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Preface

Brain-inspired computing is a fast developing research topic. On one hand, it relates to
fundamental neuroscience research that leads to insights into the information processing
function of the brain. On the other hand, it is aimed at utilizing these insights in new
methods and technologies for information processing and might even initiate a paradigm
change in this area. Brain-inspired computing creates opportunities for collaboration of
scientists from various disciplines: neuroscience, computer science, engineering, natural
sciences, and mathematics. The understanding of the importance of this area led to the
initiation of the EU flagship project ‘Human Brain’ in the framework of the EU program
for future and emerging technologies (FET). The current book includes contributions
from renowned scientists who participated in the International Workshop on Brain-
Inspired Computing in Cetraro, Italy, July 8–11, 2013. It contains contributions that
concern brain structure and function, computational models and brain-inspired com-
puting methods with practical applications, high-performance computing, and visuali-
zation for brain simulations.
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Brain Structure and Function -
A Neuroscience Perspective



Towards a Multiscale, High-Resolution Model
of the Human Brain

Katrin Amunts1,2(&), Oliver Bücker3, and Markus Axer1

1 Research Centre Juelich, Institute of Neuroscience and Medicine (INM-1),
Juelich, Germany

{k.amunts,m.axer}@fz-juelich.de
2 Cecile and Oskar Vogt Institute for Brain Research,

Heinrich Heine University Düsseldorf, Düsseldorf, Germany
katrin.amunts@uni-duesseldorf.de

3 Juelich Supercomputing Centre (JSC), Research Centre Juelich,
Juelich, Germany

o.buecker@fz-juelich.de

Abstract. To understand the microscopical organization including cellular and
fiber architecture it is a necessary prerequisite to build models of the human
brain on a sound biological basis. We have recently pushed the limits of current
technology by creating the first ultra-high resolution 3D-model of the human
brain at nearly cellular resolution of 20 microns, the BigBrain model. At the
same time, 3D Polarized Light Imaging provides a window to analyze the fiber
architecture, i.e., the way, how brain regions are inter-connected, with unprec-
edented spatial resolution at the micrometer level. Considering the complexity
and the pure size of the human brain with its nearly 86 billion nerve cells, both
approaches are most challenging with respect to data handling and analysis in
the TeraByte to PetaByte range, and require supercomputers. Parallelization and
automation of image processing steps open up new perspectives to speed up the
generation of new, ultra-high resolution models of the human brain, to provide
new insights into the three-dimensional micro architecture of the human brain.

Keywords: Ultra-high resolution brain models � BigBrain � Cytoarchitecture �
Microstructure � Fiber architecture � UNICORE � Workflows

1 Introduction

The cerebral cortex of the human brain is a highly heterogeneous structure. Since the
beginning of the 20th century it is well known that the cortex consists of organ-like
units, which Brodmann and others have called cortical areas [1]. Using a light
microscope, Brodmann observed that every cortical area showed a characteristic
cytoarchitecture. Cytoarchitectonic features include the distribution of neurons, the
presence of particular cell types such as giant Betz cells, which are characteristic for the
primary motor area 4 [2–4], clustering of cell bodies, and the formation of cortical
layers (thickness, density, etc.), which run in parallel to the cortical surface (Fig. 1).
Based on such differences, Brodmann published his famous monograph and a map,
which displayed 43 cytoarchitectonic areas. Most of the areas of the cerebral cortex

© Springer International Publishing Switzerland 2014
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show 6 layers (isocortex or neocortex, because it is developed late during brain evo-
lution) with the notable exception of the motor cortex, which looses its fourth layer
during postnatal development [1, 5]. The different regions of the isocortex subserve
sensory (e.g., visual, auditory, somatosensory, gustatory, vestibular, pain), motor, and
multimodal associative (e.g., working memory, attention, goal-directed behaviour)
functions. Non-isocortical regions have more (e.g., entorhinal cortex) or less (e.g.,
hippocampus) layers than the isocortex. Therefore, these regions are called allocortex.
It is known, that this laminar pattern is related to the connectivity of neurons, and
reflects the prevailing inputs and outputs of the layers. For example, Layer I contains
many axons, which establish short and long-range intracortical connections. Layers II
and III have ipsilateral and commissural connections with cortical areas in the same and
the other hemisphere. Layer IV is the major target of the ascending thalamo-cortical
input, whereas the neurons of layers V and VI project to subcortical targets (e.g., basal
ganglia, thalamus, brain stem and spinal cord). It is estimated that each neuron of the
cerebral cortex has approximately 7.000 synapses [6], i.e., contacts to other neurons;
the precise number of synapses differs between layers [7].

Fig. 1. Cytoarchitecture of the human cerebral cortex as basis of Brodmann’s map from 1909.
Each area of the cerebral cortex in Brodmann’s map is labeled by a different color. The
cytoarchitecture is illustrated in three cortical areas, BA 45, 17 and 18, belonging to different
functional systems. Cell bodies are stained in black, and show a different distribution and density
from the surface of the brain (top) to the cortex/white matter border. The space between the cell
bodies is called neuropil. It contains synapses, dendrites and axons as major structures, which are
relevant for connectivity between brain regions (Color figure online).

4 K. Amunts et al.



Using image analysis in combination with statistical tools of analysis, we have
developed an approach to map cytoarchitectonic areas of the cerebral cortex in samples of
(ten) human postmortem brains [8], and to register these maps in standard references
space. Therefore, we have created probabilistic cytoarchitectonic maps in 3D. These maps
can then be used, for example, as microstructural references for functional imaging studies
of the living human brain. To allow comparisons between in vivo MR findings and
postmortem cytoarchitectonic maps, the cytoarchitectonic maps have been made available
in different software packages such as SPM toolbox (http://www.fz-juelich.de/inm/inm-1/
DE/Forschung/_docs/SPMAnatomyToolbox/SPMAnatomyToolbox_node.html; [9–11])
and FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases?highlight=%28probabilistic%29|%
28maps%29). Or, they can be directly downloaded from the JuBrain website (https://
www.jubrain.fz-juelich.de/apps/cytoviewer/cytoviewer-main.php).

The analysis of in vivo imaging studies based on cytoarchitectonic maps contrib-
utes to our knowledge of the relationship of the microstructural segregation of the
human brain and the involvement of cortical areas and subcortical nuclei into a certain
mental process (e.g., [12–14]), or they can be used as an atlas to guide or to interpret
studies on connectivity and functional segregation as obtained during in vivo neuro-
imaging studies [15, 16]. The spatial resolution, which is necessary to address this type
of structure-functional relationships is determined by the resolution of in vivo neuro-
imaging studies, which is in the range of 1 millimetre, i.e., at the mesoscopic level.

The highly complex organization of the human cerebral cortex at the level of single
cells and their connections can be achieved only with a resolution at a few micrometres.
It requires postmortem methods for the analysis, in most cases. As compared to
investigations of the brains of non-human primates and rodents, the human brain is
highly challenging due to the pure size of the whole human brain and the number of
nerve cells (nearly 86 billion) in combination with the same number of glial cells
[17, 18]. Neurons have a size of a several micrometers; the largest of them, the giant
Betz cells of the primary motor cortex, can reach a height of 120 μm [19]. To address
the microscopical organization of the human brain is not only challenging from the
neuroscientific perspective, but also with respect to computational demands.

We have recently pushed the limits of existing three-dimensional brain data sets to
a microscopical scale, and developed the BigBrain model [20]. The model is based on
7404 cell-body stained histological sections, which were corrected for artifacts, and
reconstructed as a volume with 20-micrometre spatial resolution isotropic. This model
provides a basis for extracting morphometric parameters characterizing the cortical
folding, cell densities or cortical thickness, which can be used, e.g., for modelling and
simulation. Moreover, it will serve as a new reference brain at a microscopical level,
where structural and activity data from other researchers can be integrated while
keeping the functionally relevant topography of the brain at the level of cortical layers
and below [21]. In order to generate this model, methods of high performance com-
puting were necessary – the total size of the data set was 1 TByte, and for the auto-
mated repair, 2D- and 3D alignment, and intensity correction 295,000 h were necessary
for 100 iterations, measured on an AMD Opteron 2.1 GHz system. I/O operations
hereby required a significant amount of time [20].

The architecture of cells in different brain areas and nuclei represents an important
aspect of brain organization. It reflects differences in brain connectivity between brain
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areas, and cortical layers. E.g. thalamic projections from the lateral geniculate body
terminate in layer IVB of the primary visual cortex, whereas layer III pyramidal cells
project to other cortical areas including those in the contralateral hemisphere [22], and
layer V Meynert cells of the primary visual cortex form T-shape projections to higher
associative visual areas [23]. The fiber architecture is functionally highly relevant,
because the connectivity within a cortical area and between brain regions determines, to
a high degree, the role that an area has in a certain network.

Diffusion imaging has been successfully used in visualizing the course of fiber
tracts based on mathematical models. It takes advantage of the fact, that the diffusion of
water molecules along nerve fibres is different from that across fibres [24–29]. Due to
short acquisition times, diffusion imaging becomes more and more applied in order to
analyse the connectome of healthy human subjects and patients [30–33]. Single axons
and fibre bundles with a diameter of a few micrometres cannot be detected by diffusion
imaging because of limitations in the spatial resolution.

Other techniques for analysing nerve fibres include macroscopical dissection
techniques, myelin staining in histological sections and sensitive optical coherence
tomography (PS-OCT) [34, 35], while tracing techniques, which are highly successful
in determining the projections at the axonal level in brains of experimental animals
(e.g., [23, 36, 37]), and which provide the “gold standard” are largely excluded for
approaching human brain connectivity with a few exceptions [38]. As a consequence,
human brain connectivity is less well analyzed than that of non-human primates, other
mammals and invertebrates, although a profound understanding of connectivity would
not only be crucial to approach human brain organization in the healthy brain, but also
in a clinical context, to develop better diagnosis and therapies.

2 3D Polarized Light Imaging (3D-PLI) as a New Tool
to Analyze Human Brain Fiber Architecture

3D-PLI is a neuroimaging technique that has opened up new avenues to study the
complex nerve fiber architecture across the entire human brain at the micrometer level [39,
40]. Whole brain analysis in combination with high spatial resolution is a prerequisite to
demonstrate both long-range fiber pathways and termination fields of single fibers ema-
nating from the cortical layers. The method is based on unstained histological sections of
postmortem brains, their analysis using a polarimeter, the calculation of fiber directions
based on mathematical models, and the 3D-reconstruction of the data. In short:

Brain Preparation. The technique is applicable to unstained 60–100 micron thick
histological sections of postmortem human brains generated with a cryostat microtome.
The brain tissue is being fixed in 4 % of buffered formalin for at least three months
before it undergoes the sectioning process. Depending on the section thickness and the
sectioning plane (coronal, sagittal, or horizontal), about 1,500–3,000 sections are
prepared per brain. These sections need to be imaged and analyzed in a complex
workflow.

Basic Principles. It is the optical anisotropy of brain tissue that gives rise to pass
polarized light through the unstained brain sections (i) to render microstructural details

6 K. Amunts et al.



within the sample and (ii) to derive their spatial orientations. The anisotropy is mainly
caused by the nerve fibers, i.e. the long projections of neurons. Each fiber has distinct
optical axes and interacts with light in a manner that is dependent on its three-
dimensional orientation with respect to the incident light. This physical effect widely
known as birefringence has been shown to be strongest for myelinated fibers [41]. This
is mainly due to the radially arranged lipid bilayers largely consolidating the myelin
sheath. Non-myelinated axons, however, also exhibit birefringence though with a much
smaller detectable effect. In this case the macromolecular arrays of large molecules (i.e.
neurofilaments) in the axon are likely to cause the birefringence.

Image Acquisition. In 3D-PLI, circularly polarized light is passed through the brain
section and the local changes in the polarization state of light are measured using a
dedicated polarimetric setup. Hence, the setup is equipped with a circular polarizer unit,
a rotating linear polarizer and a specimen stage sandwiched in-between. Since these
elements are built in a microscopic device with a Köhler illumination, each brain
section can be scanned with a resolution at the level of nerve fiber diameters, thus,
providing images with pixel sizes of 1.3 × 1.3 μm2. Due to the restricted field of view
of this polarizing microscope (2.7 × 2.7 mm2), to image an entire brain section, it is
digitized tile-wise with overlapping contents. This leads to about 3,500 images or
140,000 × 100,000 pixels, respectively, for one coronal human brain section covering
an area of 14 × 10 cm2. A typical 3D-PLI measurement includes eighteen complete
scans per section rather than one, during the linear polarizer rotates between 0° and
170° around the stationary section. The acquired raw data set of the coronal section
described above, therefore, requires 500 GB of storage space in total.

Core Image Analysis. Based on the eighteen measurements, a sinusoidal variation of
the measured light intensity, referred to as light intensity profile, can usually be observed
for each image pixel. The individual course of a light intensity profile essentially
depends on the locally prevailing 3D fiber orientation. Deviations from the sinusoidal
shape might indicate crossing fiber constellations, fibers pointing straight out of the
sectioning plane, or simply no detectable birefringence. Basic principles of optics
(Snell’s law and Huygens-Fresnel principle) and the Jones calculus [42] mathematically
link the measured light intensity profile to the fiber orientation described by a pair of
angles (φ, α) or, alternatively, by a unit vector. The phase of the light intensity profile
defines the in-section direction angle φ and its amplitude reflects the out-of-section
inclination angle α. The image of all derived fiber orientations covering an entire brain
section represents the fiber orientation map (FOM). An example of a FOM derived from
3D-PLI applied to a coronal section through the medial human brain is shown in Fig. 2.

Workflow. Collection and storage of the vast amount of data obtained with high-
resolution 3D-PLI are not the only challenges we have to face. The core image analysis
as described above is complemented by (i) image pre-processing approaches for artifact
and noise removal (by means of image calibration and independent component analysis
[43]) and by image post-processing approaches finally enabling the reconstruction of
the entire series of sections into a coherent virtual fiber model of the human brain
(e.g., segmentation of tissue and background, stitching of the tiles, non-linear image
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registration [44], fiber tractography [40]). Each of these steps is computationally
intensive and needs to be compiled into an efficient and applicable workflow.

3 Automation and Parallelization of the 3D PLI Workflow

A first approach towards a fully automated and parallelized 3D-PLI workflow is being
set up to utilize advanced supercomputing infrastructures efficiently. The main goal is
to combine fast data access, complex (partially already developed) data analyses and
high-performance computing in an easy-to-use manner, thus, cumulating in an auto-
mated workflow.

Supercomputing Environment. The Jülich Supercomputing Centre provides resour-
ces of the supercomputer JuDGE (Juelich Dedicated GPU Environment) for neuro-
scientific research. JuDGE is an IBM iDataPlex Cluster with 206 compute nodes. Each
compute node has 2 Intel Xeon X5650 (Westmere) 6-core 2.66 GHz processors,

Fig. 2. Fiber orientation map of a coronal human brain section. Fiber orientations are encoded in
HSV color space as indicated by the color sphere on the top left. The color encodes the direction
angle φ and the saturation defines the inclination angle α (from saturated color for α = 0° to black
for α = 90°). To give an example, transversal in-plane fibers are colored in red. Legend:
cc = corpus callosum, cr = corona radiata, ic = capsula interna, Th = thalamus, Pu = putamen,
GP = globus pallidus, opt = optic tract (Color figure online).
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2 NVIDIA Tesla M2050 or M2070 (Fermi) GPUs and 96 GB main memory. This leads
to a complete system of 2472 cores, 412 graphic processors, 19.8 TB main memory and
239 Teraflops peak performance [45]. In addition, access to the JuRoPA (Jülich
Research on Petaflop Architectures) system is granted. This system has 3288 compute
nodes each with 2 Intel Xeon X5570 (Nehalem-EP) 2.93 GHz quad-core processors
and 24 GB main memory. This leads to complete system of 26304 cores, 79 TB main
memory and a peak performance of 308 Teraflops. The system has a Linpack per-
formance of 274.8 Teraflops and is placed since June 2009 in the Top500 list (actual:
rank 136 [Nov 2013]) [46].

Platform. To assemble and streamline the 3D-PLI workflow, the UNICORE platform
(Uniform Interface to Computing Resources) is used. This framework offers a ready-to-
run grid system including client and server software. UNICORE enables distributed
computing and makes data resources available in a seamless and secure way in in-
tranets and the internet. [47] The implementation of UNICORE entails benefit for
developers as well as for users. In the stage of developing a new software package for
the workflow, for example, careful parameter optimization has to be performed.
A structured call of the software with an iterating set of parameters can be managed
easily with UNICORE.

Furthermore, even an untrained neuroscientist can do complex data analysis and
routine data production without knowing all details about the different inputs, calls and
requirements of individual software packages of the workflow. The number of variables
to be declared by the user can be reduced to a minimum and the conversion of the raw
data set into a FOM is done automatically. This clearly minimizes operation failures as
compared to manual calls of individual software packages.

Optimized Workflow. In general, the parallelization is being realized at the level of the
implemented algorithms, the processing strategies, and the workflow itself. While the
individual parallelization of the algorithms is a developer specific task, the latter two
types of parallelization can be done by UNICORE without having deep knowledge in
using supercomputers.

Individual applications such as image segmentation and stitching as well as the
determination of the fiber orientations are optimized in terms of internal usage of CPUs
or GPUs or a hybrid usage of both units. In addition, some of the applications enable to
process images or even image pixels independently from each other and can, therefore,
be treated in parallel. The calibration procedure is an adequate candidate to be applied
pixel-wise by farming. Applications in the workflow that are independent from each
other are performed in parallel. This is the case for the image segmentation and image
stitching, for example. In order to take advantage of specific features of different
supercomputers (e.g., GPU vs. faster CPU), both systems JuDGE and JuRoPA are
addressed within the workflow. It turns out to be an asset to utilize the faster CPUs of
the JuRoPA system for the stitching application and the core image analysis. It is
important to take into account that a better speedup can be used up by the data transfer
between the systems. In our constellation it is possible to copy the data from the GPFS
file system of JuDGE to the Lustre Storage of JuRoPA instead of transferring the data
by uftp [48]. A schematic of the optimized workflow is shown in Fig. 3.
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The optimized 3D-PLI workflow for an individual high-resolution brain section can
be reduced to a few hours as compared to several days or even weeks. As a conse-
quence from the gained speedup, images with sizes far above 4 GB can now be
processed at reasonable time scales, however, at the expense of the used data format.
The file format NIfTI format (Neuroimaging Informatics Technology Initiative) [49],
commonly used in neuroscience has to be exchanged by a container format, which is
able to handle images substantially larger than 4 GB. Since this amount of data cannot
be handled in a useful manner with sequential IO, parallel HDF5 [50] is the format of
choice. Clearly, only the described workflow approach with the appropriate file format
will allow an effective and fast processing of thousands of brain sections with 3D-PLI
in the near future.

Fig. 3. Optimized workflow for 3D-PLI. UNICORE builds the framework to manage software
package calls with input parameters and to organize the distributed calculation using JuDGE or
JuRoPA.
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4 Conclusions

In future, we have to face several PetaBytes of data originating from postmortem
studies (including 3D-PLI) to be collected, archived, analyzed, and finally integrated
into a joint virtual model of the human brain. Specific challenges are posed by the
multi-modal and multi-scale features of the obtained structural data, which characterize
individual voxels in individual brains at different levels of detail and abstraction.
Scalars, vectors or even more advanced mathematical objects are typically used to
describe brain characteristics at the nanometer scale up to the millimeter scale. Com-
parison and visualization of such data, therefore, require common data access, and
standardized scientific data formats and reference systems.

For 3D-PLI we have started to set up a customized e-infrastructure to parallelize
and automatize the complex workflow, which was demonstrated to be beneficial in
many aspects. The user can initiate a workflow calculation without knowing all tools
and supercomputers used in the entire process, for example. Clearly, the computation
time is speeded up significantly while the reproducibility of results is much better.
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Abstract. I describe the evolution of life and the evolution of complex
dynamical systems such as the brain as an emergent phenomenon, which allow a
subset of multicellular life to learn its environment and adapt to it, enabling it to
survive and replicate. Its ultimate purpose is to allow organisms to project their
genetic materials into subsequent generations. It can only be understood in the
context of its function.

“If superior creatures from
space ever visit earth, the first question
they will ask, in order to assess the level
of our civilization is
‘Have they discovered evolution yet?’”

Richard Dawkins in “The Selfish Gene”

1 The Origins of the Earth and the Appearance of Life

The solar system was formed approximately 5 billion years ago from the gravitational
collapse of a dust cloud due to perturbations. This collapse created a proto-star, with an
accretion disk around it. The proto-star evolved into the sun and the accretion disk into
the planets. Using radiometric dating of terrestrial and lunar rocks and meteorites, the
age of the earth is estimated to be 4.54 ± 0.05 billion years [1]. There is evidence that
life began on earth around 3.6–4 billion years ago [2, 3], after the formation of a
sufficiently thick crust on its molten core. The most convincing scientific theory about
life’s origins is its emergence from a soup of inorganic molecules under the action of
heat and light in the early earth. These theories have as their underpinnings the
experiments in the 1950’s by Miller and Urey [4, 5], who showed that organic mol-
ecules could be synthesized out of inorganic molecules. In this experiment, they
showed that when water, methane and ammonia, which were abundant on earth before
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the appearance of oxygen, were subjected to electrical discharges (lightening), they
could form hydrocarbons, sugars and 11 out of the 20 amino acids which form the
proteins that are the basis of all life on earth.

Early life: the RNA world: Amino acids can form long chains (RNA) with the ability
to store genetic information and catalyze enzymes. The universality of the genetic code
and the ubiquitous RNA/Protein Ribosome machinery that is used by all life to
translate the DNA message into proteins, suggests that an RNA world preceded cellular
life. Several other ribosome enzymes (ribozymes) such as the Hammerhead ribozyme,
which can self-cleave [6], and RNA polymerase, with the ability to auto-catalyze [7],
suggests that the RNA World is embedded in fossilized form in life today.

What was the RNA world like [8]? RNA is composed of sequences of nucleotides,
which are formed from amino acids with their nitrogenous base attached to a sugar-
phosphate backbone. The RNA world was likely a primordial soup of strands of RNA
“living” in a sea of free-floating nucleotides. The bond between most nucleotides break
easily, but some nucleotide sequences have lower energies, which may have allowed
them to remain attached for a longer time. This may have created long chains of
specific nucleotides that remained attached long enough to attain auto-catalysis,
allowing them to self-synthesize their own sequence by harvesting the appropriate
nucleotides from their surroundings. The RNA world consisted of many varieties of

Fig. 1. The tree of life. The tree consists of three major branches, bacteria, archaea and eukarya,
all evolved from a common ancestor, which was most likely evolved from an Eventually, stable
varieties of replicator molecules appeared, which continued to compete for survival. Some may
have built enclosures (cell walls) to protect themselves. Inside these walls, replicators became
complex, and evolved methods to store (DNA), retrieve (Polymerase, Ribosomes) and process
(signaling pathways) information. They invented ways of increasing stability and eliminating
rivals. Eventually, they built “survival machines” (Fig. 1) which are the organisms we see in the
world today (image from: http://www.astrobio.net/topic/origins/origin-and-evolution-of-life/
worlds-smallest-power-station/).
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“replicator” molecules, which competed electro-chemically and mechanically with
each other for resources. The fitness of such replicators depended on their longevity,
fecundity and accuracy of replication. The most successful ones survived, consumed or
subverted the rest through their ability to outcompete the rest [8].

Brains are simulating machines: The leaves the tree of life represent extant life forms,
most of which did not bother to evolve brains. Most of cellular life that exists today is
single celled (unicellular). In a minority, cooperative systems of specialized cells
emerged, which could outcompete their rivals. In these systems, complex, multicellular
life forms arose, which abandoned the clonal immortality of unicellular life to become
mortal, lumbering survival machines (SMs). They invented methods to regulate energy
within cells [9], and invented suicide, death and sex [10], mechanisms, which made
them fitter in projecting their RNA, DNA, genes and genomes from one generation to
the next. This small minority of “animal” life, which includes humans, eventually
evolved brains.

Brains are “simulating machines”, which process, reduce and translate sensory cues
and send appropriate instructions to sets of cells (organs) to make them perform spe-
cific actions. The goal of this processing is to increase the likelihood that the organism
will not be eaten, will get sufficient nutrition to mature into an adult, find a mate and
reproduce. Survival Machines who learn by “Trial and Error” get hurt. So SMs evolved
brains, allowing them to distinguish friend from foe, react quickly to danger signals,
retain memory of past events and seek food and mates. The reason why we have brains
is that SMs with “Brains” are fitter. SMs who process sensory data and “simulate” the
world better can anticipate danger, eat better, live longer, and leave more progeny.

How did neurons evolve? Neurons may have evolved in cooperative cell systems to
allow specialized groups of cells to process input signals from other cells and transmit
instructions to affect the behavior of distant cells in the collection. A selectively per-
meable membrane separates the cell interior from the exterior. Almost all eukaryotic
cells maintain a small trans-membrane electric potential of between 40 and 80 milli-
volts between the interior (the cathode or - terminal) and the exterior (the anode
or + terminal). When the cell membrane is disturbed, it gets locally depolarized, and
this depolarization can spread to affect other regions of the cell and the surrounding
medium. A passive or active exchange of ions across the membrane can also change
the potential, and these signals can also travel into the extracellular medium and change
the potential on other cells. In specialized groups of cells (neurons), the shape and
relative arrangement of cells, and specific chemically or voltage gated ion-channels,
permit the depolarization to propagate in a directed way, much like the signals in an
electrical transmission system. In these cells, the depolarization can be sudden (within
1–100 ms) and can create an “action potential”, a depolarization spike which can
rapidly transmit to neighboring cells. The depolarization spike signal travelling from
cell to cell can be used to send as a signal to distant groups of cells.

The evolution of the brain: Using such neural circuits, SMs evolved specialized
“brains” to perform specific functions. For example, the Jellyfish “brain” is an undif-
ferentiated nerve network, the so- called “nerve net [10]”. Using this network, jellyfish
detect the presence of other animals and transmit the information to other nerve cells
using a circular nerve ring. Another key function of the system is to coordinate the
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jellyfish swimming motion by opening and contracting its skirt in a coordinated
manner.

In contrast, worms have a well defined CNS (Central Nervous System) whose
architecture defines a basic design which has remained unchanged from worms to
humans. It consists of an anterior brain connected to a nerve cord (shown in Fig. 2 for the
earthworm Lumbricus terrestris). Impulses of light, moisture, tough are detected by skin
cells and transmitted by a pair of nerve cells in each segment to small ganglia (collection
of nerve cells) in the segment as well as to the brain, where the signals are analyzed. The
ganglia and the brain then send impulses to muscles to make them respond appropri-
ately. However, the worm “brain” is not the sole “commander” of its nervous system.
With its brain removed, worms are able to move, mate, burrow, feed, and learn mazes.

Insect brains have a similar pattern. They are giant fiber systems of nerve cells
connecting ganglia with a nerve cord running down the body (Fig. 3). The function of
the system is to allow rapid conduction of impulses to leg/wing muscles. With more
sensory receptors than vertebrates, they are sensitive to odors, sounds, light, texture,
pressure, humidity, temperature, and chemicals.

Vertebrates have the most complex brain system. The spinal cord, protected by
vertebrae, is now a servant of the brain. The brain itself is a series of swellings,
consisting of the hindbrain, the midbrain, and the forebrain. From the hindbrain sprouts
a distinctive structure, the “cerebellum” or little brain. Figure 4 shows the basic
architecture of the vertebrate brain, which has remained unchanged from fish to
humans [11]. The detailed changes in the architecture reflect the changes due to the
organism’s evolutionary history and the need to perform specific functions in its
lifecycle.

Fig. 2. From http://cronodon.com/files/earthworm_CNS_lateral.gif: The earthworm central
nervous system.
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Fig. 3. From: http://bioteaching.files.wordpress.com/2010/05/overall_anatomy.jpg: A prototype
of the insect brain.

Fig. 4. The vertebrate brain topology is the same in all vertebrates (image from http://en.
wikipedia.org/wiki/Brain).

From RNA Replicators to Genes to Survival Machines with Brains 19

http://bioteaching.files.wordpress.com/2010/05/overall_anatomy.jpg
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Brain


The ancestral cerebrum was two small swellings for smell. In amphibians, there
was more gray matter (cell bodies and synapses) between neurons and the cerebrum
processed impulses from sensory areas. Gray matter moved outward to the surface to
form the cerebral cortex. In some reptiles, the neocortex arose. Mammals, which
evolved from reptiles of this type, have the most developed neocortex.

Vertebrate brains have four characteristic features. They have a centralized
architecture, consisting of a network of structures of nerve cells in the anterior brain,
connected to a spinal column. The neuron and sense organ bodies are all located at one
end of the organism (encephalization). The brain structures are specialized, with a
greatly increased size and variety of elements compared to invertebrates. Finally, the
vertebrate brain has a high degree of plasticity, which allows it to learn perceptual and
motor tasks and reassign tasks to subunits in response to catastrophic events such as
stroke or injury.

The mammalian brain is a simulator [12], which creates a time evolution of events
using the sensory inputs from olfaction, sight, touch, hearing, taste and pain stimuli. It
regulates posture and locomotion by using a map of the body. It is responsible for our
instincts and emotions, such as hunger, love/lust/sex, anger, hate/fear, territoriality,
possessiveness, dominance/submissiveness, irritability/serenity, parenting etc. It also
gives mammals cognitive capabilities, such as arousal, attention, thinking, evaluating,
insight, abstraction, creativity, choice, purpose, seeking, planning, generalization,
judgment, introspection, programming, interest, preference, discrimination, learning,
habituation, memory, recognition, retention, knowledge etc.

Consciousness: Although “consciousness” is often believed to be unique to humans
and is usually discussed in hushed, reverential tones, it may have appeared in the
mammalian brain quite simply, when the brain’s “simulation” of the world included a
model of itself. This model then allows us to represent the world as a collection of other
individuals, some more similar to us than others. Over time, the representation
becomes the reality, because all of the organism’s experiences are tied to the model.
The organism is then unable to disentangle itself from the representation and identifies
itself as having a “conscience” or “soul” [13].

What needs to be modeled: What does it mean to “understand” how the brain works?
Any “model” of the brain should begin by elucidating the architectural, molecular,
functional and signaling mechanisms and their evolutionary origins for the following
six properties of the brain: 1. Fidelity in entering and exiting states; 2. Ability to
interpret sensory input and create appropriate triggers; 3. Ability to recover from error;
4. Robustness to perturbations of sensory inputs; 5. Ability to retain memory of past
events; and 6. Plasticity, which gives its subunits the capacity to reassign function [14].

A study of the brain is the ultimate frontier. The brain is an adaptive, dynamic,
adaptive system, which simulates the world to allow organisms to learn, survive and
replicate. It can only be understood in the context of evolution, as an emergent phe-
nomenon, which uses the underlying architecture bequeathed to it by evolution to
create robust, stable, controllable states.
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Abstract. Large-scale simulations of neuronal networks provide a unique
view onto brain dynamics, complementing experiments, small-scale simu-
lations, and theory. They enable the investigation of integrative models
to arrive at a multi-scale picture of brain dynamics relating macroscopic
imaging measures to the microscopic dynamics. Recent years have seen
rapid development of the necessary simulation technology. We give an
overview of design features of the NEural Simulation Tool (NEST) that
enable simulations of spiking point neurons to be scaled to hundreds of
thousands of processors. The performance of supercomputing applications
is traditionally assessed using scalability plots. We discuss reasons why
such measures should be interpreted with care in the context of neural
network simulations.The scalability of neural network simulations on avail-
able supercomputers is limited by memory constraints rather than com-
putational speed. This calls for future generations of supercomputers that
are more attuned to the requirements of memory-intensive neuroscientific
applications.

Keywords: Computational neuroscience · Neural networks · Scalabil-
ity · Simulation technology

1 Introduction

Neuroscience is a new player in the field of supercomputing applications com-
pared to longtimers like particle and plasma physics, meteorology, and cryp-
tography. The requirements for the successful and efficient implementation of
neuroscientific models on supercomputers are just being identified, and there-
fore present applications likely only scratch the surface of what will ultimately
be possible.
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This chapter provides an overview over the current status and recent develop-
ments in the area of large-scale neuronal network simulations on supercomputers.
We start by arguing for the need for such large-scale models as a complement
to other modeling approaches. This is followed by a view into the inner work-
ings of the neural network simulator NEST [1], elucidating features that enable
simulations to make efficient and comprehensive use of modern supercomput-
ers. Evaluating simulator performance is not entirely straightforward, due to an
interplay between factors including scalability, computational speed, and mem-
ory consumption. We argue for more emphasis on accuracy as well as absolute
runtime and memory usage next to traditional scalability. Finally, we discuss
limitations to network scaling, which point to the need for supercomputers with
large amounts of memory, particularly to accommodate synaptic infrastructure.
This contrasts with the main line of supercomputer development, which tends
to emphasize floating point performance.

2 The Need for Large-Scale Models

The success of many existing neuroscientific models is in no small part attribut-
able to their simplicity. Nevertheless, if we are to obtain an integrated under-
standing of brain structure, dynamics, and function, it will be necessary to move
to larger and more complex models. One reason is that brain regions and cortical1

layers and areas are specialized for certain operations, yet achieve their function
through extensive recurrent interactions. In the cerebral cortex, for instance,
higher-order functions are thought to arise through successive transformations
of signals in an approximate hierarchy of mutually connected areas.

Another ground for developing large-scale models is to establish links between
microscopic dynamics and meso- and macroscopic measures such as voltage-
sensitive dye (VSD) images, local field potentials (LFP), functional magnetic
resonance images (fMRI), the electroencephalogram (EEG), and the magne-
toencephalogram (MEG). Reaching the relevant spatial scales will be doubly
advantageous: The comparison with a richer diversity of experimental results
will enable models to be better constrained, and models will contribute to the
understanding of meso- and macroscopic measures as their underlying mecha-
nisms become accessible.

One might argue that each region, layer, or area can be represented by
a lower-dimensional system through coarse-graining or subsampling. However,
certain characteristics of the network are inevitably lost under such simplifica-
tions. Coarse-graning may deprive the model of its complex network-of-networks
architecture. An argument against subsampling is as follows: Neurons in mam-
malian cortex on average receive on the order of 104 inputs, and are connected
to approximately 10% of the neurons in their local neighborhood. The small-
est network that combines physiological connection probabilities with realistic
1 The cerebral cortex is the thin layer of cells on the outer surface of the vertebrate

brain, responsible for high-level sensory, cognitive, and motor functions. We here
refer to the cerebral cortex also simply as ‘cortex’.
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in-degrees therefore consists of around 105 neurons [2]. In a smaller network,
some of the inputs need to be replaced by external drives that are not self-
consistently determined. This remains true in larger networks, albeit to a lesser
extent. Even if a network could be reduced without losing essential characteris-
tics, full-scale simulations are needed to verify the validity of the reduction.

Large model size does not stand in direct contradiction to simplicity: Low-
dimensional single-neuron dynamics can be used, and the number of parame-
ters can be restricted for instance by giving populations of neurons identical
properties. Large-scale models can, however, become more complex due to the
inclusion of multiple disparate neural populations, brain regions, or areas with
source- and target-specific connectivity. The added complexity of such highly
structured models becomes increasingly manageable as comprehensive anatom-
ical data sets are being made available [3,4].

How large is ‘large’ in the context of neuronal network models? A single
area of primate cortex comprises on the order of 107–108 neurons, the combined
vision-related areas of the macaque cortex contain on the order of 109 neurons [5],
the number of neurons in human cortex is approximately 2× 1010, and the total
number of neurons in the human brain is roughly 1011 [6]. Figure 1 illustrates the
architecture of the primate cortex. Since interconnections outnumber neurons by
a factor of 103–105, they dominate the memory consumption of neuronal network
models that are faithful to physiology, and their representation in particular
should be optimized for the efficient use of supercomputers.

Fig. 1. Sketch of the organization of primate cortex. The cortex is structured into layers
and areas, each containing smaller local circuits with distance-dependent connectivity
(schematically shown by the concentric disks). The areas combine to form functional
circuits via long-range connections. While areas are highly heterogeneous both within
and between species, rough sizes are indicated.
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3 Neural Network Simulation Technology

The basic elements of neuronal network models are neurons and their inter-
connections, which normally occur at synapses: close appositions of the mem-
branes of sending and receiving neurons, where neurotransmitters are exchanged.
Neurons integrate their inputs from other neurons, which may be excitatory or
inhibitory, respectively causing positive and negative excursions of the voltage
across the neuronal membrane. The combined voltage excursion is compared to
a threshold, and an all-or-none electrical event called a spike or action potential
is produced when the threshold is exceeded. This signal is then transmitted to
target neurons with a delay on the order of 1–10 ms. Average spike rates of cor-
tical neurons in the awake state have been estimated to lie somewhere between
0.05 and 30 spikes per second, depending on the species, area, behavioral state,
and recording method [7–9]. Synapses are plastic on both short and long time
scales, changing their strengths for instance according to the activity level or
relative spike timing of pre- and post-synaptic neurons.

The dynamics of such networks can be investigated using various simulators
that are specialized for different levels of description, of which we mention the
most prominent ones. NEURON [10] and GENESIS [11] focus on detailed models
where each neuron is represented using multiple cellular compartments. Nengo
[12] takes a more top-down approach, emphasizing functional aspects of neural
groups. Finally, Brian [13] and the NEural Simulation Tool (NEST) specialize
in few-compartment and point neuron models.

The design features of NEST are optimized for efficiency and accuracy. It is
globally time-driven, yet enables the calculation of precise spike times at lower
computational cost than globally event-driven schemes [14,15]. The equations
for neurons with linear subthreshold dynamics are integrated exactly, while stan-
dard numerical solvers are used for nonlinear neuron models. Since neurons are
effectively decoupled for the duration of the minimal propagation delay in the
network, spikes are buffered locally over this delay, after which all processes
exchange the local buffers in a collective communication phase. As the mini-
mal delay tends to be larger than the integration time step of typically 0.1 ms,
this reduces the frequency of inter-process communication and thus enhances
computational efficiency.

Neural simulators differ in their degree of parallellizability. PGENESIS, the
parallel version of GENESIS, runs on systems including shared-memory machines,
networked workstations, and supercomputers, and has been used for instance to
simulate a large-scale model of cerebellar cortex on 128 processors of a Cray T3E
[16,17]. Scaling of NEURON on the IBM Blue Gene architecture has been demon-
strated up to 128, 000 cores [18,19]. The SPLIT simulator was found to scale well
up to 8, 192 processors on a Blue Gene/L supercomputer, enabling a simulation
of 22 × 106 neurons with 11 × 109 synapses [20]. Other parallelizable simulators
include NCS [21], C2 [22], and Compass [23]. The latter two are among the most
scalable tools, but are not publicly available, and the simulations described use
constraints on network architecture.
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NEST displays particularly good scalability, running on systems ranging from
a single processor to hundreds of thousands of cores. It enables the use of hybrid
MPI and OpenMP parallelism to limit communication costs which increase with
the number of MPI processes. Communication is performed by collective MPI
functions, which is the most efficient option for randomly connected networks
in which neurons can have targets on any process. For networks with some
degree of modularity, more efficient schemes may be found. Networks of 108

neurons with 1012 synapses and up have been successfully simulated on the
JUGENE BlueGene/P system and the K supercomputer by Fujitsu [24]. The
largest neuronal network simulation to date was achieved using NEST on K,
and involved 1.73 × 109 neurons connected via 10.4 × 1012 synapses with spike-
timing-dependent plasticity [25].

The use of NEST on supercomputers has been facilitated by its native simula-
tion language interpreter which avoids dependence on the installation of external
packages. A more intuitive Python interface called PyNEST also exists [26], as
well as a recently added interface based on Cython, an extension of Python that
also supports C/C++ constructs [27]. The latter bindings are more compact
and maintainable than PyNEST, and can be cross-compiled on supercomputers,
exploiting the increased availability of Python.

Scaling NEST to massively parallel computing architectures has been made
possible by the optimization of its neuronal and connection infrastructure [28].
This optimization was supported by a theoretical model which quantified the
contributions of various memory components depending on the network size and
the number of cores. The design choices were made with a randomly connected,
or at least not perfectly modular network in mind, which is a biologically rea-
sonable assumption. As the number of cores grows, the number of neurons per
core decreases, and the number of non-local neurons to be represented increases.
Moreover, a larger machine implies a larger number of cores on which any given
neuron has no targets. The third generation kernel of NEST exploits this sparse-
ness of both neurons and synapses by the use of sparse tables which combine
low memory consumption with fast look-up.

4 Assessing the Performance of Neural Simulators

In traditional scalability plots, runtime is plotted against the number of cores
for either a proportional increase in network size (weak scaling), or for constant
network size (strong scaling). The application is considered to scale perfectly
when runtime is constant for the case of weak scaling, assuming that not only
the number of neurons but also the number of synapses increases in proportion
to the number of cores (i.e., the mean in-degree of the neurons is unchanged),
or when runtime is inversely proportional to the number of cores for the case
of strong scaling. On a double logarithmic scale, this amounts to a straight line
with slope −1. This way of displaying the performance of simulators can be
misleading, as a faster update of the neuronal state leads to communication
dominating runtime already at fewer cores, causing the scaling to appear worse.
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Fig. 2. Scaling plots can be counterintuitive. (A) Optimizing solvers can lead to appar-
ently worse strong scaling, as the runtime approaches the time taken up by communi-
cation already at a smaller number of cores. (B) Simulating a larger network improves
strong scaling results. (C) In weak scaling, communication increases with the number
of cores. A faster update of the neuronal state can lead to either a constant negative
offset or, if computation and communication overlap temporally, to a convergence of
the two lines as runtime becomes purely determined by communication. In both cases,
the quality of scaling appears to have been diminished. (D) Memory optimization can
allow the same network to be simulated faster on fewer cores, as indicated by the dots
and arrow.

Figures 2A,C schematically show this respectively for strong and weak scaling.
Apparent scaling performance also depends on the size of the networks simulated,
as shown in Figs. 2B,D. Optimizing memory consumption allows larger networks
to be simulated, simultaneously improving scalability, since communication only
dominates at a larger number of cores.

This suggests a few approaches for correctly assessing simulator performance.
The first, general point is that care should be taken in interpreting scalability
results. For instance, the slope of a strong scaling graph is a good indicator of
the degree to which it pays to increase machine size. However, for most practical
purposes the absolute runtime and memory consumption are more important
than this slope or the range over which scaling is linear. Next to scaling, sim-
ulation codes are often evaluated on the basis of the fraction of peak floating
point performance they achieve. However, floating point operations constitute
only a minor fraction of the operations in the simulation of a network model
as described by NEST, placing a structural limit on this performance measure.
False conclusions can also be avoided by evaluating scalability in a comparative
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fashion, by juxtaposing the results of two or more different implementations of
a given benchmark network. Finally, simulator performance encompasses more
than just runtime, memory consumption, and scalability: the results should of
course be accurate as well. Accuracy can be evaluated in a deterministic manner
for single-neuron simulations or non-chaotic networks, or in a statistical manner
for chaotic networks [29].

5 Neuronal Network Simulations are Limited
by the Available Memory

Simulations of highly connected neuronal networks require large amounts of
working memory, which for brain-scale networks is only provided by supercom-
puters. The maximum-filling NEST simulation of nearly two billion neurons on
the K supercomputer is still about two orders of magnitude away from the full
scale of the human brain. Although a substantial amount of time can be spent
on neuronal updates especially for plastic synapses, large-scale neuronal net-
work simulations are thus nevertheless mainly constrained by memory rather
than CPU power, as opposed for instance to molecular dynamics simulations.
This bears directly on turn-around times, as memory-intensive simulations often
spend substantial amounts of time in the queue, and queuing time tends to
exceed the time taken by the simulation itself.

