O′

Π2
2T,O′,O

=
Π2

T,T,O′

Π−2T,−2T,O′ · Π4T+riP,O′,O
· Π4T,riP,O′

ΠO′,O,O

	

2T+P-form Refinement. In the ith basic Miller iteration of Algorithm 1, we
can displace the explicit formula of f as follows:

f ← f2 · ΠT,T,O′(Q)
Π2T,O′,O(Q)

· Π2T,P,O′(Q)
Π2T+P,O′,O(Q)
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Our 2T + P -form refinement is based on Theorem 1, the formula of f in the ith
basic Miller iteration in our algorithm is:

f ← f2 · ΠT,T,O′(Q)
Π−2T,−P,O′(Q)

· ΠP,O′,O(Q)
ΠO′,O,O(Q)

4T+riP–form Refinements. When ri = 0, 1, 2, 3, in the ith basic Miller
iteration of Algorithm 4.1 in [5], we can display an explicit formula of f in the
ith basic Miller iteration as follows:

f ← f4 · fri,P · Π4T,riP,O′(Q)
Π4T+riP,O′,O(Q)

· Π2T,2T,O′(Q)
Π4T,O′,O(Q)

· Π2
T,T,O′(Q)

Π2
2T,O′,O(Q)

where f2,P = ΠP,P,O′
Π2P,O′,O

, f3,P = Π2P,P,O′
Π3P,O′,O

· ΠP,P,O′
Π2P,O′,O

, 2P and 3P can be precalcu-
lated. When ri = 0, the above formula turns to:

f ← f4 · Π2T,2T,O′(Q)
Π4T,O′,O(Q)

· Π2
T,T,O′(Q)

Π2
2T,O′,O(Q)

Our 4T + riP -form refinement is based on Theorem 2. The original formula of
updating f in the ith basic Miller’s iteration can be replaced as:

f ← f4 · fri,P · Π2
T,T,O′(Q)

Π−2T,−2T,O′(Q) · Π4T+riP,O′,O(Q)
· Π4T,riP,O′(Q)

ΠO′,O,O(Q)

When ri = 0 the above formula turns to:

f ← f4 · Π2
T,T,O′(Q)

Π−2T,−2T,O′(Q) · ΠO′,O,O(Q)

6.1 Pairing Computation on Sa,d with Odd Embedding Degrees

For a projective line Π, we define Π(Q) to be the value of Π
Z (Q), which is

actually the value of Π when substituting the coordinates of Q with ZQ = 1. If
we precalculate the coordinates of Q such that ΠO′,O,O(Q) = 1 (this can easily
be done in practice), then the plane ΠO′,O,O can be eliminated in our formulae.
In this case, we can save one multiplication. In most cases (see 3T + riP and
4T +riP -form refinements), the total number of the planes which present in each
new formula is smaller than that in original formula. This also can save some
multiplications of the extension field F

k
q .

In fact, the plane ΠT,O′,O is the equation WT X − XT W = 0. For any point
Q, if we precalculate its coordinates with WQ = 1, then:

ΠT,P,O′(Q) = CXXQ + CY (YQ + ZQ) + CW , ΠT,O′,O(Q) = WT XQ − XT .

so, it takes 2km to evaluate ΠT,P,O at Q, and km to evaluate ΠT,O′,O at Q.
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If we calculate the coordinates of Q such that XQ − WQ = 1, that is
ΠO′,O,O(Q) = 1, then:

ΠT,P,O′(Q) = CX +CY (YQ+ZQ)+(CW +CX)WQ, ΠT,O′,O(Q) = (WT −XT )XQ+XT .

so, it takes 2km to evaluate ΠT,P,O at Q, and km to evaluate ΠT,O′,O at Q.
The cost of updating points in our formulae is the same with the original

ones, so we ignore this cost in the base field in the following table.

Iteration forms 2T + P 3T 4T

Original algorithm 2S + 4M + 6km 2S + 4M + 6km 4S + 4M + 6km

Our algorithm 2S + 3M + 4km 2S + 3M + 5km 4S + 2M + 4km

Iteration forms 4T + P 4T + 2P 4T + 3P

Original algorithm 4S + 6M + 9km 4S + 8M + 9km 4S + 8M + 9km

Our algorithm 4S + 4M + 7km 4S + 6M + 7km 4S + 6M + 7km

The refinements over Edwards curves in [23] are corresponding to our 4T +
riP -refinements. Our 4T and 4T +P -refinement cost less than the “00” and “01”
cases in [23]. By combining their two lines into one plane we can reduce one M.
Comparing to their “10” and “11” cases, our 4T +2P and 4T +3P -refinement use
precalculation to get more improvements. See the comparison in the following
table.

4T (case“00”) 4T + P (case“01”) 4T + 2P (case“10”) 4T + 3P (case“11”)

Result 1 [23] 5S + 3M 4S + 7M 4S + 7M 4S + 11M

Result 2 [23] 5S + 3M 4S + 8M 4S + 8M 4S + 10M

Result this paper 4S + 2M 4S + 4M 4S + 6M 4S + 6M

Acknowledgment. This work was supported by National Natural Science Founda-
tion of China (No. 11101002, No. 11271129 and No. 61370187) and Beijing Natural
Science Foundation (No. 1132009).

A Examples of Pairing-Friendly Edwards Curves

We list some pairing friendly Edwards curves with various k=6,12,24. We use
construction 6.6 in [10] to present it. h = #S1,d(Fp)/r, ρ = log2(p)/ log2(r).

k =6, ρ = 1.99, �log2(p)� = 511, �log2(r)� = 257, �log2(p
k)� = 3063,

p =4469269309980865699858008332735282459011729442283504212242920046
5254107669101255894363776709837049695943172869161549919107677836
20776600027887471085196217,
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r =1157920892373161954235709850086879132491274769309617791781887340
53461721558841,

h =26 · 3 · 114 · 312 · 156598375332 · 2413758894233920819865272,
d =3664251552441012307564539365366691396566209647164298880039621750

3855065157940074941206695810480629869345608774421066373731513792
25747580224215243612885716.

k =12, ρ = 1.48, �log2(p)� = 239, �log2(r)� = 161, �log2(p
k)� = 2861,

p =5889490310694441330739011548712381814951849552463124431529211730
78632117,

r =1461501653010476419563824324075703470606892615001,

h =24 · 3 · 132 · 192 · 3312 · 11207112,
d =3039686049194322977578848038674418249362581181730689600918590539

56432956.

k =12, ρ = 1.49, �log2(p)� = 383, �log2(r)� = 257, �log2(p
k)� = 4589,

p =1313400206546489077704631059395345592330370814691407061669418717
8169845236078372714249135715340284274851981554471437,

r =1157920892373165737821551871767212460418194942614239462794724036
61265709211401,

h =24 · 35 · 32455032 · 526276468912,
d =2086750387520096896070418610187776681469852959441702575044395173

987802972703740715028995508138402551966362217924268.

k =24, ρ = 1.24, �log2(p)� = 319, �log2(r)� = 257, �log2(p
k)� = 7642,

p =7120003282946788688767832825047892963122039770343506948090350241
49143440464464180057177127640101,

r =1157926942199022831048968574721142864333630419694136944823750216
16015000100401,

h =24 · 33 · 54 · 172 · 2807172,
d =6563654562067688285838956119740898916476600058476145431602456870

2651596101614445130173618550273.
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Abstract. The Gallant-Lambert-Vanstone method accelerates the com-
putation of scalar multiplication [k]P of a point (or a divisor) P of
prime order r on some algebraic curve (or its Jacobian) by using an
efficient endomorphism φ on such curve. Suppose φ has minimal poly-
nomial h(x) =

∑d
i=0 aix

i ∈ Z[x], the question how to efficiently decom-

pose the scalar k as [k]P =
∑d−1

i=0 [ki]φ
i(P ) with maxi log |ki| ≈ 1

d
log r

has drawn a lot of attention. In this paper we show the link between
the lattice based decomposition and the division in Z[φ] decomposi-
tion, and propose a hybrid method to decompose k with maxi |ki| ≤
2(d−5)/4d(dN(h))(d−1)/2r1/d, where N(h) =

∑d−1
i=0 a2

i . In particular, we
give explicit and efficient GLV decompositions for some genus 1 and 2
curves with efficient endomorphisms through decomposing the Frobenius
map in Z[φ], which also indicate that the complex multiplication usually
implies good properties for GLV decomposition. Our results well support
the GLV method for faster implementations of scalar multiplications on
desired curves.

Keywords: GLV method · Scalar multiplication · Complex
multiplication

1 Introduction

Elliptic and hyperelliptic curve cryptography has become a popular and stan-
dardized approach to instantiate public-key cryptography [1]. There are subex-
ponential attacks on the discrete logarithm problem for large genus curves [10,12]
but still not known on those for genus 1 (elliptic) and 2 (hyperelliptic) curves.
The Gallant-Lambert-Vanstone (a.k.a GLV) method [14] is an important app-
roach for speeding up scalar multiplication on algebraic curve C (or its Jacobian)
with genus 1 or 2 defined over fields of large prime characteristic p. To compute
[k]P for P ∈ C/Fq (or its Jacobian) of order r and k selected uniformly at
c© Springer International Publishing Switzerland 2014
D. Lin et al. (Eds.): Inscrypt 2013, LNCS 8567, pp. 201–216, 2014.
DOI: 10.1007/978-3-319-12087-4 13
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random from the interval [0, r − 1], the basic idea is stated as follows. Sup-
pose the curve C/Fq has an efficiently computable endomorphism φ of degree
d such that φ(P ) = [λ]P for some λ ∈ Z/rZ. If we can efficiently decompose
k ≡ ∑d−1

i=0 kiλ
i mod r, then [k]P =

∑d−1
i=0 [ki]φi(P ). This multi-scalar multiplica-

tion with dimension d can be computed by employing the Straus-Shamir trick. If
the decomposed coefficients satisfy maxi log2 |ki| ≈ 1/d log2 |k|, then the number
of doublings would be approximately reduced at most to 1/d.

The original idea of Gallant et al. [14] works on some elliptic curves with spe-
cial complex multiplication, and their decomposition is based on a short lattice
basis. Several work have been done to decompose the scalar and give a theoretic
upper bound for the decomposed coefficients [14,20,24]. Park, Jeong and Lim
[25] extended Gallant et al.’s work to hyperelliptic curves with efficient endomor-
phism, and described another method to decompose k by using a division in the
ring Z[φ] generated by the endomorphism φ. Sica, Ciet and Quisquater [28] first
gave a theoretic upper bound for the decomposed coefficients from this method.
Since hyperelliptic curves usually have larger automorphism group than those
of elliptic curves, it can be expected that higher GLV method can be applied in
this scenario. Bos, Costello, Hisil and Lauter [3,4] realized fast genus 2 curves
based cryptography.

Galbraith, Lin, and Scott (GLS) [15] showed that over Fp2 one can expect
to find some curves with efficient endomorphisms derived from Frobenius map
and twist map. They also analyzed the using of such endomorphisms in GLV
method. It is expected that higher dimensional GLV method could be achieved
on genus 1 or 2 GLS curves over extension fields. Hu et al. [18] and Longa et al.
[23] considered 4 dimensional GLV method for some GLS elliptic curves over Fp2

with special complex multiplication, they gave proper decompositions for these
curves and implemented high-performance scalar multiplications on such curves
by using the GLV method. Bos et al. [4] implemented high-performance scalar
multiplication on GLS genus 2 curves using 8 dimensional GLV decomposition.

Fast implementations of scalar multiplications on genus 1 or 2 curves men-
tioned above by using GLV method rely on the efficient decomposition of the
scalar. In this paper we show that the division in Z[φ] method can also be viewed
as some lattice based decomposition, and propose a hybrid GLV decomposition
method. If φ has minimal polynomial h(x) = a0 + a1x + · · · + ad−1x

d−1 + xd,
then our method decomposes k as [k]P =

∑d−1
i=0 [ki]φi(P ), with maxi |ki| ≤

2(d−5)/4d(dN(h))(d−1)/2r1/d, where N(h) =
∑d−1

i=0 a2
i . In particular, we propose

explicit and natural GLV decompositions for some genus 1 and 2 curves with
efficient endomorphisms through decomposing Frobenius map in Z[φ], and give
the “almost ideal” theoretic upper bound for decomposed coefficients. While the
previous methods usually need d Round operations and d2 + d multiplications
for d dimensional GLV decomposition, our approach can save at most d2/2 mul-
tiplications. Our results indicate that the complex multiplication (CM) implies
good properties for GLV decomposition, and the experiments also show that
these decompositions well support the GLV method for faster implementations
of scalar multiplications on desired curves.
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The remaining of this paper is organized as follows. In Sect. 2 we recall
the necessary background for point counting and endomorphisms on algebraic
curves with CM. Section 3 outlines the two existent approaches for the GLV
decompositions, and proposes our hybrid method. Section 4 gives the explicit
decompositions for some genus 1 and 2 curves with special CM. Section 5 presents
our examples and experimental results. At last in Sect. 6 we conclude this work.

2 Preliminaries

We present the preliminaries in a somewhat general setting. Let C : y2 = f(x) be
an algebraic curve of genus g over finite field Fq, where f is a monic polynomial
with deg(f) = 2g+1 and q = pn for some prime p > 3 and integer n ≥ 1. Denote
JC as the jacobian variety of C, and JC(Fq) as the group of Fq-rational elements
of JC together with the identity element O∞. For simplicity, we also use JC(Fq)
here to denote the group of Fq-rational points instead of the jacobian elements in
the case of elliptic curves. Assume that JC(Fq) is ordinary and simple. Let πq be
the q-th power Frobenius map on C and χq(T ) be the characteristic polynomial
of πq, then the group order of JC(Fq) can be given by #JC(Fq) = χq(1). Let ζk

be a k-th primitive root of unity.

2.1 Counting Points on Curves with CM

Let End(JC) be the endomorphism ring of JC , and K = End(JC)⊗Q. Suppose
(K, {σ1, · · · , σg : σi ∈ Gal(K/Q)}) is a CM type, i.e., it satisfies the following
two conditions [27, Chap. II, Thm. 1]:

1. There exists a subfield K0 ⊂ K such that K0 is totally real and K is a totally
imaginary quadratic extension of K0 (which also implies [K : Q] = 2g);

2. There are no two isomorphisms among the σis which are complex conjugate
of each other.

The objective of point counting for C/Fq is to compute χq(1). If the prime p
splits in K as p = ππ̄, then

#JC(Fpn) =
g∏

k=1

(1 − σk(πn))(1 − σk(π̄n)). (1)

Let m be a positive integer such that the m-th primitive root of unity ζm ∈
End(JC) ⊂ K. For elliptic curves m ∈ {1, 2, 3, 4, 6} [29], while for genus 2
hyperelliptic curves m ∈ {1, 2, 3, 4, 5, 6, 8, 10} [30]. Then the twist curve C′

m,j of
C with degree m has order

#JC′
m,j

(Fpn) =
g∏

k=1

(1 − σk(ζj
mπn))(1 − σk(ζ̄j

mπ̄n)). (2)
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2.2 Curves with Efficient Endomorphisms

An endomorphism φ ∈ End(JC) is said to be efficiently computable if it can be
evaluated in constant time. Gallant et al. illustrated some very efficient endo-
morphisms on genus 1 curves [14], while Park et al. presented some efficient
endomorphisms on genus 2 curves [25]. Both scenarios are with special CM.

Galbraith, Lin and Scott [15] proposed a method to obtain a large class of
algebraic curves over extension field with efficient endomorphisms. Let C′ over
Fpn be the m-th twist of C/Fpn . Let ψm be the m-th twist map and π be the
p-th Frobenius map, then we can obtain an efficient endomorphism on C′/Fpn as

φ : C′/Fpn

ψ−1
m→ C/Fpmn

π→ C/Fpmn
ψm→ C′/Fpn , (3)

and φ has characteristic polynomial h(x) = Ψmn(x), where Ψmn is the mn-
th cyclotomic polynomial. Thus φ induces a ϕ(mn) dimensional GLV method,
where ϕ is the Euler function.

Longa and Sica [23] generalized the work of Galbraith et al. [15] and Zhou
et al. [31]. They considered the quadratic twisted genus 1 curves over Fp2n with
special CM, and obtained two efficient endomorphisms φ1 and φ2 on the same
curve, where φi has the minimal polynomial as h1(x) = x2 + bx + c or h2(x) =
Ψ2n(x) respectively. Suppose Q(φ1)∩Q(φ2) = Q (This is not contradict with the
fact that End(JC′) is an order in a quadratic imaginary extension of Q, since
φ, ψ ∈ End(JC′(Fp2n)) and usually End(JC′(Fp2n)) �= End(JC′)). Let φ be a
primitive element in Q(φ1, φ2) (usually we can choose φ as φ1φ2 or φ1 + φ2),
then φ induces a 2ϕ(2n) dimensional GLV method.

3 GLV Decomposition

Let φ be an endomorphism of C/Fp with degree d, i.e., φ satisfies monic irre-
ducible polynomial

h(x) = a0 + a1x + a2x
2 + · · · + ad−1x

d−1 + xd, ai ∈ Z. (4)

Define the field K = Q(φ), [K : Q] = d.
Let φ act on C/Fp as φ(P ) = [λ]P for any P ∈ C/Fp of prime order r and

some λ ∈ Z. Thus h(λ) = a0 + a1λ + · · · + ad−1λ
d−1 + λd ≡ 0 mod r. Define two

useful functions as follows:

g : Z[φ] → Z
d,

d−1∑

i=0

kiφ
i �→ (k0, k1, · · · , kd−1). (5)

f : Zd → Z/rZ, (k0, k1, · · · , kd−1) �→
d−1∑

i=0

kiλ
i mod r. (6)

Since f is homomorphic and surjective onto Z/rZ, then ker f is a sublattice of
Z

d of index r.
For k selected uniformly at random from the interval [0, r − 1], the d dimen-

sional GLV method replaces the computation of [k]P by [k]P =
∑d−1

i=0 [ki]λi(P ) =∑d−1
i=0 [ki]φi(P ).
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3.1 Lattice Based Decomposition

Suppose {v0, · · · ,vd−1} is a lattice basis of ker f , then by the Babai rounding
method [2] {vi} induce a decomposition as (k0, k1, ..., kd−1) = (k, 0, ..., 0) −
(
∑d−1

i=0 bi�vi), where bi ∈ Q and (k, 0, ..., 0) =
∑d−1

i=0 bivi. Naturally, the decom-
posed coefficients satisfies maxi |ki| ≤ 1

2

∑d−1
i=0 ||vi|| ≤ d

2 maxi ||vi||, where || · ||
is the Euclidean norm on Q

d.
The original 2 dimensional decomposition [14] is based on two short vectors

in ker f derived from the extended Euclidean algorithm.

3.2 Division in Ring Z[φ]

Park, Jeong and Lim [25] described an algebraic method to decompose k by
using a division in the ring Z[φ] generated by the endomorphism φ. Their basic
idea states as follows:

1. Find a short vector v = (v0, ..., vd−1) ∈ ker f , and set α = g−1(v) =∑d−1
i=0 viφ

i;
2. Let s(x) be the minimal polynomial of α, and write s(x) = xm(x) + R for

some m(x) ∈ Z[x], then R = −αm(α), denote −m(α) =
∑d−1

i=0 miφ
i;

3. Represent k as k = βα + ρ, where β, ρ ∈ Z[φ]. Since f ◦ g(α) = 0, then
[α]P = O∞, and thus [k]P = [βα]P + [ρ]P = [ρ]P . Moreover, ρ can be given
as ρ = k − ∑d−1

i=0

∑d−1
j=0 vik·mj

R �φi+j =
∑d−1

i=0 kiφ
i.

Sica, Ciet and Quisquater [28] first gave a theoretic upper bound for max |ki|
as max |ki| < Bd−12d(d−1)/4r1/d, where B is some constant concerned with the
norm function NK/Q(·) from K to Q.

3.3 Hybrid Decomposition Method

In this section we propose our hybrid decomposition method derived from the
above two methods. Let the denotation be the same as above. In addition, we
make two assumptions as follows: (1) |ai| � r and a0 �= 0 as the warning given
by Gallant et al. [14]. (2) h(x) splits completely over Fr as h(x) ≡ ∏d−1

i=0 (x −
λi) mod r, where λis are distinct. This is reasonable since h(x)s concerned in
Sect. 2.2 always satisfy this condition.

Let M(d) be the set of all d × d matrixes over Z. Define A ∈ M(d) as

A =

⎡

⎢⎢⎢⎢⎢⎣

0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
−a0 −a1 · · · −ad−2 −ad−1

⎤

⎥⎥⎥⎥⎥⎦
(7)

thus h(A) = a0I+a1A+· · ·+ad−1A
d−1+Ad = 0. Let 0 �= v = (v0, ..., vd−1) ∈ Z

d,
α = g−1(v) =

∑d−1
i=0 viφ

i, uλ = (1, λ, · · · , λd−1), Φ = (1, φ, · · · , φd−1), and
define Λv ∈ M(d) as
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Λv = [vT , AT vT , · · · , Ad−1T
vT ]. (8)

Proposition 1. If v ∈ ker f , then L =
∑d−1

i=0 vAi
Z is a sublattice of ker f and

r|det Λv.

Proof. Since uλAiT vT ≡ λi
∑d−1

j=0 vjλ
j = 0 mod r, then vAi ∈ ker f , and thus

L ⊂ ker f . Note that uλ is a non-zero solution for linear equation system xΛv ≡
(0, · · · , 0) mod r, it follows that detΛv ≡ 0 mod r. ��
Proposition 2. If r|det Λv, then there exists some λj such that v ∈ ker f when
choosing λ = λj.

Proof. Let λ0, λ1, · · · , λd−1 are d distinct roots of h(x) ≡ 0 mod r. Define uλj
=

(1, λj , · · · , λd−1
j ) and sj =

∑d−1
i=0 viλ

i
j , then ΛvuT

λj
≡ sjuT

λj
mod r. Note that

uλj
s are linear independent over Fr since [uT

λ0
,uT

λ1
, · · · ,uT

λd−1
] is a Vander-

monde matrix and has rank d, it follows that sj/uT
λj

are the exact d eigen-
values/eigenvectors for Λv. If r|det Λv, then there exists some j such that sj ≡
0 mod r, and thus v ∈ ker f if we choose λ = λj . ��
Theorem 1. Let the notation be as above. If K = Q(α), then {v,vA, ...,vAd−1}
induces a lattice based decomposition which is identical to the division decompo-
sition by v in Z[φ].

Proof. Define the map ϕα : K → K,x �→ αx, then ϕα is a Q linear transfor-
mation over K, while Λv is the matrix corresponding to ϕα, and thus detΛv =
NK/Q(α) = R. Note that in Sect. 3.1, {v,vA, ...,vAd−1} induces a lattice based
decomposition with

Λv(b0 det Λv, b1 det Λv, · · · , bd−1 det Λv)T = (det Λv, 0, · · · , 0)T .

And in Sect. 3.2, R =
∑d−1

i=0

∑d−1
j=0 vimjφ

i+j = (m0,m1, · · · ,md−1)ΛT
v ΦT , then

Λv(m0,m1, · · · ,md−1)T = (R, 0, · · · , 0)T . Thus bi det Λv = mi for i = 0, · · · ,d−1,
which indicates that both decomposition methods give the same decomposed
coefficients. ��
Lemma 1. [17, Sect. 5.6] Let ||B||d = max||x||=1,x∈Qd ||Bx|| for any B ∈ M(d).
Then for any B,C ∈ M(d) and x ∈ Q

d, ||B · C||d ≤ ||B||d||C||d and ||Bx|| ≤
||B||d · ||x||.
Theorem 2. Define N(h) =

∑d−1
i=0 a2

i , then {v,vA, ...,vAd−1} induces a decom-
position as maxi |ki| ≤ d

2 (dN(h))(d−1)/2 · ||v||.
Proof. Denote AT as the column vectors form AT = [α0, · · · , αd−1]. Since

||AT ||d = max
||x||=1,x∈Qd

||AT x|| ≤ max
||x||=1,x∈Qd

d−1∑

i=0

|xi| · ||αi||

≤ max
j

||αj ||
d−1∑

i=0

|xi| ≤ d1/2 max
j

||αj || = (dN(h))1/2.
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By the lattice based decomposition and Lemma 1, we obtain that

max
i

|ki| ≤ d

2
max

i
||AiT vT || ≤ d

2
· (||AT ||d)d−1 · ||v||

≤ d

2
(dN(h))(d−1)/2 · ||v||. ��

From the above theorem, we deduce that the GLV decomposition problem
can be solved from the Shortest Vector Problem (a.k.a. SVP). While the SVP
is NP-hard, the LLL algorithm [21] can provide a relative short vector in ker f .
Let v0 = (r, 0, · · · , 0), v1 = (−λ, 1, · · · , 0), ..., vd−1 = (−λd−1, 0, · · · , 0, 1). Obvi-
ously, {vi} is a basis of ker f and det[v0,v1, · · · ,vd−1] = r. Then by [21, Prop.
1.9], a reduced basis b0,b1, · · · ,bd−1 can be obtained with ||b0|| ≤ 2(d−1)/4r1/d.
The following result is a little more explicit than that in [28].

Corollary 1. Let the denotation be as above. If set v = b0, then the above
method induces a decomposition as maxi |ki| ≤ 2(d−5)/4d(dN(h))(d−1)/2r1/d.

We conclude the above procedure as Algorithm 1.

Algorithm 1. Hybrid d Dimensional Decomposition
Input : k, r, λ, A.
Output : Coefficients ki satisfy k ≡∑d−1

i=0 kiλ
i mod r.

Pre-compute Step:
1. Find a short vector v ∈ ker f (by LLL algorithm or other methods);
2. Construct d×d matrix Λv and compute m = (m0, m1, · · · , md−1) satisfying Λvm

T =
(det Λv, 0, · · · , 0)T ;
Decompose Step:
3. Compute (k0, k1, · · · , kd−1) = (k, 0, · · · , 0) −∑d−1

i=0 � mi·k
det Λv

�vAi.

4 Explicit Decompositions for Curves with CM

We show in this section that there exist explicit decompositions for genus 1 and
2 curves with special CM. Let #JC(Fpn) = hr, where r is prime and the cofactor
h is very small. Usually we require log r ≈ log #JC(Fpn) ≈ gn log p.

Let φ be the efficient endomorphism on C. For any P ∈ JC(Fpn) of order
r, assume [1 − π]P = O∞ by Eq. 1 or assume [1 − ζmnπ]P = O∞ by Eq. 2.
(In a general setting, if [1 − ζj

mπn]P = [
∏n

i=1(1 − ζj−mi
mn π)]P = O∞, we can

assume [1− ζj−mi
mn π]P = O∞ for some i ∈ Z, while this case can be dealt with in

an analogous way.) Our basic idea is that, treat π, ζmn, φ as algebraic numbers
and decompose 1 − π (or 1 − ζmnπ) in Z[φ] (or in Z[φ, ζmn]). For example, if
π ∈ Z[φ], then decompose 1−π =

∑d−1
k=0 vkφk, and thus we obtain a short vector

v = (v0, v1, · · · , vd−1) ∈ Z
d for GLV decomposition in Sect. 3, while the CM

usually implies that ||v|| = O(
√

p). In the following, we can choose proper φ (or
replace φ by its conjugate root) to meet the desired setting.
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4.1 Genus 1 Curves

Gallant et al. illustrated several examples to support 2 dimensional GLV method,
and they used the extended Euclidean algorithm to find the short vectors in
ker f . Indeed, previous decompositions [20,24,28] are usually derived from the
splitting of r in Z[φ] which can be done by solving a quadratic form through
the Cornacchias algorithm [6, Alg. 1.5.3]. Here we give the explicit v to get 2
dimensional decomposition.

Proposition 3. Suppose elliptic curve C has CM with discriminant D < 0,
where D ≡ 0, 1 mod 4. Let 4p = t2−Ds2, π = (t+s

√
D)/2, #JC(Fp) = p+1−t,

the endomorphism ring End(JC) = Z[(D +
√

D)/2], and φ ∈ End(JC) be the
efficient endomorphism. Define Φ = (1, φ).

1. If D ≡ 1 mod 4, set φ = (1 +
√

D)/2, and v = (1 − t−s
2 , − s). (In this case

t ≡ s mod 2.)
2. If D ≡ 0 mod 4, set φ =

√
D/2, and v = (1 − t

2 , − s). (In this case
t ≡ 0 mod 2.)

Then NQ(φ)/Q(v · ΦT ) = hr and ||v|| ≤ √
2p.

Proof. Since π = sφ+(t−s)/2 if D ≡ 1 mod 4, and π = sφ+t/2 if D ≡ 0 mod 4,
then NQ(φ)/Q(v · ΦT ) = NQ(φ)/Q(1 − π) = hr. A rough estimate induces that
||v|| ≤ √

(t2 + 3s2)/2 ≤ √
2p. ��

Remark 1. We choose φ as the above form mainly for efficient evaluation of φ.

Since by [7, Thm. 10.14] we have φ(x, y) = (φ−2 f(x)
g(x) , yφ−3

(
f(x)
g(x)

)′
), where f, g

are polynomial functions over Q with deg f = NK/Q(φ),deg g = NK/Q(φ) − 1,
and such φ ∈ End(JC)\Z has the minimal norm.

Proposition 4. Let C′/Fpn be the quadratic twisted GLS elliptic curve with CM
discriminant D < −4, D ≡ 0, 1 mod 4. Let p, π and φ be defined in Proposition 3,
and φ′ (acts as ζ2n) be defined in Eq. 3 with m = 2. Assume that φ �∈ Q(ζ2n),
and [1 − ζ2nπ]P = O∞ for any P ∈ JC′(Fpn) of order r. Consider the GLV
method based on Φ = (1, ζ2n, · · · , ζ

ϕ(2n)−1
2n , φ, φζ2n, · · · , φζ

ϕ(2n)−1
2n ), and choose

v ∈ Z
2ϕ(2n) such that 1 − ζ2nπ = v · ΦT .

1. If D ≡ 1 mod 4, choose v = (1, s−t
2 ,

ϕ(2n)−1
︷ ︸︸ ︷
0, · · · , 0, − s,

ϕ(2n)−2
︷ ︸︸ ︷
0, · · · , 0).

2. If D ≡ 0 mod 4, choose v = (1, −t
2 ,

ϕ(2n)−1
︷ ︸︸ ︷
0, · · · , 0, − s,

ϕ(2n)−2
︷ ︸︸ ︷
0, · · · , 0).

Let Ai,j ∈ M(2ϕ(2n)) be the matrix satisfying φiζj
2nΦT = Ai,jΦT , and define

vi,j = vAi,j, i = 0, 1, j = 0, · · · , ϕ(2n) − 1. Then {vi,j} induces a 2ϕ(2n)
dimensional lattice based decomposition with decomposed coefficients max |ki| ≤
1
2 (ϕ(2n) + N(Ψ2n)1/2 − 1)(1 +

√
(5 − D)/8)

√
2p.
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Proof. By Proposition 3, we have vi,j · ΦT = φiζj
2nv · ΦT = φiζj

2n(1 − ζ2nπ).
Note that for j = 0, · · · , ϕ(2n) − 2, ||v0,j || = ||v|| ≤ √

2p, and ||v1,j || ≤√
(5 − D)/8

√
2p; for j = ϕ(2n) − 1, ||v0,j || ≤ N(Ψ2n)1/2||v|| ≤ N(Ψ2n)1/2

√
2p,

and ||v1,j || ≤ N(Ψ2n)1/2
√

(5 − D)/8
√

2p. Then the decomposition based on
{vi,j} gives the coefficients satisfying

max |ki| ≤ 1
2

∑

i,j

||vi,j || ≤ 1
2
(ϕ(2n) − 1 + N(Ψ2n)1/2)(1 +

√
(5 − D)/8)

√
2p.

��

Remark 2. Proposition 4 can be viewed as a generalization of Longa-Sica 4
dimensional decomposition for the GLS curves with CM [23]. Note that in the
case n = 2 (4 dimensional GLV), each vu,v has one entry being 1 and one entry
being 0, so our method will save 8 multiplications compared with Longa-Sica
method.

The approach of Galbraith et al. [15] also provides the endomorphisms by
using higher order twist maps. We have the following explicit result.

Proposition 5. Let C′/Fpn be the m-th twisted GLS elliptic curve, where n ≥ 2
satisfies ϕ(mn) > n + 1 for m ≥ 4. The endomorphism φ defined by Eq. 3 acts
as ζmn. Assume [1 − ζmnπ]P = O∞ for any P ∈ JC′(Fpn) of order r. Consider
the GLV method based on Φ = (1, φ, · · · , φϕ(mn)−1).

1. m = 2 (General case): Since Ψ2n(φ) =
∑ϕ(2n)

i=0 aiφ
i = 0, define v as v =

(a0, a1, · · · , aϕ(2n)−3, aϕ(2n)−2 − p, aϕ(2n)−1 + t).
2. m = 4, 6 (Higher degree twist): Let π = a + bζm such that p = ππ̄. Define v

as v = (1, − a,

n−1︷ ︸︸ ︷
0, · · · , 0, − b,

ϕ(mn)−n−2
︷ ︸︸ ︷
0, · · · , 0 ).

Then 1−ζmnπ = v ·ΦT and it induces a ϕ(mn) dimensional decomposition with
decomposed coefficients max |ki| ≤ ϕ(mn)

2 (ϕ(mn)N(Ψmn))(ϕ(mn)−1)/2||v||, where
||v|| < p + 3 + |aϕ(2n)−2| for m = 2 and ||v|| <

√
2p for m = 4, 6.

Proof. For m = 2, since φ and π satisfy the same characteristic polynomial
x2−tx+p, then φϕ(2n) = φϕ(2n)−2(tφ−p), and thus 1−ζmnπ = v ·ΦT . Note that
||v|| = (p2 + t2 − 2aϕ(2n)−2p− 2aϕ(2n)−1t+

∑ϕ(2n)−1
i=0 a2

i )
1/2 < p+3+ |aϕ(2n)−2|.

For m = 4, 6, 1−ζmnπ = 1−ζmn(a+bζn
mn) = v·ΦT , and ||v|| = (1+a2+b2)1/2 <√

2p. By Theorem 2 we obtain the above result. ��

Remark 3. Proposition 5 is a generalization of Galbraith et al.’s work for m = 2
[15] and Hu et al.’s work for m = 4, 6 [18].

4.2 Genus 2 Curves

There also exist explicit decompositions on some genus 2 curves with efficient
endomorphisms, such as the FKT curves [11] and BK curves [5].
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Proposition 6. Let C/Fp : y2 = x5 + ax be the FKT curve, where p ≡ 1 mod 8
is prime, p = c2 + 2d2 for some c, d ∈ Z, c ≡ 1 mod 4 and the Legendre symbol
(a

p ) = −1. Let π = d + cζ8 − dζ28 , then p = ππ̄. The endomorphism φ defined in
[25, Exp. 3] acts as ζ8 on C. We have

1. #JC(Fp) = p2 + 1 − s1(p + 1) + s2, where s1 = ±4d, s2 = 8d2.
2. Assume d = s1/4 and [1−π]P = O∞ for any P ∈ JC(Fp) of order r. Consider

the GLV method based on Φ = (1, φ, φ2, φ3). Define v = (d − 1, c,−d, 0),
then 1 − π = v · ΦT , and v induces a 4 dimensional decomposition with
max |ki| < 2(

√
p + 1).

Proof. (1). Define α ≡ a(p−1)/8 mod p. Since α4 ≡ −1 mod p and p = c2 + 2d2,
by [11, Thm. 3] we can deduce that s21 ≡ 4c2(α3 + α)2 ≡ −8c2 ≡ 16d2 mod p,
thus s1 ≡ ±4d mod p. Note that |s1| ≤ 4

√
p, it follows s1 = ±4d. Moreover, since

s2 ≡ 4c2(−1) ≡ 8d2 mod 2p according to [11, Thm. 3], then by [26, Thm.1] and
2
√

p|s1| = 2
√

p|4d| > 8d2 > 4d2 = |s1|2/4, it turns out that s2 = 8d2.
(2). Let A be the matrix corresponding to φ as defined in Eq. 7. Then we have
vAi · ΦT = φiv · ΦT = φi(1 − π), and ||vAi|| = ((d − 1)2 + c2 + d2)1/2 <

√
p + 1

for i = 0, 1, 2, 3. ��

Remark 4. As mentioned in [11], FKT curves only in the case with p ≡ 1
mod 8 and (a

p ) = −1 are suitable for cryptographic application. Our result also
simplifies [11, Alg. 1] and gives the explicit point counting on such curves.

Before giving the decomposition for BK curves, we recall some background
of the point counting for this class of curves. Let C/Fp : y2 = x5 + a be the
BK curve, where p ≡ 1 mod 10 is prime. There exist uniquely x, u, v, w ∈ Z

satisfying the Dickson’s diophantine system [9]

16p = x2 + 50u2 + 50v2 + 125w2, xw = v2 − 4uv − u2,

x ≡ 1 mod 5, u ≡ 0 mod 2, x + u − v ≡ 0 mod 4.

Define π = c1ζ5 + c2ζ
2
5 + c3ζ

3
5 + c4ζ

4
5 ∈ Z[ζ5], where

c1 = (−x + 2u + 4v + 5w)/4, c2 = (−x + 4u − 2v − 5w)/4,

c3 = (−x − 4u + 2v − 5w)/4, c4 = (−x − 2u − 4v + 5w)/4.

We have p = ππ̄, and (
∑4

k=1 c2i )
1/2 < 2

√
p. As pointed out by Buhler and Koblitz

in [5], (c1, c2, c3, c4) can also be computed through LLL algorithm [21]. Since
ζ10 ∈ End(JC), then there exists some j ∈ Z such that #JC(Fp) =

∏2
k=1(1 −

σk(ζj
10π))(1 − σk(ζ̄j

10π̄)). In the following we assume that j = 0, while the other
cases can be analyzed in an analogous way.

Proposition 7. Let the denotation be as above, the endomorphism φ be defined
in [25, Exp. 4] which acts as ζ5 on BK curve C. Assume [1−π]P = O∞ for any
P ∈ JC(Fp) of order r. Consider the GLV method based on Φ = (1, φ, φ2, φ3).
Define v as v = (1+c4, c4−c1, c4−c2, c4−c3), then 1−π = v·ΦT , and v induces
a 4 dimensional lattice based decomposition with coefficients maxi |ki| < 17

2

√
p.
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Proof. Let A be the matrix corresponding to φ as defined in Eq. 7. Define vi =
vAi for i = 0, · · · , 3, then vAi · ΦT = φiv · ΦT = φi(1 − π). Suppose |ci1| ≤
|ci2| ≤ |ci3| ≤ |ci4|, then by (

∑4
k=1 c2k)1/2 < 2

√
p, we have

||v4−i1|| < (5c2i1 + 2
∑

c2k)1/2 <
√

5p + 8p,

||v4−i2|| < (5c2i2 + 2
∑

c2k)1/2 <
√

20p/3 + 8p,

||v4−i3|| < (5c2i3 + 2
∑

c2k)1/2 <
√

10p + 8p,

||v4−i4|| < (5c2i4 + 2
∑

c2k)1/2 <
√

20p + 8p.

Thus {vi} induces a 4 dimensional GLV decomposition with coefficients

max
i

|ki| ≤ 1
2

3∑

i=0

||vi|| <
1
2
(
√

13 +
√

44/3 +
√

18 +
√

28)
√

p <
17
2

√
p.

��
Proposition 8. Let C′/Fpn be the m-th twisted genus 2 GLS curve, where n ≥ 2
satisfies ϕ(mn) > (m− 4)n/2+1. The endomorphism φ defined by Eq. 3 acts as
ζmn. Assume [1 − ζmnπ]P = O∞ for any P ∈ JC′(Fpn) of order r. Consider the
GLV method based on Φ = (1, φ, · · · , φϕ(mn)).

1. m = 8 (FKT curves): Define v = (1, − d,

n−1︷ ︸︸ ︷
0, · · · , 0, − c,

n−1︷ ︸︸ ︷
0, · · · , 0,

d,

ϕ(8n)−2n−2
︷ ︸︸ ︷
0, · · · , 0 ).

2. m = 10 (BK curves): Define v = (1, c2,

n−1︷ ︸︸ ︷
0, · · · , 0, c3 − c2,

n−1︷ ︸︸ ︷
0, · · · , 0, c2 −

c1,

n−1︷ ︸︸ ︷
0, · · · , 0, c4 − c2,

ϕ(10n)−3n−2
︷ ︸︸ ︷
0, · · · , 0 ).

Then 1−ζmnπ = v·ΦT , and v induces a ϕ(mn) dimensional GLV decomposition
with decomposed coefficients maxi |ki| < ϕ(mn)

2 (ϕ(mn)N(Ψmn))(ϕ(mn)−1)/2||v||,
where ||v|| =

√
p + 1 for FKT curves, and ||v|| <

√
28p for BK curves.

Proof. This is a generalization of Propositions 6 and 7, and the proof is similar
to those for the above two propositions. ��

Remark 5. In Propositions 5 and 8, the cases that [1 − ζj
mnπ]P = O∞ for any

P ∈ JC′(Fpn) of order r can be analyzed in the same way, which have the same
upper bound for the decomposed coefficients. If extensively studying n = 2 in
Proposition 8 (8 dimensional GLV), we would get a more tight upper bound for
decomposed coefficients as maxi |ki| < 4

√
p + 1 for FKT curves, or maxi |ki| <

16.1
√

p for BK curves.
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5 Numerical Experiments

We illustrate several examples using our decomposition method. For generating
curves and giving the explicit parameters, we use Magma and Maple for sim-
plicity. Our examples concentrate on 4 or 8 dimensional GLV cases, since the 2
dimensional cases have been extensively studied, while the higher dimensional
GLV method might not be very efficient and has not been exploited. Also, the
curve defined over Fpn with n ≥ 4 might be vulnerable to index calculus attacks
[13,19]. In our examples we assume the use of pseudo-Mersenne primes of the
form p = 2m − c with small c and m ≡ 0,−1 mod 64.

5.1 4 Dimensional GLV Decomposition

GLS Curve-4. Let p = 2127 − 5997 = a2 + 2b2, a = 6105930783472132209,
b = 8150423078832062245 and Fp2 = Fp[i]/(1 + i2). Let u = 1 + i, the curve
C′/Fp2 : y2 = x3 − 15

2 u2x − 7u3 has order #JC′(Fp2) = 8r, where r is a 251-bit
prime [23]. Let φ′ (acts as ζ4) and φ (acts as

√−2) be defined on C′/Fp2 as
Proposition 4, and [1 + aζ4 + bφζ4]P = O∞ for any P ∈ JC′(Fp2) of order r.
Then the 4 dimensional GLV method based on Φ = (1, ζ4, φ, φζ4) can be done
by the decomposition from

v0 = (1, a, 0, b), v1 = (a,−1, b, 0), v2 = (0, 2b,−1,−a), v3 = (2b, 0,−a, 1).

Note that det[vT
0 ,vT

1 ,vT
2 ,vT

3 ] = 8r. For comparison, we also use Longa-Sica
method [23] to find a basis {ui}, and det[uT

0 ,uT
1 ,uT

2 ,uT
3 ] = r.

FKTCurve-4. Letp =2128−24935=c2+2d2,where c=−14885537990011998807
and d = 7703996549481574306. The Jacobian of the curve C/Fp : y2 = x5 + 37x
has order#JC(Fp) = 2·r, where r is a 255-bit prime [3]. Letφ (acts as ζ8) be defined
on C/Fp as Proposition 6, and [1 − d − cφ + dφ2]P = O∞ for any P ∈ JC(Fp) of
order r. Then the 4 dimensional GLV method based on Φ = (1, φ, φ2, φ3) can be
done by the decomposition from

v = (1 − d,−c, d, 0), v′ = (d − 1 +
c + 1

2
, d − c + 1

2
,−c + 1

2
,−c + 1

2
),

where NQ(φ)/Q(v · ΦT ) = 2r and NQ(φ)/Q(v′ · ΦT ) = r.

BK Curve-4. Let p = 2127 − 2437. By Buhler and Koblitz’s approach in [5],
we can obtain (c1, c2, c3, c4) as

c1 = −11808507213253603698, c2 = −8564770837980062142,

c3 = 2272889852863029969, c4 = −4791530919155826320,

and π = c1ζ5 + c2ζ
2
5 + c3ζ

3
5 + c4ζ

4
5 . The Jacobian of the curve C/Fp : y2 = x5 + 8

has order #JC(Fp) = r, where r is a 254-bit prime. Let φ (acts as ζ5) be defined
on C/Fp as Proposition 7, and [1 − (c1φ + c2φ

2 + c3φ
3 + c4φ

4)]P = O∞ for
any P ∈ JC(Fp) of order r. Then the 4 dimensional GLV method based on
Φ = (1, φ, φ2, φ3) can be done by the decomposition from v = (1 + c4, c4 −
c1, c4 − c2, c4 − c3).
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5.2 8 Dimensional GLV Decomposition

BK Curve-8. Let p = 263 − 28317. As same as above, we obtain (c1, c2, c3, c4)
as

c1 = 2096758342, c2 = 1220703958, c3 = 3728614569, c4 = 1719430940.

Then we can set π = c1ζ5 + c2ζ
2
5 + c3ζ

3
5 + c4ζ

4
5 . Let Fp2 = Fp[i]/(1 + i2) and

a = 5805994751994593008 · i+9196861641891075683. The Jacobian of the curve
C′/Fp2 : y2 = x5+a has order #JC′(Fp2) = 41 ·r, where r is a 247-bit prime. Let
φ (acts as ζ20) be defined on C′/Fp2 as Proposition 8, and [1 − φ(c1φ4 + c2φ

8 +
c3φ

12 + c4φ
16)]P = O∞ for any P ∈ JC′(Fp2) of order r. Then the 8 dimensional

GLV method based on Φ = (1, φ, · · · , φ7) can be done by the decomposition
from v = (1, c2, 0, c3 − c2, 0, c2 − c1, 0, c4 − c2). Also, the shortest vector from the
LLL algorithm is given as

v′ = (212346264, − 753542338, − 339753942, − 564116807,

− 929427609, 977905202, − 727985478, − 802019931).

5.3 Experimental Results

The following tables illustrate the statistics for 10,000,000 scalar decompositions
in each of the GLV scenarios. The columns show the percentage frequency cor-
responding to decompositions with a maximum “mini-scalar” bit-length. Our
results show that we can get “GLV friendly property” from the CM method.

In the case of 4 dimensional GLV decompositions for GLS curve-4, Table 1
shows that our method gives the decomposed coefficients with maxi |ki| being
at most one bit longer than that given by Longa et al. [23]. We note that if
the interleaving with width-w (w ≥ 4 in [23]) non-adjacent form (NAF) [16,
Chap. 3.3.1] and the LM scheme [22] for precomputing points are applied, then
both decompositions induce the same NAF length (This also holds if the cofactor
h ≤ 2d), and the extra bit does not affect the cost of scalar multiplication.
Our method (the using of {vi}) saves 8 multiplications in the decomposition
procedure since each vi has one entry being 1 and one entry being 0.

Table 1. GLS curve - 4 dimensional decompositions

Curve-d-vectors r max{|ki|} bits/freq.(%)

GLS Curve-4-{vi} 251 64/7.73074 63/69.19551 62/21.50849

61/1.46759 60/0.09121 ≤ 59/0.00646

GLS Curve-4-{ui} 251 63/16.53818 62/70.96524 61/11.71210

60/0.73510 59/0.04643 ≤ 58/0.00295

Note that in the 4 dimensional GLV decomposition for FKT curves, the
using of v will save 4 multiplications. Moreover, the second row of Table 2 is
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approximate the same as those given by Bos et al. in [3], which also implies that
our method based on v′ is identical to the division method in Z[φ] as proved in
Theorem 1.

Table 2. FKT curve - 4 dimensional decompositions

Curve-d-vector r max{|ki|} bits/freq.(%)

FKT Curve-4- v 255 64/30.94233 63/62.81456 62/5.85503

61/0.36386 60/0.02278 ≤ 59/0.00144

FKT Curve-4- v′ 255 64/23.37061 63/64.27652 62/11.57446

61/0.72987 60/0.04557 ≤ 59/0.00015

Table 3 illustrates the 4 or 8 dimensional decompositions for the BK curves.
Since for BK curve-4 the group order r is prime, our explicit method is identical
to those based on the straight splitting of r. The 8 dimensional decomposition
induced by v saves 32 multiplications compared with that induced by v′, since
there are 4 entries of v belonging to {0, 1}.

Table 3. BK curve - 4, 8 dimensional decompositions

Curve-d-vector r max{|ki|} bits/freq.(%)

BK Curve-4- v 254 64/15.96638 63/62.99890 62/19.47502

61/1.46243 60/0.09147 ≤ 59/0.00580

BK Curve-8- v 247 32/29.44647 31/66.13605 30/4.39273

29/0.02462 28/0.00013 ≤ 27/0.00000

BK Curve-8- v′ 247 32/ 1.87365 31/66.70874 30/30.57115

29/0.84271 28/ 0.00374 ≤ 27/0.00001

6 Conclusion

In this work we give a general algorithm for decomposing scalar in GLV method,
which indicates the link between the lattice based decomposition and the division
in Z[φ] decomposition. We also propose an explicit way to get short lattice bases
for GLV decomposition, and such ready-made lattice bases (derived from spe-
cial CM) usually bring more benefits in scalar multiplications on elliptic curves
or genus 2 Jacobians than other new short ones from Lattice basis reduction
algorithm (e.g. Euclidean algorithm or LLL algorithm) or algebraic division.
Note that in our experiments the decomposed coefficients are not uniformly
distributed, it might bring some potential security problem (for instance, vul-
nerable to side channel attack) in realizing faster scalar multiplication through
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GLV method. This could be avoided through using differential addition chains.
Recently, Costello, Hisil and Smith [8] described an secure implementation of
fast elliptic curve scalar multiplication by directly choosing the multi-scalar ki or
using 2 dimensional differential addition chains for 2 dimensional GLV method.
We leave it as an open problem for exploring 2 or higher dimensional differential
addition chains in above scenarios.
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Abstract. Small 8-bit RISC processors and micro-controllers based on
the AVR instruction set architecture are widely used in the embedded
domain with applications ranging from smartcards over control systems
to wireless sensor nodes. Many of these applications require asymmetric
encryption or authentication, which has spurred a body of research into
implementation aspects of Elliptic Curve Cryptography (ECC) on the
AVR platform. In this paper, we study the suitability of a special class
of finite fields, the so-called Optimal Prime Fields (OPFs), for a “light-
weight” implementation of ECC with a view towards high performance
and security. An OPF is a finite field Fp defined by a prime of the form
p = u · 2k + v, whereby both u and v are “small” (in relation to 2k) so
that they fit into one or two registers of an AVR processor. OPFs have
a low Hamming weight, which allows for a very efficient implementation
of the modular reduction since only the non-zero words of p need to be
processed. We describe a special variant of Montgomery multiplication
for OPFs that does not execute any input-dependent conditional state-
ments (e.g. branch instructions) and is, hence, resistant against certain
side-channel attacks. When executed on an Atmel ATmega processor, a
multiplication in a 160-bit OPF takes just 3237 cycles, which compares
favorably with other implementations of 160-bit modular multiplication
on an 8-bit processor. We also describe a performance-optimized and a
security-optimized implementation of elliptic curve scalar multiplication
over OPFs. The former uses a GLV curve and executes in 4.19 M cycles
(over a 160-bit OPF), while the latter is based on a Montgomery curve
and has an execution time of approximately 5.93 M cycles. Both results
improve the state-of-the-art in lightweight ECC on 8-bit processors.