The infrastructure that enables efficient access to local neuron and synapse
objects represents the limiting factor for the scalability of NEST in terms of
memory usage. It causes a memory overhead proportional to the total number
of neurons, since each MPI process maintains two sparse tables indicating for all
neurons both their locality and that of their targets. In fact, when using hybrid
parallelization, the latter of the two sparse tables is required per thread. Thus, if
the number of synapses per neuron is constant, the maximal number of neurons
per core decreases somewhat with machine size, implying an upper limit on the
number of cores that can be efficiently used [24]. This means that increasing the
available memory by adding cores does not suffice unless alternative neuron and
synapse infrastructures can be found: more local memory is needed in order to
be able to represent larger networks.

The large degree of convergence of biological neural networks and their lack
of perfect modularity lead to frequent random memory access, implying that
a high memory bandwidth and cache efficiency are needed for the delivery of
spikes to local targets, and a high communication bandwidth for the delivery
of spikes across nodes. In fact, these factors are more important for neuronal
network simulations than floating point performance, which is the primary focus
in the development of supercomputer architectures. Thus, there is a potential
for optimizing computer architectures for the performance of neural network
simulation codes.
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6 Conclusions

Developments in the simulation technology of NEST have enabled simulations of
neuronal networks to be scaled to the full complement of cores provided by the
peta-scale supercomputers available today. This scalability was achieved with
the help of a mathematical model of memory consumption [28]. The influence
of the different components of a simulation engine for spiking neuronal networks
on computing time, however, is still a largely unexplored territory. One of the
reasons, next to the lack of human resources, is that in recent years the NEST
code has undergone major redesign with respect to the organization of memory,
providing little stability for systematic profiling. Previous studies have looked at
the functional completeness [30] and the numerical accuracy [15,29] of simulation
codes. Clearly, function and accuracy deserved priority: a simulation can be
arbitrarily fast if accuracy is uncontrolled. The time seems ripe now to look at
computing time with a modeling approach similar to the one used for memory
consumption.

Other factors are of the same importance as the ability to scale simulations
to very large networks. Such simulations only advance science if they are reli-
able and reproducible. The computational neuroscience community has not yet
reached the point where simulation results published in peer-reviewed papers can
be routinely reproduced, for reasons that are beyond the scope of this chapter.

The existence of standardized simulators enhances both reliability and repro-
ducibility by avoiding user-specific code that undergoes little testing. The fact
that NEST is open source makes the code more reliable by exposing it to elab-
orate testing by the user community, and supporting a long-term development
model of iterative refinement. The existence of a formal software development
workflow including a bug tracker, a test suite, and a continuous integration
framework also contributes to reliability, as documented in [31]. Reproducibil-
ity is aided by versioning and the publication of simulation scripts. However,
executing the identical script with the same simulation code in a different lab-
oratory is only the weakest form of reproducibility. If there is a semantic error
in the model specification or a bug in the simulation code, a false result will be
reproduced. Compact human-readable model description languages adapted to
the problem domain need to be developed to facilitate the detection of seman-
tic errors, and results need to be cross-checked with different solvers, random
number generators, or even complete simulation engines. The meta-simulation
language PyNN [32] takes a step in this direction by striving to provide both a
model specification language with a high degree of expressiveness, and the ability
to instantiate and run the model with different simulation engines. The developer
community of NEST maintains the NEST backend of PyNN and contributes to
the improvement of the model specification language.

Full-scale simulations of the human brain at the resolution of neurons and
synapses addressed by NEST require the use of exa-scale supercomputers. Major
work on the simulation technology will be required to find memory and com-
munication architectures suitable for this class of systems. The Next-generation
Supercomputing Project of MEXT, which led to the construction of the
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peta-scale supercomputer K in Kobe, is an example where members of the NEST
community were funded in a co-development scheme [33]. This ensured that an
instrument useful for basic science was constructed, and appropriate simula-
tion software was available when the computer went online. It is our hope that
this success story of peta-scale systems based on a continuous dialogue between
hardware developers, system-level developers, and application developers can be
repeated for the upcoming exa-scale era. The time spent on basic development
work at an instrument that is already online should be reduced to a minimum.
Scientists are eager to use the short and costly lifespan of a supercomputer to
address neuroscience challenges.
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Jülich Supercomputing Centre, EU grants 269921 (BrainScaleS) and 604102 (Human
Brain Project), the Helmholtz Alliance on Systems Biology, the Next-Generation Super-
computing Project of MEXT, and the Helmholtz Association in the Portfolio Theme
Supercomputing and Modeling for the Human Brain.

References

1. Gewaltig, M.-O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia
2(4), 1430 (2007)

2. Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: relating
structure and activity in a full-scale spiking network model. Cereb. Cortex 24,
785–806 (2014)

3. Markov, N.T., Ercsey-Ravasz, M.M., Ribeiro Gomes, A.R., Lamy, C., Magrou, L.,
Vezoli, J., Misery, P., Falchier, A., Quilodran, R., Gariel, M.A., Sallet, J., Gamanut,
R., Huissoud, C., Clavagnier, S., Giroud, P., Sappey-Marinier, D., Barone, P.,
Dehay, C., Toroczkai, Z., Knoblauchi, K., Van Essen, D.C.: A weighted and directed
interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–
36 (2014)

4. Meyer, H.S., Egger, R., Guest, J.M., Foerster, R., Reissl, S., Oberlaender, M.:
Cellular organization of cortical barrel columns is whisker-specific. PNAS 110,
19113–19118 (2013)

5. Collins, C.E., Airey, D.C., Young, N.A., Leitch, D.B., Kaas, J.H.: Neuron densities
vary across and within cortical areas in primates. PNAS 107, 15927–15932 (2010)

6. Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate
brain. Front. Hum. Neurosci. 3, 31 (2009)

7. Kerr, J.N.D., Greenberg, D., Helmchen, F.: Imaging input and output of neocor-
tical networks in vivo. PNAS 102, 14063–14068 (2005)

8. Greenberg, D.S., Houweling, A.R., Kerr, J.N.D.: Population imaging of ongoing
neuronal activity in the visual cortex of awake rats. Nat. Neurosci. 11, 749–751
(2008)

9. Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K.,
Fujita, I., Tamura, H., Doi, T., Kawano, K., Inaba, N., Fukushima, K., Kurkin, S.,
Kurata, K., Taira, M., Tsutsui, K.-I., Komatsu, H., Ogawa, T., Koida, K., Tanji,
J., Toyama, K.: Relating neuronal firing patterns to functional differentiation of
cerebral cortex. PLoS Comput. Biol. 5, e1000433 (2009)



Integrating Brain Structure and Dynamics on Supercomputers 31

10. Hines, M., Carnevale, N.T.: The NEURON simulation environment. Neural Com-
put. 9, 1179–1209 (1997)

11. Bower, J.M., Beeman, D.: The Book of GENESIS: Exploring realistic neural models
with the GEneral NEural SImulation System. Springer, New York (1995)

12. Stewart, T.C., Tripp, B., Eliasmith, C.: Python scripting in the Nengo simulator.
Front. Neuroinf. 3, 7 (2009)

13. Goodman, D.F.M., Brette, R.: The Brian simulator. Front. Neurosci. 3, 192–197
(2009)

14. Morrison, A., Straube, S., Plesser, H.E., Diesmann, M.: Exact subthreshold inte-
gration with continuous spike times in discrete time neural network simulations.
Neural Comput. 19, 47–79 (2007)

15. Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., Diesmann, M.: A general
and efficient method for incorporating precise spike times in globally time-driven
simulations. Front. Neuroinform. 4, 113 (2010)

16. Goddard, N.H., Hood, G.: Parallel GENESIS for large-scale modeling. In: Compu-
tational Neuroscience, pp. 911–917. Springer, New York (1997)

17. Howell, F.W., Dyhrfjeld-Johnsen, J., Maex, R., Goddard, N., de Schutter, E.: A
large-scale model of the cerebellar cortex using PGENESIS. Neurocomputing 32,
1041–1046 (2000)

18. Migliore, M., Cannia, C., Lytton, W.W., Markram, H., Hines, M.: Parallel network
simulations with NEURON. J. Comput. Neurosci. 21, 119–223 (2006)
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Abstract. This paper reviews a biologically-inspired geometric model
for the functional circuits of the visual front-end. An axiomatic app-
roach is taken towards the filters and their tasks in early vision. A high-
dimensional Lie-group based approach models the convolutions of the
receptive fields in a multi-scale, multi-orientation, multi-velocity, multi-
spatial frequency, multi-disparity and multi-color framework. In these
new, and essentially invertible, extra-dimensional expansions new geo-
metric reasoning can be developed. They give a feasible approach to the
understanding of context, Gestalt, and association fields and enable full
exploitation of adaptive, geometry-driven strategies, such as for contour
completion and convection. The high-dimensionality leads to high com-
putational costs, but, just as in human vision, this can be solved by
massively parallel implementations, which is one of the goals of the EU
Human brain project.

1 Introduction - A Lie Group Model for Early Vision

Decades of neural recordings and optical imaging methods, like voltage sensitive
dyes [2,14] and calcium intrinsic imaging, have revealed a highly precise orga-
nization of the visual front-end. The receptive fields on the retina, increasing in
size with eccentricity in a sunflower arrangement, have inspired to a multi-scale
model sampling of the incoming image, well known in the computer vision com-
munity as scale-space theory. The image is transformed into a higher dimensional
stack, the ‘deep structure’, in which new geometric reasoning possibilities emerge
for image analysis, such as edge focusing and topological analysis. The sensitivity
profiles of the simple cells of V1 in the primary visual cortex have been modeled
as Gabor functions and multi-scale and regularized Gaussian derivatives, which
enable the robust extraction of differential structure up to high order [12]. The
pinwheel structure of the cortical columns has inspired to a multi-orientation
representation, in so-called orientation scores [8], a stack of all responses of the
oriented filters of the pinwheel on the image. The disentangling of orientations
now enables the analysis of crossing structures, and the linking of similarly ori-
ented filters between columns gives rise to new theories for the understanding
of Gestalt and perceptual grouping. The processing of velocities is modeled by
monocular pairs of receptive fields, by dedicated retinal parasol ganglion cells,
c© Springer International Publishing Switzerland 2014
L. Grandinetti et al. (Eds.): BrainComp 2013, LNCS 8603, pp. 35–50, 2014.
DOI: 10.1007/978-3-319-12084-3 4
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coupled by a small time delay (presumably the amacrine cells). Such a pair is a
tuned detector for a specific velocity in a specific direction. These local detectors
can be modeled as a multi-velocity, multi-scale and multi-orientation stack. They
project to a specific set of layers in the lateral geniculate nucleus, the magnocel-
lular layers. Similarly, the processing of disparities is modeled by binocular pairs
of receptive fields, spatially shifted by a small distance, giving rise to far and near
disparity detecting cells in V1. Again a stack of disparity values is modeled to be
available at each spacial position. To measure local spatial frequencies, receptive
fields with a sensitivity profile modeled by a Gabor function with varying spatial
frequencies are needed. And lastly, at each position the three basic colors need
to be extracted, as well as the differential structure of color.

The notion emerges that the formation of higher dimensional structures is
a key paradigm in early vision. The extra dimensions give ample space for plu-
riform data analysis by higher levels. However, such representations are con-
strained, in the sense that no information should get lost. This leads to the
mathematical formulation that such new spaces should be invertible. We will
show that this requirement leads to only specific kernels allowed. This leads to
interesting questions if these math-inspired kernels are also used by biology.

The plasticity of the visual system in the first three months after birth
forms many of the receptive fields and connections. We explore the possibil-
ity to describe these processes of self-organization from a mathematical point
of view with an axiomatic, first principles approach for two cases: the notion
of best aperture, and the self-emergence of Gaussian derivative kernels from
eigenpatches.

It seems counter-intuitive to create these high-dimensional and thus com-
putationally expensive data representations. The model for the huge arrays of
filter banks encountered in early vision needs a generic mathematical framework.
However, we like to show in this paper the benefits of such a representation, and
propose a common mathematical framework. As all extra dimensions are contin-
uous group actions, we propose a generic geometric model based on Lie groups.

The model is inspired by the pioneering geometric modeling work of
Koenderink [21], Young [41,42], Lindeberg [22], Petitot [29], Citti and Sarti [5],
Weickert [38], Duits [7], Florack [12] ter Haar Romeny [37], Nielsen [26] and many
others. The Lie group model for early vision is currently further developed in an
ERC program by Duits, and a EU program MANET, lead by Citti.

2 Multi-scale Sampling by the Retina

The retina holds about 150 million receptors, and 1 million ganglion cells, whose
axons form the optic nerve. The ganglion cells collect information from the recep-
tors in a so-called receptive field (RF) structure, which has a center-surround
Mexican hat (Laplacian of Gaussian) sensitivity profile on the retina. The retina
has a high-resolution central fovea, and decreasing resolution with eccentricity.
Rodieck [32] analyzed the retinal size distribution and layout meticulously, and
found a linear relation with eccentricity, for the two groups of retinal ganglion
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Fig. 1. Left: The retina is a multi-scale sampling device. Retinal RF size increases with
eccentricity [32]. Upper dots: parasol ganglion cells. Lower dots: midget ganglion cells.
Right: Spurious resolution in the face of the first author. Typically pixels are measured
with the wrong aperture function, such as squares, giving rise to spurious resolution,
i.e. sharp edges and corners that are not in the original scene [21]. Blurring (squeeze
your eye lashes) reduces these artefacts.

cells, the small midget cells (for shape), and the larger parasol cells (for motion),
see Fig. 1. Visual acuity and velocity perception acuity decrease linearly with
eccentricity.

2.1 Optimal Aperture Kernels - Optimal Receptive Fields

The optimal shape can be derived from first principles. The task of the retina
is a first observation of visual space. Image sampling needs to be done with a
finite aperture, i.e. the receptive field, connected to the retinal ganglion cell.
The typical aperture shape in today’s man-made image acquisition equipment is
square, as it is easy to fabricate on a detector chip. Koenderink [21] already noted
in the eighties that such a representation gives rise to ‘spurious resolution’, the
appearance of non-existing edges and corners. The effect appears clearly when
we zoom in to pixel level (Fig. 1): the face of the author certainly has no square
corners all over and sharp edge discontinuities.

The axiomatic derivation below is based on Nielsen [26].

• A measurement is done with a finite aperture. When the aperture is too small,
no photons come in anymore;

• All locations are treated similarly; this leads to translation invariance;
• The measurement should be linear, so the superposition principle holds.

These first principles imply that the observation must be a convolution (the
example below is for simplicity in 1D):

h(x) =
∫ ∞

−∞
L(y)g(x − y)dy (1)

L(x) is the luminance in the outside world, at infinite resolution, g(x) is the
unknown aperture, h(x) the result of the measurement. The following constraints
apply:
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A. The aperture function g(x) should be a normalized filter:
∫ ∞

−∞ g(x) dx = 1.
B. The mean (first moment) of the filter g(x) is arbitrary (and is taken 0 for

convenience):
∫ ∞

−∞ xg(x)dx = x0 = 0.
C. The width is the variance (second moment), set to σ2:

∫ ∞
−∞ x2g(x)dx = σ2.

The entropy H of our filter is a measure for the amount of the maximal ‘dis-
order’, i.e. spurous extra’s when the filter is applied, and is given by: H =∫ ∞

−∞ −g(x) ln g(x)dx. A minimization problem with given constraints is typi-
cally solved with an Euler-Lagrange approach, from the calculus of variations.
We look for the g(x), for which the entropy is minimal given the constraints:

∫ ∞

−∞
g(x) dx = 1 and

∫ ∞

−∞
xg(x)dx = 0 and

∫ ∞

−∞
x2g(x)dx = σ2.

The entropy under these constraints with the Lagrange multipliers λ1, λ2 and
λ3 is:

H̃ =
∫ ∞

−∞
−g(x) ln g(x)dx+λ1

∫ ∞

−∞
g(x) dx+λ2

∫ ∞

−∞
xg(x)dx+λ3

∫ ∞

−∞
x2g(x)dx

and is minimum when ∂H̃
∂g = 0. This gives

−1 − Log[g(x)] + λ1 + xλ2 + x2λ3

from which follows
g(x) = e−1+λ1+xλ2+x2λ3 . (2)

λ3 must be negative, otherwise the function explodes, which is physically unre-
alistic. The three constraint equations are now:

∫ ∞

−∞
g(x) dx = 1, λ3 < 0 → e

√
−λ3 = eλ1− λ2

2
4λ3

√
π

∫ ∞

−∞
xg(x)dx = 0, λ3 < 0 → eλ1− λ2

2
4λ3 λ2 = 0

∫ ∞

−∞
x2g(x)dx = σ2, λ3 < 0 → e−1+λ1− λ2

2
4λ3

√
π

(
λ2
2 − 2λ3

)
4 (−λ3) 5/2

= σ2

The three λ’s can be solved from these three equations:
{

λ1 =
1
4
Log

[
e4

4π2σ4

]
, λ2 = 0, λ3 = − 1

2σ2

}

Indeed λ3 is negative. These λs now specify the aperture function g(x;σ) (Eq. 2):

g(x;σ) =
1√
2πσ

e− x2

2σ2 , (3)

which is the Gaussian kernel.
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The Gaussian kernel has all the required properties. It is smooth, does not
generate spurious resolution, is circular, and is the unique solution of this basic
set of constraints. It blurs the image, but that is the natural consequence of an
observation with a finite aperture. We cannot see molecules with our naked eye.

The Gaussian kernel is the Green’s function of the famous diffusion equation:

∂L

∂s
=

⇀

∇.
⇀

∇L or
∂L

∂s
=

∂2L

∂x2
+

∂2L

∂y2
(4)

where
⇀

∇ = { ∂
∂x , ∂

∂y } is the nabla or gradient operator. Blurring can thus also be
interpretated as local diffusion of intensity.

The Gaussian kernel as optimal observation aperture has also been derived
with other axiomatic approaches (no spurious resolution, no extra extrema,
maintaining causality, etc.), reviewed by Weickert [39].

The diffusion Eq. (4) leads to an interesting model for the center-surround
receptive field structure. Typically, this shape is modeled by a difference-of-
Gaussians model, or a Gabor filter. The center-surround shape is also well mod-
eled by the Laplacian of a Gaussian kernel, the ‘Mexican Hat’ function. The
diffusion equation equates this to ∂L

∂s . Thus such an RF may measure the change
of output when the size σ of the observing kernel changes, i.e. when there is inter-
esting local structure. In homogeneous areas there is no signal (also implied by
the second order derivatives). But how do we perceive then homogeneous areas?
From experiments with stabilized retinal images [31] we know that vision disap-
pears within seconds after stabilization, filling in foreground homogeneous areas
(color and luminance) with the background color growing from the contours.
This must be an effect in higher levels of the visual system.

3 Regularized Multi-scale Derivative Operators
and Invariants

When measuring (i.e. the process of observation) with the Gaussian kernel as the
optimal sampling aperture, we obtain a discrete sampled dataset in 2D or higher
dimensionality. It is a classical problem to take derivatives of discrete data [17],
as we cannot apply the famous definition

df(x)
dx

= lim
h↓0

f(x + h) − f(x)
h

as h cannot go to zero; it is the finite pixel distance. It was solved by Laurent
Schwartz [33], for which he received the Field Medal: The derivative of such a
series of samples is obtained by smoothing (‘regularizing’) it with a smooth so-
called ‘test function’, which in our case is a convolution with a Gaussian function.
The derivative operator and the convolution operator may be interchanged, as
they are linear operators (this can be easily proven in the Fourier domain where
a convolution becomes a product). So we finally convolve with the derivative of
a Gaussian function to obtain robust multi-scale derivatives (to any order):
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Fig. 2. Multi-scale Gaussian derivatives of order zero (top, just blurring) to order 3
(bottom). This set is known as the N-jet of Gaussian derivatives.

∂

∂x
{L0(x, y) ⊗ G(x, y;σ)} = L0(x, y) ⊗ ∂

∂x
G(x, y;σ). (5)

In fact, we find all multi-scale derivatives (see Fig. 2 for 2D examples), the
so-called N-jet of Gaussian derivatives [36].

A Gaussian derivative is a regularized derivative. It has been shown that
Gaussian blurring is equivalent to Tikhonov regularization [16]. Note that differ-
entiation is now done by integration, i.e. by the convolution integral. It may be
counterintuitive to perform a blurring operation when differentiating, but there
is no way out: differentiation always involves some blurring by necessity. The
scale σ of the differential operator cannot be taken arbitrarily small. There is a
fundamental limit to the upper and lower bound of the scale σ given the order
of differentiation, accuracy and scale [16]. A good rule of thumb is to not go
smaller than σ = 0.7

√
n pixels for n-th order derivatives.

The parameter σ is a free parameter, we can choose it as we like. However, the
selection of the proper scale depends on the task: e.g. do we want to detect the
edges of the tree or the edges of the leaves or the tree? Fig. 3 shows the contours
of a city scene, calculated by the gradient magnitude, at different scales. Clearly
the larger edges define larger (and often more ‘important’) contours.

Derivatives with respect to x or y do not make much sense, as the position
and direction of the man-made coordinate system is completely arbitrary. We
need to be invariant with respect to translations and rotations of the coordinate

Fig. 3. Edges at different scales give different sized details. Left: original scene of
Utrecht, the Netherlands. Gradients at σ = 1, 3 and 7 pixels. Image resolution 512×512.
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system [12,24]. There are several ways to accomplish this. In this section we
discuss two methods (for 2D images): intrinsic geometry with gauge coordinates
and tensor index contraction.

An classical way is to take derivatives with respect to a coordinate system
which is intrinsic, i.e. attached to the local image structure, in our case to the
isophotes. Such local coordinates are called ‘gauge coordinates’. People on dif-
ferent locations on the earth perceive the orientation of their world locally as
the same. In the same way we choose in every pixel a new coordinate system
{v, w}, fixed to the normal and tangential direction of the intensity landscape
(isophotes).

Isophotes (i.e. lines of constant intensity) fully describe the image. We define
a first order gauge frame in 2D as the local pair of unit vectors {v, w}, where
v points in the tangential direction of the isophote, and w in the orthogonal
direction, i.e. in the direction of the image gradient. So in every pixel a differently
oriented {v,w} frame is attached to the image. Any derivative with respect to
v and w is invariant under translation and rotation, and so any combination
of such gauge derivatives. So, ∂L

∂w is the gradient magnitude. And ∂L
∂v ≡ 0, as

there is no change in the luminance as we move tangentially along the isophote,
and we have chosen this direction by definition. However, we can only measure
derivatives in our pixel grid along the x-axis and the y-axis (by convolution with
the proper Gaussian derivatives), so we need a mechanism to go from gauge
coordinates to Cartesian coordinates. This is derived as follows:

Writing derivatives as subscripts (Lx = ∂L
∂x ), the unit vectors in the gradient

and tangential direction are

w =
1√

L2
x + L2

y

(
Lx

Ly

)
v =

(
0 1

−1 0

)
.w

as v is perpendicular to w. The directional differential operators in the directions
v and w are defined as v.∇ = v.

(
∂
∂x , ∂

∂y

)
and w.∇ = w.

(
∂
∂x , ∂

∂y

)
.

Higher order derivatives are constructed1 through applying multiple first
order derivatives, as many as needed. So Lvv, the second order derivative with

respect to V is now
((

0 1
−1 0

)
1√

L2
x+L2

y

(
Lx

Ly

)
.
(

∂
∂x , ∂

∂y

))
2f(x, y)

Here is a table of the lowest order differential invariants:

Lv 0

Lw

√
L2

x + L2
y

Lvv
−2LxLxyLy+LxxL2

y+L2
xLyy

L2
x+L2

y

Lvw
−L2

xLxy+LxyL2
y+LxLy(Lxx−Lyy)

L2
x+L2

y

Lww
L2

xLxx+2LxLxyLy+L2
yLyy

L2
x+L2

y

1 See for most Mathematica code of the formulas in this chapter the book: [16].
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Fig. 4. Ridges of the fingers of a hand. Resolution 703× 467 pixels, scale of the ridge
operator Lvv is 3 pixels.

The second order gauge derivative Lvv is a well-known ridge detector. In Fig. 4
the ridges (centerlines) are extracted of the fingers of an X-ray of a hand.

3.1 Invariants from Tensor Contraction

In differential geometry, general derivatives are often denoted as (lower-script)
indices, where the index runs over the dimensions, e.g. in 2D:

Li =
(

Lx

Ly

)

When two similar indices occur in the same formula, they are summed over. The
so-called Einstein convention means that in such a case the summation sign is
left out:

LiLi ≡
y∑

i=x

LiLi =
y∑

i=x

LxLx + LyLy

Famous examples are:

L L intensity
LiLi L2

x + L2
y gradient magnitude square

Lii Lxx + Lyy Laplacian
LiLijLj L2

xLxx + 2LxLyLxy + L2
yLyy ridge strength

LijLij L2
xx + 2L2

xy + L2
yy deviation from flatness

A neat and effective way to visualize such complex tensor contractions are
the Feynman diagrams [20]. Special interest points in images, formed by invari-
ant singularity points in scale-space such as top-points, SIFT, SURF), have
received much attention for efficient image registration [23] and content-based
image retrieval [30].

The invariants have by definition a translation and rotation invariant shape,
i.e. are circular. Complex receptive fields in V1 exhibit a similar structure. Could
they represent geometrically invariant scalar properties?
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Fig. 5. Image of a disk with a very low signal to noise ratio. Right: gradient magnitude
extraction with scales of σ = 1, 2, 3, 4 pixels. The signal to noise ratio increases, the
localization accuracy decreases. Left: intensity profile of the middle row of the noisy
disk image (as indicated by the red line) (Color figure online).

4 Multi-scale Structure

The multi-scale structure (the ‘deep structure’) of images is rich in information.
It contains the information of the scale of features, which can be exploited to
establish their importance. Stated differently, it contains the hierarchy of the
structures in the image. Let us consider the extraction of larger edges from a
noisy background. How can we combine the effects of reducing noise but giving
up on localization accuracy when we go to coarser scales, with the finer spatial
accuracy but higher noise when we consider finer scales? This is done by edge
focusing [4]. Blurring an image to reduce the noise destroys the localization, as
can be seen in Fig. 5.

The steepest point of an edge is given by the maximum of the gradient, which
can easily be found by the zero crossing of the second order derivative in the
gradient direction. In Fig. 6 the zero crossings (black for downgoing, white for
upgoing edges) are plotted along the image line profile as a function of scale. This
is the signature function. The edges follow geodesic tracks. Some edges survive
the blurring for a long time, and they form the ‘important’ edges. Note that a
black geodesic annihilates with a white geodesic in a singularity, a so-called top-
point. Note also, that the up- and downgoing edges of the disk come together,
indicating their intrinsic relation. From this we see important cues emerging from
the deep structure analysis for the notion of symmetry and long-range contextual
connections (‘Gestalt’).

In the nineties an influential paper by Perona and Malik [28] focused atten-
tion on adaptive mechanisms for the differential geometric extraction of infor-
mation: e.g. the powerful notion of edge preserving smoothing by adapting the
scale of the operator to the local edge strength. This field, known as geometry-
driven diffusion, saw an influx of attention by mathematicians, and has now
developed into a mature framework, incorporating non-linear geometry-driven
diffusion equations and energy minimization variational approaches [15]. Edge
preserving smoothing is now implemented widely, in both professional as con-
sumer imaging applications. It is interesting, and its role largely still unclear,
that the lateral geniculate nucleus receives 75 % of its input from retrograde,
corticofugal connections from the primary visual cortex. The fact that there
the differential structure is extracted makes it an interesting possible adaptive
feedback mechanism model in early vision.
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Fig. 6. Multi-scale signature function of a noisy row of pixels in an MRI image of
the liver. The zerocrossings of the second order derivatives are indicated as white
(upgoing edges) or black (downgoing edges) dots, as a function of exponential scale
(vertical). Vertical is the scale direction, horizontal is the x-direction. Note how the
most important edges survive the blurring the longest. The signature function generates
the intrinsic hierarchy of structure.

5 Multi-orientation Operators

The Gaussian derivative kernels have many interesting properties, as being steer-
able, separable (extensively used for efficient computer implementations) and
they come at all orientations in the visual cortex. The Nobel laureates Hubel
and Wiesel were the first to discover that certain visual cells in the striate cortex
of cats have a directional preference [18,19]. It has turned out that the majority
of neurons in the primary visual cortex exhibits such an orientation preference,
and, moreover, that there exists an intriguing spatial and directional organiza-
tion into so-called cortical hypercolumns, see Fig. 7.

The layout is precise and characteristic, with a now famous pinwheel struc-
ture of spokes, forming radial iso-orientation lines of the tuning curves of the
receptive cells of the cells involved. The discovery and development of voltage
sensitive dyes by Grinvald et al. [34] made it possible to make high resolution
and real-time optical recordings of many cells in action simultaneously. Today
many additional powerful in-vivo optical imaging techniques have been devel-
oped [13], among which functional optical imaging at cellular level of intrinsic
cellular signals by calcium fluorescence two-photon microscopy.

It has been found recently with this technique that the pinwheels are extremely
well organized [6], and that the singularities in the center are really singulari-
ties (see Fig. 6) [27]. The cells along the spokes in the pinwheel exhibit receptive
fields with a similar orientation of the tuning curve, while there are indications
that the size of the receptive fields decreases with distance from the pinwheel cen-
ter [35]. The cortical columns form a regular array on the cortical surface, orga-
nized in the binocular bands. The rotation direction reverses between neighboring
columns. The columnar organization seems to solve the problem of mapping mul-
tiple parameters on a 2D cortical surface. A hypercolumn can be interpreted as a
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Fig. 7. Left: Voltage sensitive dyes revealed a precise organization of the visual cortex
into cortical hypercolumns, with a characteristic pinwheel structure. Right: Cortical
hypercolumns.

Fig. 8. Precise organization of cells around the pinwheel singularity, which is in the
center of the image. Calcium fluorescence two-photon microscopy intrinsic imaging.
Upper right: stimulus direction. From Ohki et al. [27].

“visual pixel”, representing the optical world at a single location, neatly decom-
posed into a complete set of orientations. This neat organization can be modeled
as multi-orientation structure, explained below (Fig. 8).

5.1 Long-Range Connections Between Pinwheels

Non-random horizontal connections within the cortical circuitry have been long
identified. Early synaptic physiological studies of the horizontal pathway in cat
striate cortex showed that neurons in layer II and III of the primary visual cortex
with aligned receptive field sites and similar orientation preferences excite each
other [20–22]. Apparently the visual system not only constructs a score of local
orientations, it also accounts for spatial context and alignment by excitation
and inhibition a priori. The spatial layout of these connections was convincingly
shown by Bosking et al., who combined voltage-sensitive dye optical imaging
with local injections of biocitin [40]. The connections run parallel to the brain’s
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Fig. 9. Left: Long range connections between pinwheels, voltage sensitive dye optical
recording, combined with local biocitin injections (black dots). From Bosking et al.
[40]. Middle: Long range interactions between pinwheels over relatively large distances
on the visual cortex of the tree shrew. The black-and-white areas indicate the left
and right eye dominance stripes. From Bosking et al. [40]. Right: Model of contextual
long-range connections between cortical hyper-columns. From Alexander et al. [1].

surface, linking columns across the spatial visual field with a shared orientation
preference even over relatively large distances [25], allowing cells to integrate
visual information from spatially separated receptive fields (‘contextual connec-
tions’), see Fig. 9.

6 Orientation Scores

The multi-orientation ‘deep structure’ can be described by adding orientation as
an extra dimension to the image, just as a ‘scale-space’. As the physical unit is
not meters but dimensionless, it is coined an ‘orientation score’. An orientation
score is Uf := Wψf of a function f is constructed by means of a convolution
with an anisotropic wavelet ψ via

Uf (x, θ) = (ψ̃θ ∗ f)(x) =
∫
R2

ψ(R−1
θ (y − x)f(y)dy (6)

where ψ ∈ L2(R2) is the con volution kernel with orientation θ = 0, i.e. aligned
with the vertical axis, and Wψ denotes the transformation between inage f and
orientation score Uf . The overline denotes complex conjugate, ψ̃θ(x) = ψθ(−x)
and Rθ is the 2D rotation matrix. Exact reconstruction from the orientation
scores constructed by 6 is given by

f = F−1

[
M−1

ψ F
[
x 	→ 1

2π

∫ 2π

0

(ψ̃θ ∗ Uf (., θ))(x)dθ

]]
(7)

where F is the unitary Fourier transform on R, and

Mψ = 2π

∫ 2π

0

F [ψθ]F [ψθ]dθ =
∫ 2π

0

|F [ψθ]|2dθ (8)

is the stability measure of the inverse transformation. The wavelets are defined
in the polar Fourier domain as a wedge of the pie, a so-called ‘cake kernel’
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Fig. 10. Top row: Re and Im representations of the ‘cake’kernels, with the domain in
Fourier space. Bottom row: same for Gabor kernels. Images from [3].

[9,10]. The sum of all wavelets integrates to the full domain, therefor enabling
invertibility. The spatial representation of the kernel is our convolution kernel. It
resembles the Gabor filter, but the Gabor kernel is not invertible, it only samples
a small section of the radial (spatial frequency) dimension. Figure 10 shows the
‘cake’ and Gabor kernels in the spatial and Fourier domain. The Gabor kernels
need to sample the Fourier space over several scales (frequency bands), making
them far less efficient. The cake kernels show outstanding performance in e.g.
retinal vessel tracking [3].

The long-range connections are distributed over an elongated area, with the
long axis in the direction of the connected orientations. This gives a nice model
for a contextual voting system, where neighboring columns all contribute to the
central column by voting for neighbor, we are all on the same contour or line as
you are. Field et al. [11] showed evidence for a local ‘association field’. Duits and
Franken [9,10] and Citti and Sarti [5] developed interesting theory for contour
enhancement and completion by left-invariant parabolic diffusion equations in
the orientation scores.

7 Lie Vision

An exciting development, proposed by R. Duits (now exploring this in an ERC
grant 2014–2017), is the possible extension of scores to the domains of:

• multi-scale
• multi-orientation
• multi-velocity (Heisenberg group)
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• multi-spatial frequency (Gabor transform)
• multi-disparity
• multi-color

Motion analysis is a separate channel (parasol retinal ganglia magnocellular
layers in LGN) in early vision. Essentially pairs of receptive fields are formed, sep-
arated by a time-delay, very likely by the amacrine cells. Because of the common
framework, a model for long range connections may be developed, giving rise to
new notions for dealing with occlusion and transparent motion, depth segmen-
tation and local deformation analysis, e.g. from MR tagging data (Gabor). It is
essential to couple the Lie group spaces, such as location and orientation. A pilot
experiment, where dMRI data was filtered with location-only, or orientation-
only, and location-orientation simultaneously, clearly showed the superiority of
the combination. See Fig. 23.

The Lie group model of early visual functional circuits introduces mathe-
matically an explosion of dimensions. This is supported by the findings of the
huge numbers of filterbanks we encouter in early vision [18]. Massively parallel
implementation is needed, and this is just what the EU Human Brain Project
is aiming at. The advances in optical imaging, like intrinsic calcium fluorescence
imaging at cellular levels, may give us new clues is this mathematically elegant
model is also an elegant model for human vision functional circuits.
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33. Schwartz, L.: Théorie des Distributions. Publications de l’Institut Mathématique
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Abstract. Computational modeling now spans more than three decades.
Biologically-plausible models are usually organized into a hierarchy that
models the brain in primates after carefully examining neurophysiological
and psychophysical studies. Currently, these models extract some values
(corners, edges, textures, contours) from images and then apply machine
learning algorithms to learn objects or shapes. Are they really that differ-
ent from classical, non-biologically-inspired, computer vision methods?
What facts can we learn from the primate visual system other than the
extensively used edge extraction by means of Gabor filters? Should we
work more on the representation along this hierarchy before applying a
learning strategy? We review the status of computational modeling for
object recognition and propose what can be the next challenges to solve.

Keywords: Computational neuroscience · Computer modeling · Bio-
logical plausibility · Machine learning

1 Introduction

In the century after the detailed descriptions of the nervous system by Ramón
y Cajal [1–3], there has been great progress. A specially important moment for
vision were the discoveries of Hubel and Wiesel [4,5] about neurons in area V1
of the visual cortex.

Computational models of visual processes are of interest in fields such as
cybernetics, robotics, computer vision and others. Biological inspiration - and
even biological realism - is currently of great interest in the computer vision
community. There has been much emphasis in dividing computer models between
bottom-up and top-down models [6]. This is an important characteristic of a
model: On a bottom-up model the flow of information only proceeds from the
lower - closer to the image, smaller neuronal receptive fields and more neuronally
populated - to higher areas (that are more abstract in terms of representation and
neuron receptive fields analyze a big portion of the visual field). Top-down models
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L. Grandinetti et al. (Eds.): BrainComp 2013, LNCS 8603, pp. 51–62, 2014.
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contain a mechanism that incorporates some filtering or selection from neurons
at the top that will influence neurons at the bottom, usually that mechanism
follows on the visual system, such as attention [7]. In some cases, bottom-up
models may evolve into top-down models like the Neocognitron [8].

We analyze here models from another perspective which has not been consid-
ered this far: that of hard-wired models or models that incorporate learning. We
want to analyze if learning is necessary. In neurophysiology this is an old debate
and one that was solved long ago, experiments support that a learning phase in
the early years of mammals is necessary for a proper environment adaptation
[9]. Another question is how much is genetic (learnt and incorporated across
generations) and how much is acquired by the individual. Even though there
is no question regarding the need of learning in evolved biological systems, we
comment on the problems that are intrinsic to learning and some others on how
machine learning is used for computer vision. We raise the following question:
Do we want to develop models that are infants in the sense that they need a
learning phase (a task that takes the first years of their life in humans) to be
fully functional? Or is it more effective to focus on modeling the neurons in the
adult brain?

2 Computational Models of the Visual Cortex for Object
Representation

Computer models of the Visual Cortex may be considered as neural networks,
although not in the classical sense. These models try to emulate biological neu-
rons by means of mathematical equations. To come up with these mathematical
equations, these models are typically influenced by studies in neuroscience. Not
much time had passed since Hubel and Wiesel [5,10,11] presented the influen-
tial work about simple neurons in area V1 that would lead to their Nobel prize
in 1982, that the first theories regarding neural networks incorporating mathe-
matical formalities for biological-inspired terms - such as excitatory connection,
lateral inhibition, learning or attention - were presented [12–14].

In the early 80 s we have three fundamental contributions: That of Marr’s
Vision [15], Zucker’s essay [16] and Fukushima’s neocognitron. Marr’s theory
consists of three stages for deriving shape information from the intensity values
of the image. The first stage is the Primal Sketch that corresponds to the prop-
erties of the 2-D image, mainly intensity changes (following the main function
of simple neurons) and geometry (blobs, edges, virtual lines, etc.). The second
stage is the 2.5-D sketch that accounts for the properties of the image in a
viewer-centred frame (distance from the viewer, discontinuities in depth, surface
orientation, etc.). Finally, the 3-D representation is an object-centred represen-
tation and its spatial organization by means of a hierarchical representation with
volumetric primitives (spatial configurations of sticks or axes) and surface prop-
erties. Zucker’s essay proposes a number of constraints to achieve vision, these
constraints were classified as computational, behavioural and implementational.
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In this essay, Zucker states the machinery that is available to the visual sys-
tem and thus, defines its restrictions. More importantly, he proposes the need of
multiple levels of description, evolving from the concrete to the abstract. Among
Zucker’s contraints, we can find lateral inhibition, edges, contours and grouping,
which appear at a higher or lower level in most current models. The Neocog-
nitron [17–19] is a network hierarchically organized into several layers inspired
by the simple and complex cells in area V1. By means of a learning algorithm,
it can learn different patterns. It is robust to deformation, size and changes in
location.

In those years, there were conflicting theories over synchronous [20–22] and
control models [23–25]. One of the best representatives of the later - and one
that was tested with patterns of letters - is the control-based network model
of Olshausen and colleagues [25]. This model performs a transformation from
the retinal reference frame to an object-centred frame. This is accomplished by
means of shifting circuits and control neurons. The control neurons dynamically
conduct information from lower levels of a hierarchical network to higher levels of
the network. Thanks to the shifting circuits and the control neurons, the window
of attention changes in size for scale invariance and position. This model was
extended to the later SIAM [26].

Current models try to mimick the areas of the visual cortex involved in
the object recognition or the motion pathways (Fig. 1). Explaining the areas of
the visual cortex is beyond the scope of this work. The reader may find details
regarding later discoveries on the visual cortex in recent summary papers [27,28].
Following that strategy, Visnet [29] consists of a four layer network that emulates
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Fig. 1. Simplification of the visual cortex. (a) Connections from bottom to top. Left
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imate locations of the areas involved in object recognition in the macaque’s brain.
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V1, V2, V4 and TEO/TE (Fig. 1) and achieves invariant object recognition. The
fundamental blocks of Visnet are a (1) series of hierarchical layered networks that
inhibit each other, (2) convergent connections from a population of cells from
a layer to the next and (3) a trace learning rule that is Hebbian based. Lateral
inhibition is performed following [30], and competition is applied by means of a
soft winner take-all. The convergent connections aim is to achieve representations
of increasing complexity and includes spatial local information in the competitve
network layers. The Hebbian rule allows for a temporal trace of cells previous
activity, thus previous cellular activity affects learning.

Widely popularized is the hierarchy of neuronal layers proposed by Riesenhu-
ber and Poggio [31,32] whose main inspiration comes from Fukushima’s Neocog-
nitron [17–19]. As with the Neocognitron, there are two types of layers: one
consist of simple units (S layers) and another of complex neurons (C layers). Sim-
ple and complex layers are interleaved in the hierarchy. A simple unit receives
inputs from the complex units from the layer below in a Gaussian-weighting
fashion. A complex unit is fed from simple units at the layer below and at differ-
ent scales and positions to achieve some level of 2D invariance, from this set of
simple units the strongest is selected through max selection. The original model
was later extended to seven layers and the inclusion of a Support Vector Machine
for object classification [33,34]. A summary of this later work is as follows: S1
contains a pool of edge detectors (Gabor filters) at 4 orientations, 17 sizes and
2 phases. C1 receives inputs from S1 at the same orientation and slightly differ-
ent positions and sizes. A pool of 10 C1 units at different preferred orientations
feed S2 units, the selection of S2 unit parameters is achieved through a learning
process from natural images. Then C2 - as before on C1 - select the strongest S2
units at slightly different positions and scales. This process is further iterated in
the two new layers (S3 and C3) in order to achieve a higher degree of invariance
according to the authors. Finally, S4 is composed of view-tuned cells whose input
are C3 units.

Amit [35] presented a parallel neural network for visual selection. Objects are
represented as composed of features localized at different locations with respect
to an object centre. Simple features (edges and conjunctions) are detected in
lower levels, while higher levels carry out disjunctions over regions. Detection is
accomplished by first constructing a graph of features and finding the candidate
regions on the image through a Hough transform. The Hough transform also
accounts for size and rotation invariance.

Suzuki and colleagues [36] construct a model of the form pathway based
on predictive coding [37,38]. Predictive coding hypothesizes that feedback con-
nections from high to lower-order cortical areas carry predictions of lower-level
neural activities. Fidler, Leonardis and colleages [39] compositonial hierarchies
advantages include less storage needs, processing demands, robustness to clutter
and expressive power. Compositionality is a property of hierarchical represen-
tations that define internal nodes in terms of simple constituent components
according to the Gestalt laws of grouping. In this hierarchical representation at
higher levels of the hierarchy we obtain parts that form objects. And these parts
are shared among objects.
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Some models focus their work on modeling areas or connections between two
or three areas with a higher degree of complexity that what is present in the
classical hierarchical methods. One example is the work of Weidenbacher and
Neumann [40] that models contours and surface junctions in a feedforward and
feedback recurrent network. This model is inspired by work in lateral connections
[41] and is successful at detecting occlusions. Lately, cells in area V4 have been
the source of inspiration for much work. One example is Murphy and Finkel [42],
where V4 cells are modeled as a set of feature vectors of contours: mean polar
angle, mean curvature of region, mean curvature of adjacent clockwise region,
mean curvature of counter-clockwise region, mean direction of curvature region,
mean distance from center of mass and indication of inner or outter contour.
COSFIRE [43] is also about modeling units close to neurons in area V4. In this
model, orientation-selective cells are combined into an AND-gate-like model.
V4-like units are trained for a specific task of recognition.

Computer models have evolved from the theories of the first years to real
applications that can compete with state-of-the-art computer vision systems.
To mention some applications, the Neocognitron was successfully tested with
character recognition, Visnet with faces, Serre and Poggio’s or 2DSIL [44] were
successfully compared with at the time current computer vision systems in tasks
of object recognition. COSFIRE was applied to a clinical application, that of
finding retinal vascular bifurcations.

3 Is Learning Really Necessary?

The short answer is Yes. In fact, learning is a fundamental part of most evolved
biological systems. This fact has been quite well established in neuroscience for
some time, many works which were summarized by Barlow [9] came to that
conclusion. Kittens and young monkeys learned disparity or öther fine-tuned
characteristics in their first months of life. In the case of orientation selectiv-
ity, Leventhal and Hirsch [45] showed that kittens would discriminate diagonal
contours only if they were exposed to diagonal lines early in their life. This was
not so dramatic for the case of horizontal/vertical lines. To summarize, there is
hard-wired representation for lines (horizontal vs vertical), but experience was
required for diagonal contours. Regarding object recognition in monkeys, famil-
iar objects seem to activate less neurons than unfamiliar ones, and these neurons
are more narrowly tuned [46]. It is clear then, that learning is required at the
first months/years of a mammal, but from a computer modeling approach: Why
do we want to learn? Do we want to model an infant visual cortex or an adult
one? We also have to consider at what stage in the hierarchy we want to apply
learning and more importantly what combination of features should be learned.

There are a number of problems when we consider a pure learning approach.
The first one is that learning is time consuming, the second is the dependency
on the learning data. Still most models presented in Sect. 2 apply learning on
datasets. In Computer Vision, after using several types of image datasets that
were used to compare a method to other methods, scientists are warning about
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the problems of using these image datasets, which is called the dataset bias.
A recent work [47] shows the dangers of using image datasets the classical way,
that is, learning with a subset of the dataset and then evaluating within the
same dataset. Even when obtaining high classification rates in the evaluation
phase, it is questionable that the system has done a proper object generalization.
This, as that work shows, can be readily seen by evaluating against a different
image dataset containing the same type of objects than the former one. Results
showed those cross-database results to be very dissapointing. Thus, by using
datasets, be either one or a combination of some, there is no class or object
being learnt, but specific feature setups. We can avoid this by combinig different
datasets, or adding more and more images that include more variabilty. But how
many images/variability are enough? There is no clear answer to that, in fact,
that would depend on the classes or objects being learnt.

Related to that work is the interesting study of Pinto and collaborators [48].
They constructed a simple V1-like model (edge detectors) that was a simple
thresholded Gabor function over 16 different orientations and 6 spatial frequen-
cies combined with a Support Vector Machine. The model did not contain a
representation of shape and no mechanisms for recognition under position, size
or pose variation. As it was expected, such a simple system performed poorly
when tested on an easy task of differentiating just two categories (planes from
cars) that introduced real-world variability (position, scale, in-plane rotation and
depth rotation). But surprisingly this system performed better than five state of
the art systems [49–53] when using the popular Caltech 101 database [54] that
included those two categories among the 102 categories in that database. The
reason behind this is that even though such a database contains pictures taken
from real-world scenarios, it does not include the random variability found in
the real world, while the former and basic two-category test did. The authors,
again, warn us about the risks of such biased datasets when performing tests on
real-world images.

We argue that one of the sources of these problems may be the result of
learning features that are too close to the image, instead of learning general-
ized concepts regarding the object. Thus, the classical learning stage over edges,
corners, textures, colors, etc. as most models do, comes too early for a proper
object generalization. Learning is necessary and is a fundamental part of any
biological visual information processing, but we argue that we need to work
more on a more elaborated, complex, effective and abstract object representa-
tion. All of this would bring us then to the question of at what level to apply
learning?. Studies have shown [55,56] that by applying a learning algorithm over
a set of natural images, the features being extracted is a similar set of localized,
oriented and bandpass filters equvalent to the properties of simple cells in area
V1 of the visual cortex. A similar study showed this case also for complex cells
[57]. But models presented in Sect. 2 did not apply learning to obtain Gabor-like
features since we have a mathematical model for such filters and thus we can
avoid the learning at the visual cortex V1 level. Learning is then left for later
levels. For example in [58] thousands of images are used in order for layer S2
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(the equivlent to V4 in the model) to become selective to boundary confor-
mations. According to [59–61], neurons in area V4 are selective to shapes, and
their data from neuronal recording was best fit with a function depending on
the curvature and angular position of their boundary conformations. As a pop-
ular example, the model of Riesenhuber, Serre, Poggio and colleagues does not
achieve a shape representation through any explicit form of curvature compu-
tation. Rather, the shape representation is obtained through the learning of
repeated convergences layer by layer of approximate straight-line fits to bound-
aries beginning with edge elements. We argue that what is missing in most
models is a true modeling of intermediate areas, thus avoiding a learning stage
that is still too early in the hierarchy. Can we substitute the learning of curva-
tures and shape by a hard-wired mathematical formulation? This would be the
equivalent to the fact that we do not apply learning to images in order to learn
Gabor-like filters, but use the well known Gabor filter formulation. That is, can
we postpone the application of learning for later in the hierarchy and thus, to
learn a more abstract and efficient object representation?

4 2DSIL: A Hard-Wired Model of Shape

Models presented in Sect. 2 apply learning very early in their hierarchies. The
problem is that the representations to which learning is applied is still too close
to the images: They are mostly combinations of edges, corners, colors and similar
features. Before applying machine learning, computational neuroscientists and
computer vision scientists alike should work more at the representation level.
We should obtain a representation that is more abstract than edges, corners or
colors. The idea is to learn objects as such not as a result of the combination
of low-level features, not even after a successive combination of those features
in a hierarchy. A chair certainly has some visual qualities that make it a chair,
but it is not its edges and corners but its parts and the general shapes of those
parts, that is, a higher level representation than the ones we directly extract
from images. On top of this, the chair-ness characteristic of a chair is that is
something where you can sit on. We advocate for machine learning, but its
application should be on a sufficiently abstract representation of an object that
at the same time possesses the right structure for the task. Thus, we should make
efforts also on the representation part of object recognition. To summarize, there
are two important elements that are still missing on computer models: (1) The
addition of intermediate representations, such as shape, color constancy or parts
and (2) the attachment of semantic information to objects. This cannot be done
overnight, but we can take steps towards it.

The strategy of most models up to date, does not explicitly include either
curvature or end-stopped units, both well-known to exist in the visual cortex.
Units that may appear similar may be learned; however, this is not necessarily so
and depends on the training data selection as commented in the previous section.
We have presented a model - known as 2DSIL [44,62,63] - that contributes a
direct representation of curvatures and shapes by creating mathematical models
for those units.
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Fig. 2. Architecture of 2DSIL. Model simple neurons perform edge analysis. Responses
from model simple neurons are integrated into model complex neurons receptive fields.
By combining model simple and complex neurons we achieve endstopping. Responses
of model endstopped cells are used to get different curvature classes. The main element
in this architecture is that of Shape-selective neurons, they represent curvature parts in
a curvature × position (radial and angular) domain following neurophysiology studies
[59–61]. More details about the model can be found in Rodrıguez-Sánchez and Tsotsos
[62]
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A summary of the architecture of 2DSIL is presented in Fig. 2: Simple neu-
rons are modeled as difference of Gaussians and organized in hypercolumns at
four scales. Complex neurons are the combination of five displaced neurons rela-
tive to their prefered orientation. Complex endstopped neurons are the result of
combining excitatory (from simple neurons) and inhibitory inputs (from complex
neurons). If the excitatory an inhibitory components are at the same orienta-
tion, we obtain neurons that respond to different degrees of curvature. If they
are at different orientations, we obtain neurons selective to the orientation of the
curvature. By combining these two types of curvature selectors, we obtain curva-
ture neurons. A shape neuron is a population of the different curvature-selective
neurons at different locations. The possible number of shapes that may be repre-
sented by our model Shape neurons is very large, given the limited type of neu-
rons at each level of the architecture. A Shape neuron has a response depending
on the position and curvature of the stimulus component parts. Details regard-
ing the model as well as how these intermediate representations are achieved
through mathematical formulation at the neuronal level can be found in [62].

5 Conclusions

Computer vision systems use features extracted from images that are fed into
a learning algorithm. These computer vision systems fail when compared to the
efficiency, accuracy or robustness to changes of the mammalian visual system.
Some scientists then proposed to overcome these problems by looking at biolog-
ical visual systems and modeling neurons in the brain. A new field in computa-
tional neuroscience was born inspired in the advances from neurophysiology, and
with it biologically-plausible or inspired models. Unfortunately, models do not
exploit the complexity and representation richness of the mammalian visual sys-
tem, but we find ourselves doing what has been the classical ways to attack the
problem in computer vision: Extract edges, corners, contours and use machine
learning.

We propose that we need to work on the representation before resorting to
learning. We need to learn an object at its highest level of abstraction, not as a
conjunction of lines and corners. Representations up to now are still too close to
the image and too far from an abstract representation of an object. 2DSIL has
taken some steps in evolving in that path and showed that it can be successfully
applied to a computer vision task [44]. The model has also mimicked neurons in
area V4 [62] with a high degree of fidelity, thus showing that by selecting the
appropiate representation, there is no learning required for obtaining neurons
selective to shapes as in other models [58]. By incorporating intermediate rep-
resentations through neurons that respond to curvatures and shapes with their
associated mathematical formulation we expect to contribute on more extensive
work for a representation that becomes more abstract and closer to how the pri-
mate visual system represents an object. When we achieve that goal, we think
it would be the time to apply learning approaches.
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Abstract. We present a computational model for the understanding of the
fundamental principles of visual selective attention. The model has important
medical, social and engineering applications that could benefit the general
public. The design of the model is guided by the state of the art in neuro-
physiological evidence and its performance has been evaluated by comparisons
to behavioral data from psychological studies.

The model effectively links low level neural interactions with behavioral
data, thus providing concrete explanations for psychological phenomena. The
model was used to simulate finding from several behavioral experiments on
visual selective attention, with emphasis on those eliciting controversies in the
scientific literature.

Keywords: Visual selective attention � Computational modeling � Saliency
map � Spiking neural network

1 Introduction

The purpose of the attentional mechanism can be realized by considering that for every
instant of conscious life, a person receives millions of external stimulations from his/
her sensory systems. In each eye there are about 125 million photoreceptors that are
estimated to provide information down the optic nerve in the range of 108–109 bits per
second. This amount of information exceeds by far of what the brain is capable to
process and consciously experience. Visual selective attention mechanisms are
responsible for maintaining the stability in the brain by biasing only the relevant and
essential information for further processing in the visual cortex, while at the same time
filtering out redundant stimulation.

Selective attention has important behavioral implications in our everyday life
therefore a deeper understanding of its role could benefit the general public. For
example, while driving, failure to sustain selective attention to the road when a dis-
tracting stimulus appears (e.g., an attractive advertisement board) may cause the driver
to induce an accident. Also, deficits in the attentional system have been linked with
clinical disorders and conditions such as the Attention-Deficit Hyperactivity Disorder
(ADHD) and schizophrenia. For instance, failure to inhibit distracting information in
order to remain focused on a task is considered by many psychologists as the under-
lying cause of ADHD, which is often associated with adverse life outcomes [1], while
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abnormalities of attention have long been considered as core features of the cognitive
dysfunction associated with schizophrenia. It has been shown by many studies that
schizophrenics cannot modulate attention and they maintain consistently high levels of
arousal during selective attentional tasks [2].

Finally, the field of “intelligent systems” can significantly profit from any newly
acquired knowledge that cognitive modeling brings to surface, since combined with
knowledge from computer science, it can provide a good basis for Computational
Intelligence (CI) applications. Robots and other engineered systems that mimic bio-
logical capabilities as well as brain-computer interfaces are some of the potential areas
of applications that can benefit.

Visual selective attention can operate either in a space/location-based or an object-
based manner. In space-based attention, locations in the visual field are selected while
in object-based attention, organized symbols of visual information are selected inde-
pendently from their location in space [3].

A central distinction for both these types of attention however is made with regards
to the endogenous and exogenous reallocation of the attentional focus.

Top-down or endogenous attention refers to the volitional modulation of neural
activity that corresponds to an object or a location in space, and it functions in response
to signals initiated by internal goals, that most likely originate in the parietal and frontal
lobes of the brain. Bottom-up or exogenous attention is a faster and more automatic
process that relies on the sensory saliency of stimuli registered by subcortical structures
in the primary sensory cortices [4, 5].

2 The Model of Visual Selective Attention

2.1 Methodology

For the development of the model, scientific evidence and data from the fields of
cognitive psychology and neurophysiology have been considered. The behavioral
aspect of selective attention is mostly studied from the fields of cognitive/experimental
psychology, in which the primary research methods involve experimentation with
human participants, while information related to the low level mechanisms and the
connectivity between different parts of the brain system is obtained from the fields of
cognitive neuroscience [6].

The implementation and evaluation of the computational model was based on a
recurrent process. Initially the model was designed based on scientific evidence about
the low level neural interactions followed by an evaluation of its performance com-
pared to several existing data from behavioral experiments. Simulation predictions
were re-examined through the design and execution of new behavioral experiments,
from which the obtained data were used for updating the parameters of the model. This
procedure was repeated until the accuracy of the model’s behavior was substantially
confirmed.

Next, the model was used for simulating behavioral data from experimental studies
that triggered some controversies and theoretical disagreements in an attempt to offer
biologically-plausible explanations for these data. The tasks that have been simulated
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can be placed under two main categories of visual attention tasks. The first category
refers to tasks in which the deployment of attention is focused on the temporal
appearance of visual stimuli. The typical methodology used in these tasks is the rapid
serial visual presentation (RSVP), which is a method of displaying a sequence of visual
stimuli in rapid succession at the same location. One of the most famous attention
related tasks using this paradigm is the attentional blink (AB) phenomenon, established
by Raymond, Shapiro and Arnell [7]. The AB was simulated through the proposed
computational model, and the findings have been presented in previous work [8, 9].

The second category refers to tasks in which the multiple stimuli are presented
simultaneously in various spatial locations in the visual field. One such behavioral
experiment that offered a new proposal for describing the attentional mechanisms at a
theoretical framework but also triggered some disagreements is the perceptual load
task, originally described by Lavie [10]. The findings of this task have been success-
fully reproduced and analyzed through computational simulations [11, 12].

What follows, is a general description of the model for both sub-model categories
since the system has a coherent structure and its operational units follow the same
principles.

2.2 Overview of the Computational Model

The model involves two stages of processing implemented through spiking neural
networks (SNN). The first stage simulates the initial bottom-up competitive neural
interactions among visual stimuli, while the second stage involves top-down semantic
modulations of neural activity. During the progression of neural activity through the
two stages of processing, the encoded stimuli compete for access to working memory
(WM) through forward, backward, and lateral inhibitory interactions which modulate
the strength of their neural response. This implementation is based on the biased
competition framework [13] and on neurophysiologic findings showing that competi-
tion for neural representation in visual areas is initiated when two or more stimuli fall
within the receptive fields of the same or nearby [14, 15] cells.

The model was implemented to operate in two stages for modeling purposes
considering that the division relies only on the functions that each stage represents and
not on the visual areas that are involved during attentional tasks. In fact, it is widely
accepted that most of the early visual areas (e.g. V1, V2) are repeatedly active during
the progression of neural activity in the visual cortex [16].

The first stage of the model corresponds to the initial representations of any
incoming stimuli. These representations are created in the model according to the
“saliency map” theory that explains how the overall saliency at each location in the
visual field can be calculated by integrating information across individual feature maps.
For example, in the visual cortex and in area V1 in particular, a neuron’s response has
been found to be significantly suppressed based on several properties of contextual
inputs that lie outside but near its receptive field [17–19]. Luminance contrast appears to
be the initial variable on which saliency computation is based, since it is the first type of
information extracted by our visual system in the retina [20]. At higher levels of visual
processing, other feature dimensions such as orientation, color and motion are encoded
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and contribute to the overall visual saliency of a stimulus. At even higher levels in the
visual pathway, “features” with increased level of complexity (e.g., semantic contrast)
may influence visual saliency. Each level in the hierarchy of visual processing builds its
receptive field selectiveness based on the output of the preceding layers [21].

The second stage of processing reflects the interaction between higher areas within
the visual cortex and a top-down fronto-parietal network responsible for maintaining
goal-directed activity (e.g. [3, 5]). More specifically, top-down signals in the second
stage, correspond to the biasing of neural activity based on the semantic information
that this neural activity conveys as it has been suggested by a number of studies with
invasive recordings in the monkey visual area V4 [14, 22]. Top-down interactions
during the computations performed in the second stage of processing can produce both
neural amplification and neural synchronization in agreement with neurophysiological
findings (e.g., [22, 23]). Attending a stimulus enhances the firing rate of the neurons
that are linked to that specific stimulus and causes them to fire in a more synchronous
rhythm. At the same time, the firing rates of neurons that correspond to unattended
stimuli are suppressed. The evidence for synchronization in the human brain suggests
that the temporal structure of neuronal spike trains is important for information pro-
cessing. Nevertheless, this remains a controversial issue (see [24] for a review).

Finally, following the modulation of neural activity by top-down signals, the neural
path leads to the working memory network. The working memory network will output
a signal indicating perceptual awareness of an incoming stimulus if its neural activity is
sufficient to activate the working memory nodes.

Fig. 1. The proposed computational model of visual selective attention.
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2.3 Generation of Input Stimuli

Each stimulus in the visual field is encoded with 12 input neurons whose receptive
fields are associated with the spatial locations in which the stimuli appear. The stimuli
are encoded through spike trains, i.e., series of discrete action potentials that are rep-
resented in the model as binary events (0’s and 1’s) denoting the absence or presence of
a spike (action potential).

The firing rate of an input neuron can be seen as a Bernoulli process with proba-
bility P to have the value of 1 at any time bin of the spike train and 1 − PA,
(0 ≤ PA ≤ 1) to have the value of 0. The number of bins in a spike train is set in the
model to equal the duration of each stimulus. For example, if a stimulus appears within
the visual field for 100 ms then the neurons whose receptive fields correspond to that
stimulus will generate spike trains that contain 100 time bins.

2.4 Saliency Map Model

For the saliency analysis in the first stage of processing we have adopted a saliency
map model that was originally proposed by Koch and Ullman [25] as a neuromorphic
vision algorithm. This algorithm, that has been implemented by Walther and Koch [26]
into a Matlab toolbox (Saliency Toolbox - http://www.saliencytoolbox.net), can be
used to produce saliency values for all spatial locations in the visual field. The overall
saliency at each location in the visual field results from the integration of information
across individual feature maps and is represented by a grayscale image indicating the
calculated saliency for every pixel. The final saliency map is used in the model
to generate the initial firing rates of the input neurons according to Eq. (1) (see also
Fig. 2).

FRsi ¼ aðMaxðPjÞÞ þ bð
Xn
j¼1

PjÞ ð1Þ

In (Eq. 1), FRsi represents the firing rate of each of the 12 input neurons that
correspond to the receptive field of stimulus Si. Max (Pj) is the maximum value of all

the pixels that correspond to stimulus Si, and
Pn
j¼1

Pj is the total summation of the n pixel

values (Pj) that correspond to stimulus Si. The terms α and β are weighting constants.
The maximum pixel value for each stimulus reflects the general saliency of the stimulus
while the summation value is used to incorporate the influence of the size of stimuli, as
the model employs a fixed number of 12 neurons to encode incoming stimuli regardless
of their size.

The values in the saliency map represent the extent to which locations in the visual
field may attract attention in a solely bottom-up manner [27]. Although no semantic
top-down modulation of neural activity takes place at early stages of processing, top-
down spatial factors initiated by perceptual cues are allowed to influence the initial
neural activity [28, 29] as discussed in the next subsection.
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2.5 Spatial Top Down Interactions

Spatial top down interactions are applied in the first stage of processing. More pre-
cisely, in the case in which perceptual cues are used to prime the spatial location of an
upcoming stimulus, top-down spatial factors in the model exert their influence on the
initial firing rate of the input neurons. This interaction is compatible with findings from
several studies documenting that cues may increase the neural activity of neurons that
correspond to visual stimuli immediately after and even before the onset of the stimuli
(e.g., [28, 29]). In the computational model, spatial top-down interactions are simulated
by a sequence of spike trains originating from the endogenous goals module and are
driven towards the input neurons whose receptive fields coincide with the primed
spatial location.

2.6 Semantic Top-Down Interactions

To model the semantic interactions, templates that contain features of targets are stored
and used for evaluating any visual input. These target representations are maintained in
the endogenous goals module (Fig. 1) and recalled when tasks demand it. Following
the neural interactions of the first stage of processing, the spike trains that correspond to
any incoming stimuli will pass through a “temporal filter” that reorganizes their spikes
appearance without altering their average firing rate. This mechanism is implemented
in the model according to a pre-defined probability that reflects the degree of resem-
blance between the features of any incoming stimulus and those of a target. Thus only
the spike train patterns of a stimulus that shares similar features with the target will
change significantly and become closer to the distinct spike train pattern that maintains
the semantic representation of the target. The temporal filter mechanism in the model is
inspired by a study of Crick and Koch [30] who suggested that the selection of stimuli
could be made on the basis of synchrony across neurons. Crick and Koch [30] also
claimed that visual selective attention could function in a way that it causes changes to

Fig. 2. Generation of initial firing rate according to the Saliency map algorithm.
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the temporal structure of the neural spike trains that represent information to be selected
and suggested that these temporal changes are a prerequisite for the presence of neural
synchronization. This procedure modulates the timing of spikes within the spike train
while the firing rate of the spike train remains unchanged.

Following the temporal filter operation, neural activity is conveyed to the corre-
lation control module (CCM). The role of the CCM is to evaluate and compare the
neural activity coming from the first stage of processing (that contains information
about the nature of any incoming visual stimulus) and the activity that represents the
top-down signals that maintain the properties of the target in a given behavioral context
(i.e., endogenous goals possibly held in prefrontal cortical areas).The CCM is a neural
network containing coincidence detector (CD) neurons inspired by what is currently
known about the functional role of pyramidal cells, which are the main neurons found
in the visual cortex. The pyramidal neurons have one large dendrite that branches
upward into the higher layers of the cortex, as well as an axon which may be long
enough to reach distant areas of the brain. Pyramidal neurons have been observed to
respond best to the coincident activation of multiple dendritic compartments [31].

Coincidence detection neurons may function as a mechanism that controls the
correlation between two streams of information that originate from different cortical
areas. Therefore the CCM may represent anatomical locations where interaction
between top-down signals and bottom up sensory information has been observed such
as in visual area V4 (e.g., [14, 32, 33]).

Based on the degree of correlation, a control signal will be generated for the
amplification of the incoming visual neural activity. The strength of the control signal
depends on the total firing of the CD neurons of the CCM. For example, if two signals
are correlated then the CD neurons will fire more frequently and will elicit a stronger
control signal. As a result, the firing rate of the corresponding incoming stimulus is
amplified. In addition, due to the impact of the coincidence detector neurons, in cases in
which high correlation between an incoming stimulus and top-down signals occurs, a
synchronous neural activity is observed between the neurons of the subsequent neural
network layers of the model in agreement with the neurophysiological findings
described in Sect. 2.2.

2.7 Competitive Inhibitory Interactions

To model the attentional process, competitive interactions that take place among
stimuli that appear simultaneously at different spatial locations in the visual field are
included. This competitive behavior is achieved using pools of inhibitory interneurons
as shown in Fig. 3. The strength of the inhibition between the presented stimuli in the
first stage of processing depends heavily on the levels of saliency. Thus, stimuli with
high saliency values are able to exert stronger inhibition towards the representations of
other stimuli that are present in the visual field.

In the second stage of processing, the level of inhibition that a stimulus exerts
(indirectly through the pools of inhibitory neurons) depends on the strength of its
semantic correlation with the endogenous signals. Higher correlation between stimuli
results in increased firing rate and consequently in stronger inhibition towards other
stimuli.
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For spatial attention tasks lateral inhibition between neurons whose receptive field
corresponds to separate spatial locations of the visual field are incorporated, while in
RSVP tasks the competitive interactions between presented stimuli occur at different
time windows. In the RSVP tasks, each incoming stimulus will receive inhibition from
the stimuli that appeared before as well as by those that follow. This assumption is
consistent with several studies of single cell recordings [34, 35] that show the effect of
visual masking on the firing rate of neurons in the temporal cortex of monkeys. Thus,
competition between the RSVP items, represented by backward and forward inhibition,
will have the first impact on each of the neural responses in this model configuration.
Even more, forward and backward masking in the proposed computational model, is
intensified by reverberatory activity between the first and second stage of processing.

Within the working memory layer, separate working memory nodes are linked to
different stimulus representations, therefore inhibitory interactions appear also in this
phase of the modeling process. As previously explained, in the working memory
network, an output signal indicating perceptual awareness of an incoming stimulus is
initiated whenever a specific stimulus neural activity is sufficient to activate the
working memory nodes. The same signal however, acts also in an inhibitory manner
towards any newly generated signals from the CCM when the correlation control signal
coincides with the perceptual awareness signal. This inhibitory process is necessary for
preventing multiple stimuli entering working memory while it is occupied. Distin-
guishing brain signals from EEG and MEG studies support this notion [36, 37].

Fig. 3. Competition among visual stimuli through pool of inhibitory neurons.
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3 Discussion

Several studies have been presented in the literature to propose candidate neural
mechanisms for the attentional process. These results however, are usually compared
with neurophysiologic studies that measure neural activity at the single neuron level.
The proposed model is concentrated on the theoretical interpretations of behavioral
experiments; therefore, a more abstract implementation was necessary. Still, the design
of the model does not escape from the borderlines placed by neuroscience, and thus
keeps its credibility and capability of predicting new findings. The combination of low
level neural interactions and the more abstract psychological concepts as implemented
in the model has provided the power to run simulations of behavioral phenomena, and
at the same time to remain within the narrow limits of coupling interactions as these
arise from the plethora of neurophysiologic evidence. Although the model does not
follow an entirely biologically realistic implementation, the proposed approach offers
the opportunity to contribute from a new perspective to the field of cognitive science.

The generic model of visual selective attention has been designed and used for
simulating three debatable psychological experiments in the literature. These are the
attentional blink phenomenon [7], the behavioral experiment that inspired the per-
ceptual load theory [10], and the experiment that initiated a controversial debate on the
relation between attention and consciousness [38]. The strategy we followed was to
initially verify the model’s achievement by comparing the simulation results with the
experimental data, and afterwards to give some potential explanations for behavioral
responses based on low level neural interactions, something that has not been clearly
presented in the literature.

It is important to note that the model was indeed able to reproduce very closely the
data derived from these three behavioral experiments [8, 9, 11, 12, 39] and it therefore
represents a useful tool for evaluating the theories behind these results.

Appendix

The basic computational unit used in the model is the graded response neuron, defined
by the membrane Eq. A1.

sm
dV
dt

¼ EL � VðtÞ þ RmIsðtÞ ðA1Þ

V is the membrane potential of each neuron, τm is the membrane time constant, and
EL is the resting potential of the membrane. The membrane potential can be seen as a
measure of the extent to which a node is excited. Is(t) represents the total synaptic
current and is a simple combination of pre-synaptic excitation and bias currents that
increase the membrane potential, with inhibition currents that reduce the membrane
potential of the node. The total summation of the excitatory and inhibitory currents
influences the actual membrane potential at each time instance. Finally, Rm is the
membrane resistance of the neuron. In brief, Eq. 1 determines how the membrane
potential V of each neuron develops over time after an input current Is is applied.
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The value of the membrane potential increases until it reaches a specific threshold (Vth)
at which a spike is emitted and V resets to its initial condition or resting potential Vres.
Subsequently, a refractory period of 2 ms is applied before the neuron model is allowed
to integrate again any pre-synaptic currents.

The term Is in Eq. A1 quantifies the synaptic currents that are mediated by the
excitatory receptors AMPA and NMDA (activated by glutamate, gAMPA and
gNMDA) and the inhibitory receptor GABAA and GABAB, as shown in Eq. A2.

Is tð Þ ¼ IAMPA tð Þ þ INMDA tð Þ þ IGABAA tð Þ þ IGABAB tð Þð Þ ðA2Þ

For the following analysis, the synaptic inputs will be considered as the total
excitatory and inhibitory synaptic currents (Iexc(t) + Iinh(t)).

In the framework of the integrate-and-fire model, each pre-synaptic spike generates
a post-synaptic current pulse that is driven towards the input of the following neuron as
shown in (A3).

Is tð Þ ¼ Iexc tð Þ þ Iinh tð Þ ¼ gexc tð ÞðEsexc � VÞ þ ginh tð ÞðEsinh � VÞð Þ ðA3Þ

Where

gexc tð Þ ¼ �gexcwexcPs tð Þ; ginh tð Þ ¼ �ginhwinhPs tð Þ ðA4Þ

is the maximal excitatory or inhibitory conductance and wexc, winh refer to the excit-
atory and inhibitory synaptic weights.

Ps(t) determines the synaptic conductivity and can be modeled by a simple expo-
nential decay with time constant τs as shown in (A5).

Ps ¼ 1

e
t
ss

þ ðHðt � tkÞe
tk
ssÞ

e
t
ss

ðA5Þ

In (A5), Θ represents the Heaviside step function (zero for negative arguments,
unity for zero or positive arguments

HðxÞ ¼ 0
1

x\0
x[¼ 0

�
ðA6Þ

Coincidence Detector Nodes

Traditionally, coincidence detector neurons are modeled with a very short membrane
time constant τm that can change rapidly. However, another way to model coincidence
detection is based on a simple case in which separate inputs converge on a common
target.
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More precisely, if Ψ(t) is a binary row vector denoting the states of neuron A and B
at time t and C(t + 1) the state of neuron C at t + 1.

Cðt þ 1Þ ¼ HðWðtÞ � hÞ ðA7Þ

With Θ being the Heaviside step function, and θ the specific threshold for a number
of pre-synaptic spikes that are needed to arrive synchronously in order for the output
neuron C to induce a spike.
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Abstract. The primate visual system has an impressive ability to gen-
eralize and to discriminate between numerous objects and it is robust
to many geometrical transformations as well as lighting conditions.
The study of the visual system has been an active reasearch field in
neuropysiology for more than half a century. The construction of compu-
tational models of visual neurons can help us gain insight in the process-
ing of information in visual cortex which we can use to provide more
robust solutions to computer vision applications. Here, we demonstrate
how inspiration from the functions of shape-selective V4 neurons can be
used to design trainable filters for visual pattern recognition. We call
this approach COSFIRE, which stands for Combination of Shifted Fil-
ter Responses. We illustrate how a COSFIRE filter can be configured
to be selective for the spatial arrangement of lines and/or edges that
form the shape of a given prototype pattern. Finally, we demonstrate
the effectiveness of the COSFIRE approach in three applications: the
detection of vascular bifurcations in retinal fundus images, the localiza-
tion and recognition of traffic signs in complex scenes and the recognition
of handwritten digits. This work is a further step in understanding how
visual information is processed in the brain and how information on pixel
intensities is converted into information about objects. We demonstrate
how this understanding can be used for the design of effective computer
vision algorithms.

Keywords: Computational models of vision · COSFIRE · Trainable
filters · Feature detection · Shape · Handwritten digits · Retinal fundus
images · Traffic signs

1 Introduction

“If our perception of a certain line or curve depends on simple or complex cells,
it presumably depends on a whole set of them, and how the information from
such sets of cells is assembled at subsequent stages in the path to build up what
we call percept of lines or curves (if indeed anything like that happens at all) is
still a complete mystery.” writes D.H. Hubel in his Nobel Price lecture [26].
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In the following, we propose a way how to assemble the information from
Gabor filters, that are mathematical models of simple and complex cells, in order
to construct detectors of more complex stimuli, such as lines, angles, curves, line
bifurcations and, more generally, local combinations of line and curve segments.
We also demonstrate the effectiveness of these detectors in practical applications.

The brain processes visual information in the so called visual pathway. It con-
sists of two parts, namely the ventral and the dorsal streams, that are responsible
for, roughly speaking, ‘what’ and ‘where’ aspects. We are concerned with how
the ventral stream processes visual information, which takes an input signal from
the retina and transforms it into meaningful object representation. This stream
comprises cortical areas V1, V2, V4, TE and TEO [19,52].

Simple and complex cells referred to above are found in areas V1 and V2
[27,28]. The understanding of their properties have been the focus of numer-
ous electrophysiological studies [2,14,15,35,51,53]. Later, computational mod-
els were developed aiming at computer simulations of the function of these
neurons [1,3,33,47]. These computational models gave the basis for biologi-
cally motivated contour detection algorithms in digital image processing. In
particular, two-dimensional Gabor functions were proposed for computational
modelling of these cells [11,30]. Gabor functions were then widely applied in
diverse computer vision tasks, including edge detection [32,37], texture analy-
sis [9,17,23,29,49,50], image coding and compression [12], person identification
based on iris pattern analysis [13], image enhancement [10], face recognition [36],
motion analysis [42], and retrieval from image databases [54]. Further refinements
of these models, include non-classical receptive field inhibition [43], also called
surround suppression, and the filters that deploy this mechanism were shown to
be effective detectors of object contours [21,22].

In contrast to areas V1/V2, there is still little knowledge on how visual infor-
mation is processed further in subsequent areas of the ventral pathway. Area V4
receives input from V1/V2 and is known to comprise neurons selective for various
aspects of visual information, such as shape [38], color [55] or texture [24]. In this
paper we are concerned with shape and, therefore, we are mainly interested in
the function of shape-selective V4 neurons. An account of the properties of this
type of neuron was given by Pasupathy and Connor [38]. They investigated the
activations of such neurons in macaque monkeys, using a systematically designed
data set of relatively simple contour features similar to those illustrated by Fig. 1.
They found that most (91 % of the 152) V4 neurons they studied were highly
selective to curved contour features rather than to simple edges or bars. They
also observed that V4 neurons are selective for the orientation of the contour fea-
ture, i.e. these neurons exhibited strong responses to angles and curves pointing
in a specific direction. However, such a neuron may also be activated (with less
than the maximum response) by stimuli differing slightly in orientation and/or
curvature. Further analysis on V4 neurons was performed on a more complex
data set including closed contour stimuli containing a combination of convex
and concave contour elements [39]. The results of that study have shown that
some V4 neurons are sensitive to a single convex or concave contour element,
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Fig. 1. Optimal stimuli for some V4 neurons that respond selectively to angles and
curves, which can be characterized by two orientations such as two arms of an angle
(redrawn from [38]).

while others are sensitive to a combination of adjacent contour elements. More-
over, the experiments of the referred authors reveal that on average V4 neurons
have stronger responses to convex features rather than to concave ones which is
consistent with the perceptual dominance of convexity found in psychophysics.

Similar to experimental neurophysiological studies, there is not much work on
computational modelling of V4. A computational model of V4 neurons has been
proposed in [44–46]. The response of a V4-like unit introduced in the referred
papers depends on the Euclidean distance between a new input and a stored
prototype where both input and prototype are local patterns of Gabor (energy)
filter-like responses across different orientations and scales. Such a model will
respond to an input pattern even if it contains only a part of the prototype.
A missing part can, however, radically change a shape. For instance, a pat-
tern that is formed by two line segments that make an angle is perceptually
different from a pattern that consists of one of the constituent line segments.
An Euclidean-distance model will, however, find these two patterns similar to
a considerable extent. Furthermore, Euclidean-distance models are sensitive to
the presence of noise or texture and to contrast variations. Those models are not
invariant to any geometrical transformations.

There is psychophysical evidence [18] showing that curvatures are likely
detected by an AND-type operation, which considers the responses of some
afferent sub-units (sensitive for different parts of the curve pattern) and com-
bines them by multiplication. This is in contrast to Euclidean-distance models
that inherently involve addition. An AND-type model is activated only when it
receives stimulation from all its afferent input, i.e. all contour parts that form
a curve pattern are present. It will not respond when any of its inputs are not
stimulated, i.e. any of the constituent parts of a curve pattern is absent. In the
following, we propose and use such an AND-type model.

Fidler and Leonardis [16] propose to combine Gabor filter responses for vertex
detection. They use local statistical analysis to identify two dominant orienta-
tions around a given point and use the corresponding channels in a bank of
Gabor filters to detect vertices. This type of operator resembles the properties
of shape-selective V4 neurons. At a next level they combine the responses of
such operators in a similar way in order to define detectors of more complex
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contour features that resemble the properties of some TEO neurons. Their app-
roach is also vulnerable to contrast, noise and texture, and is also not robust to
geometrical transformations.

In the following, we propose nonlinear filters that can detect lines, vertices
and more complex contour features, similar to some V4 neurons. We call these
filters COSFIRE (Combination of Shifted Filter Responses). The response of
such a COSFIRE filter is assembled from selected responses of orientation-
selective filters. We configure such a filter by selecting given channels of a bank
of orientation-selective filters and combining their responses by a weighted geo-
metric mean. The selection of channels is determined by the local pattern that
needs to be detected. This pattern is specified by the user as an area of interest
in a training image. The COSFIRE filters configured with given local patterns
can successfully detect the same and similar patterns in test images. The degree
of similarity/generalisation can be controlled by changing the values of certain
model parameters. We show how a COSFIRE filter achieves rotation-, scale- and
reflection-invariance.

The rest of this paper is organized as follows: In Sect. 2 we explain how a
COSFIRE filter can be configured by a specified prototype pattern of interest.
In Sect. 3, we demonstrate the effectiveness of the proposed COSFIRE filters by
applying them to three practical applications: the detection of vascular bifur-
cations in retinal fundus images, the detection and recognition of traffic signs
in complex scenes, and the recognition of handwritten digits. Section 4 contains
a discussion of some aspects of the proposed trainable approach and finally we
draw our conclusions in Sect. 5.

2 Computational Model and Its Implementation

A COSFIRE filter takes as input the responses of a collection of orientation-
selective filters that model V1/V2 cells. Here we use Gabor filters as they have
been widely used for more than two decades. Other orientation-selective filters,
such as CORF [4,5], may also be used. A COSFIRE filter response is then
computed as the weighted geometric mean of the responses of certain Gabor
filters at specific locations with respect to its receptive field center. The type
(orientation-selectivity and scale) of Gabor filters and the relative locations at
which we combine their responses are determined in an automatic configuration
process which we explain below.

2.1 Afferent Inputs: Gabor Filters

We denote by |gλ,θ(x, y)|t1 the thresholded response of a Gabor filter with orien-
tation preference of θ and a spatial wavelength preference of λ to an input image.
Such a filter is described by other parameters, namely bandwidth, spatial aspect
ratio, and phase offset, which we set as suggested in [41]. We normalize each
Gabor function that we use in such a way that the total sums of all the posi-
tive and negative values are 1 and −1, respectively. This normalization ensures
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that the response to a line of width w will be largest for a symmetrical filter of
preferred wavelength λ = 2w. It also ensures that the response to an image of
constant intensity is 0. Without such normalization, this is true only for anti-
symmetrical filters.

2.2 Configuration

A COSFIRE filter is configured by an automatic procedure that analyses the
contour properties of a given local pattern, that we call a prototype. This is
achieved in a single-step training phase where the user specifies a point of interest
and a bounding box that surrounds a prototype of interest in a training image.
Fig. 2a shows an input image with an enframed vertex that is considered as a
prototype pattern.
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Fig. 2. (a) Training image of size 284 × 284 pixels. The cross marker and the gray
bounding box around it indicate the specified local pattern of interest referred to as
prototype. (b) The intensity pixels represent the superimposed thresholded responses
(t1 = 0.4) of a bank of Gabor filters with eight orientations (θ ∈ {0, π

8
, . . . , 7π

8
}) and

five wavelengths (λ ∈ {4, 4
√

2, . . . , 16}) to the vertex prototype specified in (b). The
top and bottom plots in (c) illustrate the Gabor responses along the inner and outer
concentric circles in (b), respectively. The labels ‘a’,‘b’,‘c’, and ‘d’ indicate the local
maxima points and are marked with black dots in (c). The location of each such point
i is represented in polar coordinates (ρi, φi) relative to the specified point of interest.

The automatic analysis consists of three steps. First, we apply a bank of
Gabor filters to the training image that contains the selected prototype, and
threshold their responses using t1, Fig. 2b. Here we use symmetric Gabor filters
as the prototype is characterized by bar structures. Second, we consider the
superimposed Gabor (thresholded) responses on the point of interest and along
a number of k concentric circles (here k = 2) around that point. Then, we choose
the locations along the concentric circles at which we achieve local maxima Gabor
responses in an arc neighbourhood of π/8, Fig. 2c. These locations are converted
to polar coordinates (ρ, φ) with respect to the given point of interest. They mark
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the positions of the dominant contours in the prototype. For each such a location
we determine the channels (λ, θ) of the Gabor filters that exceed a fraction t2
(here t2 = 0.5) of the maximum response at that position. Third, we denote by
Sf a set of 4-tuples that represents the channels and the respective locations of
the Gabor filters that satisfy the above criteria for a prototype feature f :

Sf = {(λi, θi, ρi, φi) | i = 1 . . . n} (1)

where n is the number of involved Gabor filters. Each tuple (λi, θi, ρi, φi) repre-
sents the characteristics of a contour part in the pattern of interest.

2.3 COSFIRE Filter Response

For each tuple (λi, θi, ρi, φi) in set Sf we apply the Gabor filter with wavelength
λi and orientation θi. Then we consider the Gabor responses in locations defined
by the corresponding polar coordinates (ρi, φi). This is achieved by shifting the
Gabor responses by ρi pixels in the direction opposite to φi. In this way the
Gabor responses of interest meet at the same place, the one that we consider
the support (or receptive field) center of the concerned COSFIRE filter.

Before shifting, however, we apply a blurring function to the Gabor responses
in order to achieve some tolerance with respect to the preferred positions. For
blurring we use a Gaussian function Gσ(x, y) centered on the preferred position
and compute the maximum of the weighted Gabor responses. The considered
neighbours are determined by a standard deviation σ = σ0 + αρi that grows
linearly with the distance ρi from the support center of the COSFIRE filter at
hand. The positive values of parameters σ0 and α are constants. The value of σ0

is the standard deviation used at the support center of the concerned COSFIRE
filter and the value α determines the extent of tolerance: tolerance increases with
an increasing value of α. We denote by sλi,θi,ρi,φi

(x, y) the blurred and shifted
Gabor response for tuple (λi, θi, ρi, φi) in set Sf , and denote by rSf

(x, y) the
response of a COSFIRE filter:

rsf
(x, y) =

( n∏
i=1

sλi,θi,ρi,φi
(x, y)ωi

)1/
∑n

i=1 ωi

(2)

where ωi = exp− ρ2
i

2σ′2 . Here we use σ′ = (−ρ2max/2 log 0.5)
1
2 where ρmax =

maxi∈{1...|Sf |} ρi. With such a weighting scheme the weights in the center (ρ = 0)
have a maximum value ω = 1, and the farthest points (ρ = ρmax) have a mini-
mum value ω = 0.5.

Figure 3a illustrates the detected features in the input image shown in Fig. 2a.
The circles surround the local maxima points in the COSFIRE response image
that is obtained with Eq. 2.

2.4 Achieving Invariance to Geometric Transformations

We achieve invariance to rotation, scale and reflection by simply controlling some
parameter values, instead of configuring COSFIRE filters by prototypes that are
rotated, scaled or reflected versions of each other.
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Fig. 3. Detection of features by a corner-selective COSFIRE filter which is applied in
(a) a non-invariant mode and in (b) a rotation-invariant mode. The circles indicate the
detected features.