1 Introduction

The 8-bit AVR architecture [2] has grown increasingly popular in recent years
thanks to its rich instruction set that allows for efficient code generation from
high-level programming languages. A typical AVR microcontroller, such as the
Atmel ATmega128 [3], features 32 general-purpose registers, separate memories
c© Springer International Publishing Switzerland 2014
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and buses for program and data, and some 130 instructions, most of which are
executed in a single clock cycle. The AVR platform occupies a significant share
of the worldwide smartcard market and other security-critical segments of the
embedded systems industry, e.g. wireless sensor nodes. This has made AVR an
attractive evaluation platform for research projects in the area of efficient im-
plementation of cryptographic primitives for embedded devices. The literature
contains papers dealing with block ciphers [10], hash functions [17], as well as
public-key schemes based on Elliptic Curve Cryptography (ECC) [23]. Despite
some recent progress [1,5,18], the implementation of ECC on 8-bit smartcards
and sensor nodes is still a big challenge due to the resource constraints of these
devices. A typical low-cost smartcard contains an 8-bit microcontroller clocked
at a frequency of 5 MHz, 256 B RAM, and 16 kB ROM. On the other hand,
a typical wireless sensor node, such as the MICAz mote [8], is equipped with
an ATmega128 processor clocked at 7.3728 MHz and provides 4 kB RAM and
128 kB programmable flash memory.

1.1 Past Work on Lightweight ECC for 8-bit Processors

One of the first ECC software implementations for an 8-bit processor was pre-
sented by Woodbury et al. in 2000 [41]. Their work utilizes a so-called Optimal
Extension Field (OEF), which is a finite field consisting of pm elements where
p is a pseudo-Mersenne prime [7] (i.e. a prime of the form p = 2k − c) and m is
chosen such that an irreducible binomial x(t) = tm − ω exists over GF(p). The
specific OEF used in [41] is GF((28 − 17)17) as this field allows the arithmetic
operations, especially multiplication and inversion, to be executed efficiently on
an 8-bit platform. Woodbury et al. implemented the point arithmetic in affine
coordinates and achieved an execution time of 23.4 · 106 clock cycles for a full
134-bit scalar multiplication on an 8051-compatible microcontroller that is sig-
nificantly slower than the ATmega128. The first really efficient ECC software
for an 8-bitter was introduced by Gura et al. at CHES 2004 [15]. They reported
an execution time of only 6.48 · 106 clock cycles for a full scalar multiplication
over a 160-bit SECG-compliant prime field on the ATmega128. This impressive
performance is mainly the result of a smart optimization of the multi-precision
multiplication, the nowadays widely used hybrid method. In short, the core idea
of hybrid multiplication is to exploit the large register file of the ATmega128 to
process several bytes (e.g. four bytes) of the operands in each iteration of the
inner loop(s), which significantly reduces the number of load/store instructions
compared to a conventional byte-wise multiplication.

In the ten years since the publication of Gura et al.’s seminal paper, a large
body of research has been devoted to further reduce the execution time of ECC
on the ATmega128. The majority of research focussed on advancing the hybrid
multiplication technique or devising more efficient variants of it. An example is
the work of Uhsadel et al. [37], who improved the handling of carry bits in the
hybrid method and managed to achieve an execution time of 2881 cycles for a
(160×160)-bit multiplication (without modular reduction), which is about 7.3 %
faster than Gura et al.’s original implementation (3106 cycles). Zhang et al. [43]
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re-arranged the sequence in which the byte-by-byte multiplications are carried
out and measured an execution time of 2846 clock cycles. A further reduction
of the cycle count to 2651 was reported by Scott et al. [30], who fully unrolled
the loops and used so-called “carry catcher” registers to limit the propagation
of carries. This unrolled hybrid multiplication was adopted by Szczechowiak et
al. [35] to implement scalar multiplication over a 160-bit generalized-Mersenne
prime field Fp. An interesting result of their work is that the reduction modulo
p = 2160 − 2112 + 264 + 1 requires 1228 cycles, which means a full modular mul-
tiplication (including reduction) executes in 3882 clock cycles altogether. Also
Lederer et al. [22] came up with an optimized variant of the hybrid method and
performed ECDH key exchange using the 192-bit generalized-Mersenne prime
p = 2192 − 264 − 1 as recommended by the NIST. A scalar multiplication needs
12.33 · 106 cycles for an arbitrary base point, and 5.2 · 106 cycles when the base
point is fixed. The currently fastest means of multiplying two large integers on
the ATmega128 is the so-called operand-caching method [19,31], which follows
a similar idea as the hybrid multiplication method, namely to exploit the large
number of general-purpose registers to store (parts of) the operands.

Most lightweight ECC implementations for 8-bit AVR processors mentioned
above suffer from two notable shortcomings, namely (1) they are vulnerable to
side-channel attacks, e.g. Simple Power Analysis (SPA) [28], and (2) they make
aggressive use of loop unrolling to reduce the execution time of the prime-field
arithmetic, which comes at the expense of a massive increase in code size and
poor scalability since the operand length is “fixed.” SPA attacks exploit con-
ditional statements and other irregularities in the execution of a cryptographic
algorithm (e.g. double-and-add method for scalar multiplication [6]), which can
leak key-related information through the power-consumption profile of a device
executing the algorithm. However, not only the scalar multiplication, but also
the underlying field arithmetic can be vulnerable to SPA attacks, e.g. due to
conditional subtractions in the modular addition [34], modular multiplication
[38], or modular reduction for generalized-Mersenne primes [29]. It was shown
in various papers that SPA attacks on unprotected (or insufficiently protected)
implementations of ECC pose a real-world threat to the security of embedded
devices such as smart cards [25] or wireless sensor nodes [9].

Loop unrolling is a frequently employed optimization technique to increase
the performance of the field arithmetic operations, in particular multiplication
[1]. The basic idea is to replicate the loop body n times (and adjust the overall
number of iterations accordingly) so that the condition for loop termination as
well as the branch back to the top of the loop need to be performed only once
per n executions. Full loop unrolling may allow some extra optimizations since
the first and the last iteration of a loop often differ from the “middle” ones and
can, therefore, be specifically tuned. However, full loop unrolling, when applied
to operations of quadratic complexity (e.g. multiplication), bloats the code size
(i.e. the size of the binary executable) significantly. Moreover, a fully unrolled
implementation can only process operands up to a length corresponding to the
number of loop iterations, which means it is not scalable anymore.
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1.2 Contributions of This Paper

We present an efficient prime-field arithmetic library for the 8-bit AVR archi-
tecture that we developed under consideration of the resource constraints and
security requirements of smart cards, wireless sensor nodes, and similar kinds
of embedded devices. Our goal was to overcome the drawbacks of most existing
implementations mentioned in the previous subsection, and therefore we aimed
for a good compromise between performance, code size, and resistance against
SPA attacks. Instead of using a Mersenne-like prime field, our library supports
so-called Optimal Prime Fields (OPFs) [12] since this family of fields has some
attractive properties that allow for efficient arithmetic on a wide range of plat-
forms. An OPF is a finite field defined by a “low-weight” prime p of the form
p = u · 2k + v, where u and v are small (in relation to 2k) to that they fit into
one or two registers of an 8-bit processor. The reduction modulo such a prime
can be performed efficiently using Montgomery’s algorithm [26] since only the
non-zero bytes of p need to be processed. Our implementation is based on the
OPF library from [43], but we significantly improved the execution time of all
arithmetic operations (especially multiplication) and made it resistant against
SPA attacks. We present a new variant of Montgomery modular multiplication
for OPFs that does not perform any data-dependent indexing or branching in
the final subtraction. A multiplication (including modular reduction) in a 160-
bit OPF takes 3237 clock cycles on the ATmega128, which compares very well
with previous work on modular multiplication for 8-bit processors.

Our OPF library uses an optimized variant of Gura et al.’s hybrid technique
[15] for the multiplication, whereby we process four bytes of the two operands
per iteration of the inner loop(s). However, in contrast to the bulk of previous
implementations, we do not fully unroll the loops in order to keep the code size
small. All arithmetic functions provided by our OPF library are implemented in
a parameterized fashion and with “rolled” loops, which means that the length
of the operands is not fixed or hard-coded, but is passed as parameter to the
function along with other parameters such as the start address of the arrays
in which the operands are stored. Consequently, our OPF library can support
operands of varying length, ranging from 64 to 2048 bits (in 32-bit steps). This
feature makes our OPF library highly scalable since one and the same function
can be used for operands of different length without re-compilation.

We provide benchmarking results for operand lengths of 160, 192, 224, and
256 bits on the 8-bit ATmega128 processor, which we obtained with help of the
cycle-accurate simulator of AVR Studio. For the purpose of benchmarking, we
also implemented and simulated scalar multiplication for two different families
of elliptic curves, namely Montgomery curves [27] and GLV curves [11]. In the
former case, an SPA-protected scalar multiplication over a 160-bit OPF takes
only 5.93 · 106 cycles, which is faster than most unprotected implementations
reported in the literature. On the other hand, we use the GLV curve to explore
the “lower bound” of the execution time for a scalar multiplication when resis-
tance against SPA is not needed. Such a speed-optimized implementation has
an execution time of only 4.19 · 106 clock cycles for a 160-bit scalar.
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2 Preliminaries

In this section we recap some basic properties of special families of prime fields
and elliptic curves, and discuss how to exploit their distinctive features to speed
up the arithmetic operations needed in ECC.

2.1 Prime Fields

Even though elliptic curves can be defined over various algebraic structures, we
only consider prime fields in this paper [6]. Formally, a prime field Fp consists
of p elements (namely the integers between 0 and p − 1) and the arithmetic
operations are addition and multiplication modulo p. It is common practice in
ECC to use “special” primes to speed up the modular reduction; a well-known
example for primes with good arithmetic properties are the so-called Mersenne
primes, which are primes of the form p = 2k − 1. Multiplying two k-bit integers
a, b ∈ Fp yields a 2k-bit product r that can be written r = rH · 2k + rL, where
rH and rL represent the upper half and the lower half of r, respectively. Since
2k ≡ 1 mod p, we can simply reduce r via a conventional addition of the form
t = (rH + rL) mod p to obtain a result that is at most k + 1 bits long. A final
subtraction of p may be necessary to get a fully reduced result. In summary, a
reduction modulo a Mersenne prime requires just a conventional k-bit addition
and, in the worst case, a subtraction of p. Unfortunately, Mersenne primes are
rare, and there exist no Mersenne primes between 2160 and 2512, which is the
interval from which one normally chooses primes for ECC.

A wealth of research has been devoted to find other families of prime fields
that allow for similarly efficient arithmetic and many proposals appeared in the
literature, e.g. fields based on “Mersenne-like” primes such as pseudo-Mersenne
primes [7] and generalized Mersenne primes [33]. A pseudo-Mersenne prime is
a prime of the form

p = 2k − c (1)

where log2(c) ≤ 1
2k, i.e. the constant c is small compared to 2k. However, c is

bigger than 1, and hence the reduction operation modulo such a prime is more
costly than that for a “real” Mersenne prime. On the other hand, allowing c to
be bigger than 1 provides a larger choice of primes for a given bit-length.

The so-called generalized Mersenne primes were first described by Solinas in
1999 [33] and shortly thereafter, the NIST recommended a set of five of these
special primes for use in ECC cryptosystems. The common form of the primes
presented by Solinas is

p = 2k − c12k−1 − · · · − ci2k−i − · · · − ck (2)

where all ci are integers with a small absolute value, e.g. ci ∈ {−1, 0, 1}. A con-
crete example is p = 2192 − 264 − 1, which is one of the primes recommended
by the NIST. The reduction operation modulo generalized Mersenne primes is
similar to that of real Mersenne primes, namely to exploit congruence relations
that stem from the special form of the prime to “shorten” the residue.
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2.2 Elliptic Curves

Any elliptic curve over a prime field Fp can be expressed through a Weierstrass
equation of the form y2 = x3 + ax + b [16]. When using mixed Jacobian-affine
coordinates, a point addition on a Weierstrass curve costs eight multiplications
(i.e. 8 M) and three squarings (i.e. 3 S) in the underlying field, whereas a point
doubling requires 4 M and 4 S [16]. Similar to prime fields, there exist numerous
“special” families of elliptic curves, each having a unique curve equation and a
unique addition law. In the past 20 years, a massive research effort was devoted
to finding special curves that allow for a more efficient implementation of the
scalar multiplication than ordinary Weierstrass curves.

Peter Montgomery introduced in 1997 a family of curves to speed up algo-
rithms for the factorization of big integers [27]. These curves are referred to as
Montgomery curves and have the unique property that a scalar multiplication
can be carried out using the x coordinate only, which is much faster than when
both the x and y coordinate are calculated in each step [6]. In formal terms, a
Montgomery curve over Fp is defined by the equation

By2 = x3 + Ax2 + x (3)

with A,B ∈ Fp, (A2 − 4)B �= 0 and allows for a very fast computation of the
x-coordinate of the sum P + Q of two points P , Q whose difference P − Q is
known. A point addition performed via the equation from [27, p. 261] requires
4 M and 2 S, whereas a point doubling costs 3 M and 2 S. However, one of the
three field multiplications in the point doubling uses the constant (A + 2)/4 as
operand, which is small if the parameter A is chosen accordingly. Our results
show that multiplying a field element by a small constant (up to 16 bits) costs
only between 0.2 M and 0.25 M (cf. Sect. 4). Furthermore, the point addition
formula given in [27, p. 261] can be optimized when using the so-called Mont-
gomery ladder (Algorithm 13.35 in [6]) for scalar multiplication and representing
the base point in projective coordinates with Z = 1 (see also Remark 13.36 (ii)
in [6]). Even though the number of field multiplications and squarings is low,
one has to take into account that the Montgomery ladder always executes both a
point addition and a point doubling for each bit of the scalar k. Therefore, the
computational cost of a scalar multiplication amounts to 5.25n multiplications
and 4n squarings in Fp, i.e. 5.25 M + 4 S per bit.

The so-called Gallant-Lambert-Vanstone curves, or simply GLV curves, are
elliptic curves over Fp which possess an efficiently computable endomorphism
φ whose characteristic polynomial has small coefficients [11]. The specific curve
we use in this paper belongs to the family of GLV curves that can be described
by a Weierstrass equation of the form

y2 = x3 + b (i.e. a = 0 and b �= 0) (4)

over a prime field Fp with p ≡ 1 mod 3 (see Example 4 from [11]). When
using mixed Jacobian-affine coordinates, the point addition on such a curve
requires 8 M + 3 S, i.e. adding points is exactly as costly as on an ordinary
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Weierstrass curve. On the other hand, the double of a point given in Jacobian
coordinates can be computed with only 3 M + 4 S since the parameter a of our
GLV curve is 0. However, what makes GLV curves really attractive is that the
cost for the computation of a scalar multiplication can be significantly reduced
thanks to an efficiently-computable endomorphism as described in [11]. This
endomorphism allows one to accomplish an n-bit scalar multiplication k ·P by a
computation of the form k1 ·P +k2 ·Q, whereby k1, k2 have only half the length
of k. The two half-length scalar multiplications can be carried out simultane-
ously (via “Shamir’s trick”), which takes n/2 point doublings and roughly n/4
additions when k1, k2 are represented in Joint Sparse Form (JSF) [16]. Thus,
the overall cost of computing k · P amounts to 3.5n multiplications and 2.75n
squarings in Fp, i.e. 3.5 M + 2.75 S per bit.

3 Optimal Prime Fields

The lightweight ECC software we introduce in this paper is based on a special
family of prime fields, the so-called Optimal Prime Fields (OPFs), which were
first described in the literature in an extended abstract from 2006 [12]. OPFs
are defined by “low-weight” primes that can be written as

p = u · 2k + v (5)

where u and v are small compared to 2k, e.g. have a length of 8 or 16 bits so
that they fit into one two registers of an 8-bit processor. A concrete example is
p = 65356 · 2144 + 1 (i.e. u = 65356, k = 144, and v = 1), which happens to be a
160-bit prime that looks as follows when written as a hex-string:

p = 0xFF4C000000000000000000000000000000000001

The main characteristic of these primes is their low Hamming weight, which is
due to the fact that only a few bits near to the Most Significant Bit (MSB) and
the Least Significant Bit (LSB) are non-zero; all the “middle” bits in between
are 0. This property distinguishes them from other families of primes used in
ECC, in particular Mersenne-like primes (cf. Sect. 2.1), which generally have a
high Hamming weight. Using primes with a low Hamming weight allows for a
simplification of the modular multiplication and other operations since all the
zero-bits (resp. zero-bytes) do not need to be processed in a reduction modulo
p. Most modular reduction algorithms, including Barrett and Montgomery re-
duction [26], can be optimized for OPFs, as will be shown in more detail in the
remainder of this section. Another advantage of OPFs is that there exist a large
number of primes of the form p = u · 2k + v for any bitlength, which is not the
case for generalized Mersenne primes.

The implementation of most of the arithmetic operations we describe in the
following subsections is based on Zhang et al.’s OPF library for AVR processors
[43]. However, Zhang’s library, in its original form, is not resistant against side-
channel attacks because it contains operand-dependent conditional statements
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such as if-then-else constructs. Therefore, we modified the arithmetic functions
in a way so that they exhibit a highly regular execution pattern (and constant
execution time) regardless of the actual values of the operands. In addition, we
optimized a number of performance-critical code sections in the field arithmetic
operations, which improved their execution time by up to 10 % versus Zhang’s
OPF library. As stated in Sect. 1.2, we strive for a scalable implementation able
to process operands of varying length. To achieve this, we implemented all arith-
metic functions to support the passing of a length parameter, which is then used
by the function to calculate the number of loop iterations. Our library is dimen-
sioned for operands between 64 and 2048 bits in steps of 32 bits, i.e. the operand
length has to be a multiple of 32.

3.1 Selection of Primes

The original definition of OPFs in [12] specifies the coefficients u and v of the
prime p = u · 2k + v to “fit into a single register of the target processor,” i.e. in
our case, u and v would be (at most) 8 bits long. However, the OPF library we
describe in this paper expects u to be a 16-bit integer, while v is fixed to 1. In
the following, we explain the rationale behind this choice and elaborate on the
supported bitlengths of p.

It is common practice in ECC to use primes with a bitlength that is a mul-
tiple of 32, e.g. 160, 192, 224 and 256 bits for applications with low to medium
security requirements, and 384 and 512 bits for high-security applications. All
standardization bodies (e.g. NIST, IEEE, SECG) recommend primes of these
lengths and also we follow this approach. However, for efficiency reasons, it can
be advantageous to use finite fields of a length slightly smaller than a multiple
of 32, e.g. 255 bits instead of 256 [4]. Such slightly reduced field sizes facilitate
certain optimization techniques like the so-called “lazy reduction,” which means
that the result of an addition or any other operation is only reduced when it is
necessary so as to prevent overflow. We conducted some experiments with the
159-bit OPF given by p = 126 · 2152 + 1, but found the performance gain one
can achieve through lazy reduction to be less than 5 %. Therefore, we decided
to stick with the well-established field lengths of 160, 192, 224 and 256 bits.

Our OPF software uses Montgomery’s algorithm [26] for multiplication and
squaring modulo p. A standard implementation of Montgomery multiplication
based on e.g. the so-called Finely Integrated Product Scanning (FIPS) method
[21] has to execute 2s2 + s word-level multiplications (i.e. (w × w)-bit mul in-
structions) for operands consisting of s words [14]. However, when we optimize
the FIPS method for primes of the form p = u · 2k + v with 0 < u, v < 2w, then
only s2 + 3s mul instructions are required since all the “middle” words of p do
not need to be processed because they are 0. A further reduction is achievable
if v = 1 since this case simplifies the quotient determination in Montgomery’s
algorithm so that only s2 + s mul instructions need to be executed, as we will
show in Sect. 3.3. The situation is similar for v = 2w − 1 (which corresponds
to v = −1 in two’s complement representation) as also this special case allows
for a reduction of the number of mul instructions. Having v = 2w − 1 implies



Low-Weight Primes for Lightweight Elliptic Curve Cryptography 225

that the least significant word of p is an “all-one” word, which, in turn, means
p ≡ 3 mod 4 and square roots modulo p can be computed efficiently [6].

The bitlength of a prime of the form p = u · 2k + 1 is not only determined
by the exponent k, but also the coefficient u. To maximize performance, it was
recommended in [12] to select u so that its length matches the word-size of the
underlying processor; in our case, u should be an 8-bit integer in order to fit in a
single register of an ATmega128 processor. When doing so, an optimized FIPS
Montgomery multiplication ignoring all the zero-bytes of p requires to execute
only s2 + s mul instructions. However, high performance is only one of several
design goals; as stated in Sect. 1.2, we also aim for scalability, which means
the ability to support fields of different lengths without the need to re-compile
the arithmetic library. Besides the common field lengths of 160, 192, 224, and
256 bits, we want our library also to be able to perform arithmetic in 384 and
512-bit OPFs. Unfortunately, neither a 384-bit nor a 512-bit prime of the form
p = u · 2k + 1 with 27 <= u < 28 exists. It should be noted that the situation is
very similar for pseudo-Mersenne primes; none of the 256 integers of the form
2k − c with k = 384 and c < 28 is prime, and the same holds for k = 512. As
a consequence, we decided to “weaken” the original criterium for the selection
of u, namely to fit into a single register on the target processor, and allow u to
have a length of 16 bits. While this relaxed condition for the selection of u en-
tails a slight performance degradation, it significantly increases scalability and
allows our OPF library to support high-security applications requiring 384 and
512-bit fields. All arithmetic functions of our library assume that u is a 16-bit
integer and can be kept in two registers of an 8-bit ATmega128 processor. The
second coefficient v of our low-weight primes is fixed to 1.

Notation. In what follows, Fp denotes an OPF defined by a prime of the form
p = u ·2k+1, whereby u is in the range [215, 216−1], i.e. u has a length of 16 bits.
As mentioned above, the bitlength n of the primes we use in this paper is always
a multiple of 32, e.g. n = 160, 192, 224, or 256 bits. Field elements are referred
to by lowercase italic letters, e.g. a ∈ Fp. When implementing ECC in software,
it is common practice to represent field elements by arrays of single-precision
(i.e. w-bit) words so that the arithmetic operations can be executed efficiently
on the processor’s fast integer unit [16]. Normally, one chooses w to match the
word-size of the underlying processor, which would mean w = 8 in the case of
an 8-bit processor. However, as shown by Gura et al. in [15], it can be more
efficient to process several (e.g. four) bytes of the operands at a time (instead of
just a single byte), which, in fact, means to work with 32-bit words even though
the processor has just an 8-bit datapath. We follow this approach and represent
the elements of Fp via arrays of s = �n/w� words, each having a length of
w = 32 bits. For example, an element of a 160-bit prime field consists of five 32-
bit words since s = 160/32 = 5. We use uppercase letters to denote these arrays
and indexed uppercase letters to refer to individual words within an array, e.g.
A = (As−1, ..., A1, A0) where A0 is the least significant word and As−1 the most
significant word of A, respectively.
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3.2 Modular Addition and Subtraction

The typical way to perform a modular addition z = a + b mod p is to first add
the two n-bit operands a, b ∈ Fp to get a temporary sum t = a + b (which can
have a length of up to n + 1 bits), followed by a comparison between t and p to
check whether t ≥ p. Based on the result of this comparison, it may be neces-
sary to subtract p from t to get a sum in the range of [0, p − 1]. However, this
approach exhibits an operand-dependent (and, therefore, irregular) execution
pattern that leaks information through small variations of both the execution
time and power consumption profile, the latter of which may be exploited in an
SPA attack as described in e.g. [34]. In fact, this side-channel leakage has two
origins, one is the comparison between t and p, and the other is the conditional
subtraction of p. Most performance-optimized ECC implementations adopt an
“early-abort” strategy to compare two integers, which means the comparison is
done word by word, starting at the most significant word-pair, and the result is
immediately returned when the first unequal word-pair is found. Therefore, the
difference between the operands determines the execution time; it is maximal
when the operands are equal. The second origin of side-channel leakage, i.e. the
subtraction of p, is more obvious since this subtraction is only performed when
the temporary sum t is not smaller than p.

In order to eliminate or, at least, reduce side-channel leakage, we adopt the
idea of incomplete modular arithmetic as described by Yanık et al. [42]. Instead
of reducing the result t of the addition to the least non-negative residue in the
range of [0, p − 1], incomplete modular arithmetic allows (i.e. tolerates) results
that are not fully reduced as long as they do not exceed a certain bitlength. In
our case, this means that all results of modular operations are (at most) n bits
long, but do not necessarily need to be smaller than p. All our modular arith-
metic functions also accept incompletely reduced operands as inputs, provided
that their length does not exceed n, the bitlength of p. The advantage of this
“relaxed” residue representation is the possibility to perform modular addition
without an exact comparison between the sum t and the prime p. Instead, we
just check whether the length of t exceeds n bits (i.e. whether t ≥ 2n), which is
only the case when the addition t = a + b produced a “carry bit.”

Thanks to the carry bit (which is either 0 or 1), the conditional subtraction
of p can be done in an “unconditional” way by applying a mask to each byte
of p before it is subtracted. The value of this mask is either an “all-zero” byte
or an “all-one” byte and can be easily obtained from the carry bit through ne-
gation. For example, when the carry bit c = 0, the value of the mask becomes
m = −c = 0. Applying this mask m to a byte pi of p (i.e. performing a logical
and between m and pi) yields a zero-byte, which means 0 is subtracted from
the sum t. Conversely, when c = 1, we have m = −c = −1 = 28 − 1 = 0xff,
and applying this m to the bytes pi does not change their value, which means p
is subtracted from t. Note, however, that a second subtraction may be required
to obtain an n-bit result since both operands can be incompletely reduced. To
get “branch-less” code, we always perform two masked subtractions of p and
update the carry bit c after the first one. More precisely, the first subtraction
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produces a “borrow bit,” which is either 0 or 1 and has to be subtracted from
the carry bit to obtain the correct carry bit for the second subtraction.

A modular subtraction z = a − b mod p can be implemented on basis of the
same principles as the modular addition described above. Our implementation
performs an ordinary subtraction t = a − b followed by two masked additions
of p, whereby the mask is derived from the borrow bit of the subtraction.

3.3 Modular Multiplication and Squaring

As detailed earlier in this section, our OPF library supports low-weight primes
of the form p = u · 2k + 1 where u is 16 bits long. Following the notation from
Sect. 3.1, we can represent p via an array P = (Ps−1, . . . , P1, P0) consisting of s
words, each having a length of w bits, i.e. w/4 bytes. The least significant word
P0 is 1, while the most significant word Ps−1 contains u; all other words are 0. In
this subsection, we assume that the two operands a, b to be multiplied have the
same length as p, namely n bits, but they do not necessarily need to be smaller
than p, i.e. a and b are in the range of [0, 2n − 1].

We show in the following that Montgomery modular multiplication [26] can
be optimized for primes of the form p = u · 2k + 1 by simply ignoring all words
Pi with 1 ≤ i ≤ s − 2 (i.e. all “zero” words) in the reduction operation. When
doing so, the overall number of word-level (i.e. (w × w)-bit) multiplications to
compute a Montgomery product amounts to s2 + s, of which s2 contribute to
the multiplication of the s-word operand a by b, and the rest to the reduction
modulo p. In other words, the “overhead” of modular reduction is only s word-
level multiplications, i.e. reduction has linear complexity. For comparison, the
reduction of a 2s-word product modulo a pseudo-Mersenne prime of the form
p = 2k − c (with c fitting into a single word) also requires exactly s word-level
multiplications [6]. However, when performing a modular multiplication with a
pseudo-Mersenne prime, the reduction is typically done after the multiplication
(see e.g. [18]), which is inefficient since the 2s-word product is first written to
memory (during the multiplication), and then it has to be loaded again from
memory to accomplish the reduction. To avoid this, our implementation adopts
a variant of the so-called Finely Integrated Product Scanning (FIPS) method
[21] for Montgomery multiplication, which interleaves multiplication steps and
reduction steps instead of executing them one after the other, thereby saving a
number of load/store instructions and reducing the RAM footprint.

The standard FIPS technique for arbitrary primes, as described in [14,21],
has a nested-loop structure with two outer and two simple inner loops. In each
iteration of the inner loops, two Multiply-Accumulate (MAC) operations are car-
ried out; one with the words of the operands a and b, which contributes to the
computation of a · b. The second MAC operation involves words of the prime p
and, hence, contributes to the reduction operation. Algorithm1 shows a spe-
cial variant of the FIPS method optimized for “low-weight” primes of the form
p = u · 2k + 1. This variant differs from the generic FIPS method for arbi-
trary primes in three main aspects. First, we eliminated all multiplications and
MAC operations performed on zero words of p since they do not contribute to
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Algorithm 1. FIPS Montgomery modular multiplication for OPFs
Input: An n-bit prime p = u ·2k +1 given as s-word array P = (Ps−1, . . . , P1, P0), two

integers a, b ∈ [0, 2n − 1] given as A = (As−1, . . . , A1, A0), B = (Bs−1, . . . , B1, B0).
Output: An (s + 1)-word array Z = (Zs, . . . , Z1, Z0) with Zs ∈ {0, 1} representing a

possibly incompletely reduced Montgomery product z = a · b · 2−n mod p.
1: T ← A0 × B0

2: for i from 1 by 1 to s − 1 do
3: Zi−1 ← −(T mod 2w)
4: T ← T + Zi−1

5: T ← T/ 2w

6: for j from 0 by 1 to i do
7: T ← T + Aj × Bi−j

8: end for
9: end for

10: T ← T + Z0 × Ps−1

11: Zs−1 ← −(T mod 2w)
12: T ← T + Zs−1

13: for i from s by 1 to 2s − 2 do
14: T ← T/ 2w

15: for j from i − s + 1 by 1 to s − 1 do
16: T ← T + Aj × Bi−j

17: end for
18: T ← T + Zi−s+1 × Ps−1

19: Zi−s ← T mod 2w

20: end for
21: T ← T/ 2w

22: Zs−1 ← T mod 2w

23: Zs ← T/ 2w {Zs is either 0 or 1 }
24: Z ← (Zs, . . . , Z1, Z0)
25: return Z

the final result. Consequently, the inner loops of Algorithm1 perform only one
MAC operation, similar to the product-scanning method for multiple-precision
multiplication [16]. In fact, the inner loops in lines 6–8 and 15–17 are the same
as in product-scanning multiplication, which makes Algorithm1 fairly easy to
implement. Another difference between our FIPS variant and the generic FIPS
method for arbitrary primes is that the former is optimized for P0 = 1 and, as
a consequence, the Montgomery reduction requires only s MAC operations; one
is performed in line 10 and the remaining s − 1 in the second outer loop (line
18). When P0 = 1, we have −P−1

0 mod 2w = −1 mod 2w = 2w − 1, which sim-
plifies the quotient-determination part of the reduction operation compared to
the original FIPS method (see [43, Sect. 4.3] for a detailed explanation). Due
to this optimization, the total number of word-level multiplications and MAC
operations of the FIPS method for p = u · 2k + 1 amounts to only s2 + s. The
third difference between our FIPS variant and the classic one is that we peeled
off the computation of A0 × B0 from the first nested loop and re-arranged the
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loop structure accordingly. Because of this modification, all loops of Algorithm1
iterate at least one time if s ≥ 2, which simplifies their implementation.

Our AVR Assembly implementation of the FIPS Montgomery multiplication
is based on the pseudo-code from Algorithm 1. However, in order to maximize
performance, we adopt a variant of Gura et al.’s hybrid multiplication method
[15], which means all word-level multiplications and MAC operations are per-
formed on four bytes (i.e. 32 bits) of the operands instead of just a single byte
(i.e. our word-size w is 32). In each iteration of the two inner loops, four bytes
of operand a (i.e. the word Aj) and operand b (i.e. the word Bi−j) are loaded
from memory and multiplied together to a 64-bit product. This product is then
added to a cumulative sum T held in nine 8-bit registers. Our implementation
of the inner loops follows [24, Sect. 3.1] and is, therefore, slightly faster than
Zhang et al.’s inner-loop operation from [43]. Each iteration of the inner loops
consists of eight ld (i.e. load), 16 mul, 49 add (or adc), and four movw instruc-
tions (excluding loop overhead). When taking the updating of the loop-control
variable and branch instruction into account, the overall execution time of one
full iteration of the inner loop amounts to exactly 104 clock cycles.

Besides excellent performance, the inner-loop implementation from [24] has
the further advantage that it occupiers only 30 out of the 32 working registers
of an AVR processor. We use the two free registers to accommodate the 16-bit
coefficient u of the prime p = u · 2k + 1. Hence, we have to maintain only three
pointers, namely the pointers to the arrays A, B, and Z, which we hold in the
three pointer registers X, Y, and Z during the execution of a multiplication. In
each iteration of the inner loop, the pointer to A gets incremented by 4, while
the pointer to B is decremented. Therefore, the pointers need to be initialized
with the correct start addresses, and this initialization has to performed in the
outer loop, immediately before the start of the inner loop. Zhang et al. [43] did
this pointer initialization with help of the “original” start address of the arrays
A and B (i.e. the address of A0 and B0), which they pushed on the stack at the
very beginning of the multiplication and then popped whenever needed. Unfor-
tunately, this approach is quite expensive since push and pop instructions take
two cycles each. We found it more efficient to re-calculate the original address
of these pointers using the end-value of the loop counter.

Algorithm 1 does not include the so-called “final subtraction” of p, which is
generally required in Montgomery multiplication to guarantee that the result is
smaller than p or, in our case, smaller than 2n. Therefore, the array Z consists
of s + 1 words, whereby its most significant word Zs is either 0 or 1. Note that
(at most) one subtraction of p is required to get an s-word result in the range
of [0, 2n − 1], even when both inputs are not completely reduced. To minimize
SPA leakage, we perform this subtraction of p in the same way as described in
Sect. 3.2, but use Zs to derive an “all-zero” or “all-one” mask.

We implemented modular squaring for our low-weight primes similar to the
multiplication, using the same optimizations in the reduction. Furthermore, the
squaring adopts the well-known “trick” that allows one to cut the total num-
ber of word-level multiplications by almost one half (from s2 to s2+s

2 ) [6].
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4 Performance Evaluation and Comparison

In the following, we present execution times of both field and group arithmetic
operations, including scalar multiplication, for OPFs (and appropriate elliptic
curves) ranging from 160 to 256 bits. As mentioned before, we implemented all
OPF arithmetic operations in Assembly language to achieve peak performance
on 8-bit AVR processors. The group operations (i.e. the point arithmetic) and
the algorithms for scalar multiplication were written in ANSI C and compiled
using WinAVR. We determined the execution time of all arithmetic operations
with help of the cycle-accurate instruction-set simulator of AVR Studio 4.

Table 1. Execution time (in clock cycles) of arithmetic operations in OPFs

Operation 160 bit 192 bit 224 bit 256 bit

Addition 530 631 732 833

Subtraction 530 631 732 833

Multiplication 3237 4500 5971 7650

Squaring 2901 3909 5058 6347

Mul. by 16-bit integer 873 1039 1295 1461

Inversion 223374 311828 416758 531901

Table 1 summarizes the execution times we obtained using the ATmega128
processor as target platform, whereby all timings include the full function-call
overhead. A multiplication in a 160-bit OPF takes 3237 clock cycles, which is
almost 10 % faster than the average multiplication time of 3542 cycles reported
by Zhang et al. [43]. For comparison, Szczechowiak et al.’s NanoECC [35] needs
a total of 3882 clock cycles for a 160-bit modular multiplication (2654 cycles to
do the multiplication, 1228 cycles for a reduction modulo a 160-bit generalized
Mersenne prime), even though they fully unrolled the loops. The overhead due
to the reduction operation accounts for about 31.6 % of the total multiplication
time. On the other hand, the reduction overhead of multiplication in a 160-bit
OPF is 459 clock cycles (or 14.2 %) since, according to [24], a conventional 160-
bit multiplication (without modular reduction) requires 2778 cycles.

As analyzed in Sect. 3.3, our FIPS Montgomery multiplication for OPFs
has to perform s2 + s word-level multiplications or MAC operations, which are
essentially (32 × 32)-bit multiplications in our case. On an 8-bit processor, this
translates into 16s2 + 8s mul instructions since the two least significant bytes
of Ps−1 are 0, i.e. the s MAC operations in line 10 and 18 of Algorithm 1 need
only eight mul instructions instead of 16. On the other hand, an OPF squaring
including reduction involves (s2 + 3s)/2 word-level multiplications (resp. MAC
operations), which means 8s2 + 12s mul instructions on the ATmega128. As a
consequence, one would expect OPF squaring to be (almost) 50 % faster than
OPF multiplication. However, an optimized squaring function has to carry out
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some auxiliary operations, e.g. left-shifts of word-level (i.e. 64-bit) products in
order to double them, which significantly impacts the total execution time, the
more so the shorter the operands are. The results given in Table 1 show that, in
a 160-bit OPF, squaring is just some 10.4 % faster than multiplication, but the
gain increases to roughly 17 % in a 256-bit OPF. We implemented the inversion
based on the binary version of the well-known Extended Euclidean Algorithm
(EEA) [16], whereby we exploited the special form of our primes to accelerate
certain low-level operations, e.g. additions and subtractions of p. Note that the
inversion has an irregular execution profile, which means the execution time is
not constant but depends on the input. Table 1 specifies the average execution
time of 100 inversions performed on random field elements.

Table 2. Execution time (in cycles) of point arithmetic and scalar multiplication

Operation 160 bit 192 bit 224 bit 256 bit

GLV point addition 40305 54417 70418 88550

GLV point doubling 26684 36539 45369 56296

GLV scalar mul. 4191073 6918518 10064582 14178625

Montgomery point add. 19479 25890 33207 41428

Montgomery point dbl. 15950 21072 26884 33390

Montgomery scalar mul. 5928088 9445554 14109549 20158840

Table 2 lists the simulated execution times of point addition/doubling and
full scalar multiplication for both GLV and Montgomery curves. As explained
in Sect. 2.2, the addition and doubling of points on a Montgomery curve is less
costly (in terms of arithmetic operations in the underlying prime field) than
the point addition/doubling on a GLV curve, and the simulation results from
Table 2 clearly confirm this. However, the situation becomes different when we
compare the execution times of a full scalar multiplication since the GLV curve
outperforms its Montgomery counterpart by a factor of 1.41 in the 160-bit case
(i.e. 4.19 · 106 versus 5.93 · 106 cycles on an ATmega128). We implemented the
scalar multiplication on the Montgomery curve in a straightforward way based
on a “Montgomery ladder” [6], while the scalar multiplication on the GLV curve
exploits an efficiently computable endomorphism as described in [11,16]. Since
the Montgomery curves we used have a positive trace and a co-factor of 4, we
evaluated the execution time using scalars that are two bits shorter than the
underlying OPF. On the other hand, our GLV curves have a co-factor of 1 and
we used scalars k that satisfy the following conditions: (1) the two sub-scalars
k1, k2 of the decomposition of k are both positive and n/2 bit long (n is the
bitlength of the underlying OPF), and (2) their JSF contains n/4 zero bits.

Table 3 compares the scalar multiplication time of our two implementations
with previous results reported in the literature. Our GLV variant outperforms
all previous implementations, with two exceptions, namely the implementation
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Table 3. Comparison of execution time of scalar multiplication over fields of an order
of roughly 160 bits (evaluation platform is an ATmega128 clocked at 7.3728 MHz)

Implementation Field order Fixed P. Rand. P. SPA resistant

Seo et al. [32] GF(2m), 163 bit 1.14 s 1.14 s No

Kargl et al. [20] GF(2m), 167 bit 0.76 s 0.76 s No

Aranha et al. [1] GF(2m), 163 bit 0.29 s 0.32 s No

Liu et al. [23] GF(p), 160 bit 2.05 s 2.30 s No

Szczechowiak et al. [35] GF(p), 160 bit 1.27 s 1.27 s No

Wang et al. [39] GF(p), 160 bit 1.24 s 1.35 s No

Gura et al. [15] GF(p), 160 bit 0.88 s 0.88 s No

Chu et al. [5] GF(p), 160 bit 0.79 s 0.79 s No

Großschädl et al. [13] GF(p), 160 bit 0.74 s 0.74 s No

Ugus et al. [36] GF(p), 160 bit 0.57 s 1.03 s No

Wenger et al. [40] (Mon.) GF(p), 160 bit 0.75 s 0.75 s Yes

Wenger et al. [40] (GLV) GF(p), 160 bit 0.53 s 0.53 s No

Our work (Montg. curve) GF(p), 160 bit 0.80 s 0.80 s Yes

Our work (GLV curve) GF(p), 160 bit 0.57 s 0.57 s No

of Aranha et al. [1] and Wenger et al. [40]. However, both applied extensive loop
unrolling in the field arithmetic operations, which in general entails large code
size and poor scalability. Furthermore, the implementation of Aranha et al. can
only be made SPA resistant at the expense of a massive performance hit.

5 Conclusions

The aim of this paper was to provide new insights into certain implementation
aspects of OPFs on 8-bit AVR processors. First, we argued that OPFs defined
by primes of the form p = u · 2k + 1, where u is a 16-bit integer, represent an
optimal trade-off between performance and scalability. Then, we described in
detail how to implement arithmetic operations for OPFs, taking the properties
(e.g. low Hamming weight) of these primes into account. In particular, we pro-
posed a new variant of Montgomery multiplication for low-weight primes based
on the FIPS method. Our Montgomery variant has the same loop structure
as the ordinary product-scanning method for multiplication and can, therefore,
be well optimized for ATmega processors. We implemented the multiplication
and all other arithmetic operations needed for ECC in a parameterized fashion
with rolled loops so as to achieve high scalability and small code size. Further-
more, we wrote the Assembly code of all arithmetic functions (bar inversion) in
such a way that always the same instruction sequence is executed, irrespective
of the actual value of the operands, which helps to foil SPA attacks. Simulation
results obtained with AVR Studio 4 indicate an execution time of 3237 cycles
for a multiplication in a 160-bit OPF, while squaring takes 2901 cycles. These
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results compare very favorably with previous work and outperform even some
implementations with unrolled loops. We also evaluated the execution time of a
full scalar multiplication on Montgomery as well as GLV curves over OPFs. In
the former case, the scalar multiplication is “intrinsically” SPA resistant and
executes in 5.93 million cycles over a 160-bit OPF, while, in the latter case, we
have an execution time of 4.19 million cycles. Both results confirm that OPFs
are an excellent implementation option for ECC on 8-bit AVR processors.
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1 Introduction

In ubiquitous computing applications such as wireless mesh networks and mobile
ad hoc networks, there is a need to efficiently and securely broadcast to a remote
cooperative group. A popular approach to secure group communications is to
exploit group key agreement (GKA) [5]. Conventional GKA protocols allow a
group of members to interact over an open network to establish a common secret
key; thereafter, the group members can securely exchange messages using this
shared key. Thus, conventional GKA protocols are sender restricted in the sense
that, when a sender wants to send a secret message to a group of receivers,
the sender has to first join the receivers to form a group and then run a GKA
protocol. To see the limitations, let us consider the following scenarios.

Scenario 1. A group of users in different time zones would like to discuss on
some sensitive topics over an untrusted medium, e.g., via a social network service
provider.

Scenario 2. One or more soldiers may want to securely report to a group of
tactical units.

Up to now, most existing efficient GKA protocols need at least two rounds
[12,19]. In Scenario 1, all the users have to stay online to finish the protocol
before they can wait for encrypted contents, which is a prohibitive way for users
in different time zones. In Scenario 2, the same key will be derived from the
GKA protocol for a soldier and the tactical units. The compromise of any one
soldier will compromise the secrecy of the communication among the tactical
units as well. This is also prohibitive since a soldier is conceivably under a poor
communication environment.

Motivated by above scenarios, Wu et al. [21] introduced the notion of asym-
metric group key agreement (AGKA) and proposed a concrete one-round AGKA
protocol. Unlike regular GKA, AGKA allows the members to negotiate a com-
mon group encryption key while holding different (group) decryption keys. The
group encryption key is publicly accessible and enables any sender to securely
encrypt to the group members. The decryption key, which is different from the
long-term private key of the user, can be used to decrypt every ciphertexts
encrypted under the group encryption key.

The above AGKA protocol, and the subsequent improvements [22,23], are
based on traditional public-key infrastructure (PKI). The idea of identity-based
cryptosystem (IBC) proposed by Shamir [18] eliminates complicated certificate
management in PKI, with the help of a trusted key generation centre (KGC)
for creating the long-term identity-based secret keys for the group members.
Identity-based AGKA (IBAGKA) protocols have been proposed [26,27]. Using
these identity-based secret keys with AGKA, the members can securely establish
a secure broadcast channel among them, without relying on PKI.

The original AGKA notion and the instantiated protocol are only secure
against passive attackers who just eavesdrop the open communications. This is
not sufficient against realistic attackers who may fully control the open networks
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and launch more powerful active attacks such as member impersonation, com-
munication tampering, replay of early protocol transcripts, etc. To counter this
kind of attackers, an additional identity-based signature scheme is used on top
of the IBAGKA protocol [26,27].

The authenticated AGKA protocol in [26,27] achieves partial forward secrecy.
That is, if only one or some specific group members’ long-term keys are com-
promised, the secrets exchanged before the compromise stay unknown to the
attacker. However, if all the group members’ long-term keys are leaked, then the
previously established secrets will be exposed to the attacker and the protocol
will no longer be secure. Obviously, since the long-term keys for the group mem-
bers are generated by the KGC, the KGC can always read the secrets. This is
known as the key escrow problem. Further, in practice, we do not know which
members might be compromised after the protocol is deployed and, in the worst
case, all the members and even the KGC might be compromised. These obser-
vations motivate us to investigate authenticated AGKA protocols with stronger
active security.

1.1 Our Contributions

This paper contributes to the study of authenticated AGKA in the IBC setting,
in the following aspects.

We first formalize the notion of IBAAGKA without escrow. Our notion cap-
tures the typical active security properties of secrecy and known-key security
[26,27] derived from their analogs in conventional authenticated GKA protocols.
The former means that only the group members can read the message exchanged
after the AGKA protocol is executed. The latter means that an attacker who
knows the decryption keys of previous sessions cannot compute subsequent group
decryption keys. Furthermore, our notion also captures escrow freeness [7] (just
like the standard perfect forward secrecy [1,2]) by allowing an attacker to cor-
rupt the KGC. True, a KGC can always generate the long-term identity-based
secret keys of any user. However, even such an attacker cannot read any secret
messages exchanged before the corruption.

To motivate our design of authenticated AGKA protocol, we first propose
and realize our new notion of strongly unforgeable stateful identity-based batch
multi-signatures (IBBMS). Borrowing its design, we propose an IBAAGKA pro-
tocol without escrow. The protocol is shown to be secure against active attacks
in our strengthened model. The proof relies on the k-Bilinear Diffie-Hellman
Exponent assumption (which is widely used in recent cryptographic construc-
tions) and the strong unforgeability of our stateful IBBMS. The protocol needs
only one round to enable a group of members to establish a common encryption
and their respective decryption keys. A detailed analysis shows that the com-
plexity in computation and communication of our authenticated AGKA protocol
is comparable to that of up-to-date AGKA protocols, but our protocol achieves
the strongest active security in AGKA protocols, so far.
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1.2 Related Work

As a fundamental primitive of secure group communications, GKA has attracted
considerable attention in cryptography. The best-known among these are per-
haps the works of Ingemarsson et al. [16], Burmester and Desmedt [5], and
Steiner et al. [20]. These proposals require two or more rounds to obtain a secret
key and an additional round for each member to confirm the established secret
key. Boneh and Silverberg [4] showed that a one-round GKA protocol can be
constructed if multilinear maps [15] exist. However, the key confirmation step
cannot be eliminated. Further, these GKA protocols only allow secure intra-
group communications.

Wu et al. [21] constructed a one-round AGKA protocol allowing a sender
not in the group to encrypt to the members while offering short ciphertexts
and efficient encryption. Unlike previous GKA protocols, an interesting prop-
erty of Wu et al.’s AGKA protocol is that it allows key confirmation without
extra communication. That is, a member just needs to locally encrypt a mes-
sage using the encryption key and then decrypt the corresponding ciphertext
using her secret decryption key. If the messages are equal, then she obtains the
keys correctly. Their protocol requires O(1)-size ciphertext and O(1) encryption
operations after the group encryption key is negotiated. One may note that a
trivial solution of one-round AGKA is to let each member publish a public key
and withhold the respective secret key. A sender can then separately encrypt
to each member and can generate the final ciphertext by concatenating all the
underlying individual ones. However, this solution leads to O(n)-size ciphertext
and requires O(n) encryption operations for a group of n receivers. The chal-
lenge is to design one-round AGKA protocols with efficient encryption and short
ciphertexts.

Subsequently, Wu et al. strengthened AGKA and presented contributory
broadcast encryption [22] so that the sender could exclude some members from
reading the transmissions. In [23], Wu et al. showed how to shorten the size of
protocol transcripts in AGKA protocols.

To alleviate complicated certificate management of authenticated GKA in
the PKI setting, identity-based authenticated GKA protocols (e.g., [8,17]) have
been suggested. These protocols require two or more rounds and cannot cope
with sender changes. The recent IBAAGKA protocol [26,27] is one-round and
can handle sender changes efficiently. However, this protocol only achieves partial
forward secrecy. Further, to guarantee the security of the protocol, an additional
identity-based signature is used which makes the protocol less interesting. One
may consider adding random secret value(s) [6] in the key agreement phase of
conventional GKA protocols to achieve escrow freeness in identity-based AGKA
protocols. However, it is unclear how to use this method without affecting the
round efficiency of AGKA protocols.

Another notion close to IBAGKA is identity-based broadcast encryption
[11] due to Delerablée. However, since the long-term key derived from a mem-
ber’s identity is directly used for decryption, identity-based broadcast encryption
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cannot even achieve partial forward secrecy and is weaker than our protocol with
escrow freeness, which implies perfect forward secrecy.

Escrow freeness is especially important in the IBC setting since the KGC is
the Achilles’ heel and the most vulnerable spot for an attacker to break. Many
works have considered solutions to address this problem. For example, forward
secrecy in identity-based (anonymous) key agreement protocols [9], anonymous
ciphertext indistinguishability against KGC attack in identity-based encryp-
tion [10,25], and resilience against continual auxiliary leakage of the master
secret key in (hierarchical) identity-based encryption [24].

1.3 Paper Outline

The rest of the paper is organized as follows. Section 2 defines the security for
IBAAGKA protocols. A strongly unforgeable stateful IBBMS signature is pro-
posed in Sect. 3. Section 4 proposes our IBAAGKA protocol. Section 5 compares
our AGKA protocol with other two AGKA protocols. Finally, Sect. 6 gives a
conclusion.

2 System Model

In this section, we formalize our IBAAGKA model without escrow.

2.1 Notations

Let P be a polynomial-size set of participants. At any point of time, any subset
U = {U1, . . . ,Un} ⊆ P may decide to establish a confidential channel. Let Ππ

Ui

represent instance π of participant Ui. We will require the following notations:

– pidπ
Ui

is the partner ID of Ππ
Ui

, defined by a set containing the identities of
the participants in the group with whom Ππ

Ui
intends to establish a session

key including Ui itself. The identities in pidπ
Ui

are lexicographically ordered.
– sidπ

Ui
is the session ID of instance Ππ

Ui
. The session IDs are unique. All mem-

bers taking part in a given execution of a protocol have the same session ID.
The session ID of Ππ

Ui
can be instantiated by concatenating pidπ

Ui
, a time inter-

val (e.g., date of the day) and a counter of the number of sessions executed
by the participants with partner ID pidπ

Ui
in the time interval.

– msπUi
is the concatenation of all messages sent and received by Ππ

Ui
during its

execution, where the messages are ordered by round, and within each round
lexicographically by the identities of the purported senders.

– ekπ
Ui

is the group encryption key held by Ππ
Ui

.
– dkπ

Ui
is the group decryption key held by Ππ

Ui
.

– stateπ
Ui

represents the current (internal) state of instance Ππ
Ui

. Ππ
Ui

is termi-
nated, if it stops sending and receiving; and it is successfully terminated if Ππ

Ui

is terminated and no incorrect behavior has been detected, i.e., it possesses
ekπ

Ui
(�= null), dkπ

Ui
(�= null), msπUi

, pidπ
Ui

and sidπ
Ui

.
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Definition 1 (Partnering). Two instances Ππ
Ui

and Ππ′
Uj

(with i �= j) are
partnered if and only if (1) they are successfully terminated; (2) pidπ

Ui
= pidπ′

Uj
;

and (3) sidπ
Ui

= sidπ′
Uj
.

2.2 Security Model

Our security model for IBAAGKA protocols is defined by the following game,
which is run between a challenger C and an adversary A. The adversary has full
control of the network communications. This game has the following stages:

Initialize: Taking as input a security parameter �, C generates the master-secret
and initializes the system parameters Υ . Υ is passed to A.

Probing: At this stage, A is allowed to make the following types of queries:

– Send(Ππ
Ui

, Ψ): It sends a message Ψ to instance Ππ
Ui

, and outputs the reply
generated by this instance. In particular, if Ψ = (sid, pid), this query prompts
Ui to initiate the protocol using session ID sid and partner ID pid. If Ψ is of
incorrect format, the query returns null.

– Corrupt(Ui): It outputs the private key of participant Ui and can be used to
model forward secrecy.

– Corrupt(KGC): It outputs the master-secret and can be used to model escrow
freeness.

– Ek.Reveal(Ππ
Ui

): It outputs the group encryption key ekπ
Ui

.
– Dk.Reveal(Ππ

Ui
): It outputs the group decryption key dkπ

Ui
. It is used to model

known-key security.
– Test(Ππ

Ui
): At some point, A returns two messages (m0,m1) and a fresh

instance Ππ
Ui

(see Definition 2). C randomly chooses a bit b ∈ {0, 1}, encrypts
mb under ekπ

Ui
to produce a ciphertext c, and returns c to A. This query can

be queried only once and is used to model secrecy.

Following [21,26,27], we use the confidentiality of the final broadcast chan-
nel to define the secrecy of IBAAGKA protocols. That is, secrecy is defined
by the indistinguishability of a message encrypted under the negotiated group
encryption key from a random string in the ciphertext space.

Guess: Finally, A returns a bit b′. If b′ = b, A wins the game. A’s advantage is
defined to be ε = |2Pr[b = b′] − 1|.
Definition 2 (Freshness). An instance Ππ

Ui
is fresh if none of the following

happens:

1. Ππ
Ui

has not successfully terminated.
2. A has queried Dk.Reveal(Ππ

Ui
) or Dk.Reveal(Ππ′

Uj
), where Ππ′

Uj
is any partnered

instance of Ππ
Ui
.

3. Before Ππ
Ui

successfully terminated, the query Corrupt(KGC) has been made
or the query Corrupt(participant) has been made for some participants whose
identities are in pidπ

Ui
.
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Definition 3 (Secrecy). An IBAAGKA protocol is said to be semantically
indistinguishable against chosen identity and plaintext attacks (Ind-ID-CPA) if
ε is negligible for any probabilistic polynomial time (PPT) active adversary in
the above model.

We stress that, in our IBAAGKA secrecy definition, escrow freeness is incor-
porated since the attacker is allowed to corrupt the PKG. Even if such an attacker
cannot understand the secret messages exchanged among the group members.
The escrow freeness naturally implies perfect forward secrecy. This strong secu-
rity is important in practice as IBAAGKA protocols are assumed to be deployed
in ad hoc network like scenarios. In these applications, end users are usually con-
nected by open wireless communications and exposed to attackers. Furthermore,
the centralized PKG is the single point of the system and may be compromised
by attackers. Our key-escrow free secrecy guarantees that IBAAGKA protocols
can be securely employed in such hostile environments.

Similarly to [21,26,27], in the above model, we only consider chosen-plaintext
attacks (CPA) against IBAAGKA protocols. We note our definition is read-
ily extended to resist chosen-ciphertext (CCA) attacks. Indeed, there are some
generic approaches that convert a CPA secure encryption scheme into a CCA
secure one, such as the Fujisaki-Okamoto conversion [13].

3 Building Block: Strongly Unforgeable Stateful IBBMS

Here we propose a strongly unforgeable stateful IBBMS scheme as a building
block of our IBAAGKA protocol.

3.1 Definition

A stateful IBBMS allows multiple signers to sign t messages under a piece of state
information in an efficient way to generate a batch multi-signature. Furthermore,
the batch multi-signature can be separated into t individual multi-signatures.
A stateful IBBMS scheme consists of the following five algorithms:

– BM.Setup, taking as input a security parameter �, outputs a master-secret and
a list of system parameters. For brevity, we omit the inclusion of the system
parameters as part of the inputs for the other algorithms.

– BM.Extract, taking as inputs an entity’s identity IDi and the master-secret,
outputs the entity’s private key.

– Sign, taking as inputs t messages, a piece of state information info, a signer’s
identity IDi and private key, outputs a batch signature.

– Aggregate, taking as input a collection of x batch signatures on the same t
messages from x signers, under the same state information info, outputs a
batch multi-signature.

– BM.Verify, taking as input a batch multi-signature on t messages generated by
x signers, under the same state information info, outputs either “all valid”
if the batch multi-signature is valid or an index set, which means that the
multi-signatures on the messages with indices in that set are valid.
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As the state information, one can use the identities of all the signers and
concatenate a specification of each time interval together with a counter of the
number of signatures issued by these signers in the time interval.

3.2 Security Model

This section defines the strong unforgeability of stateful IBBMS schemes.
Roughly speaking, a stateful IBBMS scheme is strongly unforgeable if an adver-
sary cannot generate a different multi-signature on a message m under any state
information and x signers’ identities even if he can get the signature(s) on m
under the same state information and identities. The formal definition of strong
unforgeability of stateful IBBMS schemes is defined using the following game
between a challenger C and an adversary A.

Initialize: C runs BM.Setup to generate a master-secret and the system para-
meter list Υ . Υ is passed to A while master-secret is kept secret.

Probing: A can adaptively issue the following queries:

– BM.Extract: A can request the private key of an entity with identity IDi. On
receiving such a query, C outputs the private key of this entity.

– Sign: A can request a batch signature on messages (m1, . . . , mti) under an
identity IDi and a piece of state information. For simplicity, we assume the
messages are lexicographically ordered. On input

(IDi, infoi,m1, . . . , mti)

the challenger C outputs a valid batch signature on those messages. If A asks
a batch signature query with a previously used state information but different
messages as input, C returns null.

Note that, to generate the IBBMS on messages (m1, . . . , mti) under identities
(ID1, . . ., IDx) (lexicographically ordered) and a piece of state information, C
just needs to simulate via repeated calls to the Sign queries and then generate
an IBBMS by using the Aggregate algorithm.

Forgery: Finally, A outputs x identities (ID∗
1 , . . . , ID∗

x), a piece of state infor-
mation info∗, a message m∗ and a multi-signature σ∗. A wins the game if the
following conditions are satisfied:

1. σ∗ is a valid multi-signature on message m∗ under identities (ID∗
1 , . . . , ID∗

x)
and info∗.

2. None of the identities in {ID∗
1 , . . . , ID∗

x} has been submitted during the
BM.Extract queries.

3. For ID∗
i ∈ {ID∗

1 , . . . , ID∗
x}, the forged signature σ∗ is not generated by using

the batch signatures output by calling the Sign queries with

(ID∗
i , info∗,m1, . . . , mI , . . . , mt)

as input, where mI = m∗ and I defines the index of the message.
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In the Forgery stage, A is only required to output a single multi-signature,
but not a batch multi-signature. This is due to the property of batch multi-
signatures. A batch multi-signature can be separated into t individual multi-
signatures. We only require that one of them is a forgery. As a result, we require
that none of the identities in {ID∗

1 , . . . , ID∗
x} has been submitted during the

BM.Extract queries. This restriction is stronger than the restriction in the secu-
rity models for normal multi-signature schemes which allow an adversary to
query x−1 private keys corresponding to the identities in {ID∗

1 , . . . , ID∗
x}. How-

ever, this level of security suffices for our higher level applications in IBAAGKA.
Indeed, we will be reducing the security of our IBAAGKA to that of our IBBMS.

Definition 4. A stateful IBBMS scheme is strongly existentially unforgeable
under adaptively chosen-message attacks if and only if the success probability ε′

of any PPT adversary in the above game is negligible.

3.3 Strongly Unforgeable Stateful IBBMS Scheme

Before delving into the details of our construction, we would like to remark
that, although our final goal is not to propose an identity-based multi-signature
scheme, we borrow some of its design principles to achieve our final goal of
building IBAAGKA. Hence, we do not consider the generic approach of build-
ing identity-based signatures from the certification approach of standard signa-
tures [14].

Our scheme is built over bilinear groups. Let G1 and G2 be two multiplicative
groups of prime order q, and g be a generator of G1. An efficient map ê : G1 ×
G1 → G2 is called a bilinear map if it satisfies the following two properties.

1. Bilinearity: It holds that ê(gα, gβ) = ê(g, g)αβ for all α, β ∈ Z
∗
q .

2. Non-degeneracy: There exists u, v ∈ G1 such that ê(u, v) �= 1.

Now we are ready to describe our strongly unforgeable stateful IBBMS
scheme.

– BM.Setup: On input a security parameter �, KGC chooses two cyclic multi-
plicative groups G1, G2 with prime order q, such that there exists a bilinear
map ê : G1 ×G1 −→ G2, where G1 is generated by g; KGC chooses a random
κ ∈ Z

∗
q as the master-secret and sets gpub = gκ; KGC chooses cryptographic

hash functions

H1,H2,H3 : {0, 1}∗ −→ G1,H4 : {0, 1}∗ −→ Z
∗
q

Finally, KGC publishes the system parameter list

Υ = (q,G1,G2, ê, g, gpub,H1 ∼ H4)

– BM.Extract: This algorithm takes κ and an entity’s identity IDi ∈ {0, 1}∗ as
inputs. It generates the private key for the entity as follows:
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1. Compute
idi,0 = H1(IDi, 0), idi,1 = H1(IDi, 1)

2. Output the private key

(si,0 = idκ
i,0, si,1 = idκ

i,1)

– Sign: To sign t messages (m1, . . . , mt) under a piece of state information info,
a signer with identity IDi and private key (si,0, si,1) performs the following
steps:
1. Choose random ηi, θi ∈ Z

∗
q and compute

ri = gηi , ui = gθi , v = H2(info),�i = H4(info, IDi, ri, ui)

fj = H3(info,mj), zi,j = si,0s
�i
i,1vθifηi

j , for 1 ≤ j ≤ t.

2. Output batch signature σi = (ri, ui, zi,1, . . . , zi,t).
– Aggregate: Anyone can aggregate a collection of signatures

{σi = (ri, ui, zi,1, . . . , zi,t)}1≤i≤x

on the messages {mj}1≤j≤t from x signers, under same info, into a batch
multi-signature. In particular, the signatures can be aggregated into

(r1, . . . , rx, u1, . . . , ux, d1, . . . , dt), where dj =
x∏

i=1

zi,j .

– BM.Verify: To check the validity of the above batch multi-signature

(r1, . . . , rx, u1, . . . , ux, d1, . . . , dt)

the verifier computes

w =
x∏

i=1

ri, y =
x∏

i=1

ui, v = H2(info),

fj = H3(info,mj), Γj = ê(fj , w) for 1 ≤ j ≤ t,

�i = H4(info, IDi, ri, ui) for 1 ≤ i ≤ x,

Ω = ê(
x∏

i=1

H1(IDi, 0)H1(IDi, 1)�i , gpub)ê(v, y).

For 1 ≤ j ≤ t, the verifier checks

ê(dj , g) ?= ΩΓj .

If all the equations hold, the verifier outputs “all valid”; otherwise, it outputs
an index set I, which means that the multi-signatures with indices in that set
are valid.
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The security of our protocol is based on the following computational Diffie-
Hellman (CDH) assumption.

CDH Assumption: In a finite cyclic group G with order q, the CDH assump-
tion states that, given g, gα, gβ ∈ G for randomly chosen α, β ∈ Zq, there exists
no efficient algorithm to compute gαβ .

The following result relates the security of the IBBMS primitive with the
difficulty of breaking the CDH assumption.

Theorem 1. Let H1,H2,H3 and H4 be random oracles. Suppose an adversary
A makes at most qHi

queries to Hi, for 1 ≤ i ≤ 3, qE Extract queries, qσ

Sign queries with maximal message size N , and wins the game in Sect. 3.2 with
advantage ε′ in time τ ′; and the forged IBBMS is by at most x users. Then, there
exists an algorithm to solve the CDH problem with advantage

(
x + 2

qE + qH3 + x + 1
)x+2 qH3

ex+2
ε′

in time
τ ′ + O(4qH1 + qH2 + qH3 + 5Nqσ)τG1

where τG1 is the time to compute a scalar exponentiation in G1 and e is Euler’s
number.

The proof will be presented in the full version of this paper.

4 Identity-Based Authenticated Asymmetric Group Key
Agreement Protocol

In this section, we propose our one-round IBAAGKA protocol.

– Setup: It is the same as BM.Setup, except that an additional cryptographic
hash function H5 : G2 −→ {0, 1}ι is chosen, where ι defines the bit-length of
plaintexts. The system parameter list is

Υ = (q,G1,G2, ê, g, gpub,H1 ∼ H5, ι)

– Extract: It is the same as BM.Extract.
– Agreement: Assume the group scale is n and the session ID is sidλ. A protocol

participant Ui, whose identity is IDi and private key is (si,0, si,1), performs
the following steps:
1. Choose ηi, θi ∈ Z

∗
q and compute

ri = gηi , ui = gθi

2. Compute
v = H2(sidλ),�i = H4(sidλ, IDi, ri, ui)
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3. For 1 ≤ j ≤ n, compute
fj = H3(sidλ, j)

4. For 1 ≤ j ≤ n, compute

zi,j = si,0s
�i
i,1vθifηi

j

5. Publish
σi = (ri, ui, {zi,j}j∈{1,...,n},j �=i)

– EncKeyGen: To get the group encryption key, for j ∈ {1, 2}, i ∈ {1, . . . , n}, an
entity computes

v = H2(sidλ), fj = H3(sidλ, j),�i = H4(sidλ, IDi, ri, ui).

Define Δ = 1, if Eqs. (1) and (2) hold, and Δ = 0 in other cases.

ê(z1,2, g) ?= ê(H1(ID1, 0)H1(ID1, 1)�1 , gpub)ê(v, u1)ê(f2, r1) (1)

ê(
n∏

i=2

zi,1, g) ?= ê(
n∏

i=2

H1(IDi, 0)H1(IDi, 1)�i , gpub)ê(v,

n∏

i=2

ui)ê(f1,
n∏

i=2

ri)

(2)
The Δ is used to check whether ri and ui are well formatted. If Δ = 1, the
entity outputs (w,Ω) as the group encryption key, where

w =
n∏

i=1

ri, Ω = ê(
n∏

i=1

H1(IDi, 0)H1(IDi, 1)�i , gpub)ê(v,

n∏

i=1

ui);

otherwise it aborts. We note that a protocol participant does not need to test
the value of Δ, since it will do a similar check in the following DecKeyGen
stage.

– DecKeyGen: Each participant Ui computes

w =
n∏

l=1

rl, Γi = ê(fi, w), di =
n∏

l=1

zl,i

and tests
ê(di, g) ?= Ω · Γi.

If the equation holds, Ui accepts di as the group decryption key; otherwise, it
aborts. The above test is also used by Ui to determine whether the encryption
key is valid.

– Enc: To encrypt a plaintext m, select ρ ∈ Z
∗
q and compute the ciphertext

c = (c1, c2, c3) where

c1 = gρ, c2 = wρ, c3 = m ⊕ H5(Ωρ).
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– Dec: To decrypt the ciphertext c = (c1, c2, c3), Ui, whose group decryption
key is di, computes

m = c3 ⊕ H5(ê(di, c1)ê(f−1
i , c2)).

The following theorem characterizes the security of our IBAAGKA protocol.
The security of our protocol relies on the k-Bilinear Diffie-Hellman Exponent
(BDHE) assumption [3] which states that, in the bilinear group setting, given
g, h, and gi = gαi

in G1 for i = 1, 2, . . . , k, k + 2, . . . , 2k as inputs, there exists
no efficient algorithm to compute ê(g, h)αk+1

.

Theorem 2. Let H2,H3 and H5 be random oracles. Suppose that an adversary
A makes at most qHi

queries to Hi, i ∈ {2, 3, 5}, qC Corrupt queries, qS Send
queries, qEK Ek.Reveal queries and qDK Dk.Reveal queries, and wins the game
with advantage ε in time τ . Then there exists an algorithm to solve the k-BDHE
problem with advantage at least

1 − 2ε′

qH5(qDK + 1)e
ε

in time

T = τ + O(10qEK)τê + O(qH2 + qH3 + 2qC + 8qS + 3qEK)τG1

where ε′ is the advantage for A to forge a valid IBBMS in time T , τê is the time
to compute a bilinear map, τG1 is the time to compute a scalar exponentiation
in G1 and e is Euler’s number.

The proof will be presented in the full version of this paper.

5 Comparison

In this section, we compare our AGKA protocol with the unauthenticated AGKA
protocol in [21] and the IBAAGKA in [26,27]. We only consider the costly oper-
ations and omit the operations that can be pre-computed.

Table 1 shows the computational overhead of three protocols in the last five
stages, where τê, τG1 , τH , τG2 , τsg are the times to compute a bilinear map, a
scalar exponentiation in G1, a MapToPoint hash, a scalar exponentiation in G2,
and the signing algorithm of an identity-based signature (IBS), respectively. Let
τsv denote the verification time of an IBS. The efficiency of an AGKA protocol
is mainly determined by stages Enc and Dec, since Agreement, EncKeyGen and
DecKeyGen only need to be run once. Hence, for simplicity, in EncKeyGen, we only
consider the computational cost for a participant to generate the group encryp-
tion key; the computational cost for a sender to generate the group encryption
key is omitted. From this table, one can find that our protocol has compara-
ble efficiency in stages Agreement, EncKeyGen and DecKeyGen as protocols in
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Table 1. Computational overhead (†: it can be done in EncKeyGen or DecKeyGen)

Protocols Agreement EncKeyGen DecKeyGen Enc Dec

AGKA in [21] 1τê + nτG1 − 1τG1 2τG1 + 1τG2 2τê + 1τG2

AGKA in [26,27] (n + 1)τG1 + nτH + 1τsg 1τê 2τê + nτ†
sv 2τG1 + 1τG2 2τê + 1τG1

Our protocol (n + 4)τG1 + (n + 1)τH 2τê + 1τG1 2τê 2τG1 + 1τG2 2τê + 1τG1

[21,26,27]. For stages Enc and Dec, our protocol is as efficient as [26,27], and it
has similar efficiency as [21].

Let P1, P2, PID, Pm denote the binary length of an element in G1, G2, an
identity, and a message, respectively. Let Psig be the length of an identity-based
signature. Table 2 compares our protocol with two other protocols regarding
transmission cost. From this table, one may find that the transmission overhead
of our protocol is slightly lower than the one in [21,26,27] for the Agreement
stage, if we consider an identity of length 160 bits. Further, the length of a
ciphertext in our protocol is the same as the one in [21,26,27], assuming that
the plaintexts in the three protocols are of the same size.

Table 2. Transmission Overhead

Protocols Agreement Ciphertext Size

AGKA in [21] nP1 + P2 2P1 + P2

AGKA in [26,27] nP1 + Psig + PID 2P1 + Pm

Our protocol (n + 1)P1 + PID 2P1 + Pm

6 Conclusion

Wehave extended the securitymodel for IBAAGKAprotocols, inwhich anattacker
is allowed to learn the master secret of the KGC. A one-round IBAAGKA protocol
has been proposed and proven secure in our extended model under the k-BDHE
assumption. It offers secrecy and known-key security, and it does not suffer from
the escrow problem. Therefore, not even the KGC can decrypt the ciphertexts sent
to a group.
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many subtleties actually buried there. However, lacking a full recogni-
tion of the precise yet subtle interplay between HMQV protocol struc-
ture and provable security can cause misunderstanding of the HMQV
design, and can cause potential flawed design and analysis of HMQV
protocol variants. In this work, we explicitly make clear the interplay
between HMQV protocol structure and provable security, showing the
delicate design of HMQV. We then re-examine the security model and
analysis of a recently proposed HMQV protocol variant, specifically, the
FHMQV protocol proposed by Sarr et al. in [25]. We clarify the rela-
tionship between the traditional CK-framework and the CK-FHMQV
security model proposed for FHMQV, and show that CK-HMQV and
CK-FHMQV are incomparable. Finally, we make a careful investigation
of the CDH-based analysis of FHMQV in the CK-FHMQV model, which
was considered to be one of the salient advantages of FHMQV. We iden-
tify that the CDH-based security analysis of FHMQV is actually flawed.
The flaws identified in the security proof of FHMQV just stem from lack-
ing a full realization of the precise yet subtle interplay, as clarified in this
work, between HMQV protocol structure and provable security.

1 Introduction

Diffie-Hellman key-exchange (DHKE) protocols [9] marked the birth of modern
cryptography, and are one of the main pillars of both theory and practice of
cryptography [5]. The plain DHKE protocol proposed in [9] is later observed to
be insecure against active, man-in-the-middle adversaries. Much research efforts
have been being made to achieve authenticated DHKE protocols secure against
such active adversaries. One common approach is to add explicit authentica-
tion of the messages being exchanged by the use of signatures, encryptions and
MACs, e.g., Internet Key-Exchange (IKE) [15] (that is based on SIGMA [14]),
deniable IKE [29], and TLS [8]. Such protocols are referred to explicitly authen-
ticated DHKE (EA-DHKE). However, the EA-DHKE approach usually incurs
significant computational and communication complexity as compared with the
plain DHKE.

Matsumoto et al. [18] initiated one ambitious line of investigation to design
implicitly authenticated DHKE (IA-DHKE) protocols, which then triggered a
list of subsequent (ad-hoc) designs of IA-DHKE protocols. By implicitly authen-
ticated DHKE, we mean DHKE protocol whose communication is identical to
the basic DH protocol, yet it is implicitly authenticated by the sole ability of the
parties in computing the resultant session key [16]. This approach, i.e., the combi-
nation of authentication with the key derivation procedure, can potentially result
in significant computational and communication savings. An IA-DHKE protocol
is called role-dependent (resp., role-independent), if its session-key derivation is
dependent (resp., independent) of players’ roles (i.e., initiator or responder).

The MQV and HMQV protocols ((H)MQV, in short) marked the great milesto-
nes of IA-DHKE developments, and are widely standardized [1,2,10,11,21,22,26].
In particular, the first formal analysis of IA-DHKE, say the HMQV protocol,
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within the Canetti-Krawczyk framework (CK-framework) [5] is conducted in
[16], which is particularly helpful in understanding the protocol design insights
and the parameter choices.

Recently, Sarr et al. [25] proposed a variant of HMQV, named FHMQV
(depicted in Fig. 1),1 and claimed that FHMQV “preserves the efficiency and
security attributes of HMQV” and provides “stronger security than HMQV”.
FHMQV is proved to be secure, under merely the CDH assumption, in a vari-
ant of the CK-framework for role-dependent IA-DHKE that is referred to as
CK-FHMQV for presentation simplicity. The CDH-based provable security of
FHMQV in the CK-FHMQV model, besides others, was considered to be one of
the major advantages of FHMQV. Also, the work of [25] proposed, as a interest-
ing future research question, to investigate the actual relationship between the
CK-framework and the CK-FHMQV variant.

Despite its seemingly conceptual simplicity, designing “sound” and “right”
key-exchange protocols turns out to be extremely error prone and can be notori-
ously subtle, particularly witnessed by the evolution history of (H)MQV [13,16,
18–20,32]. Also, the analysis of even a simple cryptographic protocol in intricate
adversarial settings like the Internet can be a luxury and dauntingly complex
task [4,16]. The reason for this is the high system complexity and plenty of sub-
tleties surrounding the design, definition and analysis of key-exchange protocols.

In particular, in spite of the seemingly conceptual simplicity and similarity
with MQV, the HMQV protocol was actually very delicately designed with a
precise interplay between the protocol structure and provable security, in the
sense that slight changes in the design structure or parameters can lose provable
security or even be totally insecure. Unfortunately, the precise interplay between
the protocol structure of HMQV and its provable security is quite subtle, and
many subtleties were buried in the highly complicated and lengthy security proof
of HMQV [16]. However, as we shall see, such a precise yet subtle interplay
(between HMQV protocol structure and provable security) plays a key role in
understanding and evaluating the HMQV design.

Our contribution. In this work, we explicitly make clear the interplay
between HMQV protocol structure and provable security, showing the delicate
design of HMQV. As (H)MQV is widely standardized and deployed in practice,
and due to the high system complexity nature of KE security proof, we suggest
that explicitly making clear of such an interplay is important for deep under-
standing of HMQV design as well as for evaluating potential HMQV variants.

Then, we re-examine the security model and analysis of FHMQV proposed
in [25]. We first clarify the relationship between traditional CK-framework [5]
and the CK-FHMQV variant proposed in [25], and show that CK-HMQV (for
role-dependent IA-DHKE) and CK-FHMQV are incomparable. Then, we make a
careful investigation of the CDH-based analysis of FHMQV in the CK-FHMQV
model, and identify that the security analysis of FHMQV is actually flawed. The
flaws identified in the security proof of FHMQV just stem from lacking a full
1 Actually, the FHMQV can be viewed as variant of a protocol proposed in [28], where
d = h(Â, A, B̂, B,X, Y ) and e = h(d).
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realization of the precise yet subtle interplay, as clarified in this work, between
HMQV protocol structure and provable security.

2 Preliminaries

We recall some preliminaries in this section, which is almost verbatim from [30].
If S is a finite set then |S| is its cardinality, and x ← S is the operation of
picking an element uniformly at random from S. If α is neither an algorithm nor
a set then x ← α is a simple assignment statement. A string or value α means
a binary one, and |α| is its binary length. We denote by N the set of natural
numbers. Two ensembles X = {Xl}k∈N and Y = {Yl}k∈N are computationally
indistinguishable, if for any probabilistic polynomial-time (PPT) algorithm D
and for all sufficiently large k’s, |Pr[D(1k,Xk) = 1] − Pr[D(1k, Yk) = 1]| is
negligible in k.

Let G′ be a finite Abelian group of order N , G be a subgroup of prime
order q in G′. Throughout this work, we denote by k = |q| the underlying
security parameter. Denote by g a generator of G, by 1G the identity element,
by G \ 1G = G − {1G} the set of elements of G except 1G and by t = N

q
the cofactor. In this work, we use multiplicative notation for the group oper-
ation in G′. Roughly speaking, the discrete logarithm (DL) assumption over
G says that given X = gx, where x ← Z∗

q , no efficient, specifically proba-
bilistic polynomial-time (PPT), DL-solver algorithm can output x with non-
negligible probability. The computational Diffie-Hellman (CDH) assumption says
that given X = gx, Y = gy, where x, y ← Z∗

q , no efficient CDH-solver algorithm
can compute CDH(X,Y ) = gxy with non-negligible probability.

Gap Diffie-Hellman (GDH) assumption [23]. Let G be a cyclic group gen-
erated by an element g, and a decision predicate algorithm O be a (full) Deci-
sional Diffie-Hellman (DDH) Oracle for the group G and generator g such that
on input (U, V, Z), for arbitrary (U, V ) ∈ G2, oracle O outputs 1 if and only if
Z = CDH(U, V ). We say the GDH assumption holds in G if for any polynomial-
time CDH solver for G and for any sufficiently large security parameter k, the
probability that on a pair of random elements (X,Y ) ← G the solver computes
the correct value CDH(X,Y ) is negligible (in k), even when the algorithm is
provided with the (full) DDH-oracle O for G. The probability is taken over the
random coins of the solver, and the choice of X,Y (each one of them is taken
uniformly at random in G).

Knowledge-of-Exponent Assumption (KEA) [7]. Let G be a cyclic group of
prime order q generated by an element g, and consider algorithms that on input
a triple (g, C = gc, z) output a pair (Y,Z) ∈ G2, where c is taken uniformly
at random from Z∗

q and z ∈ {0, 1}∗ is an arbitrary string that is generated
independently of C. Such an algorithm A is said to be a KEA algorithm if
with non-negligible probability (over the choice of g, c and A’s random coins)
A(g, gc, z) outputs (Y,Z) ∈ G2 such that Z = Y c. Here, C = gc is the random
challenge to the KEA algorithm A, and z captures the auxiliary input of A that
is independent of the challenge C.



Security Model and Analysis of FHMQV, Revisited 259

PKÂ : A = ga

SKÂ : a
PKB̂ : B = gb

SKB̂ : bB̂, B, Y = gy

Â, A,X = gx

(H)MQV Family: KÂ = (Y Be)x+da = (XAd)y+eb = KB̂ , K = HK(KÂ, aux) = HK(KB̂ , aux)

MQV: d = 2l + (X mod 2l), e = 2l + (Y mod 2l), aux = ε

HMQV: d = h(X, B̂), e = h(Y, Â), aux = ε

FHMQV: d = h(X,Y, Â, B̂), e = h(Y, X, Â, B̂), aux = (Â, B̂, X, Y )

Fig. 1. Specifications of (H)MQV and FHMQV

We say that the KEA assumption holds over G, if for every probabilistic
polynomial-time KEA algorithm A for G there exists another efficient algorithm
K, referred to as the KEA-extractor, such that for sufficiently large security
parameter the following property holds except for a negligible probability: let
(g, gc, z) be an input to A and ρ a vector of random coins for A on which A
outputs (Y,Z = Y c), then, on the same inputs and random coins, K(g, C, z, ρ)
outputs the triple (Y,Z = Y c, y) where Y = gy.

Specification of (H)MQV and FHMQV. Let (A = ga, a) (resp., (X =
gx, x)) be the public-key and secret-key (resp., the DH-component and DH-
exponent) of player Â, and (B = gb, b) (resp., (Y = gy, y)) be the public-key
and secret-key (resp., the DH-component and DH-exponent) of player B̂, where
a, x, b, y are taken randomly and independently from Z∗

q . (H)MQV and FHMQV
are presented in Fig. 1, where, on the security parameter k, HK (resp., h) is
a hash function of k-bit (resp., l-bit) output and l is set to be |q|/2. Notice
that, (H)MQV is role-independent (i.e., session-key derivation is independent of
players’ roles), while FHMQV is role-dependent as players’ identities are put
into the input of HK in the fixed order of (Â, B̂).

2.1 Overview of the CK-Framework for IA-DHKE

The following brief description of the CK-framework for IA-DHKE is almost
verbatim from [30,31]. For more details, the reader is referred to [16].

In the CK-framework for an IA-DHKE protocol, a session run at the side
of player Â with a peer player B̂, where the outcoming (resp., incoming) DH-
component is X (resp., Y ), is assigned with a session identifier as (Â, B̂,X, Y ). In
each session, a party can be activated as the role of either initiator (who sends the
first DH-component) or responder (who sends the second DH-component). Dur-
ing a normal protocol run (without adversary interference) between two players
Â and B̂, we require that both sessions (one at Â and one at B̂) should com-
pute the same session-key, which is referred to as the completeness property.
The completeness property within the CK-framework is captured by the defini-
tion of matching sessions, which aims to capture when two sessions are “intended
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communication partners”, and plays an important role in the security definition
within the CK-framework.

In the context of IA-DHKE, one natural interpretation for two sessions
(Â, B̂,X, Y ) and (B̂, Â, Y,X) to be matching is that: the players Â and B̂ should
have matching roles in the two sessions, i.e., if Â is the initiator (resp., responder)
then B̂ is the responder (resp., initiator) in both of the two sessions. However, as
the basic (H)MQV is role-independent, for two sessions between the same pair of
players Â and B̂ but with the opposite order of DH-component exchange (which
may be made by a cross-message attack [6]),2 player Â (resp., B̂) thinks it is
interacting with a responder B̂ (resp., Â), while the session-key outputs in these
two sessions are the same. That is, two sessions (between the same pair of play-
ers) output the same session-key but with role confusion between each other.
The work [16] was (implicitly) clear of this situation, and such a problem is ruled
out, by definition, by simply defining two sessions (Â, B̂,X, Y ) and (B̂, Â, Y,X)
to be matching, no matter whether the two players have matching roles or not.
That is, two sessions with adversary interference under a cross-message attack
[6] are defined to be matching. However, from our view, in light of the cross-
message attack [6](that causes role confusion between two matching sessions for
role-independent IA-DHKE), such a definition of matching sessions is “ill”, as it
does not well capture the intuition of “intended communication partners” with-
out adversary interference. We notice that FHMQV is role-dependent as (Â, B̂)
are involved in a fixed order in session-key derivation, and the more natural def-
inition of matching sessions, where the two players are required to have matching
roles, is used.

A concurrent man-in-the-middle (CMIM) adversary A controls all the com-
munication channels among concurrent session runs of the KE protocol. In addi-
tion, A is allowed access to secret information via the following three types of
queries: (1) state-reveal queries for ongoing incomplete sessions; (2) session-key
queries for completed sessions; (3) corruption queries upon which all informa-
tion in the memory of the corrupted parties will be leaked to A . A session
(Â, B̂,X, Y ) is called exposed, if itself or its matching session (B̂, Â, Y,X) suffers
from any of these three queries. The session-key security (SK-security) within
the CK-framework is captured as follows. For any complete session (Â, B̂,X, Y )
between two uncorrupted players Â and B̂, which is adaptively chosen by A
and is referred to as the test session, as long as it is unexposed (in particular
its matching session, if it exists, was not exposed during its ongoing incomplete
2 In a cross-message attack, an adversary A concurrently interacts, as the responder,

with Â (resp., B̂) in the name of B̂ (resp., Â) in two sessions. After getting X and Y
respectively as the first-round message in both of the two sessions, it sends Y (resp.,
X) to Â (resp., B̂) as the second-round message in both of the two sessions. For the
basic (H)MQV, both of the two players will output the same session-key in the two
sessions but with role confusion.
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stage before A stops3) the followings hold with overwhelming probability.
(1) Completeness: the session-key outputs of the test-session and its matching
session are identical. (2) Randomness: A cannot distinguish, with non-negligible
probability/advantage over 1/2, the session-key output of the test-session from
a random value.

Here, we would like to stress that, as already explicitly clarified in [6], the SK-
security defined for role-dependent IA-DHKE (referred to as role-dependent SK-
security) and that for role-independent IA-DHKE (referred to as role-independent
SK-security), differentiated by the definition of matching sessions, are
fundamentally incomparable. On the one hand, any role-dependent IA-DHKE,
e.g., FHMQV, does not satisfy, by definition, the completeness property of
role-independentSK-security.On the other hand,any role-independent IA-DHKE,
e.g., (H)MQV, is totally broken according to role-dependent SK-security (as the
session-key of the test-session can exist in a non-matching session by the cross-
message attack [6]), which might be considered as more dangerous.

3 Overview of HMQV Analysis, and Interplay Between
HMQV Protocol Structure and Provable Security

In this section, we present the overview of the HMQV analysis in the CK-
framework, and clarify the underlying interplay between the HMQV protocol
structure and its provable security, and some subtleties actually buried in the
complicated security analysis of HMQV. In particular, we clarify the key role of
the setting mechanism of d = (X, B̂) and e = (Y, Â) in the CDH-based security
proof of HMQV assuming no secrecy leakage. In view of the high complexity of
HMQV proof, our clarifications may be of independent interest, and can play a
guide in designing other provably secure protocol variants of HMQV.

3.1 Overview of HMQV Analysis with Secrecy Leakage

Denote by (Â, B̂,X0, Y0) the test-session between two uncorrupted players Â and
B̂, and by HK(σ0) the corresponding session-key, where σ0 = (X0A

d0)y0+e0b,
d0 = h(X0, B̂) and e0 = h(Y0, Â). Note that in case the test-session does not
have a matching session, the DH-component Y0 is actually generated by the
attacker, otherwise it is generated by the uncorrupted player B̂ in the matching
session. The provable security of HMQV within the CK-framework, assuming the
3 For IA-DHKE, this makes sense mainly when the test-session is held by a respon-

der. Consider that the attacker first activates an initiator Â to get X, and then
suspends this session held by Â till finishing the test-session (B̂, Â, Y,X) run by B̂.
If the session run by Â is never completed, the DH-exponent x can be exposed to
adversary (while Â cannot be corrupted as the test-session is required to be between
two uncorrupted players); but if later this session is completed and thus becomes
matching to the test-session, it should be unexposed for the SK-security.
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leakage of DH components and exponents,4 distinguishes two cases, according
to whether Â = B̂ or not.

Analysis for the case of Â �= B̂. On a pair of challenge DH-components
U ∈ G and B ∈ G, a simulator C runs an attacker A as an subroutine with the
aid of a DDH solver oracle (to make its answers to queries from A consistent).
The public key of the uncorrupted user B̂, which is chosen uniformly at random
by C from all players in the system, is set just to be B. The DH-component X0

to be sent in the test-session, which is also chosen uniformly at random by C
from all the sessions in the system, is just set to be X0 = U . But the public and
secret keys of all the other uncorrupted players (other than B̂) in the system, and
all the DH-components exchanged in all the sessions except the test-session, are
just generated by C itself. Supposing the attacker A can break the SK-security
of HMQV in this case, the goal of the simulator C is to compute CDH(X0, B),
which then contradicts the GDH assumption.

In the random oracle (RO) model [3] assuming both h and HK are random
oracles, there are only two strategies for the adversary A to distinguish HK(σ0)
from a random value:

– Key-replication attack. A succeeds in forcing the establishment of a session
(other than the test-session or its matching session) that has the same session-
key output as the test-session. In this case, A can learn the test-session key
by simply querying that session to get the same key. To rule out the Key-
replication attack, the KEA assumption is employed in [16].

– Forging attack. At some point in its run, with non-negligible probability A
queries the RO, HK , with the value σ0 = (X0A

d0)y0+e0b. In this case, the
simulator C always rewinds to the point that A just made the RO-query
e0 = h(Y0, Â), redefines h(Y0, Â) to be a new independently random value
e′
0 ∈ Z∗

q , and repeats the run of A from this point. In the repeated run, by
the forking lemma [24], C will get σ′

0 = (X0A
d′
0)y0+e′

0b also with non-negligible
probability. As Â is uncorrupted and its secret-key a is generated by C, from
(a, σ0, σ

′
0) C can compute CDH(X0, B).

Analysis for the case of Â = B̂. The HMQV analysis the case of Â = B̂
further considers two cases according to whether X0 = Y0 or not. The provable
security of HMQV for the case of X0 = Y0 can be based on the CDH assump-
tion. Below, we focus on the more complicated case of X0 �= Y0. Specifically, in
comparison with the analysis for the case of Â �= B̂, the analysis of HMQV for
the case of Â = B̂ yet X0 �= Y0 makes the following key differences (C still uses
the DDH oracle to ensure answer consistency and the KEA assumption to rule
out the possibility of session collisions):

– The DH-component X0 to be sent at the test-session is set to be X0 = U/Ad0 ,
i.e., U = X0A

d0 .
4 It is clarified in [31] that the provable security of HMQV, in this case, actually does

not allow the leakage of all the pre-computable secrecy values; for example, the pre-
computable value y + eb or x + da is not allowed to be exposed for the provable
security of HMQV in the CK-framework.
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– The simulator C defines the value d0 = h(X0, B̂ = Â) at the onset of its sim-
ulation to ensure that the RO query d0 is always prior to e0 = h(Y0, Â = B̂).
Thus, redefining e0 will not change the value of d0 and accordingly the value
X0 = U/Ad0 . This is allowed by the setting mechanism of d0 = h(X0, B̂ = Â),
because X0 is generated at the onset of the simulation and B̂ = Â in this case.

– By redefining the RO-query e0 to a new random value e′
0, and repeating the

run of A from this rewinding point, by the forking lemma the simulator
will get σ′

0 = (X0A
d0)y0+be′

0 = Uy0+be′
0 . Then, from σ0 and σ′

0, the value
CDH(U,B) can be computed, which contradicts the GDH assumption.

3.2 Interplay Between HMQV Protocol Structure and CDH-Based
Provable Security Without Secrecy Leakage

The CDH-based security proof of HMQV, assuming no secrecy leakage, is based
on the CDH-based security proof of the underlying XCR and HCR signatures
defined for HMQV. Here, the setting mechanism of d = h(X, B̂) and e = h(Y, Â)
in HMQV plays a key role for the CDH-based provable security of HMQV, assum-
ing no secrecy (particularly any DH component or exponent) leakage. However,
to our knowledge, this subtlety was somewhat buried in the complicated security
proof of HMQV, and was not made clear.

In the CDH-based security proof of the underlying XCR and DCR signa-
tures for the provable security HMQV assuming no leakage of DH component
or exponent (Theorem 5 and 7, [16]), as noted in Remark 4.3 there, consider the
following interaction order between a forger F and a challenger C who imper-
sonates the uncorrupted player B̂ of public key B = gb but without knowing the
secret key b. The forger F first presents a message, say the peer’s identity Â in
the context of HMQV, to be signed by the challenger C. Then, C randomly take
s ← Zq and e ← {0, 1}l, sets Y = gs/Be(= gs−be), h(Y, Â) = e and sends Y back
to F . Notice that, from Y = gs/Be = gs−be, we have that s = y + be. Finally,
after receiving the DH-challenge X from F , C sets d = h(X, B̂), and returns
back (XAd)s(= (XAd)y+be) to F (though the challenger C does not know the
secret key b). Such an interaction order between C and F corresponds to that
the signer plays the role of the initiator in the run of a session of HMQV.

Here, what buried in the above CDH-based security proof of HMQV is: if both
X and Y are put into the inputs of d and e, e.g., d = h(X,Y, Â, B̂) and
e = h(Y,X, Â, B̂) as in FHMQV, the CDH-based security proof of HMQV will
fail. To be precise, in this case, the challenger C cannot define the value e before
receiving the DH-challenge X, as now the value X is also a part of the input of e.

Specifically, consider the following attacker F , who, after receiving Y , makes a
list of queries to the RO h with the following forms: (Y,X1, Â, B̂), · · · ,
(Y,Xm, Â, B̂), where m > 1 and for each j, 1 ≤ j ≤ m, Xj is taken uniformly at
random from G. Only after these RO queries, F presents Xi as the DH-challenge,
where i is taken uniformly at random from {1, · · · ,m}. For such an attacker,
the CDH-based security proofs of XCR or DCR signatures for HMQV in [16] do
not work.
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On the one hand, when the DH-component Y = gs/Be is sent (without know-
ing the DH-challenge X), the value e (as well as s) has already been determined.
Then, for the challenger C to successfully answer the queries made by F , C has to
correctly guess, before sending Y , the value Xi that is to be used by the forger as
the actual DH-challenge in that session. However, the random DH-components
(X1, · · · ,Xm), appearing in the queries to the RO HK , can only be determined
after the value Y is sent and fixed. As each Xj , 1 ≤ j ≤ m is taken uniformly
at random from G, C can correctly guess Xi only with negligible probability.

On the other hand, another way for the challenger C to bypass the above
obstacle is to send Y with d and e being undefined, and only defines the value e
after Xi is presented. However, with this approach, to correctly output the value
s, the challenger C needs to compute the discrete logarithm of Y Be, which is
infeasible under the DLP assumption.

We conclude that, in any case, the CDH-based security proof of HMQV will
get stuck whenever both X and Y are put into the inputs of d and e. However,
this subtlety was buried in the security proof of HMQV, and was not made clear
to our knowledge.

4 Revisiting FHMQV

The work [25] proposed a variant of HMQV, named FHMQV (that is depicted
in Fig. 1),5 and claimed that FHMQV “preserves the efficiency and security
attributes of HMQV” and provides “stronger security than HMQV”. The secu-
rity of FHMQV is analyzed in a variant of the CK-framework for role-dependent
IA-DHKE, which is referred to as CK-FHMQV for presentation simplicity.6 The
authors of [25] proposed, as a interesting future research question, to investi-
gate the actual relationship between the CK-framework and the CK-FHMQV
variant.

In this section, we first review the CK-FHMQV model, and clarifies the rela-
tionship between CK-framework and CK-FHMQV. In particular, we show that
CK-HMQV (for role-dependent IA-DHKE) and CK-FHMQV are incomparable.
Then, we make a careful investigation of the analysis of FHMQV in the CK-
FHMQV model, and identify that the security analysis of FHMQV is actually
flawed. The flaws in the security proof of FHMQV just stem from lacking a full
realization of the precise yet subtle interplay between HMQV protocol structure
and provable security as clarified in Sect. 3.

4.1 On the Relationship Between CK-Framework and the
CK-FHMQV Variant

The work of [25] considers a tree like computation of the shard DH-secret, e.g.,
KÂ = W sA (referred to as the session signature), where W = Y Be and sA =
5 Actually, the FHMQV can be viewed as variant of a protocol proposed in [28], where
d = h(Â, A, B̂, B,X, Y ) and e = h(d).

6 The work of [25] also considers a variant of the eCK model proposed in [17]. In this
work, we mainly focus on the CK-FHMQV variant.
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x + da. The CK-FHMQV model proposed in [25] follows the CK-framework for
role-dependent IA-DHKE, but with the following modifications.

Firstly, in comparison with the traditional CK-framework (for role-dependent
IA-DHKE), in the CK-FHMQV model the attacker is provided with a different
set of secrecy reveal queries [25].

– StaticKeyReveal(party) to obtain the static private key of a party.
– SessionKeyReveal(session) to obtain the derived session-key in a session.
– SecretExponentReveal(session) to obtain the ephemeral secret exponent,

s = x + da or s = y + eb, in a session.
– SecretGroupElementReveal(session) to obtain the session signature W sA .
– EstablishParty(party) to register a static public key on behalf of a party;

from there, the party is supposed totally controlled by A . A party, against
which this query is not issued, is said to be honest.

Let sid be the identifier of a completed session at an honest party Â, with
some honest peer B̂, and sid∗ be the matching session’s identifier (in case the
matching session exists). The session sid is said to be unexposed (ck-fresh in
[25]), if none of the following conditions hold:

– A issues a SecretExponentReveal query on sid or sid∗ (if sid∗ exist).
– A issues a SecretGroupElementReveal query on sid or sid∗.
– A issues a SessionKeyReveal query on sid or sid∗.
– sid∗ does not exit, and A makes a StaticKeyReveal query on B̂.

Claim 1. The traditional CK-framework (for role-dependent IA-DHKE) and
the CK-FHMQV variant are incomparable.

Proof. Firstly, the CK-framework allows a more general and flexible state-
reveal query, which can be dependent upon the actual protocols and allows
for various possible IA-DHKE protocol designs. In particular, the queries of
SecretExponentReveal(session) and SecretGroupElementReveal(session)
specified in the CK-FHMQV model are some specific forms of the more gen-
eral state-reveal query defined in the traditional CK-framework.

Secondly, usually, the state-reveal query in the traditional CK-framework can
be used to obtain some (offline pre-computed) DH components and exponents,
as well as some pre-computed components of the session-key, etc. In compari-
son, the CK-FHMQV model only allows very limited access to the ephemeral
DH-exponent. Specifically, through the StaticKeyReveal(party) query and the
SecretExponentReveal(session) query, an attacker can retrieve the ephemeral
DH-exponent x or y. However, this way implies that the DH-exponent x or y can
only be leaked after the value s = x+da or s = y +eb is online generated during
a session run and after the static secret-key a or b is exposed. In particular, in
the CK-FHMQV model, the DH-exponent x or y is not allowed to be leaked to
the attacker at the beginning or before the session run, and the pre-computed
DH-components are not allowed to be leaked as well.
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Thirdly, the leakage of DH-exponent x or y in the CK-FHMQV model implies
the leakage of static secret key a or b. This is unrealistic, as in practice the static
secret-key is better protected than the ephemeral DH-exponents.

Fourthly, it is unrealistic for the CK-FHMQV model to provide the attacker
the access to the secret exponent s = x + da or s = y + eb and the secret group
element W s, while the DH-exponent x or y is essentially denied to get accessed as
clarified above. In practice, the DH-exponents are usually offline pre-computed
and stored, which are more vulnerable by adversarial leakage than the more
volatile secret exponent s or group element W s that are usually generated on
the fly during a session run and will be erased once the session is finished.

Fifthly, adaptive party corruption is allowed in the CK-framework; that is, an
attacker can adaptively corrupt (during its attack) some existing honest parties
in the system. Adaptive party corruption is not allowed in CK-FHMQV, where a
party is corrupted via the Establisharty query before it takes part in the system.

Finally, the CK-framework does not explicitly allow attacker to make the
StaticKeyReveal query, which is, however, explicitly specified for CK-FHMQV.
Specifically, the CK-framework for IA-DHKE [16] does not explicitly separate
party corruption and StaticKeyReveal, and the security vulnerabilities against
static secret-key leakage (e.g., KCI security and weak forward security) are con-
sidered separately in [16]. �

4.2 On the Security Proof of FHMQV in CK-FHMQV Model

The work of [25] showed that the FHMQV is provably secure in the CK-FHMQV
model under merely the CDH assumption. However, by a careful investigation,
we show that the CDH-based security proof in [25] is flawed. The identified flaws
just stem from lacking full realization of the precise yet subtle interplay between
HMQV protocol structure and provable security as clarified in Sect. 3.

Claim 2. The CDH-based security proof of FHMQV in the CK-FHMQV model
is flawed.

Proof. The security proof of FHMQV in CK-FHMQV considered two cases:
(1) Case E1, where the test-session has the matching session; and (2) Case E2,
where the test-session has no matching session. The security proof flaw lies in
the analysis of Case E.2. Specifically, in the analysis of Case E2 in [25], when
the challenger/simulator C is activated as a session initiator B̂ (interacting with
a peer player Â that may be impersonated by the attacker), C works as fol-
lows: it chooses sB ← Zq, d, e ← {0, 1}l, sets Y = gsBB−e, d = h(�, Y, Â, B̂)
and e = h(Y, �, Â, B̂). Then, C provides the attacker with (B̂, Â, Y ), and stores
(B̂, Â, Y, �) as an incomplete session (waiting for the DH-challenge X from the
attacker). That is, the challenger C pre-defines d and e with the unknown input
X to be received from the attacker. It is claimed in [25] that “when the chal-
lenger is later queried with h(Y,X, Â, B̂) (resp., h(X,Y, Â, B̂)), it responds with
h(Y, �, Â, B̂) (resp., h(�, Y, Â, B̂))”. This argument is flawed.

Specifically, consider an attacker A , who activates the honest player B̂ (sim-
ulated by the challenger C) as the session initiator by playing the role of the
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session responder Â. After receiving Y from C, A makes a list of queries to
the random oracle h with the following forms: (Y,X1, Â, B̂), · · · , (Y,Xm, Â, B̂)
and (X1, Y, Â, B̂), · · · , (Xm, Y, Â, B̂), where m > 1 and each Xi, 1 ≤ i ≤ m, is
taken uniformly at random from G. After these RO queries, F presents Xi as
the DH-challenge, where i is taken uniformly at random from {1, · · · ,m}. For
such an attacker, to make the simulation go through, the challenger C can work
in the following two ways.

– For each query (Y,Xi, Â, B̂) (resp., (Xi, Y, Â, B̂)), to the random oracle h, it
always relies with the pre-defined e (resp., d). But this way clearly indicates
inconsistency in simulating the random oracle h.

– C tries to correctly guess the DH-component Xi, 1 ≤ i ≤ m, to be actually
used as the DH-component for the session with which the pre-defined Y and
(d, e) are involved. But, as each Xi is taken uniformly at random from G,
and i is taken uniformly at random from {1, · · · ,m}, the probability that C
correctly guesses Xi is negligible.

We remark that we do not know how to fix the above flaws in the CDH-based
security proof of FHMQV.7 We also note that such a security proof flaw just
stems from lacking the full recognition of the precise yet subtle interplay between
HMQV protocol structure and provable security as clarified in Sect. 3 (particu-
larly for the CDH-based security analysis of HMQV).