We form a new set �ψ(Sf ) = {(λi, θi + ψ, ρi, φi + ψ) | ∀ (λi, θi, ρi, φi) ∈
Sf} by adding an offset ψ to the values of parameters θi and φi. The result-
ing set represents a COSFIRE filter that is selective for the same prototype
f rotated by an angle ψ. Rotation invariance is then achieved by consider-
ing a set Ψ of equidistant ψ values and then taking the maximum response:
r̂Sf

= maxψ∈Ψ{r�ψ
(x, y)}. Figure 3b illustrates the detection of all right-angled

corners irrespective of their orientation (Ψ = {0, π/4, . . . , 7π/8}).
Similarly, we form a new set Tυ(Sf ) = {(υλi, θi, υρi, φi) | ∀ (λi, θi, ρi, φi) ∈

Sf} by multiplying with a factor υ the values of parameters λi and ρi. This
results in a COSFIRE filter that responds to the prototype f scaled by a fac-
tor υ. A scale-invariant response is achieved by considering a set Υ of υ val-
ues equidistant on a logarithmic scale and then take the maximum response:
r̃Sf

(x, y) = maxυ∈Υ {rTυ(Sf )(x, y)}.
A new set Śf = {(λi, π − θi, ρi, π − φi) | ∀ (λi, θi, ρi, φi) ∈ Sf} results in a

COSFIRE filter that is selective to the prototype f reflected about the y-axis.
A reflection-invariant response is then computed as ŕSf

(x, y) = max{rSf
, rŚf

}.
Finally,we denote by r̄Sf

the combined rotation-, scale- and reflection-invariant
response by taking themaximumvalue of the rotation and scale-invariant responses
of the filters Sf and Śf : r̄Sf

(x, y) = max{r̂�ψ(Tυ(Sf ))(x, y), r̂�ψ(Tυ(Śf ))
(x, y)}.

3 Experiments

In [8] we demonstrated the effectiveness of the COSFIRE filters in three applica-
tions: the detection of vascular bifurcations in segmented retinal fundus images,
detection and recognition of traffic signs embedded in images of complex scenes,
as well as the recognition of handwritten digits, Fig. 4.

Retinal image analysis is gaining popularity as it gives the opportunity to take
a non-invasive look at the cardiovascular system of human beings. One important
step in this analysis is the detection of vascular bifurcations in the vessel tree.
In [7] we evaluated our method, for the detection of vascular bifurcations in
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Fig. 4. Trainable COSFIRE filters are effectively applied to three applications:
(a) detection of vascular bifurcations in retinal fundus images, (b) detection and recog-
nition of traffic signs in complex scenes and (c) recognition of (top) western Arabic and
(bottom) Farsi handwritten digits.

retinal images, on two benchmark data sets and attained the following results: a
precision of 96.94 % at a recall of 97.88 % on 40 images provided in the DRIVE
data set [48] and a precision of 96.04 % at a recall of 97.32 % on 20 images taken
from the STARE data set [25]. In these experiments, we first configured six
COSFIRE filters in a training phase by using different prototypical bifurcations.
Then we applied the configured filters to test retinal images in rotation-, scale-
and reflection-invariant mode.

In order to show the versatility and robustness of the COSFIRE approach
in [8] we performed experiments on a public data set1 of outdoor scenes for
the detection and recognition of three different traffic signs. This data set was
originally published in [20]. We configured three COSFIRE filters to be selective
for the three concerned prototypical traffic signs. For a data set of 48 images we
were able to localize and recognize all the traffic signs in the data set.

We also demonstrated that the collective responses of a group of COSFIRE
filters can also be used to form a shape descriptor. In [6] we applied this shape
descriptor to the recognition of handwritten digits, an application that has been
extensively used for the evaluation of shape descriptors. We achieved a recogni-
tion rate of 99.52 % on the MNIST data set [34] of 70,000 (60,000 training and
10,000 test) western Arabic digits. This result is comparable to the best results
ever achieved by other state-of-the-art methods. Furthermore, we achieved a
recognition rate of 99.33 % on a data set [31] of 80,000 (60,000 training and
20,000 test) Farsi digits, which is the highest recognition rate ever reported for
this data set.

The shape descriptor that we propose is inspired by the neurophysiological
concept of population coding. There is evidence [40] that the responses of mul-
tiple shape-selective neurons in area V4 of visual cortex can be effectively used
as a signature to discriminate between complex shapes.
1 Traffic sign data set is online: http://www.cs.rug.nl/imaging/databases/traffic sign

database/traffic sign database.html.

http://www.cs.rug.nl/imaging/databases/traffic_sign_database/traffic_sign_database.html
http://www.cs.rug.nl/imaging/databases/traffic_sign_database/traffic_sign_database.html
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4 Discussion

We propose a trainable COSFIRE approach to visual pattern recognition that
is inspired by the shape selectivity of V4 neurons in visual cortex. In [8] we
demonstrated that the response of COSFIRE filters to test stimuli used in elec-
trophysiological measurements is similar to the response of some V4 neurons.

We demonstrated the effectiveness of the proposed filters in three practical
applications: the detection of vascular bifurcations in retinal fundus images, the
detection and recognition of traffic signs in outdoor scenes, and the recognition
of handwritten digits.

The COSFIRE filters that we propose are trainable, in that the specific fea-
ture to which such a filter optimally responds is used to determine the structure
of the filter. In a single-step training process, the user specifies a pattern of
interest and that pattern is used to configure a corresponding COSFIRE filter.
This selectivity is not achieved by template matching, but rather by the determi-
nation of the dominant orientations in the concerned pattern and their mutual
geometrical arrangement. The proposed filters are highly nonlinear, in that such
a filter will only respond when all parts of the concerned feature are present.

Although a COSFIRE filter has a preferred selectivity to the pattern that
was used for its configuration, the filter also responds to similar patterns which
differ - to a certain extent - in the orientations of the involved lines and edges.
The degree of generalization is flexible and can be tuned to the specific needs of
the user by proper selection of the filter parameters, We also demonstrate how
these filters can be augmented with rotation, scale and refection invariance by
simply manipulating some model parameters.

COSFIRE filters are conceptually simple and easy to implement: the filter
output is computed as the (weighted) geometric mean of blurred and shifted
responses of orientation-selective filters2.

5 Conclusions

The trainable COSFIRE approach reviewed in this paper is a contribution to
the understanding of the visual system of the brain. It shows how information
from computational models of the responses of V1/V2 simple and complex cells,
can be assembled at the next, V4 level, in order to construct detectors of more
complex stimuli, such as angles, curves, line bifurcations and, more generally,
local combinations of line and curve segments. We also demonstrated how this
understanding of the visual system of the brain can be used to design effective
computer vision algorithms.
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Abstract. With the aim of endowing robots with the ability to engage
people in real social interactions, it is currently typical that novel archi-
tectures for robot control take into account in its internal design con-
cepts and schemes originated from cognitive theories. The objective is
that robots will be able to emanate responses at human interaction rates
and exhibit a pro-active behaviour. This pro-active behaviour implies
that the internal architecture of these robots should not only be able
to perceive and act. It should also be able to perform off-line reason-
ing. This paper introduces RoboCog, a new cognitive architecture whose
four core elements are a deep -in the concrete-abstract dimension- and
hybrid -in the symbolic-numeric dimension- representation of the current
state, including the robot itself and the observed world; a set of agents
that provide broad functionalities such as navigation, body movement
control, dialog or object recognition, and as a result build and maintain
this representation; an internal emulation and planning facility where
foreseen courses of action can be inferred and tested; and an Executive
module that coordinates the interactions among all others. Furthermore,
agents themselves can reproduce internally this architecture, including
their own replicas of the four elements. The typical scheme of 3-tier archi-
tectures is therefore replaced by a recursive estructure that provides a
more flexible scenario, where the responses of all agents are tied together
by the use of a common inner representation. Preliminar results of the
proposed architecture in real scenarios show how RoboCog is able to
enhance the effectiveness and time-of-response of complex multi-degree-
of-freedom robots designed to collaborate with humans.

Keywords: Robotics · Cognitive architectures · Simulation theory of
cognition

1 Introduction

Cognitive neuroscience robotics integrates studies on robotics, cognitive science
and brain science. The long term aim is to translate models that explain the func-
tionality of the human brain to the domain of socially interactive robots. These
c© Springer International Publishing Switzerland 2014
L. Grandinetti et al. (Eds.): BrainComp 2013, LNCS 8603, pp. 88–99, 2014.
DOI: 10.1007/978-3-319-12084-3 8
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robots should share the environment with humans, emanating and understand-
ing a continuous and dense stream of social signals. This challenging scenario
demands new strategies for robot control, which should intimately link the robot
body with its dynamic surroundings. This can be only achieved if perception and
action are closely tied, but this is not probably sufficient. The robot must be able
to predict the result of an observed or executed action, as this could be the only
way to quickly anticipate what the next action will be. The aim is to imitate the
human capabilities for actively perceiving others’ actions, predicting their inten-
tions at different levels of abstraction and quickly learning from the observation
of others’ behaviours. If we have a look to recent theories on cognitive neuro-
science, it appears to be clear that motor representations provide a functional
connection between mind and body, but also that they provide the basis for
processes such as action understanding, imitation and empathy [17]. Thus, on
one hand, it can be stated that they play a critical role in social interaction, offer-
ing a means for people to take on the others’ perspectives [17], but, on the other
hand, the existence of these common representations, where states of mind and
body are merged, could also explain how voluntary movements are performed, at
sensorimotor level [12], where they enable determinations about the motor com-
mands required to perform a task and predictions about the consequences of
these commands, and at levels of increasing abstraction, corresponding to more
global aspects (situational and rational) of action specification [13]. In order
to extend this functionality to the ability of interacting with the environment,
these motor representations should be complemented with information about
other people or objects that populated the environment. Briefly, cognition is the
ability that allows us to internally deal with the information about ourselves
ant the external world and, hence, this ability is subject to the existence of an
internal active representation handling all this information.

With the aim of replicating the aforementioned framework into artificial
agents, classical cognitive systems posit an inner realm richly populated with
internal tokens that stand for external objects and states of affair [4]. These
internal representations, however, are not valid to generate predictions or reason-
ing. Recent works suggest that cognitive architectures cannot work on a passive,
bottom-up fashion, simply waiting to be activated by external stimuli. Instead,
these architectures must continuously use memory to interpret sensory informa-
tion and predict the immediate future. These predictions about the outer world
can be used to actively drive the resources to relevant data in top-down modes
of behaviour, allowing an efficient and accurate interpretation of the environ-
ment [4,11]. The necessity of employing internal simulation for rapidly creating
new concepts and react to unanticipated situations using previous experience is
postulated in the EU FP7 project XPERIENCE (http://www.xperience.org). In
this proposal, internal simulation is addressed by structural bootstrapping, an
approach that leverages existing experience to predict unexplored action effects
and to focus the hypothesis space for learning novel concepts. The generative
modeling is employed at all levels of cognitive development, and linked to the
outer reality through enacted grounding and categorisation. Planning, prediction
and action selection are here considered at the internal simulation stage. In the

http://www.xperience.org
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EU FP7 project NEURALDYNAMICS (http://www.neuraldynamics.eu/), it is
postulated that the scene representation must actively drive the visual explo-
ration, the pre-segmentation and the creation of instances in the working and
long-term memories, updating them when information changes. Including an
extended version of the outer world, the representation must address the pre-
dicted visibility of elements on the scene as gaze changes and respond to failures
detecting predicted object by updating the scene representation.

Our proposed approach is closely related to these projects although it advo-
cates different types of representations. We adopt the approach that an internal
model should be hierarchically defined at several levels of abstraction, as a tool
to simultaneously hold different interpretations of the world. In agreement with
Deb Roy, we support the view that the task planner should not be included in the
same loop that updates this structure, but be built over the mental model [16].
This deep hybrid representation is computationally defined as a top-level graph
from which other more specific graphs can be derived online. Each one encodes
reality at a different abstraction and functional level, adapting more and more
to the details of the current situation. The most abstract level corresponds to a
graph in which nodes are variables with attributes and edges are logical binary
predicates. The graph is built as the robot tries to achieve its mission and, at
any time instant, the graph holds the robot’s immediate beliefs about itself and
its surrounding world. Agents propose changes to the graph as a result of their
interaction with it and with the world. Emulators and planners are an special
type of agent that takes the model and a domain theory to anticipate probable
curses of action or to search for specific curses of action that lead to the solution
of a problem.

In the scenarios where our experiments are conducted, this model includes
the robot (self-modelling), humans, objects and the room. This model is not
available only as a passive representation of the outer world, it is intensively used
as a form of virtual reality [18]. This idea emerges from our previous work. In
the VISOR project (http://www.grupoisis.uma.es/visor), funded by the EU FP6
EURON, a simple example of this hypothesis was tested: in order to improve a
marker-less, upper-body human motion capture system based on face and hands
detection, the whole person is modelled as a virtual human. Only face and hands
are roughly detected and tracked from the real scene, but the whole upper-body
motion is extracted from the virtual world (the mental model). Furthermore,
the virtual model is also able to inform us about the region on the image where
an occluded or disappeared hand could probably appear, and to correct false
perceptions. If we add the environment model to this example, we will have here
an example of the situation postulated by Prof. Owen Holland [11]: at the heart
of the mechanism is not just the body in the environment, it is a model of the
body in a model of the environment. This situation allows emanating predictions
from the model, which can be correlated with real perceived information to drive
attention, increase efficiency and filter noisy perception, while the contents of
the mental model are also updated through experience.

The rest of paper is organised as follows: after presenting our psychophysics
and brain-inspired foundations, the RoboCog cognitive architecture for robot

http://www.neuraldynamics.eu/
http://www.grupoisis.uma.es/visor
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control is described at Sect. 2. Then, Sect. 3 presents the experimental scenarios
where the architecture has currently been evaluated. Finally, Sect. 4 draws the
main conclusions and future directions of research and development.

2 Making Robot to Imagine for Acting

2.1 Foundations

Electrophysiological studies demonstrate that there are sensorimotor neurons
that selectively discharge both during the execution of an action and during the
perception of the same action executed by others. These neurons were called
mirror neurons [15] and subsequent work has also shown that they do not only
respond to the dynamic of the action, but also on the basis of the goal of the
action. Thus, recent progress in cognitive neuroscience suggests that, in the case
of understanding a purposeful action, the human brain gives higher priority to
the information about the consequences or effects that this action embodies than
to the information about the motion properties of this action. For instance, this
assertion is postulated by the common coding hypothesis [14]. According to this
theory, actions are coded in terms of the perceivable effects they will generate.
Associations between motor patterns and sensory effects can then be used back-
ward to retrieve a movement by anticipating its effects. Perception-action codes
are also accessible during action observation, and perception activates action
representations to the degree that the perceived and the represented actions are
similar. This hypothesis has been reinforced over the last decade by an impres-
sive number of findings from both psychophysics and cognitive neuroscience
approaches, strongly supporting that it exists a direct connection between the
neural and cognitive mechanisms involved in generating one’s own action and
the ones implied in perceiving the actions of others [5]. Neurophysiological data,
both from cell recording in monkeys and neuroimaging studies in humans, also
suggests that the perception of an action automatically triggers the simulation of
this action, a process that could be at the basis of action understanding [8]. The
simulation theory proposes that, when we perceive an action, we covertly mimic
this action. Considering the interrelationships between perception and action,
this theory implies the simulation of action, but also the simulation of percep-
tion. That is, imagining and recalling things seen, heard or felt is essentially
the same kind of processes as actually seeing, hearing or feeling something [10].
The simulation theory also assumes the anticipation concept that is inherent to
the common coding hypothesis and that can be referred as the subjective expe-
rience of action (i.e., the experience of agency): The experience of preparing an
action already predicts the effect of the action; and sensory information that an
intended effect has occurred is retrospectively matched with the prediction [9]. As
G. Hesslow pointed out these internal, simulated perceptions could also trigger
new covert actions [10].

On the other hand, brain studies establish the existence of relative hierarchies
of motor control. For instance, the brain imaging experiments of action obser-
vation based on the method of repetition suppression conducted by S. Grafton
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and A. Hamilton identified a distributed set of regions that are differentially acti-
vated as a function of the complexity of motor behavior [7]. From a psychological
point-of-view, E. Pacherie suggests that the process of action specification implies
three main stages, corresponding to the formation of future-directed intentions
(F-intentions), present-directed intentions (P-intentions) and motor intentions
(M-intentions) [13]. According to this dissertation, the representations formed
at each stage are quite different, but all of them can be considered as inter-
nal models, zooming increasing spatio-temporal areas of the world and of the
self-model of the agent. The resulting hierarchical model of action specification
puts on the top the overarching goal(s) and a deliberative planner (practical
reasoning), in the middle the situated goals provided by the top-stage planner
and a situational planner (motor program), and on the bottom the instanta-
neous goals provided by the situational planner and a sensorimotor planner.
These three stages use forward models to predict the next state of the system at
deliberative, situational or instantaneous levels. The bottom stage provides the
motion specifications to an execution module.

2.2 RoboCog: A Cognitive Architecture Based on Internal
Simulation

Section 2.1 states that action execution and simulation, and action perception
are intimately tied, sharing a common motor representation. This representation
will be organised in a hierarchical way, providing different, but synchronised,
interfaces at levels of abstraction that range from the fine-grained aspects of
motor control to the symbolic ones needed by the rational control. The existence
of a deep, hybrid representation for action, perception and emulation will be the
core of RoboCog, the novel architecture for robot control described in this paper.
Together with this central representation, the main elements of RoboCog will
be the existence of a hierarchy of task-oriented modules, which will work at
deliberative, situational or sensorimotor stages, connected to a given interface
of the internal representation through a common Executive module, and of a
hierarchy of emulators, providing the simulation facilities at each of these stages.
Figure 1 shows an overview of the RoboCog architecture.

The central part of the architecture is occupied by the inner representation
of the outer world, whose interfaces ranges from the geometric (sensorimotor)
level to the symbolic (deliberative) one. These interfaces deliver models of the
outer world at a given abstraction level or stage. The whole structure is always
synchronised and changes at any levels of the structure will provoke updates
at the rest of levels. The base level of the representation is updated from the
software components at the HAL (Hardware Abstraction Layer).

Executive modules constitute the only way to access to the inner represen-
tation. They provide the corresponding model of the inner representation to the
task-oriented modules (the so-called CompoNets, as they will be internally com-
posed by a set of software components) and also receive, from these CompoNets,
proposals for changing this model. The Executive module is the responsible of
validating if these changes are valid or not. When a change is accepted, the model
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Fig. 1. Overview of the RoboCog architecture.

is updated inside the inner representation and this will imply the updating of the
rest of layers (models) of the representation. For instance, if a person is detected
at the situational stage, a symbolic node should be added at the rational stage,
and a 3d model of the person will appear at the sensorimotor layer. Further-
more, at each stage, the corresponding Executive module manages the goal at
a different abstraction level. For instance, at the deliberative stage, the Execu-
tive will try to execute a plan to reach a overarching goal. At situational stage,
the Executive serves to implement plan actions inherited from the upper level.
It will execute situated goals. The Executive module at the sensorimotor stage
pursuits the correct achievement of an instantaneous goal. It is not the lowest
level of the architecture, which will be occupied by the software components that
implements the HAL, i.e. motor or sensor drivers.

In order to test if the received action is the best one to reach a goal, the
Executive emulates its effects using a second set of compoNets, the so-called
Emulators. The Emulator uses a copy of the model provided by the Executive
at each stage of the hierarchy to generate a simulated perception of the outcome
of the action. Figure 2 shows a simple example performed at the sensorimotor
stage. The objective is that the robot touches a yellow box. The arm is moved
using a forward model instead of an inverse one, and the simulation performed
at the Emulator runs faster, providing the sequence of arm motions in advance.
Alternatively, Emulators can provide intermediate perceptions that can allow
the Executive to supervise the correct execution of the action (evaluating that
the sequences of changes of the model are the same for the real and the simulated
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Fig. 2. Schematic representation of the simultaneous execution of a tracking action
within a compoNet (top row) and an Emulator module (bottom row). The x-axis
shows the temporal axis. The aim is that the robot touches the yellow box, and this is
achieved by generating the correct motor commands for the arm. The Emulator allows
to determine the sequence of commands in a faster way working over a inner model of
the robot and environment. Hence, the real robot follows the sequence of arm motions
in the real world (Color figure online).

execution of the action). Detected differences should launch warning commands
to the Executive at the stage above and provoke a change on the course of action
(goals) sent to the Executive at the stage below. Top-down processes of attention
will be originated as a response to the warnings.

The architecture resembles the structure of the traditional 3-tier planning
and execution architectures, but it can be noted that its spinal column (Inner
models and Executive modules) is free of planning responsibilities. Delays and
low responses can provoke that the changes to the model suggested by the com-
poNets will be rejected by the Executive, as the current reality reflected on the
model does not allow them. However, the nature of the proposal also suggests
the need of attentive components that, working on a top-down manner, drive
the perceptual resources to the verification of the real appearance of any element
’artificially added’ to the inner representation after an updating.

3 On-Going Experimental Scenarios

Reduced versions of this architecture have been tested in two use cases. In the
first one, the architecture is endowed into a social assistant robot whose aim is
to help clinic professionals to engage patients into a therapy for motor rehabili-
tation based on serious games. The architecture was mainly employed due to its
ability to link a high-level planner with a set of situational behaviours. On the
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other hand, the second use case is a high demanding scenario of human-robot
interaction, where the communication channels between the robot and the user
is established through voice and gestures. Contrary to the first use case, the
efforts here were focused on the situational stage and the synchronisation of all
behaviours. Both versions run using an unique Executive module that manages
the interfaces that the rest of compoNets need from the inner representation.

3.1 Hands-Off Assistant Robots for Motor Rehabilitation

Neuro-rehabilitation therapy pursuits the recovery of damaged neuronal areas
and/or muscles from the repetitive practice of certain physical or mental activ-
ities. Obstetric brachial plexus palsy and cerebral palsy are among the most
prevalent pathologies causing motor and cognitive deficits. The treatment of
these lesions requires intensive and extended rehabilitation therapies in order to
lessen their consequences on personal autonomy and working capacity. These
therapies demand sustained dedication and effort by professionals, incurring
in accretive costs for the institutions. Robotic Science has become in recent
years a useful tool to address these issues related to the human rehabilitation
domain. One of the most active research fields in this topic is the design of
socially assistive robots. These robots are used in non-contact therapeutic inter-
actions between the patient and the robot, exploiting embodiment, emotions,
dialogs, personality, user models and socially situated-learning. They provide
cost-effective solutions to the need of extended and dedicated one-on-one care,
and also to monitor progress during physical therapy and daily life, providing
tireless motivation, encouragement and guidance. Our initial hypothesis is that
patients will get consistently engaged in a therapeutic non-physical interaction
with a social robot, facilitating the design of new robot based therapies that will
improve the patient recovery time and reduce the overall socio-economic costs.

Within this scenario, the project THERAPIST (http://www.therapist.uma.
es) proposes the design and development of a socially interactive robot, which
will be endowed with a specific instance of the RoboCog architecture. The design
of this instance puts the emphasis on increasing the cognitive abilities at the
decision-making stage of the architecture. For this end, the inner model at this
stage provides a symbolic representation of the state encoding in a graph gram-
mar. Using a set of grammar rules, the Executive is able to validate changes of
the model, maintaining a inner representation that is coherent with the use case.
The graph grammar is translated to PDDL (Planning Domain Definition Lan-
guage) and then used by the Planning and Learning Architecture (PELEA [1]) to
determine and monitor the course of action. PELEA combines two planners, one
for high level actions and one for low level ones, with modules in charge of plan
monitoring, goals generation and selection, re-planning triggering, etc. It also
includes machine learning modules. In THERAPIST, the PELEA architecture
will provide the plan actions, and there will not exist emulation functionalities
at this stage of the architecture (Fig. 3).

Under the deliberative stage, the situational stage incorporates compoNets
for verbal (dialogs) and non-verbal (emotions and gestures) interaction, person

http://www.therapist.uma.es
http://www.therapist.uma.es
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Fig. 3. A snapshot of a rehabilitation session at the Hospital Universitario Virgen del
Roćıo (Seville). The robot Ursus is a robotic platform with moving head and arms,
that makes intensive use of verbal and non-verbal tools to engage the patient in the
therapeutic session.

detection, classification and tracking, and for navigation and homing. All these
compoNets are not always activated, but they will be selectively turning on accord-
ing to the task to achieve. This process is performed by the Executive module,
that receives the situational goal from the deliberative stage. The hierarchy is
completed with a sensorimotor stage, where the motor control and low-level per-
ception are performed, and a HAL, mainly driven by the use of a RGBD camera
for visual perception. A more extensive report of the use case has been recently
published [3].

3.2 Control of Complex Humanoid Robots

Figure 4 shows the current aspect of Loki, an autonomous mobile robot built as
a collaboration among the Universities of Castilla-La Mancha and Extremadura,
Robotnik S.L.L and IADex S.L. Loki is composed of a mobile base, a rigid back
spine, a torso with two arms and hands and an expressive head. The base of
the robot has been designed to support a load of 200 Kg and can accommodate
two 36 Ah/24 V batteries, power supplies, a battery charger, a DC/AC 2 KW
inverter, two lasers or four Asus Xtion RGBD cameras attached to each side
of the base, and a dual-socket, 12-cores, liquid-cooled Xeon board holding a
NVIDA GTX650Ti GPU. This configuration provides enough autonomy and
processing power to host our complete cognitive architecture on board. Each arm
is composed of four Schunk servo-drives in a human-like upper arm configuration
(3 degrees of freedom (dofs) for the shoulder and 1 for the elbow) and a forearm



Toward the Development of Cognitive Robots 97

Fig. 4. (Left) The Loki robot; and (right) Loki playing with a human user.

with 3 additional dofs (a rotation along the forearm and two orthogonal rotations
in the wrist). This two last dofs are built using a 3R Stewart platform that
provides a great holding torque for the wrist. Attached to the top of the torso,
Loki holds the expressive head Muecas. This head has a 4 dofs neck that uses the
same kinematic construction as the forearms. The head holds a binocular visual
system composed of two PointGrey Flea2 1 Mp cameras with 6 mm focal lenses
and a RGBD sensor placed in the fronthead. The cameras are housed inside
two hollow spheres made in Teflon. These eye-balls can pan independently and
have a common tilt. The eyes are moved by means of three linear motors from
Faulhaber that provide enough force to avoid the need of gear trains and to reach
maximum angular speeds close to 600 deg/sec. Muecas also has an articulated
yaw driven by a micro-servo and 2 dofs eyebrows, controlled by 4 servos as well.

The use case here is the modeling, building and understanding of a sim-
ple multimodal human-robot interaction task using the quasi-humanoid mobile
manipulator Loki. The previous description of Loki illustrates the complexity of
the robotic platform, but the scenario is also demanding due to the presence of a
human user (see Fig. 4(Right)). Thus, the experiment consists on a simple game
between the human and Loki. The human introduces herself and asks Loki to
play the game. Upon acknowledge, she shows a yellow ball to the robot and it
starts to track it, continuously fixating its gaze upon the ball with an RGBD sen-
sor placed in the fronthead. After a human verbal indication, the robot reaches
the ball with its hand and waits for a new interaction, or moves its arm back to
a resting position after some courtesy delay. Loki tracks the object and accepts
new speech commands during the whole span of the game. The development of
this interaction game involves several problems such as generalized inverse kine-
matics, RGBD object detection and tracking, speech recognition and synthesis,



98 A. Bandera and P. Bustos

and sequential task execution. All these problems present a significant degree of
complexity, but the most challenging aspect is the integration and coordination
of these capabilities in the control architecture that, further on, will facilitate
the design of new and more complex tasks. The experiment is presented with
details in a recently published paper [2].

In spite of fact that the game has been only evaluated in a research laboratory
with domain expert players, some conclusions about the control architecture
can be drawn. Thus, although a systematic evaluation of the robustness and
accuracy of Loki’s movements and perceptions remains to be done, the first set
of experiments shows that the overall system is quite stable. From the point
of view of the multimodal interaction through different situational compoNets,
the architecture allows Loki to track in real time the ball position meanwhile it
moves the arm to touch it. The inverse kinematics algorithm is also able to run
in real time, even when positioning the head and the arm simultaneously.

4 Conclusions and Future Work

When making decisions that directly involve human users, the traditional
3-tier planning and plan execution scheme [6], which separates symbolic high-
level planning from geometric plan execution, is not the best strategy. Because
the generation of symbolic plans is relatively slow, the approach relies on a sta-
tic (or almost static) world. Such an assumption is not only unrealistic, but
also produces behaviors that does not react to changes and thus feels unnat-
ural to humans. To solve this problem, this paper describes the current state of
RoboCog, a cognitive architecture for robot control which is currently inside an
active, iterative process of design, development and evaluation. RoboCog offers
relevant differences with respect to similar approaches, being its main features
the importance given to the motor representation and to the ability for simu-
lating the action as a mechanism to achieve action understanding and robotic
agency. The coupling of the deep state representations and the hierarchy of
planners through the interfaces provided by the Executive buffers provide the
necessary structure to implement this internal simulation.

The two use cases briefly presented here are an early test of the cognitive
architecture. It is clear that a big challenge will be to handle the complexity of
very large distributed computational systems when the whole architecture will
be implemented. We also consider the need of integrating models of attention
for action/perception focusing. Finally, it would be also an interesting research
task to evaluate the extension of the temporal scale of emulation to the future
but also to the past (learning).

Acknowledgments. This contribution has been partially granted by the Spanish
Government and FEDER funds under coordinated project TIN2012-38079. RoboCog
is a cognitive architecture being developed as a common effort among several research
groups at different universities including the University of Extremadura (RoboLab), the
University of Castilla-La Mancha (SIMD), the University of Málaga (ISIS and GISUM),
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Abstract. The basic concepts of distance based classification are intro-
duced in terms of clear-cut example systems. The classical k-Nearest-
Neigbhor (kNN) classifier serves as the starting point of the discussion.
Learning Vector Quantization (LVQ) is introduced, which represents the
reference data by a few prototypes. This requires a data driven train-
ing process; examples of heuristic and cost function based prescriptions
are presented. While the most popular measure of dissimilarity in this
context is the Euclidean distance, this choice is frequently made with-
out justification. Alternative distances can yield better performance in
practical problems. Several examples are discussed, including more gen-
eral Minkowski metrics and statistical divergences for the comparison
of, e.g., histogram data. Furthermore, the framework of relevance learn-
ing in LVQ is presented. There, parameters of adaptive distance mea-
sures are optimized in the training phase. A practical application of
Matrix Relevance LVQ in the context of tumor classification illustrates
the approach.

1 Introduction

This contribution summarizes a tutorial talk which was meant as a first introduc-
tion to distance and prototype based machine learning techniques. Accordingly,
our intention is not to give a complete overview of the field or to review all
relevant literature. The paper may serve as a starting point for the interested
reader to explore this practically relevant framework and active area of research.

The inference of classification schemes from previous observations, i.e. from
labelled example data, is one of the core issues in machine learning [1–4].
A large variety of real world problems can be formulated as classification tasks.
Examples include handwritten character recognition, medical diagnoses based
on clinical data, pixel-wise segmentation and other image processing tasks, or
fault detection in technical systems based on sensor data, to name only a few.

Throughout this contribution we assume that observations are given in terms
of real-valued feature vectors in N dimensions. In general, the structure of the
c© Springer International Publishing Switzerland 2014
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data can be more complex and may require modified approaches, for instance the
pseudo-Euclidean embedding of relational data. For this and other extensions of
the concepts presented here, we refer the reader to [5,6] and references therein.

A variety of frameworks and training algorithms have been developed for
the learning from examples, i.e. the data driven adaptation of parameters in the
chosen classification model. They range from classical statistics based methods
like Discriminant Analysis to the application of Multilayer Perceptrons or the
prominent Support Vector Machine [1–4].

A particularly transparent approach is that of distance or similarity based
classification [2,3,5]. Here, observations are directly compared with reference
data or prototypes which have been determined in a training process from avail-
able examples. The similarity or, more correctly, dis-similarity is quantified in
terms of a suitable distance measure.1 The choice of appropriate measures is
in the focus of this contribution. Most of the concepts discussed here can be
applied in a much broader context, including supervised regression or the unsu-
pervised clustering of data [5]. Here, however, we will limit the discussion to
clear-cut classification problems and the use of prototype or reference data based
classifiers.

In the next section we discuss two classical methods: the k-Nearest-Neighbor
(kNN) approach [2,3,7] and Kohonen’s Learning Vector Quantization (LVQ)
[8,9] which – in their simplest versions – employ standard Euclidean distance.
Mainly in terms of LVQ we discuss how to extend the framework to more general
distance measures in Sect. 3.1. The use of divergences for the classification of
histograms serves as one example. Section 4 presents the elegant framework of
Relevance Learning Vector Quantization as an example for the use of adaptive
distance measures. We conclude with a brief summary in Sect. 5.

2 Simple Classifiers Based on Euclidean Distances

When dealing with N -dimensional feature vectors, the use of Euclidean metrics
for their pairwise comparison seems natural. In the following we discuss two
classical methods which employ this measure in their simplest versions.

2.1 Nearest-Neighbor Classifiers

Arguably the simplest and by far most popular distance based scheme for vec-
torial data is the k-Nearest-Neighbor (kNN) classifier [2,3,7]. In this classical
approach, a given set of P vectors in N -dim. feature space is stored together
with labels which indicate their known assignment to one of the C classes:

{xμ, y(xμ) = yμ )}P
μ=1 where xμ ∈ R

N and yμ ∈ {1, 2, . . . , C}. (1)

1 In this article, we use the term distance in its general sense, not necessarily implying
symmetry or other metric properties.
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Fig. 1. Illustration of simple classification schemes based on Euclidean distance. Both
panels display the same three class data set and decision boundaries represented by
solid lines. Left: Nearest-Neighbor classifier. Right: Nearest Prototype classification,
prototypes are marked by larger symbols as indicated by the legend.

An arbitrary feature vector x is classified according to the distances from the
reference samples. In the most basic 1NN scheme, its (squared) Euclidean
distance

d(x,xμ) = (x − xμ)2 =
N∑

j=1

(
xj − xμ

j

)2 (2)

from all reference samples xμ is computed and the data point is assigned to the
class of the Nearest Neighbor :

y(x) = y∗ = y(x∗) with x∗ = argmin
xµ

{d(x,xμ)}P
μ=1 . (3)

In the more general kNN classifier the assignment, Eq. (3), is replaced by a voting
among the k closest reference vectors.

The kNN classifier is straightforward to implement and requires no further
analysis of the example data in a training phase. Furthermore, theoretical consid-
erations show that kNN schemes can achieve close to Bayes optimal classification
if k is selected appropriately [2,3]. As a consequence, the kNN classifier continues
to be applied in a variety of practical contexts and often serves as a baseline for
comparison with other methods. Figure 1 (left panel) illustrates the 1NN classi-
fier for an artificial three class data set in two dimensions. The prescription (3)
results in a piece-wise linear tessellation of feature space.

Two major drawbacks of the approach are evident:

(I) For large data sets, the method involves considerable computational effort
in the working phase. The naive implementation of (3) requires the evalua-
tion of P distances and the identification of their minimum for each novel
classification. Although clever search and sorting strategies can reduce the
computational complexity [3], the basic problem persists for large data sets.
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(II) More importantly, class boundaries can become very complex since every
example is taken into account on an equal footing. The system is highly sen-
sitive to single, potentially mislabelled examples or outliers. This bears the
risk of over-fitting, i.e. the classifier can become too specific to the example
set which may result in poor generalization performance with respect to
novel data. The effect is clearly mildened when k neighbors are taken into
account. However, too large k can yield overly smooth boundaries.

Both problems suggest to reduce the number of reference examples. The repre-
sentation of the data set by a condensed set of examples was already considered
in [10]. A variety of improved selection schemes have been proposed which aim
at retaining relevant information contained in the data set, see e.g. [11] and
references therein.

2.2 Learning Vector Quantization

Here we consider approaches which compute class representatives without
restricting them to be elements of the training set. Each class is represented
by at least one vector in a set of M labeled prototypes:

{
wj , cj

}M

j=1
where wj ∈ R

N and cj ∈ {1, 2, . . . C}. (4)

Together with the Euclidean measure, the prototypes parameterize piece-wise
linear class boundaries. Similar to the 1NN classifier, a Nearest Prototype Scheme
(NPC) assigns an arbitrary feature vector to class

y(x) = c∗ where c∗ is the label of w∗ = argmin
wj

{
d(x,wj)

}M

j=1
. (5)

The term winner is frequently used for the closest prototype w∗ with respect to
data point x. More sophisticated voting rules, probabilistic or soft schemes can
be devised, but here we limit the discussion to crisp classifiers.

The right panel of Fig. 1 illustrates the NPC scheme. The resulting decision
boundaries are obviously much smoother than those of the corresponding 1NN
classifier (left panel). The NPC scheme is less sensitive to details of the data set
which is reflected by the fact that it misclassifies some of the training examples.
In comparison to the 1NN scheme, this should result in superior generalization
behavior in the presence of noisy examples and outliers.

Arguably the most attractive feature of prototype-based schemes is their
interpretability [12]. Prototypes are defined in the feature space of observations
and, hence, can be inspected by domain experts in the same way as the sample
data. This is in contrast to Multilayer Perceptrons or other model parameteri-
zations which are less transparent. Moreover, prototypes should be - in a sense -
typical for their classes. Thus, the concept is complementary to, for instance, the
Support Vector Machine approach [4] which puts emphasis on atypical samples
close to the decision boundaries.
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LVQ prototypes are determined from the example data by more or less sophis-
ticated training procedures. A conceptually simple idea for their initialization is
to compute the class-conditional means, which appears promising when classes
are represented by single, more or less spherical clusters. In more realistic sit-
uations, LVQ prototypes could be initialized at random in feature space. More
reasonably, their initial positions could be determined by means of class-wise
unsupervised competitive learning [1–3] prior to the actual supervised training.

In the following we present two prominent prototype-based, iterative training
schemes from the family of Learning Vector Quantization algorithms.

Kohonen’s LVQ1. Kohonen’s original Learning Vector Quantization algorithm
[8,9,13], known as LVQ1, constitutes an intuitive, heuristic procedure for the
computation of prototypes. It is reminiscent of competitive learning for the pur-
pose of unsupervised Vector Quantization [2].

In LVQ1, single training examples are presented, for instance in randomized
order. Upon presentation of example {x, y}, the currently closest prototype w∗

is determined in analogy to Eq. (5). Only the winner is updated according to

w∗ ← w∗ + η Ψ(c∗, y) (x − w∗) where Ψ(c, y) =
{

+1 if c = y
−1 if c �= y.

(6)

Here, the learning rate η > 0 controls the step size. Note that Eq. (6) could be
re-written as

w∗ ← w∗ − η Ψ(c∗, y)
∂

∂w∗

[
1
2

(x − w∗)2
]

, (7)

formally. The Winner Takes All (WTA) prescription moves the prototype w∗

closer to or away from the feature vector if the class labels agree or disagree,
respectively. As a consequence, the sample x – or other feature vectors in its
vicinity – will be classified correctly with higher probability after the update.
Intuitively, after repeated presentation of the data set, prototypes approach posi-
tions which should be typical for the corresponding classes.

A number of variations of the basic scheme have been suggested in the litera-
ture, aiming at better generalization ability or more stable convergence behavior,
e.g. [9,14–17]. Several modifications update more than one prototype at a time,
e.g. LVQ2.1 or LVQ3, or employ adaptive learning rates as for instance the so-
called Optimized LVQ (OLVQ) [9]. However, the essential features of LVQ1 –
competitive learning and label-dependent updates – are present in all versions
of LVQ.

Generalized Learning Vector Quantization. Cost function based
approaches [14–17] have attracted particular attention. First of all, convergence
properties can be studied analytically in terms of their objective function. More-
over, cost functions allow for systematic extensions of the training schemes, for
instance by including adaptive hyperparameters in the optimization [18,19].
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Here we focus on the so–called Generalized Learning Vector Quantization
(GLVQ) as introduced by Sato and Yamada [14,15]. The suggested cost function
is given by a sum over examples:

E =
P∑

μ=1

eμ with eμ = Φ

(
d(wJ ,xμ) − d(wK ,xμ)
d(wJ ,xμ) + d(wK ,xμ)

)
, (8)

where wJ and wK denote the closest correct and closest incorrect prototype,
respectively, for a particular example {xμ, yμ}. Formally,

wJ = argmin
wj

{
d(xμ,wj) | cj = yμ

}M

j=1

wK = argmin
wj

{
d(xμ,wj) | cj �= yμ

}M

j=1
. (9)

Popular choices for the monotonically increasing function Φ(z) in Eq. (8) are the
identity Φ(z) = z or a sigmoidal like Φ(z) = 1/[1 + exp(−γ z)] where γ > 0
controls the steepness in the origin [14,20]. Its argument obeys −1 ≤ z ≤ 1,
negative values z < 0 indicate that the corresponding training example is cor-
rectly classified. Note that for large γ the cost function approximates the number
of misclassified training data, while for small steepness the minimization of E
corresponds to maximizing the margin-like quantities

[
d(wK ,xμ) − d(wJ ,xμ)

]
.

One possible strategy to optimize E for a given data set is stochastic gradient
descent based on single example presentation [1,2,21,22]. The update step for
the winning prototypes wJ ,wK , given a particular example {x, y}, reads

wJ ← wJ − η
∂

∂wJ
Φ(e) = wJ + η Φ′(e)

4dK

(dJ + dK)2
(
x − wJ

)

wK ← wK − η
∂

∂wK
Φ(e) = wK − η Φ′(e)

4dJ

(dJ + dK)2
(
x − wK

)

(10)

where the abbreviation dL = d(wL,x) for the squared Euclidean distances has
been introduced.

Note that in contrast to GLVQ, LVQ1 cannot be interpreted as a stochas-
tic gradient descent, although Eq. (7) involves the gradient of d(w∗,x). Formal
integration yields the function

1
2

P∑
μ=1

Ψ(c∗, yμ) (xμ − w∗)2

which is not differentiable at class borders. Crossing the decision boundary, a
different prototype becomes the winner and the sign of Ψ changes discontinu-
ously.
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3 Extensions to General Distance Measures

Occasionally it is argued that all distance based methods are bound to fail in
high-dimensional feature space due to the so-called curse of dimensionality and
the related concentration of norms, see [23] for a general discussion thereof. The
problem is evident in the context of, e.g., density estimation or histogram based
techniques. However, we would like to emphasize that the argument does not
necessarily carry over to the comparison of distances. Consider, for instance, the
difference of two squared Euclidean distances

d(x,xa) − d(x,xb) = 2x · (xb − xa) + (xa)2 − (xb)2 (11)

which involves the projection of x into the low-dimensional subspace spanned
by reference vectors xa,xb. The concentration of norms suggests, indeed, that
the last two terms approximately cancel each other in high dimensions, while
the first remains non-trivial. Moreover, in the context of LVQ, xa,xb in (11) are
replaced by prototypes which have been determined as low noise representatives
of the data set.

Euclidean distance appears to be a natural measure and is by far the most
popular choice in practice. However, one should be aware that other measures
may be more suitable, depending on the nature of the data set at hand [24].
Both the kNN and the LVQ framework facilitate the use of alternative distance
measures in a rather straightforward fashion as outlined in the following.

3.1 Example Metrics and More General Measures

Frequently, distances d(x,y) are required to satisfy the metric properties

d(x,y) = 0 ⇔ x = y, d(x,y) = d(y,x), d(x, z) ≤ d(x,y) + d(y, z). (12)

However, in the prototype based or kNN classification of a query x, these con-
ditions can be relaxed. For example, the NPC with prototypes {wj} is still well
defined with a non-symmetric measure as long as only one of the two choices,
d(x,wj) or d(wj ,x), is used consistently. Distances between different prototypes
or between two data points are never considered explicitly in the scheme.

A large variety of distance measures can be employed for classification tasks.
Discretized data, for instance, can be compared by means of the Hamming dis-
tance or more general string metrics. Specific measures have been devised for
functional data where the order of the observed features is relevant, see [25,26]
for examples.