Flaws in security proof of FXCR and FDCR signatures. The CDH-
based security proof of FHMQV in CK-FHMQV was relied upon that of the
underlying building tools, named FXCR signature and FDCR signature. We
show that the CDH-based security proofs of FXCR and FDCR signatures in
[25] are also flawed. The security proof of FXCR signature in [25] only consid-
ered a regular interaction order: the attacker presents (σ,X) where σ denotes
the message to be signed, and the challenger C (simulating the signer B̂ but
without knowing the secret key b) sets sB ← Zq, Y = gsBB−e(= gsB−be),
defines e = h(X,Y,m), and responds (Y,XsB ) to the attacker. Notice that, from
Y = gsBB−e(= gsB−be), we have that sB = y + be. Here, a key point is: the
challenger C defines Y and e on the fly only after seeing the DH-challenge X.
This situation corresponds to that the signer plays the role of the responder in a
session run of FHMQV. However, suppose the signer plays the role of the session
initiator, i.e., C first forwards Y = gsBB−e to the attacker, and then receives the
DH-challenge X. In this case, the CDH-based security proof of FXCR signature
fails in general. The reason is that, the value e = h(X,Y, σ) is undefined when
sending Y before receiving X. As X is a random value in G, it is infeasible for
the challenger C to correctly guess this value when defining Y . Specifically, as
clarified in Sect. 3.2 about the CDH-based security proof of HMQV, consider
7 According to our investigation, FHMQV might be proved secure under the stronger

GDH assumption, with the underlying security proof, nevertheless, being signif-
icantly changed. But our result indicates that the CDH-based security proof of
FHMQV, which was claimed in [25] as one of the major security advantages of
FHMQV, is indeed flawed.
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an attacker who, after receiving Y , make a list of queries to the random ora-
cle h with the forms (X1, Y, σ), · · · , (Xm, Y, σ). The same flaw applies to the
CDH-based security proof of FDCR signature as well. �
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Abstract. In this paper we show that RSA-OAEP is secure against
related key attacks (RKA) in the random oracle model under the strong
RSA (sRSA) assumption. The key related functions can be affine func-
tions. Compared to the chosen ciphertext security proof of OAEP, we
overcome two major obstacles: answering the decryption queries under
related keys; and preventing the adversary from promoting queries that
are corresponding to the same message with the challenge ciphertext.
These two obstacles also exist in the RKA security proof of RSA-OAEP+
and RSA-SAEP+. By combining our technique and the chosen cipher-
text security proofs, RSA-OAEP+ and RSA-SAEP+ can also be proved
RKA secure. In our proof, the security of the scheme relies substantially
on the algebraic property of the sRSA function.

Keywords: Related key attack · RSA-OAEP · Strong RSA assump-
tion · RSA assumption

1 Introduction

Since “cold-boot” attacks demonstrated a practical threat to cryptography sys-
tems [15], researchers have contributed much effort to constructing schemes
against side channel attacks. Among these attacks there is one kind called related
key attacks (RKA) [8], which means that attackers can modify keys stored in
the memory and observe the outcome of the cryptographic primitive under this
modified key [9,11].

In this paper we study the security of public key encryption (PKE) schemes
against chosen ciphertext RKA (CC-RKA), which is formulated by Bellare et al.
[3]. Following the original theory given by Bellare and Kohno [4], the definition
is parameterized by a class of Φ functions that the adversary can apply to the
secret key. As denoted by Bellare et al. [5], let S be the secret key space. If S
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is a group, Φlin = {φa}a∈S denotes the class of linear functions; if S is a ring,
Φaffine = {φa,b}a,b∈S denotes the class of affine functions; Φpoly(d) denotes the
class of polynomial functions bounded by degree d.

Bellare, Cash and Miller [3] showed that CC-RKA secure PKE can be trans-
formed from RKA secure pseudorandom functions (PRF) and RKA secure iden-
tity based encryption (IBE) separately for the same class of Φ. In [2] Bellare and
Cash gave a framework of building RKA secure PRFs for Φ = Φlin. In [5] Bel-
lare, Paterson and Thomson gave a framework of building RKA secure IBE for
Φ = Φpoly(d). So by combining [2,3], a Φ-CC-RKA secure PKE for Φ = Φlin can
be achieved; and by combining [3,5], a Φ-CC-RKA secure PKE for Φ = Φpoly(d)

can be achieved. In [19] Wee proposed a framework of constructing Φ-CC-RKA
secure PKE from adaptive trapdoor relations for Φ = Φlin.

The OAEP scheme was introduced by Bellare and Rogaway [7] to build CCA
secure PKE from one way trapdoor permutations. RSA-OAEP is the industry-
wide standard for RSA encryption (PKCS#1 version 2, IEEE P1363). In 2001,
Shoup [18] pointed out that the CCA security proof against OAEP under one
way trapdoor permutations had some flaw and presented a modified scheme
named OAEP+ that can be proved CCA secure under one-way trapdoor per-
mutation. And Fujisaki and Okamoto et al. [13,14] showed that RSA-OAEP was
secure under the RSA assumption in the same year. Later Boneh [10] gave sim-
plified versions called SAEP and SAEP+, they also proved that RSA-SAEP+

was secure under the RSA assumption, with restrictions that the reduction was
not tight and the “message expansion rate” was not good enough. However, as
far as we know, the security of the OAEP against RKA has not been studied.

Our Result. In this paper we prove that RSA-OAEP is Φ-CC-RKA secure
for Φ = Φaffine in the random oracle model under the strong RSA (sRSA)
assumption [1]. In the security proof we overcome two major obstacles:

– Firstly, how the queries (φ,C) are answered? In the CCA security proofs of
previous works such as RSA-OAEP, RSA-OAEP+, RSA-SAEP+, the adver-
sary answers the decryption queries by traversing the queries to the random
oracles G,H, computing the corresponding s′, t′ and checking whether there
is some s′, t′ satisfying (s′‖t′)e = C. Here we denote the affine function
as φ(d) = ad + b, and the checking equation should be (s′‖t′)e′

= C for
some e′. However, we cannot computing such a e′ according to the equation
s′‖t′ = Cad+b. We construct a new equation by raising both sides of the pre-
vious equation to the e-th power, hence get that (s′‖t′)e = Ca+be. So we can
find the message corresponding to (φ,C) by checking the equation above.

– Secondly, can the adversary promote a (φ,C) such that Cφ(sk) = C∗sk and
thus corresponding to the same message with C∗? Here for any probabilistic
polynomial time (PPT) adversary A that can produce such a query, we can
build a PPT adversary B to break the sRSA assumption.

Using similar methodology, we can prove that RSA-OAEP+ and RSA-SAEP+

are also secure in the random oracle model under the sRSA assumption. Note
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that our proof relies substantially on the algebraic properties of the sRSA
assumption. Whether OAEP is Φ-CC-RKA secure under the partial-domain
one-wayness and whether OAEP+ is Φ-CC-RKA secure under the one-wayness
respectively of the underlying permutation are still open problems. Another open
problem is whether Φ can be extended to the class of polynomial functions or
even larger classes.

The rest of our paper is organized as follows: in Sect. 2 we give definitions
and preliminaries; in Sect. 3 we review the construction of RSA-OAEP and prove
its security against RKA; Sect. 4 is the conclusion of the whole paper.

2 Definitions and Preliminaries

2.1 Notation

We use PPT as the abbreviation of probabilistic polynomial time. Let l(X)
denote the bit length of X. Let X and Y be probability spaces on a finite set S,
the statistical distance SD(X,Y ) between X and Y is defined as SD(X,Y ) :=
1
2Σα∈S |PrX [α]−PrY [α]|. For a bitstring z, z[k1...k2] is used to denote the k1-th
to the k2-th bit of z. Let k be the security parameter.

2.2 Random Oracle Model

To analyze the security of certain natural constructions, Bellare and Rogaway
introduced an idealized world called the random oracle model [6]. We say a
construction is in the random oracle model if at least one function in the con-
struction has the following property: before querying the function at a new point,
the output is completely random distributed in the range and after querying the
function, the output is fixed. Although security in the random oracle model does
not imply security in the real world [12], and Kiltz and Pietrzak have proved
that no instantiated OAEP can be black-box proved secure in [16], we believe
that our proof still has some heuristic significance.

2.3 Public Key Encryption

A Public key encryption scheme (PKE) is a tuple of four PPT algorithms:
(Setup, Keygen, Enc, Dec.)

Setup(1k): take as input the security parameter k and output public parameters
pp.

Keygen(pp): take as input the public parameters pp and output a pair of keys
(pk, sk).

Enc(pk,m): take as input public key pk and message m and output a ciphertext
C.

Dec(sk, C): take as input the ciphertext C and secret key sk and output the
message m.
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For correctness, we require that all properly generated ciphertexts can be
decrypted correctly.

Here we give the formal definition of Φ-CC-RKA security, here Φ represents a
class of functions that the adversary can apply to the secret keys. The RKAsecu-
rity of a PKE scheme is defined using the following game between an adversary
A and a challenger.

Setup: The challenger runs the key generation algorithm to generate the public
and secret keys. Keygen(pp) → (pk, sk). Then it sends pk to the adversary
A, and keeps the secret key sk to itself.

Phase 1: A adaptively issues queries (φ,C) where φ ∈ Φ, the challenger responds
with Dec(φ(sk), C).

Challenge: A gives two messages (m0,m1) to the challenger. The challenger
picks a random bit b and responds with Enc(pk,mb).

Phase 2: A adaptively issues additional queries as in Phase 1, with the restric-
tion that (φ(sk), C) �= (sk, C∗).

Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA,Φ =
∣∣∣ Pr[b′ = b] − 1

2

∣∣∣.

Definition 1 (Φ-CC-RKA Security). A PKE scheme is Φ-CC-RKA secure
if for all PPT adversary A, AdvA,Φ is negligible in k.

Here our security definition follows the definition given by Bellare et al. [3].
However, in [3] it is required that the public key is completely determined by
the secret key, but in our paper part of the elements in the public key can be
randomly chosen and irrelevant to the secret key.

2.4 Complexity Assumptions

Strong RSA Assumption (sRSA). The strong RSA assumption is an assumption
that is firstly promoted by Barić and Pfitzmann in [1]. In this paper we state
the sRSA assumption that is slightly different from that in [1]:

Let IGen be a PPT algorithm that, on input a security parameter k, gen-
erates (N = PQ,P,Q), where P,Q are two random primes with similar size.
Choose a random y ∈ Z

∗
N . The advantage of A is defined as

AdvsRSA
A = Pr[xe = y (mod N) ∧ x ∈ Z

∗
N ∧ e > 1,where (x, e) ← A(N, y)].

Definition 2 (sRSA). We say that IGen satisfies the sRSA assumption if for
all PPT algorithm A, AdvsRSA

A is negligible in k.

RSA Assumption. Let IGen be a PPT algorithm that, on input a security para-
meter k, generates (N = PQ,P,Q), where P,Q are two random primes with
similar size. Choose random y, e ∈ Z

∗
N with the restriction that (e, ϕ(N)) = 1.

The advantage of A is defined as

AdvRSA
A = Pr[xe = y (mod N) ∧ x ∈ Z

∗
N ,where x ← A(N, e, y)].
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Definition 3 (RSA). We say that IGen satisfies the RSA assumption if for
all PPT algorithm A, AdvRSA

A is negligible in k.

It is easy to see that the RSA assumption can be implied by the sRSA
assumption.

3 RSA-OAEP Is RKA Secure

In this section we first recall the RSA-OAEP scheme that is proposed by Bellare
and Rogway in [7]. Then we prove that RSA-OAEP is Φ-CC-RKA secure in the
random oracle model under the sRSA assumption, where Φ is a family of affine
functions.

Let k0, k1 be parameters satisfying k0 +k1 < k and 2−k0 , 2−k1 are negligible.
The length of encrypted messages m is n, where n = k − k0 − k1. Let G,H be
random oracles that will be used in the RSA-OAEP scheme.

G : {0, 1}k0 → {0, 1}n+k1 ,

H : {0, 1}n+k1 → {0, 1}k0 .

Keygen(1k): The key generation algorithm runs IGen(k) → (N,P,Q), it chooses
a random e ∈ Z

∗
N satisfying (e, ϕ(N)) = 1 and computes d such that ed =

1(mod ϕ(N)). The public key is set as pk = (N, e) and the secret key is set
as sk = d.

Enc(pk,m): The encryption algorithm chooses random r ∈ {0, 1}k0 and com-
putes the ciphertext C as:

s = G(r) ⊕ (m‖0k1) (1)
t = H(s) ⊕ r (2)

w = s‖t (3)
C = we (mod N) (4)

Dec(C, sk): The decryption algorithm computes w = Cd (mod N), it sets the
fist n + k1 bit of w as s and the rest k0 bit as t, then it computes

r = H(s) ⊕ t (5)
M = G(r) ⊕ s (6)
z = M [n...n + k1 − 1] (7)

If z = 0k1 , the algorithm outputs m = M [0...n − 1] and rejects otherwise.

3.1 Security Proof

Theorem 1. Let A be a Φ-CC-RKA adversary against the RSA-OAEP scheme
with advantage ε and running time t, making qD, qG and qH queries to the decryp-
tion oracle, random oracles G and H respectively, Φ being a family of affine
functions, then we can construct an adversary B breaking the sRSA problem with
advantage ε′ and time t′, where ε′ ≥ A(A−B)

2AqD−BqD+1 and t′ ≤ t + qG · qH · O(k3).
Here A = 2ε − 2qD

2k1
− 2qDqG+qD+qG

2k0
and B = 22k0−k+6.
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First let us reproduce two lemmas that will be used in our proof.

Lemma 1 [13]. For any probability events E,F and G,

Pr[E ∧ F |G] ≤
{

Pr[E|F ∧ G]
Pr[F |G]

Lemma 2 [13]. Let A be an algorithm that outputs a q-set containing k − k0

of the most significant bits of the e-th root of its input (partial-domain RSA,
for any 2k−1 < N < 2k, with k > 2k0), within time bound t, with probability ε.
Then there exists an algorithm B that solves the RSA problem (N, e) with success
probability ε′, within time bound t′, where

ε′ ≥ ε × (ε − 22k0−k+6),

t′ ≤ 2t + q2 × O(k3).

Proof (of Theorem 1). Similar to that in [13], we prove Theorem 1 in two steps.
Firstly, we present a reduction from a Φ-CC-RKA adversary A to an adversary
B breaking the sRSA assumption. And then we analyze the success probability.

Suppose that the public key is (N, e) and the secret key is d. The challenge
ciphertext is denoted by C∗. We denote the affine function in the decryption
query (C, φ) as φ(x) = ax+ b. Let G-List, H-List be query/answer lists for the
oracles G and H respectively, both are initially set to empty lists.

The Simulation Process. B receives (N, y) and its task is to compute (x, ē)
such that y = xē (mod N). B picks a random e ∈ Z

∗
N and sends (N, e) as the

public key to A.
When A submits (m0,m1),B selects a random bit b, sets C∗ = y as the

ciphertext of mb and sends C∗ to A. B simulates the answers to the queries
of A to the decryption oracle and random oracles G and H respectively. The
description of the simulations are given below.

When A outputs an answer b′,B checks its H-List and gets the partial pre-
image s∗ of y if such an s∗ has been found. Then by applying Lemma 2, one can
find a w∗ such that w∗e = y and thus solve the sRSA problem.

The simulation of random oracles G and H are the same with that in [13]
and we put the concrete process in the appendix.

Simulation of the Decryption Oracle. Whenever A submits a decryption
query (φ,C),B traverses all pairs (γ,Gγ) ∈ G-List and (δ,Hδ) ∈ H-List. For
each pair from both lists, it defines

σ = δ, τ = γ ⊕ Hδ, μ = Gγ ⊕ δ,

and checks whether

(σ‖τ)e = Ca+be and μ[n...n + k1 − 1] = 0k1
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If both equations hold, B outputs m = μ[0...n − 1] and rejects the query
(φ,C) if no such pair is found. Note that when (σ‖τ)e = Ca+be then Cφ(d) =
Cad+b = (σ‖τ)

e(ad+b)
a+be = σ‖τ , so the decryption process is correct. ��

Notations. We denote by w, s, t, r,m, z the values related to the decryption
query C, and by w∗, s∗, t∗, r∗,m∗, z∗ the values related to the challenge cipher-
text C∗. Since y is defined to be the encryption of mb with random value r∗, so
r∗ ← H(s∗) ⊕ t∗ and G(r∗) ← s∗ ⊕ (mb‖0k1).

For analysis, we define the following events as that in [13].

– AskG denotes the event that r∗ has been asked to G. And AskH denotes the
event that s∗ has been asked to H.

– GBad denotes the event that r∗ has been asked to G, but the answer is some-
thing other than s∗ ⊕ (mb‖0k1).

– DBad denotes the event of decryption failure. And let us denote Bad=
DBad∨GBad.

Note that the event GBad implies AskG.
For every query (φ,C) to the decryption oracle:

– CBad denotes the union of the bad events, CBad = RBad ∨ SBad, where
• SBad denotes the event that s = s∗;
• RBad denotes the event that r = r∗, which means that H(s)⊕t = H(s∗)⊕

t∗.
– AskRS denotes the intersection of both events about the oracle queries, AskRS =
AskR ∧ AskS, which means both r and s has been asked to G and H
respectively,

• AskR denotes the event that r(= H(s) ⊕ t) has been asked to G;
• AskS denotes the event that s has been asked to H;

– Fail denotes the event that the above decryption simulator outputs a wrong
decryption answer to query (φ,C). Therefore, in the global reduction, the
event DBad will be set to true as soon as one decryption simulation fails, so
Pr[DBad] ≤ qD · Pr[Fail].

Analysis of the Decryption Simulation. From the simulation procedure,
we can see that for the ciphertext with the corresponding r and s having been
asked to G and H respectively, the simulation will output the correct answer.
However, it will reject ciphertexts that are valid but the corresponding r and
s have never been asked to the random oracles G and H, so the Fail event is
limited to the situation in which the simulation rejects a ciphertext which would
be accepted by the actual decryption oracle.

Let event E be that RBad ∧ ¬AskR ∧ SBad ∧ ¬AskH, it means that r = r∗ and
s = s∗, neither r nor s has been asked to the random oracles. Furthermore, it
means that w = w∗, and the adversary A produces a query (C, φ) such that
Cφ(d) = yd, then y = C

ad+b
d = Ca+be and B can solve the sRSA problem with

answer (C, a + be). So we have Pr[E] ≤ ε′.
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Now let us analyze the probability of the event Fail, while ¬AskH occurs.

Pr[Fail|¬AskH] = Pr[Fail ∧ E|¬AskH] + Pr[Fail ∧ ¬E|¬AskH]
≤ Pr[E] + Pr[Fail ∧ ¬E|¬AskH]
≤ ε′ + Pr[Fail ∧ ¬E|¬AskH]
≤ Pr[Fail ∧ CBad ∧ ¬E|¬AskH] + Pr[Fail ∧ ¬CBad ∧ AskRS|¬AskH]

+ Pr[Fail ∧ ¬CBad ∧ ¬AskRS|¬AskH] + ε′

Note that when ¬CBad∧AskRS happens, the simulation is perfect and cannot
fail, so Pr[Fail ∧ ¬CBad ∧ AskRS|¬AskH] = 0.

The analysis of the third item is the same as that in [13], here we put the
concrete process in the appendix. In a word, we can get that

Pr[Fail ∧ ¬CBad ∧ ¬AskRS|¬AskH] ≤ 2−k1 + qG · 2−k0 .

Now let us focus on the first item, since

CBad = SBad ∨ RBad = SBad ∨ (RBad ∧ ¬SBad),
Then

Pr[Fail ∧ CBad ∧ ¬E|¬AskH] ≤ Pr[Fail ∧ SBad ∧ ¬E|¬AskH] + Pr[Fail ∧ ¬SBad ∧ RBad|¬AskH]
≤ Pr[Fail ∧ ¬E|SBad ∧ ¬AskH] + Pr[RBad|¬SBad ∧ ¬AskH] (8)
≤ Pr[Fail ∧ ¬E|SBad ∧ ¬AskH] + 2−k0 (9)
≤ Pr[Fail ∧ AskR|SBad ∧ ¬AskH] + Pr[Fail ∧ ¬AskR ∧ ¬E|SBad ∧ ¬AskH] + 2−k0 (10)
≤ Pr[AskR|SBad ∧ ¬AskH] + Pr[Fail ∧ ¬E|¬AskR ∧ SBad ∧ ¬AskH] + 2−k0 (11)
≤ qG · 2−k0 + Pr[Fail ∧ ¬E|¬AskR ∧ SBad ∧ ¬AskH] + 2−k0 (12)
≤ (qG + 1) · 2−k0 + 2−k1 (13)

In Eq. 8 can be acquired according to Lemma 1. Equation 9 is split according
to the event AskR. The computation of the probability inequations are the same
as that in [13] and we put the formal explanation in the appendix.

To sum up, we got that

Pr[Fail|¬AskH] ≤ 2
2k1

+
2qG + 1

2k0
+ ε′.

Success Probability. First let us analyze the probability that B outputs the
partial pre-image s∗ of y, that is the probability of the event AskH occurs during
the reduction.

Split event AskH according to event Bad:

Pr[AskH] = Pr[AskH ∧ Bad] + Pr[AskH ∧ ¬Bad].
The analyze of the two items on the righthand side is almost the same with

that in [14] and we put the formal analysis in the appendix.

Pr[AskH ∧ Bad] ≥ Pr[Bad] − 2qD

2k1
− 2qDqG + qD + qG

2k0
− qDε′.
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Pr[AskH ∧ ¬Bad] ≥ 2ε − Pr[Bad].

Then

Pr[AskH] ≥ 2ε − 2qD

2k1
− 2qDqG + qD + qG

2k0
− qDε′.

From Lemma 2 one can get that

ε′ ≥ (2ε− 2qD

2k1
− 2qDqG + qD + qG

2k0
−qDε′)×(2ε− 2qD

2k1
− 2qDqG + qD + qG

2k0
−qDε′−22k0−k+6)

Let A = 2ε − 2qD
2k1

− 2qDqG+qD+qG
2k0

and B = 22k0−k+6, hence

ε′ ≥ (A − qDε′)(A − B − qDε′)

(1 + 2AqD − BqD)ε′ ≥ q2Dε′2 + A(A − B)
(1 + 2AqD − BqD)ε′ > A(A − B)

ε′ >
A(A − B)

2AqD − BqD + 1

Note that the running time of the simulator includes the modular multiplica-
tion for all possible pairs and thus bounded by qH · qG · O(k3). Hence the whole
running time is t′ = t + qH · qG · O(k3).

By combining the original proofs in [10,18]) and our proof methodology, one can
prove that RSA-OAEP+ (RSA-SAEP+) is secure under the sRSA assumption
as well.

4 Conclusion

In this paper we show that RSA-OAEP is Φ-CC-RKA secure in the random ora-
cle model under the sRSA assumption, where Φ is a family of affine functions.
Using similar techniques, we can also prove that RSA-OAEP+ and RSA-SAEP+

are RKA secure. Note that our proof relies substantially on the algebraic prop-
erties of the sRSA assumption. Whether OAEP is Φ-CC-RKA secure under the
partial-domain one-wayness or whether OAEP is Φ-CC-RKA secure under the
one-wayness respectively of the underlying permutation are still open problems.
Another open problem is whether Φ can be extended to the class of polynomial
functions or even larger classes.

Acknowledgments. We are very grateful to anonymous reviewers for their helpful
comments.
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Appendix

Simulation of Random oracles G and H

– for a fresh query γ to G,B looks at the H-List, and enumerating all queries
δ asked to H with answer Hδ, one builds z = γ ⊕ Hδ, and checks whether
y = (δ‖z)e. If for some δ the equation holds, we find the partial preimage
s∗ of c∗, and we can still correctly simulate G by answering the query with
Gγ = δ ⊕ (mb‖0k1). Note that Gγ is uniformly distributed since δ = s∗ is
uniformly distributed. Otherwise, one outputs a random value Gγ . In both
cases, the pair (γ,Gγ) is added to the G-List.

– For a fresh query δ to H, one outputs a random value Hδ, and add the
pair (δ,Hδ) to the H-List. Then for any (γ,Gγ) ∈ G-List, one may build
z = γ ⊕ Hδ, and checks whether y = (δ‖z)e. If for some γ the equation holds,
we find the partial preimage s∗ of c∗.

Probability Analysis

(1) Pr[Fail ∧ ¬CBad ∧ ¬AskRS|¬AskH] ≤ 2−k1 + qG · 2−k0 .

¬AskRS = ¬AskR ∨ ¬AskS = ¬AskR ∨ (AskR ∧ ¬AskS)

¬CBad = ¬RBad ∧ ¬SBad

Pr[Fail ∧ ¬CBad ∧ ¬AskRS]
≤ Pr[Fail ∧ ¬RBad ∧ ¬AskR] + Pr[Fail ∧ ¬SBad ∧ (AskR ∧ ¬AskS)]
≤ Pr[Fail|¬RBad ∧ ¬AskR] + Pr[AskR|¬SBad ∧ ¬AskS)]

But when r is not asked to G and r �= r∗, G(r) is unpredictable, thus the
probability that (s ⊕ G(r))[0...k1 − 1] = 0k1 is less than 2−k1 . On the other
hand, when H(s) has not been asked and s �= s∗, r = H(s) ⊕ t is unpre-
dictable. On this condition, the probability of having asked r to G is less
than qG · 2−k0 . In addition, this event is independent of AskH, which yields

Pr[Fail ∧ ¬CBad ∧ ¬AskRS|¬AskH] ≤ 2−k1 + qG · 2−k0 .

(2) Pr[RBad|¬SBad ∧ ¬AskH] ≤ 2−k0 .
The event means that RBad occurs provided s �= s∗ and the adversary has
not queried s∗ from H. So H(s∗) is unpredictable and independent of H(s)
as well as t and t∗, and the probability that r = r∗, which means H(s∗) =
H(s) ⊕ t ⊕ t∗ is at most 2−k0 .

(3) Pr[AskR|SBad ∧ ¬AskH] ≤ qG · 2−k0 .
The event means that r has been asked to G whereas s = s∗ and H(s∗) is
unpredictable, hence r = H(s) ⊕ t is unpredictable and the probability of
this event is at most qG · 2−k0 .
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(4) Pr[Fail ∧ ¬E|¬AskR ∧ SBad ∧ ¬AskH] ≤ 2−k1 .
Note that ¬E means that events RBad,¬AskR, SBad,¬AskH cannot happen
at the same time. So the whole event means that s = s∗, r �= r∗, r has not
been asked to G, and (G(r) ⊕ s)[n...n + k1 − 1] = 0k1 , which lead to that
(G(r)⊕G(r∗))[n...n+k1−1] = 0k1 . Then the equation holds with probability
upper bound by 2−k1 .

(5) Pr[AskH ∧ Bad] ≥ Pr[Bad] − 2qD
2k1

− 2qDqG+qD+qG
2k0

− qDε′.
Pr[AskH ∧ ¬Bad] ≥ 2ε − Pr[Bad].

Pr[AskH ∧ Bad] = Pr[Bad] − Pr[¬AskH ∧ Bad]
≥ Pr[Bad] − Pr[¬AskH ∧ GBad] − Pr[¬AskH ∧ DBad]
≥ Pr[Bad] − Pr[GBad|¬AskH] − Pr[DBad|¬AskH]
≥ Pr[Bad] − Pr[AskG|¬AskH] − Pr[DBad|¬AskH]
≥ Pr[Bad] − qG

2k0
− qD(

2
2k1

+
2qG + 1

2k0
+ ε′)

≥ Pr[Bad] − 2qD

2k1
− 2qDqG + qD + qG

2k0
− qDε′.

The above inequations can be get from Lemma 1 and previous results.
Let PA denote Pr[AskH ∧ ¬Bad], then we have:

Pr[AskH ∧ ¬Bad] ≥ Pr[b = b′ ∧ AskH ∧ ¬Bad]

= Pr[b = b′ ∧ ¬Bad] − Pr[b′ = b ∧ AskH ∧ ¬Bad]

≥ Pr[b = b′] − Pr[Bad] − Pr[¬AskH ∧ ¬Bad] · Pr[b = b′|¬AskH ∧ ¬Bad]

=
1

2
+ ε − Pr[Bad] − 1

2
· (1 − PA − Pr[Bad])

PA ≥ 2ε − Pr[Bad]

Note that when ¬AskH occurs, H(s∗) is unpredictable, thus r∗ = t∗ ⊕ H(s∗)
is unpredictable and b as well. This fact is independent of the event ¬Bad,
hence Pr[b′ = b|¬AskH∧¬Bad] = 1

2 . In addition, Pr[Bad]+(Pr[AskH∧¬Bad]+
Pr[¬AskH ∧ ¬Bad]) = 1, so Pr[¬AskH ∧ ¬Bad] = 1 − PA − Pr[Bad].
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Abstract. In Asiacrypt’08, Green and Hohenberger presented an adap-
tive oblivious transfer (OT) scheme which makes use of a signature built
from the Boneh-Boyen Identity Based Encryption. In this note, we show
that the signature scheme is vulnerable to known-message attacks and the
reduction used in the proof of Lemma A.6 is flawed. We also remark that
the paradigm of “encryption and proof of knowledge” adopted in the OT
scheme is unnecessary because the transferred message must be “recog-
nizable” in practice, otherwise the receiver cannot decide which message
to retrieve. However, we would like to stress that this work does not break
the OT scheme itself.

Keywords: Oblivious transfer · Signature · Selective security · Encryp-
tion and proof of knowledge · Recognizable message

1 Introduction

When designing new cryptographic schemes, it is not unusual to make use of
some simple schemes as building blocks. Nevertheless this may lead to compli-
cated constructions with intricate security proofs; and it is often very likely that
the resulting scheme is doubtful if an underlying building block is insecure.

When investigating the security of a signature scheme, we usually consider
[11] either a total break when an adversary is able to retrieve the private key of
the signer or is able to find an efficient signing algorithm functionally equivalent
to the valid signing algorithm, either a selective forgery when an adversary is able
to create a valid signature for a particular message or class of messages chosen
a priori, or an existential forgery when an adversary is able to create a valid
signature for a random message. The effort required to mount these attacks
depends on the resources that the adversary would have access to, and it is
common to consider scenarios where an adversary is able to obtain signatures
on messages of his choice. In this note, we consider unforgeability under the
weaker known-message attack scenario where an adversary has signatures for a
set of messages which are known to him but over which he has no control.
c© Springer International Publishing Switzerland 2014
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In Asiacrypt’08, Green and Hohenberger [7] presented a universally
composable adaptive oblivious transfer scheme based on symmetric external
Diffie-Hellman [2,4,9,13], decision linear assumption [4], and q-hidden LRSW
assumption [1,10]. The scheme is complex since it results from the combination
of four existing schemes: Groth-Sahai proof system [9], a weak variant of the
Camenisch-Lysanskyaya signature [5], a weak signature scheme built from the
Boneh-Boyen selective-ID IBE [3], and a variant of the Boneh-Boyen-Shacham
encryption [4] with a double trapdoor for decryption.

It was previously believed that the signature built from the Boneh-Boyen
IBE is selective-message secure. In this note, we show that the signature scheme
is vulnerable to known-message attacks and the reduction used in the proof of
Lemma A.6 is flawed. Besides, we remark that the paradigm of “encryption and
proof of knowledge” in the OT scheme is unnecessary because the transferred
message must be “recognizable” in practice, otherwise, the receiver does not
know which message is to be retrieved. This note discusses the issues in a signa-
ture building block and the relevant security reduction in the Green-Hohenberger
OT Scheme, but we would like to stress that this work does not break the OT
scheme itself.

2 The Signature Proposed by Green and Hohenberger

In Ref. [7], the authors proposed two signature schemes as building blocks for
their OT scheme. One is called Modified CL signature. The other is called Selective-
message secure Boneh-Boyen signature.

Let BMsetup be an algorithm that, on input 1κ, outputs the parameters for
a bilinear mapping as

γ = (p,G1,G2,GT , e, g ∈ G1, g̃ ∈ G2),

where g generates G1 and g̃ generates G2, the groups G1,G2,GT each are of
prime order p, and e : G1 × G2 → GT is a bilinear map such that e(g, g̃) �= 1.

The latter signature can be described as follows:
BBKeyGen. Select a generator h ∈ G1, α, z ∈ Z

∗
p, and compute

g ← g
1/α
1 , g̃ ← g̃

1/α
1 , g2 ← gz, g̃2 ← g̃z.

Output pk = (γ, g, g̃, g1, g2, h, g̃2), and sk = gα
2 .

BBSign. In order to sign a message m ∈ G1, pick a random r ∈ Z
∗
p and

compute the signature
((mh)rgα

2 , g̃r, gr).

BBVerify. The signature (s1, s̃2, s3) on message m is considered valid if

e(s1, g̃)/e(mh, s̃2) = e(g1, g̃2)

and
e(g, s̃2) = e(s3, g̃).
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3 A Known Message Attack

In Sect. 3 of Ref. [7], the authors claim that the signature built from the Boneh-
Boyen IBE is selective-message secure. As shown below, the signature is not
immune against the following known message attack.

Given a valid signature (s1, s̃2, s3) = ((mh)rgα
2 , g̃r, gr) on message m for

some r ∈ Z
∗
p, an adversary can pick any θ ∈ Z

∗
p and output the signature

(sθ
3s1, s̃2, s3) on message gθm. The forged message-signature pair passes the ver-

ification process since we have:

e(sθ
3s1, g̃)/e(gθmh, s̃2) = e(grθ(mh)rgα

2 , g̃)/e(gθmh, g̃r)
= e((gθmh)rgα

2 , g̃)/e((gθmh)r, g̃)
= e(gα

2 , g̃) = e(gzα, g̃) = e(gα, g̃z) = e(g1, g̃2)
e(g, s̃2) = e(g, g̃r) = e(gr, g̃) = e(s3, g̃)

Notice that this attack is not a total break because forging the signature of
an arbitrary message m′ would require an adversary to solve m′ = mgθ for θ;
therefore the signature scheme is selectively forgeable.

It seems unlikely that this selective forgery can be used to attack the OT
scheme built from the vulnerable signature scheme. The OT scheme actually
requires to use BBSign to sign some value ab where both a ∈ G1 and b ∈ G1

are separately signed using a different signature algorithm (i.e. the Modified CL
signature).

4 The LemmaA.6 Revisited

In the latest revision [7], the authors believe that their security argument is
sound although they admit that the building block “signature-like” scheme may
be not selective secure. We find, however, the relevant proof of Lemma A.6 (see
[7], p. 22) seems difficult to revise. Now, we show the security argument of Case-1
is flawed.

4.1 Review the Original Argument of Case-1 (LemmaA.6)

Consider the case where A produces (ω,ω2) = (ci,1, cj,2) for i �= j, and show that
an A that produces such a query can be used to solve the Computational co-
Diffie-Hellman problem in G1,G2, i.e., given (g, ga, gb, g̃, g̃a, g̃b) for a, b ∈R Zp,
solve for gab.

Given an input (g, ga, gb, g̃, g̃a, g̃b) to the co-CDH problem: select random

values u, v, ω, y
$← Zp. Set (u1, u2) ← (ga, gau), (ũ1, ũ2) ← (g̃a, g̃au) and h′ ←

(ga)−v
gω. Generate (vk1, sk1), (vk2, sk2) as in the normal scheme, but set vk3 =

(γ, g, g̃, ga, ga, h′, g̃b). Set pk ← (u1, u2, ũ1, ũ2, vk1, vk2, vk3). Randomly select
two ciphertext indices i∗, j∗ such that i∗ �= j∗.
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Now for i = 1 to N , choose ri, si, yi uniformly from Zp with the restric-
tion that (ri∗ + usj∗) = v mod p. Set zi = (ri + usi)mod p. Generate sig1 ←
CLSignsk1

(ur
1), sig2 ← CLSignsk2

(us
2), and set

sig3 ←
(
(gb)

−ω
zi−v ((ga)zi−vgω)yi , (g̃b)

−1
zi−v g̃yi , (gb)

−1
zi−v gyi

)
.

Construct the ith ciphertext as:

Ci = (uri
1 , usi

2 , gri
1 , gsi

2 ,mjh
ri+si , sig1, sig2, sig3)

Now set T ← (pk,C1, · · · , CN ) and send T to A. Whenever A submits a
request Q = (d1, d2, π) where π verifies correctly, use the extraction trapdoor to
obtain the values (ω1, ω2, ω3, ω4) and the values s′

1, s̃
′
2, s

′
3 corresponding to sig3.

Now:

1. If, for some j ∈ [1, N ], the pair (ω1, ω2) = (urj

1 , u
sj

2 ): then output a valid
response to A by selecting s′ = (hrj+sj ω3ω4), constructing the proof δ′, and
sending R = (s′, δ′) to A. Continue the simulation.

2. If (ω1, ω2) = (uri∗
1 , u

sj∗
2 ), then compute s′

1/s′ω
3 as the solution to the co-CDH

problem.
3. In all other cases, abort the simulation.

Observe that in case (2) the soundness of the G-S proof system ensures that
for some y′ we can represent (s′

1, s̃
′
2, s

′
3) = ((ga)vh)y′

gab, g̃y′
, gy′

). By substitution
we obtain ((ga)v(ga)−vgω)y′

gab, g̃y′
, gy′

) = (gωy′
gab, g̃y′

, gy′
), and thus s′

1/s′ω
3 =

gab. In this case, we can obtain the value gab and output a correct solution to
the co-CDH problem.

4.2 Remarks on the Flawed Argument

We first remind readers that the randomly chosen numbers r, s ∈ Zp in the OT
initialization are not parallelly used later. Concretely, see the generations of

sig1 ← CLSignsk1
(ur

1), sig2 ← CLSignsk2
(us

2),

and
sig3 ← BBSignsk3

(ur
1u

s
2).

In the phase of OTRespond, s is directly sent to the receiver R, but r is not
exposed (see [7], pp. 11–12). Thus, in the generation of sig3 the signer is not
forced to sign ur

1u
s
2.

Based on the key observation, we remark that in the case where A produces
(ω,ω2) = (ci,1, cj,2) for i �= j, A cannot produce a query which can be used to
solve the Computational co-Diffie-Hellman problem in G1,G2. In fact, it only
needs to transform the corresponding part of the original simulation as follows:

For i = 1 to N , choose ri, si, yi and θi uniformly from Zp with the
restriction that (ri∗ +usj∗) = v mod p. Set zi = (ri+usi)mod p. Generate
sig1 ← CLSignsk1

(ur
1), sig2 ← CLSignsk2

(us
2), and set
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sig3 ←
(
((gb)

−1
zi−v gyi)θi(gb gθi)

−ω
zi−v ((ga)zi−vgω gθi)yi , (g̃b)

−1
zi−v g̃yi , (gb)

−1
zi−v gyi

)
.

According to the proposed attack in Sect. 3, it is easy to find that the signa-
ture sig3 is valid. Thus, the transformed simulation runs well. But in such case,
we have

s′
1/s′ω

3 =
(
(gb)

−1
zi−v g2yig

−ω
zi−v

)θi �= gab.

5 Further Discussion

The oblivious transfer primitive, introduced by Rabin [12], is of fundamental
importance in multi-party computation [8,14]. Most OT schemes follow the par-
adigm of “encryption and proof of knowledge” to force the sender to keep the
consistency of the committed messages, so does the Green-Hohenberger OT
scheme. From the practical point of view, we should remark that the paradigm
is unnecessary. In most reasonable applications of OT, the transferred messages
must be recognizable for the receiver, or the sender is willing to disclose some
messages to the receiver. The property has been explicitly specified in the ear-
lier works by Rabin, Even, Goldreich and Lempel. We refer to the following
descriptions.

In Ref. [12], Rabin explained that:

Bob and Alice each have a secret, SB and SA, respectively, which they
wish to exchange. For example, SB may be the password to a file that
Alice wants to access (we shall refer to this file as Alice’s file), and SA the
password to Bob’s file. To exclude the possibility of randomizing on the
possible digits of the password, we assume that if an incorrect password
is used then the file is erased, and that Bob and Alice want to guarantee
that this will not happen to their respective files.

In Ref. [6], Even, Goldreich and Lempel stressed that:

The notion of a “recognizable secret message” plays an important role
in our definition of OT. A message is said to be a recognizable secret if,
although the receiver cannot compute it, he can authenticate it once he
receives it.

The notion of a recognizable secret message is evidently relevant to
the study of cryptographic protocols, in which the sender is reluctant to
send the message while the receiver wishes to get it. In such protocols, it
makes no sense to consider the transfer of messages that are either not
secret (to the receiver) or not recognizable (by the receiver).

In symmetric case, such as exchanging secrets, signing contracts, both two
participators can easily verify the correctness of the received messages. In unsym-
metric case, for example when a database manager plays the role of the sender
and a client plays the role of the receiver, it is usual that the sender is willing to
disclose some messages to the receiver.
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To sum up, if the transferred messages are not recognizable then the receiver
cannot decide which message to retrieve. It is reasonable to assume that the
transferred messages in an OT scheme are correctly formed. It is unnecessary
for the sender to provide any proofs of knowledge. By the way, the definition of
“proof of knowledge” is more strong than that of “recognizable message”. The
below three common examples of recognizable messages are due to the Ref. [6]:

(i) A signature of a user to some known message is a recognizable secret mes-
sage for everybody else.

(ii) The key K, by which the plaintext M is transformed using cryptosystem
F into ciphertext FK(M).

(iii) The factorization of a composite number, which has only large prime factors.

Many OT schemes, frankly speaking, have neglected the above warning.
Thus increasingly complicated OT constructions have been presented in the past
decades.

6 Conclusion

In this paper, we show that the signature in Green-Hohenberger OT Scheme
is vulnerable to known-message attacks and the reduction used in the proof of
Lemma A.6 is flawed. The full version of the OT scheme is available at http://
eprint.iacr.org/2008/163 (last revised, 14 Sep 2013). The paper highlights the
difficulty to deal with complicated (OT) schemes and with their corresponding
security proof ; moreover the interpretation of such proofs should be clearly
related with the precise corresponding security notions. In fact, “the theorem-
proof paradigm of theoretical mathematics is often of limited relevance and fre-
quently leads to papers that are confusing and misleading” [N. Koblitz and A.
Menezes: another look at “provable security”, J. Cryptology 20(1), 2007]. We
hope this note will help to right the balance between academic researches of OT
and its practice.
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Abstract. In this paper, we propose a new lightweight hash function
supporting three different digest sizes: 80, 96 and 128 bits, providing
preimage security from 64 to 120 bits, second preimage and collision
security from 40 to 60 bits. LHash requires about 817 GE and 1028 GE
with a serialized implementation. In faster implementations based on
function T , LHash requires 989 GE and 1200 GE with 54 and 72 cycles
per block, respectively. Furthermore, its energy consumption evaluated
by energy per bit is also remarkable. LHash allows to make trade-offs
among security, speed, energy consumption and implementation costs
by adjusting parameters. The design of LHash employs a kind of Feistel-
PG structure in the internal permutation, and this structure can utilize
permutation layers on nibbles to improve the diffusion speed. The adapt-
ability of LHash in different environments is good, since different versions
of LHash share the same basic computing module. The low-area imple-
mentation comes from the hardware-friendly S-box and linear diffusion
layer. We evaluate the resistance of LHash against known attacks and
confirm that LHash provides a good security margin.

Keywords: Lightweight · Hash function · Sponge function · Feistel ·
Security · Performance

1 Introduction

RFID products have been widely implemented and deployed in many aspects
in our daily life, e.g. automated production, access control, electronic toll col-
lection, parking management, identification and cargo tracking. The need for
security in RFID and sensor networks is dramatically increasing, which requires
secure yet efficiently implementable cryptographic primitives including secret-
key ciphers and hash functions. In such constrained environments, the area
and power consumption of a primitive usually comes to the fore and standard
algorithms are often prohibitively expensive to implement. Hence, lightweight
cryptography has become a hot topic. A number of lightweight cryptographic
algorithms are proposed, such as stream cipher Trivium [11] and Grain [16],
block cipher PRESENT [5], HIGHT [18], LBlock [35], LED [15], Piccolo [31]
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and PRINCE [7]. Recently, some significant works on lightweight hash func-
tions have also been performed. In [6], the proposed lightweight hash function is
constructed from block cipher PRESENT in Hirosei’s double-block mode [17].
The ARMADILLO [2] hash function was found to be insecure after proposed at
CHES 2010. Then a new version of ARMADILLO (version 3) [33] was proposed
at CARDIS 2012. QUARK [1] uses sponge structure [3] and internal permuta-
tion similar to feedback shift registers used in Grain. PHOTON [14] proposed
at CRYPTO 2011 and Spongent [4] proposed at CHES 2011 also used sponge
structure, but different internal permutations, which are based on AES-like and
PRESENT-like structures, respectively. Moreover, Kavun et al [20] presented a
lightweight implementation of Keccak at RFIDSec 2010.

In this paper, we propose a new lightweight hash function LHash with digest
sizes from 80 to 128 bits. LHash is based on extended sponge functions frame-
work, which allows trade-offs among security, speed, energy consumption and
implementation costs by adjusting parameters. The internal permutation is
designed using a structure, named as Feistel-PG, which is an extended variant
of improved generalized Feistel. Feistel-PG has faster diffusion, shorter impos-
sible differential paths and integral distinguishers than similar structures. The
S-box and MDS linear layer used in the internal permutation are designed to
be hardware-friendly. Both of them have very compact hardware implementa-
tion. The MDS linear layer has an iterated implementation, which is similar to
and more compact than the linear layer used in PHOTON. We present that
LHash achieves remarkably compact implementation in hardware. In our small-
est implementation, the area requirements are 817 and 1028 GE with 666 and 882
cycles per block, respectively. Meanwhile, its efficiency on energy consumption
evaluated by the metric of energy per bit proposed in [31] is the smallest class
among current lightweight hash functions in literature. Especially, for the com-
petitors with similar preimage and collision resistance levels, it also compete well
in terms of area and throughput trade-off as shown in Fig. 7. Comparative results
regarding the hardware efficiency for lightweight hash functions are summarized
in Table 1. Regarding security, the internal permutation of LHash provides a
good security margin against all kinds of attacks, including differential attack,
impossible differential attack, zero-sum distinguisher, rebound attack etc. Since
LHash is built on the internal permutation using extended sponge structure, we
believe that the security bounds claimed can be reached.

This paper is organized as follows. Specification of LHash is given in Sect. 2.
Section 3 describes the design rationale. Sections 4 and 5 provide results on secu-
rity and implementation evaluations, respectively. Finally, we conclude in Sect. 6.

2 Specification of LHash

2.1 Notations

In the specification of LHash, we use the following notations:
− M : The original message
− n: The digest size
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Table 1. Comparison of LHash with existing lightweight hash functions

Parameters Bounds
Area Cycle

Throughput FOM

Algorithm
n b c r r’ Pre

2nd
Col [GE] [clks]

[kbps] [nb/clk/GE2] Energy/bit∗

Pre long 96-bit long 96-bit

LHash

80 96 80 16 16 64 40 40
817 666 2.40 1.44 35.96 21.59 34008

989 54 29.63 17.78 302.9 181.75 3338

96 96 80 16 16 80 40 40
817 666 2.40 1.31 35.96 19.63 34008

989 54 29.63 16.16 302.9 165.2 3338

128 128 112 16 32 96 56 56
1028 882 1.81 1.21 17.13 11.44 56669

1200 72 22.22 14.81 154.3 102.89 5400

128 128 120 8 8 120 60 60
1028 882 0.91 0.40 8.61 3.81 113337

1200 72 11.1 4.94 77.15 34.29 10800

PHOTON

80 100 80 20 16 64 40 40
865 708 2.82 1.51 37.73 20.12 30621

1168 132 15.15 8.08 111.13 59.27 7709

128 144 128 16 16 112 64 64
1122 996 1.61 0.69 12.78 5.48 69845

1708 156 10.26 4.40 35.15 15.06 16653

Spongent

80 88 80 8 8 80 40 40
738 990 0.81 0.42 14.84 7.74 91328

1127 45 17.78 9.28 139.97 73.03 6339

128 136 128 8 8 120 64 64
1060 2380 0.34 0.14 2.99 1.28 315350

1687 70 11.43 14.90 40.16 17.21 14761

U-Quark 128 136 128 8 8 120 64 64
1379 544 1.47 0.61 7.73 3.20 93772

2392 68 11.76 4.87 20.56 8.51 20332

H-PRESENT-128 128 - 128 64 - 128 64 64 2330 559 11.45 5.72 21.09 10.54 20351

4256 32 200 100 110.41 55.21 2128

Keccak-f[100]+ 80 100 80 20 20 60 40 40 1250 800 2.50 1.50 16.00 9.60 50000

Keccak-f[200] 128 200 128 72 72 64 64 64 2520 900 8.00 3.56 12.6 5.60 31500

Keccak-f[400] 128 400 256 144 144 128 128 64 5090 1000 14.40 9.60 5.56 3.71 35347

∗: Energy/bit = (Area[GE]×required cycles for one block process)/block size[bit]. [31]
+: Implementation data is estimated based on the same serialized architecture in [20].

− b: The block size of internal permutation
− F96, F128: The 96(128)-bit internal permutation
− Ci: The i-th round constant
− Pb: Nibble permutation on b/2 bits state
− s: 4 × 4 S-box
− S: Concatenation of four S-boxes
− T : Non-linear function on 16-bit word
− Gb: Concatenation of b/32 function T
− A: 4 × 4 MDS linear transformation on 16-bit word
− ⊕

: Bitwise exclusive-OR operation
− ×2,×4: Constant multiplications on finite field F2[x]/x4 + x + 1

2.2 Domain Extender

In LHash, we choose the extended sponge function [3] as illustrated in Fig. 1.
The message is padded and split into r-bit blocks, each of which is XORed to
part of the state and enter the permutation. After the message blocks are all
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Fig. 1. Extended sponge function

Table 2. Suggested parameters and security bounds of LHash

n b c r r′ collision 2nd preimage preimage

80 96 80 16 16 240 240 264

96 96 80 16 16 240 240 280

128 128 112 16 32 256 256 296

128 128 120 8 8 260 260 2120

processed, output r′ bits of the state as a digest block and continue iterating the
permutation until the output digest size is reached.

In Fig. 1, mi is the i-th message block split from the padded message, hi

is the i-th digest block and F stands for a fixed internal permutation. r is the
length of input message blocks, c is the size of the capacity, b = r+c is the size of
the fixed permutation and r′ is the output size for each output digest block. S0

is the initial value for the iteration. For different versions, the initial values are
different. We set initial values as the concatenation of 8-bit binary expressions
of the four parameters n, b, r and r′ and filling zeros in the higher bits if the size
is not enough, i.e. S0 = 0||...||0||n||b||r||r′.

The padding works as follows. Suppose the length of the original message is
len, the padding rule is to append one bit of “1” and x bits of “0”. The value x
is the smallest non-negative integer such that x + 1 + len ≡ 0 modr.

As shown in Table 2, four versions of LHash are constructed based on two
permutations F96 and F128 with sizes of 96 and 128 bits. The parameters and
security bounds can be found in Table 2. We refer to its various parameterizations
as LHash-n/b/r/r′ for different digest sizes n, block sizes b, absorbing sizes r and
squeezing sizes r′.

2.3 Internal Permutation

The internal permutations F96 and F128 are constructed using 18-round Feis-
tel structure. The round transformations are shown in Fig. 2. The permutation
works as follows.
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Fig. 2. Round transformations for internal permutation F96 and F128

Table 3. Nibble permutation P96 and P128

i 0 1 2 3 4 5 6 7 8 9 10 11

P96(i) 6 0 9 11 1 4 10 3 5 7 2 8

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P128(i) 3 6 9 12 7 10 13 0 11 14 1 4 15 8 5 2

First split the b-bit input (b=96 or 128) into two halves X1||X0.
Then for i = 2, 3, ..., 19, calculate

Xi = Gb(Pb(Xi−1 ⊕ Ci−1)) ⊕ Xi−2

At last, X19||X18 is the output of the permutation.
Here the transformation Gb is the concatenation of b/32 function T which

is the non-linear transformation on 16-bit word. The details of function T will
be introduced in the following paragraphs. Pb is a simple permutation on b/8
nibbles, as defined in Table 3.

The function T is defined as

T (x3, x2, x1, x0) = A(S(x3, x2, x1, x0))

where S is the concatenation of four S-boxes:

S(x3, x2, x1, x0) = s(x3)||s(x2)||s(x1)||s(x0).

The definition of the 4-bit S-box is shown in Table 4.
The linear layer A is an 4 × 4 MDS transformation on 16-bit word, it is

calculated as four iterations of the linear transformation B as shown below, i.e.
A = B4. In this figure ×2 and ×4 are constant multiplications on finite field
F2[x]/x4 + x + 1.

The round constants Ci is used in both F96 and F128. In each round, Ci is
XORed to the most significant 16 bits of the state. The round constants are
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Table 4. S-box used in LHash

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s(x) 14 9 15 0 13 4 10 11 1 2 8 3 7 6 12 5

Fig. 3. Linear transformation B

Table 5. Round constants

round 0 1 2 3 4 5 6 7 8

Ci 0012 0113 1301 3725 7E6C ECFE C9DB 9280 2436

round 9 10 11 12 13 14 15 16 17

Ci 485A 8193 1200 2537 5A48 A5B7 5B49 B7A5 7F6D

generated by a 5-bit LFSR. The initial state is zero: x4 = x3 = x2 = x1 =
x0 = 0, for i > 4, xi = xi−3 ⊕ xi−5 ⊕ 1. Let ai = xi||xi+1||xi+2||xi+3, a′

i =
xi||xi+1||xi+2||xi+3, bi = xi+1||xi+2||xi+3||xi+4 and b′

i = xi+1||xi+2||xi+3||xi+4.
Then Ci = ai||bi||a′

i||b′
i. xi+3 stands for the complement of the bit xi+3. The

values of Ci are listed in Table 5 (Fig. 3).

3 Design Rational

3.1 Extended Sponge Function and the Choice of Paramenters

In most of the known RFID protocols, a hash function is required for privacy. In
such cases, only the first preimage resistance is needed. Thus the second preim-
age bound can be sacrificed to have a more compact hardware implementation.
LHash is based on extended sponge functions framework, which allows trade-
offs among security, speed, energy consumption and implementation costs by
adjusting parameters. Compared to the traditional construction based on block
ciphers, the advantages are:
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– Sponge function is based on fixed permutation. The cost of key expansion in
block ciphers can be avoided. For encryption, the same secret key are used
multiple times. As a result, the key expansion is done once and the subkeys
can be stored and used again and again. But for block cipher based hash, we
need to do the key expansion for every new message block.

– Avoiding feeding forward operation and saving storage. The cost of storage
is high in lightweight computing environment. Thus for lightweight hash, we
need to use as less storage as possible. In block cipher based hash, the feeding
forward mode is necessary, thus the plaintext/key needs to be stored after
the encryption is finished. If we need optimal resistance of second preimage
attack, the capacity in sponge function needs to be of twice the size as the
digest length and the storage requirement is similar to the block cipher based
hash. But for sponge function, we can sacrifice the second preimage resistance
by adjusting the parameters and reduce the storage requirement to about the
same as the digest size.

– The security reduction of Sponge function has been proved. Thus we only need
to analyze the security of the internal permutation. If the internal permutation
doesn’t have any flaw, we can have confidence in the security of the hash based
on it in sponge mode.

3.2 Internal Permutation

Structure. The structure of the internal permutation is as shown in Fig. 5 in
AppendixB. Pn is a vector permutation whose unit size is the same as the size
of sbox and G is the concatenation of several function T ′s. This structure is a
kind of Feistel-type and combines the advantage of generalized Feistel structure.
Its basic non-linear module T is small and parallelable, which make LHash can
be implemented efficiently in both software and hardware.

Compared to traditional Feistel structure, the diffusion effect of generalized
Feistel structure is slower and hence more rounds are needed to achieve the
desired security level. In order to overcome the disadvantage, we propose an
extended variant of improved generalized Feistel structure which represented as
Feistel-PG. We utilize a permutation layer Pn on nibbles to improve the diffusion
effect. The unit size of Pn is the same as the size of the S-box and requires no
extra hardware area cost. However, the choice of Pn has impact on the security.
After a lot of attempts and tests, we decide to choose current permutations since
they are the best ones we found. Assuming the same block length and size of non-
linear module T, compared to traditional generalized Feistel structure such as
Type-2 GFS and improved GFS [32], Feistel-PG can achieve full diffusion [32] in
less rounds which means its diffusion speed is faster, and the attackable round
number of impossible differential and integral path is fewer. The comparison
between different structures are listed in Table 6.

Moreover, compared to the usually utilized SP structure in the design of
internal permutation of hash functions, Feistel-type structure has completely
different properties. Therefore, most of the hash function attack techniques suit-
able for the property of SP-type structure, such as the most famous rebound
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Table 6. Comparison of structures

Structure Size Full Diffusion Impossible Differential Integral Path

Type-2 generalized Feistel 96 7 13 12

Improved GFS 96 5 9 10

Feistel-PG 96 4 8 8

Type-2 generalized Feistel 128 9 17 16

Improved GFS 128 6 10 11

Feistel-PG 128 4 8 8

attack, super-sbox techniques etc., will be less effective. Therefore, we believe
that Feistel-type internal permutation can achieve good immunity against known
attacks, and later in Sect. 4 we will evaluate the security of LHash against known
attacks in detail.

S-Box. On the pursuit of hardware efficiency, we use 4×4 S-boxes s : F 4
2 → F 4

2

in LHash. Compared with the regular 8 × 8 S-box, small S-box has much more
advantage when implemented in hardware. For example, to implement the S-
box of AES in hardware more than 200 GE are needed. On the other hand, the
S-box used in LHash requires two AND operations, two ORs, one NOT and six
XORs. The area costs for AND, OR, NOT and XOR are 1.33 GE, 1.33 GE,
0.5 GE and 2.67 GE. Thus the S-box costs 21.84 GE in total. Furthermore, in
the aspect of security, the S-box used in LHash is complete, has no fixed points,
optimal differential and linear characteristics probability of 2−2 and algebraic
degree of 3.

Linear Diffusion Layer. The diffusion of the internal permutation is achieved
by both the nibble permutation Pn and the linear layer A used in function T .
Their combination results in good security. The lower bound for the active S-
boxes for 17 out of 18 rounds of F96 and F128 are 48 and 64, respectively. Pn is
the nibble permutation with no hardware cost. A is a linear transformation on
16 bits, the branch number of A regarding 4 nibbles is 5, which is optimal.

A follows the 4-branch generalized Feistel structure, the round function uses
constant multiplications ×2 and ×4 on F2[x]/x4 + x + 1. After four iterations,
the branch number of 5 can be reached. The linear transformation A has two
advantages:

– Easy to invert. The reason why we consider the inversion is for compact hard-
ware implementation, which will be explained in the following sections. Since
generalized Feistel structure is used to implement A, we only need to change
the permutation of the round function to invert it and the round function can
be reused.

– Low area cost for hardware implementation. In the generalized Feistel struc-
ture, there are two XOR operations between 4-bit branches, which requires 8
bits of XORs. The multiplication by 2 and 4 can be implemented using 1 and
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2 bits of XORs. The total area cost of A is 11 bits of XORs and is less than
the iterated MDS layer used in PHOTON, which requires 15 bits of XORs.

The circuits for multiplications by 2 and 4 in F2[x]/x4 + x + 1 can be found in
Fig. 6.

4 Security Evaluation

Since extended sponge function is used, the desired security of the internal per-
mutation is that the permutation is indistinguishable with a random permuta-
tion with no more than 2c/2 queries. The parameter r is small for all versions
of LHash. Thus for the adversary, the controllable freedom degree is small (no
more than 16 bits for each permutation). It is difficult for the adversaries to
take advantage of the vulnerability of the internal permutation and turn it into
an attack on the hash function. Based on the reasoning above, we only pro-
pose analysis of the internal permutation. All analyses in this section are based
on the stronger assumption that the input can be completely controlled by the
adversary.

4.1 Generic Security Bounds

With the assumption that the internal permutation is ideal, the security bounds
for extended sponge function are as follows [14].

– Collision bound: min{2n/2, 2c/2}.
– Second preimage bound: min{2n, 2c/2}.
– Preimage bound: min{2min{n,b},max{2min{n,b}−r′

, 2c/2}}.

According to our analysis on the internal permutations F96 and F128, we believe
the bounds shown in Table 2 can be reached.

4.2 Differential Analysis

For differential analysis of LHash, it is highly dependent on the maximum dif-
ferential characteristic probability of the internal permutations F96 and F128.
Considering the internal permutations are built based on block cipher structure,
we can adopt the regular method of searching least number of active sboxes to
evaluate the upper bound of differential characteristic probability for F96 and
F128. This method is widely used in security evaluation of Feistel cipher against
differential analysis such as Camellia and CLEFIA.

The search program is usually a truncated differential path search with
Viterbi algorithm. Considering that the sbox is a bijective and deterministic
nonlinear function, its input and output differences can be truncated to 1-bit.
Namely if its input and output differences are not zero, then we call it an
active sbox and denote it as “1” in the truncated differential path. Otherwise,
if the input and output differences are both zero, then we call it a passive sbox
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and denote it as “0”. Notice that for a passive sbox its differential probability
DPS = 1, and for an active sbox DPS = p < 1. Therefore, by counting the
minimum number of active sboxes, we can evaluate the upper bound of differen-
tial characteristic probability. In the truncated differential path search, we start
from input state ΔD(0), and transit toward output state ΔD(r) round by round
so as to minimize the number of active sboxes at every round as follows.

For every possible truncated differential path (ΔD(i) → ΔD(i+1)), assign the
right-hand value to left-hand if the inequation is satisfied where z(ΔD(i+1)) is a
temporal variable of the minimum active sbox number.

z(ΔD(i+1)) > ASmin(ΔD(i)) + AS(ΔD(i) → ΔD(i+1))

where ASmin(ΔD(i)) is the total minimum active sbox number of the truncated
path from the first round to ΔD(i), and AS(ΔD(i) → ΔD(i+1)) denotes the
active sbox number of truncated path (ΔD(i) → ΔD(i+1)). Then the temporal
variable z(ΔD(i+1)) after finishing the above steps becomes ASmin(ΔD(i+1)).
Finally, the minimum result of ASmin(ΔD(r)) is the guaranteed minimum num-
ber of active sboxes for r-round.

After our searching of the guaranteed minimum number of active sboxes
for internal permutations F96 and F128 by computer program, the results are
listed in Table 7. Since the maximal probability for differential distribution of
the sbox is 2−2, 17 rounds of F96 and F128 cannot be distinguished from a
random permutation by using differential paths. Thus we believe LHash is secure
regarding differential attack.

4.3 Rebound Attack

Rebound attack is proposed in recent years [26], which is very effective against
AES-like structures. Till now, lots of works have been done to improve it [19,23–
25,27,28,30,34]. The original rebound attack works on AES structure itself,
which cannot be directly applied to LHash. Sasaki tried to analyze the resis-
tance of Feistel-SP structure against rebound attack [29]. Here we propose the
preliminary rebound attack on LHash.

11-Round Rebound Distinguishers on the Internal Permutations. First,
we can present 5-round inbound paths for both F96 and F128. Then the full 11-
round path can be obtained by extending the inbound rounds 3 rounds backward
and 3 rounds forward. For F128, the total complexity to find a solution to the

Table 7. The guaranteed minimum number of active sboxes for F96 and F128

Round 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F96 1 2 6 10 14 18 22 24 26 29 32 36 40 42 46 48 51 54 58

F128 1 2 6 10 16 22 27 31 35 37 41 45 51 54 61 64 67 71 75
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11-round path is 216. For a random permutation, finding a solution fulfilling the
input and output truncated differences is a limited birthday problem [13]. The
complexity to solve this limited birthday problem for a random permutation
is 224, which is higher than the complexity using our differential path. That is
how this distinguisher works. For F96, it takes 212 complexity to find a solution,
which is slower than the generic case (218).

Remarks on Super-Sbox Technique. Super-Sbox technique [13] exploits the
independency between columns in 2 rounds of AES-like structure and improves
the attackable rounds of rebound attack. In Feistel-PG structure, there is no inde-
pendent structure like this. Therefore, we believe super-sbox technique doesn’t
work on LHash.

4.4 Zero-Sum Distinguisher

For a given permutation F , zero-sum distinguisher aims to find a partition of
the input values X such that

⊕
x∈X x =

⊕
x∈X F (x) = 0 with low complex-

ity. Here we consider another kind of distinguisher called half zero-sum distin-
guisher. Suppose permutation F is 2n bits, we aim to find set X such that⊕

x∈X Trunc1n(x) =
⊕

x∈X Trunc2n(F (x)) = 0, where Trunc1n and Trunc2n are
truncation functions with half of the state size.

We have measured the algebraic degree of F96 and F128, using the technique
proposed by Boura et al. [8–10]. For F96, half of the state doesn’t reach maximal
algebraic degree of 95 after 7 rounds. Then we can propose a 15-round half zero-
sum distinguisher for F96. Choose 20 nibbles (except the first 4 nibbles of left
branch) to be active, and then we can obtain 8 independent active nibbles after
3 rounds. When we choose one bit from the other part of the state and fix it, the
8 nibbles will go over all the 232 values no matter which bit value we choose and
fix besides the 8 nibbles. Then we can deduce that the algebraic degree of half
of the state after another 5 rounds is no more than 27 and the sum of these bits
will be zero. Therefore, in the forward direction, we have an 8-round half zero-
sum distinguisher. Similarly, we can deduce that it is a 7-round half zero-sum
distinguisher in the backward direction when we select the same active nibbles.
Combining the forward and backward paths, we get a 15-round half zero-sum
distinguisher for F96, and the data complexity is 280. Apply the same technique
on F128, we can find a 15-round half zero-sum distinguisher with 296, which can
be improved using the algebraic bounding techniques. In the forward direction,
we choose all the nibble on the left side(64 bits) and 63 bits on the right side as
active bits. In the forward direction, we can ensure that after 9 rounds, half of
the state is balanced(with zero-sum). In the backward direction, we can only go
back for 8 rounds. As a result, we have a 17-round half zero-sum distinguisher
on F128 with 2127 data complexity.
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4.5 Slide Attacks

Slide attacks are proposed for block ciphers, which take advantage of the self-
similarity in the key expansion by constructing plaintext-ciphertext pairs fulfill-
ing the slide conditions and recover the internal state or the secret key. Since
hash function can be used to construct MACs, e.g. HMAC and NMAC, and
sponge function itself can be used to construct MACs, we need to consider this
type of attacks.

We can have two different types of slide attacks: sliding on round transfor-
mations inside the internal permutation and sliding on iterations of the internal
permutations, i.e. sliding message blocks. First, slide inside the internal permu-
tation is prevented by adding different round constants in each round. Second,
slide attack between iterations of the internal permutations can be prevent if our
padding rule ensures the last message block is always non-zero. The padding rule
of LHash fulfills this property. Thus we can conclude that slide attack doesn’t
work on LHash.

4.6 Other Attacks

Rotational Distinguisher. Rotational distinguisher [21,22] was proposed to
analyze ARX structures. Calculate the output of a rotational pair and check if
the rotational condition is still fulfilled. In the design based on S-boxes and MDS
linear layer, rotational distinguisher doesn’t work well. The using of S-boxes
ensure that if the rotational amount is not multiple of the size of the S-box,
the rotational relation will be destroyed. The only possible way to apply rota-
tional distinguisher on LHash, is to use a rotational amount as multiple of 4.
Furthermore, the rotational pair will be destroyed by the nibble permutation
layers. Based on this reasoning, we conclude that LHash is immune to rotational
distinguisher.

Self Differential Attack. In a self differential attack, the difference between
different partitions of a single value is considered, instead of the difference
between a pair of values. The best collision attack on Keccak is based on this
kind of attack [12]. The self similarity property can be found in AES, if there
is no constants, the similarity can be preserved forever. In LHash, the nibble
permutation can destroy the self similarity and ensures LHash immune to this
kind of attack.

5 Implementation

5.1 Hardware Implementation

We evaluate hardware implementation of LHash using the Virtual Silicon (VST)
standard cell library based on UMC L180 0.18 µm 1P6M logic process
(UMCL18G212T3 ). We propose two different hardware implementations:



LHash: A Lightweight Hash Function 303

(1) minimal area (serialized) implementation and (2) implementation based on
function T . In the second implementation, the area cost is higher while the speed
is significantly increased and the energy consumption is significantly reduced.

Serialized Implementation. In hardware implementation of AES-like struc-
tures, such as PHOTON, the value before S-boxes don’t need to be stored. The
output values of the S-boxes can be stored in the same storage units of the
inputs, i.e. the input values are overwritten. During the calculation of the iter-
ated MDS layer, the intermediate values are also stored in the same place. For
Feistel structure, the situation is different. Since the value of the left branch
needs to be kept for the next round, we cannot just discard the original val-
ues before S-boxes. If the round function cannot be calculated in one cycle, we
need extra storage to store the intermediate values for the following calcula-
tions, which is bad for compact implementations. In order to achieve compact
serialized implementation, we introduce an equivalent expression of the round
transformation. Figure 4 shows the equivalent round transformation with one T
module. It can be expressed as follows, and the equation ensures that we don’t
need to store the intermediate output value of sbox during the calculation.

A(S(Pn(Xi−1 ⊕ Ci))) ⊕ Xi−2 = A(S(Pn(Xi−1 ⊕ Ci)) ⊕ A−1(Xi−2))

First, we applied the inversion of the linear layer, i.e. A−1, to the right branch
of the state. The updated value is stored at the original storage unit. Then we
calculate the constant addition, nibble permutation, and sbox operation of the
left branch nibble by nibble and XOR the output of the sbox into the right
branch storage. After all sboxes have been processed, the linear transformation
A is applied to the right branch again and we get the value of Xi. During
the calculation, no extra storage is required. After finishing all the nonlinear T
modules in one round, another operation is needed to swap the left and right
branches.

Fig. 4. Equivalent round transformation



304 W. Wu et al.

In the serialized implementation of LHash, we use a 4-bit width datapath
and only one instance of sbox, A−1 and A need to be implemented respectively.
First of all, state storage needs 96(128) bits flip-flop cells to store the data,
and each bit flip-flop requires 6 GE. Therefore, for F96 and F128 this module
requires 96×6 = 576 GE and 128×6 = 768 GE respectively, which occupies the
majority of the total area required. Then for the round transformation, six kinds
of operations need to be done, including constant addition, nibble permutation,
sbox, 4-bit XOR operation, linear transformation A−1 and A. Notice that in the
design of LHash, the constants only apply to the first 16-bit of left branch and for
the other bits the constants equal to zero. Therefore, we only need four 4-bit XOR
to implement the constant addition operation which requires about 42.72 GE.
Moreover, another 32.75 GE is needed for the constant generator(5-bit storage,
one XNOR and one NOT). Then the nibble permutation can be implemented
by simple wiring and costs no area and the choice of data is controlled by the
Controller module where a Finite State Machine is used to generate the control
signals. As specified in Sect. 3.2, the modules of sbox, A−1 and A require 21.84
GE, 29.37 GE(11 bits XOR), and 29.37 GE respectively. Finally, to XOR the
output of sbox into the right branch nibble, a 4-bit XOR is needed which costs
10.68 GE. In the end of the round transformation, the swap operation can be
implemented by wiring and need no additional area. Furthermore, an overall
Controller module is needed to generate all the control signals and logic circuits.
The Controller module is realized by a Finite State Machine and its gate varies
depending on the size of internal permutation: about 74 GE for F96 and 93 GE
for F128.

In summary, for F96, the round transformation contains three function T’s.
Each of them requires 4 cycles for A−1, 4 cycles for the combination operation of
constant addition, S-box and 4-bit XOR, and another 4 cycles for A. After the
calculation of three function T , another 1 cycle is required to swap the left and
right branches. Thus the round transformation requires 12 × 3 + 1 = 37 cycles
and F96 requires 37 × 18 = 666 cycles in total. The area cost of F96 is about
817 GE, including 576 GE for 96-bit storage, 53.4 GE for five 4-bit XORs, 22
GE for the sbox, 29.37 × 2 GE for both A−1 and A, 32.75 GE for the constant
generator(5-bit storage, one XNOR and one NOT) and about 74 GE for logic
circuits. For F128, the round transformation contains four T modules. It takes
(12 × 4 + 1) × 18 = 882 cycles to finish the calculation. The area cost of the
serialized implementation of F128 is 1028 GE, including 768 GE register storage,
166.89 GE for the round transformation, and about 93 GE for logic circuits.

Function T Based Implementation. Since F96 and F128 share the same mod-
ule T , thus we only need to implement it once. In order to finish the calculation
of function T in one cycle, we need eight 4-bit registers, constant generator and
16-bit XOR. The function T requires about 515.17 GE, including 192 GE for
eight 4-bit storage, 32.75 GE for the constant generator, 88 GE for four S-boxes,
29.37 × 4 = 117.84 GE for A and 2.67 × 32 = 85.44 GE for 32-bit XOR. Both
F96 and F128 can share the same function T and we only need extra storage for
both of them. Therefore F96 requires 515.17+384 = 899.17 GE, with additional
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Table 8. Software performances in cycles per byte of the LHash variants

LHash-80/96/16/16 LHash-96/96/16/16 LHash-128/128/16/32 LHash-128/128/8/8

139c/B 139c/B 156c/B 312c/B

89.8 GE control logic circuits, and the total area cost is about 989 GE. It takes
3 × 18 = 54 cycles to finish the calculation of F96. Similarly, F128 costs about
(515.17 + 576 + 108.8) ≈ 1200 GE and 72 cycles.

5.2 Software Implementation

We give in Table 8 our software implementation performances for the LHash
variants. The processor used for the benchmarks is an Intel Core i7-3612QM
@2.10 GHz. We have also benchmarked other lightweight hash function designs.
QUARK reference code [1], which is very likely to be optimized, runs at 8k, 30k
and 22k cycles per byte respectively for U-QUARK, D-QUARK and S-QUARK.
The speed for PHOTON-80/20/16 and PHOTON-128/16/16 [14] are 96 and 156
cycles per byte, respectively.

6 Conclusion

We proposed a new lightweight hash function LHash, supporting digest length of
80, 96 and 128 bits, providing from 64 to 120 bits of preimage security and from
40 to 60 bits of second preimage and collision security. The internal permutation
is designed based on structure Feistel-PG, using nibble permutations to improve
the resistance to different attacks of the structure. The component S-box and
linear layer are designed to be secure and suitable for hardware implementa-
tions. Serialized implementation of the internal permutation in LHash requires
817 and 1028 GE. LHash has the lowest energy consumption among existing
lightweight hash functions. We offer the trade-offs among security, speed, energy
consumption and implementation cost by adjusting the parameters. We also
evaluate the security of LHash and our cryptanalytic results show that LHash
achieves enough security margin against known attacks. In the end, we strongly
encourage the security analysis of LHash and helpful comments.
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A Test Vectors

Test vectors for LHash are shown in hexadecimal notation as follows.

B Figures

Fig. 5. Feistel-PG structure

Fig. 6. Circuits for multiplications by 2 and 4 on F2[x]/x4 + x + 1

Fig. 7. Area versus throughput trade-off of lightweight hash functions
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Abstract. The GOST hash function, defined in GOST R 34.11-2012,
was selected as the new Russian standard on August 7, 2012. It is
designed to replace the old Russian standard GOST R 34.11-94. The
GOST hash function is an AES-based primitive and is considered as an
asymmetric reply to the SHA-3. It is an iterated hash function based on
the Merkle-Damg̊ard strengthening design. In addition to the common
iterated structure, it defines a checksum computed over all input message
blocks. The checksum is then needed for the final hash value computa-
tion. In this paper, we show the first cryptanalytic attacks on the round-
reduced GOST hash function. Using the combination of Super-Sbox
technique and multi-collision, we present collision attacks on 5-round
of the GOST-256 and GOST-512 hash function, respectively. The com-
plexity of these collision attacks are both (2122, 264) (in time and mem-
ory). Furthermore, we combine the guess-and-determine MitM attack
with multi-collision to construct a preimage attack on 6-round GOST-
512 hash function. The complexity of the preimage attack is about 2505

and the memory requirements is about 264. As far as we know, these are
the first attacks on the round-reduced GOST hash function.

Keywords: GOST · Preimage attack · Collision attack · Multi-collision ·
Rebound attack · Meet-in-the-middle · Guess-and-determine

1 Introduction

Cryptographic hash functions are playing important roles in the modern cryp-
tography. They have many important applications, such as authentication and
digital signatures. In general, hash function must satisfy three security require-
ments: preimage resistance, second preimage resistance and collision resistance.
In the last few years, the cryptanalysis of hash functions has been significantly
improved. After the pioneering work of Wang [21–23], there is a strong need
for a secure and efficient hash function. In 2012, GOST R 34.11-2012 [17] was
c© Springer International Publishing Switzerland 2014
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selected as the new Russian National hash function standard. In addition, NIST
announced that Keccak [3] was the winner of the SHA-3 competition [15] in 2012.

GOST R 34.11-94 [18] was theoretically broken in 2008 [12,13]. As a result,
GOST R 34.11-2012 is designed to replace the old Russian standard GOST R
34.11-94 that no longer fits performance and security requirements. The new
GOST hash function was approved on August 7, 2012 and deployed on Janu-
ary 1, 2013 by the Federal Agency on Technical Regulating and Metrology of
Russian Federation (FATRMRF). It provides operation of digital signature sys-
tems using the asymmetric cryptographic algorithm in compliance with GOST R
34.10-2012. The GOST hash function is widely used in Russia and is developed
by the Center for Information Protection and Special Communications of the
FATRMRF with participation of the Open joint-stock company “Information
Technologies and Communication Systems”. Note that for the remainder of this
article we refer to the new GOST hash function simply as GOST.

GOST is an iterated hash function based on the Merkle-Damg̊ard strengthen-
ing design. In addition to the common iterated structure, GOST specifies a check-
sum consisting of the modular addition of all message blocks, which is the input
to the final application of the compression function. The compression function
of GOST employs an SPN structure following the AES design strategy. GOST
has an output length of 256/512-bit. In the following, the two hash functions are
called GOST-256 and GOST-512, respectively. The designers [6] claimed that
GOST made many attacks harder to apply, such as multi-collision attacks, dif-
ferential attacks, rebound attacks, and the meet-in-the-middle attacks. However,
the design principles of GOST and Whirlpool are very similar, and hence the
attacks on Whirlpool can be extended to GOST in a quite straightforward way.
In addition, Gauravaram [4] showed some weaknesses on hash functions using
checksums.

At Crypto 2004, Joux [7] presented a method to construct multi-collision
by using the flaw of the iterated structure of the hash function. Based on the
result, Joux pointed out that the concatenation of several hash function does
not increase the security.

With respect to the collision attack, the rebound attack proposed by Mendel
et al. [14] is very effective with the differential attack against AES based struc-
ture. From then on, many techniques are proposed to improve the original
rebound attack such as start-from-the-middle technique [11], linearized match-
in-the-middle technique [11], Super-Sbox analysis [5,9], and multiple-inbound
technique [8–10].

In the past few years, many techniques have been proposed to improve the
preimage attacks. One of them is the meet-in-the-middle (MitM) preimage attack
with the splice-and-cut technique. This method is first proposed by Aoki and
Sasaki to attack MD4 [1]. In CRYPTO 2009, Aoki and Sasaki [2] combined the
MitM attack with the guessing of carry bits technique to improve their preimage
attack on SHA-0 and SHA-1. In FSE 2012, Wu et al. [24] improved its complexity
and proposed the pseudo preimage attack on Grøstl. Using the combination of
the guess-and-determine and the MitM attack, Sasaki et al. [20] improved the
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preimage attacks on Whirlpool in AsiaCrypt 2012. In addition, Zou et al. [25]
combined the guess-and-determine with the MitM attack to propose an improved
pseudo-preimage attack on Grøstl.

Our Contributions. Since GOST adopts the Merkle-Damg̊ard strengthening
design, it seems difficult to attack the GOST hash function. In addition, the com-
pression function of GOST employs well-studied and time-tested constructions,
which makes many known attacks harder to apply. In this paper, we present
a security analysis of GOST with respect to collision and preimage resistance.
Our attacks are composed of some known attacks, such as multi-collision attack,
rebound attack and the MitM attack. Using the combination of Super-Sbox tech-
nique and multi-collision attack, we can construct collision attacks on 5-round of
the GOST-256 and GOST-512 hash function. Then we combine the guess-and-
determine technique with the MitM preimage attack to propose preimage attacks
on 6-round of the compression function of GOST-256 and GOST-512. Utilizing
the multi-collision technique, we extend the preimage attack on the compression
function to the GOST-512 hash function. As far as we know, this is yet the
first published security analysis of the GOST hash function. Our cryptanalytic
results of GOST are summarized in Table 1.

Table 1. Summary of attack results for GOST

Algorithm Target Attack type Rounds Time Memory Source

GOST-256
(12 rounds)

Compression
function

Collision 5 2120 264 Sect. 3.1

Compression
function

Preimage 6 2240 264 Sect. 4.1

Hash
function

Collision 5 2122 264 Sect. 3.2

GOST-512
(12 rounds)

Compression
function

Collision 5 2120 264 Sect. 3.1

Compression
function

Preimage 6 2496 264 Sect. 4.1

Hash
function

Collision 5 2122 264 Sect. 3.2

Hash
function

Preimage 6 2505 264 Sect. 4.2

Outline of the Paper. The rest of the paper is organized as follows. We
give a short description of GOST in Sect. 2. In Sect. 3, we present the collision
attacks on the round-reduced GOST. Then we show our preimage attacks on
the round-reduced GOST in Sect. 4. Section 5 concludes the paper.
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2 Description of GOST

GOST is an iterated hash function with an SPN structure following the AES
design strategy. The basic construction of GOST is shown in Fig. 1. GOST out-
puts a 256 or 512-bit hash value and can process up to 2512-bit message. The
initial value for GOST-256 is (00000001)64, while the initial value for GOST-512
is 0512. For the GOST-256 hash function, a truncation function is needed to
produce the final hash value. Assume a message M is padded and divided into
512-bit message blocks M1, . . .Mt. The hash value H is generated as follows:

CV0 ← IV256 (or IV512)

CVi ← CF (CVi−1,Mi) for 1 ≤ i ≤ t

CVt+1 ← CF (CVt, |M |)
CVt+2 ← CF (CVt+1,M1 + M2 + . . . + Mt)

H =
{
Trunc256(CVt+2) for 256 − bit hash value
CVt+2 for 512 − bit hash value

Fig. 1. Structure of the GOST hash functions

Here the IV256 and IV512 are initial values for two hash values n = 256 bits
and n = 512 bits, respectively. |M | represents the bit-length of the entire message
prior to padding, and ‘+’ denotes addition modulo 2512. The CF (CVi−1,Mi) is
the compression function of GOST. Before applying the compression function,
the input message M is processed to be a multiple of 512 bits by the padding
procedure. According to the padding procedure, a single bit ‘1’ and len0 ‘0’s
are put at the end of the message M . Here len0 satisfies the following equation,
lenM+1+len0 ≡ 0 mod 512 (lenM and len0 are short for the length of M and
the number of ‘0’, respectively).

The compression function CF (·) of GOST basically consists of two parts:
the key schedule and the state update transformation. As shown in Fig. 2, the
underlying block cipher E operates in the Miyaguchi-Preneel mode. The state
update transformation and the key schedule of E update an 8 × 8 state of 64
bytes in 12 rounds and 13 round separately. The round transformations of GOST
are briefly described here:
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– AK: The key addition AK operation XORs the round key to the state.
– S: The S transformation applies an S-box to each byte of the state indepen-

dently.
– P : The P transformation rearranges each byte of the 8 × 8 state in the pre-

defined order. See Fig. 3.
– L: In the L operation, each row of the state is multiplied by an MDS matrix.

Fig. 2. The compression function of GOST

The compression function CF (·) : F 512
2 × F 512

2 �→ F 512
2 , N ∈ F 512

2 is defined
as follows:

CFN (CVi−1,Mi) = E(L◦P◦S(CVi−1⊕N),Mi)⊕CVi−1⊕Mi, CVi−1,Mi ∈ F 512
2 ,

where E(K,m) = AK ◦ ∏12
j=1 L ◦ P ◦ S ◦ AK(m), and N = 512 · i. The i is the

block counter.
The key schedule transformation is computed as follows:

K1 = L ◦ P ◦ S(CVi ⊕ N), Ki = L ◦ P ◦ S(Kj−1 ⊕ Cj−1), j ∈ {2, . . . 13},
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Fig. 3. The P transformation of GOST

where Cj−1 is a round-dependent constant. For a detailed explanation, we refer
to the original paper [17].

3 Collision Attack on GOST

In a collision attack, we want to find, for a given initial value IV , two messages
m and m′ such that H(IV,m) = H(IV,m′). In this section, we will first pro-
pose collision attacks on the compression function of GOST-256 and GOST-512.
Based on these attacks, we then present the collision attacks on the hash function
of GOST-256 and GOST-512.

3.1 A Collision Attack on the Compression Function of GOST

We show the collision attacks on the compression function of GOST-256 and
GOST-512 by using the Super-Sbox technique. The Super-Sbox rebound tech-
nique was independently proposed by Lamberger et al. at ASIACRYPT 2009
[8] and by Gilbert and Peyrin [5] at FSE 2010. The Super-Sbox consists of 8
parallel S-boxes S, followed by one MixBytes operation L and another 8 parallel
S-boxes S: S-L-S.

If the differences in the message words are the same as in the output of the
state update transformation, the differences cancel each other through the feed-
forward. Our differential path using the Super-Sbox rebound technique is shown
in Fig. 4. The inbound phase is shown by solid arrows and the outbound phase is
shown by dashed arrows. Utilizing the above differential path, we can construct
a 5-round collision attack on the compression function of GOST. Note that the
differential path can be used in the collision attack for both the GOST-256 and
GOST-512. Here we want to construct the collision attack on the compression
function of GOST, so we can not make use of the freedom degree of the key
schedule.

For the inbound phase, the procedure proceeds as follows:

1. Fix the input difference of the 2nd round Mix Column operation L, then
compute the input difference of the 3rd round Sbox operation S. For each
Super-Sbox, calculate the output differences of the Super-Sbox for all possi-
ble pairs of inputs that have the fixed input difference. Make tables of the
output difference and the corresponding input pair. This step takes time and
memory 264.
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Fig. 4. Differential path for the Super-Sbox technique

2. Fix the output difference of the 4th round L and compute the output differ-
ence of the 4th round Sbox operation S.

3. For each Super-Sbox, use the difference distribution table of Step 1 to find
the pairs of the inputs such that the output difference of the 4th round Sbox
operation S is equal to the output difference of the Step 2. Note that this can
be done for each Super-Sbox independently. If the number of the solutions of
the inbound phase is not sufficient, Step 2 and 3 can be repeated until the
output differences of the 4th round L are exhausted. After exhausting the
differences at Step 2, the adversary can also repeat the procedure from Step
1 by changing the input difference of the 2nd round L.

4. For the whole inbound phase, we expect 264 solutions with a complexity of
264 in time and memory.

All in all, the average time complexity to generate an internal state pair that
follows the differential path of the inbound phase is one. In the outbound phase,
the state pairs of the inbound phase are propagated outwards probabilistically.
The transition from 8 active bytes to one active byte through the Mix column
transformation L has a probability of 2−56. Since there are two 8 → 1 transitions
(the L operation in round 1 and round 5), the probability of the outbound phase
is 2−2·56 = 2−112. In other word, we have to repeat the inbound phase about
2112 times to generate 2112 starting points for the outbound phase of the attack.
To construct a collision at the output of this 5-round compression function, the
exact value of the input and output difference has to match. Since these is only
one byte is active, this can be fulfilled with a probability of 2−8. As a result, the
complexity to generate a collision for 5-round compression function of GOST-256
and GOST-512 are both 2112+8 = 2120. The memory requirement are 264.

3.2 A Collision Attack on GOST Hash Function

In this section, we show how to extend the collision attack on the compression
function to the hash function. According to the definition of the GOST hash
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function, in addition to the common iterative structure, a checksum is needed
for the final hash value computation. As a result, we have to construct a collision
in the chaining variables as well as in the checksum.

Our collision attack on the 5-round GOST hash function can be described as
follows (see Fig. 5):
1. Let h′

0 be equal to the initial value IV of the hash function.
For i from 1 to 4 do:
• Find mi and m′

i such that CF (h′
i−1,mi) = CF (h′

i−1,m
′
i)• Let h′

i = CF (h′
i−1,mi).

Here we utilize the technique of the Super-Sbox that introduced in Sect. 3.1
to find mi and m′

i. Note that mi and m′
i only differ in the same one byte, and

these are no difference in the rest 63 bytes of mi and m′
i, for 1 ≤ i ≤ 4. Then

we have constructed 24 messages that all reach the same chaining value h′
4.

2. Randomly choose m5. Here we just require that m5 satisfies the padding
rule. As shown in Fig. 5, all the 24 messages reach the same chaining value
h′
5. Since the length of the 24 messages |m| are equal, the chaining value h′

6 of
the 24 messages are still the same. Note that the 24 checksums of the above
messages are only different in one byte. Based on the birthday paradox, the
probability to find a collision among the 24 checksums is high. As a result,
we have constructed a collision in the chaining variables as well as in the
checksum. Then we construct a collision attack on the GOST hash function.

Fig. 5. Overview of the collision attack on GOST

It takes 4 ·2120 computations and 264 memory to construct the 24 − collision
in Step 1. According to the attack process, the collision attack has a complexity
of about 2122 evaluations of the compression function of GOST. The memory
requirement is 264. Note that our collision attack can be applied to both the
GOST-256 and GOST-512 hash function.

4 Preimage Attack on GOST

In this section, we present a preimage attack on the GOST-512 hash function
with a complexity of about 2505 evaluations of the compression function. Firstly,
we will show how to construct the preimage attacks for the compression func-
tion of GOST-256 and GOST-512. Secondly, we show the preimage attack for
the GOST-512 hash function based on the preimage attack on the compression
function of GOST-512.
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4.1 Preimage Attack on 6-Round Compression Function of GOST

Here we fix the key-input (chaining value) when we perform the MitM attack, and
the goal is to find the plaintext-input (message) that provides the given target.
The 6-round chunk separation of the state update transformation is illustrated
in Fig. 6. Using the combination of the guess-and-determine technique and the
MitM attack, we can construct 6-round preimage attacks on the compression
function of GOST-256 and GOST-512. By guessing some unknown bytes, all
the possible values of the guessed bytes are used as extra freedom degrees in the
MitM preimage attack. As a result, more matching points can be obtained. Note
that the guessed bytes are extra constraints. After a partial match is found, we
should check if the guessed value produces a valid preimage. We will talk about
more details about the guessing technique in the following attack algorithm.

Parameters for the Guess-and-Determine MitM Attack. As shown in
Fig. 6, we use the purple bytes as the guessed bytes. The red/blue color means
neutral message. They are independent from each other. The white color stands
for the bytes whose values are affected by red bytes and blue bytes both, and
we can’t determine their values until a partial match is found. The gray bytes
are constants that come from the hash value or the initial structure. In order
to evaluate the complexity for the attack, we should define these parameters:
freedom degrees in red and blue bytes (dr, db), the guessing red and blue bytes
(Dgr,Dgb), the bits of the matching point bm.

The Attack Algorithm and Complexity. The guess-and-determine MitM
attack algorithm can be described as follows:

1. Set random values to constants in the initial structure.
2. For all possible values 2dr of the red bytes and 2Dgr of the guessing red bytes,

compute backward from the initial structure and obtain the value at the
matching point. Store the values in a lookup table Lcomp.

3. For all possible values 2db of the blue bytes and 2Dgb of the guessing blue
bytes, compute forward from the initial structure and obtain the value at
the matching point. Check if there exists an entry in Lcomp that matches
the result at the matching point. Expected number of the partial matches is
2dr+db+Dgr+Dgb−bm .

4. Once a partial match is found, compute and check if the guessed value is
right. The probability of the validity is 2−Dgr−Dgb . There are 2dr+db−bm valid
partial matches left. Then we continue the computation and check the full
match. The probability that a partial match is a full match is 2−(n−bm).

5. The success probability for the above steps is 2dr+db+Dgr+Dgb−bm ·2−(Dgb+Dgr)·
2−(n−bm) = 2dr+db−n. Then repeat the above steps for 2n−db−dr to find one
full match.

The complexity for each step can be calculated as follows:

1. In Step 2, building the lookup table Lcomp takes 2dr+Dgr computations and
memory.
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Fig. 6. Preimage attack on the compression function of GOST

2. In Step 3, it takes 2db+Dgb computations to find the partial matches. Expected
number of the partial matches is 2db+Dgb+dr+Dgr−bm .

3. In Step 4, testing all the partial matches in step 3 needs 2db+Dgb+dr+Dgr−bm

computations. The probability of the validity is 2−Dgb−Dgr , and there are
2db+dr−bm valid partial matches left.

4. In Step 5, repeat the above four step for 2n−db−dr times.

Then the complexity of the above attack algorithm is:

2n−db−dr · (2dr+Dgr + 2db+Dgb + 2db+Dgb+dr+Dgr−bm)

= 2n · (2Dgr−db + 2Dgb−dr + 2Dgb+Dgr−bm).
(1)

As shown in Fig. 6, the parameters for the attack on the 6-round compression
function of GOST-512 are as follow: dr = 16, db = 64, Dgr = 48, Dgb = 0,
bm = 64 and n = 512. According to equation (1), the overall complexity is
2512 · (248−64 + 20−16 + 248−64) ≈ 2496 compression function calls. Only Step 2
requires 216+48 = 264 memory.

Note that our attack can also be applied to the last block compression func-
tion of GOST-256. In this case, the parameters for the attack are as follows:
dr = 16, db = 64, Dgr = 48, Dgb = 0, bm = 64 and n = 256. The overall
complexity is 2256 · (248−64 + 20−16 + 248−64) ≈ 2240 compression function calls.
The memory requirement is also 264.

4.2 Preimage Attack on the GOST-512 Hash Function

We show how to extend the preimage attack on the compression function to the
GOST-512 hash function. Our technique combine the multi-collision attack with
the guess-and-determine MitM attack.

Our preimage attack on the GOST-512 hash function can be described as
follows (see Fig. 7):
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1. Make use of the multi-collision technique proposed by Joux. Find w successive
collisions by performing w successive birthday attacks, as follows:
Let h0 be equal to the initial value IV of the hash function.

CF (h0,M1) = CF (h0,M
′
1) = h1(say), where M1 �= M ′

1

CF (h1,M2) = CF (h1,M
′
2) = h2(say), where M2 �= M ′

2

. . .
CF (hw−1,Mw) = CF (hw−1,M

′
w) = hw(say), where Mw �= M ′

w

The 2w different messages built as above all reach the same final value hw.
Store the 2 · w messages Mi and M ′

i for 1 ≤ i ≤ w in a lookup table LM .
2. Randomly choose 2k Mw+1. For each Mw+1, choose a corresponding message

Mw+2 such that Mw+1 +Mw+2 = 0 (Here ‘+’ denotes addition modulo 2512).
For each Mw+1 and the corresponding Mw+2, calculate the corresponding
chaining value hw+3 that is marked in Fig. 7.

3. For each hw+3 and the given H, compute the corresponding message Mtarget

by the method introduced in Sect. 4.1. Since the number of hw+3 is 2k, we
can find out the corresponding 2k message Mtarget for the given digest H.
Store the 2k message Mtarget in a lookup table Lhash.

4. For the 2w collision found in Step 1, we can compute the sum modulo 2512 of
the 2w message blocks. Check if there exists an entry in Lhash that matches
the result such that Mtarget = M0 + M1 + . . . + Mw + Mw+1 + Mw+2. Since
Mw+1+Mw+2 = 0, Mw+1 and Mw+2 have no effect on the sum of all message
blocks. When w + k ≥ 512, we expect to find a match. Then we construct a
preimage attack on the GOST.

The complexity for each step can be calculated as follows:

1. In Step 1, finding the 2w-collision takes w · 2256 computations. Here we can
search the collisions by the memory-less algorithms such as the Rho algorithm
[16] and the distinguished points [19]. The memory requirement for building
the lookup table LM is 2 · w.

2. In Step 3, it takes 2496 computations to find a message Mtarget for each hw+3

and the given H. Then the complexity to find 2k Mtarget is 2k+496. The
memory requirement for building the lookup table Lhash is 2k.

3. In Step 4, checking the final match for 2w candidates requires 2w table
look-ups.

Fig. 7. Preimage attack on the GOST hash function
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All in all, the overall complexity to calculate a preimage of GOST-512 hash
function is w · 2256 +2k+496 +2w. Note that the condition of w+ k ≥ 512 should
be satisfied in order to find one final match. The memory requirement is 264

(needed to solve the Mtarget in Sect. 4.1). As a result, the minimum complexity
is 2505, when k = 8, w = 504. Since the complexity 2505 is far greater than 2256,
our preimage attack can not attack GOST-256 hash function.

5 Conclusion

In this article, we propose the collision attacks and the preimage attacks on
the GOST hash function. As opposed to most commonly used hash functions
such as SHA-1 and SHA-2, GOST adopts the Merkle-Damg̊ard strengthening
design, that defines a checksum computed over all input message blocks besides
the common iterated structure. The checksum is needed for the final hash value
computation. This design approach makes many known attacks harder to apply.
The original MitM attack [1] can not be used to solve a preimage of the GOST
hash function due to the checksum operation. In addition, we can not construct
the collision attack on the GOST hash function only by the rebound attack. Our
solution is the combination of some known attacks such as the multi-collision,
rebound attack and the MitM preimage attack. To sum up, we present the first
public security analysis of the GOST hash function. Firstly, we construct collision
attacks on the compression function of GOST-256 and GOST-512 by using the
Super-Sbox technique. Utilizing the Multi-collision attack, the collision attacks
on the compression function can be extended to the hash function. Furthermore,
we propose the preimage attacks on 6-round compression function of GOST-256
and GOST-512 by combining the guess-and-determine with the MitM attack.
At last, we present the preimage attack on the 6-round of the GOST-512 hash
function by using the combination of the guess-and-determine MitM attack with
the multi-collision attack. However, our attacks do not threat any security claims
of GOST.
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Abstract. Profiling power attacks like Template attack and Stochastic
attack optimize their performance by jointly evaluating the leakages of
multiple sample points. However, such multivariate approaches are rare
among non-profiling Differential Power Analysis (DPA) attacks, since inte-
gration of the leakage of a higher SNR sample point with the leakage
of lower SNR sample point might result in a decrease in the overall
performance. One of the few successful multivariate approaches is the
application ofPrincipalComponentAnalysis (PCA) for non-profilingDPA.
However, PCA also performs sub-optimally in the presence of high noise.
In this paper, a multivariate model for an FPGA platform is introduced
for improving the performances of non-profiling DPA attacks. The intro-
duction of the proposed model greatly increases the success rate of DPA
attacks in the presence of high noise. The experimental results on both sim-
ulated power traces and real power traces are also provided as an evidence.

Keywords: Differential Power Attack (DPA) · Correlation Power Attack
(CPA) · Leakage model · Multivariate leakage model · Non-profiling
attack · Multivariate distinguisher · Multivariate DPA

1 Introduction

The success rate of the Differential Power Analysis (DPA) [12,13] attacks is
largely influenced by the Signal-to-Noise Ratio (SNR) [13] of the power traces. As
a consequence, in many applications, Power Analysis attacks are either preceded
by various pre-processing techniques like integration (Chap. 4.5.2 of [13]), PCA
[4], filtering [15] for the reduction of noise in the power traces or followed by
some post-processing techniques like averaging [2,4,7] for the reduction of the
effect of noise on the outputs of the distinguisher. These techniques attempt to
improve the performance of the DPA attacks directly or indirectly by extracting
information from multiple sample points. However, those techniques are mainly
based on some heuristic approaches and do not exhibit performance improvement
in many scenarios.

Various profiling attacks like Template attack [6] and Stochastic attack [16]
provide optimal performance by jointly evaluating the leakages at multiple sam-
ple points. However, they use a separate profiling step for approximating the
c© Springer International Publishing Switzerland 2014
D. Lin et al. (Eds.): Inscrypt 2013, LNCS 8567, pp. 325–342, 2014.
DOI: 10.1007/978-3-319-12087-4 21
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multivariate leakage distribution [18] of the power traces. The profiling step
requires a large number of power traces to estimate the multivariate leakage dis-
tribution with sufficient accuracy. Moreover, in most of the cases, it needs the
knowledge of the secret key. Thus, optimising the performance of non-profiling
DPA by considering the joint distribution of the leakages of multiple sample
points is an open issue. This work attempts to do so using a model based
approach.

In this work, our goal is to gain partial information of the multivariate leak-
age distribution of the power traces from the overall trace statistics like mean,
variance etc. which can be easily computed without knowing the secret key. It
should be noted that such attempt already exists in the form of using Princi-
pal Component Analysis (PCA) [1,4,17] in side-channel analysis. PCA projects
the data-dependent variations from all the sample points of the power traces
into the first principal component by analysing its covariance matrix. However,
it performs sub-optimally on noisy power traces (see Sect. 6.2). In this paper,
we extend the conventional leakage model for multiple sample points which, in
turn, leads us to a multivariate leakage model. The proposed multivariate leak-
age model, once verified for a device, can be used to predict the (relative) SNR
of each sample point of the power traces. Hence, it can strengthen the existing
non-profiling DPA attacks by introducing new multivariate distinguishers which
can combine the results from multiple sample points according to their relative
SNR. Additionally, it can be applied to improve the sub-optimal behavior of PCA
(described in [4]) for low SNR power traces. The model is experimentally verified
for iterative hardware architectures on the Xilinx Virtex-5 FPGA embedded in
a side-channel evaluation SASEBO-GII board (see Appendix A). A multivariate
distinguisher based on the multivariate leakage model has been introduced. We
also experimentally verified the effectiveness of the new distinguisher using both
simulated traces with varying SNR and real traces. The results show a significant
improvement in the performance of the new distinguisher for low SNR traces as
compared to other existing distinguishers.

Rest of the paper is organized as follows. In Sect. 2, preliminaries of Differ-
ential Power Analysis are described. Section 3 describes some profiling results
on AES power traces. In Sect. 4, the multivariate model has been introduced.
Section 5 provides a way to compute the relative SNR’s of sample points using
the multivariate leakage model. In Sect. 6, a new multivariate distinguisher has
been introduced along with its application to principal component decomposi-
tion of the traces. Sections 7 and 8 describe the attack results on simulated traces
and real traces respectively. Finally conclusions have been drawn in Sect. 9.

2 Preliminaries

2.1 Notations

For the rest of the paper, we will use a calligraphic letter like X to denote a finite
set and the corresponding capital letter X to denote a random variable over the
set. Corresponding small letter x is used to denote a particular realisation of X.
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P (.) is used to denote the probability of the event. E[X], σX and V ar(X) are
used to denote mean, standard deviation and variance of the random variable X
respectively. We also denote by Cov(X,Y ) and Corr(X,Y ), the covariance and
the Pearson’s correlation coefficient between random variables X and Y respec-
tively. We denote a vector {x0, x2, · · · , xk} by {xi}0≤i≤k. Gaussian distribution
with mean m and standard deviation σ is represented by N(m,σ).

2.2 Differential Power Analysis

We will mainly follow the formalisation of Differential Power Analysis by Stan-
daert et al. in [18]. It is briefly described below.