In the following we outline how, quite generally, differentiable distance mea-
sures can be made use of in LVQ schemes. Then we briefly discuss three exam-
ple families of measures which constitute important alternatives to the standard
Euclidean choice.
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Incorporation of Differentiable Distances in LVQ Schemes. In the work-
ing phase of kNN or prototype based classification, essentially any meaningful
distance measure can be employed which is appropriate for the problem at hand.
An important restriction applies, however, if gradient based training schemes like
LVQ1 or GLVQ are used which require that the underlying distance is differen-
tiable. Under this condition, a general LVQ1-like update can be written as

w∗ ← w∗ − η Ψ(c∗, y)
∂

∂w∗ d(w∗,x) (13)

in analogy with Eq. (7).
Similarly, the Euclidean distance in the GLVQ cost function (8) can be

replaced by a more general, differentiable measure, yielding the update

wJ ← wJ + η Φ′(e)
2dK

(dJ + dK)2
∂

∂wJ
d(wJ ,x)

wK ← wK − η Φ′(e)
2dJ

(dJ + dK)2
∂

∂wK
d(wK ,x) (14)

where the winners and all other quantities are defined as in (10). In the following
we highlight a few families of differentiable distance measures which can be
incorporated into LVQ in a straightforward way.

Minkowski Distances. A prominent class of distances corresponds to the so-
called Minkowski measures

dp(x,y) =

⎛
⎝ N∑

j=1

|xj − yj |p
⎞
⎠

1/p

(15)

with p > 0 which includes the standard Euclidean distance for p = 2 or the
so–called Manhattan metric for p = 1. Note that (15) is a metric only for p ≥ 1,
while it violates (12) for p < 1. However, in the latter case, (dp(x,y))p becomes a
metric [27]. Note that the Euclidean distance can be determined using the inner
product

〈x,y〉 =
∑N

j=1 xj · yj (16)

by computing

d2(x,y) =
√

〈x,x〉2 − 2 · 〈x,y〉 + 〈y,y〉2. (17)

For p �= 2 and p ≥ 1, an analogous calculation can be done using semi-inner
products [28,29]. The use of Minkowski metrics with p �= 2 has proven advanta-
geous in several practical applications, e.g. [30,31], which can be accompanied by
appropriate dimensionality reduction schemes, e.g. principal component analysis
(PCA) [32,33]. Minkowski distances are either differentiable or can be replaced
by differentiable approximations, see [27] and references therein. Figure 2 illus-
trates the influence of the parameter p in (15). It displays the unit circles in two
dimensions corresponding to different Minkowski distances.
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Fig. 2. Unit circles corresponding to Minkowski metrics, Eq. (15), in two dimensions
with, from left to right, p = 0.5, p = 1 (Manhattan), p = 2 (Euclidean), and p = 10.

Divergences. In many practical problems, properties of the data are repre-
sented by histograms. Prominent examples are the characterization of images by
color histograms or the bag of words representation for texts. In other domains,
intensity spectra or other non-negative and normalizable functional data repre-
sent the objects of interest [34]. A large variety of statistical divergences are tai-
lored for the comparison of positive measures or probability densities. Arguably,
the non-symmetric Kullback-Leibler divergence is the most prominent example
[35]. Here we exemplify the concept in terms of the symmetric Cauchy-Schwarz
divergence

dCS(x,y) =
1
2

log [〈x,x〉 · 〈y,y〉] − log [〈x,y〉] (18)

which is obviously differentiable [36]. Figure 3 illustrates how dCS differs from
the standard Euclidean distance: Three normalized 50-bin histograms are dis-
played which satisfy (xa −xb)2 = (xc −xb)2. However, according to the Cauchy-
Schwarz measure, dCS(xa,xb) ≈ 1/2 dCS(xc,xb), implying that the single peak
xa is considered to be closer to the broad unimodal xb than the double peak
histogram xc.

The incorporation of symmetric and non-symmetric, differentiable diver-
gences into GLVQ training and classification is introduced in [37]. As an applica-
tion example, the detection of Mosaic Disease in Cassava plants based on various
image histograms is discussed there.

Kernel Distances. Kernel distances [38] can also be incorporated in prototype
based learning and classification approaches, see e.g. [39,40]. The so-called kernel
trick consists of an implicit, in general non-linear, mapping to a potentially
infinite dimensional space. This mapping space is equipped with an inner product
which can be calculated from original data in terms of a so–called kernel κ (x,y)
[41,42]. The corresponding kernel distance is calculated as

dκ(x,y) =
√

κ (x,x)2 − 2 · κ (x,y) + κ (y,y)2 (19)
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xa xb xc

Fig. 3. Three normalized histograms xa,xb,xc with 50 bins each. The pair-wise com-
parison in terms of Euclidean distance and Cauchy-Schwarz divergence, cf. Eq. (18), as
discussed in Sect. 3.1

in complete analogy to the inner product based Euclidean distance calculation
(17). A famous example is the Gaussian kernel

κG (x,y) = exp

(
− (d2 (x,y))2

2σ2

)
(20)

with the kernel width σ.
The application of kernel distances frequently translates non-linear complex

classification tasks into easier, linearly separable problems [41], as demonstrated
for, e.g., image based face recognition in [43]. For LVQ schemes, the kernel dis-
tance is assumed to be differentiable, which implies that also the kernel κ (x,y)
has to be differentiable [44].

4 Adaptive Distances and Relevance LVQ

In an ideal situation, insight into the problem suggests the use of a specific,
fixed distance measure. Very often, however, prior knowledge is limited and only
a suitable parametric form of the distance can be specified. In Relevance Learn-
ing, a particularly elegant extension of LVQ, the corresponding parameters are
adapted in the same data driven training process that identifies the prototypes.

4.1 Matrix Relevance LVQ

In the following we discuss Matrix Relevance LVQ as an extension of the basic
Euclidean scheme [20]. An obvious problem of the standard measure is that all
dimensions are taken into account on the same footing. First of all, some of
the features may be very noisy and potentially corrupt the classifier. Further-
more, features can be correlated or scale very differently. Euclidean or other
pre-defined measures are sensitive to rescaling and more general linear trans-
formations of the features. Consequently, their naive use can be problematic in
practice. Matrix Relevance LVQ in its simplest form addresses these problems
by using a generalized quadratic distance of the form

d(x,w) = (x − w)�
Λ (x − w) with Λ = Ω�Ω where Λ,Ω ∈ R

N×N . (21)
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Here the specific parameterization of Λ as a square guarantees that the distance
is positive semi-definite: d(x,w) ≥ 0.

The elements of the matrix Ω are considered adaptive quantities in the train-
ing process. The distance (21) is differentiable with respect to w and Ω:

∂d(w,x)
∂w

= Ω�Ω (w − x),
∂d(w,x)

∂Ω
= Ω (w − x)(w − x)� (22)

which facilitates gradient based updates of prototypes and distance measure. In
the corresponding extension of LVQ1-like updates, the WTA prototype update
(13) is combined with

Ω ← Ω − ηΩ Ψ(c∗, y)
∂

∂Ω
d(w∗,x). (23)

Generalized Matrix Relevance LVQ (GMLVQ) updates Ω according to

Ω ← Ω − ηΩ Φ′(e)
(

2dK

(dJ + dK)2
∂ d(wJ ,x)

∂Ω
− 2dJ

(dJ + dK)2
∂ d(wK ,x)

∂Ω

)
(24)

together with the prototype updates (14). Both, (23) and (24) can be followed
by an explicit normalization to enforce

∑
ij Ω2

ij = 1. The matrix learning rate
ηΩ is frequently chosen smaller than that of the prototype updates. We refer the
reader to [20,45] for details and the full form of the updates and a discussion of
their variants.

Note that the above correspond to only the simplest versions of matrix rele-
vance learning. A number of non-trivial variations have been suggested, including
the use of prototype- or class-specific localized matrices which yield piece-wise
quadratic decision boundaries in feature space [20]. Rectangular matrices Ω can
be employed in order to avoid the adaptation of O(N2) degrees of freedom in
high-dimensional data sets [45]. They facilitate also the discriminative low-dim.
representation or visualization of labeled data sets [45,46]. The restriction to
diagonal matrices Ω and Λ reduces the scheme to a weighting of single features,
which had been introduced earlier as RLVQ [47] and GRLVQ [48], respectively.
Formally, Euclidean LVQ versions are recovered by setting Ω proportional to
the N -dimensional identity matrix.

Similar parameterized distance measures have been used in the context of
various classification frameworks. For instance, the cost function based opti-
mization of a quadratic distance (21) can be integrated in an extended kNN
approach as introduced in [49], see also references therein. As another example
we would like to mention Radial Basis Function networks [1] which, in combina-
tion with relevance learning, have been applied in problems of vital importance
recently [50].

A Matlab toolbox Relevance and Matrix adaptation in Learning Vector Quan-
tization, including GMLVQ and a number of variants, is available at the website
[51].
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Fig. 4. Left: ROC curves as obtained by GLVQ (dashed), GRLVQ (dotted), GMLVQ
(solid line) with respect to the detection of malignant ACC, see Sect. 4.3. Right: Visu-
alization of the data set, displaying projections on the leading eigenvalues of Λ. In
addition to malignant ACC (triangles) and benign ACA (circles), healthy control data
(crosses) are displayed. Prototypes for ACA and ACC are marked by filled symbols.

4.2 Interpretation of the Relevance Matrix

It is instructive to note that the quadratic distance (21) can be rewritten as
d(w,x) = [Ω(w − x)]2, implying that plain Euclidean distance is applied after
a linear transformation of feature vectors and prototypes. The transformation
can account for the above mentioned problems of noisy or correlated features by
assigning weights to single dimensions and pairs of features, respectively. Note
that the diagonal element Λjj =

∑
i Ω2

ij quantifies the total contribution of the
original feature dimension j to the linear combinations [Ω(w − x)]i.

The direct interpretation of Λjj as the relevance of feature j for the classifi-
cation is only justified if different features are of the same magnitude, typically.
This can be achieved by, for instance, a z-score transformation in a preprocess-
ing step, such that

∑
μ xμ

j /P = 0 and
∑

μ(xμ
j )2/P = 1. Additional measures

have to be taken in the presence of strongly correlated or linearly dependent
features, see [12] for a detailed discussion of the interpretation of Λ and related
regularization techniques.

It is instructive to note that, given Λ, a continuum of matrices Ω satisfies
Ω�Ω = Λ. However, this does not pose a problem, since the ambiguity reflects
invariances of the distance measure with respect to reflections or rotations of
the data. For convenience, e.g. when comparing the results of different training
processes, one can resort to a canonical representation of Ω in terms of the
eigenvectors of Λ, see [12] for a more detailed discussion.

4.3 Example Application: Classification of Adrenal Tumors

We briefly illustrate the MRLVQ approach in terms of a recent medical appli-
cation [52,53]. Tumors of the adrenal gland occur in an estimated 1–2 % of
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the population and are mostly found incidentally. The non-invasive differentia-
tion between malignant Adrenocortical Carcinoma (ACC) and benign Adeno-
mas (ACA) constitutes a diagnostic challenge of great significance. To this end,
a panel of 32 steroid biomarkers – produced by the adrenal gland - has been
suggested in [52] where details are given. The 24h excretion of these steroids has
been analysed for a number of example patients with confirmed diagnosis, ret-
rospectively. Preprocessing and normalization steps are also detailed in [52,53].
The available data set was analysed by means of GMLVQ in its simplest setting,
employing one 32-dim. prototype per class and an adaptive Ω ∈ R

32×32.
Standard validation procedures, for details see [52,53], were used to demon-

strate that the resulting classifier achieves very good sensitivity (true positive
rate) and specificity (1-false positive rate) with respect to the detection of malig-
nancy. The obtained Receiver Operator Characteristics (ROC) [54] is shown in
Fig. 4 (left panel). For comparison, the ROC is also displayed for simple GLVQ
using the plain Euclidean distance in R

32 and for a system restricted to an adap-
tive, diagonal Λ, which corresponds to GRLVQ [48]. Evidently, relevance learning
and in particular the matrix scheme improves the performance significantly over
the use of the naive Euclidean distance.

The resulting relevance matrix, see [53], shows that a few of the steroid
markers play a dominant role in the classification as marked by large diagonal
elements Λjj . Based on these results, a reduced panel of 9 markers was proposed
in [52]. This reduction facilitates an efficient technical realization of the method,
while the performance is essentially retained. The method constitutes a promis-
ing tool for the sensitive and specific differential diagnosis of ACC in clinical
practice [52].

An additional feature of matrix relevance learning becomes apparent in this
application example. Typically, relevance matrices become low rank in the course
of training. Theoretical considerations which support this general, empirical find-
ing are presented in [55]. As a consequence, the dominating eigenvectors of the
relevance matrix can be used for the discriminative visualization of the labelled
examples. Figure 4 (right panel) displays the projections of all ACA and ACC
data and the obtained prototypes on the first two eigenvectors of Λ. In addition,
healthy control data is displayed which was not explicitly used in the training
process. The example demonstrates how the combination of prototype based and
relevance learning can provide novel insight and facilitates fruitful discussions
with the domain experts. For a similar application of GMLVQ in a different
medical context, see [56].

5 Summary

This contribution provides only a first introduction to distance based classifi-
cation schemes. To a large extent, the discussion is presented in terms of two
classical approaches: the k-Nearest-Neighbor classifier and Kohonen’s Learning
Vector Quantization. The latter requires a training phase which tunes the classi-
fier according to available training data. Examples for heuristic and cost function
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based training prescriptions are given. Mainly in the context of LVQ the use of
generalized dissimilarity measures is discussed, which go beyond the standard
choice of Euclidean distance. Relevance Learning is presented as an extension
of LVQ, which makes use of adaptive distances. Their data driven optimization
can be integrated naturally in the LVQ training process. As an example, matrix
relevance learning is briefly presented and illustrated in terms of an application
example in the medical domain.

This article and the suggested references can merely serve as a starting point
for the interested reader. It is far from giving a complete overview of this fasci-
nating area of ongoing fundamental and application oriented research.

References

1. Bishop, C.: Pattern Recognition and Machine Learning. Cambridge University
Press, Cambridge (2007)

2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)

3. Duda, R., Hart, P., Storck, D.: Pattern Classification, 2nd edn. Wiley, New York
(2001)

4. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

5. Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.): Similarity-Based Clus-
tering. LNCS, vol. 5400. Springer, Heidelberg (2009)

6. Hammer, B., Schleif, F.-M., Zhu, X.: Relational extensions of learning vector quan-
tization. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS,
vol. 7063, pp. 481–489. Springer, Heidelberg (2011)

7. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor.
13, 21–27 (1967)

8. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Heidelberg (1997)
9. Kohonen, T.: Improved versions of learning vector quantization. In: International

Joint Conference on Neural Networks, vol. 1, pp. 545–550 (1990)
10. Hart, P.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theor. 14, 515–

516 (1968)
11. Wu, Y., Ianakiev, K., Govindaraju, V.: Improved k-nearest neighbor classification.

Pattern Recogn. 35, 2311–2318 (2002)
12. Strickert, M., Hammer, B., Villmann, T., Biehl, M.: Regularization and improved

interpretation of linear data mappings and adaptive distance measures. In: Pro-
ceedings of the IEEE Symposium on Computational Intelligence (IEEE SSCI),
IEEE, vol. 2013, p. 8 (2013)

13. Helsinki University of Technology: Bibliography on the Self-Organizing Map
(SOM) and Learning Vector Quantization (LVQ). Neural Networks Research Cen-
tre, HUT (2002)

14. Sato, A., Yamada, K.: Generalized Learning vector quantization. In: Touretzky,
D.S., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference, Cambridge, MA,
USA, MIT Press. vol. 8, Advances in Neural Information Processing Systems, pp.
423–429 (1996)

15. Sato, A., Yamada, K.: An analysis of convergence in generalized LVQ. In: Niklasson,
L., Bodn, M., Ziemke, T. (eds.) Proceedings of the International Conference on
Artificial Neural Networks, Springer, pp. 170–176 (1998)



114 M. Biehl et al.

16. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Comput. 15(7),
1589–1604 (2003)

17. Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. Trans.
Neural Netw. 14, 390–398 (2003)

18. Seo, S., Obermayer, K.: Dynamic hyperparameter scaling method for LVQ algo-
rithms. In: IJCNN’06, International Joint Conference on Neural Networks, IEEE,
pp. 3196–3203 (2006)

19. Schneider, P., Biehl, M., Hammer, B.: Hyperparameter learning in probabilistic
prototype-based models. Neurocomputing 73(7–9), 1117–1124 (2010)

20. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning
vector quantization. Neural Comput. 21(12), 3532–3561 (2009)

21. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22,
405 (1951)

22. Bottou, L.: Online algorithms and stochastic approximations. In: Saad, D. (ed.)
Online Learning and Neural Networks. Cambridge University Press, Cambridge
(1998)

23. Lee, J., Verleysen, M.: Nonlinear Dimension Reduction. Springer, New York (2007)
24. Hammer, B., Villmann, T.: Classification using non-standard metrics. In:

Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, ESANN
2005, pp. 303–316. d-side publishing (2005)

25. Lee, J., Verleysen, M.: Generalization of the Lp-norm for time series and its appli-
cation to self-organizing maps. In: Cottrell, M. (ed.) Proceedings of the Workshop
on Self-Organizing Maps (WSOM), Paris, Sorbonne, pp. 733–740 (2005)

26. Villmann, T., Hammer, B.: Functional principal component learning using Oja’s
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Abstract. The primary role of any biological nervous system (including
the human) is to process incoming information in a way that allows
motor choices to be made that increases the subjective utility of the
organism. Or put slightly differently, “to make sure good things happen”.
There are a number of ways that such a process can be done, but one
possible hypothesis is that the human nervous system has been optimized
to maximize the use of available resources, thus approximating optimal
computations. In the following I will discuss the possibility of the nervous
system performing such computations in perception, action and learning,
and the behavioural and neural evidence supporting such ideas.

Keywords: Optimality · Bayesian inference · Reinforcement learning ·
Behaviour · fMRI · Neural recordings

1 Introduction

Evolution is a continuous process forcing biological organisms to constantly
evolve or face extinction (red queen hypothesis [36]). Any biological function
that requires metabolic energy expenditure has to provide an important role to
be worthwhile. As such it is probably fair to assume that the nervous system of
an animal plays an important role for its ecological fitness. If it is so important
what is the role that it performs, or rather the roles as it is unlikely to sim-
ply perform a single task? While the nervous system undoubtedly plays a large
part in regulating physiological factors such as hormones and metabolism, in the
following I will primarily focus on the elements required for motor planning.

According to this argument (as well described by e.g. Daniel Wolpert
[21,40])1 the primary role of the brain is not to ‘think’, write poems or con-
template modern existence. Instead the goal is to make decisions about how to
change the physical environment through motor control, the only means through
which the brain can influence its environment. The brain thus needs to collect
information about the environment, make a motor decision and await to see the
outcome of its choice in order to learn to improve its choices for the future.
1 http://www.ted.com/talks/daniel wolpert the real reason for brains.html
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The process may be imagined more clearly if we contemplate a fictive organ-
ism, e.g. a hungry frog on a lily pad. (Fig. 1). The animal needs to consume
calories (e.g. flies for the sake of this argument) and needs to make motor choices
that maximize the number of flies caught while minimizing the effort exerted.

Fig. 1. Optimal behaviour: a frog on a lily pad has to infer the location of the flies, in
order to perform a motor action to catch the fly. Based on the outcome of the action
it can potentially learn about properties of its perceptual and motor system as well as
the environment it is in (e.g. different lily pads might be preferable).

Given sensory input (e.g. visual and auditory stimuli) the animal first needs
to infer the location of the insect (we are here disregarding whether or not frogs
actually utilize sound for prey localization). Based on some estimate of this (see
below) the animal can decide on a motor response that gives an optimal chance
of catching the fly. Based on how well the motor response worked the animal
learns about its perceptual system, motor control and the external environment.

In the follow the theoretical aspects of these processes, inference, decision
making and learning, will be described in further details based on achieving
the optimal behaviour for the animal.

2 Inference

Inference about states of the world becomes necessary due to stochastic prop-
erties and/or uncertainty about the states. If we have perfect knowledge about
the state of the world in the past, present and future, no inference is necessary.

However the world does not present itself to us directly as von Helmholtz
[18] and others have surmised. Instead we have to combine different sources of
information in order to create a coherent interpretation of the world.
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2.1 Bayesian Inference

Given such stochasticity and the need for inference, the most natural approach is
to use Bayesian statistical inference which combines previous (prior) information
with current estimates (based on a likelihood function) to provide an updated
(posterior) distribution of possible states.

2.2 The Simple Case

Imagine for now that the frog has visual information, V about the location of the
insect X. Given a visual cue V which is related to the true location X through
a known stochastic process, P (V |X), (see Fig. 2) and a prior distribution of
possible estimates P (X) the best way to combine these sources of information
is through Bayes’ theorem:

P (X|V ) =
P (V |X)P (X)

P (V )
(1)

where P (V ) =
∑

P (V |X)P (X) functions as a normalizing term.
The new distribution of the state of the world is merely given as the nor-

malised product of the prior knowledge P (X) and the distribution for the new
cue P (V |X).

The location of the insect is now represented as a probability distribution
based on the frogs visual estimate (and the uncertainty in that estimate), and
its expectation about its location. This can be continuously updated (with a
discounting over time if the insect is moving) and can for example also be used
to estimate the velocity of the insect (and thus predict future locations).

Fig. 2. Graphical models: (a) Simple model with one cause, S, and one cue, X.
(b) Model with one source and two cues, XV and XA. (c) Causal inference model
where the probability of either model is compared.

When the distributions are Normally distributed the calculations get further
simplified since estimates based on the posterior distribution can easily be shown
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to be a linear combination of estimates of the prior and likelihood distributions
with a weight specified by the covariances of the distributions.

2.3 Two Cues

A special case that has seen a lot of interest is the one of combining sources of
information. Given two sources of information, e.g. audio A and visual V cues
about a hidden property X, the information can again be combined in a similar
fashion:

P (X|V,A) =
P (V |X)P (A|X)P (X)

P (V,A)
(2)

Again, the new distribution of the estimate is given by the normalised product
of the likelihood function for each of the two cues and the prior distribution.

From the viewpoint of our frog, if it has access to two sources of information
about the location of the insect, it would be potentially beneficial to combine this
information in a way that decreases the variance of the estimate of the location.
This is exactly what the Bayesian cue integration does.

2.4 Causality

However, critically in order to perform such computations as described above,
the causal structure underlying the cues needs to be known. E.g. it only makes
sense to combine information from an audio and a visual cue if it is known that
they refer to the same object. For large discrepancies in estimate (e.g. in space
or time) from two cues automatic cue combination indeed becomes problematic.
Hence it becomes necessary to estimate how likely it is that two cues are indeed
from the same source, a process referred to as causal inference.

One of the simplest such cases (and yet most relevant) is the inference of
whether two cues indeed were generated by one (C = 1) or two sources (C = 2).

P (C|V,A) =
P (V,A|C)P (C)

P (V,A)
(3)

This allows inference about the probability of each of the causal structures
given the cues, P (C = 1|A, V ) and P (C = 2|A, V ), allowing the estimation of a
underlying source to be done through e.g. model averaging

X̃ = P (C = 1|V,A)X̃C=1 + P (C = 2|V,A)X̃C=2 (4)

where X̃C=1 and X̃C=2 are the estimates of X according to each of the two
causal models.

This is equivalent to comparing the probability of competing hypotheses and
doing averaging over them based on this value.

For the frog, if there are multiple insects nearby, it would be detrimental to
combine cues from separate sources (e.g. audio from insect α and visual from
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insect β). Instead the causal relationship has to be estimated, i.e. the percep-
tual cues have to be attributed to the correct insects before any integration is
performed.

2.5 Behavioural and Neural Evidence

While this may be optimal approach to combine information, does the human or
animal brains actually use this? Behaviourally this has been studied in a large
number of cases. For the single cue and its relationship with prior expectations
e.g. in the way human subjects combine prior expectation of the speed of an
object with the visually perceived speed [30,38].

For cue combination the Bayesian integration has been examined in a large
number of human behavioural studies, showing optimal cue combination for e.g.
audio-visual [1], visual-haptic [10] and slant and texture cues [20], i.e. for both
within- and cross-modal stimuli.

For the estimation of causality it is perhaps somewhat surprising that the
human brain seems to indeed be doing a calculation like this seemingly fast and
effortless [21,29].

While there has been overwhelming support for such models in human
behavioural experiments (see also [32]), the neural evidence is only now being
uncovered.

A recent study [5] examined the neural recordings of awake ferret during
development and found that spontaneous activity resembled what you would
expect to record for a Bayesian system without visual input, e.g. just representing
the prior expectations.

Intricate neural models of Bayesian inference have also been suggested using
either neural networks [8], single neurons [3,24] as well as by single synapses [25].
While at least one study found neural activity in accordance with such models,
[12], there is certainly potential for future experiment (see Fetsch et al. for a
recent review [11]).

3 Choice and Movement

Statistical inference provides a probability distribution over the possible values
of the unknown variable of interest. But critically it does not specify what you
should do with that information. For that an optimal model requires you to take
into account your subjective expected utility (SEU) of the options [4,27].

3.1 Utility Function

SEU describes the expectations that you have about possible outcomes and the
subjective value that you assign to them. Obviously you will want make decisions
that maximise the probability of a positive outcome for yourself:

Õ = arg max E < U(X,O) >= arg max
∫

U(X,O)P (X|A, V )dX (5)
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The utility function can encapsulate phenomena such as rewards vs penalty
trade off or risk aversion [27]. For perceptual problems it is often assumed that
the utility of a choice decreases as the squared deviation from the true value
U(X,O) ∼ (X −O)2. When the posterior probability of the unknown variable X
is Normal distributed (as in several of the examples above) this leads to the
optimal choice O ∼ x̂ ∼ ∫

XP (X|A, V )dX although other utility functions will
lead to other optimal responses [22].

For our pensive frog it has to decide not just which insect to try to catch, but
calculate the best location to aim for given the movement of the insect. There
may be biophysical costs involved making the motor response (muscle movement
is not free) as well as opportunity costs if a better possibility of capture will be
arriving soon. It is not easy being green.

3.2 Motor Control

The issue becomes a little more complicated when we take into account that
not only do we not have perfect knowledge about the state of the world X (and
thus have to infer a probability distribution over X, P (X|A, V )), we are also
restricted in how we influence the world, not being able to directly do so in a
way we wish. This is encapsulated by the problem of motor control; a specific
motor signal (‘point to the red dot on the screen’) will lead to a distribution of
outcome locations when repeated [33], P (O|m). Furthermore the reaction time
will not be perfect, hence variability in lag in response also has to be considered.
An optimal decision thus also has to take such variability into account

m = arg max E < U >= arg max
∫ ∫

U(X,O)P (O|m)P (X|A, V )dXdO (6)

where O refers to the eventual outcome, e.g. a location on a screen, while m is
the motor command submitted. (The problem is actually more complex than
this [31], but this will suffice for the current discussion).

The frog needs to have a representation of its own motor uncertainty, i.e.
what is the locations that its tongue can reach, what is the variability etc.
A fast moving insect may become less attractive if the speed is too large once
the variability of the motor response is taken into account.

3.3 Behavioural and Neural Evidence

There is currently more behavioural than neurophysiological evidence for the
brain utilizing optimal decision making and motor control, one exception being
the study by Wunderlich et al. that showed activity in prefrontal cortex that
was consistent with optimal use of reward cues.

Behaviourally there are however a large number of studies. Whiteley and
Sahani [39] gave subjects a perceptual task where subjects had to integrate the
potential payoffs when deciding on different options, showing that perceptual
judgements can be influenced by the subjective utility.
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In a series of experiments Trommershauser and colleagues studied the ability
of human subjects to account for their own movement variability (motor noise),
showing near optimal performance on simple tasks [33,34,42] but sub-optimal
performance as the complexity increases.

4 Learning

Optimal behaviour also requires adapting to the environment through learning
how the organism interacts with the environment as well as about the environ-
ment itself.

4.1 Bayesian Learning

Any parameters in the proposed mechanisms above have to be learnt and adapted
to the statistics of the environment. Priors and likelihoods have to reflect respec-
tively the statistics of the environment, and the variability in the perceptual
system (e.g. visual).

In our frog example the animal has to learn e.g. how reliable its visual system
is relative to the auditory system or the variability of its motor system. However
it will also learn about the environment itself, e.g. which lily pad allows it to
have a better chance of catching flies?

The obvious way to learn all of these variables is to utilize Bayesian inference
for the parameters themselves. Bayesian models are excellent for this, due to the
way new information is integrated, i.e. the posterior of a variable at time point t is

P (X|V1:t) =
P (Vt|X)P (X|V1:t−1)

P (V1:t)
(7)

where the posterior at time t − 1 becomes the prior for the update at time t.
However very little is currently known about how the nervous system would
achieve this, from a theoretical as well as experimental viewpoint. It would be
advantageous if the updating of the parameters could happen ‘online’ i.e. while
the animal is interacting with the environment, although ‘off-line’ updating, e.g.
while sleeping, may also be possible for some variables [19].

4.2 Reward Learning - Model Based

A special case of learning that has gathered a lot of attention, partly due to its
link with the literature on Pavlovian and Operant conditioning, is that of reward
learning. Compared to the full sensory input available to an organism, only
utilising a reward as a single signal for learning seems somewhat impoverished
in the available information. However, the goal of the organism as argued above
should be to optimise the potential future rewards from the environment, making
it undoubtedly the most important single sensory signal to the organism.
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In reward learning the total expected future rewards due to taking action at

while in state st are calculated over a fixed time horizon or with a discount γ of
future rewards

Q(st, at) =
∞∑
t

γtE < rt >= E < rt > +γE < rt+1 > + . . . (8)

= E < rt > +γ
∑
st+1

P (st+1|st, at)max
at+1

Q(st+1, at+1) (9)

where E < rt > is the expected reward at time step t (substituting for the
expected utility proposed above). Optimal behaviour (often referred to as a pol-
icy π̂) is to choose the action that maximises future rewards, arg maxat

Q(st, at).
Optimal learning can still rely on Bayesian mechanisms, e.g. to try to esti-

mate the probabilities for transitioning between states or receiving rewards. Such
approaches are often referred to as model-based reinforcement learning due to
their reliance on the establishment of a statistical model of the environment.

For our frog it now has to worry about not just the expected instantaneous
outcome, but also what will happen at later times. It may for example be advan-
tageous to move to a different lily pad to increase future expected rewards,
despite the instantaneous cost in terms of movement and opportunity cost.

4.3 Reward Learning - Model Free

An alternative approach to the model-based RL does not rely on a model of
the environment, instead approximating the expected reward Q(st, at) by the
learnt values from previous experiences. The goal is thus still to maximize the
total expected future rewards (or utility) but this is achieved by approximating
future rewards with past rewards. One approach updates Q(st, at) after each
trial according to:

Q(st, at) → Q(st, at) + α(rt + γ max
a′

Q(st+1, a
′) − Q(st, at)) (10)

This method is referred to as Q-learning [37], and while it is an approximation
to the optimal model it can be shown (given certain assumptions) to converge
to the true values of Q(st, at).

In the model-free reinforcement learning there is no explicit model of the
environment, instead there is an assumption that the world is stationary and
thus that past rewards are a predictor of future rewards. This will of course lead
to deviations from optimal behaviour in situations where the environment does
indeed vary [7].

For our frog, moving to the lily pad that has previously had most flies around
it may be a generally good choice, but if things change in the lake (e.g. rise in
water level) then this may no longer be a good choice, indicating how relying on
past performance can be dangerous.
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4.4 Behavioural and Neural Evidence

Behaviourally optimal updating of parameters has been studied in both percep-
tual [13] and motor control systems [14]. Furthermore a few imaging studies have
examined Bayesian learning of parameters, e.g. Hampton et al. found that neural
activity in prefrontal cortex during a reversal learning task corresponded more
closely to a model-based or Bayesian learner than a model-free reinforcement
learning model [17].

The relationship between model based and model-free learning and their
relative behavioural and neural evidence has been reviewed in a few papers
(e.g. [7,9]) but the largest amount of evidence of near-optimal learning probably
relates to the study of model free learning.

The discovery that the phasic firing of dopaminergic mid-brain neurons are
seemingly encoding the reward prediction error of the model-free system [28]
has led to a large number of studies relating reinforcement learning to both
behaviour and neural recordings (see [9] for a recent review). The idea that the
brain is encoding aspects of subjective utility through mechanisms similar to
reinforcement learning is today no longer a controversial claim [26].

5 Discussion

In the sections above I have presented the different elements that goes into a
model of optimal behaviour, inference, decision making and learning, and pre-
sented some of the evidence that the human (or animal) nervous system performs
each of these computations.

5.1 Optimal Behaviour

However in a realistic environment an organism is faced with performing all of
these within a task. In our toy example our pondering frog needs to infer the
location of multiple flies, decide on the most valuable target and plan for the
motor command that takes into account both perceptual and motor variability.
After the movement it has to assess if it needs to update parameters for its
visual estimation model, its motor precision as well as whether it in fact needs
to choose a different target or move to a different more lucrative location.

Obviously experimentally incorporating all of these elements into a single task
becomes complex too study (although for an approximation see [43]). Optimisa-
tion of behaviour requires a number of computational steps as outlined above,
computations that can only be performed by the nervous system and which con-
stitute one of its primary functions. Each step of this process may be performed
in a separate neural population, or the nervous system may have a different way
of splitting the task that is more amenable to the type of computations in neural
hardware.
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5.2 Limitations

While I have debated the evidence for optimal processing in the nervous system,
there is certainly also evidence against such an idea. Some of the most well
known examples are from Kahneman & Tverskys studies [35] which highlighted
the non-optimal heuristic methods and biases typically used by subjects when
faced with written questions related to inference or decision making. Certain
criticism has been levelled at this approach (e.g. [15]) while others have tried to
bridge the gap between the performance on perceptual-motor tasks and these
cognitive tasks (e.g. [41]).

The concept of integrating the subjective utility into the decision making
process has also been questioned in human cognition, especially in behavioural
economics where researchers such as Allais [2] have shown clear inconsistencies
incompatible with the use of a single subjective utility function.

The complexity of the task faced by an organism should not be underesti-
mated. In the real world that a frog is operating in multiple targets, distractors,
irrelevant clutter etc. require the animal to perform much more intricate com-
putations than the ones outlined above. Clearly approximations will have to be
made. As researchers in this field we have multiple avenues to proceed. One
approach is to continually rely on new developments in theoretical models and
ideas, expanding the complexity of the tasks that can be processed. A different
approach is to abandon the optimal (or near optimal) scheme and instead find a
process that is ‘good-enough’. According to this idea, the performance of a real
organism can be just as good when using simplified models, similar to heuristics
[16]. The debate amongst researcher on these issues is still ongoing, regarding
the level of approximation needed or heuristics employed. However even less neu-
rophysiological evidence currently exists for such models, than for the optimal
models described above.

An obvious omission from the analysis of behaviour above is the issue of social
decision making. In our example the frog is a solitary creature who does not have
to worry about competitive or collaborative influences from e.g. members of the
same species. For some animals this seems fair, but humans are extremely social
creatures who are daily interacting with up to hundreds of other humans. Due
to space constraint I have not debated this very complex issue, one which the
economic field of behavioural game theory [6,23] is dedicated to.

5.3 Conclusion

Evolution on this planet (earth) has shaped the form and behaviour of every
species for at least 2 billion years, forcing each species to adapt to the dynamic
environment they are placed in. Given this process and the evolutionary pressure
faced, it would be surprising if the organisms had not been trying to improve
their fitness by approximating optimal processing in the neural systems, opti-
mising inference about properties of the environment and the choices and motor
commands that can improve the utility of the organism. In the previous sections
I have attempted to draft a rough sketch of the processes involved in such an
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optimization, and what we currently know about how the nervous system might
be approximating optimal behaviour. I have only scratched the surface of such
a comprehensive topic, a topic which has generated large discussions of the fea-
sibility of the process itself, but I hope that in describing the current state of
knowledge I have at least convinced the reader of the importance of considering
the task of the organism when trying to understand the nervous system.
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Abstract. Research on the brain information processing has focused on
the interrelationships among cognitive processes. Thus, it is currently
well-established that the units of attention on human vision are not
merely spatial but closely related to perceptual objects. This implies a
strong relationship between segmentation and attention processes. This
interaction is bi-directional: if the segmentation process constraints atten-
tion, the way an image is segmented may depend on the specific question
asked to an observer, i.e. what she ‘attend’ in this sense. When the focus
of attention is deployed from one visual unit to another, the rest of
the scene is perceived but at a lower resolution that the focused object.
The result is a multi-resolution visual perception in which the fovea,
a dimple on the central retina, provides the highest resolution vision.
While much work has recently been focused on computational models for
object-based attention, the design and development of multi-resolution
structures that can segment the input image according to the focused
perceptual unit is largely unexplored. This paper proposes a novel struc-
ture for multi-resolution image segmentation that extends the encod-
ing provided by the Bounded Irregular Pyramid. Bottom-up attention is
enclosed in the same structure, allowing to set the fovea over the most
salient image region. Preliminary results obtained from the segmentation
of natural images show that the performance of the approach is good in
terms of speed and accuracy.

Keywords: Foveal segmentation · Pyramids · Visual attention

1 Introduction

In computer vision literature, segmentation essentially refers to a process that
divides up a scene into non-overlapping, compact regions. Each region encloses
a set of pixels that are bound together on the basis of some similarity or dis-
similarity measure. A large variety of approaches for image segmentation has
been proposed by the computer vision community in these last decades. And
simultaneously, this community has been asked for a definition of what is a cor-
rect segmentation. As several authors have argued, the conclusion about this
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problem definition is that it is not well posed. Given an image where objects at
different resolution appears, the segmentation algorithm should tune its inter-
nal parameters to fit correctly to the representation scale of the objects. In this
framework, what is the correct set of parameters? As it is pointed out by Mishra
et al. (2012), the answer to this question depends on another question: what is
the object of interest on the scene? [13].

Attention mechanisms are responsible for pre-selecting relevant information
from the sensed field of view in biological vision systems. The aim is that the com-
plete scene will be analyzed using a sequence of rapid eye saccades. Efforts have
been made to imitate such attention behavior in artificial vision systems, because
it allows optimizing the computational resources as they can be focused on the
processing of a set of selected regions (for an extensive survey, see [9]). Most
of the models of visual attention build different scales of the input image and
determine saliency by considering the vicinity of the individual pixels in these
scales. As it has been pointed out by [6], the use of such coarse-to-fine scales
during feature extraction provokes fuzziness in the final conspicuity map. This
drawback can be avoided by adopting a region-based methodology for the model
of attention [12]. Segmentation arises then as a way to constrain selective atten-
tion, being the responsible of providing the ‘proto-objects’, i.e. the image units
where attention is deployed. The mutual interaction between segmentation and
attention is discussed with details in the work by [8]. As aforementioned, the
reverse influence is also possible and segmentation can be modulated by the
responses of selective attention. The necessity of this mechanism for adaptively
selecting the appropriate scale is also present in the work by [4]. As they pointed
out, dealing with the full variety one expects in high-resolution images of complex
scenes requires more than a naive weighted average of signals across the scale
range [4]. Such an average would blur information, resulting in poor detection
of both fine-scale and large-scale contours.

In this paper, we propose a hierarchical image encoding where segmentation
and bottom-up attention processes could be simultaneously performed. As other
approaches, this structure will resemble the one of the human retina: it will only
capture a small region of the scene in high resolution (fovea), while the rest of
the scene will be captured in lower resolution on the periphery. This foveal struc-
ture is encoded as an extension of the Bounded Irregular Pyramid (BIP) [11].
The remainder of the paper is organized as follows: Sect. 2 provides an overview
of the proposed method, describing the data structure and decimation process
of the foveal BIP. The segmentation and saliency estimation are described at
Sect. 3. Section 4 presents preliminary results on using this structure. Conclu-
sions and future works are drawn on Sect. 5.

2 Foveal Representation Using the Bounded Irregular
Pyramid: The FovealBIP

2.1 Cartesian Foveal Geometries (CFG)

Although we could have the impression that our vision system is able to process
the entire visual field of view in a single fixation, only part of the retina
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Fig. 1. (Left) fovea-centered CFG, and (right) adaptive fovea CFG.

(the fovea) permits high visual acuity. Surrounding this fovea, peripheral vision
allows the recognition of well-known structures and the identification of simi-
lar shapes and movements, but it is not able to provide the visual acuity of the
fovea. This multi-resolution encoding allows the human visual system to perceive
a large field of view, bounding the data flow coming from the retina. Due to its
inherent advantages, computational approaches have replied this non-uniform
structure through methods such as the Reciprocal Wedge Transform (RWT), or
the log-polar or Cartesian foveal geometries [15]. Specifically, Cartesian Foveal
geometries (CFG) encode the field of view of the sensor as a fovea surrounded
by a set of concentric rings with decreasing resolution [5]. In the majority of
the Cartesian proposals, this fovea is centered on the geometry and the rings
present the same parameters. Thus, the geometry is characterised by the num-
ber of rings surrounding the fovea (m) and the number of subrings of resolution
cells -rexels- found in the directions of the Cartesian axes within any of the
rings. Figure 1(left) shows an example of a fovea-centered CFG.

Among other advantages, there are CFGs that are able to provide a shiftable
fovea of adaptive size [15]. Vision systems which use the fovea-centered CFG
require to place the region of interest in the center of the image. That is usually
achieved by moving the cameras. These movements need the selection of an end-
point and time for planning and execution. It is clear that a shiftable fovea can
be very useful to avoid certain motor movements. Furthermore, the adaptation of
the fovea to the size of the region of interest can help to optimise the consumption
of computational resources. Figure 1(right) shows the rectangular structure of
an adaptive fovea. The geometry is now characterised by the subdivision factors
at each side of the fovea. It should be noted that the foveal geometry is not
adequate for processing planar images. On the contrary, the aim is to use it for
hierarchical processing. Thus, the whole structure (the foveal polygon [5]) can
be drawn like Fig. 2 shows. There are a first set of levels of abstraction built
from the fovea to the waist (the first level where the complete field of view is
encoded). In the figure, levels 1 and 2 on this hierarchy are built by decimating
the information from the level below and adding the data from the corresponding
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Fig. 2. Foveal structure for adaptive fovea lattices.

ring of the multi-resolution image. Over the waist, there are a second set of
levels. All these levels encode the whole fiel of view and are built by decimating
the level below. Typically, the decimation process inside the CFGs have been
conducted using regular approximations [5]. Then, all levels of the foveal polygon
can be encoded as images. The problems of regular decimation processes were
early reported [1,7], but here, these processes were justified due to the simplicity
for processing [15]. In this work, we propose to build the foveal polygon using
the irregular decimation process provided by the Bounded Irregular Pyramid
(BIP) [10].

2.2 Foveal Poligon

The data structure of the BIP is a mixture of regular and irregular data struc-
tures: a 2 × 2/4 regular structure and a simple graph. The mixture of both
regular and irregular structures generates an irregular configuration which is
described as a graph hierarchy. In this hierarchy, there are two types of nodes:
nodes belonging to the 2 × 2/4 structure, named regular nodes and irregular
nodes or nodes belonging to the irregular structure. Therefore, a level l of the
hierarchy can be expressed as a graph Gl = (Nl, El), where Nl stands for the set
of regular and irregular nodes and El for the set of arcs between nodes (intra-
level arcs). Each node ni ∈ Nl is linked with a set of nodes {nk} of Nl−1 using
inter-level arcs, being {nk} the reduction window of ni. A node ni ∈ Nl is neigh-
bor of other node nj ∈ Nl if their reduction windows wni

and wnj
are connected.
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Two reduction windows are connected if there are at least two nodes at level l-1,
np ∈ wni

and nq ∈ wnj
, which are neighbors.