Let E be an iterative block cipher with block size b and number of rounds
r. Let S be a key dependent intermediate variable of E. S is called target and
satisfies S = Fk∗(X), where X be a random variable representing a part of the
known plaintext or ciphertext and Fk∗ : X → S be a function determined by
both the algorithm and the subkey k∗ ∈ K (note that subkey is a small part
of the secret key such that it is efficiently enumerable). We denote by Lt the
random variable that represents the side channel leakage of an implementation
of E at time instant t, 0 ≤ t < rT where T is the number of samples collected
per round.

In DPA, the attacker collects a set of traces O = {o0, · · · , oq−1} resulted
from the encryption (or decryption) of a sequence of q plaintexts (or cipher-
texts) {p0, · · · , pq−1} (or {c0, · · · , cq−1}) using the fixed but unknown key with
subkey k∗ ∈ K in a physical implementation of E. It should be noted that
each oi is a vector of size rT i.e. oi = {oi,j}rT−1

j=0 where oi,j be the leakages of
the jth time instant during the ith encryption (or decryption). Then, a distin-
guisher D is used which by taking the leakage vector {o0, · · · , oq−1} and the
corresponding input vector {x0, · · · , xq−1} as inputs, outputs a distinguishing
vector D = {dk}k∈K. For a successful attack, k∗ = argmaxk∈K dk holds with a
non-negligible probability.

2.3 Leakage Model and Univariate Distinguisher

In DPA, it is assumed that the power consumption of a CMOS device at a
time instant is dependent on the intermediate value manipulated at that point.
Suppose the target S is manipulated at time instant t∗ (call it interesting time
instant). According to the conventional leakage model [5]:

Lt∗ = Ψ̃(S) + N (1)

= Ψ̃(Fk∗(X)) + N (2)

where the function Ψ̃ : S → R maps the target S to the deterministic part of
the leakage and N ∼ N(m,σ) accounts for the independent noise.

At the time of attack, the attacker chooses a suitable prediction model
Ψ : S → R and computes the hypothetical leakage vector denoted by random
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variable Pk = Ψ(Sk) = Ψ(Fk(X)) for each key hypothesis k ∈ K. In univariate
DPA, the attacker is provided with the leakage of the interesting time instant t∗,
Lt∗ = Ψ̃(Fk∗(X))+N . On receiving the leakage, she computes the distinguishing
vector D = {dk}k∈K such that dk = D(Lt∗ , Pk) = D(Ψ̃(Fk∗(X))+N,Ψ(Fk(X)))
using a distinguisher D.

When the hardware leakage behavior follows a well known leakage model like
Hamming weight model or Hamming distance model, some known prediction
model Ψ closely approximates Ψ̃ i.e. Ψ̃(s) ≈ a ·Ψ(s) holds for some real constant
a and for all s ∈ S. Then, Eq. (1) can be approximated as

Lt∗ = a · Ψ(S) + N (3)

Thus, the actual leakage vector Lt∗ is linearly related to the hypothetical leak-
age vector for the correct key Pk∗ = Ψ(Fk∗(X)). On the other hand, there is no
such relation between Lt∗ and the hypothetical leakage vector for a wrong key
Pk = Ψ(Fk(X)) since Fk∗(X) and Fk(X) are almost independent for k �= k∗.
In Correlation Power Analysis (CPA) [5], Pearson’s correlation is used to detect
the linearity between Lt∗ and Pk by computing dk = Corr(a · Ψ(Fk∗(X)) +
N,Ψ(Fk(X))) for all k ∈ K. Since, Pearson’s correlation detects the linear rela-
tion between two variables, it performs better than other attacks like Mutual
Information Analysis (MIA) [8], Difference of Mean (DoM) [12]. When the hard-
ware leakage model is not sufficiently known, ‘generic’ attacks like MIA perform
better than CPA. In the rest of the paper, we will consider only the scenarios
where the hardware follows a well known leakage behavior.

2.4 Multivariate DPA

In most of the practical scenarios, the point of interest t∗ is not known before
hand. Thus in practice, DPA attacks are multivariate in nature i.e. they take the
leakages of multiple sample points as the inputs and generate the output. Most
common form of multivariate DPA attacks applies a univariate distinguisher
on each of the sample points independently and then, simply chooses the best
result among those. However, in a different strategy, the attacker sometimes uses
multivariate distinguishers which produce results based on the joint evaluation
of the leakages at multiple sample points. Such multivariate distinguishers are
common in profiling attacks like Template attack [6] and Stochastic attack [16].

Though multivariate distinguishers on unprotected implementations are rare
in non-profiling context (example exists in [19]), there have been several attempts
to improve the success rates of non-profiling DPA attacks by integrating the out-
puts of a univariate distinguisher at multiple sample points [2,4,15]. However,
unlike profiling attacks where the multivariate leakage distribution of the power
traces is approximated in an explicit profiling step, non-profiling attacks are vul-
nerable to decrease in success rate resulting from the integration of the output
of a high SNR sample point to that of low SNR sample point. Thus, a success-
ful integration of the leakages of multiple sample points requires the successful
determination of the relative SNR of each sample point. We take a step in this
direction in the next section.
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3 Profiling the Power Traces of AES

In this section, we investigate the behaviour of the leakages of an AES imple-
mentation over a wide range of sample points due to the computation of an
intermediate variable. We start with an unprotected implementation of AES on
the setup described in Appendix A using parallel iterative hardware architec-
ture. We choose the target S to be the 128-bit input to the last round which
is computed from the ciphertext using the secret key. Consequently, predicted
leakage P = Pk∗ is calculated using Hamming distant model i.e. by computing
the Hamming distance of the target S and the ciphertext. To examine how the
dependency between the actual leakage Lt and the correct predicted leakage P
varies over a range of sample points, we estimate the following metrics over 300
sample points around the register update of the last round of AES using 20,000
power traces.

1. Squared Pearson’s Correlation between Data Dependent Leakage and Predicted
Leakage (SCDP): It is defined as follows:

SCDPt = Corr2(E[Lt|P ], P )

It reveals the linear dependency between the deterministic leakage E[Lt|P ]
at sample point t and the predicted leakage P . It should be noted that if the
leakage of a sample point t follows Eq. (3), then the empirical estimation of
SCDPt using a finite number of traces will be close to one. On the other
hand, if no such relation holds for a sample point t, SCDPt will be almost
zero.

2. Variation of Data Dependent Leakage (VDL):

V DLt = V ar(E[Lt|P ])

It reveals the variations in leakage due to the predicted leakage P at sample
point t. Sometimes, it is used to quantify the signal in the leakage. On the
other hand, noise is quantified by V ar(Lt − E[Lt|P ]).

3. Squared Mean Leakage (SML):

SMLt = E2[Lt]

It has been included to study the behavior of the other metrics in relation
with the mean leakage.

Figure 1(a) shows that as the cycle begins, with the mean leakage (SML),
SCDP also rises rapidly, remains almost constant for about 150 sample points
and then it decreases slowly. The slight fluctuations in the curve are due to the
presence of small amount of noise after averaging a limited number of power
traces. This leads us to the following observation:

Observation 1. The deterministic part of the leakages at a large number of
sample points show high linear dependencies with the correct predicted leakage P .
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(b) Plots of VDL and SML

Fig. 1. Plots of the chosen metrics in the last round of unprotected implementation
of AES

Various profiling attacks also take advantage of the data dependency of mul-
tiple leakage points. However, they are more generic since they can consider
different prediction model for different sample points at the cost of expensive
profiling step.

From Fig. 1(b), we see that VDL almost superimposes on SML i.e. VDL is
highly correlated to SML. This leads us to the following observation:

Observation 2. The variation in the deterministic part of the leakages is cor-
related to the square of the mean leakages.

In other words, the second observation states that the magnitude of the variation
at a sample point due to target S is proportional to the mean value (strength)
of the leakage at that sample point. It should be noted that a similar kind
of observation can be found in Chap. 4.3.2 of [13] for the leakages of a micro-
controller. The authors have also suggested several trace compression techniques
based on the observation and have shown their usefulness to attack software
implementation of AES. However, to the best of the authors’ knowledge, no
attempt has been made to incorporate these observations into the conventional
leakage model. In the next section, we extend the conventional leakage model by
using these two observations.

4 Introducing Multivariate Leakage Model

In [12], Kocher et al. mentioned the possibility of using the leakages of multiple
sample points by the attacker in higher-order DPA. Later in [14], Messerges for-
malized the notion of nth-order DPA as an attack mechanism which exploits the
leakages of n different sample points corresponding to n different intermediate
values calculated during the execution of the algorithm. In this paper, we are
interested in n-variate DPA which can exploit the leakages of n different sam-
ple points related to a single intermediate value calculated during the execution
of the algorithm. Motivated by the observations of Sect. 3, we define n-variate
leakage model as follows.
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Definition 1. In n-variate leakage model, leakages of n distinct sample
points are assumed to be dependent upon a single intermediate value calculated
during the execution of an algorithm.

Note that since Corr(E[Lt|P ], P ) ≈ 1 for t0 ≤ t < t0+τ , in a noise-free envi-
ronment, all the leakage samples in the window contain almost same information
about the target S (as far as the linear part of the leakage is considered). Thus,
combining those would not provide any advantage. But, in practical scenarios
i.e. in the presence of noise, combining the information from multiple leakage
samples would actually help to reduce the noise.

4.1 A Multivariate Leakage Model for Iterative Hardware
Architecture on FPGA Platform

Observations 1 and 2 immediately extend the conventional leakage model given
by Eq. (3), into the following multivariate leakage model:

Lt = at · Ψ(S) + Nt

= at · P + Nt, t0 ≤ t < t0 + τ (4)

where at ∈ R and the random vector {Nt0 , · · · , Nt0+τ−1} follows a multivariate
Gaussian distribution with zero mean vector. It should be noted that the linear
relation in Eq. (4) is a consequence of Observation 1 while Observation 2 enforces
mean vector of the multivariate Gaussian distribution to be a zero vector. In a
parallel iterative hardware architecture, a single round consists of several parallel
S-boxes and the attacker targets only a part of it (usually a single S-box). Thus,
in addition to the predicted leakage P due to the computation of the target
S = Fk∗(X), leakage due to the computation of the other parallel bits adds
to it. This is known as algorithmic noise and we denote it by U . It should be
noted that for a fully serialized architecture, U takes the value zero. Leakages
due to the key bits and the control bits is denoted by c. Since key scheduling
and the controlling operations are fixed for a fixed round in all the encryptions,
c is constant for all the inputs.

Thus, we can adopt Eq. (4) to incorporate these new variables as follows:

Lt = at · (P + U + c) + Nt, t0 ≤ t < t0 + τ (5)
= at · (I + c) + Nt (6)

where I = P +U . We are interested in the leakages of the above window namely
{t0, t0 + 1, · · · , t0 + τ − 1} that can be roughly determined by the clock cycle
in which the target operation is being performed (see Sect. 6.3). We denote this
time span by {0, 1, · · · , τ −1} and in the rest of the paper, power trace is referred
by the sample points of this time span only.

Next section demonstrates how this model can be useful for predicting the
relative SNR of each sample point of a power trace in low SNR scenarios.
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5 Application of the Multivariate Leakage Model to
Estimate the SNR of the Sample Points

Mangard et al. quantifies the information leakage for each sample point of a
trace using signal-to-noise ratio (SNR) [13]. In our context, it can be defined as

SNRt =
V ar(E[Lt|I])

V ar(Lt − E[Lt|I])
(7)

Here, V ar(E[Lt|I]) quantifies the signal part of the leakage and V ar(Lt −
E[Lt|I]) quantifies the electronic noise.

There are several existing techniques to compute the SNR of the sample
points. They are mostly used to compress the traces in profiling attacks. But,
most of them such as sosd, sost [9] assume the key to be known. Other techniques
like PCA perform sub-optimally in the presence of high noise [4]. However, the
multivariate leakage model provides a way to estimate the relative SNR (i.e.
SNR of a sample point with respect to the SNR of the other sample points
instead of the absolute value of the SNR) of each sample point without the
knowledge of the secret key, hence, makes it applicable to non-profiling setup
also. Let α(t), μ2

L(t) and σ2
L(t) be the functions over time such that α(t) = SNRt,

μ2
L(t) = SMLt = E2[Lt] and σ2

L(t) = V ar(Lt). Then, the multivariate leakage
model given in Eq. (6) leads us to Proposition 1.

Proposition 1. Suppose that the power traces are following the multivariate
leakage model described in Eq. (6). If the variance of the electronic noise at each
sample point is significantly higher than the signal variance i.e. V ar(E[Lt|I]) �
V ar(Lt − E[Lt|I]) for 0 ≤ t < τ , then the SNR of a sample point t, α(t) is
proportional to Squared Mean to Variance Ratio (SMVR) μ2

L(t)

σ2
L(t)

.

Proof. By taking the expectation of both sides of Eq. (6), we get

E[Lt] = at · (E[I] + c)

or, at =
E[Lt]

E[I] + c
(8)

From the definition of SNR in Eq. (7), we get

α(t) =
V ar(E[Lt|I])

V ar(Lt−E[Lt|I]) ,

=
V ar(at·(I+E[U ]+c))

V ar(Lt)−V ar(E[Lt|I]) , from Eq. (5) and independent
noise assumption

≈ V ar(atI)
V ar(Lt)

, since V ar(E[Lt|I]) �
V ar(Lt −E[Lt|I]) < V ar(Lt)

=
a2

t V ar(I)
V ar(Lt)

,
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=
E2[Lt]V ar(I)

(E[I]+c)2V ar(Lt)
, from Eq. (8)

=
μ2

L(t)
σ2

L(t) × V ar(I)
(E[I]+c)2 from the definition of μ2

L(t)
and σ2

L(t) �

It should be noted that both μL(t) and σL(t) can be computed without
knowing the correct key. Thus, Proposition 1 can be used to determine the
relative SNR of a sample point in the presence of high noise. Next, we will see
how it can be useful for designing multivariate distinguishers in non-profiling
DPA attacks.

6 Designing New Multivariate Distinguishers

The performances of many univariate distinguishers including CPA and classical
DPA are susceptible to the level of SNR. Their performances get better at a
sample point with higher SNR and become worse at a sample point with lower
SNR [13]. We can adopt a univariate distinguisher for multivariate DPA by
applying the univariate distinguisher on each sample point of the power traces
separately and combining the result of each sample point using a second level
distinguisher according to their relative SNR.

To elaborate the above approach, let us consider D to be a univariate distin-
guisher and we apply it to each sample point t, 0 ≤ t < τ , of the power traces
independently. At the end, D outputs τ distinguishing vectors {D(t)}τ−1

t=0 where
each D(t) is a vector of |K| elements i.e. D(t) = {dk(t)}k∈K. Thus, the vector
{dk(0), · · · , dk(τ −1)} represents the distinguishing values for the key hypothesis
k at all the τ sample points. Since the correct key hypothesis k∗ can compute the
target S correctly, the distinguishing values for the correct key at time t, dk∗(t)
depends on the SNR at t, and thus on SMVR μ2

L(t)/σ2
L(t) (thanks to Propo-

sition 1). In other words, the vector {dk∗(0), · · · , dk∗(τ − 1)} will be strongly
‘correlated’ to the SMVR vector {μ2

L(0)

σ2
L(0)

, · · · ,
μ2
L(τ−1)

σ2
L(τ−1)

}. On the other hand, since
a wrong key hypothesis k �= k∗ wrongly guesses the value of S i.e. S �= Fk(X),
there is almost no correlation between {dk(0), · · · , dk(τ − 1)} and the SMVR
vector. Thus, we can deploy a second level distinguisher D̃ to detect the correla-
tion between the vectors {μ2

L(t)

σ2
L(t)

}τ−1
t=0 and {dk(t)}τ−1

t=0 for all key hypothesis k ∈ K
and return k as the correct key for which the correlation is maximum.

To summarise, a univariate distinguisher D can be extended for multivariate
DPA as follows:

1. Apply the distinguisher D for each sample point t, 0 ≤ t < τ , of the
power traces independently. At the end, D outputs τ distinguishing vectors
{D(t)}τ−1

t=0 where each D(t) is a vector of |K| elements i.e. D(t) = {dk(t)}k∈K.
2. Construct |K| vectors {dk(t)}τ−1

t=0 for each key hypothesis k ∈ K. And also
construct the SMVR vector {μ2

L(t)

σ2
L(t)

}τ−1
t=0 .



334 S. Hajra and D. Mukhopadhyay

3. Employ a second univariate distinguisher D̃ which outputs a distinguishing
vector D̃ = {d̃k}k∈K where d̃k = D̃({dk(t)}τ−1

t=0 , {μ2
L(t)

σ2
L(t)

}τ−1
t=0 ).

4. Return k as the correct key for which d̃k is maximum.

We will now explore this approach in several contexts in the following sections.

6.1 Extending CPA for Multivariate Leakage Model

In order to construct an effective multivariate distinguisher, we choose CPA as
the first level univariate distinguisher since it is well accepted as one of the best
performer when the hardware leakage follows a standard leakage model [3,20]. To
choose a proper second level distinguisher, we compute the Pearson correlation
ρk∗(t) between the leakage at sample point t and the predicted leakage for the
correct key hypothesis P = Ψ(S) = Ψ(Fk∗(X)) using Eq. (5).

ρk∗(t) =
Cov(Lt, P )√

V ar(Lt)V ar(P )

=
Cov(at(P + U + c) + Nt, P )√

V ar(Lt)V ar(P )

=
atCov(P, P )√
V ar(Lt)V ar(P )

=
atV ar(P )√

V ar(Lt)V ar(P )

=
μL(t)
σL(t)

× σP

E[I] + c
, from Eq. (8) (9)

According to Eq. (9), not only the magnitude of ρk∗(t) is proportional to μL(t)
σL(t)

but the sign of ρk∗(t) is also determined by the sign of μL(t). Moreover, the
relation no more depends on the high noise condition as in Proposition 1, thus,
is applicable to power traces with all SNR levels.

Figure 2 plots the mean leakage μL(t)
σL(t) and the correlation ρk∗(t) between

leakage Lt and the correct key guess for the first S-box at 600 sample points
during the last round of the encryptions. To generate it, we have used 32,000
traces collected from parallel iterative implementation of AES on SASEBO-GII
(please refer to Appendix A). The figure clearly indicates that the correlation
curve has high positive correlation with the mean leakage curve.

To exploit the above knowledge of the relation between ρk∗(t) and μL(t)
σL(t) , we

propose the following distinguisher.

Scalar Product. It takes the scalar product of the vectors {ρk(t)}τ−1
t=0 and

{m(t)}τ−1
t=0 i.e. d̃k =

∑τ−1
t=0 ρk(t)m(t) where m(t) = sgn(μL(t))μ2

L(t)/σ2
L(t).

Here function sgn(μL(t)) takes the value 1 if μL(t) ≥ 0 and −1 otherwise.

In other words, the distinguisher takes the sum of the outputs of CPA at all the
sample points weighted by the ‘signed’ SMVR of each sample point.
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Fig. 2. Plots of the mean leakage normalised by the standard deviation and correlation
of the correct key during the last round register update during AES encryption.

6.2 Improving the Performance of PCA for Low SNR Traces

PCA is a well known statistical technique for dimensionality reduction based
on variations of data. It converts a set of interrelated observations (variables)
into a set of new variables called principle components (PCs) such that the
PCs are uncorrelated to each other and they are ordered decreasingly by their
variance. Thus, first few PCs contain most of the variations in data while the
later components capture a small amount of variations which are assumed to be
caused by noise. Thus, the removal of the later components (which have lower
variance) while preserving the first few components is a common noise reduction
technique.

PCA was first introduced in the context of SCA by Archambeau et al. [1]
where they used it to reduce the dimensions of the traces for Template attack.
Later, in [17], Souissi et al. introduced it as a non-profiling distinguisher and
in [4], Batina et al. introduced it as a pre-processing technique. For low noise
traces, the PCA on the power traces (represented as matrix with rows contain-
ing different traces and columns containing different sample points) projects
the variations caused by the target S into the first PC (since it is the largest
component). Thus, univariate DPA on the first PC yields better result.

However in [4], Batina et al. also mentioned the limitation of PCA in high
noise scenarios. Since, in high noise scenarios, the larger part of the variations
is caused by the noise rather than the signal, the SNR’s of the first few PCs are
in fact quite low. Thus, univariate distinguishers on the first PC perform badly.
Moreover, it is difficult to identify the sample points with higher SNR. However,
based on some empirical observations, [4] has suggested a new distinguisher,
namely CPA Abs-Avg distinguisher, which takes the average of the absolute
value of the correlations of each sample points to compute the final output.

We suggest to use the multivariate model to find the principal components
(PCs) having more information. Since PCA is a linear transformation, the prin-
cipal component decomposition of the power trace matrix O = {oi,j}(q−1,τ−1)

(i,j)=(0,0)
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(recall that, oi,j stands for the leakage of jth sample point of the ith trace) is
given by the q×τ matrix Õ = OW where W is a τ ×τ matrix. The jth column of
W represents the eigenvector corresponding to the jth largest eigenvalue of the
covariance matrix of O. Each column of Õ represents a single PC and each row
represents an observation or a trace. Due to the linearity of the transformation,
the principal component decomposition traces Õ also follows the multivariate
model given by Eqs. (5) and (6). Thus, we can apply Proposition 1 on Õ. Figure 3
validates Eq. (9) (a consequence of the multivariate leakage model) by plotting
the correlation of the correct key and the mean leakage normalised by the stan-
dard deviation at each sample points of the principal component decomposition
of the set T 8

sim. A consequence of this observation is that Scalar Product can be
directly applied to the principal component decomposition of the power traces.
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Fig. 3. Plots of the mean leakage normalised by the standard deviation and the corre-
lation of the correct key at the first 200 PCs of the principal component decomposition
of the set T 8

sim.

It should be noted that most of the tools like MATLABR© removes the mean
of each sample point of the original traces as the first step of the transforma-
tion. Thus, we computed the mean vector μL = {μL(t)}τ−1

t=0 of the observation
matrix O before applying the transformation. And after the transformation, we
multiplied μL by the eigenvector matrix W obtained from the MATLABR© func-
tion ‘princomp’ to get μL̃ = μLW, the mean vector of the principal component
decomposition traces.

6.3 Determination of Window

For an iterative hardware architecture, the window can be set to the whole period
of the clock cycle in which the target operation is being performed. However, to
reduce the computational complexity resulting from performing computations
on all points in the clock period, other measures can be taken based on SMVR.
For our experiments, we have roughly chosen the window from the beginning
of the target clock cycle up to a sample point for which the SMVR is slightly
greater than zero.
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7 Attacks on Simulated Traces with Different SNR Levels

To test the effectiveness of the new approaches, we collected a set of 20,000 power
traces: Torg of the encryptions of AES implemented on the setup described in
Appendix A using parallel iterative hardware architecture. We then removed
the noises of all the traces (using the correct key) and created a set of noise-less
traces: Tnl. Next, we created 4 sets of simulated traces each having 20,000 traces:
T 1

sim, T 2
sim, T 4

sim and T 8
sim by adding a Gaussian noise to each sample point of

Tnl having standard deviation 1, 2, 4 and 8 times the standard deviation of the
noise at the same sample point of Torg respectively. It should be noted that the
average noise variance of T 2

sim, T 4
sim and T 8

sim are respectively 22, 42 and 82

times the average noise variance of T 1
sim while all the four sets are having same

signal variances. Thus, average SNR of T 2
sim, T 4

sim and T 8
sim are 1/22, 1/42 and

1/82 times the SNR of T 1
sim respectively.

We applied Scalar Product, classical CPA [5] and CPA Abs-Avg [4] to attack
the above 4 sets of simulated traces. We also applied the above three distinguish-
ers on the principal component decomposition of the four sets by transforming
them using MATLABR© function ‘princomp’ (refer to Sect. 6.2). For CPA on PCs,
we tested both CPA on first PC and standard multivariate CPA on all the PCs.
However, CPA on first PC yields better results. Profiling phase of Stochastic
attack also determines the correct key as a byproduct of estimating the deter-
ministic leakages. We also implemented that as a distinguisher. In the rest of the
paper, we refer to this distinguisher as Stochastic distinguisher.

To compare the performances of the distinguishers, we have used average
guessing entropy as a metric. The guessing entropy [18] of a distinguisher is
given by the average rank of the correct key. Thus, it decreases as the attack
becomes better and reaches one if it can find the correct key in all the trials.
Average guessing entropy is computed by taking the average of the guessing
entropy’s of all the 16 S-boxes. To compute the guessing entropy of the above
distinguishers, we divided each set of 20,000 simulated traces among four groups
of 5,000 traces and applied the distinguishers on each group separately and took
the average of their results.

Average guessing entropy of the attacks on the four sets of simulated
traces are shown in Fig. 4. From this figure, we can summarise the following
observations:

1. Scalar Product performs far better than the other distinguishers on both
the original traces and the principal component decomposition of the traces.
Moreover, the differences of the performances are more if the average noise
level of the trace-set is more.

2. When the average noise level is comparatively low i.e. for the trace-sets T 1
sim

and T 2
sim, CPA on first PC performs almost equally well to Scalar Product.

This is due to the fact that most of the data dependent variations (signal
part of the leakage) have been projected to the first PC by PCA. Thus Scalar
Product does not get any extra advantage over CPA on first PC by extracting
information from multiple sample points.
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(a) Attack Results on the Set T 1
sim.
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(b) Attack Results on the Set T 2
sim.
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(c) Attack Results on the Set T 4
sim.
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(d) Attack Results on the Set T 8
sim.

Fig. 4. Plots of the average guessing entropy of various distinguishers with the increase
in the number of power traces on the four trace-sets having different average SNR.

3. The average noise levels of the trace-sets T 4
sim and T 8

sim are high enough to
make PCA unable to project all the data dependent variations into the first
PC. Rather, in Fig. 3, we can see that data gets correlated to multiple sample
points of the principal component decomposition traces of T 8

sim. As a result,
Scalar Product on PCs performs far better than CPA on first PC.

4. Scalar Product on the original traces and Scalar Product on PCs perform
similarly though the later requires PCA as a pre-processing step which is
computationally intensive.

5. The performance of CPA Abs-Avg on the principal component decomposition
degrades for high SNR traces also. This is due to the fact that for high
SNR traces most of the data variations are captured by the first few PCs
only. Thus, CPA Abs-Avg reduces the effective SNR of the first few PCs by
averaging them with rest of the low SNR sample points.

6. Though the non-profiling Stochastic attack performs quite well for T 1
sim, it

performs badly for other sets of traces.
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8 Attacks on Real Traces

To verify the effectiveness of the proposed distinguisher on real traces, we col-
lected 20 sets of 2,000 traces of an AES implementation on SASEBO-GII (please
refer to Appendix A). The implementation is based on parallel iterative archi-
tecture. The S-boxes are implemented using Xilinx device primitive: distributed
ROM. Using our setup, the maximum SNR of the obtained power traces is close
to 0.42 which is quite high.

Average Guessing entropy’s of Scalar Product along with classical CPA, CPA
Abs-Avg and non-profiling Stochastic attacks are shown in Fig. 5. It should be
noted that the obtained power traces contain some correlated noise (noises in
multiple sample points are correlated among themselves). As a result, the third
PC instead of the first PC shows the maximum SNR in the principal component
decomposition of the traces. Thus, CPA on PCs performs better than CPA on
first PC and is included in the figure. Due to the computational limitation,
Stochastic attack is performed on 160 sample points while other attacks are
performed on 300 sample points.
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Fig. 5. Average Guessing Entropy of various attacks on the real traces of a parallel
iterative implementation of AES on Xilinx FPGA device Virtex-5.

It is clear from Fig. 5 that Scalar Product is performing better than all the
other attacks. It takes about 400 traces to bring down the average guessing entropy
below two, while all other attacks take more than 1,000 traces for the same.

9 Conclusion

In this paper, we have introduced a multivariate leakage model for iterative
hardware architecture on FPGA device Virtex-5. The introduced model allows
an attacker to predict the relative SNR of each sample point of the power traces
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without even knowing the correct key. We have further discussed how existing
univariate distinguishers can be strengthened by extending it to multivariate
distinguishers with the help of the relative SNR of the sample points. We have
also introduced and empirically verified one multivariate distinguisher namely
Scalar Product using both simulated power traces and real power traces. The
results show that Scalar Product performs far better than the classical CPA as
well as the recently introduced CPA Abs-Avg Distinguisher on low SNR scenarios
which are more likely in future devices.

Several advanced DSP techniques like Wavelet transforms have been recently
introduced in side-channel literature. However, optimal application of such tech-
niques either requires the knowledge of the correct key or depends on some
heuristically chosen parameters such as ‘scale level’. It can be an interesting
study to see the applicability of the proposed multivariate leakage model in
those situations.

The multivariate leakage model is validated on FPGA device Virtex-V. How-
ever, similar kinds of observations have been noticed in the literature on other
platforms like micro-controllers. Hence, in future, exploring approaches based on
multivariate leakage model on such other platforms could be worthy.

Acknowledgements. The work described in this paper has been supported in part
by Department of Information Technology, India. We also thank Prof. Sylvain Guilley
of TELECOM-ParisTech, France for his insightful discussion and suggestion on the
work.

A Experimental Setup and Pre-processing

For all the experiments, we have used standard side-channel evaluation board
SASEBO-GII [11]. It consists of two FPGA device Spartan-3A XC3S400A and
Virtex-5 xc5vlx50. Spartan-3A acts as the control FPGA where as Virtex-5
contains the target cryptographic implementation. The cryptographic FPGA
is driven by a clock frequency of 2 MHz. During the encryption process, voltage
drops across VCC and GND of Virtex-5 are captured by Tektronix MSO 4034B
Oscilloscope at the rate of 2.5 GS/s i.e. 1, 250 samples per clock period.

The traces acquired using the above setup are already horizontally aligned.
However, they are not vertically aligned. The vertical alignment of the traces
are performed by subtracting the DC bias from each sample point of the trace.
The DC bias of each trace is computed by averaging the leakages of a window
taken from a region when no computation is going on. This step is also necessary
since the distinguisher Scalar Product is sensitive to the absolute value of mean
leakages.
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Abstract. SM2 digital signature scheme, which is part of the Chinese
public key cryptosystem standard SM2 issued by Chinese State Cryptog-
raphy Administration, is based on the elliptic curve discrete logarithm
problem. Since SM2 was made public, very few cryptanalytic results
have been found in the literatures. In this paper, we discuss the partially
known nonces attack against SM2. In our experiments, the private key
can be recovered, given 100 signatures with 3 bits of nonces known for
256-bit SM2. We also provide a byte-fault attack on SM2 when a byte
of random fault is injected on the secret key during the signing process.

Keywords: Digital signature · SM2 · Cryptanalysis · Nonces leakage ·
Fault injection attack

1 Introduction

SM2 is the public-key cryptosystem based on elliptic curve published by Chinese
State Cryptography Administration as a standard for commercial applications
in 2010 [31]. It consists digital signature algorithm, key exchange protocol and
public key encryption algorithm. Since SM2 was recently made public and the
document is in Chinese1, very few cryptanalytic results [38] on it could be found
in the public literatures. However, being a national standard, it should be ana-
lyzed into more details.

In this paper, we focus on the SM2 digital signature algorithm2. Digital sig-
nature is first proposed by Diffie and Hellman [12], which is used to demonstrate
the authenticity and integrity of the message. A valid digital signature of a mes-
sage that only a single entity is able to generate, can be verified by anybody.

The first official digital signature standard is the DSA signature scheme [27]
that was proposed in 1991 by U.S. National Institute of Standards and Tech-
nology (NIST). Its security relies on the discrete logarithm problem (DLP) over
1 An informal English translation can be found in [36].
2 In the rest of the paper, when we say SM2, we refer to SM2 digital signature

algorithm.
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finite fields. The elliptic curve version of DSA is ECDSA. Elliptic curves were first
employed in cryptography by Miller [24] and Koblitz [21] independently. Com-
pared with the widely used public-key schemes that based on integer factoring or
computing discrete logarithms over finite fields, the elliptic curve cryptosystems
achieve the same security level with significantly smaller system parameters.
Similar to ECDSA, the security of SM2 relies on the elliptic curve discrete log-
arithm problem (ECDLP); however, the signature of SM2 employs a different
signing procedure and different parameters.

Although the DLP and ECDLP are hard, the adversary in practice may
bypass the mathematical hard problems by using the physical obtained infor-
mation, i.e., he may mount side-channel attacks (SCA) and/or fault injection
attacks (FIA) on the signing process. For example, during the signing proce-
dure of DSA (ECDSA), one can observe the power/EM leakage of the nonce
k. If the device running the cryptographic algorithms is not well protected, k
can be recovered bit by bit using simple power analysis (SPA) [22]. Once k is
disclosed, the private key can be recovered. Actually, the adversary only needs
several bits of k: Howgrave-Graham and Smart [18] gave several heuristic lattice
attacks on DSA to recover the secret key provided that for a reasonable num-
ber of signatures, a small fraction of the corresponding nonce is revealed. Later,
Nguyen and Shparlinski improved the analysis in [28] and showed that there is
a provable polynomial-time attack against DSA when the nonces are partially
known. In their experiments, they can recover the 160-bit DSA private key by 3
known bits of each nonce from 100 signatures. In [23], this result is improved to
2-bit nonce leakage. These attacks can be generalized to the ECDSA case [29].
Bleichenbacher [4,5] and Mukder etc. [25] gave different attacks against nonces
leaking which need many more signatures. However, they expected that their
attacks can succeed with fewer bits’ nonce leakage.

FIA is also used to evaluate the security of DSA and ECDSA. In this model,
faults occur when the device performs the cryptographic operations, e.g., the
attacker can use clock glitch, laser, etc. to inject the faults, then he tries to
obtain the information about the secret key from these faults. The first fault
attack on DLP-based signature schemes including DSA was given in 1997 [1].
In this attack, bit-flip errors were induced on random bits of the private key.
In 2000, Dottax extended this attack to ECDSA and other signature schemes
[13]. In 2004, Giraud and Kundsen [16] considered the more practical model —
byte errors instead of bit errors. The improved analysis of Giraud and Kundsen’s
attack was presented in [17]. In [30], Nikodem discussed the immunity of DSA
to such type of fault attack. By inducing faults on the nonces k [26], the public
parameter g [33] and the size of the field p of DSA [2], the attacker can obtain
part of the nonces k; then by invoking Nguyen and Sparlinski’s technique [28] of
constructing the HNP problem, the secret key can be recovered.

Our contributions. As mentioned, SM2 is the elliptic curve digital signa-
ture algorithm, thus probably the attacks on ECDSA can also be applied to
SM2. However, no public literatures about the security of SM2 against partially-
known nonces attack or FIA are found. In this paper, we deal with these issues.
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Our discussion shows that the leak of nonces is very dangerous for SM2 as well.
For a 256-bit SM2, given 100 signatures with 3 least significant bits of nonces
known, we can recover the private key in a personal laptop within several hours.
We also provide a byte-fault attack on SM2 when a byte of random fault is
induced on the secret key during the signing procedure.

The reminder of this paper is organized as follows: Sect. 2 introduces SM2
signature scheme and some background about lattices. In Sect. 3, we describe
the attack on SM2 with partially known nonces. Section 4 discusses the fault
attack on SM2. Conclusions are given in Sect. 5.

2 Background

2.1 SM2 Digital Signature

Elliptic curve cryptography is defined over finite fields. In this paper, we focus
on prime fields Fp with characteristic p > 3. Such a curve is the set of points
(x, y) satisfying an equation of the following form:

y2 = x3 + ax + b mod p,

where a, b ∈ Fp satisfy 4a3 +27b2 �= 0 mod p. To form a group, an extra infinity
point O is included in this set. So, the elliptic curve E(Fp) is defined as

E(Fp) = {P = (x, y)|y2 = x3 + ax + b mod p. x, y ∈ Fp} ∪ {O}.

This set of points form a group under a group operation which is denoted as
“+”. The detailed definition of this “+” operation and some basic results of the
elliptic curves are provided in appendix.

SM2 digital signature is the elliptic curve digital signature algorithm. Its
security is based on the intractability of the elliptic curve discrete logarithm
problem. The SM2 digital signature algorithm is as follows:

Key Generation: Choose an elliptic curve E : y2 = x3 + ax + b over Fp where
p is a prime. Select a G ∈ E(Fp) = (xG, yG) to be a fixed point of order n,
where n is a prime. That is nG = O. For a user A, the private key is dA. The
corresponding public key is PA = dAG.

Signature Generation

1. Compute w = h(M), here M = ZA ‖ m, m is the message, ZA is the hash
value about the user, h is the hash algorithm SM3.

2. Randomly choose an integer k ∈ [1, n − 1]. k is called a nonce.
3. Calculate (x1, y1) = kG.
4. Compute r = w + x1 mod n. If r = 0 or r + k = n, go to step 2.
5. Compute s = ((1 + dA)−1(k − rdA)) mod n. If s = 0, go to step 2.
6. Return (r, s) as the signature.
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Signature Verification: A verifier receives (m′, (r′, s′)).

1. If r′ /∈ [1, n − 1] or s′ /∈ [1, n − 1], return FALSE.
2. Compute M ′ = ZA ‖ m′, w′ = h(M ′).
3. Compute t = r′ + s′ mod n. If t = 0, return FALSE.
4. Compute (x′

1, y
′
1) = s′G + tPA.

5. Compute R = w′ + x′
1 mod n. If R = r′, return TRUE; else return FALSE.

2.2 Lattices

Our attack against SM2 digital signature algorithm with partially known nonces
is a lattice-based attack. Hence, we introduce some related results on lattice in
this subsection.

A lattice is a discrete subgroup of R
m whose elements are integer linear

combinations of n (n ≤ m) linearly independent vectors. Shortest vector problem
(SVP) and closest vector problem (CVP) are two classical hard problems in
computer science.

– Shortest Vector Problem (SVP): Given a basis of a lattice L, find a
shortest nonzero vector in L.

– Closest Vector Problem (CVP): Given a basis of a lattice L and a target
vector t ∈ R

m, find the lattice vector closest to t. When the distance is small,
the problem is called Bounded Distance Decoding (BDD) problem.

In cryptanalysis, attacks against many non-lattice based schemes have been
reduced to solving SVP or CVP by constructing proper lattice since 1980s. In
theory, for an n-dimensional lattice, there exist polynomial-time algorithms for
both SVP and CVP with approximation factor 2γn log log n/ log n [14,35] where γ is
any constant. When the approximation factor decreases to nc, the best algorithm
needs 2O(n) [14] operations. There are many deterministic enumeration algorithms
[19,32,34], with computational time ranging from 2O(n2) to 2O(n log n) and with
polynomial space for exact SVP and CVP. Usually, in practice, these algorithms
behave better than their proved worst-case theoretical bounds. Hence, researchers
can obtain the shortest (closest) vector of lattices with dimensions not too large
or with special structures. The best algorithm known in practice is the improved
version of Schnorr-Euchner’s BKZ [34] algorithm proposed by Chen and Nguyen
[10] in 2011.

In practice, embedding technique [20] is widely used to reduce CVP to SVP.
Given a lattice L with basis B = [b1,b2, · · · ,bm], and a target vector t ∈
span(B), the embedding method is to construct a new lattice L′ with basis
B′ = [b′

1,b
′
2, · · · ,b′

m+1]:

b′
1 = (b11, b12, . . . , b1m, 0)
... (1)

b′
m = (bm1, bm2, . . . , bmm, 0)

b′
m+1 = (t1, t2, . . . , tm, β),
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where β is a parameter to be determined. If the distance between the target
vector and the lattice is small enough, finding the shortest vector in this embed-
ding lattice implies solving the CVP instance. In fact, we expect that the vector
(u − t,−β) to be the shortest vector in the embedding lattice, where u is the
lattice vector closest to t.

3 Attacking SM2 with Partially Known Nonces

Either the device is not well protected or the SPA countermeasure is not correctly
implemented, the scalar multiplication leaks information about the nonce k. In
this section, we will discuss the attack on SM2 digital signature scheme, suppose
that for a reasonable number of signatures, a small fraction of the corresponding
nonce is revealed.

Each SM2 signature generation requires the use of a nonce k modulo n, where
n is usually a 256-bit prime number. We will first show that disclosing the full
nonce k of a single (message, signature) pair allows to recover the SM2 secret
key in polynomial time.

In fact, since s = ((1 + dA)−1(k − rdA)) mod n, we deduce that dA =
(k − s)(s + r)−1 mod n. Note that s + r �= 0 mod n, otherwise the signature is
not valid because the verification process will return FALSE in step 3.

This section shows that it is also very dangerous when only several bits of
the nonces are known. A polynomial time attack will be given. As will be shown
in Sect. 3.2, the attack on SM2 with partially known nonces can be reduced to a
hidden number problem. Consequently, we first recall the hidden number prob-
lem and related results in Sect. 3.1. Then, we give our attack and experimental
results in Sects. 3.2 and 3.3.

3.1 Hidden Number Problem (HNP)

The hidden number problem is first introduced by Boneh and Venkatesan [8,9].
For integer s and m ≥ 1, �s	m denotes the remainder of s on division by m. For
any real number z, let the symbol | · |n be |z|n = minb∈Z |z − bn|. APP�,n(m)
denotes any rational number r satisfying |m − r|n ≤ n

2�+1 . The HNP asks to
recover α ∈ Zq, given many approximations ui = APP�,n(αti) where each ti is
known and chosen uniformly at random in [1, n − 1], for 1 ≤ i ≤ d.

This HNP problem can be reduced to a BDD problem which is a special case
of closest vector problem. When we obtain d such ti, ui, the reduction to BDD
can be done as follows. One constructs the (d + 1)-dimensional lattice spanned
by the following row matrix:

⎛

⎜⎜⎜⎜⎜⎜⎝

n 0 · · · 0 0

0 n
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 n 0
t1 · · · · · · td

1
2l+1

⎞

⎟⎟⎟⎟⎟⎟⎠
(2)
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The target vector is u = (u1, u2, . . . , ud, 0). There exists a lattice vector h =
(αt1+nh1, . . . , αtd+nhd,

α
2�+1 ), such that ‖ h − u ‖≤ √

d + 1 n
2�+1 . Hence, finding

h discloses α.
To assess the hardness of solving BDD in this lattice, we need to consider

the distribution of the sequences ti.
The work of Nguyen and Shparlinski on DSA [28] shows that the distribution

of multiplier t(k,M) is not necessarily perfectly uniform. They use the definition
of �-homogeneously distributed modulo n to measure the distance between the
distribution of the sequences t(k,M) and the uniform distribution. The larger �
implies the distribution is farther from the uniform distribution. For the perfect
uniform distribution, � is zero. Combine the behaviour of lattice-based attacks,
the following lemma is proved.

Lemma 1 [28]. Let w > 0 be an arbitrary absolute constant. For a prime q,

define l = �w
(

log q log log log q
log log q

)1/2

 (resp. l = �log log q	) and d = �3 log q/l
(resp. �4 log q

log log q ). Let Γ be a Δ-homogeneously distributed modulo q sequence
of integer numbers. When Δ ≤ 2−l, there exists a probabilistic polynomial-time
algorithm (resp. a probabilistic algorithm which runs in time qO(1/ log log q)) such
that for any fixed integer α in the interval [0, q − 1], given as input a prime
q, d integers t1, t2, ..., td and d rationals ui = APPl,q(αti), i = 1, 2, ..., d, for
sufficiently large q, with probability higher than 1 − 1/q, it outputs α, where the
probability is taken over all t1, t2, ..., td chosen uniformly and independently at
random from the elements of Γ and all coin tosses of the algorithm.

If there is a CVP∞ oracle (the algorithm can output an exact CVP solution
in l∞ norm), they obtain a better result.

Lemma 2 [28]. Let η > 0 be fixed. For a prime q, define l = 1 + η and d =
� 8
3η−1 log q. Let Γ be a f(q)-homogeneously distributed modulo q sequence of

integer numbers where f(q) is any function with f(q) → 0 as q → ∞. There
exists a polynomial-time algorithm using a CVP∞ oracle such that for any fixed
integer α in the interval [0, q−1], given as input a prime q, d integers t1, t2, ..., td
and d rationals ui = APPl,q(αti), i = 1, 2, ..., d, for sufficiently large q, with
probability higher than 1 − 1/q, it outputs α, where the probability is taken over
all t1, t2, ..., td chosen uniformly and independently at random from the elements
of Γ .

3.2 Insecurity of SM2 with Partially Known Nonces

Based on the discussion of HNP, in this subsection, we consider how to reduce
the case of SM2 to an HNP problem.

If we know the l least significant bits of k, we have k = 2lb + a. Here a is
known and b ∈ [0, n/2l]. Now we connect the attack with partially known nonces
against SM2 and an HNP problem by the following formulas.
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Given the user A and the message m signed with the nonce k, then M =
ZA ‖ m. We have:

(1 + dA)s(k,M) = k − r(k,M)dA mod n.

This equation can be written as

2−l(s(k,M) + r(k,M))dA − 2−l(a − s(k,M)) = b mod n.

Here let t(k,M) = �2−l(s(k,M) + r(k,M))	n, u(k,M) = �2−l(a − s(k,M))	n.
Both t(k,M) and u(k,M) can be obtained easily by the known information.
Since b ∈ [0, n/2l], we get

0 ≤ �dAt(k,M) − u(k,M)	n ≤ n/2l, (3)

Furthermore,

0 ≤ |dAt(k,M) − u(k,M) − n

2l+1
|n ≤ n

2l+1
. (4)

By collecting d signatures with l least significant bits of the corresponding nonces
k, we can obtain d relations of (4). In this way, the problem of recovering dA is
reduced to an HNP problem.

Next, we consider the distribution of sequences t(k,M):

t(k,M) = 2−l(s(k,M) + r(k,M)) mod n

= 2−l(1 + dA)−1(k + r(k,M)) mod n

= 2−l(1 + dA)−1(k + x(kG) + h(M)) mod n

Here, x(kG) is the x-coordinate of kG and h(M) is a hash value in [0, n − 1]. In
the well-known random oracle model, it is assumed that hash functions behave
as random oracles, that is, the values of h(M) are independent and uniformly
distributed. {k + x(kG) mod n} can be seen as a random variable in [0, n − 1]
and is independent of h(M).

Now, let’s consider the following probabilistic model: ξ and η are two inde-
pendent random variables in [0, n−1], ξ is uniformly distributed. Let ς = c(ξ+η)
mod n, here c is an invertible constant modulo n. We discuss the distribution of
ς: in fact, for any u ∈ [0, n − 1], we have,

Pr(ς = u) = Pr(c(ξ + η) = u mod n) = Pr(ξ + η = c−1u mod n)

=
n−1∑

i=0

Pr(ξ = i mod n)Pr(η = c−1u − i mod n)

=
1
n

n−1∑

i=0

Pr(η = c−1u − i mod n)

=
1
n
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We remark that t(k,M) �= 0 mod n. Because in step 4 of the signing process,
when k + r = 0 mod n, we choose a new nonce k and recompute the signature.
Therefore, the sequences t(k,M) is uniformly distributed in [1, n − 1] under the
above assumption about the hash function. Note that the conditions r �= 0 and
s �= 0 will not affect the uniformity of t(k,M). As a result, both Lemma 1 and
Lemma 2 can be applied to SM2 with l least significant bits of nonces k known.

Lemma 1 invokes Schnorr’s algorithm [35] and Kannan’s algorithm [20] to
solve this BDD problem. More precisely, when about (log n)1/2 signatures with
about (log n)1/2 least significant bits of k known, the secret can be recovered in
polynomial time. When the number of disclosed bits of k decreases to log log q,
given about log q/ log log q signatures, a subexponential time algorithm is needed.
If there is an ideal oracle for CVP∞, the secret key can be revealed with only
2-bit leakage. We note that in Lemma 2, the assumption on the distribution of
Γ is very weak.

In practice, it has been widely reported that lattice algorithms behave better
than their proved worst-case theoretical bounds. So experiments are very crucial
to evaluate the efficiency of this attack. In next subsection, we will report our
experiments about the attack.

3.3 Experimental Results and Remarks

In this subsection, we summarize our experimental results on the attack in
Sect. 3.2. In practice, the embedding strategy [20] are widely used to solve BDD
problem. Recently, Liu and Nguyen [23] showed that any security estimate of
BDD-based cryptosystems must take the enumeration with extreme pruning
technique [15] into account. Therefore, we do experiments by these two meth-
ods. Our experiments are implemented in a computer with Intel Xeon E7330 at
2.40 GHz using one of the cores for one instance.

Our results show that, for 256-bit p and n, given the l = 3 least significant
bits of each one-time key for about 100 signatures, the enumeration with linear
pruning can recover the secret key with success probability about 0.22 within
several hours.

To verify our discussion in the previous subsection, we implement the SM2
signature algorithm to construct the corresponding HNP-lattice. According to
the SM2 document [31], we choose both p and n to be 256 bits. The test vector
(a, b, p, n, PA, dA) in [31] has been tested as well.

In fact, to avoid the fraction in computation and balance the values in coordi-
nates, one needs to modify the coefficients of the row matrix (2) by some scaling
factor. ⎛

⎜⎜⎜⎜⎜⎜⎝

1732 · 2l+1n 0 · · · 0 0

0 1732 · 2l+1n
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 1732 · 2l+1n 0

1732 · 2l+1t1 · · · · · · 1732 · 2l+1td 1000

⎞

⎟⎟⎟⎟⎟⎟⎠
(5)
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We invoke the BKZ algorithm in NTL library [37]. First, we try embedding
method with the last basis vector bd+2 = (1732 · (u12l+1 + n), 1732 · (u22l+1 +
n), . . . , 1732 · (ud2l+1 +n), 0, 1000n) in matrix (1) with m = d+1. For BKZ with
blocksize 20, l = 4, d = 100 case can be solved within several minutes. But it
fails for l = 3 even with BKZ30 reduction.

Then, we use enumeration algorithm with linear pruning in BKZ 20 basis.
The choice of radius determines the number of nodes in the enumeration tree
and the success probability. Take the set of parameters in SM2 document [31]
as an example. We list the data for different radius, corresponding estimations
of numbers of nodes and success probabilities in Table 1.

Table 1. Enumeration complexity

Radius 11.5 × 1080 10 × 1080 8 × 1080 7 × 1080 6.5 × 1080

No.of nodes 1.22 × 1025 1.3 × 1022 3.33 × 1015 3.95 × 1013 1.22 × 1011

Success Pro 0.925 0.853 0.628 0.389 0.22

The rate of enumeration is very close to 6.5 × 106 nodes per second. We do
enumeration for radius 6.5 × 1080. The average actual running time is about
18104.8 s per enumeration. Our experiments solved 21 out of 100 instances.

We do not claim this kind of pruning is optimal for this attack. Our exper-
iments only show that 100 signatures with 3 least significant bits of nonces
known is insecure. The implementation of BKZ developed by Chen and Nguyen
[10] achieves several exponential speedups compared to NTL’s implementation.
Therefore, if we invoke this stronger basis reduction algorithm, it may be possible
to solve l = 2 case.

Remark 1. As discussed in [28], this attack can be generalized to the case of
consecutive bits at other known position. If the known bits of nonces are the
most significant bits, similar attack exists. We note that there are two definitions
of most significant bits in [28]: the most significant usual bits and the most
significant modular bits. All the above analysis holds for both cases. The only
difference is that, we have to add one more bit in the case of the most significant
usual bits. For l consecutive bits in the middle position, twice as many bits are
required (See [28]).

In CHES 2013, Mukder etc. described a method to solve HNP using an
FFT based attack [25]. Their method is an improved version of Bleichenbacher’s
solution [4,5]. BKZ is invoked to collect data for FFT. They did experiments on
384-bit ECDSA and could recover the private key using a 5-bit nonce leak from
4000 signatures. Their attack can also be applied to the SM2-HNP instance.
They believed, although, this attack performs worse than standard lattice-based
attacks now, their technique will continue to scale with fewer bits, because it
can utilize many more signatures than that of the standard lattice attacks.
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4 Fault Injection Attack on SM2

Fault injection attack was first introduced in 1996 by Boneh, Demillo and Lipton
[7]. This type of attack is a serious threat for implementing cryptographic algo-
rithms in practice. Therefore, it is important to look into the security of SM2
against fault injection attacks. In this section, we provide a byte-fault attack
on SM2 when a byte of random fault is induced on the secret key during the
signature generation.