Figure 3 shows an example with m = 1 of the proposed structure. In this
simple example, the input image (level 0) is divided up into a central part, the
fovea, at the highest resolution, and the periphery, a ring of lower resolution
surrounding the fovea (in Sect. 4, a more complex foveal polygon with m = 3
(Fig. 6) has been employed). The fovea is firstly decimated to obtain the central
part of the data at level 1, which is then surrounded by the rexels of the periphery.
In the figure, regular nodes are represented by cubes meanwhile irregular ones
are drawn as circles. All rexels at level 0 are encoded as regular nodes. The fovea
(of 8 × 8 pixels in the example) is decimated to obtain a set of 12 regular nodes
and 2 irregular nodes. The 2 × 2/4 tessellation is shown in the figure: the region
surrounded by the white-coloured ring is composed by 2 × 2 regular nodes at
level 0, that are not linked to a regular node at level 1, but to an irregular one
because of its position on the fovea. This white-coloured ring is also linked to
one irregular node at level 1. On the contrary, the two larger regions on the fovea
are encoded at level 1 by regular nodes, as they shape well in the 2 × 2 regular
geometry. As there is only one ring surrounding the fovea, the level 1 will encode
the whole scene at uniform resolution (waist). The following levels (from waist
to the uppest level) are building by decimating the level bellow.

Fig. 3. Schematic representation of the decimation process inside the foveal bounded
irregular pyramid (see text for details).
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2.3 Decimation Scheme of the FovealBIP

According to the neighborhood definition explained in the previous subsection,
two nodes x and y which are neighbors at level l are connected by an intra-level
arc (x, y) ∈ El. Let εxy

l be equal to 1 if (x, y) ∈ El and equal to 0 otherwise.
Then, the neighborhood of the node x can be defined as {y ∈ Nl : εxyl }. It
can be noted that a given node x is not a member of its neighborhood, which
can be composed by regular and irregular nodes. Each node x has associated
a vx value. Besides, each regular node has associated a boolean value hx: the
homogeneity [11]. At the base level of the hierarchy G0, the fovea, all nodes
are regular, and they have hx equal to 1. Only regular nodes which have hx

equal to 1 are considered to be part of the regular structure. Regular nodes with
an homogeneity value equal to 0 are not considered for further processing. The
proposed decimation process transforms the graph Gl in Gl+1 using the pairwise
comparison of neighbor nodes. Then, a pairwise comparison function, g(vx1 , vx2)
is defined. This function is true if the vx1 and vx2 values associated to the x1

and x2 nodes are similar according to some criteria and false otherwise. When
Gl+1 is obtained from Gl, being l < waist, this graph is completed with the
regular nodes associated to the ring l + 1. This process will require to compute
the neighborhood relationships among the regular nodes coming from the ring
and the rest of nodes at Gl+1. Over the waist level, Gl+1 is built by decimating
the level below Gl.

The building process of the fovealBIP consists of the following steps:

1. Regular decimation process. The hx value of a regular node x at level l+1
is set to 1 if the four regular nodes immediately underneath {yi} are similar
according to some criteria and their h{yi} values are equal to 1. That is, hx

is set to 1 if
{

⋂
∀yj ,yk∈{yi}

g(vyj
, vyk

)} ∩ {
⋂

yj∈{yi}
hyj

} (1)

Besides, at this step, inter-level arcs among regular nodes at levels l and l+1
are established. If x is an homogeneous regular node at level l+1 (hx==1),
then the set of four nodes immediately underneath {yi} are linked to x and
the vx value is computed.

2. Irregular decimation process. Each irregular or regular node x ∈ Nl without
parent at level l+1 chooses the closest neighbor y according to the vx value.
Besides, this node y must be similar to x. That is, the node y must satisfy

{||vx − vy|| = min(||vx − vz|| : z ∈ ξx)} ∩ {g(vx, vy)} (2)

If this condition is not satisfy by any node, then a new node x′ is generated
at level l+1. This node will be the parent node of x and it will constitute
a root node. Its vx′ value is computed. On the other hand, if y exists and
it has a parent z at level l+1, then x is also linked to z. If y exists but it
does not have a parent at level l+1, a new irregular node z′ is generated at
level l+1 and vz′ is computed. In this case, the nodes x and y are linked to z′.
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This process is sequentially performed and, when it finishes, each node of Gl is
linked to its parent node in Gl+1. That is, a partition of Nl is defined. It must
be noted that this process constitutes an implementation of the union-find
strategy [10].

3. Definition of intra-level arcs. The set of edges El+1 is obtained by defining
the neighborhood relationships between the nodes Nl+1. As aforementioned,
two nodes at level l+1 are neighbors if their reduction windows are connected
at level l.

4. For l < waist
– The set of nodes Nl+1 is completed with the rexels of the ring l+1. These

rexels are added as regular nodes, Nring
l+1 .

– The intra-level arcs between nodes of Nring
l+1 and the rest of nodes of Nl+1

are computed as in step 3. Nodes of Nring
l+1 do not have a real reduction

window at level l, they present a virtual reduction window. The virtual
reduction window of a node x ∈ Nring

l+1 is computed by quadrupling this
node at level l as shown in Fig. 4. Therefore, the reduction window of x is
formed by the four nodes immediately underneath at level l.

Fig. 4. Virtual reduction window of a node of a ring

3 Segmentation and Visual Attention

The fovealBIP has been employed for image segmentation and bottom-up visual
attention. Following previous work [2], the image segmentation will be conducted
in two consecutive stages. The pre-segmentation stage builds the lower set of
levels of the foveal polygon (from l0 to lm with l > waist) according to the
CIELab color features. On the top of this hierarchy, the perceptual grouping
stage will employ edge and color information to obtain a second set of levels of
abstraction. Within this hierarchy, the saliency values for bottom-up attention
are estimated and the most relevant region is selected. Then, the fovea is moved
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to wrap this region and a new hierarchy of segmentation levels are computed.
Next sections describe the pre-segmentation and perceptual grouping stages of
the approach and the evaluation of features for bottom-up visual attention.

3.1 Pre-segmentation Stage

The pre-segmentation stage groups the image pixels and rexels into a set of pho-
tometric homogeneous regions (blobs) whose spatial distribution is physically
representative of the image content. This stage is accomplished by means of the
irregular foveal polygon described in Sect. 2, taking into account the CIELab
color of the image pixels and the pairwise comparison of neighboring nodes:
g(v

x
(l)
i

, v
x
(l)
j

) is true if the color difference between x(l)
i and x(l)

j is under a

given threshold Uv, and false otherwise. In order to measure the color differ-
ence between two nodes, the vx value of each node stores the mean color of its
sons and the Euclidean distance is employed. That is, the distance between two
nodes x(l)

i and x(l)
j at the pre-segmentation stage is defined as

ψβ =
√
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x
(l)
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− L
x
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j

)2 + β(a
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(l)
i

− a
x
(l)
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)2 + β(b
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(l)
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− b
x
(l)
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where β is a parameter which allows to weight lightness and chrominance
(grayscale images correspond to β equal to 0 and the usual CIELab space to
β equal to 1).

3.2 Perceptual Grouping Stage

After the pre-segmentation stage, grouping regions aims at simplifying the con-
tent of the obtained partition. For managing this grouping, the irregular struc-
ture is used: the roots of the pre-segmented blobs at level lm constitute the first
level of the perceptual grouping multi-resolution output. Successive levels can be
built using the decimation scheme described in Sect. 2 and a similarity criteria
between nodes which has two main components: the color contrast between blobs
and the edges of the image at the waist level computed using the Canny detec-
tor. This contrast measure is complemented with internal regions properties and
with attributes of the boundary shared by both regions. To perform correctly,
the nodes of the pyramid structure associated to the perceptual grouping stage
store statistics about the CIELab color values of the nodes generated by the
pre-segmentation stage which are linked to them. Then, the distance between
two nodes y(l)

i and y(l)
j , ϕα(y(l)

i ,y(l)
j ), is defined as [2]

ϕα(y(l)
i ,y(l)

j ) =
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, b
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where d(y(l)
i ,y(l)

j ) is the color distance between y(l)
i and y(l)

j . b
y
(l)
i

is the perimeter

of y(l)
i , b

y
(l)
i y

(l)
j

is the number of rexels in the common boundary between y(l)
i and
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y(l)
j and c

y
(l)
i y

(l)
j

is the set of rexels in the common boundary which corresponds
to rexels of the edge detected by the Canny detector. α is a constant value used
to control the influence of the Canny edges in the grouping process. Finally,
it must be commented that the pairwise comparison function, g(v

y
(l)
i

, v
y
(l)
j

), is

also implemented as a thresholding process. Then, g(v
y
(l)
i

, v
y
(l)
j

) is true if the

distance measure between both nodes is under a given threshold Up, and false
otherwise. This threshold Up will be typically different to Uv. The perceptual
grouping process is iterated until the number of nodes remains constant between
two successive levels.

3.3 Bottom-Up Visual Attention

Contrary to the typical strategy for bottom-up attention, in our framework fea-
ture maps are not computed in parallel across the visual field and combined into
a salience map. The foveal polygon allows integrating image features into a single
hierarchy. Each layer of the polygon is built considering color, brightness and
edge strength using the decimation algorithm and segmentation stages described
at Sects. 2 and 3. Thus, the foveal image is partitioned into regions by a percep-
tual grouping algorithm, optimizing the interaction with proto-objects and not
just with disembodied spatial locations. Once the foveal polygon is built, the
saliency value of each proto-object is obtained using color and brightness con-
trast measures [12]. Center-surround contrasts are estimated in our model using
a region-based framework: a region of the partition at level l of the foveal polygon
is linked with its corresponding region in the multi-resolution image through a
set of inter-level arcs. In the upper level of the hierarchy each region corresponds
with a ‘proto-object’ of the foveal image and its associated set of inter-level
arcs allows to determine the shape of the ‘proto-object’ in the image (feedback
connection) (see [10] for a detailed explanation of a segmentation process inside
irregular pyramids). Figure 5c shows the bottom-up saliency values associated to
the multi-resolution image of Fig. 5a. Figure 5b shows the segmentation result at
the waist. It should be noted that the color or saliency values of Figs. 5b and 5c
have been propagated from the waist to a virtual image, where the fovea and
peripheral rings are included.

Fig. 5. (a) Original multi-resolution image; (b) segmentation result from the waist
level; and (c) bottom-up saliency values from the waist level (see text for details).
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4 Experimental Results

Figure 6 shows the segmentation results for several image of uniform and non-
uniform resolution. In both cases, the BIP has been used to perform the segmen-
tation process using the same segmentation parameters. It can be noted that the
performance on the segmentation of the fovea is very similar in the uniform and
non-uniform images. However, when the multi-resolution image is used, the seg-
mentation speed is significantly greater. This is clearly due to the difference on
size among the uniform and non-uniform images. Thus, the size of the uniform
images in Fig. 6 is 320 × 480 (153,600 pixels) and the size of their non-uniform
counterparts ranges from 9,780 to 18,930 rexels. The loss on visual acuity in the

Fig. 6. The first and second rows show several uniform images and the results from
the perceptual grouping stage. The third and fourth rows show a foveated version of
the same images at (a) and the results from the perceptual grouping stage. Contours
have been drawn in white over the segmentation images
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Fig. 7. The first column shows an uniform image and the segmentation result obtained
using the BIP. The second and third columns show a foveated version of the same
images at the first column and the segmentation results. After conducting a first fixation
using a centered fovea, the fovea is then moved to the regions where human faces can
be. The image features and inhibition of return (IoR) mechanism have been taken from
previous work [14]. Contours have been drawn in white over the segmentation images

peripheral rings do not imply that they will not be interesting for the bottom-up
component of attention. Figure 6 illustrates how the main regions on the scene
are present on the segmentation images. In fact, the segmentation results at the
peripheral part are smoother than in the fovea, providing larger regions. This
issue benefits that they will be chosen as the new focus of attention.

The aim of the proposed framework is to enclose the bottom-up attention
inside the structure for multi-resolution image segmentation. Once a saliency
image is computed, the fovea is moved to the most salient image region. The
fovea will be segmented at high resolution, providing details about the objects
(e.g. the face details of the koala). These details could be necessary for object
recognition and could also anchor the fovea over this part of the scene until this
recognition is conducted (top-down attention) or other part of the scene is more
relevant (bottom-up attention). Although this top-down behavior has not been
currently implemented in our framework, it could resemble the role of fixational
eye movements -the involuntary eye movements- during a fixation. Encoded as
a graph, a previously learned model of the object (e.g. of a face, with eyes and
mouth) can drive this behavior (see [3] for our work on this topic using uniform
images). On the other hand, the peripheral field of view will be perceived at
lower resolution. But this part of the scene, encoded as larger blobs, usually
drives the bottom-up attention. Using a static image, this effect is illustrated
at Fig. 7. The fovea explored the scene and is moved to the faces and hands of
the people (blobs of skin color) on the scene. It can be noted that, when the
fovea is over a face, the rest of blobs of skin color are clearly delimited in the
segmentation image.
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Finally, there is a major disadvantage on the method, associated to the
quadtree effect on the segmentation results. In a first view, this can be inter-
preted as an inconvenience, but it must be noted that we are dealing with multi-
resolution images. The association of a 2n × 2n area to a rexel allows us to
visualize our non-uniform images as planar images. But these rexels could come
from a multi-resolution sensor, being not associated to a square-shaped region
(although our approach will maintain the 2 × 2 virtual reduction windows for
processing).

5 Conclusions and Future Work

The recent work on so-called object-based visual attention provides interesting
new cross-talk between two traditionally separate research fields, one concerning
visual segmentation and grouping processes, and the other concerning selective
attention. Within this interesting ways crossing, this paper proposes to translate
the interaction between both processes to a multi-resolution framework. With
respect to the segmentation results, fixating the fovea over the most relevant
region on the scene, our approach automatically segments the rest of the image
with less acuity. With respect to the visual attention results, all image informa-
tion (from the fovea and the peripheral rings) influences on the evaluation of the
saliency values, and next fixations can be located on other parts of the scene.
Combining hierarchical segmentation and saliency estimation, our approach is
able to quickly determine what is the next region of interest on the scene, as this
search is performed in the high levels of the hierarchy.

Current work focuses on testing the framework in real robots. For this end,
there are several issues to solve. Firstly, we must consider that the proposed app-
roach does not deal with different cameras to obtain the peripheral and foveal
images, but obtains all the scene information from a single sensor. These multi-
resolution images can be obtained from foveating cameras1. The system should
also add a second sensor for providing disparity (depth) information. Further-
more, as it was pointed out by Mishra et al. (2012), future work should be focused
on incorporating models of the objects in this framework. These models could
be used to define a top-down component for attention and segmentation. Thus,
the perceptual grouping of the segmentation process (Sect. 3.2) could include not
only low-level cues, but also mid-level relationships (e.g. a human face includes
eyes and mouth) to correctly define the contours of an object of interest on the
image [13]. Considering these objects as a whole, the attention system could be
tuned to search for specific kinds of objects on the scene. In order to correctly
use these models, the irregular decimation process should preserve the topology
of the perceived scene. Dual graphs or combinatorial maps could be employed
for this purpose.
1 http://www.novasensors.com/vsafc.htm
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Abstract. An important activity within the Human Brain Project (HBP) is to
analyse and optimize the two main neuron simulation codes to improve their
scalability and adapt them to efficiently work under an interactive supercom-
puting usage pattern. One application was already MPI + OpenMP while the
other was pure MPI. We describe the analyses performed with the BSC tools
and the initial efforts to hybridize the codes for better matching multicore
architectures and to introduce the malleability that will be needed to operate
under dynamic resource allocation environments of the future.

1 Introduction

When aiming at very large scale executions and operating in a very dynamic envi-
ronment, malleability is an important property that applications should expose, to let
schedulers and runtime systems to adapt the amount of resources allocated to a job or
process as they run in order to react to changes in the environment. Examples of such
variability in the amount of resources available may come from the application
structure itself (i.e. migrating load imbalance) or from the system such as noise, het-
erogeneity in the devices, or activation/deactivation of mechanisms such as turbo-boost
or node failures. A very important source of variability in future systems will derive
from changes in the usage practices. We can envisage session based executions where a
user launches a long running simulation on the available resources but periodically
execute analytics jobs requiring a few processors/nodes to digest the intermediate
results and based on them let the simulation continue, steer its future computation or
launch further simulations or analyses. If no additional resources are available we
would like to share the simulation resources with the analytics job such that both can
proceed execution, getting interactive analytics response times while not significantly
perturbing the simulation execution speed. We can also envisage that if one session
finishes other session might like to use the available resources to accelerate the sim-
ulation or viceversa, that if an urgent session needs to be started, some of the resources
of this one be shifted to the new one. All of these usage patterns require the applications
to be able to dynamically adapt their parallelism structure dynamically, a property
known as malleability.

Systems today are managed in pretty static ways, where a fixed number of cores are
allocated to an application for its whole execution. The advantage is that the application
programmer can partition the work among cores trying to match his conceptual model
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of application computational complexity to his conceptual model of core and network
performance. This is statically done when the application is started if not earlier as for
example in many domain decomposition applications. The decisions taken often
assume a perfectly homogeneous machine and knowledge of the computational
structure. The disadvantage is that discordances between the conceptual models the
programmer had and the actual application or system behaviour will result in ineffi-
ciency in the execution.

Tools that provide precise insight on the actual behaviour of applications and
systems are thus becoming and ever growing need. Tools should allow developers to
validate how their conceptual models hold true and adapt them based on the detailed
observation of actual behaviour. Equally important for the efficient operation under the
described dynamic environments is the ability of the runtime to adapt the paralleliza-
tion structure of the application to the available resources. In order to enable such
flexibility in mapping the application structure to the available resources a key issue is
how the programmer describes the computations to be performed. Tasks based pro-
gramming models provide a clean interface to describe the algorithmic structure and its
potential concurrency in a portable way, decoupling programs from resources and
increasing programmer productivity by letting their focus on the algorithms while the
runtime handles architecture specificities and environment variability. It is actually a
tight integration between tools, programming models and runtimes what is required to
properly address the challenges of future interactive supercomputing systems.

The Human Brain Project (HBP) aims at integrating the community knowledge
about the brain into computer models and simulations that could contribute to drasti-
cally increase our understanding of how it works and to improve our diagnosis and
treating capabilities of its diseases. A key component of the project are the simulation
engines to understand the dynamics of brain tissue consisting of millions of neurons
and the impact of model parameters and characteristics in their electrical activity and its
propagation. On one side, these applications pose huge computational requirements, on
the other, the HBP envisaged usage modes match the described interactive super-
computing vision, where one or multiple coupled simulations, analytics applications
and visualization will dynamically share the system resources.

The two main simulation codes in the HBP project are NEST and NEURON. NEST
has been developed and used in different research projects at Juelich Supercomputing
Center (JSC). NEURON was initially developed at Yale University and was tuned for
highly parallel execution on the Blue Gene within the Blue Brain Project at EPFL
where it is routinely used in production.

BSC is carrying out a long term effort to develop system software technologies
considered as enables in the above vision. Trace based performance analysis tools such
as Paraver and Dimemas, the OmpSs programming model, the NANOS++ runtime and
the DLB dynamic load balancing library are components in such direction. The paper
describes activity and initial results in applying those technologies within the HBO to
the neuron simulation code. In the next sections we briefly describe the applications
and BSC infrastructure. We then present performance analyses for the two applications
and initial hybrid parallelization with MPI + OmpSs.
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2 The Applications

NEST (NEural Simulation Tool) [1] is a simulator for spiking neural network models
that focuses on the dynamics, size and structure of brain-scale neuronal network
models rather than on the exact morphology of individual neurons. The neural system
is defined at the level of neuron and synapses, where it considers an abstract assembly
of nodes (neurons) which can have multiple connections with different properties
(synapses). The interaction between nodes, or neuronal activity, is represented by
spikes which are emitted by the nodes and propagated along the connections. Thus the
connectivity can be described as a directed graph.

The application does not implement a specific network model but provides the user
with a range of neuron and synapse models and efficient routines to connect them to
complex networks. This way, the user can describe a network model and run the
corresponding network simulation.

The simulation kernel is written in C++, using object oriented (OO) features and
generic programming. Two parallel programming models can be used, MPI and
OpenMP, which can be used together for a hybrid model parallel approach.

NEURON [2] is an open source simulation environment for empirically-based
simulations of neurons and networks of neurons. It is particularly well-suited to
problems that are closely linked to experimental data, especially those that involve cells
with complex anatomical and biophysical properties. NEURON’s computational
engine employs special algorithms that achieve high efficiency by exploiting the
structure of the equations that describe neuronal properties.

Beyond the analysis of the original NEURON code, we have been using the Bluron
simulator, a modified version of NEURON developed by EPFL. The available version
uses MPI without any support for multithreading.

3 BSC Infrastructure

3.1 BSC Tools

BSC Performance Tools team aims to provide a set of performance analysis tools for
the user to solve any performance problem, or to simplify and facilitate the process of
extracting information from the performance data. Some of the tools used in the
analysis of NEST and Bluron are described here.

Paraver [3] is a very flexible performance tool developed at BSC that gives the user
a global perception of the application behaviour by visual inspection to afterwards
focus on the detailed quantitative analysis of the problems. The timeline display rep-
resents the behaviour of the application along time and processes, in a way that easily
conveys to the user a general understanding of the application behaviour and simple
identification of phases and patterns.

The ClusteringSuite [4], a set of programs based on cluster analysis that use data
mining techniques for the classification of data, is applied to detect different trends in
the application computation regions with minimum user intervention.
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Finally the FoldingSuite [5] combines both instrumentation and sampling for trace-
based performance analysis tools. The folding mechanism takes advantage of long
execution runs and low frequency sampling to finely detail the evolution of the user
code. These results are extremely useful to understand the behaviour of a region of
code at a very low level.

3.2 OmpSs and DLB

The OmpSs Programming Model [6] designed by the Programming Models department
at BSC is the effort to integrate different parallel features into a single programming
model. In particular, the objective is to extend OpenMP with new directives to support
heterogeneity by supporting other accelerator based APIs like CUDA or OpenCL, and
asynchronous parallelism by the use data-dependencies between the different tasks of
the program. The OmpSs environment is built on top of the Mercurium compiler and
Nanos++ runtime system.

DLB (Dynamic Load Balancing) [7] is a dynamic library developed at BSC
designed to speed up hybrid parallel applications by improving the load balance inside
each computational node. It needs a malleable second level of parallelism (OmpSs in
this case) so it can dynamically adapt the number of resources of this level at any time
in which the unbalance is detected in the first level of parallelism (MPI).

4 Analysis of Applications

For each of the codes we performed different analyses running on MinoTauro, a cluster
with 128 Bull B505 blades, each one of them composed by 2 Intel E5649 (6-Core)
processor at 2.53 GHz, and 24 GB of main memory. In this section we describe the
main results for each of the codes.

4.1 NEST

The first analyses aim at just reporting the execution times for different configurations
(regarding computational resources, same problem size) to observe the overall appli-
cation scalability and the performance of the hybrid parallel approach.

The public distribution of NEST includes some example scripts for the SLI
interpreter describing a network of excitatory and inhibitory neurons and their con-
nections for both, which will be randomly created. In particular we have used the
Brunel Network model with a fixed problem size of 37500 neurons and 10 s of
simulation time. The results have been obtained running the NEST simulator on Mi-
noTauro using from 6 (half-node) to 120 MPI processes (10 nodes). For each core
count fully populated nodes are used except for the initial 6 processes run. Figure 1
shows both pure MPI and Hybrid Scalability. In the first chart we can observe that with
this given input the MPI simulator scales very well in all the scenarios. On the contrary,
results obtained running the Hybrid versions show that none of distribution can
increase the performance of the pure MPI version.

146 V. Lopez et al.



To obtain a better understanding about the poor performance in hybrid parallel
versions we analysed both simulations using Paraver. Figure 2 shows two screenshots
of Paraver for two different simulations. Both traces inform about the IPC for a 12
ranks pure MPI version (a) and a hybrid 2 process per 6 thread version (b), so both
executions are using the same number of resources. The information is represented in
this case using a gradient which goes from light green, meaning low value, to dark
blue, meaning the highest values. We can see four iterations of the pure MPI run while
in the same time scale the hybrid version performs a few less than four iterations. The
pure MPI version is averaging 0.9 Instructions per Cycle versus the 0.76 from the
hybrid version.

We used the Clustering Suite to identify the application structure from the com-
putation bursts of Paraver traces. The scatter plot at the top of Fig. 3 shows the number
of instructions vs. IPC for each computation burst between MPI calls. The bottom

Fig. 1. MPI and hybrid scalability in NEST

Fig. 2. IPC view comparison between a the pure MPI version (above) versus the hybrid version
(below) (Color figure online)
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timeline shows the actual time distribution of those clusters. The green cluster shows
significant variability between instances in terms of both instructions and IPC, but still
the dense structure of the cluster indicates that all those point correspond to the same
computational structure. The analysis of the trace shows that although instances of the
green cluster executing in parallel are actually very similar, there is variability along
time, with the instances at some points in time have more instructions than those at
other point in time.

The clustering analysis can be used as input to the folding process and obtain the
analysis shown in Fig. 4, representing a synthetic average instance of the green cluster
which shows a not very high overall IPC. Red points in Fig. 4 show the cumulative
number of instructions from the beginning of the cluster for different measurements
obtained by sampling. The green curve is a fit of the sampled points and its derivative
in blue corresponds to the instantaneous Floating Point Instructions rate. We observe
that it is actually not homogeneous during the cluster time lapse. We can clearly
identify 3 different regions, and thanks to the instrumentation of the code and Paraver,
we can locate them in the source code. Starting from the middle green highlighted
section, where the Floating Point Instructions have the most significance, this behav-
iour belongs to the update function. This function is called every time step in the main
loop and computes the spikes arriving from other neurons to the local neurons of the
thread or process. After this one, we have the gather_events function, which happens
to be represented by the rightmost yellow highlighted section corresponding to the

Fig. 3. Clustering scatterplot and time distribution (Color figure online)
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packing of the data to be sent by the MPI calls that follow the cluster execution. This
function is always ran by exclusively one thread per process and is the responsible to
do the MPI communication to propagate the spikes of the local nodes and receive the
foreign ones each iteration. Lastly, we have the deliver_events function, which is
behaviour is highlighted red in the leftmost region of the plot. This function is called at
the beginning of each iteration and is the responsible to deliver the spike events that
were sent in the previous time step, either from MPI calls or from memory if the
simulation is multi-threaded. As we can see, the FP rate in the gather and deliver phases
is very low as they essentially correspond to data movement activities. The numerical
computation of the neurons activity only constitutes around one third of the total
iteration cost.

4.2 BLURON

The basic approach to parallelize a simulation with a large number of neurons is to
assign a subset of them to then to each process. Simulating the propagation of
potentials within a neuron is done iterating with a given time step. Every few such
timesteps, a global communication takes place to propagate spikes to other neurons.
Different types of neurons have different computational complexity associated and if
the number of neurons assigned to each process is not large (as will occur if running on
very large platforms), significant imbalance can result. This is shown in Fig. 5 for a
case where 100 neurons are run on 128 cores. The view on top shows computation in
black and MPI calls in red. The bottom view is the complementary one displaying in a
gradient form light green to dark blue the duration of the computation phases. The last
28 processors have no neuron assigned to them. The inefficiency caused by the
imbalance is very high.

Fig. 4. Hardware counters detailed view (Color figure online)
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To address this imbalance the code can be configured to split some of the neurons
on several processors based on an estimate of the computational cost of computing
each neuron that is made at program initialization. This approach can improve load
balance but now requires explicit communication every timestep between processors
cooperating on one neuron. This behaviour is shown in Fig. 6 where 100 neurons are
run on 64 processes. Inner step communications are seen in the top view, while the

Fig. 5. Three iterations of the NEURON simulation for 100 neurons on 128 processes (Color
figure online)

Fig. 6. Three iterations of the NEURON simulation for 100 neurons on 64 processes (Color
figure online)
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lower timeline clearly identifies in dark blue the processors that get full neurons and
light green the individual substeps for those that get parts of a neuron. The black region
in the lower timeline shows that still the load balance achieved is not ideal.

When aiming at the extreme strong scale execution setups which are needed in
some experiments, one neuron will be split into several processes. Figure 7 shows the
behaviour when one single neuron is split into 8, 16 or 32 processes. We clearly see
that there is a long (and growing with core count) time in MPI waits (brown) resulting
in very poor performance. The figures also show a strong serialization behaviour,
where all processes send data to the first one who performs a small computation and
redistributes the generated value. The poor efficiency of this approach suggests that a
shared memory parallelization to reduce overheads.

For our analysis we considered a use case based in a neuron distribution similar to
the currently used in production, with about 10–15 neurons simulated per process. The
scalability that we obtained with this configuration is shown in Fig. 8. Only the MPI
scalability is considered, since the application has not been yet ported to use a shared
memory based programming model.

Using Paraver, we can get detailed measurements of hardware counters in a very
specific section. Figure 9 shows the Instructions Per Cycle ratio for some simulation
timesteps. In particular the values go from 0.43 (light green) to 1.06 (dark blue).

In order to further analyse these low IPC regions, we used the Clustering suite to first
clusterize and categorise the regions of code with similar behaviour and then the Folding
suite to finely observe the hardware counters information for each cluster, and particu-
larly the cluster that presented the lowest IPC. What we have found is shown in Fig. 10,
where we can see the IPC and L3 miss ratios over time (blue line), and their cumulative
value (green line). It is observed a drop in the IPC value induced by the increment of the
cache misses. That is not strange at all and it suggests data intensive calculations.

Fig. 7. Strong scaling one neuron onto 8, 16 or 32 processors (Color figure online)
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With all that, we decided to focus on the zones with high IPC, using OmpSs tasks
to parallelize the work done by each of the MPI processes between the synchronization
points.

Fig. 8. MPI scalability in BLURON

Fig. 9. IPC of BLURON running on 4 MPI processes (Color figure online)

Fig. 10. Instantaneous MIPS and L3 miss rate for the more relevant cluster (Color figure online)
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As we said, this will imply that we will have some regions of the code that cannot
be scheduled to be executed by multiple threads in parallel. To resolve this issue we
would need to modify some algorithms of the application that are intended to work
only with MPI.

5 Porting the Application to OmpSs

In this section we describe how the applications can be hybridized using OmpSs.

5.1 NEST

A very simple scheme of parallelization using OmpSs is shown in the Fig. 11. The left
box has the original OpenMP code, with a big parallel section including the main
simulator loop, being each parallel function called by all the threads, and a single
directive protecting the MPI function. The right box shows a possible implementation
of the same algorithm using OmpSs. The main loop is not affected by any directive and
it is every function to be parallelized that has the task directive, in our case using
thread_nodes as a dependency between both tasks. Then, we do not need to protect the
MPI function with a single directive, since it is in the user code, only one thread will
execute the function.

Figure 12 shows a zoomed trace of the OmpSs parallelization. The yellow events
correspond to the deliver_events function, which, as it has been commented, is
responsible to propagate the spikes from the previous MPI communication and suffers

Fig. 11. OpenMP vs OmpSs parallelization

Fig. 12. Task view of some iterations of a hybrid version (6 MPI × 2 OmpSs threads) (Color
figure online)
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from poor performance. Being data movement dominated and thus memory bandwidth
bound, this phase increases in duration as the number of threads increment, so it is one
of the reasons that the hybrid versions do not perform as well as the pure MPI version.
Possible parallelization strategies should look at ways to overlap the data movement
phases in some cores with more computational intensive phases in others. The pink
events correspond to the update function, which as it has been mentioned have a good
overall performance and it scales well. Dark zones are non-taskified code, being the
MPI communication in this case.

5.2 BLURON

We have parallelized the computation within an MPI process using OmpSs and tried to
improve it using the Dynamic Load Balancing library, designed to speed up hybrid
applications with nested parallelism by improving the load balance inside each com-
putational node. It is important to note that, until now, we have been working with
testing data and small scale executions. Therefore, results may vary in the future when
we test with real data.

The cell membrane of the axon and soma of a neuron contain ion channels that
allow it to propagate an electrical signal. These signals are generated and propagated by
charge-carrying ions of different types, such as sodium (Na) or calcium (Ca2). To
simulate the propagation of the spikes through the network of neurons, the application
has to compute all those different mechanisms for each neuron. Something important to
note is that the computation of the mechanisms for different neurons can be
parallelized.

The region of the code that is more CPU intensive and has a higher IPC, as seen in
Fig. 9, is composed by a for loop that just iterate over all those mechanisms in the way
that Fig. 13 outlines. That is, each MPI process iterate over the different types of
mechanisms defined in the simulation to perform the appropriate computations on the
subset of neurons that have been assigned to this process. As a result, the mechanisms
can be computed in parallel for different neurons. In order to parallelize these com-
putations using threads in addition to the MPI processes, we had to decide the tasks
granularity. We tried different approaches but the task schemes that performed better is
the code described in the right box of Fig. 13. In this case we create a task for each type
of mechanism which, as explained above, can be calculated in parallel. Another
optimization that we introduced was the distinction of the mechanisms, considering
only the most costly ones as tasks and serializing the ones that just were going to
introduce overhead in the simulation.

Having done some executions with this configuration and tracing them, we
obtained the result shown in Fig. 14. What can be seen in this Paraver trace, running a
simulation with 4 MPI processes and 3 threads each, is the overlap of the execution of
the tasks for one iteration of the main loop. More specifically, we can see for each MPI
process the creation of the tasks by one thread (red) and the execution in parallel of the
mechanisms in the form of tasks (pink).

We have been able to successfully parallelize with OmpSs this part of the code that
computes the mechanisms associated to the neurons. However, as we have explained in
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the analysis section, there is another part of the code that may require a deeper analysis
of the algorithms to figure out how to describe it efficiently with tasks. To mitigate the
lack of parallelism for those cases we decided to use the DLB library.

At this point, the behaviour of the application resembles to what we can see in
Fig. 14, which shows a trace including a few steps of a simulation. It is clear that the
sequential segments will negatively affect the overall performance of the application.
We thought that DLB, a library that can help to improve the load balance between MPI
processes, could be a good option in this case. The strategy we followed was to shift a
bit the computation of this two differenced segments of the code -the single and the
parallel segments- for a few of the processes. That implies that at the same time we
have some processes executing a sequential segment while others are in the parallel
segment of the code. That allows DLB to take the unused cores of the MPI processes
running sequential code and dedicate them to accelerate the computations on the other
processes. This behaviour is shown in Fig. 15, running a simulation with 4 MPI
processes and 3 threads each. In the figure we can see that while one process is on the
sequential part, dark red segments in the picture, its cores are shared among other
processes running the parallel segments, pink in the picture. That explains why some of
the processes occasionally have more than three threads during the execution.

We are still actively working on this solution, looking for best configurations to see
the performance we can achieve. However, we think that could be a good solution to
consider alongside other proposed solutions, like the modification of the algorithms to
allow a better parallelization.

Fig. 14. OmpSs tasks for BLURON (Color figure online)

Fig. 13. OmpSs parallelization

Performance Analysis and Parallelization Strategies in Neuron Simulation Codes 155



6 Conclusions

In this paper we have presented the analysis of the NEST and NEURON simulations
codes constituting the main engines in the modelling capabilities within the HBP
project. We have shown how the BSC tools can be useful to gain detailed insight in the
behaviour of the applications both at the MPI level as well as at the sequential com-
putation performance between MPI calls. This insight is extremely useful to identify
how the OmpSs shared memory programming model can be used to address the
specific performance issues. The experience is also proving very useful to co-design the
tools and runtime implementations, ensuring that the OmpSs programming model an
NANOS++ and DLB runtime libraries properly address the needs of a scientifically
very relevant area such as neuroscience. Further experimentation especially at scale
will be done to complete the initial results presented in this paper.
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Abstract. Brain-inspired computing structures, technologies, and meth-
ods offer innovative approaches to the future of computing. From the low-
est level of neuron devices to the highest abstraction of consciousness, the
brain drives new ideas (literally and conceptually) in computer design and
operation. This paper interrelates three levels of brain inspired abstrac-
tions including intelligence, abstract graph data structures, and neuron
operation and interconnection. An abstract machine architecture is pre-
sented from which a lower bound on resource requirements for intelligence
is to be derived. At the lowest level a new use of cellular automata archi-
tecture is discussed that mimics the fine-grain locality of action and high
degree interconnectivity of neurons and their structures. Graph structures
serve as a brain inspired intermediary abstraction between these two as
the neocortex is organized as a directed graph. This paper shows how all
of the pieces tie together and opens a new way of considering future com-
puting structures through brain inspired concepts.

1 Introduction

Even as future directions of supercomputing are challenged by issues of scal-
ability, power, reliability, and usability, the human brain demonstrates radical
alternatives in technologies, structure, and operation that inspire revolutionary
approaches to computing at unprecedented scales compared to contemporary
computers. The brain comprises almost a hundred billion neurons; each with
thousands of interconnects in less than 1500 cubic centimeters with a power bud-
get of 20 Watts. Each neuron performs a complex algorithm a thousand times
a second. Today, experts in the US, Europe, and Asia as well as other parts
of the world are considering what can be derived from insights related to brain
structure and operation in advancing technical approaches to goals in future
Exascale computing for science, engineering, industry, commerce, the arts, and
security. This paper examines three brain-inspired features of future generation
computing: one abstract related to knowledge understanding and one physical to
achieve effective degree and diversity of interconnectivity through semiconductor
technology, both logically integrated by graph structures.

The phrase “brain-inspired” is as vague as it is provocative; both of real
value. It suggests many potential opportunities and stretches the realm of pos-
sibilities well beyond conventional practices. As a result, it has motivated work
c© Springer International Publishing Switzerland 2014
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in a number of directions over many decades. Turing, after defining computabil-
ity, prescribed a test for computer intelligence [1]. The vast networks of neurons
have inspired the class of algorithms known as neural networks [2] that, among
other areas, has demonstrated recent advances in natural language processing.
Neural nets do not duplicate the brain but rather exhibit some properties rem-
iniscent of and perhaps motivated by brain structures. Here, three properties
of the human brain that inspire consideration of innovations in computing are
identified: Consciousness, Intelligence, and Cellular Automata [3].

“Consciousness” is intuitive to everyone but lacks clarity of definition and is
as much a part of philosophy as science. Therefore, it is deferred in this discus-
sion, although tantalizing and important in the long term. Here, the latter two
are examined in depth and tied to practical issues of future computing systems.
“Intelligence” is addressed as a class of observable computing behavior. The
project, Cognitive Real-time Interactive System (CRIS), is described to deter-
mine minimum bounds on resource requirements for intelligent systems. The
generalized cellular automata hardware structure, inspired by neuron structures,
is an innovative yet realistic concept to achieve advantages of low-level brain
elements with future semiconductor device technologies. The Continuum Com-
puter Architecture (CCA) project explores fine-grain hardware structures that
take advantage of near nano-scale semiconductor technologies through brain-
inspired physical characteristics including localized functionality and rapid result
dissemination to wide array of distributed component destinations. These two
brain-inspired computing forms are mutually supportive. Dynamic graph data
structures are an intervening abstraction relating the two. Graphs may be con-
sidered brain-inspired as the complex topologies of the neurons of the brain are
graphs. But many knowledge structures such as semantic nets and search space
algorithms are manifest as graphs as well.

Intelligence is an attribute inspired by the human brain but neither defined
nor limited by it. Further, not all mental attributes associated with the human
brain need be ascribed to intelligence. A working definition of “intelligence” is
required to guide the development and govern the operation of an intelligent
system. Even if such a definition is not fully compliant with all possible inter-
pretations, it must be viable, repeatable, testable, and realizable. Intelligence is
the ability of an entity to understand its context including itself and react to it
in real-time in response to intrinsic goals and derived objectives. This definition
defers determination of the explicit class of entity or the nature of its context
as well as the specification of its governing goals and objectives. It supports
many possible manifestations of intelligent agents and their operational domain.
It also implies a range of the property of intelligence, begging the question of
a quantifiable metric by which to measure intelligence. Equally challenging is
the pivotal verb: “to understand”. The definition does establish the principal
attributes of an intelligent system even if it alone fails to fully fix the meaning
of key terms. Machine Intelligence is an algorithm representable in a mechanical
system. Intelligence is an emergent behavior of a real-time system comprising the
synergy of the distinct functional capabilities of learning, knowledge, planning,
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and understanding in a real-time context. The purpose of CRIS is to explore the
resource requirements in time and space (memory capacity, execution elements,
communication bandwidth, power) in order to realize the properties deemed
essential to intelligence. The goal is to provide a quantifiable lower bound of
such resources based on an abstract machine architecture comprising a synthesis
of such functional elements. These are informed and inspired by understanding
of the brain but not intended to duplicate brain functionality in all ways.

Conventional architectures, both individual processor cores and memory
hierarchies, are becoming increasingly inadequate in terms of efficiency, scal-
ability, power, generality, portability, and usability. But the brain inspires alter-
native structures; ones that exploit lightweight physical hardware structures
while adapting to asynchronous operation. High connectivity over widely dis-
tributed destinations within the brain is a property rarely shared in conventional
structures. The second extreme attribute is that of hyper-parallelism where
each primitive element is capable of some independent and complex operation.
Conventional systems do neither; the brain is exceptional at this at the level
of neuron structures. Future nano-scale semiconductor technologies will favor
tighter coupling for closer interaction while die-scale structures are loosely cou-
pled and display asynchronous interaction. Cellular automata embodies many of
the properties of neuron structures. However, conventional cellular automata are
special purpose with interactions limited to nearest neighbor. CCA suggests an
alternative version of cellular automata in which localized actions have global
destinations through packet switching abstractions rather than line switched.
Like neurons, many messages can be sent to different destinations. The unifying
principle of graphs as the intermediate form representing both the abstraction
of knowledge, planning, and searching for CRIS naturally lends itself to a new
generation of implementation by CCA. This paper examines these levels of brain-
inspired abstractions and their interrelationships for future computing systems.

2 Overview of Machine Intelligent System

Over the last six decades attempts to deliver a cognitive system that is capable
of learning have been made. In spite of advances in natural language process-
ing, planning, pattern matching, robotics, and other related disciplines, a truly
cognitive system has not been delivered. With rapid technological advancements
and digital information increase, new algorithms, utilizing both hardware and
the available information, are being developed. Although seemingly capable of
delivering certain elements of brain-inspired behavior, these algorithms lack in
the critical component of being able to learn new concepts (self-adjust the algo-
rithmic behavior of self) except in special cases.

2.1 Abstract Architecture for Machine Intelligence

An architecture that represents a Machine Intelligent (MI) system is comprised
of a number of interrelated autonomous components, each of which serves key
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Fig. 1. Abstract architecture of a MI system.

functions in the entire system operation. These components can be divided into
three groups at the top level, including the system’s knowledge state, symbolic
methods and front-end, see Fig. 1.

Knowledge state represents various types of knowledge that the system is con-
tinuously maintaining throughout its execution, while symbolic methods include
a number of means for processing the accumulated knowledge as well as any
other symbolic-based data. Finally, the front-end provides means for the system
to exchange information with the outside world.

Such a system represents a closed execution loop by obtaining data stream
at its front-end, which is then processed to obtain decisions about updating the
knowledge state. This updated state is later used to provide an output stream
to an external entity, which is referred to as the “World” in Fig. 1.

Knowledge is an essential part of any Machine Intelligence system that
requires a well-defined representational hierarchy. Alternative knowledge rep-
resentation techniques exist, including knowledge databases and ontology repre-
sentation [4]. The proposed architecture differentiates knowledge into a number
of classes beginning from relatively static foundational knowledge to most rapidly
changing imperatives derived from input stream commands or otherwise implied
by local context. Knowledge is further broken into universal knowledge, that any
system might possess, such as fundamental facts about geography, history or
physics, and unique knowledge that any system belonging to a particular envi-
ronment needs to maintain, such as the machine’s location, its internal system
status, or what other agents it is currently interacting with in its surroundings.

One of the most important properties of the proposed MI system is that it
has to be self-aware. A topic of self-awareness that goes back a few centuries
has been a subject of discussion in the fields of psychology and philosophy.
A definition of “self-aware” is proposed. Such systems need to identify themselves
in the surrounding environment and recognizing what kind of entities (including
other MI systems) it is presently interacting with. It is important for the sys-
tem to model such aspects as identity (who am I?), physical location in space
(where am I?), location in time (when am I?), and operation status (how am
I?). Additionally, the system has to be aware of any entities in its neighborhood
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that can affect it, with whom/what it is presently maintaining a dialog, whether
it is challenged by anything, and what are its current responsibilities alongside
with how well it is advancing in achieving its goals. The system’s objective func-
tion hierarchy models the latter, which is represented by a stack of goals to be
satisfied. These goals are sorted by the complexity, with more coarse-grained
declarative objectives located at the top of the hierarchy, and with fine-grained
imperatives at the bottom.

The objective function module interacts closely with the active context stack
that contains transient information about anything the system is interacting
with, including knowledge, external agents, etc. Every new situation, event,
objective or interaction requires a context, which is added to the active con-
text hierarchy. Items in this hierarchy are linked to the corresponding objective
function items. Due to the unstructured nature of processed information, it is
possible that some of this relationships are “one:many”, “many:one, or even
“one:none” and “none:one”. The active context stack is expected to become
extremely dynamic at times when there is a need to process a large amount of
fine-grained contextual information in the real-time regime. The stack, therefore,
is growing and shrinking rapidly depending on the active contexts.

A mechanism that drives the knowledge query and update is referred to as
Master Control Program (MCP). This mechanism is analogous to central nervous
system for autonomic behavior. It ensures that a system is constantly going
through an outer loop, executing required actions in bounded time. During the
execution of a loop cycle, the MCP needs to perform a number of actions, such
as (i) query the system’s status by interacting with the self-awareness module;
(ii) satisfy the objectives that are due this execution cycle; (iii) query all the
I/O sensors to obtain updated information about the external environment; (iv)
trigger the knowledge state update mechanisms, and (v) update current objective
function and active context stack hierarchies. When satisfying the objectives,
MCP needs to obey the axioms that are imposed by the developers and are
hard-coded into the system’s non-volatile read-only memory. This approach is
necessary in order to guarantee that the system will not become dangerous to
human beings under any circumstances. These rules can not be altered by the
system itself and would require external interference (if need be). During the
cycle of the execution loop, a number of symbolic methods are involved, which
are described below.

The system’s symbolic methods include learning, update mechanisms, plan-
ning, inference and conflict resolution. All of these methods are independent
actors, that are operating on required tasks, taking current context information
into consideration. Learning is one of the most essential methods allowing the
system to modify its future actions based on the empirical information about
its interaction with the environment. The update mechanisms ensure that the
new information is processed and recorded in the machine’s knowledge state
base. Planning module supports for a plan derivation for various tasks. In case
a machine does not know what type of metrics to use, or has to achieve a goal
while generating a plan, it is attempting to utilize learning modules in order to
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express the goals through currently existing knowledge or obtain new knowledge
about the problem. Finally, inference mechanisms allow to draw new conclusions
about the facts available in the knowledge state, while conflict resolution ensures
that all the constraints of present goals are satisfied.

The nature of brain-inspired computation and its processing similarities of
those in human brain suggest the use of data structure that would resemble the
brain’s behavior. One such structure, that naturally represents neurons and their
synapses, is graphs. Graph structures can be used for both knowledge storage,
with facts of various types forming a tree-like conceptual hierarchy, and context
and objective stack information. The information processed by the system varies
greatly in terms of its life span, with some knowledge facts that are virtually
never changed (such as axioms, or very slowly changing facts about the world)
on one hand and pieces of knowledge that are extremely dynamic, such as active
context stack frames, or objective functions, on the other. Graph data structures,
that are capable of efficient representation and processing for both types of these
knowledge types will be utilized. Algorithms that support extremely dynamic
graph structures need to be considered.

2.2 Quantifying Metrics for Machine Intelligence

Taking the human brain as a reference Machine Intelligent system, a question
about a rough estimate of required resources for an engineered MI system arises.
How large of a system would be required in order to support Machine Intelli-
gence? In fact, how should one measure such a system and what kind of units
should be used? For that purpose, a set of metrics need to be considered. The
introduced metrics need to be able to accurately measure some of the compo-
nents of interest for a MI system, such as operation primitives. These primitives
include I/O, knowledge state update, and query. Another set of important com-
ponents include concurrency, storage, as well as energy and power.

A few examples of various metrics that will be used for the experiments
include computational throughput, memory capacity, storage capacity, commu-
nication latencies, bi-section bandwidth interconnect, and energy consumption
rate. The proposed metrics will be utilized to measure the performance of a
simulation for the MI system.

3 Continuum Computer Architecture

The Continuum Computer Architecture is a 3-D computing medium intended
to efficiently and scalably support the cognitive algorithms and data structures
utilized by a machine intelligence system. This architecture is inspired by promi-
nent brain properties that are immediately applicable to graph processing. In
the sections below challenges of designing the knowledge processing hardware are
described, the brain features that inspired particular facets of CCA are pointed
out, trade-offs that define the design constraint space are analyzed, and the
resultant system architecture is described.
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3.1 Challenges of Knowledge Processing

Creation of an efficient graph processing component is associated with signif-
icant technological challenges. Current digital processors are designed for dia-
metrically different purposes; they achieve high computational throughputs on
numeric workloads in which data references exhibit high levels of locality. How-
ever, their performance drops off significantly when data access becomes unpre-
dictable and sparse – such as graph operations. Graph processor implementation
for machine intelligence that simultaneously satisfies the requirements of scale,
response time, and energy using electronic processing technology available today
is unfeasible. Superficial analysis of brain structure reveals that the count of
synaptic connections is on the order of 104 for each neuron. This is more than
an order of magnitude greater than the highest number of ports available in a
low-level switch component of a state-of-the-art high-radix network. The neuron
produces action potential (fires) at the rate of few hundred pulses per second. Its
underlying electric activity consists of ionic current summation and integration
on the capacitance of lipid bilayer coupled with the electrical properties of the
axon [5]. With approximately a hundred billion neurons in a human brain, each
with thousands of synaptic connections with complex chemistry, the aggregate
operation rate necessary to effectively emulate brain activity may easily reach
1018 (1 Exa) per second. Since the brain operates on a power budget of roughly
a fifth of that of a modern high-performance CPU dissipated in a volume of just
over 1 l, the challenges of building an artificial knowledge processor capable of
rivaling the human brain are nothing short of staggering.

3.2 Characteristic Features of the CCA

Brain-Inspired Properties. The brain exhibits a high degree of replication;
even though there are various types of neurons, the overall brain structure is
attained through extensive repetition of few similar “building blocks”. CCA takes
advantage of this by defining a minimal computing element, fonton, that connects
with other elements in its immediate vicinity. The fonton is small enough to be
implemented in a few thousand logic gates, reaching a diameter comparable to
that of the average neuron (few tens of micrometers) in a modern CMOS process.

The neuron combines several functions: connectivity, analog signal process-
ing, and even storage (accumulation of ionic charge). The fonton mirrors this
by embedding processing logic, local registers, and a network router along with
physical communication links. This approach avoids the pitfalls of discrete func-
tional units connected by power-hungry buses with discrete memory modules
and separate network hardware. The bandwidth available for each of the fonton
components can be optimized to match the individual processing throughputs;
their interactions may happen within a single clock cycle.

CCA inherits from the brain distributed control and quasi-independent oper-
ation. Due to limited amount of processing a single neuron can perform, every
significant brain function requires formation and activation of ensembles of neu-
rons. One of the side benefits of this is operational redundancy, in which functions
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affected by minor neural damage might be assumed by nearby healthy neurons.
Due to inevitable production defects and component degradation affecting com-
plex systems, this also introduces the necessary fault tolerance for contiguous
operation of the CCA system. Even though some brain structures are devel-
oped for specific functionality (such as cerebellum with fast feed-forward neural
paths optimized for motor control), many of them are largely interchangeable.
CCA mimics it by providing uniform distribution of identical processing elements
throughout the chip, forming a nearly isotropic computing medium throughout
which higher level functions may be distributed arbitrarily.

Finally, the cerebral cortex, considered to be the locus of intelligence, is a
stratified, but primarily 2-D structure. Its thickness is thought to be critically
related to cognitive reasoning abilities. The CCA trivially replicates the 2-D lay-
out with transistors instantiated on the surface of a flat piece of silicon. However,
recently introduced die stacking [6] enables building in the third dimension.

Emergent Behavior. Unlike the brain, a CCA machine cannot redefine its
physical connections over time. However, packet switching network permits log-
ical organization of arbitrary aggregations of fontons, as long as routing is effi-
cient. Packet switching is also a foundation of message-driven computing, in
which parts of a program react to specific events rather than actively waiting or
polling for them. This results in improved energy efficiency, as inactive software
components may stay idle and minimize their resource footprint until a trigger-
ing event occurs. Since the speed of message packets in the medium is finite,
locality and spatial distribution of the individual program components matter.

Even though the physical implementation of CCA hardware is envisioned
as 3-D, this does not impose limits on logical dimensionality. Three dimensions
provide natural simulation medium for many physical phenomena. However,
logical organization of the interconnecting graph may be arbitrary. Moreover,
since this connectivity is defined by routing tables modifiable by software, it can
be shaped during the program execution.

The high degree of replication coupled with co-location of basic functions in
all elementary components provides unprecedented aggregate processing band-
width. Assuming a clock speed of 1 GHz and a conservative 10,000 fontons per
die, the peak memory bandwidth achieves 240 TB/s using 8-byte wide regis-
ter banks supporting two concurrent reads and one write access per cycle. For
computations, a peak of 10 Tera-ops per die is possible.

Trade-Offs. Embedding the graph processor on a CCA platform offers a num-
ber of advantages with respect to in-brain processing. Unfortunately, nearly all
of them are subject to trade-offs that reduce their effectiveness:

Speed: While the firing cycle of a neuron is measured in milliseconds, syn-
chronous logic may be clocked at gigahertz frequencies, possibly higher if
local clock domains are constrained to individual fontons or more exotic
technologies are applied (Josephson junctions [7,8], quantum dots [9]). In
CMOS process power dissipation increases with clock speed, often forcing
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the thermal constraints on practical designs even before technological clock
limits are reached.
Scale: Unlike the brain, the volume of a CCA system is not restricted to that
of the enclosing cranial cavity. However, crossing the die boundary may be
associated with substantial performance sacrifice. Even 3-D stacking alone
may reduce the number of closely interconnected fontons due to manufactur-
ing rules. Increasing the overall processing power by connecting multiple 3-D
stacks is possible, but results in a non-homogeneous structure. As the largest
mass produced dies rarely exceed 500 mm2, manufacturing a homogeneous
CCA system the size of human brain is difficult with available technology.
Connectivity: The ability to define and manipulate network properties in
software is very appealing, but it still has to be mapped onto the 3-D physical
mesh. This may result in increased diameter (counted in the number of inter-
fonton links) of the implementation of a particular function. Fontons that
act as routing intermediaries may have to be added to the resource pool.
Increased diameter directly impacts the average number of communication
hops a message must traverse on a path to destination, increasing latency,
response time, and potentially energy consumed by the computation.
Energy: The power draw of a CCA implementation may be approximated
through the analysis of current GPU designs, since they consist of highly
replicated small processing cores operating at close to 1 GHz. Thus, a 10,000-
fonton die would use approximately 90 W to power 1.5 billion transistors on
a 12 × 12 mm chip manufactured in 28 nm process. This transistor count
already provides for additional structures supporting off-die I/O and ver-
tical interconnect. Stacking 10 dies brings the fonton count to 100,000 per
structure in a volume just over 1 cm3, raising the power envelope to close
to a kilowatt (!). Assuming 50 % loss of volume for power delivery, cooling,
network, and structural enforcement, a brain-sized machine with peak per-
formance of 65 Peta-ops would dissipate close to 0.6 MW, demanding cooling
water flow of about 15 liters per second (10 K coolant temperature raise over
ambient).

3.3 Architecture and Principles of Operation

Fonton. Figure 2 depicts the elementary building block of a CCA system. Its
main components include minimal ALU, associative register file, and network
interface. The processing within a fonton is controlled by a local state machine
that coordinates the flow of requests that originate internally as well as those
arriving from the network. There is no notion of explicit program counter; the
operands necessary to execute a sequence of micro-operations are bundled with
the relevant instructions to form a token, an atomic execution unit. Token exe-
cution modifies internal state of a fonton and potentially results in emission of
tokens targeting the state of remote fontons.

The fonton is equipped with a minimal ALU that supports integer oper-
ations, along with pattern matching and bitwise permutations. Floating-point
and extended integer arithmetic are higher-level functions that are synthesized
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using fonton groups in adjacent locations. Although potentially slower, this pro-
vides unparalleled flexibility of matching the precision, resource footprint, and
energy requirements to specific application.

Since physical memory is distributed across the system, traditional address-
ing schemes don’t apply. Instead, fontons explicitly store associative tags along
with the memory contents. The tags are unique for each entry, but also imple-
ment a form of wildcard addressing. As the location of fonton containing specific
tag is not known a priori, part of the system manages a distributed address
resolution service for non-local memory accesses by storing routing information
in register files of predetermined fontons.

The network interface consists of six bidirectional links (two per dimension),
connecting the neighboring fontons. A token packet, if traffic conditions permit,
is sent over a link in a single cycle. The network interface can perform associative
lookup on register tags to identify whether a token’s target is local (the token
is absorbed) or whether fonton contains related routing information (token’s
movement is modified).

Scaled Structures. Designing systems with large fonton counts requires spe-
cial consideration (Fig. 3). Die stacking is a viable way to improve the resource
count while preserving the homogeneous makeup of the device. While the inter-
die interconnect has a different characteristics from that of the on-chip net-
work, it uses matching technology – electrical signaling (for example, using
Through-Silicon Vias [10]). Noting that the peak aggregate bandwidth of 2 PB/s
is necessary to accommodate the maximum token flux through the stack bound-
ary (256-byte packets assumed), a radically different approach is needed, such
as on-die photonics with fiber optic links. Recent bandwidth record of just
over 1 Pbit/s achieved in a 12-mode fiber [11] confirms the necessity of further
development.

Operation. The remarkable similarity between the heavily cross-linked CCA
hardware and vertex sets connected by edges of a graph helps efficiently map
graph data structures onto execution resources. For small vertices, fontons pro-
vide sufficient storage to encode their local state and neighbor information;
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otherwise, fontons are clustered to store complex node state. Token based oper-
ation is vital in implementation of graph algorithms. For example, searching a
graph for vertices with certain properties would be inefficient if only one token is
emitted per cycle for each link in a high-degree node. Instead, a parallel traversal
may be initiated, in which tokens propagate as a 3-D “wavefront” with sufficient
number of packets instantiated within few cycles after the launch of operation.
This is typical of the brain as well.

4 Conclusions

Brain-inspired computing informs innovations in form and function for future
generations of computing systems. Brains represent among the most complex
systems known. They are exemplars of density, energy efficiency, performance,
interconnectivity, 3-D structures, heterogeneity, hierarchical structures, real-time
operation, intelligence, and self-aware behavior, as well as consciousness. Each
of these conveys possible new concepts that may influence aspects of future com-
puter system design and methods of operation. Brain-inspired computing is not
the duplication of the brain but rather the borrowing of concepts derived from
nature that suggest alternative approaches from those conventionally applied
to computing. This paper has examined three general facets of brain-inspired
computing structure and operation at three corresponding layers of abstraction.
These are the high-level of the emergent behavior referred to as “intelligence”,
the low-level physical element and structure inspired by neurons, and the inter-
mediate abstraction of the dynamic graph data structure, which is how the
neurons of the brain are organized.

The CRIS project is exploring the high level abstraction of intelligence to
provide a lower bound of the total resources required to achieve the functionality
of one possible definition of “intelligence”. The CRIS abstract architecture is
defined to reflect functionality associated with and inspired by the behavior
of the human brain rather than the emerging understanding of the physical
distribution within the brain of distinguishable behavioral properties. While the
CRIS architecture may not fully achieve intelligence, all functional components
understood to contribute to intelligence is incorporated and therefore needs to
be supported in real time. Therefore, analysis of means of implementing the
functions and their respective duty cycles will yield the lower bound resource
(time and space) assessment. The target abstract architecture, to which such
high-level functionality is assumed to be implemented, is a graph-processing
engine, the intermediate level brain-inspired concept.

The CCA project is exploring low-level implementation details of an innov-
ative application of cellular automata to reflect brain-inspired neuronal proper-
ties and architecture. The key attributes to be considered are the localization of
primitive operations within the separate basic components, the high degree con-
nectivity of each component for input and output, event-driven operation, and
graph topologies of structures. Conventional components do not work well in this
class of high-density structures. Classical cellular automata are high density but
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physically of very limited interconnectivity physically and logically constrained
to nearest neighbor. CCA extends the logical connectivity potentially to many
orders of magnitude through packet switching treating the cellular fabric both
as local operational units and global interconnectivity. CCA demonstrates that
abstract graph structures can be implemented with neuronal-like packet switched
components. This can provide a brain-inspired hardware implementation of the
graph abstraction needed for the high-level also brain-inspired abstraction of
intelligence. The implication of this work is that there are many and interre-
lated ways in which our emerging understanding of the brain is yielding new
practical concepts for innovations in high performance computing.
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Abstract. In neuroscientific analysis, visualization researchers have traditionally
concentrated on medical imaging and microscopy data. While the visualization of
experimental neuroscientific data is consequently on its way turning out
increasingly mature tools, solutions for a visual analysis of neuroscientific sim-
ulation data are still in their infancy. For the assessment of large-scale neuronal
network simulations, correlations between the brain's structure, function, and
connectivity at the different temporal as well as spatial scales will have to be
identified. The analysis of such `̀ in silico experiments'' requires immediate access
to a number of heterogeneous data sources, e.g. connectivity information, spiking
behavior of individual neurons, populations of neurons or entire brain regions.
To address these requirements, we introduce a prototype of an interactive tool for
the visual analysis of neuronal network models simulated via NEST. The tool
strictly follows a multi-view approach, combining geometrical as well as abstract
views to the data at multiple scales. Furthermore, we will discuss design param-
eters for adequate high-fidelity analysis workplaces, focusing on high-resolution
or even immersive displays.

Keywords: Scientific visualization � In silico experiments � Multi-view
analysis � Interactive Supercomputing

1 Introduction

Since Cajal’s famous drawings of neuronal cell structures in the early 20th century, the
discipline of scientific visualization has ever been playing a crucial role as a tool in
Neuroscience. For the last two decades, visualization researchers mostly concentrated on
medical imaging and microscopy data. Actually, the event of technologies like computer
tomography or magnet resonance imaging has significantly pushed the field of volume
visualization. A recent example which focuses on rendering massive volume data from
electron microscopy can be found in Hadwiger et al. (2012). When we look at neuro-
science-related papers published in the visualization community, we find that by far the
largest share of publications is dealing with brain imaging data. A specific field that has
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drawn significant attention in this regard is the computation and subsequent visualization
of tractography data based on diffusion tensor magnetic resonance imaging (DT-MRI).
DT-MRI provides a method for the assessment of white matter fiber tracts in the living
human brain. The course of the fibers is estimated by measuring water diffusion in the
brain. It should come at no surprise that DTI is so popular in the visualization community,
since the images coming out of such visualizations are rather aesthetic and fascinating,
and since visualization methods already developed in the field of Computational Fluid
Dynamics, like particle tracing, could be adequately adopted and further advanced (see,
among others (Weinstein et al. 1999; daSilva et al. 2001)). Recently, probabilistic trac-
tography has attracted the attention of neuroscientists as well as visualization researchers
(see Fig. 1). In contrast to the traditional deterministic approach, probabilistic tractog-
raphy explicitly accounts for the uncertainty of the actual fiber tracts.

When we look at the cellular level, scientific visualization has so far mostly con-
centrated on microscopy data that can also be captured conveniently on regular 3D
volumes. The challenge here is to extract anatomical structures, like neurons and
synapses, out of 2D image stacks (see Fig. 2). Examples of excellent work in this field
can be found, e.g., in Roberts et al. (2011), Jeong et al. (2009), Dercksen et al. (2012),
LaTorre et al. (2013).

Fig. 1. Three-dimensional visualization of brain areas (gold, pink, brown) with fiber
probabilistic bundle depicted by means of direct volume rendering (semi-transparent green).
Imaging data provides additional anatomical context (Rick et al. 2011) (Color figure online).

Fig. 2. Segmentation of neuronal structures out of a stack of electro-microscopy images
(Morales et al. 2011)
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While the visualization of experimental neuroscientific data - be it on the macro-
scopic or the microscopic level - is on its way turning out increasingly mature tools,
solutions for a visual analysis of neuroscientific simulation data are still in their
infancy. Simulation in neuroscience (“in silico experiments”) itself is still a rather new
approach, so one might argue that the visualization community has simply not dis-
covered this emerging field yet. This is particularly true for the simulation of large,
biologically realistic neuronal networks, as they results from tools like NEURON
(Carnevale and Hines 2006) or NEST (Gewaltig and Diesmann 2007). So far, neu-
roscientists working with these tools analyze simulation data mostly by looking at
rather simplistic raster plots where neural activity is plotted over time, or at best at
diagrams of derived parameters (see Fig. 3).

On these grounds, we argue that a more advanced visual analysis has the potential to
further support neuroscientists to answer their research questions. Here, a close col-
laboration between neuroscientists and visualization scientists across their disciplines is
absolutely mandatory in order to identify requirements and successfully develop valu-
able visualization tools for the analysis of in silico experiments. From discussions with
neuroscientists at the Institute for Neuroscience and Medicine INM-6 at the Fors-
chungszentrum Jülich, Germany, we learned that important research questions are to
discover correlations of spiking activities between brain structures, function, and con-
nectivity at the different temporal as well as spatial scales. As a consequence, highly
complex and flexible data access patterns are required during an analysis of such neu-
roscientific data. As such, we set out to develop an interactive analysis tool that strictly
follows a multi-view approach, combining geometrical as well as abstract views to the
data at multiple scales. Moreover, since the neuroscientists’ analysis workflow has an
inherently explorative character, a useful tool should allow for an explorative analysis,
making interactivity of the visualization a primary requirement.

After a very brief introduction to interactive visualization in the next section, the
article will explain the multi-view paradigm in more detail in Sect. 3. We will

Fig. 3. Spikes dotted over time as a result from simulations of neuronal networks via NEST.
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demonstrate how we implemented this paradigm in a first prototype of an interactive
tool for the visual analysis of NEST simulations. In Sect. 4, we will discuss some
design parameters for a high-fidelity analysis workplace, focusing on high-resolution or
even immersive displays. The article concludes with a summary and future work.

2 Interactive Visualization of Neuronal Network
Simulation Data

In a nutshell, the discipline of scientific visualization has the goal to graphically
illustrate scientific data in a way that researchers can gain insight into the phenomena
they have measured in an experiment or simulated via a (high performance) computer.
It was the famous computer scientist Richard Hamming, who already in the 1960’s
claimed that “The purpose of computing is insight, not numbers”.

From an algorithmic point of view, visualization is typically described as a pipeline
(Haber and McNabb 1990), starting with the simulation or experiment, and resulting in
the images on some kind of display (see Fig. 4). While the end of the pipeline (ren-
dering) refers to the discipline of computer graphics, the two arguably most interesting
parts are located in the middle: filtering and mapping. Filtering describes any form of
data transformation, e.g. the selection of a subset of the data, or the projection of data into
a lower-dimensional space. Mapping is concerned with the actual conversion of data into
graphical primitives from which scientists can eventually – i.e. after rendering – draw
meaningful insight. In our mind, it is essential that domain scientists and visualization
experts collaborate very closely in the design of these steps in order to come up with
adequate solutions. Questions have to be answered like which data access patterns, which
data processing methods, and which visualization metaphors have to be realized.
Obviously, the answers to these questions heavily depend on the characteristics of the
data like e.g., its size, dynamics, or dimensionality, but also on what research questions
domain experts have with regard to their data.

There are multiple levels of interactivity, depending on which parts of the visual-
ization pipeline are made interactive. If no step in the pipeline at all is interactive,
movies or just static images are produced in an off-line visualization process, mostly for
publication or marketing purposes. Moreover, in a purely confirmative analysis, such a
non-interactive approach can be appropriate for validating or discarding a hypothesis
about a phenomenon in the data. This confirmative usage scenario is also targeted by
solutions that offer real-time rendering and interactive navigation. This allows users to
intuitively look at the data from multiple perspectives.

Fig. 4. The visualization pipeline with different interactivity levels
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For the interactive rendering of large neuronal networks simulated via NEURON,
good progress has been made recently in the Blue Brain Project (see http://bluebrain.
epfl.ch/). Massively parallel rendering in distributed GPU clusters and advanced view-
frustrum culling have been applied here to achieve real-time navigation through large
populations of neurons with realistically shaped soma-branch-connections (Lasserre
et al. 2012; Hernando et al. 2012). Furthermore, level-of-detail techniques have been
leveraged, meaning that the data is available at multiple resolutions, and the details are
only rendered when the experts decide to zoom into the data (see Fig. 5).

Although these kinds of interactive geometrical rendering provide a significant
contribution, they will not be able to answer important research questions on their own.
Only if the preceding steps in the visualization pipeline provide interactive response
times as well, the analysis process becomes truly explorative. Here, the scientist can
directly operate on the simulation raw data and interactively define new visualizations
in a trial-and-error process to find new hypotheses and assess the characteristics of a
simulated phenomenon. In visualization science, providing tools that enable such an
explorative analysis poses a great challenge in terms of performance. For quite some
years now, the size of computed simulation results has increased faster than the pos-
sibilities of data processing and data analysis.

In the specific case of computational neuroscience, it turns out that a level of
interactivity is needed that goes even beyond a sheer explorative post hoc analysis of
computed simulation results. In fact, the notion of in silico experiments with large-
scale, simulated neuronal networks would require a computational steering approach,
where it is possible to directly influence the running simulation in an interactive and
explorative manner. Only by such a “human-in-the-loop” philosophy, it will become
possible to effectively gain insight into the structure and function of biologically
realistic neuronal networks.

When neuroscientists strive to simulate neuronal networks up to the full brain scale,
like in the European Flagship “The Human Brain Project”, there will not even be the
choice of traditional post processing. Here, a suitable visualization software framework
must provide a tight coupling between visualization and simulation itself, which
eventually leads to the concept of interactive supercomputing. Data size will become so
huge here in both, spatial as well as temporal resolution, that it will be difficult to move
or even store the data produced in such simulations. In the mid-term, in situ visuali-
zation as a special variation of interactive supercomputing is a promising option, if not

Fig. 5. Real-time navigation through large populations of simulated neurons via massively
parallel rendering (left) and level-of-detail techniques (right).

Towards an Explorative Visual Analysis of Cortical Neuronal Network Simulations 175

http://bluebrain.epfl.ch/
http://bluebrain.epfl.ch/


the only possible strategy. In situ techniques produce the visualization on-the-fly, i.e. at
simulation runtime, whereas the raw data is discarded once the visualization processing
is done. Unfortunately, the explorative character of the visual analysis gets lost in the
process, since the in situ approach obviously requires the visualization parameters to be
fixed in advance.

If the simulation data is extremely huge or complex, like in the neuroscience
domain, and if interactive response times are required over parts or even the complete
visualization pipeline, a rather complex infrastructure is necessary. To achieve inter-
activity, there is no other option than to use High Performance Compute (HPC)
resources not only for the simulation itself, but to leverage them for the visualization
and analysis process as well. Unfortunately, how a powerful and flexible software
framework should look like is still an open question in the visualization community.
Although there are first software tools that combine massively parallel visualization
computations and in situ capabilities, they are still in their infancy. Moreover, they are
mostly tailored to simulation data from the field of Computational Engineering Sci-
ence; hence it is not straightforward to adapt them to neuroscientific data. Conse-
quently, it is a declared goal of the Human Brain Project to develop such an advanced
interactive supercomputing framework. This, however, poses a formidable challenge.

3 A Multi-view Visualization of Brain Simulations

Apart from sheer interactivity and performance, user interface and workflow aspects
represent further key challenges. In order to become a widely accepted part of a
neuroscientist’s daily work, an analysis tool has to feature an intuitive user interface
and concise visualization metaphors; in addition it has – most importantly – to integrate
seamlessly with existing workflows.

The identification of correlations between the brain’s structure, function, and
connectivity at the different temporal as well as spatial scales is essential for the
assessment of large-scale neuronal network simulations. An understanding of these
processes across scales requires immediate access to a number of heterogeneous data
sources, e.g. connectivity information, spiking behavior of individual neurons, popu-
lations of neurons or entire brain regions, etc. To this end, multi-view visualizations
promise to be a useful visualization design. The idea of multi-view visualization is to
combine a number of specialized information displays and semantically link their
content in order to interactively explore possible relationships in the data. In this
context linking means that changes in either view are automatically transferred to all
other views. Linking may relate to both, spatial as well as temporal aspects of the data.

In a close collaboration with domain scientists from the INM-6, we are currently
developing an analysis framework that consistently builds on this multi-view paradigm.
It combines structural and dynamic information via geometrical and more abstract
views in order to effectively and efficiently support neuroscientists in the exploration
phase of a neuronal network model analysis.

The central view in this framework consists of a geometrical representation of brain
areas (see Fig. 6). In this central “control view”, the aggregate neural activity per brain
region is indicated via color-coding. Individual areas can arbitrarily be selected; each
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selection brings up the corresponding raster plot (see also Fig. 3). These plots, well-
known from standard neuroscientific toolkits, allow for an analysis of the spiking
activity in a population-resolved manner. They are synchronized in time with the
macroscopic geometrical view, allowing users to quickly assess the interaction between
microscopic and macroscopic scales.

Beyond these basic views, our tool offers dynamic bar plots of mean spike rates in
each area, which in turn is semantically linked to the other views. This provides a quick
overview of the model’s activity, for instance to check whether the activity is too high
or too low, or if there exist any specific oscillations. Additional plot views show
time-varying mean activities for specific areas, revealing the mean rate at a more
detailed level (see Fig. 7).

Fig. 6. Macroscopic “brain view” of a Macaque visual cortex model simulated with NEST.
Upon selection of individual areas (green box), more detailed information is provided about the
respective area, e.g. the spiking activity of neurons (top left) (Color figure online).

Fig. 7. Dynamic bar plots on mean spike rates – Overview of all areas (left), detailed views on
populations for specific areas (middle), small multiples of all areas sorted by area hierarchy
(right).
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Beyond these geometrical and abstract, diagram-style views, we are currently
developing and adding dynamic graph visualization views which will depict connec-
tivity information in the form of either node-link diagrams or matrix views. This step
has been motivated by related neuroscience work on connectivity (see, e.g. (Nordlie
and Plesser 2010; Gerhard et al. 2011)). So far, two different graph-style views have
been implemented (see Fig. 8): a connection graph where the diameter of the arrows
indicates the connection strength between any two brain areas, and a highly dynamic
“flux graph”, which depicts the instantaneous activity flux between areas. Once more,
all these views are semantically linked, helping the neuroscientists to reveal charac-
teristic behaviors of network simulations. The overall tool and its functionality are
described in more detail in Nowke et al. (2013).

We carried out initial expert reviews with neuroscientists based on a model sim-
ulating 32 areas of the visual cortex of a macaque brain which has been simulated using
the NEST code. These studies indicate that a multi-view design, as developed in
Aachen and Jülich, does not only significantly support the explorative analysis of
simulated neuronal network models, but also serves as an important communication
tool to explain models to stakeholders and a broader public across disciplines.

4 Towards a High-Fidelity Brain Analysis Workplace

While the prototype tool introduced in the previous section exclusively focuses on an
explorative analysis of a single neuronal network simulation run, in the medium term,
we strive to provide a much more comprehensive framework, which will not only
support users to conduct a comparative analysis between multiple simulations with
varying network parameters or even different simulation algorithms, but will also
integrate experimental data for direct comparison. To achieve such an integrative
analysis, the approach outlined above has to be extended in several ways. First, the

Fig. 8. Connection graph – arrow diameters represent the connection strength between a specific
area and all other areas (left), and “activity flux” graph- arrow diameters represent instantaneous
flux between areas (right)
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framework has to provide defined extension points at which specialized views for a
wide range of heterogeneous data items can be added. This should cater for data from
multiple sources, multiple data modalities, and data at different spatio-temporal scales
(from the molecular up to the macroscopic level). Second, the semantic linking across
these views has to be described in a more abstract fashion, such that views that have
been contrived at different points in time – i.e. that cannot possibly account for each
other’s existence – can seamlessly work together, nonetheless. Finally, the multi-view
paradigm must work across multiple datasets, quite possibly from different applications
and from different compute/storage sites.

Although web-based analysis tools are required, because they promise a convenient
remote access to simulations and data from the scientist’s desk, from a performance and
infrastructural perspective, they obviously will not be able to adequately support a
comprehensive, explorative multi-view approach. For a high-fidelity brain analysis
workplace, a large, ultrahigh-resolution display might be essential, providing enough
screen real estate to carry multiple views simultaneously, allowing users to switch
between them at the blink of an eye. To this end, tiled display walls have become rather
popular for the analysis of scientific data. These systems no longer rely on projection
technology, but instead consist of multiple LCD monitors arranged in a matrix layout.
In fact, such walls are envisaged in the Human Brain Project to serve as “cockpits”
to steer and analyze neuronal network simulations and other neuroscientific data
(see Fig. 9).

Since a simulation of biologically realistic networks, but also high-resolution
experimental data like, for instance, polarized light imaging microscopy reveal highly
complex three-dimensional structures, a stereoscopic display will help to assess com-
plex spatial relationships in the data. A viewer-centered projection (VCP), where the
user’s head is tracked in order to provide a “quasi-holographic” view, will even further
enhance the intuitiveness of a visual data inspection. A combination of stereoscopy and
VCP eventually leads to Immersive Virtual Reality techniques (IVR). The probably most

Fig. 9. Visual analysis of a NEURON simulation at a high resolution tiled display wall
(Courtesy of the KAUST Visualization Laboratory at the King Abdullah University for Science
and Technology and the Blue Brain Project, École Polytechnique Fédérale de Lausanne)
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renowned immersive display is the so-called CAVE, where multiple rear-projected walls
are arranged to form a room where the user is then fully surrounded by a virtual
environment (Cruz-Neira et al. 1992). Figure 10 shows a concrete technical realization
of such a CAVE at RWTH Aachen University. IVR does not only make it possible to
visually perceive and explore three-dimensional geometrical object as if they really
existed in physical space, but additionally allows for a direct interaction with objects in
3D space.

Fig. 10. The “aixCAVE” at RWTH Aachen University. By a combination of multiple rear-
projection walls, stereoscopy and motion tracking, the user gets an immersive experience. In
modern CAVEs like the one shown here, multiple projectors are used per projection wall in order
to provide the high resolutions required in scientific data analysis.

Fig. 11. Explorative analysis of a neuronal network model simulation in RWTH’s aixCAVE.
Like in the desktop version, multiple geometrical and diagram-style views are semantically
linked to reveal correlations between structure, function and connectivity.
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It is still an open question whether or not IVR techniques make sense in the context
of neuroscientific visualization. In other domains of Computational Engineering Sci-
ence, like Computational Fluid Dynamics, numerous success stories of fully-fledged
solutions (Hentschel et al. 2008) as well as systematic studies (Laha et al. 2012; Laha
et al. 2014) have already proven potential of IVR to significantly enhance explorative
analysis processes. A first promising expert study with neuroscientists, who worked
with a preliminary IVR version of the analysis tool introduced in the previous section
(see Fig. 11), indicates that Virtual Reality techniques in fact support the visual analysis
of large neuronal network models.

Making use of IVR is not a black-or-white decision. Fully immersive displays like a
CAVE are only the top of a display pyramid. For neuroscientific analysis purposes
single stereoscopic projection walls equipped with tracking for VCP and direct inter-
action might be appropriate already. Moreover, small semi-immersive VR systems that
fit into office environments have recently become more and more popular. All in all,
further research is necessary to find out what the “ultimate” display and interaction
techniques are to support the Neuroscience community in an optimal way.

5 Summary

While the visual analysis of experimental neuroscientific data is an active and advanced
field of research, analysis tools for an explorative analysis of simulation data related to
large, biologically realistic neuronal network models are still in their infancy. So far,
neuroscientists analyze the results of such “in silico experiments” mostly by looking at
rather simplistic plots or conduct statistical analyses. In this article, we described an
interactive tool for a visual analysis of such in silico experiments that follows a multi-
view strategy, semantically linking geometrical as well as abstract views to the data at
the multiple scales in order to effectively and efficiently support neuroscientists in the
exploration of neuronal network models. In the longer term, we strive at a much more
comprehensive framework, where it will not only be possible to conduct a comparative
analysis across multiple simulation runs with varying network parameters or even dif-
ferent simulation algorithms, but also a comparison of simulation and experimental data.
To achieve such an integrative analysis, a semantic linking must be extended towards
data from multiple modalities and sources. We suggest large, ultrahigh-resolution
displays or even Immersive Virtual Reality displays to become the platform of a high-
fidelity brain analysis workplace, because they provide enough display real estate to
simultaneously depict multiple views.

In the EU-Flagship “The Human Brain Project” it is a designated goal to simulate
neuronal network models up to the size of the whole human brain with its 1011 neurons
and 1015 synapses. While the neuroscientists’ research questions require complex and
highly flexible access patterns to the simulation data, it is extremely expensive or even
infeasible to store or move data at such a scale. It is still a long way to realize a
visualization software framework that is able to cope with such huge and highly
dynamic neuroscientific data. Such a framework must necessarily provide a tight
coupling between visualization and simulation itself, eventually leading to the notion of
interactive supercomputing.
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Universidad Politécnica de Madrid, Campus de Montegancedo,

Boadilla Del Monte, 28660 Madrid, Spain
jhernando@fi.upm.es, {cduelo,vicente}@cesvima.upm.es

Abstract. The widespread availability of modern infrastructures able
to process large amounts of data and run sophisticated models of com-
plex phenomena, is making simulation-based research a usual technique
among the scientific tools. The impact of these techniques is so large,
that they have been touted as the new paradigms for scientific discovery:
the third, in relation to large-scale simulations, and fourth, in relation to
data-intensive computing. In the traditional approach, the results of com-
plex simulations are typically very large data sets that are later mined
for knowledge. In a more dynamic approach, the user interacts with the
simulation, steering it and visualizing the results in an exploratory way
in order to gain knowledge. If this is properly done, it can not only make
better use of the available resources, but also produce insight that would
not be possible in a static, post-mortem analysis of the results. However,
it is not easy to include live visualization and analysis in a workflow that
has been designed to fit the available HW&SW infrastructure and to
finish with a set of files for off-line study. This traditional process could
very well turn into unfeasible if computing continues its way to a future
limited by the storage capabilities, thus making impractical the storage
for later analysis paradigm typical of today’s simulations. In this cases,
having a scientist in the loop, aided by a set of analysis and data reduc-
tion techniques, will be necessary to understand the results and produce
new science. The purpose of the present paper is to outline the main
problems that have to be solved to visualize simulation results with an
application to the Human Brain Project. The complexity and needs of
present day visualization tools in this domain will be exemplified using
RTNeuron, a code to represent neural activity in close to real time.

1 Introduction

Visualization is a key technology to understand complex phenomena. Human
cognition is very well suited to find patterns and trends in visual presentations.
In fact, it is estimated that half of the neurons in the human brain are associated
to vision, allowing to comprehend significantly more complexity through visu-
alization than using other techniques. This was realized soon, and visual data
representations have been used extensively since very early [1]. It was only much
more recently that the need to explore the results of sophisticated simulations
c© Springer International Publishing Switzerland 2014
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and experimental data, paired with advances in computer graphics made com-
puter based visualization practical for general use. Powerful computers made
possible the exploration of complex models in large parameter space and simu-
lations that were previously unfeasible, became routine. The amount of data to
be analyzed grew very rapidly, requiring the development of new techniques to
extract useful knowledge. Visualization was born from the idea of taking advan-
tage of the visual capabilities of the brain to help understanding these otherwise
intractable data sets. Going one step further, the same capability could also be
used to put a human in the simulation loop, allowing to interactively guide the
simulation for an active exploration and discovery.

Scientific Visualization as a discipline is relatively modern. It received a large
impulse from the seminal 1987 NSF report “Visualization and Scientific Com-
puting” [2], where most of the modern ideas were already present: exploration,
steering, communication and even debugging were mentioned. Curiously enough,
brain structure and function was highlighted among a dozen scientific research
opportunities. Visualization infrastructures were also discussed and, although
technology has moved a long way since then, the basic paradigm did not changed
that much until a few years ago, when the explosion in available data [31] and
distributed computing and storage built another compelling case with informa-
tion visualization and visual analytics at its core.

In a typical scientific visualization scenario, [3] a large simulation is run in
a supercomputer in batch mode. As much data as storage allows is recorded
for later off-line analysis. This analysis involves the reduction of data in several
orders of magnitude, and it is usually done in a different computer. The data
is prepared for visualization, typically in yet another computer or visualization
cluster. This is an example of the postprocessing that is nowadays the most usual
technique to use visualization in large-scale simulations. It lacks interactivity and
there is no possibility to have a scientist in the loop controlling the simulation.
It is an effective use of resources only in the sense that supercomputer time
allocation is optimal due to the use of a queuing system, but it neither allows
for discovery through exploration nor change the simulation parameters on the
fly. Both techniques can lead to potential savings, whether because a simulation
is not progressing as expected and has to be killed before completion or because
preliminary results require to explore different situations from those initially
envisioned. Sometimes there exists the possibility of running a simulation and
having, at the same time, a visualization cluster that can communicate with the
main simulation machine through a high bandwidth network. In this situation,
the visualization calculations are done in the visualization cluster using data
directly from the simulation. This coprocessing can be done online or offline,
depending on the available resources and type of simulation, but it requires a
large amount of data movement among machines, and data movement is a major
issue in large-scale computing.

The evolution of high performance computers has followed a path that today
is dominated by commodity CPUs and subsystems. Whereas in 2001 the Linpack
benchmark report [4] listed, in the first page of the ranking of the fastest CPUs in
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the world, only vector processors specially built for scientific computing, in 2004,
only commodity CPUs remained. The cost effectiveness of the big machines was
beaten by day to day, ordinary computers with CPUs built for the mass-market
of servers and workstations. A SW infrastructure as well as cheap communica-
tion HW were also in place by that time and this resulted in clusters becoming
the new de facto architecture for HPC. The way to increase its power beyond
the usual Moore’s Law gains, was then driven by adding more and more proces-
sors. Parallelization and scalability were the new mantra while the performance
raised from the gigaflop to the teraflop and then to the petaflop. Ultimately,
new limits have been hit and while coprocessors are helping to achieve still more
performance, the increase in power consumption, the memory wall, the need to
scale to millions of cores, etc. are eroding an exponential growth in speed that
has been maintained for decades [5]. It is widely believed that exascale levels of
performance for a reasonable set of applications and within a reasonable power
budget will be much more difficult to achieve than the previous Tera and Peta
milestones. We will get there only through the systematic improvement of sev-
eral key technologies. Even mass-market constraints could also play a role in the
how and when we will achieve Exaflop performance. The large-scale simulations
panorama is bound to have different constraints, and one of the most likely is
linked to data movement. In this new world, FLOPS will be cheap, while I/O
and data transfer will be expensive. We are used to gigaflop computers with
seberal gigabytes of memory. Petaflop class computers might still have Petabyte
memory1, but an exaflop computer is not expected to have an exabyte memory.
Memory bandwidths to different memory levels will scale differently and the
energy cost of moving data has to be taken into account. Hence, in planning for
the visualization and steering of the simulations in an exaflop capable computer,
a key issue will be to limit data movement.