4.1 The Model of the Attack

Our fault attack induces a byte error on the private key before the step 5 of the
signature generation. Both the position and the value of this error are unknown.

Let dA be the secret key and d̃A be the corresponding faulty secret key.
di

A, d̃i
A denote the i-th byte of dA and d̃A, respectively. We assume a one-byte

fault induced on dA, which means the bytes of d̃A satisfying

d̃i0
A = e + di0

A (6)

d̃i
A = di

A i �= i0 (7)

Here di
A, d̃i

A ∈ {0, ..., 255} (i ∈ {0, 1, . . . , 31}) and e ∈ {−255, ..., 255} is the
random byte induced on the secret key dA during the signing process of SM2.
In fact, from Eq. (6), we have −di0

A ≤ e ≤ 255 − di0
A .

The faulty signature is (r, s̃) where s̃ = ((1 + d̃A)−1(k − rd̃A)) mod n.
Now, we show how to detect the value of e and its position i0. First, one

computes

H = s̃G + (s̃ + r)PA = s̃G + (s̃ + r)dAG

and

Ji,j = (s̃ + r)ei,jG

where ei,j = 28i + j with i ∈ {0, ..., 31} and j ∈ {0, ..., 255}.
Then we obtain

H + Ji,j = (s̃ + (s̃ + r)(dA + ei,j))G = (x+
i,j , y

+
i,j),

H − Ji,j = (s̃ + (s̃ + r)(dA − ei,j))G = (x−
i,j , y

−
i,j).

It is clear that if d̃A > dA, there exists an ei0,j0 satisfying d̃A = dA + ei0,j0 .
Otherwise, an ei0,j0 makes d̃A = dA − ei0,j0 hold. Therefore, by computing all
H ± Ji,j with i ∈ {0, ..., 31} and j ∈ {0, ..., 255}, we can find the correct e by
finding the Ji0,j0 such that either x+

i0,j0
= r−h(M) mod n or x−

i0,j0
= r−h(M)

mod n holds.
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Remark 2. In fact, the correct ei0,j0 satisfies one of the following equations:

s̃ + (s̃ + r)(dA + ei0,j0) = k mod n (8)
s̃ + (s̃ + r)(dA − ei0,j0) = k mod n (9)

We remark that, in very rare cases, there exists another ei1,j1 that makes either
x+

i1,j1
= r − h(M) mod n or x−

i1,j1
= r − h(M) mod n hold as well, which

happens when

s̃ + (s̃ + r)(dA + ei1,j1) = −k mod n, (10)
or s̃ + (s̃ + r)(dA − ei1,j1) = −k mod n. (11)

If this ei1,j1 exists, we can obtain dA directly from Eq. (8)–(11).

As long as the value of the error e is known, we can get information on the
i0-th byte of dA. More precisely, if there exist two error bytes e1, e2 with a large
enough difference, we can reduce the value of di0

A to very few choices. Once we
find a pair (e1, e2) s.t.

e2 − e1 ≥ 256 − x, (12)

from Eq. (6), we get

− ei ≤ di0
A ≤ 255 − ei, i = 1, 2. (13)

Combine equations (12) and (13), we deduce that −e1 ≤ di0
A ≤ x − e1 − 1.

In this way, we restrict di0
A to x values. By exhaustive search, a byte of dA is

recovered.
Since the error is induced randomly, by repeating this procedure, the other

bytes can be recovered similarly.

4.2 Analysis of the Attack

To estimate the complexity of this fault attack, we need to consider the number
of errors induced before we can restrict the byte of the private key in x values.

In [16], the authors prove the following lemma.

Lemma 3. For any 1 ≤ x ≤ 255 and any t ≥ 2, the probability of having
e2 − e1 ≥ 256 − x after t faulty signatures, is P (Tx ≤ t) = 1 − (x + 1)(256−x

256 )t +
x( 255−x

256 )t. Here for series (ei)i≥1, 0 ≤ ei ≤ 255, Tx = min{t ≥ 2|∃1 ≤ i, j ≤ t :
ei − ej ≥ 256 − x}. The expected waiting time is given by E[Tx] = 2x+1

x(x+1)256.

Applying this lemma to our 256-bit SM2 case, for x = 1, ..., 4, the expected
number of faulty signatures required are 12288, 6816, 4768 and 3680, respectively.
The corresponding maximum number of candidate private keys are 1, 232,332 ≈
250.7 and 432 = 264, respectively.

A more practical analysis of this value has been presented in [17]. They
discussed the expected number of guesses an attacker would have to conduct and
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obtain that the expected size of an exhaustive search is
∑N

s=1(
s
N )t, where t is the

number of faulty signatures. Applying this formula to SM2, we have N = 256.
Therefore, the expected number of guesses for private keys are 232,250.7 and 264,
the corresponding number of faulty signatures needed are 5648, 3290 and 2327,
respectively.

4.3 Countermeasure

A trivial countermeasure to the previous attack is verifying the signature, i.e.,
one executes the signature verification procedure. If the result of the verification
is true, then one concludes that the signature is correct and outputs it; other-
wise, nothing will be output. However, this countermeasure is vulnerable to a
second order fault injection: The adversary can inject another fault to bypass the
conditional operation; thus the faulty signature will still be output. Therefore,
a countermeasure without conditional operations is a better choice.

This subsection proposes a modified version of SM2 as a countermeasure.
Compared with the original version, any induced error on the private key is
spread during the signing process. If no error is induced, the signature of the
modified version is the same as the standard SM2. Otherwise, the diffusion of
the error makes it difficult to find the useful information about the private key.

The modified SM2 signature generation is as follows:

1. Compute w = h(M), here M = ZA ‖ m, m is the message, ZA is the hash
value about the user, h is the hash algorithm SM3.

2. Randomly choose a nonce k ∈ [1, n − 1].
3. Calculate (x1, y1) = kG.
4. Compute r = w + x1 mod n. If r = 0 or r + k = n, go to step 2.
5. Compute v = k + dAr mod n.
6. Compute T = x(vG − rPA) − (r − h(M)) mod n.
7. Compute k′ = k ⊕ T .
8. Compute s = ((1 + r−1v − r−1k)−1(k′ − v + k)) mod n. If s = 0, go to

step 2.

The signature is (r, s).
If an attacker tries to do the fault attack by inducing a byte-fault on dA

in the signature generation, he obtains ṽ = k + d̃Ar mod n and s̃ = ((1 +
r−1ṽ − r−1k)−1(k′ − ṽ + k) mod n. To collect information about the error, he
needs to find an x satisfying (r + s̃)PA + s̃G + xG = kG = (x′

1, y
′
1) where

x′
1 = x1 = r − h(M) mod n. It is equivalent to solving

(r + s̃)dA + s̃ + x = k mod n

(1 + dA)s̃ + rdA + x = k mod n

(1 + d̃A)s̃ + (dA − d̃A)s̃ + rdA + x = k mod n
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k′ − (r + s̃)e − k = −x mod n

−k ⊕ T + (r + s̃)e + k = x mod n

The value of x is related to both k and e, and hence x can not be obtained
easier than exhaustive search.

Compared with the original SM2, the major extra operations required by
our modified algorithm are two more scalar multiplications and one more point
addition. Note that these extra computations are also needed by the trivial
countermeasure.

There exist fault attacks on elliptic curve cryptosystems which induce faults
into the computation of public key PA by a scalar multiplication (e.g., [3,6,11]).
These attacks are potential threats to all the elliptic curve based cryptosysems
that are not specially protected. As a result, we are not going to discuss this type
of attacks. Note that when implementing SM2, countermeasures against these
attacks should be considered as well.

5 Conclusion

In this paper, we show that SM2 is vulnerable to the partially known nonces
and fault injection attacks that are applicable to ECDSA. However, we would
like to claim that there are some inherent differences between SM2 and ECDSA,
as well as the attacks on them. For the partially known nonces attack, our
discussion in Sect. 3.2 implies that the uniformity of the multiplier t(k,M) of
SM2 is much easier to analyze than that of ECDSA. In fact, in SM2, we have s =
((1 + dA)−1(k − rdA)) mod n, while in ECDSA, the formula is s = k−1(h(m) +
rdA) mod n. In the process of computing (1 + dA)−1, the information of dA is
more vulnerable to side channel attacks; injecting errors to dA when computing
(1 + dA)−1 can lead to a fault attack similar to that in Sect. 4.1. On the other
hand, the part of k − rdA may be more secure than h(m) + rdA because of the
unknown k.
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A Background About Elliptic Curves

The elliptic curve is defined as E(Fp) = {P = (x, y)|y2 = x3+ax+b mod p. x, y ∈
Fp} ∪ {O}, where an O is an extra infinity point.

This set of points form a group under a group operation which is denoted as
“+”. This addition is defined as follows:
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– O + O = O
– ∀P = (x, y) ∈ E(Fp)\O, P + O = O + P = P
– ∀P = (x, y) ∈ E(Fp)\O, the inverse of P is −P = (x,−y), P + (−P ) = O
– ∀P1 = (x1, y1) ∈ E(Fp)\O, ∀P2 = (x2, y2) ∈ E(Fp)\O, x1 �= x2, let P3 =

P1 + P2 = (x3, y3), then
{

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1,

where λ = y2−y1
x2−x1

– ∀P1 = (x1, y1) ∈ E(Fp)\O, y1 �= 0, P3 = P1 + P1 = (x3, y3), then
{

x3 = λ2 − 2x1

y3 = λ(x1 − x3) − y1,

where λ = 3x2
1+a
2y1

Elliptic curve discrete logarithm problem. Given P ∈ E(Fp) and an integer m,
there are many efficient scalar multiplication algorithms to compute mP . How-
ever, it is widely believed that given P and mP , computing m is hard when the
point P has a large prime order. This problem is called elliptic curve discrete
logarithm problem (ECDLP).

It is well known that the number of rational points in E(Fp) is in the interval
[p + 1 − 2

√
p, p + 1 + 2

√
p]. Therefore, for a curve over Fp, it is easy to find a

subgroup with order n which is a large prime and slightly smaller than p. Solving
ECDLP in this subgroup is expensive.
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Abstract. SAML plays an import role in authentication and autho-
rization scenarios. People have paid much attention to its security, and
find that major SAML applications have critical vulnerabilities, includ-
ing XML signature wrapping (XSW) vulnerabilities and SAML assertion
eavesdropping vulnerabilities. The countermeasures now available cannot
address these two types of problems simultaneously, and always require
a large change of the server modules.

In this paper, we propose to break this stalemate by presenting
a fresh approach to SAML. A key cause of XSW and SAML assertion
eavesdropping is that SAML assertions can be verified independently of
the environment related to them. So we present an improved version
of SAML (environment-bound SAML) that provides SAML assertions
with the ability to defeat XSW and SAML assertion eavesdropping by
binding SAML assertions to environment, and keeps tiny deployment
overhead. To ensure the integrity of the binding relationship, we present
the Master-Slave signature (MSS) scheme to replace the original signa-
ture scheme. We implement our scheme in OpenSAML, and provide a
performance evaluation of this implementation.

Keywords: Master-Slave signature · Environment information bound
SAML · XML signature wrapping · SAML assertion eavesdropping

1 Introduction

The Security Assertion Markup Language (SAML) [1] is an XML-based
framework for exchanging user authentication, authorization and attribute infor-
mation. SAML allows business entities to make assertions about the identity,
entitlements and attributes of a subject. SAML is widely deployed. SAML asser-
tions are usually used as the identity token in web Single Sign-On (SSO) scenario,
or as the authorization grant in OAuth 2.0 scenario.

The security of SAML has a major impact on these web services. Based on
previous analysis, major SAML applications have critical vulnerabilities. The
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most harmful vulnerabilities are XML signature wrapping (XSW) and SAML
assertion eavesdropping. An SAML signature is looked as a node of an XML
tree, which is presented by the Signature element. A new class of vulnerabilities
named XSW utilizes the features of the SAML signature to break the secu-
rity of SAML. By using XSW, an attacker can inject forged elements without
invalidating the SAML signature. The XSW details are described in Sect. 2.1.
In SAML application scenarios, it is inevitable that SAML assertions are trans-
ferred between different roles. So the security of SAML assertions is subject
to the application environment. SAML applications are always built upon the
existing web infrastructures, including principal agents (typically browsers), net-
works, and servers. Many prevalent vulnerabilities of these infrastructures can be
exploited to weaken the security of SAML assertions. The details about SAML
assertion eavesdropping vulnerabilities are described in Sect. 2.2.

Some countermeasures have been presented to mitigate the effects of XSW
and SAML assertion eavesdropping. J. Somorovsky et al. [2] presented two coun-
termeasures against XSW. S. Sun et al. [3] suggested seven recommendations
that can mitigate the effects of OAuth 2.0 eavesdropping vulnerabilities. SAML
assertions can be used as token in OAuth 2.0. So their recommendations are
suited to SAML. But these countermeasures have their own drawbacks, which
limit their practical use. We summarize the drawbacks as following:

– Limited Capacity: None of countermeasures described above can address
XSW and SAML assertion eavesdropping simultaneously. And it is hard to
combine the existing countermeasures to resolve the two issues altogether.
Because each countermeasure requires a big change for the logic process, the
result of combining several countermeasure simply is usually that the original
business logic in the service is affected.

– Poor Universality: None of countermeasures described above is a universal
measure. Any one of the countermeasures described above is only designed for
a specific application scenario. So a countermeasure suited to a server maybe
not suit others.

– Heavy Deployment Overhead for Servers: Each countermeasure des-
cribed above requires SAML servers to modify more than one module. It
means wide-scale code changes. These changes introduce unwanted complica-
tions to SAML servers, and increase the overhead of deploying the counter-
measures.

1.1 Contribution

We present a improved version of SAML, which provides SAML assertions effi-
cient immunity against XSW and SAML assertion eavesdropping simultaneously.
A key cause of XSW and SAML assertion eavesdropping is that SAML asser-
tions can be verified independently of the environment related to them. So, in our
scheme, SAML assertions are bound to environment (including the generation
environment and the application environment). Unlike the existing countermea-
sures, the modifications of our scheme are limited to the SAML module. So all
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SAML servers can deploy our scheme with tiny overhead. In our scheme, when
SAML assertions are generated, the SAML assertion issuer server binds SAML
assertions to the generation environment (SAML assertions - generation envi-
ronment binding) to prevent SAML assertions from tampering via XSW. When
SAML assertions are used, the principal binds SAML assertions to the appli-
cation environment (SAML assertions - application environment binding), to
prevent SAML assertions from eavesdropping. Our scheme ensures that SAML
assertions are only valid in the environment with which the SAML assertions
are bound. So we name our new scheme as environment-bound SAML assertion
scheme. To ensure the integrity of binding relationship, we propose a new sequen-
tial aggregate signature scheme to replace the original SAML signing scheme.
By using the new sequential aggregate signature scheme, we modify the SAML
signature process from only SAML assertion issuer server signing to SAML asser-
tion issuer server co-signing with principal. The SAML assertion issuer server
signs SAML assertion firstly to ensure the integrity of “SAML assertions - gen-
eration environment” binding relationship. Subsequently, the principal adds his
signature onto issuer’s signature to ensure the integrity of “SAML assertions -
application environment” binding relationship. Because there are only two sign-
ers in the new signature scheme, and the sequence of signing is fixed, we name
this new sequential aggregate signature as Master-Slave signature (the first signer
is the master user, and the second signer is the slave user). The Master-Slave
signature is a restricted version of sequential aggregate signature.

We also give the implementation procedure of environment-bound SAML
assertion scheme in detail, and analyse its security. At last, to demonstrate the
feasibility of the environment-bound SAML assertion scheme, we evaluate the
performance of a demo program which is based on OpenSAML. Comparing with
existing countermeasures, the environment-bound SAML assertion scheme can
provide SAML assertions effective immunity against XSW and SAML assertion
eavesdropping simultaneously, keeping a tiny deployment overhead. And it is
suitable to all application scenarios.

2 Related Work

XSW and SAML assertion eavesdropping pose a direct threat to SAML. In this
section, we introduce some related works about these vulnerabilities and the
corresponding countermeasures.

2.1 XML Signature Wrapping (XSW)

M. Mcintosh and P. Austel [4] and M. Jensen et al. [5] presented the XML
signature wrapping (XSW) attacks. The cause of XSW attack is that different
module of a application has different view on the same XML document. The
security module of the application only performs security check on the signature
part of the XML message. But the logic processing module of the application
focuses on different parts of the same message. If an attacker modifies the XML
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message structure by injecting some forged elements keeping the XML signature
valid, the security module may verify the signature successfully while the logic
processing module processes the forged elements. Hence, by using XSW, an
attacker can circumvent the security check and inject arbitrary content.

XSW on SAML. J. Somorovsky et al. [2] described the XSW attack on SAML.
The simplest attack is the XML signature exclusion attack. Some servers’ secu-
rity modules have poor implementation. If these security modules do not find
the signature element, they skip the verification step directly. The attacker can
simply insert arbitrary elements and remove the signature element. The other
attack is the refined XSW attack. Figure 1 are two refined XSW attack examples.
As shown in Fig. 1(a), the attacker injects a different ID element into the origi-
nal assertion. Because the SAML 2.0 schema allows to have multiple assertions
in a SAML document, the modification doesn’t invalidate the SAML assertions.
But the logic processing module reads the forged <assertion> element. What
Fig. 1(b) describes is similar with Fig. 1(a) but inserting the forged element into
different place.

Fig. 1. Refined XSW attack example

Countermeasures for XSW. J. Somorovsky et al. [2] presented two
countermeasures against XSW. The SAML consumer server is regarded as an
aggregation of a security module and a logic processing module. The first coun-
termeasure is “Only process what is hashed”. The security module acts as a filter
and only forwards the hashed parts of a SAML assertion to the logic process-
ing module. The second countermeasure is “Mark signed elements”. The security
module marks the signed parts of a SAML assertion. And then the security mod-
ule forwards the marked SAML assertion to the logic processing module. The
logic module only processes the trusted parts of a SAML assertion. But these
countermeasures only address the XSW problems. They do not consider the
eavesdropping issues. Both “Only process what is hashed” countermeasure and
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“Mark signed elements” countermeasure require the SAML application servers
to modify the logic processing module. They all involve a large deployment over-
head for SAML application servers.

2.2 SAML Assertion Eavesdropping

S. Sun et al. [3] analysed eavesdropping vulnerabilities of OAuth 2.0, and sug-
gested some recommendations that can mitigate the effects of these vulnerabili-
ties. SAML assertions can be used as token in OAuth 2.0 [6]. So their analyses
and recommendations are suited to SAML.

Fig. 2. SAML assertions eavesdropping

SAML Assertion Eavesdropping in OAuth 2.0. OAuth 2.0 protocol [7]
is an open and standardized web resource authorization protocol. Due to poor
implementation, some OAuth 2.0 web applications are not indeed secure in prac-
tice. S. Sun et al. [3] uncovered several critical vulnerabilities that allowed an
attacker to gain access to the victim’s resource or impersonate a victim. As
described in Fig. 2, an attacker can eavesdrop on SAML assertions by sniff-
ing on the unencrypted communication. According to the OAuth 2.0 specifica-
tion, SSL/TLS should be used to provide end-to-end protection between any
two parties. However, SSL/TLS imposes management and performance over-
head and introduces undesired side-effects. So many service providers only use
SSL/TLS for a few pages, such as login pages. An attacker can eavesdrop on
SAML assertions via the communications without SSL/TLS protection. Due to
poor implementation, some pages of SAML assertion consumer server have XSS
vulnerability. An attacker can inject a malicious script into any page with XSS
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vulnerability to enforce the principal log again and send SAML assertions to
him. Moreover, any vulnerabilities found in the principal agents (typically the
browsers) also lead to security breaches. The security of browsers faces the chal-
lenge of the browser extension mechanism [8,9]. If an attacker controlled the
principal agent, he would obtain any data through the principal agent, including
SAML assertions.

Countermeasures for SAML Assertion Eavesdropping. S. Sun et al. [3]
suggested recommendations that allow to mitigate discovered vulnerabilities.
The SAML assertion consumer server should (1) provide explicit authorization
flow registration, (2) support redirect URIs whitelist, (3) support token fresh
mechanism, (4) enforce single-use of token, (5) void saving token to cookie, (6)
support explicit user consent, and (7) support explicit user authentication. But
these countermeasures only address the SAML assertion eavesdropping problems
in OAuth 2.0 scenario. None of them is universal measure. The countermeasure
(1) requires SAML assertion consumer servers support a registration option.
And this option could protect only half of servers from token theft. For the
countermeasure (2), most of SAML assertion consumer servers prefer “Domain-
based redirect URI validation” to “Whitelist-based redirect URI validation”.
Sometimes, the tokens need to be kept for a long time, and may be used for many
times. So the countermeasure (3) and (4) are not suitable for some scenarios.
Many servers save the session data to cookie. Hence, the countermeasure (5) is
hard to be accepted by these servers. Because some servers support “Automatic
authorization granting”, the countermeasure (6) and (7) cannot be applied in
these servers.

3 Threat Model

In this section, we define the threat model for environment-bound SAML asser-
tion scheme, including the attacker type and the attacker capability. There are
three types of attackers in our threat model. Their capabilities describes as fol-
lowing:

Server attacker: The server attacker can exploit the vulnerabilities of server
web pages, such as XSS, to setup malicious web pages. As Fig. 2 described, the
malicious pages enforce the principal agent to execute the scripts implanted
by the attacker. The scripts usually send the SAML assertions of the victim
principal to the attacker. The attacker injects forged elements into the original
assertions by using XSW, and then he submits the modified assertions to the
SAML assertion consumer server. Or he replays the stolen assertions directly.

Agent attacker: The principal agent attacker can exploit the vulnerabilities
of principal agents (such as browsers) to eavesdrop, such as man-in-the-browser
malware [10]. As Fig. 2 described, SAML assertions are often forwarded by the
principal agents. They must be cached in the memory of the principal agents.
If the attacker controlled the principal agents, he would analyse agent caches to
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obtain SAML assertions. Similar to the server attacker, the agent attacker can
submit the modified assertions or replay the stolen assertions.

Network attacker: The network attacker can sniff network traffic between dif-
ferent parties to steal SAML assertions. As Fig. 2 described, the attacker can sniff
SAML assertions from the unencrypted channels. Moreover, we also assume that
the attacker is able to “pry open” SSL/TLS sessions and extract the sensitive
data by exploiting the bugs of SSL/TLS [11]. After obtaining SAML assertions,
the attacker can handle them just like what the server attacker and the agent
attacker does.

In short, our threat model gives attackers the ability to exploit XSW vulnera-
bility and SAML assertion eavesdropping vulnerability. By combining these two
vulnerabilities, a attacker can gain unauthorized access to the victim’s resource
or impersonate victim principal.

4 Environment-Bound SAML Assertions

In this section, we describe the environment-bound SAML assertion scheme in
detail. To provide SAML assertions efficient immunity against XSW and SAML
assertion eavesdropping simultaneously, SAML assertions are bound to envi-
ronment by using the Master-Slave signature scheme. Figure 3 describes the
environment-bound SAML assertion scheme. Firstly, we present the Master-
Slave signature in detail. And then we demonstrate how to bind SAML assertions
to environment by using Master-Slave signature scheme.

Fig. 3. Environment-bound SAML assertions flow chart

4.1 Master-Slave Signature

The key point for the environment-bound SAML assertion scheme is that SAML
assertions are bound with a specified environment. So the security of binding rela-
tionship is the prerequisite and the foundation of the environment-bound SAML
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assertion scheme. To ensure the integrity of binding relationship, we present the
Master-Slave signature (MSS) scheme. By using MSS, we modify the SAML
signature process [1,12,13] from only SAML assertion issuer server signing to
SAML assertion issuer server co-signing with principal. The signature of the
SAML assertion issuer server ensures the integrity of “SAML assertions - gen-
eration environment” binding relationship. And the signature of the principal
ensures “SAML assertions - application environment” binding relationship.

Definition of MSS. G. Neven [14] proposed a sequential aggregate signed data
(SASD) scheme. The SASD scheme is based on families of trapdoor permutations
except that it doesn’t require the permutations to be certified. But this scheme
is not a strong sequential aggregate signature scheme. The signing sequence can
be changed without invalidating the signature. The MSS scheme is derived from
SASD. We give the definition of MSS as following:

Definition 1. The Master-Slave signature (MSS) is a restricted version of
sequential aggregate signature. There are only two signer in the MSS scheme:
the master signer and the slave signer. It allows these two signers to sign dif-
ferent messages while aggregating into a single signature. And the sequence of
signing is fixed. The master signer creates the initial signature, and the slave
signer generates the aggregate signature subsequently. Any change to signing
sequence would invalidate the signature.

MSS Details. The MSS scheme is a tuple of four algorithms (KeyGen, Mas-
terSign, SlaveSign, Verify). And it defines three roles: the master user, the slave
user, and the verifier. The master user uses MasterSign algorithm to create the
initial signature. The slave user uses SlaveSign algorithm to generate the aggre-
gate signature. The verifier uses Verify algorithm to verify the final Master-Slave
signature. This is consistent with environment-bound SAML assertion scheme.
The SAML assertion issuer server is the master user. The principal corresponds
to the slave user. The SAML assertion consumer server plays a role as the verifier.

We present our Master-Slave aggregate signature scheme arising from any
family of claw-free trapdoor permutations. So it can be easily instantiated with
RSA, which is the default signing algorithm of SAML. We first introduce some
prerequisites. Let k, l ∈ N be security parameters. l is system-wide parameter.
k is chosen by each user as long as k > l. Let Π be a family of claw-free
trapdoor permutations. For each permutation π in Π, there exists an abelian
group Gπ ⊆ Dπ. Let encπ : {0, 1}∗ → {0, 1}∗×Gπ be a encoding algorithm which
divides a message M into a shorter message m and an element μ ∈ Gπ. Let decπ :
{0, 1}∗ × Gπ → {0, 1}∗ be the corresponding decoding algorithm. The decoding
algorithm must be injective: decπ(m,μ) = decπ(m′, μ′) ⇒ (m,μ) = (m′, μ′).
Let Hπ : {0, 1}∗ → Dπ, H ′ : {0, 1}∗ → {0, 1}l, H ′′ : {0, 1}∗ × {0, 1}∗ → {0, 1}l

and Gπ : {0, 1}l → Gπ be public hash functions modeled as random oracle.

KeyGen. For a particular user, the KeyGen algorithm uniformly selects a pair
of claw-free trapdoor permutation (π, ρ, π′) ← Π. Here π is the permutation
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Evaluate(pk, ·), and π′ is the inverse permutation Invert(sk, ·). The KeyGen
algorithm return pk as the public key and sk as the private key.

MasterSign. For the master user, given the private key skm of the master user
and a message Mm ∈ {0, 1}∗, the MasterSign algorithm computes

hm ← Hπ(Mm), σm ← Invert(skm, hm)

where hm ∈ Dπ. The MasterSign algorithm returns σm as the master signature.

SlaveSign. The slave signing algorithm is given a tuple of six parameters
(sks, pkm, pks,Mm,Ms, σm): the private key sks of the slave user; the public
key pkm of the master user; the public key pks of the slave user; the message
Mm signed by the master user; the message Ms to be signed by the slave user;
the master signature σm. Firstly, the slave signing algorithm checks the validity
of the master signature. The slave signing algorithm computes

hm ← Hπ(Mm).

If hm �= Evaluate(pkm, σm), the algorithm return ⊥. Secondly, the slave signing
algorithm computes

M ′ ← H ′′(Mm,Ms).

Thirdly, the algorithm encodes the string (M ′ ‖ σm) by running

(m,μ) ← encπ(M ′ ‖ σm).

m is a shorter string than (M ′ ‖ σm). μ is an element of Gπ. Fourthly, the
algorithm computes

hs ← H ′((pkm, pks) ‖ M ′ ‖ σm), gs ← Gπ(hs), χ ← Invert(sks, gs + μ).

Lastly, the SlaveSign algorithm returns a slave signature σs ← (m,χ, hs).

Verify. The verification algorithm is given a tuple of five parameters (pkm,
pks,Mm,Ms, σs): the public key pkm of the master user; the public key pks

of the slave user; the message Mm signed by the master user; the message Ms

signed by the slave user; the slave signature σs. Firstly, the verification algorithm
parses σs as (m,χ, hs) and checks the validity of parameters. If |Gπ| < 2l, the
algorithm returns 0 to indicate rejection. Secondly, the verification algorithm
computes

gs ← Gπ(hs), μ ← Evaluate(pks, χ) − gs.

Thirdly, the master signature is reconstructed from (m,μ) by running

(M ′ ‖ σm) ← decπ(m,μ).

Lastly, the verification algorithm computes hm ← Hπ(Mm). If M ′ is equal with
H ′′(Mm,Ms), hs is equal with H ′((pkm, pks) ‖ M ′ ‖ σm), and hm is equal
with Evaluate(pkm, σm), then the algorithm return 1 to indicate that the slave
signature σs is valid. Otherwise it returns 0.
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4.2 Binding SAML Assertions to Environment

The environment-bound SAML assertion scheme ensures that SAML assertions
are only valid in special environment. In this section, we present how the SAML
assertion issuer server binds SAML assertions to the generation environment,
how the principal binds SAML assertions to the application environment, and
how the SAML assertion consumer server verifies the SAML assertions.

Binding SAML Assertions to Generation Environment. The SAML
assertion issuer server is responsible to generate SAML assertions and bind
SAML assertions to generation environment by using the MSS scheme. The
generation environment information includes: (1) the issuer information – who
initializes SAML assertions, and (2) the objective principal information – who
can use SAML assertions. The issuer information has been included in SAML
assertions [1]. To prevent SAML assertions from a attacker tampering via XSW,
the SAML assertion issuer server must indicates which principal can use SAML
assertions. The SAML assertion issuer server adds the public key of the objective
principal into each SAML assertion. The public key information is placed in the
<Advice> element. The <Advice> element is a sub-element of the <Assertion>
element. The integrity of <Advice> element is protected by the <Signature> ele-
ment that envelops a master signature (by using MasterSign algorithm of MSS).
Figure 4(a) is an example of a HTTP response message with a environment-
bound SAML assertion. An X.509 certification, which includes the public key of
the principal, is placed in <Advice> element.

Fig. 4. Binding SAML assertions to environment
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Binding SAML Assertions to Application Environment. The principal is
responsible to bind SAML assertions to the application environment before for-
warding them to the SAML assertion consumer server. To resist SAML assertion
eavesdropping, the principal creates a new XML element, called <EbAssertion>
element, which envelops the application environment information and the orig-
inal SAML assertion. Figure 4(b) defines the <EbAssertion> element and its
complex type (EbAssertionType). The EbAssertionType type specifies
the basic information of the application environment, including the following
elements and attributes:

– <SessionID> The identifier for session between the principal and the SAML
assertion consumer server.

– <CookiesHash> The hash value of cookies. The default case is that hash
value comes from total cookies by using SHA1 [15] algorithm. But the SAML
assertion consumer server can negotiate with the principal to decide how to
get hash value. The hash value is encoded by Base64 [16].

– <PrincipalURI> The unique URI for the principal.
– <ServiceURI> The unique URI for the SAML assertion consumer server.
– <Assertion> The original SAML assertion received from the SAML assertion

issuer.
– <Version> The version of the enveloped assertion.
– <ID> The identifier for this environment-bound SAML assertion.
– <IssueInstant> The time instant of issue in UTC.

And then the principal signs the <EbAssertion> element by using SlaveSign
algorithm of MSS. Only the principal indicated by the SAML assertion issuer
server can generate a valid MSS signature, because the other principals includ-
ing attackers do not have the private key which can match the public key in
the <Advice> element of SAML assertions. The principal removes the orig-
inal signature and places his final signature in the <ds:Signature> element of
<Assertion>. Lastly, he forwards the valid environment-bound SAML assertions
to the SAML assertion consumer server.

Fig. 5. The SAML assertion consumer server model
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Verifying SAML Assertions. The SAML assertion consumer server is respon-
sible to verify environment-bound SAML assertions. The environment-bound
SAML assertion scheme only substitutes the Verify algorithm of MSS for the orig-
inal verification algorithm. The verification process describes in Fig. 5. Firstly,
the verification algorithm uses the SAML assertion issuer’s public key together
with the public key in the <Advice> element (namely, the principal’s public key
is extracted from “SAML assertions - generation environment” binding relation-
ship), to verify the slave signature. Secondly, the verification algorithm checks
the validity of “SAML assertions - application environment” binding relation-
ship. The current application environment information is input to the verification
algorithm. And then the verification algorithm compares the current application
environment information with the application environment information bound
to SAML assertions. It returns the check result to the logic processing module
of the SAML assertion consumer server. The check result is reliable enough. The
logic processing module need to do nothing more.

5 Security Analysis

In this section, we demonstrate how the environment-bound SAML assertion
scheme can be used to improve the security of SAML applications.

The security of MSS has a direct impact on the environment-bound SAML
assertions scheme. It can be proved in the random oracle model. If a MSS adver-
sary A broke our MSS scheme with AdvMSSA, we could construct an algorithm
B to break the SASD scheme [14] with the same probability. As space is limited,
the detailed proof is not described here.

The major adversary types have been described in Sect. 3. We explain how
the environment-bound SAML assertion scheme can be used to harden SAML
applications against adversaries.

Against server attacker. The server attacker exploits the vulnerabilities of
server’s web pages to steal victim’s SAML assertions. The stolen SAML asser-
tions have been bound to the generation environment and the application envi-
ronment. We assume that the attacker does not know the private key of the
SAML assertion issuer server and the victim principal. So the attacker cannot
break the existing binding relationship. Due to “SAML assertions - generation
environment” binding relationship and the co-signature, the server attacker can-
not forge valid SAML assertions or inject forged elements into the stolen SAML
assertions keeping signature valid. Because SAML assertions have been bound to
application environment, the attacker cannot replay the stolen SAML assertions.
If the stolen SAML assertions are replayed simply, MSS verification algorithm
would return failed. The MSS verification algorithm checks whether the appli-
cation environment information (<SessionID>, <CookiesHash> and so on) is
changed. If verification algorithm indicated the signature was invalid, the SAML
assertion consumer server would terminate the process and drop assertions.

Against agent attacker. The agent attacker exploits the vulnerabilities of
principal agent to steal SAML assertions. In environment-bound SAML
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assertion scheme, the principal is required to bind SAML assertions to the applica-
tion environment. Once the application environment is changed, the correspond-
ing SAML assertions become invalid. The agent attacker can steal three kinds
of SAML assertions: the semi-manufactured SAML assertions (the assertions are
only bound to the generation environment), the valid SAML assertions (the asser-
tions are bound not only to the generation environment but also to the application
environment, and the corresponding application environment is unchanged), and
invalid SAML assertions (the assertions are invalid due to the changes in the corre-
sponding application environment – for example, the session was close). Because
the agent attacker does not know the private key of the victim principal, he is
not able to bind the semi-manufactured SAML assertions to the application envi-
ronment just as what the legal principal does. It means that the agent attacker
cannot validate the semi-manufactured SAML assertions, no matter whether the
semi-manufactured SAML assertions are tampered by using XSW or not. Similar
to the server attacker, even if the agent attacker stole a valid SAML assertion or
a invalid SAML assertion, he would not circumvent the environment information
check of the MSS verification algorithm.

Against network attacker. The network attacker sniffs network traffic between
different parties. The network attacker can steal two kinds of SAML assertions:
the semi-manufactured SAML assertions (when the attacker sniffs network traffic
between the SAML assertion issuer server and the principal), and the valid SAML
assertions (when the attacker sniffs network traffic between the principal and the
SAML assertion consumer server). Due to missing the victim principal’s private
key, the network attacker is not able to validate a semi-manufactured SAML asser-
tion. Due to “SAML assertion - application environment” binding relationship
and the co-signature, both tampering attack via XSW and replay attack have no
impact on the environment-bound SAML assertions. The network attacker can-
not use the stolen SAML assertions to gain access to unauthorized resource or to
impersonate victim principal.

6 Implementation and Performance Evaluation

In order to demonstrate the feasibility of the environment-bound SAML assertion
scheme, we implemented our scheme and evaluated its performance.

6.1 Implementation

We re-developed the OpenSAML. OpenSAML is a set of open source libraries.
The OpenSAML libraries support developers working with SAML. The current
version, OpenSAML 2, supports SAML 1.0, 1.1, and 2.0 specification. Open-
SAML has been applied widely by many projects, such as: Shibboleth, Globus
Toolkit, gLite, JBoss, Apache WSS4J, and so on.

We modified the original signing and verification algorithm into the Master-
Slave signature algorithm. We instantiate the Master-Slave signature algorithm
by using the default algorithm of XML signature as following:
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1. using RSA private key encryption as Invert();
2. using RSA public key decryption as Evaluate();
3. using SHA1 as Hπ(), H ′(), H ′′, and Gπ() (SHA2 or SHA3 could be used to

replace SHA1. But we suggested using SHA1 to be compatible with existing
systems).

And then, we added support for environment-bound functions to OpenSAML.
We implemented “generation environment bound” functions during the genera-
tion phase of SAML assertions. And we implemented “application environment
bound” functions during the use phase of SAML assertions.

We chose Linux (version 3.2.0) as our development platform. We used Open-
SAML version 2.5.2 as the development base line. It was the prerequisite to
OpenSAML that we compiled and installed XMLTooling (version 1.5.2) library
and XML-Security-C (version 1.6.1-5+deb7u2) library into the development
platform. All modifications for the environment-bound SAML assertions scheme
required an additional 2,878 lines added (across 27 files) to the OpenSAML
source code.

6.2 Performance Evaluation

In order to demonstrate the performance impact of using environment-bound
SAML assertions in SAML servers, we evaluated the performance of our scheme
in SAMLSign program which was released together with OpenSAML. All exper-
iments ran on Debian (version 7.0) Linux system with a 3.4 GHz Core i7-2600
CPU and 4 GB of RAM.

We analysed the slowdown in processing speed. The test results were gathered
with Linux “time” command, which was able to show the total run time and the
CPU time of a specified progress. Because there was no principal signing process
in the original OpenSAML, we defined that the run time of the principal signing
process in original OpenSAML was equal to 0. These tests considered two cases:
(1) both the SAML assertion issuer and the principal signing assertions by using
1024 bit RSA keys; (2) both the SAML assertion issuer and the principal signing
assertions by using 2048 bit RSA keys.

We analysed time performance with 1024 bits RSA keys firstly. The results
of the run time tests were shown in Fig. 6(a). The run time of the issuer signing
process was up 8.4% from the original. The run time of the signature verification
process was up 9.0%. But the test environment has a significant impact on the
test results (The impact came from the concurrent processes in the system). The
CPU time was more accurate than the total run time to reflect the slowdown
in processing speed. The data described in Fig. 6(b) showed the CPU time com-
parison, when the 1024 bits RSA keys were used. The CPU time of the issuer
signing process was up 3.5% from the original. The run time of the signature
verification process was up 3.6%.

We repeated time tests with 2048 bits RSA keys subsequently. Figure 6(c)
showed the total run time comparison. The run time of the issuer signing process
was up 7.6% from the original. The run time of the signature verification process
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Fig. 6. Time performance analysis

was up 10.8%. Figure 6(d) showed the CPU time comparison. The CPU time of
the issuer signing process was up 5.2% from the original. The run time of the
signature verification process was up 6.8%.

7 Conclusion

In this paper we presented the environment-bound SAML assertion scheme as a
new approach to enhance the security of SAML assertions. We described how to
bind SAML assertions to the environment, and explained why it was able to pro-
tect SAML assertions against XSW and SAML assertion eavesdropping. To finish
binding task, we introduced the Master-Slave signature, which was well suited
for environment-bound SAML assertion scheme. At the end of this page, we
demonstrated the feasibility of the environment-bound SAML assertion scheme
by the experiment data and result.

We see the environment-bound SAML assertion scheme as a first step to
enhance the security of SAML-based protocols and applications.
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Abstract. We reinvestigate a notion of one-time programs introduced
in the CRYPTO 2008 paper by Goldwasser et al. A one-time program
is a device containing a program C, with the property that the program
C can be executed on at most one input. Goldwasser et al. show how
to implement one-time programs on devices equipped with special hard-
ware gadgets called one-time memory tokens.

We provide an alternative construction that does not rely on the
hardware gadgets. Instead, it is based on the following assumptions: (1)
the total amount of data that can leak from the device is bounded, and
(2) the total memory on the device (available both to the honest user
and to the attacker) is also restricted, which is essentially the model
used recently by Dziembowski et al. (TCC 2011, CRYPTO 2011) to con-
struct one-time computable pseudorandom functions and key-evolution
schemes.

Keywords: Pseudorandom functions · One-time device · One-time pro-
gram · Circuit garbling

1 Introduction

A notion of one-time programs was introduced by Goldwasser et al. [13]. Infor-
mally speaking, a one-time program is a device D containing a program C, that
comes with the following property: the program C can be executed on at most
one input. In other words, any user, even a malicious one, that gets access to
D, should be able to learn the value of C(x) for exactly one x at his choice. As
argued by Goldwasser et al., one-time programs have vast potential applications
in software protection, electronic tokens and electronic cash.

It is a simple observation that one-time programs cannot be solely software-
based, or, in other words, one always needs to make some assumptions about
the physical properties of the device D. Indeed, if we assume that the entire
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contents P of D can be read freely, then an adversary can create his own copies
of D and compute C on as many inputs as he wishes. Hence, it is natural to
ask what kind of “physical assumptions” are needed to construct the one-time
programs. Of course, a trivial way is to go to the extreme and assume that D is
fully-trusted, i.e. the adversary cannot read or modify its contents. Obviously,
then one can simply put any program C on D, adding an extra instruction to
allow only one execution of C. Unfortunately, it turns out that such assumption
is often unrealistic. Indeed, a number of recent works on side-channel leakage and
tampering [11] attacks have demonstrated that in real-life constructing leakage-
and tamper-proof devices is hard, if not impossible.

Therefore it is desirable to base the one-time programs on weaker physical
assumptions. The construction of Goldwasser et al. [13] is based on the following
physical assumption: they assume that D is equipped with special gadgets that
they call one-time memory (OTM) devices. At the deployment of D an OTM
can be initialized with a pair of values (K0,K1). The program P that is stored
on D can later ask the OTM for the value of exactly one Ki. The main security
feature of the OTMs is that the OTM under no circumstances releases both K0

and K1. Technically, it can be implemented by (a) storing on each OTM a flag f
initially set to 0, that changes its value to 1 after the first query to this OTM, and
(b) adding a requirement that if f = 1 then an OTM answers ⊥ to every query.
Under this assumption one can construct a general complier that transforms
any program C (given as a boolean circuit) into a one-time program that uses
the OTMs. Hence, in some sense, Goldwasser et al. [13] replace the unrealistic
assumption that the whole device D is fully secure, with a much weaker one that
the OTM gadgets on D are secure. Here, by “secure” we mean that they are
leakage-proof (in particular: they never leak both K0 and K1) and tamper-proof
(and hence the adversary should not be allowed to tamper with f).

Our Contribution. One can, of course, still ask how reasonable it is to assume
that all the OTMs placed on D are secure, and it is natural to look for other,
perhaps more realistic, models where the transformation similar to the one of
[13] would be possible. In this paper we propose such an alternative model,
inspired by recent work of Dziembowski et al. [8] on one-time computable self-
erasing functions. In contrast to the assumption used by Goldwasser et al., in
our model we do not assume security of individual gadgets on D, but rather
impose “global” restrictions on what kind of attacks are possible.

To explain and motivate the use of the model of [8] in our context, let us come
back to the observation that a “physical assumption” that is obviously needed
is that the adversary cannot copy the entire contents P of D, or more precisely,
that the amount of information f(P) about P that leaked to the adversary is
bounded. There has been lot of work recently on modeling such bounded leakage.
A common approach, that we follow in this paper, is to model it as an input
shrinking function, i.e. a function f whose output is much shorter than its input
(the length c of the output of f is a parameter called the amount of leakage).
Such functions were first proposed in cryptography in the so-called bounded-
storage model of Maurer [17]. Later, they were used to define the memory leakage
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occurring during the virus attacks in the bounded-retrieval model [2,5,6]. In
the context of the side-channel leakages they were first used by Dziembowski
and Pietrzak [9] with an additional restriction that the memory is divided into
two separate parts that do not leak information simultaneously, and in the full
generality in the paper of Akavia et al. [1].

Obviously, if we want to incorporate the tampering attacks into our model
then we also need some kind of a formal way to define the class of admissible
tampering attacks. To see that some kind of limitations on tampering attacks
are always needed let us first consider the broadest possible class of such attacks,
i.e. let us assume that we allow the adversary to transform the contents P of the
device in an arbitrary way. More precisely, suppose the adversary is allowed to
substitute P with some g(P), where g is an arbitrary function chosen by him.
Obviously in this case there is no hope for any security, as the adversary can
design a function g that simply calculates “internally” (i.e.: on the device) the
values of the encoded program on two different inputs, and leaks them to the
adversary (if these values are short then this can be done even if the amount of
leakage is small). Hence, some limitations on g are always needed. Unfortunately,
it is not so obvious what kind of restrictions to use here, as currently, unlike in
the case of leakage attacks, there does not seem to be any widely-adopted model
for tampering attacks. In fact, most of the anti-tampering models either assume
that some part of the device is tamper-proof [12], or they are so strong that they
permit only very limited constructions [10].

As mentioned before, in this paper we follow the approach of [8], where the
authors model the tampering attacks by restricting the size of memory available to
the tampering function g. More precisely, we assume that there is a general bound
s on the space available on D, that can be used by anybody who performs compu-
tations on D, including the honest program P and the adversary. This assumption
can be justified by the following observations: (1) it is reasonable to assume that
in practice the bound on the memory size of the device is known, and no adversary
can “produce” additional space on it by tampering with it, and (2) in general it
is also reasonable to assume that the tampering function is “simple”, and hence
it cannot have a large space-complexity.

What remains is describing the way in which the restrictions c on leakage and
s on communication are combined into a single model. The way it is done by [8]
is as follows: they model the adversary as two entities: a big adversary Abig and
a small adversary Asmall. The small adversary represents the tampering function,
and hence it has a full access to the contents P of the device1. It can perform
any computation on D subject to the constraint that it cannot use more memory
than s. The fact that it can leak information to the outside is modeled by allowing
1 In the work of Dziembowski et al. [8] the adversary Asmall is used to model the
malicious code executed on the device (e.g. a computer virus), while in our case it
models the tampering function. While in real life mallware is usually much more
powerful than hardware tampering functions, we adopt the model of [8] since we do
not see any other natural restriction on the tampering function that would lead to
better parameters or the simpler proofs.



380 K. Durnoga et al.

him to communicate up to c bits outside of the device. This leakage information
can later be processed by the big adversary Abig that has no restrictions on his
space complexity. In order to make the model as strong as possible we actually
allow Abig to communicate with Asmall in several rounds (and we do not impose
any restriction on the amount of information communicated by Abig back to
Asmall). We apply exactly the same approach in our paper. Our main result (see
Theorem 1) is a generic compiler that takes any circuits C and transforms it into
a one-time program P secure in the model described above. As in the case of
Dziembowski et al. [8], our construction works in the Random Oracle Model,
where we model as random oracles hash functions of fixed input lengths. For a
complete statement of our result see Theorem 1. Let us only remark here that for
a fixed circuit we get that the security holds as long as s − 2nc ≥ γk, where γ is
some constant and n is the number of input bits of the circuit. Hence, the leakage
size c has to be inversely-proportional to n, which may be sufficient for practical
applications where n is small, e.g., if the input is a human-memorized PIN. In
any case, for any realistic values of other parameters it is super-logarithmic, and
hence covers all attacks where the leaking value is a scalar (e.g. the Hamming
weight of the bits on the wires).

Related Work. Some related work was already described above. The feasibility
of implementing the scheme of Goldwasser et al. [13] was analyzed by Jarvinen
et al. [14]. The model of Dziembowski et al. [8] and related techniques were
also used in a subsequent paper [7] to construct leakage-resilient key-evolution
schemes. Finally, let us note that the main difference between [8] and our work is
that in [8] the authors construct a one-time scheme for a concrete cryptographic
functionality (i.e., a pseudorandom function), while here we show a generic way
to implement any functionality as a one-time program.

It has been recently pointed out by Bellare et al. [4] that the original security
proof of [13] had a gap. Informally speaking, this was due to the fact that the
scheme of [13] was based on a statically-secure Yao garbled circuit, and hence
did not provide security against the adversaries that can modify the input during
the computation. We note that this problem does not affect the security of our
construction. We elaborate more on this in Sect. 5.2.

Organization of the Paper. Some basic definitions we refer to later on are listed
in Sect. 2. In Sect. 3, we give a formal statement of what we mean by a one-time
device. Also, we announce the main theorem of the paper asserting that our
construction produces programs compliant with this definition. Several tools we
extensively use throughout the paper are synopsized in Sect. 4. These include: cir-
cuit garbling [16,19], universal circuits [15,18], and one-time computable pseudo-
random functions [8]. In Sect. 5, we describe a compiler that converts a boolean
circuit to a one-time device. A proof-sketch of the main theorem from Sect. 3
follows in Sect. 6.
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2 Preliminaries

Across the paper, we often make use of boolean circuits. We use a capital C to
label such a circuit. If C has n inputs and m outputs then we identify C with
a function C : {0, 1}n → {0, 1}m. For simplicity, we confine the analysis to the
case where every gate of C has a fan-in of 2. Each wire, including the input and
output ones, and every gate is assigned a unique label. A size of C, defined as
a number of gates in C, is denoted by |C|.

We write C(x) for a result of evaluating C on a given input x, and, more
generally, A(x) for an outcome of running an algorithm A (modeled as a Turing
machine, possibly a non-deterministic one) on x. Occasionally, we add a super-
script H to A and write AH to signify that A is given access to an oracle that
computes some function H. Everywhere below it is assumed that there exists
a (programmable) random oracle H : {0, 1}∗ → {0, 1}k for a parameter k to be
specified later. Phrases: the random oracle H and the function H are then used
interchangeably. Although the declaration of H assumes that H accepts argu-
ments of an arbitrary length, we only apply H to inputs not longer that a fixed
multiple of k except for one case. In this particular case, however, the long input
can be split into smaller chunks which allows cascading of H. Overall, we can
invoke the oracle only for short inputs.

When typesetting algorithms, we write R
$← S for sampling a uniformly ran-

dom value from some set S and assigning it to a variable R. We assume that
every such a sample is independent of other choices. We conform to the common
bracket notation T [i] for accessing the ith element of an array T .

We say that a function is negligible in k if it vanishes faster than the inverse
of any polynomial of k. In particularly, we use this expression to indicate that
certain event can only occur with a small, i.e. negligible, probability in some
security parameter k. Also, we often write just: a negligible probability and omit
k when this parameter is clear from context.

As announced in Sect. 1, the model we adopt in the paper assumes splitting
an adversary A into two components: Asmall and Abig. Both parts are interactive
algorithms with access to H, where a total number of oracle calls made is limited.
Additionally, Asmall, which can see the internals of an attacked device, has:

– s-bounded space – a total amount of memory used by Asmall does not exceed
s bits, i.e., an entire configuration of Asmall (contents of all tapes, a current
state, and positions of all the tape heads), at any point of execution, can be
described using s bits;

– c-bounded communication – a total number of outgoing bits sent by Asmall

does not exceed c, assuming that Asmall cannot convey any extra information
when communicating with Abig (e.g. by abstaining from sending anything
during some period of time).