Today, transferring or storing the large amounts of raw data that requires the
postprocessing or coprocessing paradigms is costly in time and resources. In a
memory and I/O bandwidth constrained world, this could turn these approaches
into unfeasible. A better solution would be to avoid data movement altogether
by reducing or summarizing the data produced in situ. Only the reduced data
will be transferred for storage and offline analysis or for visualization. In situ
processing has another advantage as a means to simplify and summarize the
data in order to be visualized during the simulation and used by a scientist in
the loop, allowing to steer the simulation and help the discovery by exploration.
In situ processing is, however, not a very popular approach today. On one hand,
current supercomputers are not specifically designed for this and scientists are
unwilling to use the scarce supercomputing resources assigned to a project for
visualization calculations and, on the other, integrating visualization with calcu-
lation demands resources in the form of time or of an specialist in visualization,
1 Main memory (not in the accelerators) in the fastest Top500 machines now in pro-

duction (early 2014) or soon to be released is 0.6 PB for the 27 Pflop/s Titan at
ORNL, USA, and 1PB for the expected 54.9 Pflop/s Tianhe-2, to be installed at
NUDT, China. An exaflop computer is expected around 2020.
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who is not always available. To respond to its main challenge of not duplicat-
ing memory, simulation and visualization codes must share data in memory.
Also, it must not compromise on the resiliency of the simulation and the over-
head must be small and not spoil its scaling characteristics. Along with keeping
the amount of visualization processing low compared with the total load, this
means to balance the visualization load together with the simulation. This might
be difficult in practice due to the different nature of both processes and that
the data or work distribution used by the simulation might be very different
than the one used by the visualization. The current lack of specialized graph-
ics hardware and software stack in most supercomputers -something that might
change in a possible design of an interactive supercomputer- does not help to
keep low the relative load of visualization vs. simulation.

Human brain simulations are expected to proceed in a multiscale way, with
molecular scale calculations conveying information to be used at cell scale, from
cell to circuit and so on till the higher levels of organization are reached. From
a visualization perspective, this means that many different types of data, possi-
bly from different origins and involved in different processes at different scales
have the potential to be represented in a interactive session. From a data per-
spective, the overall situation is not very different from the situation in visual
analytics and its general goal of facilitating the exploration and interaction with
big and complex data [6]. Visual Analytics is defined on top of three layers:
Visualization to provide exploration capabilities and abstractions to allow rea-
soning on the extracted information; analytics, to provide the data reduction
and information extraction capabilities; and data management to store, retrieve
and distribute data for visualization and analytics. In the human brain simula-
tion case, an additional interface with the running simulation should be present,
and the analytics layer should be prepared to interact also with the simulation.
Most existing analytical systems are not prepared for this interaction. In many
cases this is because today many exploratory tasks run on much smaller data
and analysis and visualization give results fast. On exascale data this will not
be the case, however visualizations have to be presented fast even although the
underlying calculation has not yet finished. A new breed of algorithms with
the ability of quickly present approximate results that can be iteratively refined
when needed should be developed [7]. In an in situ paradigm, the resources to
run these algorithms and the corresponding visualization have to be shared with
the main simulation and meet the requirements for a fluid interaction (i.e.: less
than 100ms of reaction time for an interaction and that actions should be com-
pleted in less than 10 seconds, depending on the cognitive cost [30]) this leads
to problems with the way in which current supercomputers are designed and
managed and that have yet to be solved. Likewise, the data management layer
to support extremely large data and the needs of visualization still needs to be
developed. Smaller scale solutions resort to in-memory databases, an approach
that might not be feasible for the envisioned exascale-class machines.

The successful integration of these elements in interactive workflows will be
key for the successful exploitation of simulation-based science. Although much
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work has been done, it is a complex challenge and there is still much to do. To
exemplify what is the state of the art today in visualization for the exploration of
brain simulations we will present the status of RTNeuron, a real time visualizer
for cortical circuit simulations. This is a specific piece in the visualization layer.
The description of its requisites, arquitecture and performance will give a hint
of the complexity of what will be the future visualization infrastructure for the
human brain.

2 Case Study: Cortical Circuit Simulations
and RTNeuron

The Blue Brain Project [11] (BBP) started in the École Polytechnique Fédérale
de Lausanne in 2005 as the first attempt to build a computational brain model
created by unifying the known data in a systematic way. The final goal is to
allow neuroscientists to conduct in silico research in the human brain function
and dysfunction. The first stages have been focused on the detailed modelling
of a small piece of tissue of the rat cortex and providing the software tool-chain
that allow its simulation on a supercomputer.

The Human Brain Project (HBP), one of the EU FET Flagship initiatives,
builds on the BBP, but has a wider scope and is backed by a much larger
academic consortium. The HBP extends the BBP’s main goal in several areas,
a prominent one is to apply the outcomes of brain research in the development
of new technology such as neuromorphic computing and brain-inspired robotics.

Although in the context of the HBP many different simulation methods will
be integrated in truly multi-scale models of the brain, the two main approaches
for large neuron network simulation are based on point neurons on the one hand,
and electrical models of detailed neurons on the other. The mathematical tool for
the first is the leaky integrate-and-fire model whereas detailed neurons are mod-
eled using cable models and Hodgkin-Huxley equations. NEST [8] is the usual
framework of choice for large scale point neuron simulations and NEURON [9]
for cable based models. Each method has its own benefits and drawbacks, and
they are, in fact, complementary approaches to the ultimate goal of simulating
a whole brain.

Visualization and analysis techniques specifically developed for point neuron
simulations are as valuable as those devoted to morphologically detailed models,
even more when they can be combined to address the problems of the multi-
scale scenarios foreseen for the HBP simulation technology. However, for the
scope of this paper, we will restrict ourselves to the problems pertaining to the
visualization of morphologically detailed simulations only, which is the hardest
case. In particular, we will focus on RTNeuron, a custom software tool developed
in the context of the BBP for the post-mortem interactive visualization of cortical
circuit simulations. We will analyze its shortcomings and requirements in order
to adapt it to the paradigm shift that interactive supercomputing entails.
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2.1 Circuit Building, Electrical Model Creation
and Simulation Running

The simulations carried out currently in the BBP model a piece or cortical tissue
that is believed to be the minimal unit of information processing in the neocortex,
the cortical column. These simulations contain from 10,000 up to several 100,000
neurons, depending on the number of columns and the estimations of neurons
per column used. This model is already capable of showing activity patterns that
can be found on in vivo specimens [15].

The circuit is created by first reconstructing cells taken from samples of
electrophysiology experiments. The geometrical template for the cortical column
is an hexagonal prism of 320 nm of radius and 2 mm of height. Multiple instances
of representatives of the different cell types are distributed inside this template
based on known statistical information about their spatial distributions. Touches
between axons and dendrites of different cells are detected and converted into
functional connections, i.e. synapses, also based on knowledge from the available
literature. More details of these processes are described by Hay et al. [13] and
Hill et al. [14].

Electrical modelling of single neurons is based on multi-compartment cable
models using Hodgkin-Huxley equations. How the parameters are fit to repro-
duce the behaviour of the different electrical types is described by Druckmann
et al. [12] and Hay et al. [13].

The circuit simulations are performed using a version of NEURON [10]. These
simulations are run on a Blue Gene P supercomputer using up to several thou-
sands processors where a second of biological time takes in the order of one
hour to be completed. The typical output of a simulation is a record with the
spike times of all neurons. Additionally it is possible to generate reports that
record the values over time of a single variable for a selected set of electrical
compartments.

2.2 Visualization of Detailed Cortical Circuit Simulations

From the point of view of analysis, some users have very specific procedures which
are well established and visualization can only help enhance the presentation of
these results for communication. However, many other users do not have a clear
idea of what to look for and this requires an exploratory analysis tool. In these
situations, effective visualization can help in tasks like the navigation of data
sets, the selection and identification of circuit elements with features that can
be easily identified visually, the comparison of different simulation ensembles,
etc. In some other cases, for example in circuit building, visualization can be
used to verify the correctness of the model and debug possible issues.

Exploratory analysis tools need to be suited for the application domain and
designed using a user-centric approach whenever possible. However, they must
provide enough flexibility for the users to configure them for their personal needs.
In the analysis of cortical circuits, programmability is a highly desired feature,
particularly for the case of computational neuroscientist because most of the
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analysis is already based on scripting and pipeline design. Another important
issue in an interactive scenario is that simulation, analysis and visualization must
be able to communicate and exchange information easily and efficiently.

The best domain specificity is provided by custom tailored solutions, specially
in this case, because no off-the-shelf solutions are available for complex neuronal
network visualization and analysis. However, many software problems are com-
mon to other domains and it makes sense to solve them just once. This last
statement will become specially true for the frameworks that will be required for
interactive supercomputing at the exascale, where it will become totally unprac-
tical to solve the same problems over and over. Currently, implementations of the
usual data flow model [16] of visualization and analysis applications—using tools
such as VTK [27] and its derivatives—fulfill many of the requirements. However,
domain specific techniques for visual mappings and rendering still need to be
developed.

In terms of data sizes relevant to a visualization, the reconstruction of cell
morphologies consist of polylines connected in a tree structure, where each point
is assigned a radius. On average, a morphological skeleton has 4,700 segments,
but this figure varies greatly depending on the cell type (excitatory cells are usu-
ally large and, in general, those that have long range connections). The network
graph has a degree of connectivity that has no equivalent in any other domain.
Each cell forms an average number of 30,000 synapses with other cells, which is
far beyond the state-of-art in graph visualization. Polygonal meshes that model
the cell membrane can be obtained from the skeletal morphologies [19]. These
models have 150,000 triangles and 75,000 vertices per neuron on average. So
far, the morphological models are instanced several times within a circuit, but
in the short term every morphology will be completely unique. The electrical
model consist of around 300 electrical compartments per cell, and the output of
a simulation where a single scalar value of single float precision (typically the
membrane voltage) per electrical compartment is recorded is almost 1.2 GB for
1000 cells, 1 s of biological time reported at 0.1 s intervals. This looks like a small
size, but it is just the bare minimum for just one variable of a small circuit in
a small simulation. A naive extrapolation of this numbers to the estimated 100
billion of neurons in the human brain amounts to about one hundred exabytes.
By way of contrast, all the information in the world in 2007, including movies,
etc. optimally compressed would amount to about 300 exabytes [20].

One of the first decisions to take when designing a visualization system is
whether to represent the information preserving its geometrical details or to use
abstract representations that filter non-relevant information depending on the
use case. Abstract representations are appealing as they can reduce the visual
complexity and yet be very informative, however this requires a clear idea of
what are the user cases. In the RTNeuron case, detailed visualization has been
initially pursued for several reasons:

– It was required for media production for dissemination purposes.
– It can be used to gain a better understanding of the circuit structure and

function, for example applying rendering techniques that mimic the results
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obtained from experimental imaging techniques such as voltage sensitive dyes,
but without some of their physical limitations like diffraction limits, accessi-
bility of tissue areas, selectability of cell sub-populations, reuse of samples for
different purposes, ...

– Based on user feedback, it can be the starting point for the design of more
informative and comprehensible abstract representations.

For detailed visualization, neurons pose very particular geometrical problems,
the more so within the context of a whole circuit. Neurons are geometrically
intricate objects with very thin branches compared to the overall volume they
occupy. Inside a circuit, the branches are strongly entwined, making it difficult
to visually follow a single branch in the context of the full circuit. For a detailed
visualization of the circuit these characteristics imply a lot of visual clutter,
aliasing problems (due to the sub-pixel geometry size) and a computational
expensive rendering.

Cluttering can be addressed by allowing interactive selection of objects and
modification of the attributes that determine the visual appearance. Configuring
the appearance, by manipulation of the color maps, for example, makes possible
to highlight important features and cull away unimportant details. One visual
property which is interesting is transparency because it can provide a simple
mapping from object properties to visual importance in the final image. How-
ever, transparency increases the computational complexity because the rendering
algorithm has to sort the contribution of each polygon at each pixel. State of
the art algorithms to solve this problem rely on sorting at the pixel level [17],
so there’s no need to do any view-dependent sorting of the polygons. Render-
ing complexity can be reduced using level of detail representations, however the
complexity of large circuits still requires parallel rendering solutions, specially if
unique morphologies are used. Aliasing can be solved by brute force if enough
compute power is available to do super-sampling.

VTK’s rendering back end is relatively inflexible compared to libraries specifi-
cally designed for rendering. This makes it necessary to do non trivial
modifications which require expert knowledge in order to generate the kind of
visualizations we are looking for [18]. This fact is one of the original motiva-
tions for developing a custom tool such as RTNeuron. However, for large scale
in-situ visualization it will be more sensible to reuse components from a more
general software stack. Nonetheless, we still foresee that specific algorithms will
be needed for rendering.

2.3 RTNeuron

RTNeuron is a high performance tool for the visualization of the structure and
function of detailed cortical circuits in a very straightforward fashion. It can dis-
play cells (Fig. 1a), synapses (Fig. 1b) and playback simulation reports consisting
of a single scalar variables mapped onto the cell surfaces (Fig. 1c).

The core of RTNeuron is a C++ parallel rendering library based on Equal-
izer [21], OpenSceneGraph [22] and the data model used in the BBP. OpenScene-
Graph is a scene graph library based on OpenGL. The core library provides the
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(a) Neuron types (b) Synapses (c) Membrane voltage

Fig. 1. Three different data views from a 5,000 neuron circuit. Figure 1a shows the
neurons using a different color for each morphological type. Inhibitory neurons are
rendered using a palette of blues while excitatory neurons are rendered using red, orange
and yellow tones. The transparency value of each branch is computed as a function of
the branch width. The middle figure shows all afferent synapses of the 5,000 neuron
subset taken from the center of a 10,000 neuron circuit. Inhibitory synapses are blue
and excitatory synapses are red. All synapses have an alpha value of 0.1. On the left,
a time step of a simulation is presented. The colors show the membrane voltage, using
blue to depict hyperpolarization (inhibition), transparent gray for parts at the resting
potential, red for depolarization (excitation) and yellow for firing neurons. The alpha
value is modulated additionally by multiplying its value from the simulation color map
by the width-dependent value computed as in Fig. 1. The image shows intense activity
in the upper middle part (Color figure online).

scene management and rendering techniques such as levels of detail, view frustum
culling [23], transparency algorithms and the parallel rendering mechanisms [18]
needed for high performance and quality.

A Python binding exposes the core API in a more user friendly way. The
binding can be used to create custom applications on top of it, like the refer-
ence command line tool that features all the options for showing circuits and
simulation results. Also, since Python is an interpreted language, the command
line tool can spawn an IPython shell that allows full interactive control of the
visualization.

Up to now, RTNeuron has mainly covered quality media production and
aided in the debugging of circuit building (e.g. touch detection and synapse loca-
tion). The addition of the Python interface aims to help in scientific
discovery.
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The current design is based on a series of assumptions:

– The rendering engine is based on hardware accelerated rasterization. Despite
the progress made in the recent years in real-time ray-tracing, we consider
that the type of scenes to render are not suitable for ray-tracing and that
rasterization is a better approach. Rasterization eases the rendering of objects
independently and the application of object-wide properties.

– All the scene has to fit in memory. Additionally, the data sets must be available
in all nodes at the same location in the directory tree.

– Cell morphologies will be unique, although for the moment there are many
circuits which use multiple instances of each cell reconstruction.

– The majority of use cases are post-mortem visualization, but streaming of
simulation data from the simulator to RTNeuron is also possible, although
there are no steering capabilities.

– In the post-mortem case, data is available on all the nodes, generally as a file
in the local filesystem.

The main parallel rendering algorithms supported are sort-last and sort-
first [25] and any combination of those. For sort-last, which is an object space
decomposition, a kd-tree based spatial partition is used [18]. Each processor is
assigned a leaf of the kd-tree and all the leaves contain approximately the same
number of triangles. To support transparency, compositing is done in front to
back order. The kd-tree partition ensures that there is a total order between
the partial images produced by each processor and that for a given camera
position, every processor can compute its position in the compositing sequence.
The compositing stage only works with the direct-send algorithm [26], because
other compositing algorithms that do not have a one-to-all communication step
require dynamic changes to the compositing steps, i.e.: which processor sends and
receives, and in which order. For circuits with unique morphologies, using sort-
last effectively reduces the memory footprint at each node because the geometry
can be clipped to the bounding box of each kd-tree leaf.

One of the main problems of the current approach for massive scenes is
that weak-scalability is surprisingly bad (Fig. 2a), specially when transparency
is enabled. Further analysis has shown that a substantial part of this imbalance
comes from the transparency algorithm used in these benchmarks, dual-depth
peeling, which is far from being state of the art. In some nodes, the rendering
takes much longer because the algorithm has to iterate more times (Fig. 2b).
Unfortunately, the rendering time of more recent non approximate algorithms,
such as fragment linked lists [17], also depends on the depth complexity of the
scene (i.e. the amount of geometry layers that overlap on each pixel), so we do
not expect to have optimal weak-scalability even with this algorithm. This shows
us that load balancing cannot be predicted by single variable figures, like the
typically quoted for graphics performance, such as triangle counts. In general,
there are many other factors that affect rendering time.

For future ultra-scale architectures the current post-mortem scenario will not
be sustainable, not only due to scalability, but also due to the data movement
issues mentioned in the introduction [28]. This is a general problem and applies
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Fig. 2. Weak-scaling tests for different circuits sizes and GPU counts in a scene using
transparency and two different camera positions (full and closeup). The circuit size is
400 multiplied by the number of GPUs used. Each bar shows the interquartile range
and the median of the rendering time of 25 frames. As can be seen, the scalability (left)
is much worse than the optimal one. This is because despite the geometry workload is
balanced (in terms of triangles per GPU) the depth complexity is not. The higher the
depth complexity, the more expensive is the sorting required for a correct transparency.
This translates in an unbalanced number of render passes, as shown on the right. The
test system was a visualization cluster with Intel Xeon X5690 @3.47 Ghz CPU, 24 GB
of RAM and 3 NVidia GTX 580 graphics cards with 3 GB of DRAM per each of the
six nodes used, having QDR Inifiniband as the network interconnect. The transparency
algorithm chosen was dual-depth peeling [24] because it doesn’t place an upper limit
on the maximum depth complexity.

not only to visualization, but also to analysis techniques that need to do data
aggregation with the whole circuit. In this scenario it seems that in-situ visual-
ization and analysis is the only way to go. The paradigm shift from post-mortem
analysis and visualization to in-situ is a challenge for both developers and users.
Users will need to resort to exploratory techniques that are either performed
during the simulation or, if used after the runs, will have access only to heavily
reduced data sets. The co-design of the simulation and visualization and data
analysis will be the norm.

Detailed visualization of cortical network simulation shares many problems
with other domains, but it also has some particular details:

– The trend for exascale architectures seems to go towards having much more
computing power per node, but without a substantial increase in the memory
size. At the same time, detailed visualization requires geometrical information
that is not needed by the simulation. Since the simulation is already mem-
ory bandwidth and size limited, visualization needs to minimize the memory
footprint as much as possible. Given the relative low cost of computation
compared to memory capacity and bandwidth, the solution to this problem
will presumably involve to trade computing for memory and resort to on-
the-fly generation of the geometrical models needed for rendering. Avoiding
data replications in the host side in the case that there is a graphics hard-
ware accelerator is also important and current graphics SW is not specifically
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designed for this. For example, for OpenGL based rendering this is mainly
under control of the driver. Current drivers do not have support to avoid data
replication, although new versions appear to start addressing this issue.

– Rendering large circuits requires sort-last parallelizations because otherwise
the memory consumption is too high. For in-situ visualization, this means
that the data partition made by the simulation needs to be reused by the
visualization. Unfortunately, the data decomposition applied to the circuit by
NEURON is unrelated to the spatial partition used for correct transparency
and it does not provide a total order between the partial images that each
node could generate. This mismatch among simulation and visualization is a
potential source of problems that, in general, can be only addressed through
co-design. In the present case, a potential solution is to capture all the frag-
ments of a pixel during rendering, and exchange this information between
the nodes using direct send, so each processor receives all the information to
compose a portion of the screen. Even with a good communications network,
this approach may not work without any compression. A similar approach has
already been proposed [29], however, the results are difficult to extrapolate
to our scenes, resolutions and node counts, testing is needed to ascertain the
feasibility of this approach.

3 Conclusions

Very large scale simulations will open new areas to research and, in some cases,
it appears as the only way to move forward in the quest for knowledge and
technology. The path will not be easy and it is not expected that, as has hap-
pened in the past, the sole reliance on an increased circuit integration as the
main driver to reach higher computational capability will let us achieve exaflop
levels of performance. A clever mixture of techniques will be needed to achieve
and successfully exploit this new capacity. A major problem will be to actually
extract knowledge from computations that mix data sources and simulations of
an unprecedented size. Visualization and data analysis will be key for this pur-
pose. The case of the Human Brain Project could actually be the first major
project to be confronted with this new way of doing science.

In this paper we have outlined some of the problems and described them
in the context of a state of the art visualization tool for large neural simula-
tions. Currently, the main problems relate to the scaling characteristics of the
visualization with respect to the simulation. There is a mismatch between the
simulation and the visualization and analysis capabilities. Much of this mismatch
comes because in situ visualization for neural simulations is still in its infancy.
The next generation of SW and HW for the large scale, will have to tackle a new
set of problems and merely evolutionary approaches will not suffice. Simulation
codes have received much more attention and scale to hundreds of thousands of
processors, whereas visualization is much more limited. It is believed that data
movement is going to be a major issue in future exascale architectures and in
situ techniques will have to be developed. Simulation, visualization and analy-
sis will have to share a comparatively more reduced memory space using access
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patterns that will also differ. HW and SW design for the exascale will need to
take this into account and balance the different requirements. Otherwise, these
problems will move the bottleneck to the visualization and analysis phase.
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13. Hay, E., Hill, S., Schürmann, F., Markram, H., Segev, I.: Models of neocortical
layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active
properties. PLoS Comput. Biol. 7(7), e1002107 (2011)
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Abstract. Decoding the human brain is considered as one of the great-
est challenges faced by 21st century science. Advancing brain research by
simulating the full human brain promises to provide profound insights
into its complex functionality and into what makes us human. These
insights will help to understand brain diseases and to develop novel
treatments.

Modern high performance computing technology not only allows to
bring these goals into focus, it might itself be transformed profoundly
being guided towards the exascale and beyond. On the one hand, infor-
mation and communication technology (ICT) provides us with a com-
pletely new understanding of the brain and its diseases. On the other
hand, this understanding of the brain will lead inevitably to brain
inspired, radical innovation in computing. In particular, the Human Brain
Project, one of the two EU Flagship research projects, will require data-
intensive HPC at an extreme scale and fully interactive visualization and
steering capabilities. Eventually, revolutionary new computing technolo-
gies, so-called neuromorphic devices, are expected to become reality.

The following contribution outlines the plans for the HBP’s High Per-
formance Computing (HPC) platform. A central brain simulation system
at Jülich Research Centre, Germany, is planned to be operated as a user
facility. It will provide the optimized hardware-software environment run-
ning a full virtual human brain model. Neuroscientists will be enabled
to carry out in-silico experiments based on this model. The platform will
be complemented by a software development system at CSCS in Lugano,
Switzerland, and a third system will be running efficient molecular-level
simulations at BSC in Barcelona, Spain. Finally, a system adapted to
support massive data analytics will be hosted at CINECA in Bologna,
Italy. During the ramp-up phase of the project (2013-2916), the HBP
will link with PRACE institutions that have expressed their interest in
adding in-kind support to the Platform and will try to motivate PRACE
to establish programmatic access to PRACE systems, in order to allow
peer-reviewed usage of the entire European Tier-0 capability.

1 Introduction

Human Brain Project. In January 2013, the European Commission selected the
Human Brain Project (HBP) as one of two large-scale initiatives driven by and
c© Springer International Publishing Switzerland 2014
L. Grandinetti et al. (Eds.): BrainComp 2013, LNCS 8603, pp. 198–212, 2014.
DOI: 10.1007/978-3-319-12084-3 16
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Fig. 1. Timeline of the Human Brain Project until the start of the operational phase.

driving information technology [1]. Six candidates reached the final round in
an evaluation process starting out with about 50 expressions of interest, which
were further condensed to about 20 proposals [2]. The HBP will receive funding
through the EU’s new Future and Emerging Technologies (FET) Flagship ini-
tiative which will start in October 2013. The HBP marks, for the first time, a
deep union of Neuroscience and Computer Science worldwide, fostering a novel
methodology to study the brain and creating benefit for both sides. The 2.5-year
ramp-up phase of the project (until March 2016), which is embedded in the EU’s
7th Framework Programme, will be followed by an operational phase under the
upcoming next framework programme, called Horizon 2020, cf. Fig. 1. In the
ramp-up phase of the HBP, more than 80 European and international research
institutions are federated, with more partners supposed to join the consortium
through a Competitive Partner Call Programme. The HBP was initiated and
is led by the neuroscientist and biologist Henry Markram from the Swiss Ecole
Polytechnique Fédérale de Lausanne (EPFL). The entire HBP Flagship project
will be subdivided into four phases. The operational phases 2 to 4 will be funded
through the EC’s Horizon 2020 programme. The HBP is planned to last for ten
years with a total budget estimated to reach about one billion Euros.

Scientific Goal. The overall goal of the HBP is to collect all existing knowledge
about the human brain in order to reengineer the brain, piece by piece. This
process will lead to a sequence of ever more refined multi-scale models of the
human brain. The supercomputer-based interactive simulation of these models
will enable neuroscientists to implement their hypotheses regarding the func-
tionality of fundamental processes such as the brain’s self-healing capabilities,
the understanding of higher-level functionality such as 3-d vision, as well as cog-
nition and finally the emergence of consciousness. In this manner, the resulting
model, the “virtual human brain”, will provide a fundamentally new instrument
to investigate complexity and functioning of the brain as well as its diseases and
prospects for therapies. It also promises to improve predictions on the outcome
of brain surgery.



200 T. Lippert and B. Orth

Sub-projects 

Brain Simulation 
Platform 

Neuroinformatics
Platform 

High Performance Computing 
Platform 

Medical Informatics 
Platform 

Neuromorphic Computing 
Platform 

Neurorobotics
Platform 

Theory 

Data 

Research Areas 

Platforms 

Applications 

Ethics 

Sub-projects 

Strategic Human Brain Data 

Strategic Mouse Brain Data 

Cognitive Architectures 

Theoretical Neuroscience 

Future Applications 

Ethics & Society 

Future Computing
Future Neuroscience
Future Medicine

Fig. 2. Organizational structure of the Human Brain Project. The right column shows
those sub-projects that are ICT platforms.

Ramp-Up Phase. The primary aim of the coming ramp-up phase of the HBP is
to build a new ICT infrastructure for the benefit of future neuroscience, future
medicine and future computing, cf. Fig. 2. This European research infrastructure
is planned to comprise six so-called ICT Platforms. They will be dedicated to
Neuroinformatics, Medical Informatics, Brain Simulation, Neuromorphic Com-
puting, Neurorobotics, and finally High-Performance Computing. The neuroin-
formatics platform will enable the federation of neuroscience data on all levels,
from cell to structure, connectome and receptor data up to functional data.
Together with medical data gathered in the Medical Informatics Platform, data
integration will take place in unifying models created within the Brain Sim-
ulation Platform. These models are simulated on the infrastructure provided
by the HPC Platform which also creates specific enabling software technologies
like environments for interactive steering and visualization on exascale systems.
Feedback of the results into HPC development again promises to be a guide
towards innovation in ICT and supercomputing.

In a sort of productive loop, the results are validated against empirical data.
The HBP’s models and simulations will enable neuroscientists to carry out in
silico experiments on the virtual human brain that cannot be done in vivo for
practical or ethical reasons. Models of mental processes will be applied in virtual
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robots through research of the Neurorobotics platform. Finally, in the neuromor-
phic platform, brain-inspired information processing will be realized by applying
these findings on the structure, connectivity and functionality of the brain within
“neuromorphic” computing systems, incorporating unique characteristics of the
brain such as energy-efficiency, fault-tolerance and the ability to learn.

2 Scientific Challenges

The design of the HPC Platform must primarily follow the requirements of
the scientists working in the HBP’s subprojects and ICT platforms. On the
one hand, it is the multiscale approach to brain simulations as applied in the
brain simulation platform that determines the objectives of the HPC platform.
On the other hand, it is the truly big data requirements being manifest in the
mouse and human brain subprojects, as well as the data federation challenges
of the Neuroinformatics and Medical Informatics Platforms, see Fig. 2. Finally,
the prospects of feeding back the newly gained knowledge on the information
processing capabilities of the human brain into new approaches for supercom-
puting and big data analytics should be reflected in the orientation of the HPC
platform towards R & D, see Sect. 3.1.

2.1 Multiscale Simulations

The multiscale nature of the simulation strategy in the HBP is sketched in Fig. 3.
Starting from molecular dynamics simulations on the sub-cellular level—with
GROMACS [3] as a representative software package—, the next level is treated
by simulating biochemical signaling pathways like ligand-receptor interactions
using reaction-diffusion codes—here we cite STEPS [4] as a representative.

Findings from molecular dynamics simulations at the sub-cellular level and
reaction diffusion simulations on the synaptic levels will serve as input for a next
higher level of abstraction, the simulation of the neuronal network. Neurons of
different morphology with their dendrites and axons will form microcircuits with
the synapses as contact points. In order to model the functional units properly
and in order to compose these units into a kind of “connectome” similar to
that of the human brain, extremely detailed investigations of the brain’s cellular
architecture and the full fiber architecture on a resolution scale approaching
1µm must be carried out, see Sect. 2.2. This defines one step of the iterative
brain model building where the available structural, physiological and functional
data are brought together creating a unifying brain model. This model will be
validated against higher level experimental data and results from simulations,
and the refinement will go into the next step.

The HBP will primarily exploit two software packages for the simulation of
the human brain, NEST [5,6] and NEURON [7]. The NEURON code allows
the use of detailed neuron models, which can take anatomical and biophysical
properties of individual neurons into account. NEST is targeted at the simulation
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Fig. 3. A multiscale view on brain simulation. The goal is to abstract from level to level
catching the essential features on each level in order to gain a simplified representation
on the next level (Chart courtesy of Felix Schürmann).

of very large networks and therefore uses a simplified point model. The HBP will
also conduct coupled NEST-NEURON simulations in order to bridge the spatial
resolution gap.

One major difficulty for the simulations on the sub-cellular and synaptic level
is the necessity to bridge time-scales of many orders of magnitude. Speeding up
such simulations leads into strong scaling problems, as the system sizes are small
compared to the huge distributed memory of multi-petaflop systems, simulating
properties and biochemical reactions of proteins. Maybe for some of these inves-
tigations novel dedicated computer architectures like ANTON [8] are a solution.
There are also promising developments using stochastic methods to tackle very
large time scales [9].

It is estimated that about 100 TB per neuron are required for the molecular
simulation of all biochemical processes of an entire neuron indicating that state-
of-the-art multi-petaflop systems will be well suited and bring us back to weak
scaling. It is, however, evident that such a simulation cannot be included into
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the brain simulation in a dynamical manner, emphasizing again that a multi-
scale approach is mandatory. Similarly, reaction-diffusion simulations will require
about 100 GB of storage per neuron. Here, we can expect that several thousands
of neurons can be treated on large multi-petaflop systems; still this number is
far off the scale of a full brain. Also here, a multiscale approach is required.

The simulations of the brain’s neuronal network eventually will include the
gigantic number of about 100 billion neurons with about 10,000 synapses each.
The NEST code needs about 0.1 MB on average per single neuron, leading to
a requirement of 10 PB of memory for this simple representation of the full
human brain. On today’s systems like JUQUEEN at Jülich Supercomputing
Centre [10], about 1 % of the human brain can be represented by NEST. On this
machine, NEST has been shown to scale up to the full number of 458,752, see
the contribution to this volume by Markus Diesmann1. For NEURON, at this
stage of its evolution, about 1 MB of memory per neuron is required. Both NEST
and NEURON, developed on several generations of supercomputers, represent a
weak scaling problem, requiring memory far beyond current DRAM capacity.

2.2 Big Data Analytics

A discussed in the previous section, the brain’s cellular architecture and the
fiber architecture must be known on a resolution scale of about 1µm in order to
understand its functional architecture and its connectome. This field has entered
the realm of scientific big data analytics as demonstrated in the contribution to
this volume by Katrin Amunts [11]. Figure 4 presents an overview of different
length scales and associated methods to analyze aspects of cellular architecture
and connectome: Physiological and structural investigations of human brains
below 100µm are carried out in post mortem brains. Cell bodies range in size
from 1 to 10µm, the largest cells reach 120µm in height. Axon diameters cover
the range from 1 to 20µm. They form fiber bundles and compact fiber tracts.

3-dimensional reconstructions of distributions of neurons on the level of entire
post mortem brains by now have reached a resolution of 20µm isotropic [12].
One shot imaging of the fiber structure of complete human brain sections by
means of Polarized Light Imaging (PLI) is in the range of 60µm [13]. This
spatial resolution could be achieved by combining state-of-the-art scanners and
polarimeters with state-of-the-art server-based processing.

However, the limit of resolution for the entire brain is 1µm for the cellular
architecture as achieved by conventional light microscopy and even somewhat
beyond by means of confocal laser scanner microscopy (CLSM). Figure 5 clearly
demonstrates the need for a resolution on a scale of 1µm. In practice, sections
are cut off the brain by means of a high precision microtome, the microscop-
ical data are taken, and a 3-dimensional reconstruction process is following.
The resolution of 1µm from the CLSM, suitable for single cell analysis, corre-
sponds to about 30 GB of data per slice, i.e., 300 TB for the full brain, based on
16-bit gray value coding. It is evident, that this huge amount of data requires
1 See M. Diesmann, these proceedings [18].
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Fig. 4. Dimensions of objects composing cellular architecture and connectome together
with corresponding analytics methods (Chart courtesy of Katrin Amunts and Markus
Axer).
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Fig. 5. In order to resolve the smallest cells, a resolution of 1µm is required (Picture
courtesy of Katrin Amunts).

highly advanced HPC technology for both data management and computing,
i.e., scientific big data analytics. The 3-dimensional reconstruction process is
guided by a partly automatized data processing pipeline with full parallelization
of the 3-dimensional reconstruction step on more than 100 nodes of the Jülich
cluster JUROPA [14]. In order to assess variability, a representative set of 10
brains will be required eventually, with a total size of the dataset approaching
more than 3 PB.

As far as the reconstruction of the connectome is concerned, today’s state-of-
the-art technologies investigate slices of about 60µm thickness to determine the
vector fields with an in-plane resolution of 60µm isotropic for the large-area
polarimeter, again with server-based processing technology being sufficiently
performant.

The method exploits the bi-refringence effect of the myelinated nerve fibers
to reconstruct the 3-dimensional vector field of the nerve fibers in a given section.
This is achieved by means of the so-called Jones Calculus. By application of an
Independent Component Analysis (ICA), dust and damage can be removed from
the picture, and by stacking the sections, the full 3-dimensional vector field can
be reconstructed through tracking of the vectors from section to section [11]. The
workflow for the PLI-processing requires more than 30 distinct processing steps.
The steps with Jones Calculus and ICA have been automatized for processing
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and analysis using the UNICORE parallel and distributed workflow platform
[15], developed mainly at the Jülich Supercomputing Centre (JSC).

However, the frontier of resolution of axons is set by PLI microscopy, touching
the 1µm level. A 1.5µm resolution of the PLI microscope, as used in Jülich,
leads to about 1.5 TB of data per section. With an intended number of 2500
sections per brain, 3.7 PB of data will result from one full brain. These tasks
again can only be handled using most advanced scientific big data analytics. It
turns out that dealing with representative sets of data will eventually lead to the
same orders of magnitude to be managed and analyzed as we have encountered
in Sect. 2.1 for the simulation of the full brain.

The examples given are concentrating on the investigation of the human
brain structure and connectome. While, in its first five years, the HBP will have
a stronger focus on the mouse brain [16], human brain structural data will gain
more weight while the project is progressing. In addition, further medical and
clinical brain data from all over Europe and worldwide will be gathered and
federated by the HBP through its Neuroinformatics and Medical informatics
platforms, see Fig. 2. The management and analysis of all these data will be
supported by the HPC subproject.

3 HPC Platform

The HPC Platform is the HBP’s enabler of multiscale brain simulations on all
levels, as well as of scientific big data analytics for mouse and human brain data
as discussed in the previous section. It is expected that the understanding of
the information processing capabilities of the human brain will inspire ICT and
future supercomputing. The R & D efforts as planned for the HPC subproject
will reflect all these aspects.

The various types of simulations described in Sect. 2.1 on the sub-cellular
and synaptic level will be carried out by several groups in the HBP, mainly
supported by the Barcelona Supercomputing Centre (BSC), where the BSC’s
Tier-0 system will be adapted and upgraded accordingly. In addition, the HBP
will rely on machines available in the HPC-ecosystem created by the Partnership
for Advanced Computing in Europe (PRACE) [17], subject to the competitive
peer-reviewed provision policy of PRACE.

The simulations with NEST and NEURON are a challenge sui generis. The
sheer amount of cycles required in order to work with the entire virtual brain
towards the end of the HBP’s last operational phase will need a machine with
full exascale capability. A considerable fraction of the capacity of this system will
be allocated to the HBP and other neuroscientists, as well as to clinicians, in
the manner of a user facility with interactive access. The JSC at Jülich Research
Centre is devoted to create the HBP supercomputing facility complemented by
a development system located at CSCS in Lugano, the Swiss National Super-
computing Centre.

It is the main objective of research and development in the HPC subpro-
ject to provide facilities, system software solutions, programming environments,
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numerical algorithms, interactive steering and visualization sub-systems. The
work package structure will allow to meet all these aspects:

WP1 Technology Evaluation (D. Pleiter)
WP2 Mathematical Methods, Programming Models and Tools (J. Labarta)
WP3 Interactive Visualization, Analysis and Control (T. Kuhlen)
WP4 Exascale Data Management (A. Ailamaki)
WP5 Integration and Operations (Th. Schulthess)
WP6 User Support and Community Building (B. Orth)
WP7 Scientific Coordination (Th. Lippert)

In the following subsection, some exemplary activities from the work packages
are presented.

3.1 Architecture Evaluation

A primary objective of the HPC subproject is the evaluation and specification of
supercomputing and data analytics systems. In the ramp-up phase, we first have
to find out what we can learn from benchmarks on available systems. One of the
neuron-level network abstractions, NEST, describes the neurons by a relatively
simple model and is thus able to scale up to extremely large networks of neurons,
dendrites, axons and synapses. Benchmarks [18] have been performed on the
Japanese K-Computer [19] as well as on the Jülich JUQUEEN system [10].

The memory capacity of the K-Computer allows to represent 1.73 billion neu-
rons with 10.4 trillion synapses, consuming 1.34 PiBytes of main memory. On
JUQUEEN with about 0.45 PiBytes of memory, NEST can still simulate more
than 1 billion neurons. The NEST simulation proceeds in intervals. Spikes are
delivered through the network from previous intervals and the neuronal states
are updated. This implies a short but compute-intensive step. The spikes are
exchanged between the processes via MPI, collective communication operations
are involved as well. The lesson learned is that NEST requires a large but bal-
anced memory capacity Cmem to enable the simulation of large spiking neuronal
networks. However, a high memory bandwidth Bmem is required as well in order
to keep the ratio of simulation time vs. simulated time small. It turns out that
the relevant metrics is given by

Rmem =
Cmem

Bmem
. (1)

Integrating multiple memory technologies, the balance between the different
technologies can be optimized with respect to the characteristics of a given sim-
ulation code. High-bandwidth memory technologies like GDDR5 and HMC are
characterized by Rmem = O(10)ms, standard DDR memory by Rmem = O(1) s,
and dense memory technologies like NAND-flash, PCM or STT-MRAM by
Rmem = O(100) s.

Creating hierarchical memory models, including novel storage-class memory
integrated in the form of network attached memory on a very low latency, high-
est bandwidth network, and the appropriate middleware solutions are one line
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Fig. 6. Stages of the PCP for the HBP in the ramp-up phase.

of investigation carried out in the HPC subproject. Additionally, we have to
think about file systems, caches for file systems or the appropriate file system
semantics, or offloading pragmas.

3.2 Pre-commercial Procurement

The specific supercomputing requirements for HBP analysis, modeling and sim-
ulation are specified in close contact with the simulation subproject. The goal is
to drive the development of innovative HPC technology solutions that meet the
HBP’s specific requirements such as large memory and interactivity. To achieve
this goal, the HPC subproject will start an open, transparent and competitive
process together with the international HPC industry. The timeline of this Pre-
Commercial Procurement (PCP) process is shown in Fig. 6.

The PCP of the HBP will be organized in three phases, with two compet-
ing vendors providing prototypes for demonstration and validation in the last
phase. In this manner, the most promising HPC technologies meeting the require-
ments of the HBP will be chosen. These will form the technological basis for the
procurement of the HBP’s pre-exascale production system with about 50 PF/s
performance and about 20 PB of hierarchical memory in the next phase of the
project (2016/18).
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3.3 Sharpening the Tools

The immense data management and simulation challenges as posed by the HBP,
requiring machines by factors larger and more complex than current supercom-
puting systems, can only be mastered by a holistic strategy including accompa-
nying research. The HPC subproject involves work packages and tasks that will
for instance provide new integrative programing models or HPC-adapted numer-
ical algorithms, relevant for brain simulation. Rather than going into details at
this stage, let us consider an important element of R & D in the HBP, the field
of performance tools.2

The goal of the task “performance analysis and tuning” is to support the HBP
code teams in analyzing and tuning their simulation codes. The tools have to run
on extreme-scale systems and must be enabled to interact with HBP interactive
workflows. The partners JSC and BSC are scaling up the tool packages Score-P,
Scalasca, CUBE, Extrae, Paraver, and Dimemas.

It is reassuring that the performance analysis package Scalasca 1.4.3 was able
to perform on the entire BlueGene/Q at JSC running the NASA NAS benchmark
BT-MZ. In fact, the code was tested even on 1,048,704 cores of the system at
Argonne National Laboratory. This was the largest successful trace measurement
and analysis ever done.

A scaling analysis of the NEST code on BlueGene/Q was performed with
varying core numbers on 1, 2, 4, and 8 racks. It was able to automatically deter-
mine and classify scaling behavior of each program region. First results showed
a significant improvement of the performance in the neural network buildup
phase. A low-level analysis with the NEURON neuroscience code is under way.
It addresses the integration kernel, with focus on algorithmic density, L2 cache-
to- memory bandwidth, stalled cycles, vectorization, and prefetching.

3.4 Making of the HPC Platform

The HBP’s HPC Platform subproject is devoted to building the supercomputing
and data hard- and software infrastructure required to run cellular brain model
simulations up to the scale of a full human brain, and to make this infrastructure
available to the consortium and the wider community. Figure 7 shows a sketch
of the structure of platform.

A central element of the HPC Platform is the HBP Supercomputer, the
project’s main production system, which will be built in stages to arrive at the
exascale capability needed for cellular simulations of the complete human brain
at the beginning of the next decade. It will be the task of the JSC to develop,
deploy and operate the HBP Supercomputer.

The interactive supercomputing capabilities that will be developed for the
HBP will be invaluable not only for neuroscience but also for a broad range of
2 The fields “programming paradigms” will be presented as a contribution by Jesús

Labarta [20], the field “interactive visualization” is found in the contribution of
Torsten Kuhlen [21].
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Fig. 7. Supercomputing and data infrastructure for the HBP.

other applications in the life sciences and elsewhere. While the HBP is poised to
become a main driver for the future development of high-performance computing,
the breadth of applications involved and their requirements will warrant the
usability of the HBP Supercomputer for many other fields, too.

Besides the main HBP Supercomputer at Jülich the HBP’s HPC Platform
will consist of a software development system at CSCS (Lugano, Switzerland),
a system for molecular-level simulations at BSC (Barcelona, Spain), and a sys-
tem for massive data analytics at CINECA (Bologna, Italy). During the ramp-
up phase of the project, the HBP will negotiate with further PRACE Tier-0
institutions that have expressed their interest in adding in-kind support to the
Platform. A high priority goal is to establish a PRACE community access pro-
gramme, also to be negotiated in the ramp-up phase. This will allow access to
the Tier-0 capability of the HPC Platform, reviewed by the HBP’s International
Access Board, via PRACE services.

4 Summary and Outlook

The HPC subproject plays a key role in the HBP as it contributes to the project
a unique combination of expertise and infrastructure, building the interface
between neuroscience and supercomputing. Modern high performance comput-
ing technology will not only be essential to bring us closer to the goals regarding
future medicine and a deeper understanding of the brain’s functions. The HBP
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has the potential to change the future course of HPC itself. This includes brain-
inspired computing in the form of algorithms and, furthermore, the radically
novel idea of neuromorphic computing hardware.
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