Note that A = (Asmall,Abig) can have an unbounded computational power.
Also, the amount of bits uploaded by Abig to Asmall is not restricted. We write
AH(R) =

(AH
big() � AH

small(R)
)

to denote the interactive execution of Abig and
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Asmall, where Asmall gets R as an input. We settle on a simplifying arrange-
ment that the contents of memory (e.g. the data on all the tapes) of Abig after
it finishes its run form a result of this execution. In particular, any information
computed by Asmall needs to be transmitted to Abig (contributing to the commu-
nication quota) in order to be included as a part of the result. Such an approach
is justified by the real-world interpretation of Asmall and Abig as a virus and
a remote adversary controlling the virus. Here, only the data that the external
adversary can receive is considered valuable.

3 One-Time Programs

In this section, we give a strict definition of one-time programs/devices. Intu-
itively, an ideal one-time program should mimic a black-box that internally cal-
culates a value of some boolean circuit C. It should allow only one execution
on an arbitrary input after which it self-destructs. Additionally, the black-box
should not leak any information about C whatsoever. As explained in Sect. 4.2,
there are theoretical obstacles that make this goal impossible to achieve in its
full generality. So instead, we show that any adversary that operates a one-time
device can evaluate it on a single argument x and can hardly learn anything
more about the underlying circuit C but n, m, and |C|. It therefore gains some
additional knowledge that goes beyond C(x), namely the size of the circuit.
Admittedly, that information is not considered substantial in practice. Defini-
tion 1 makes this property formal in terms of a simulator that is permitted to
call an oracle evaluating C only once.

Definition 1. Let c, s, δ, q, and ε be parameters. Let C : {0, 1}n → {0, 1}m
be a boolean circuit with positive integers n and m. Write O for an oracle that
computes C(x) given x ∈ {0, 1}n. Consider an algorithm A = (Abig,Asmall)
which is (s + δ)-bounded in space, c-bounded in communication, and is allowed
at most q calls to the random oracle H. A string P is called a (c, s, δ, q, ε)–one-
time program for C if both of the following conditions hold:

– there exists a probabilistic polynomial-time decoder Dec that given x ∈ {0, 1}n
executes P using at most s bits of memory, so that Dec(x,P) = C(x), except
for probability ε (where the probability is taken over all possible choices of x
and P);

– there exists a simulator S with one-time oracle access to O, such that, for
any adversary A, no algorithm restricted to at most q oracle calls to H can
distinguish S(1n, 1m, 1|C|,A) and A(P) with a probability greater than ε.

Basically, the definition states that a user can honestly execute a device contain-
ing a one-time program on a single input of his choice. Yet, even for a compu-
tationally unbounded adversary A = (Abig,Asmall), with Asmall having extra δ
bits of memory, it is infeasible to break the device. We note that the one-time
property formulated above is slightly stronger than what one may need for the
applications. For instance, it could be safe to give the adversary some partial
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information about the circuit (e.g. information about a single boolean gate). In
our definition, we disallow adversary to find out anything more than n, m, |C|,
and C(x) for a single x. We also remark that the definition provides adaptive
security, i.e., the adversary can freely choose x depending on the contents of P.

Shortly, in Sect. 5.3, we construct a compiler Compilek,s(C) that, for some
parameter k, converts any boolean circuit C to a one-time program P that can
be organized into a device with s bits of memory. The main result of this paper
is stated in the below Theorem 1 about Compilek,s(C). The theorem contains
a reference to circuits of uniform topology. A uniform version of C, denoted C̃, is
produced by the algorithm of Kolesnikov and Schneider [15], which is discussed
in Sect. 4.2. Transforming C to such a form introduces a small blow-up factor
(see (4) below) so that C̃ is slightly larger than C.

Theorem 1. Let k be a security parameter and let H : {0, 1}∗ → {0, 1}k be
modeled as a random oracle. Then, for any boolean circuit C : {0, 1}n → {0, 1}m
and P ← Compilek,s(C), the string P is a (c, s, δ, q, ε)–one-time program for C

with ε = O(q|C̃|2−k), provided that k ≥ max(m, 4n2 log q) and

s − 2nc ≥ 2nδ + 6k(2|C̃| log |C̃| + 5n2 + 4nm), (1)

where |C̃| denotes the number of gates in C̃ – a version of C with uniform
topology.

Remark 1. We note that the above theorem holds even if a potential distin-
guisher is given C. Also, we impose no limits on its running time as well as
on time-complexity of the adversary. A can be computationally unbounded but
he merely subjects to restriction on the number of oracle calls made. The con-
struction of S is universal, i.e., it is independent of C and P so no information
about C is hardwired in S. We also mention that with a minor modification of
our construction we can replace the factor 2n on the left-hand side of (1) with
2n/ log n. We do not present this modification here as it would make the proofs
considerably more complicated.

4 Tools

For completeness of the exposition, we outline several existing constructions the
architecture of one-time devices builds upon – circuit obfuscation techniques and
one-time computable pseudorandom functions.

4.1 Circuit Garbling

An important landmark in the theory of multi-party computations was set up by
Yao in mid ’80s. His seminal work [19] provided the first general protocol that
enabled two honest-but-curious users to jointly evaluate a function f without
disclosing their respective private inputs x. A so called circuit garbling process
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accounted for an essential part of this method. Its role was to conceal all interme-
diate values that occur on internal wires (in particular: on certain input wires) of
a boolean circuit representing f during computation. Since the circuit garbling
seems to be well-known, we skip its description here and only give the minimal
relevant excerpt just to fix the notation.

Let k be a security parameter. For a boolean circuit C the garbling procedure
Garblek(C) associates two random strings Kw

0 and Kw
1 of length k with each wire

w of C. These two keys correspond to bits 0 and 1, respectively, that could appear
on the wire w when evaluating C in its plain form. The mapping between input
and output keys for each gate is masked using an auxiliary encryption scheme
(E,D). We call it a garbling encryption scheme. It enjoys some extra properties,
given by Pinkas and Lindell [16], going a little beyond the standard semantic
security. In what follows, EK(·) denotes the encryption under a key K (similarly,
DK(·) stands for the decryption using K). We instantiate EK using the following
setting, compliant with the requirements listed by Pinkas and Lindell, based on
the oracle H:

EK(M) := (H(K), r,H(K, r) ⊕ M) where r
$← {0, 1}k. (2)

A double-encryption under two keys, say K1 and K2, each of length k,
which is written as EK1;K2(·) with DK1;K2(·) being the complementary double-
decryption, is a paramount ingredient of the garbling process. Departing from
the original solution by Pinkas and Lindell for technical reasons, we specify
EK1;K2(·) separately extending (2) with:

EK1;K2(M) := (H(K1,K2), r,H(K1,K2, r) ⊕ M) for r
$← {0, 1}k. (3)

In the remainder of this paper we assume that ciphertexts in a garbling encryp-
tion scheme are all of length 3k as implied by (2) and (3).

Below, we assume that the garbling procedure outputs a triple (I,C, O),
where C is the actual garbled circuit, while I and O are arrays mapping plain
bits to keys for input and output wires. C is just a list of encrypted keys and each
ciphertext on that list was produced using the double-encryption (3). Closely
related to Garblek(C) is the procedure for evaluating the garbled circuit C on
a given input x. We write Eval(C, O,Kx) to name this procedure.

4.2 Uniform Circuit Topology

One of the requirements a one-time program has to stand up to is ensuring
that no eavesdropping into program’s internals is possible. It is also a common
problem in practical computer science to create software invulnerable to reverse
engineering. Usually, satisfactory results can be achieved by ad-hoc techniques
that decrease readability of a program (e.g. by obscuring a source code syn-
tactically or inserting NOOPs). From a theoretical point of view, however, an
ideal obfuscator cannot exist. Barak et al. [3] provide an artificial example of
a family of functions that are inherently unobfuscatable. That is, there always
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exists a predicate which leaks when we are given a function in its plain form but
cannot be reliably guessed if the function is implemented as a black-box. Fortu-
nately, some partial obfuscation is attainable. There are several works describing
methods for hiding circuit topology [15,18,20]. The most recognized one, which
is asymptotically optimal in terms of additional overhead it incurs, comes from
Valiant [18]. Recently, Vladimir Kolesnikov has pointed out to us that his con-
struction [15], while being slightly worse asymptotically than Valiant’s, achieves
a smaller implied constant and thus performs better for circuits of up to 5000
gates. We recall his joint result on topology erasing algorithm UniformCircuit(C)
below.

Theorem 2 (Kolesnikov and Schneider [15]). Let C : {0, 1}n → {0, 1}m
be a boolean circuit. Then, the topology erasing algorithm UniformCircuit(C)
constructs a circuit C̃ with

|C̃| =
(
3
2 + o(1)

) · |C| log2 |C|. (4)

such that C̃(x) = C(x) for all x ∈ {0, 1}n and the topology of C (i.e., the con-
nectivity graph of C where each gate is stripped of information about what func-
tionality it actually implements) discloses (in the information-theoretic sense)
nothing more than n, m, and |C|.

The below Proposition 1 follows from the analysis given by Kolesnikov and
Schneider.

Proposition 1. The algorithm UniformCircuit(C) uses at most 4|C̃| log |C̃| bits
of memory. Put differently, given n, m, and |C| it is possible to generate a
uniform topology that is common for all circuits with n-bit input, m-bit output,
and |C| gates, within space of 4|C̃| log |C̃| bits.

4.3 One-Time Computable Pseudorandom Functions (PRFs)

A notion of the one-time computable pseudorandom functions was introduced
by Dziembowski et al. [8]. A salient development of this work is a construction
of a pseudorandom function, or, more generally, a set of n such functions, where
each function can be calculated for a single argument in the computation model
with Abig and Asmall having limited space and communication. Dziembowski
et al. assume the existence of the random oracle H. The underlying idea is to
store a long random key, say R, on a device that Asmall operates on. Now, R and
H determine n distinct pseudorandom functions (FH

1,R, . . . , FH
n,R). It is possible

to evaluate each one on any input but the computation forces an erasure of R
so that no one can viably compute both FH

i,R(x) and FH
i,R(x′) for any two points

x �= x′ and the same index i. Below, we borrow some basic definitions from the
original paper to formalize the mentioned properties.

Consider an algorithm WH that takes a key R ∈ {0, 1}µ as an input and has
access to the oracle H. Let (FH

1,R, . . . , FH
n,R) be a sequence of functions depending

on H and R. Assume that WH is interactive, i.e., it may receive queries, say
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x1, . . . , xn, from the outside. The algorithm WH replies to such a query by issuing
a special output query to H. We assume that after receiving each xi ∈ {0, 1}∗ the
algorithm WH always issues an output query of a form ((FH

i,R(xi), (i, xi)), out).
We say that an adversary breaks PRFs if a transcript of oracle calls made during
its entire execution contains two queries ((FH

i,R(x), (i, x)), out) and ((FH
i,R(x′),

(i, x′)), out), appearing at any point, for some index i and x �= x′.

Definition 2 (Dziembowski et al. [8]). An algorithm WH with at most q
queries to the oracle H defines (c, μ, σ, q, ε, n)–one-time computable PRFs if:

– WH has μ-bounded storage and 0-bounded communication;
– for any AH(R) that makes at most q queries to H and has σ-bounded storage

and c-bounded communication, the probability that AH(R) (for a randomly
chosen R

$← {0, 1}µ) breaks PRFs, is at most ε.

Basically, what this definition states is that no adversary with σ-bounded
storage and c-bounded communication can viably compute a value of any FH

i,R

on two distinct inputs. Dziembowski et al. [8] prove the existence of the one-time
computable PRFs in the Random Oracle model under some plausible assumption
on parameters c, μ, σ, q, ε, and n.

The use case we investigate in the paper requires a slightly stronger primi-
tive than the PRFs of Definition 2. In this work, we introduce extended one-time
computable PRFs. An observation we come out with is that the limits on memory
available to an adversary can be relaxed moderately. Namely, once all FH

i,R are
computed on some arguments, an adversary might be given unrestricted space,
yet it still gains no advantage in breaking PRFs in the remainder of its execution.
Now, the computing phase is a time interval between the beginning of an execu-
tion and the moment when all output queries of the form ((FH

i,R(xi), (i, xi)), out)
were made (for some xi and every i = 1, . . . , n), provided that no i appears twice
in that part of transcript. The below Definition 3 strengthens the notion of one-
time computable PRFs.

Definition 3. An algorithm WH defines extended (c, μ, σ, q, ε, n)–one-time com-
putable PRFs if:

– WH defines (c, μ, σ, q, ε, n)–one-time computable PRFs;
– for any adversary AH(R) that makes at most q queries to H, has σ-bounded

storage and c-bounded communication during the computing phase, but is not
bounded on space afterwards, the probability that AH(R) breaks PRFs, is at
most ε.

In full version of the paper, we verify that the theorem about the extended
one-time computable PRFs holds with essentially the same parameters as in
the base theorem by Dziembowski et al. [8]. Here, we present one more result
about the existence of the extended PRFs that stems from the one proven in
the full version and provides a condition which is more convenient to use in our
particular application.
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Theorem 3. Let c, μ, δ, q, and n be positive integers. Then, for any ε ≤ q2−4n2
,

there exist extended (c, μ, μ+τ, q, ε, n)–one-time computable PRFs, provided that

μ ≥ 2n · (τ + c + 4 log q + 6 log ε−1 + 6). (5)

A proof of Theorem 3 appears in full version of the paper.

5 The Construction

In this section, we give a high-level description of what a one-time device is made
up of. Our solution, in principle, combines the hardware-based construction [13]
and the primitive developed by Dziembowski et al. [8]. We replace the OTM
units present in the former work with the extended one-time computable PRFs
to achieve a purely software-based construction. There are, however, certain
subtleties that occur when attempting to compose these both worlds together.
Before proceeding to the correct construction we ultimately propose, we detail
why a security proof for the most straightforward solution simply does not work
out of the box.

5.1 Näıve Approach

A simple composition of techniques outlined in Sect. 4 one might conceive of
could be the following. Garble a circuit as per Yao’s method in the same way
as it is done by Goldwasser et al. [13], and conceal its input keys using one-
time computable PRFs. That is, let K ini

0 and K ini
1 be two keys corresponding

to the ith input wire of the garbled circuit. Pick a long random string R and
calculate both FH

i,R(0) and FH
i,R(1) for each member function FH

i,R of the one-time
computable PRFs. Then, a one-time device can store just the garbled circuit, the
key R together with both K ini

0 ⊕FH
i,R(0) and K ini

1 ⊕FH
i,R(1) for each i. Intuitively,

since the one-time PRFs only allow any space restricted algorithm to discover
each FH

i,R(bi) for a single bit bi = 0 or 1, keeping its counterpart FH
i,R(bi) entirely

random, we can guarantee that such an algorithm can learn at most one input
key K ini

0 or K ini
1 . In that way we simulate the OTM gadgets and the original

reasoning [13] should apply from this point. This would seemingly satisfy the
requirements of Definition 1.

However, there are several problems arising in the above construction. Firstly,
there is more space available on a device than just space needed to store the key
R for the one-time computable PRFs. For instance, the garbled circuit resides in
this additional memory. The extra space could be possibly used by an adversary
to break PRFs, i.e., to compute both FH

i,R(0) and FH
i,R(1) for some i. There are

several ways to fix this issue. Perhaps the most basic and the cleanest one is
asserting that the garbled circuit is read-only. This is not a viable option for
us as long as we aim at a solution that does not assume any tamper- nor even
leakage-resistant components. Another way to circumvent the problem would be
increasing the amount of free memory (cf. the parameter δ in Definition 1) avail-
able to an adversary, which would, however, worsen the parameters in Theorem 1
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substantially. We take a different path and, in fact, ensure that an adversary
may not erase the garbled circuit partially, reuse the claimed memory to break
PRFs, and then still be able to evaluate the circuit. What makes establishing
this property a bit tricky is an observation that a limited erasure is always pos-
sible, e.g., a constant number of bits from the circuit can be safely dropped and
then guessed back correctly with large enough probability. A new element we
introduce in the construction secures that an adversary cannot reliably do more
than that. This is made formal in full version of the paper.

An important consequence of putting the garbled circuit into writable mem-
ory is that the basic one-time computable PRFs, as given by Definition 2, fall
short of providing suitable security. The reason is that once an adversary com-
putes each member function of the PRFs honestly for a single input and evaluates
the circuit, then it can erase the circuit and, again, break the PRFs soon after
using the increased amount of memory. This justifies turning to the extended
one-time computable PRFs of Definition 3. Studying the details of the construc-
tion by Dziembowski et al. it is not hard to notice that their PRFs effectively
self-destruct themselves when evaluating and thus prevent any further evalu-
ations even by space unrestricted algorithms. This makes a transition to the
extended PRFs rather straightforward.

Finally, it is not evident whether such a vague construction provides adaptive
security or suffers from the same issue Bellare et al. [4] identified in the work of
Goldwasser et al. [13].

5.2 One-Time Device

Our concluding construction of one-time programs does not differ significantly
from the basic idea sketched above. Therefore, it involves garbling a circuit and
masking its input keys with the extended one-time computable PRFs. However,
it features an additional layer between these two components which is needed to
address the issues we have mentioned. This auxiliary element can be viewed as
a simple all-or-nothing transform. The main purpose it serves is splitting each
execution of a one-time program into two phases. In the first stage any user, an
honest or a malicious one, has to commit himself to the entire input he intends
to compute the program on. The garbled circuit can be evaluated in the second
phase, yet this process cannot begin before input bits for all the input wires are
decided.

The exact way how such a separation can be accomplished is not very com-
plex. Each input wire of the circuit is associated with an additional random key.
We refer to a set of these keys as to latchkeys. Then, every latchkey gets encrypted
using the outputs of the extended PRFs. We ensure that the ith latchkey can
be recovered given FH

i,R(0) or FH
i,R(1). Lastly, we apply n-out-of-n secret sharing,

where each latchkey forms a share, and combine the resulting secret with the
garbled circuit using the random oracle H. This produces a new string which
we call the master key. Intuitively, by the property of H, this value cannot be
determined without all the latchkeys and the circuit. We now require the master
key to be known to anyone attempting to discover the actual input keys of the
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garbled circuit. Technically, we adjust the näıve approach and replace the one-
time pad encryption keys FH

i,R(0) and FH
i,R(1) present there with the keys that

also depend on the master key.
There are two goals we achieve with this transform. First, the garbled circuit

cannot be partially erased during the first phase as this would make computing
the master key impossible, block opening all its input keys and render the circuit
unusable. Second, it makes our construction immune to the attack devised by
Bellare et al. [4]. The fact that the one-time programs of Goldwasser et al.
permit what Bellare et al. call partial evaluations is the fundamental reason
that makes these programs susceptible to the attack. In our construction a user
cannot attempt to evaluate the circuit if he has learnt keys corresponding only
to a proper subset of input wires. In other words, partial evaluations are not
feasible. Also, we note that Bellare et al. consider a family garbling schemes and
construct an artificial scheme for which the proof of Goldwasser et al. fails. We,
in turn, use only a single, explicitly defined garbling scheme (3). It leaves no
room for attaching any security-exploiting superfluous data as Bellare et al. do.
Finally, our garbled circuits look entirely random to any adversary who does not
know the input keys. Seeing this random string does not help the adversary in
choosing his input.

Overall, one-time devices we propose contain the following data:

– a garbled circuit C together with a table O mapping output keys of the circuit
back to plain bits;

– a random key R that determines the extended one-time computable PRFs;
– an array L of encrypted latchkeys;
– an array K consisting of one-time pad encrypted input keys for the garbled

circuit C – the encryption keys depend on all the latchkeys and C;
– the number m of output wires of the original circuit.

5.3 One-Time Compiler

The purpose of a one-time compiler is to transform an arbitrary boolean circuit
C : {0, 1}n → {0, 1}m into a deliberately obscured form accompanied with some
additional logic (a procedure) that enables evaluations of the circuit on every
single n-bit input.

The compiler routine Compilek,s constructs a one-time program deployable
on a device with a grand total of s bits of writable memory (including registers,
RAM, flash memory, and any other persistent storage). We, however, introduce
no extra assumptions on the amount of read-only memory available. Compilek,s
is allowed unrestricted use of a source of random bits, as well as access to the
aforementioned random oracle H : {0, 1}∗ → {0, 1}k with k being a security
parameter. Algorithm 1 presents a listing of the one-time compiler procedure.

Firstly, the compiler prepares (Lines 2 and 3 of Algorithm1) a set of random
latchkeys Lini . A value Lini corresponds to the ith input wire ini of C. A string
Latch := Lin1 ⊕. . .⊕Linn combines all the latchkeys into a single key. From Latch
we derive (Line 5), by means of the oracle, one more random value, denoted
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Algorithm 1. One-time compiler Compilek,s(C)
Input: a boolean circuit C : {0, 1}n → {0, 1}m, a security parameter k ≥ m, a total
amount of memory on the device s
Output: a one-time program P = (m, R, L, K,C, O)

1: procedure Compilek,s(C)
2: for i ← 1 to n do
3: Lini

$← {0, 1}k

4: Latch ← Lin1 ⊕ · · · ⊕ Linn

5: Mask ← H(Latch)|m
6: C̃ ← UniformCircuit(C ⊕ Mask)

7: (I,C, O) ← Garblek(C̃)
8: Master ← H(Latch,C)

9: μ ← s − (12|C̃| + 8n + 2m)k − logm
10: round μ down to the largest multiple of k

11: R
$← {0, 1}µ

12: for each input wire ini of C do � ini is the ith input wire of C
13: (K ini

0 , K ini
1 ) ← I[i]

14: compute FH
i,R(0) and FH

i,R(1)
15: L[i] ← (EFH

i,R
(0)(L

ini), EFH
i,R

(1)(L
ini)
)

16: K[i] ← (K ini
0 ⊕ H(FH

i,R(0),Master), K ini
1 ⊕ H(FH

i,R(1),Master)
)

17: end for each
18: return (m, R, L, K,C, O)
19: end procedure

Mask, trimming the output of H to the leading m ≤ k bits. The exact role that
all these auxiliary components play should become clear later, in Sect. 6. Having
calculated these values, the compiler enters its main phase in Line 6. There, the
obfuscation algorithm is run, yet on a biased version of C, say C∗, defined as
C∗(x) := C(x) ⊕ Mask. At this point Mask is merely a constant that does not
depend on x. Obviously, C∗ can be viewed as a boolean circuit and implemented
in such a way that |C∗| = |C| (it suffices to flip, if needed, a functionality of each
gate an output wire of C is attached to, depending on the corresponding bit of
Mask). The reason behind switching to C∗ instead of working with C directly is
that the simulator from Theorem 1 needs to alter an output of a circuit when
interacting with an adversary. This trick can be exercised by changing the value
of Mask in a transparent way, which is done by S in Sect. 6.

The obfuscated circuit is garbled (Line 7) using Yao’s method. Next, extended
one-time computable PRFs (in the sense of Definition 3) are set up (Line 10).
Actually, this step boils down to picking a random string R that determines
(together with H) said pseudorandom functions FH

i,R. The embedded extended
one-time computable PRFs are a primitive that protects input keys of the gar-
bled circuit. Namely, in order to evaluate a one-time program on some input
x = b1b2 . . . bn, one has to compute each FH

i,R(bi) for i = 1, . . . , n. By virtue
of the property of extended PRFs, this computation erases an essential portion
of memory available on the device and makes evaluations of FH

i,R(bi) infeasible.
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The compiler, however, needs to find both: FH
i,R(0) and FH

i,R(1) for all i’s (this
requires a larger amount of memory than just s bits but still Compilek,s is clearly
polynomial in space and time).

Stored on the device are two encryptions of each latchkey Lini under FH
i,R(0)

and FH
i,R(1) as encryption keys. For this purpose, in Line 15 where these cipher-

texts are accumulated in array L, we use the garbling encryption scheme as given
by (2). The input keys for C generated by the garbling procedure get encoded too
before being placed on the device. That is: the ith entry of K contains, for b = 0
and 1, simple one-time pad encryptions of K ini

b under a key H(FH
i,R(b),Master).

Here, Master := H(Latch,C) is a value that depends on all the latchkeys and
the garbled circuit C. This all-or-nothing construction ensures that a user can no
sooner determine K ini

b than he has computed all FH
i,R(bi). Also, this allows us to

hold off the moment when an adversary can reclaim a part of memory occupied
by C and reuse it to enlarge space available for computing (or breaking) the
extended PRFs. In this way we control the amount of free memory during the
computing phase specified in Definition 3.

Now that we have described the one-time compiler, we present a decoder
Dec = Deck which is capable of evaluating a program produced by Compilek,s
on an arbitrary input x = b1b2 . . . bn. As the first step, Deck determines FH

i,R(bi)
for each i = 1, . . . , n. This is accomplished by computing labels of output vertices
under a random oracle labeling of a certain on-line constructed graph (the exact
method follows from the work of Dziembowski et al. [8]). The key R that settles
a labeling of input vertices of this graph gets erased during the process, and
the region of memory that contained R can be reused by Dec. Next, the decoder
decrypts a matching entry of each L[i] to find Lini . Based on these latchkeys, Dec
computes Latch, Mask = H(Latch)|m, Master = H(Latch,C), and reveals, using
K[i], input garbled keys K ini

bi
that correspond to each bit bi. Let Kx be a vector

consisting of all K ini

bi
. The decoder then executes Eval(C, O,Kx) subroutine and

calculates a bitwise exclusive or of the result with Mask to obtain the final
value, i.e., C(x). As for evaluating C, the garbled circuit kept on the device only
includes a list of garbled tables without its actual topology. Prior to running
Eval, the decoder needs to generate the unique uniform topology distinctive
for all circuits of n inputs, m outputs, and |C| gates. That is, Dec simulates
the topology erasing algorithm on such an arbitrarily chosen circuit. A memory
that has to be supplied by Dec for this step is located exactly in the same
region the key R was previously stored in. By Proposition 1, this space, which
is considered free after computing the extended PRFs, has a sufficient size if
μ = |R| ≥ 4|C̃| log |C̃|. The sizes of the remaining components of P can be easily
counted: |L| = 6nk, |K| = 2nk, |C| = 12|C̃|k, and |O| = 2mk. In total, the space
that P occupies is

|P| = μ + (12|C̃| + 8n + 2m) · k + log m. (6)
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6 Universal Simulator for One-Time Programs

In this section, we focus on the more intricate part of Definition 1 and describe an
explicit simulator S. We employ a similar approach to the one that appears in the
work of Goldwasser et al. [13]. A notable difference, however, is that our construc-
tion includes a component, i.e., the extended one-time computable PRFs, which
does not offer a black-box security, in opposition to the aforementioned OTMs.
The condition (1) of Theorem 1 ensures that our replacement of the OTMs per-
forms nearly equally well. Namely, it is possible to achieve ε = (q + 1)2−k in
Theorem 3 so that the corresponding extended one-time computable PRFs can
only be broken with a small probability. By the analysis given in full version of
the paper, the extra memory the adversary can retain in the computing phase
(see Definition 3) can be bounded above by τ = δ + (8n + 2m + 3)k. Now,
combining (5) and (6) we get the following constraint

s − 2nc ≥ 2n(δ + τ + 6k + 6) + (12|C̃| + 8n + 2m)k + log m (7)

But (1) guarantees this condition is met.
Now, we give an outline of how the simulator S of Definition 1 works given

1n, 1m, 1|C|, and an (s+δ)-space bounded, c-communication bounded adversary
AH. Plus, S has access to H. The simulator begins with assembling a uniformly
random circuit C ′ : {0, 1}n → {0, 1}m of size |C ′| = |C|. Then, it runs the one-
time compiler Compilek,s on C ′ obtaining a protocol P ′ = (m,R,L,K,C, O). The
simulator maintains two exact copies of P ′. In the next step S starts executing
AH on a copy of P ′, recording each oracle call to H. Depending on what the
resulting transcript contains, the simulator picks one of the following paths:

1. There exists at least one index i such that none of the associated values
FH
i,R(0) nor FH

i,R(1) has been computed. Then, S simply outputs a result AH

has returned.
2. AH has broken the PRFs (in the sense given in Sect. 4.3). In this case an

outcome of the simulation is again the same as the result AH has produced.
3. For each i = 1, . . . , n, the adversary AH has issued an output query to H

computing FH
i,R(bi) either for bi = 0 or bi = 1 (but not both – therefore

AH has not broken PRFs). As S has learnt all these values in the process,
it can decrypt each of the latchkeys Lini just to pinpoint for which bi the
function FH

i,R has been computed. All the FH
i,R(bi)’s correspond to a single

value xA := b1b2 . . . bn that AH has committed to by evaluating the extended
one-time computable PRFs. Thus, S is also able to find out xA, compute
C ′(xA) on its own, and query O on argument xA. Let Δx := C ′(xA) ⊕
C(xA). If Δx happens to be 0m then S continues by returning the value
AH has outputted. Otherwise, the simulator discards this result. Using the
latchkeys and querying the oracle H on Latch = Lin1⊕. . .⊕Linn , the simulator
determines the genuine value of Mask = H(Latch)|m. Then, it reprograms H
so that H(Latch)|m := Mask ⊕ Δx. Next, S rewinds AH and runs it again
on a leftover copy of P ′ with substituted H. No matter which of the above
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conditions 1–3 this second execution matches, an output of AH becomes the
final result of the simulation.

In full version of the paper we prove that the output of S is indistinguishable
from a result of AH running on P, except for O(q|C̃|2−k) probability.
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Abstract. In this paper we analyse three authenticated encryption
schemes, CMBC-MAC, SCMA and CBC-X, which were proposed for
wireless sensor networks (WSN). Our research shows that these three
schemes all have serious security problems either in authenticity or in
privacy. More specifically, we only need one query to break the authen-
ticity of CMBC-MAC and SCMA with success probability of 1. Mean-
while, we only need one query of block length of at least three to break
the authenticity of CBC-X with success probability of 0.63, and we need
two queries to break the privacy of CBC-X with success probability of
1 − 2−64.

Keywords: Authenticated encryption · Cryptanalysis · CMBC-MAC ·
SCMA · CBC-X

1 Introduction

The application of wireless sensor networks (WSN) ranges widely from battle-
field surveillance, environmental monitoring, medical application, to industrial
process monitoring and control. For most WSN applications, security and effi-
ciency are often significant or even rigorous requirements. When several security
provisions are required, authenticated encryption with associated data (AEAD)
[1] schemes are able to cover the need. AEAD schemes can have the payload
portion encrypted and authenticated while the associated header portion unen-
crypted, so that packet can be routed expeditiously.
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Generally speaking, AEAD schemes can be classified as two-pass and single-
pass modes. In a two-pass mode, such as CCM [2], EAX [3], CWC [4] and
GCM [5], every block is processed twice, one for authenticity, the other for
privacy. In a single-pass mode, such as IAPM [6] and OCB [7], the single pass
can provide privacy and authenticity simultaneously. Characteristically, single-
pass mode generally exhibits a lower computational cost.

The security provisions of WSN have given rise to a number of proposals for
well-defined AEAD schemes, including CCM [2], which is IEEE 802.11i security
standard, TinySec [8], which is the de facto standard for WSN data communi-
cation security, and CCFB+H [9]. Compared to CCM and TinySec which are
both two-pass modes, three single-pass modes CMBC-MAC [10], SCMA [11]
and CBC-X [12] are more resource saving and energy efficient and thus perform
better in WSN environment. However, as not expected, these three schemes all
suffer from serious security problems either in authenticity or in privacy.

In this paper we examine these three single-pass AEAD modes, CMBC-MAC,
SCMA and CBC-X. Our first target CMBC-MAC is designed for improving
CCM. Our second target is Simultaneous Combined Mode Algorithm (SCMA),
whose encrypting portion is a variant of Counter Output Feedback mode (CTR-
OFB) [13] and the authentication portion is a variant of QBC-MAC [14]. Both
CMBC-MAC and SCMA can be viewed as encrypt-then-MAC scheme, but with
tinny authentication portions, and the tags of schemes are only determined by
the sum of ciphertext blocks. Our attacks on CMBC-MAC and SCMA is sim-
ple, but not negligible from an industrial view point. Our third target is CBC-
X, which adopts a novel padding technique. It is important to note that the
description of CBC-X in the original paper has some errors which may cause
contradiction and confusion, which are corrected in this paper. Our main results
are exhibited in Table 1 where the computation complexity in the forgery attack
against CBC-X is trivial.

Table 1. Main results of this paper

CMBC-MAC SCMA CBC-X

Attack Forgery Forgery Forgery Chosen Plaintext

Query 1 1 1 2

Probability 1 1 0.63 1 − 2−64

Complexity O(1) O(1) - O(1)

The paper is organized as follows: Sect. 2 describes the notations used and
the security mode we adopt in this paper. Section 3 describes the mechanism of
CMBC-MAC and the forgery attack on it. Section 4 describes the mechanism
of SCMA and the forgery attack on it. Section 5 describes the mechanism of
CBC-X, the forgery attack and chosen plaintext attack on it. In Sect. 6 we make
some remarks on our attacks. And we conclude in Sect. 7.



Cryptanalysis of Three AE Schemes for Wireless Sensor Networks 397

2 Notations and Security Models

2.1 Notations

– A block cipher is a function E : {0, 1}k×{0, 1}m → {0, 1}m, where m and k are
the block-length and key-length respectively. EK(·) = E(K, ·) is a permutation
for all K ∈ {0, 1}k.

– X ⊕ Y denotes the exclusive or (XOR) of two strings X and Y .
– X � Y/X � Y denotes the add/minus modulo 2m in which m = |X| = |Y |.
– X � f denotes the bitwise right-shift by f bits on the string X.

These notations are suitable for all the three AE schemes.

2.2 Security Models

We adopt the standard security models as those mentioned in [15].

Authenticity Model. The adversary A queries the Enc with messages, observ-
ing the outputs. After some queries, he tries to return a new ciphertext which
does not appear before. Formally, the advantage of A is defined by

Advauth(A) = Pr[AEnc forges].

In this authenticity model we break the authenticity of CMBC-MAC, SCMA
and CBC-X.

Privacy Model. The adversary B also queries the Enc with messages, observing
the outputs, and tries to distinguish it from random bits. Formally, the advantage
of B is defined by

Advpriv(B) = |Pr[BEnc ⇒ 1] − Pr[B$ ⇒ 1]|.
where $ returns a random string with the same length of real ciphertext. Just
like in the security analysis of the GCM or OCB mode, we assume that the
adversary can choose but can not repeat the initial vector (IV) or nonce used in
the scheme, in this model which is also known as nonce-respecting model [15],
we break the privacy of CBC-X.

3 Forgery Attack on CMBC-MAC

3.1 Description of CMBC-MAC

CMBC-MAC [10] is a hybrid CCM design with merged Counter Mode Encryption
and CBC-MAC variant. It is designed for enhancing the efficiency of CCM, which
is IEEE 802.11i standard for wireless local area network (WLAN). CMBC-MAC
scheme uses 128-AES as the underlying cryptographic primitive. The CMBC-MAC
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Fig. 1. CMBC-MAC

scheme is illustrated in Fig. 1. Suppose the input message M (having been padded
if necessary) is divided into a sequence of 128-bit plaintext blocks,
M = M1M2M3 · · ·Mn. A nonce N is chosen to derive the initial value (IV ) and
the counter value (Ctr). Using Yi as intermediate results, the encryption of the
plaintexts M1,M2,M3, · · · ,Mn is defined as C1 = M1 ⊕ Ek2(Ctr), Ci = Mi ⊕
Ek2(Ctr�i�1) (2 ≤ i ≤ n), where Y1 = Ek1(IV )⊕C1, Yi = Yi−1⊕Ci (2 ≤ i ≤ n).
The tag is computed as T = Yn ⊕ Ek2(Ctr � n).

CMBC-MAC is a single-pass mode that requires two keys k1, k2 for encryp-
tion and authentication. The generation of IV and Ctr is not explicitly stated
in the original paper [10], we assume that IV and Ctr can not be chosen by the
adversary in the forgery attack on CMBC-MAC.

3.2 Breaking Authenticity of CMBC-MAC

In the following we exhibit a simple forgery attack on CMBC-MAC. This attack
only makes one special query to the encryption oracle, then returns a valid triple
of initial value, ciphertext and tag which do not appear before.

1. Query (M1M2 · · ·Ml) to the encryption oracle, where Mi (1 ≤ i ≤ l) are arbi-
trary blocks, and get (IV,C1C2 · · ·Cl, T ), where Ci (1 ≤ i ≤ l) are ciphertext
blocks, T is the tag.

2. Return (IV,C∗
1C

∗
2 · · ·C∗

l , T ) such that
l⊕

i=1
Ci =

l⊕
i=1

C∗
i .

The corresponding plaintext blocks M∗
i of C∗

i under the same initial value IV are
Mi ⊕Ci ⊕C∗

i (i = 1, 2, · · · , l). The proof for the validation of (N,C∗
1C

∗
2 · · ·C∗

l , T )
is trivial, and we can get AdvauthCMBC(A) = 1.
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4 Forgery Attack on SCMA

4.1 Description of SCMA

The encrypting portion of SCMA [11] is a variant of Counter Output Feedback
mode (CTR-OFB) [13] and the authentication portion is a variant of QBC-MAC
[14]. SCMA scheme uses a 64-bit block cipher as the underlying cryptographic
primitive. The graphical implementation of SCMA is in Fig. 2. Let message
M = M1M2M3 · · ·Mn be a sequence of 64-bit plaintext block. Using Xi, Yi as
intermediate results, we suppose Y0 = Ek1(N),X1 = Ek2(Y0 ⊕ 1 � Twk) and
Xi = Ek2(Y0 ⊕ i � Xi−1) (2 ≤ i ≤ n), Yi = Yi−1 � Ci (1 ≤ i ≤ n). Then the
encryption of the plaintexts is defined as Ci = Xi ⊕ Mi (1 ≤ i ≤ n). The tag is
computed as T = Yn � Ek1(Yn).

Fig. 2. SCMA

Like CMBC-MAC, SCMA is also a single-pass mode that requires two keys
for encryption and authentication. The adversary is allowed to manipulate both
the nonce and the associated-data while no nonce is repeated. Twk is a tweak
value chosen by the application designer to be a security parameter.

4.2 Breaking Authenticity of SCMA

Now we exhibit a simple forgery attack to the authenticity of SCMA which is
similar to the attack we give against the authenticity of CMBC-MAC.

1. Query (M1M2 · · ·Ml) to the encryption oracle, where Mi (1 ≤ i ≤ l) are arbi-
trary blocks, and get (N,C1C2 · · ·Cl, T ), where Ci (1 ≤ i ≤ l) are ciphertext
blocks, T is the tag.

2. Return (N,C∗
1C

∗
2 · · ·C∗

l , T ) such that
l

�
i=1

Ci =
l

�
i=1

C∗
i .
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The corresponding plaintext blocks M∗
i of C∗

i under the same Nonce N are
Mi ⊕Ci ⊕C∗

i (1 ≤ i ≤ l). The verification of the legacy of the forgery is omitted
here, since it is the same as of CMBC-MAC.

SCMA and CMBC-MAC have something in common: the authentication
portion of both schemes is a sum of ciphertexts. The method of linear combining
of ciphertexts for authentication is the key for our forgery attack. For future
design principle, this construction method should not be directly used for data
integrity.

5 Forgery Attack on CBC-X

5.1 Description of CBC-X

The CBC-X [12] scheme is a link layer security scheme for sensor networks. This
scheme uses Skipjack [16], a 64-bit block cipher as the underlying cryptographic
primitive. For an input message M , denote the byte-length of M as len. For
len (mod 8) = 0, no padding technique is needed before encryption. For an
input message byte-length with length not the exact multiples of 8, a novel
padding technique is promoted, which consists of a Data Stealing technique and
a MAC Stealing technique, enabling the scheme to achieve zero-redundancy on
sending encrypted/authenticated packets.

For len (mod 8) = 0, we denote len = 8n and M = M1M2 · · ·Mn. The
encryption mechanism of (M, IV ) without padding technique is denoted as C1 =
Ek1(Ek1(IV ) ⊕ M1) ⊕ IV , and Ci = Ek1(Mi ⊕ Ci−1) ⊕ Mi−1 (2 ≤ i ≤ n). Then
the tag is computed as TAG = Ek2(PAD ⊕ Cn) ⊕ Mn, where PAD = “08” is
constant. Specifically, the least significant 4 bytes of tag is used as MAC, and
the diagram representation is in Fig. 3.

For f = len (mod 8) = 5, 6, 7, Data Stealing technique is used to complement
the plaintext with “stolen” bytes in IV . M ′ = M � 8−f , M ′[0 : 7−f ] = IV [f :
7], enabling the byte length of M ′ a multiple of 8. IV ′ = IV � 8 − f . And then
the encryption of (M ′, IV ′) without MAC stealing can proceed.

For len (mod 8) = 4, we denote len = 8(n−1)+4 andM = M1,M2, · · · ,Mn−1,
M [8n − 8 : 8n − 5]. Only the MAC Stealing technique is used, Mn = M [8n − 8 :
8n − 5]||PAD, where PAD = ABCD is constant. This technique enables the
byte length of plaintext concatenated MAC a multiple of 8. Then the encryp-
tion of the plaintexts is defined as C1 = Ek1(Ek1(IV ) ⊕ M1) ⊕ IV , and Ci =
Ek1(Mi ⊕ Ci−1) ⊕ Mi−1 (2 ≤ i ≤ n − 1). The tag is computed as TAG =
Ek2(Ek1(Mn ⊕ Cn−1) ⊕ Mn−1), which is used as MAC without truncation. The
diagram representation is in Fig. 4.

For f = len (mod 8) = 1, 2, 3, first the Data Stealing technique is used to
complement the plaintext with “stolen” bytes in IV, M ′ = M � 4 − f,M ′[0 :
3 − f ] = IV [f + 4 : 7], enabling the byte length of M ′ to be 4 modular 8.
IV ′ = IV � 4 − f . Then a MAC Stealing technique is used for (M ′, IV ′).

Like the previous two schemes, CBC-X is a single-pass mode that requires
two keys for encryption and authentication. In the original designing paper,
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Fig. 3. CBC-X mechanism without MAC Stealing

Fig. 4. CBC-X mechanism with MAC Stealing

IV has a pattern, so that only three bytes in IV is randomly chosen, and IV
cannot be reused. Any error alteration during message transmission can be
detected by re-computing the MAC before decryption.

In 2005, Chris J. Mitchell adopted a Birthday Paradox search to make a
forgery attack on a PCBC+ [17]. A similar Birthday Paradox search is applied
in this paper to break the integrity of CBC-X. In the rest of this section we
exhibit a known plaintext attack on CBC-X in the case that the byte-length
of plaintext is a multiple of 8, while other analogous attacks in other cases are
omitted here.
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5.2 Some Preliminary Observations

Our main result is based on Theorem 1 [17].

Theorem 1. Suppose an attacker knows r (r ≥ 2) pairs of blocks satisfying:

{(ui, wi) | 1 ≤ i ≤ r, wi = Ek1(ui)},

where k1 is a key used in CBC-X to compute ciphertexts. Suppose the attacker
also knows a message (IV, P1P2 · · ·Ps, PAD) and its corresponding ciphertexts
and MAC (IV,C1C2 · · ·Cs, T ), where PAD = 08, T = TAG[0 : 3] in the case
that len (mod 8) = 0.

If the sequence (u1, w1), (u2, w2), · · · , (ur, wr) satisfies

(i) B1 = Ms ⊕ w1, B2 = Cs ⊕ u1 ⊕ w2,
(ii) Bj = Bj−2 ⊕ uj−1 ⊕ wj (3 ≤ j ≤ r),
(iii) Br = Cs,

then the CBC-X decrypted version of the ciphertext

IV,C1, · · · , Cs, B1, B2, B3, · · · , Br, T
′

is equal to

IV,M1, · · · ,Ms, Cs ⊕ u1, B1 ⊕ u2, B2 ⊕ u3, · · · , Br−1 ⊕ ur, PAD,

where T ′ = TAG[0 : 3] ⊕Ms[0 : 3] ⊕Br−1[0 : 3] ⊕ ur[0 : 3]. That is, the modified
message is an existential forgery.

The proof of Theorem1 is similar to the proof in [17], so we omit it here.

5.3 A General Attack to Break the Authenticity of CBC-X

We now exhibit a forgery attack on CBC-X in the case that len (mod 8) = 0.
This attack need only one query with block length of at least three, to break the
authenticity of CBC-X with success probability of 0.63.

1. Query (IV,M1 · · ·MlMl+1)(l ≥ 2) to the encryption oracle, where Mi (1 ≤
i ≤ l + 1) are arbitrary blocks, and get (IV,C1 · · ·ClCl+1, T ). We then
compute ui = Ci ⊕ Mi+1, wi = Mi ⊕ Ci+1 (1 ≤ i ≤ l) and gain l pairs
(u1, w1), (u2, w2), · · · , (ul, wl) which satisfy wi = Ek1(ui) (1 ≤ i ≤ l).

2. Let v = min{v is even | lv ≥ 2m/2, l ≥ 2}. Then generate lv possible
sequences (ui1 , wi1), (ui2 , wi2), · · · , (uiv , wiv ) (1 ≤ i1, i2, · · · , iv ≤ l), and for
each such sequence compute Bv using the equations:
(i) B1 = Ml+1 ⊕ wi1 , B2 = Cl+1 ⊕ ui1 ⊕ wi2 ,
(ii) Bj = Bj−2 ⊕ uij−1 ⊕ wij (3 ≤ j ≤ v).
Sort and store all the Bv values. This step will take O(2m/2) XOR operations
and O(2m/2) memory space.
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3. Now repeat the same process as step 2, working backwards from B′
v =

Cl+1. Generate lv possible sequences (u′
i′1
, w′

i′1
), (u′

i′2
, w′

i′2
), · · · , (u′

i′v
, w′

i′v
) (1 ≤

i′1, i
′
2, · · · , i′v ≤ l), and for each such sequence compute B′

0 using the equations:
(i) B′

v = Cl+1,
(ii) B′

j = B′
j+2 ⊕ u′

i′j+1
⊕ w′

i′j+2
(j is even, v − 2 ≥ j ≥ 0).

If any of the values B′
0 equal any of the Bv values stored before, then set

(uiv+j
, wiv+j

) = (u′
i′j
, w′

i′j
) (1 ≤ j ≤ v) and concatenate the corresponding

two sequences to yield a new sequence (u1, w1), (u2, w2), · · · , (u2v, w2v). It is
easy to testify that this new sequence has the desired properties as required
in Theorem 1.

4. Let Bj = Bj−2 ⊕ uij−1 ⊕ wij (v + 1 ≤ j ≤ 2v), and we can easily get
B2v = B′

v = Cl+1. Return

IV,C1, · · · , Cl+1, B1, B2, · · · , B2v, T
′

where T ′ = T ⊕ Ml+1[0 : 3] ⊕ B2v−1[0 : 3] ⊕ u2v[0 : 3].

Note that l ≥ 2 so that there exists v satisfying lv ≥ 2m/2, hence our attack
needs one query with block length of at least three. Because of the choice of the
parameter v, the probability of such a match occurring is 0.63. The total num-
ber of operations is clearly O(2m/2), where m is the block-length of underlying
block cipher. It is worth emphasizing that O(2m/2) does not imply a complexity
of birthday bound. In birthday bound, it implies a query of O(2m/2) plaintext
blocks, while in our attack, only one query with block length of at least three
is needed and it impies O(2m/2) off-line XOR operations. In CBC-X where the
underlying block cipher has block length of m = 64, it means we need O(232)
XOR operations and O(232) memory space to break its authenticity. The com-
putation complexity is trivial.

5.4 Remarks on the General Attack

We can derive another attack directly from Theorem 1:

1. Query (IV, 08) to the encryption oracle, and get (IV,C, T ).
2. Return (IV,C, IV + C,C, T + C[0 : 3]).

The corresponding plaintext blocks is (08, Ek1(IV )+C,C). So it is easy to verify
that (IV,C, IV + C,C, T + C[0 : 3]) is valid.

To compare with this attack, the general attack is of more practical values.
This attack requires adversary the ability to choose a special plaintext, which is
not realistic in most cases. In the general attack, a new ciphertext can be forged
from any pair of plaintext and ciphertext.
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5.5 Breaking Privacy of CBC-X

We exhibit an chosen plaintext attack to the encryption mechanism of CBC-X
using the weakness in Data Stealing technique. This attack is in the case that
f = len (mod 8) = 6,where len denotes the byte-length of M . Analogous attacks
in other cases are omitted here.

1. Query (IV,M) to the encryption oracle and get (IV ′, C, T ), in which M is
with byte-length of 6 modular 8.

2. Query (IV ∗,M∗) to the encryption oracle, where M∗ is with byte-length
of multiple of 8. The input satisfies IV ∗[0, 1] = 02, IV ∗[2, 7] = IV [0, 5],
M∗[0, 1] = IV [6, 7],M∗[2, 7] = M [0, 5]. We can get (IV ′∗, C∗, T ∗). If
(C∗, T ∗) = (C, T ), then return 1, otherwise return 0.

In the first step of this attack, by definition we get M ′[0, 1] = IV [6, 7],
M ′[2, 7] = M [0, 5], IV ′[0, 1] = 02, IV ∗[2, 7] = IV [0, 5], such that M∗ = M ′,
IV ′∗ = IV ∗ = IV . Therefore, we can get CBC-X.Enc(IV,M) = CBC-X.
Enc(IV ∗,M∗), i.e., (C∗, T ∗) = (C, T ) with probability of 1 − 2−64.

According to the original designing paper of CBC-X, the generation of IV
is random in three bytes. Consequently, by birthday paradox, we only need to
encrypt 212 messages to get a repeat IV with non-negligible probability.

In nonce-respecting privacy model, we restrain the adversary from repeating
IV , but we allow the adversary to chose it. This chosen plaintext attack proves
that, on the contrary to OCB [7] and GCM [5], CBC-X is insecure under the
nonce-respecting privacy model.

6 Remarks on Attacks of Three Schemes

None of these three AE scheme has used reduction technique to prove security
in the original paper. The analysis of integrity security of three AE schemes is
built on the assumption that the values of tags will be randomly distributed
due to the avalanche effect. However, respectively for each scheme, once the IV
is fixed, specific structure of ciphertexts will lead to a corresponding structure
in tags. For example, in the first two schemes we attack, the equality of sum
of ciphertexts will lead to equality of tags, which results in a forgery attack.
For schemes which don’t have obvious structures, this attack cannot work, such
as OCB [7] and GCM [5]. Though the reuse of IV under the same key is not
allowed when an adversary gets access to the encryption oracle, the retain of IV
in the forgery of triple (IV,C, T ) is feasible when the adversary questions the
verification oracle. In reality, it is also possible for the unauthorized party to
intercept a data (IV,C, T ), substitute it with another forgery triple (IV,C∗, T ),
in which C∗ 	= C.

In the forgery attack on CMBC-MAC and SCMA, a structure of ciphertexts
(C,C∗) satisfying

∑
i

Ci =
∑
i

C∗
i , will lead to a structure of a pair of equal tags.

The data complexity of this attack is only one known ciphertext message with
arbitrary blocks, and the computation complexity is negligible.
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Whilst in the forgery attack on CBC-X, as is stated in Theorem1, a structure
of ciphertexts satisfying all the three conditions, will lead to a structure of a
pair of well-related tags (T, T ∗). The data complexity of this attack is only one
known plaintext message with at least three known plaintext blocks, and the
computation complexity is trivial.

The attack of integrity on these three schemes suggests that when designing
an AE, the security should not be excessively weakened, though it has to be
compromised with simplicity and efficiency.

7 Conclusion

In this paper we have demonstrated forgery attacks against three authenticated
encryption schemes for WSN: CMBC-MAC, SCMA and CBC-X. These are all
practical, easy-to-perform, known plaintext attacks, which imply that all these
three modes are unacceptably weak when used to provide ciphertext integrity.
We can therefore conclude that these three authenticated encryption modes are
not as secure as described in their designing papers, and should not be used in
the environment of Wireless Sensor Networks. The attacks of integrity on these
three schemes also suggest that security should not being excessively weakened
though it has to be compromised with simplicity and efficiency.
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