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Abstract. This paper presents a static feature extraction framework
for Android malware analysis. The techniques are implemented by ex-
tracting prominent features from the components of Android application
package i.e. AndroidManifest.XML files. Five different types of features
likely permissions, count of permission, hardware features, software fea-
tures as well as API calls from 1175 .apk files are mined for performing
the investigation. The objective of this work is to evaluate if independent
features are effective in comparison to ensemble features. Feature reduc-
tion is performed to investigate the impact of varied feature length on
classification accuracy. Feature selection techniques such as Bi–Normal
Separation, Mutual Information, Relevancy score, Kolmogorov depen-
dence and Kullback Leibler are administered to choose the significant
attributes. The proposed method introduced here using dimensionality
reduction and machine learning algorithms produces an overall classifi-
cation accuracy of 93.02% with ensemble features. Comparing the em-
pirical results of ensemble features with individual features, the former
improved the classification accuracy with Bi–Normal Separation.

Keywords: Android malware, Ensemble features, Feature selection,
Static Analysis.

1 Introduction

Smartphones with complete functionalities of a basic phone are equipped with
the additional capabilities like web browsing, Wi–fi, digital media access etc.
These gadgets have the ability to incorporate small computer programs called
apps that can be used for entertainment as well as to perform many other useful
tasks.

Android is an OS based on the Linux kernel primarily designed for touchscreen
devices. It is the fastest growing mobile operating system that contributes a
world–class platform for the development of applications and games for its users
and provide an open marketplace for the distribution of these apps [5].

According to the Symantec Corporation Internet Security Threat Report
2014 [6], popular legitimate applications from the Google Play are downloaded
by the attackers and are repackaged with additional code thereby generating
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third party apps. Trojans mostly disguised as legitimate applications are a part
of these malicious codes injected to mobile apps. Such programs uploaded to the
mobile marketplaces are downloaded and installed by the users unaware of its
maliciousness.

The compromised smartphones are vulnerable to threats like stealing user
credentials, stack based buffer overflow resulting in arbitrary code execution,
activating unknown services in the device without user’s knowledge, denial of
service attacks etc. Some forms of attacks exercised by the malware authors are
execution of code using Android debugger bridge (adb), cross site scripting for
redirecting to vulnerable domains and memory corruption for gaining root priv-
ileges. The desktop security solutions in Antivirus based on signature generation
cannot detect zero–day malware attacks. These techniques are not completely
scalable for smartphones as it require more memory and processing power [13].

Due to these above mentioned drawbacks of the existing detection system,
we perform static analysis implementing dimensionality reduction and machine
learning algorithms for Android malware analysis. We extract permissions, soft-
ware/hardware features and Application Programming Interface (API) calls that
are significant for mobile malware identification. The contributions of this work
are the following:

– Employed attribute ranking methods like Bi–Normal Separation, Mutual In-
formation, Relevancy score, Kolmogorov dependence and Kullback Leibler to
mine precise attributes for classification.

– The most prominent attributes that contribute to the characterization of
mobile malware can be determined.

– Optimal feature length, best classifier as well as attribute selection method
are found out using this detection mechanism.

– An accuracy of 93.02% is achieved using ensemble features with Bi–Normal
Separation feature selection.

The remaining sections are organized as follows: Section 2 includes the related
works. Section 3 explains the proposed methodology. Section 4 contains the
experiment carried out followed by the results and findings. Section 5 discusses
about the inference and finally the conclusion and future work is presented in
Section 6.

2 Related Works

The authors [20] used permissions to detect malicious apps in Android OS. A
total of 124,769 benign and 480 malicious files were used in their work. The
requested and required permissions, number of required permissions, normal,
signature, dangerous permissions, number of files with .so extension, number
of elf files, count of executable, shared objects were considered as the features.
Results showed that a permission–based detector can detect more than 81% of
malicious samples.
The authors [21] proposed a machine learning based malware detector to dis-
criminate normal and malware applications. The features used were permissions
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mined from 200 .apk samples. The generated models were trained and evaluated
using the Area Under ROC Curve (AUC). They obtained an accuracy of 91.58%
using Random Forest classifier.

PUMA [22] detects malicious Android apps by extracting permissions. They
collected 239 Android malware samples, and obtained a 0.92 of AUC using the
Random forest classifier. Except the Bayesian–based classifiers, the methods
achieved accuracy rates higher than 80%. The best classifier was Random Forest
trained with 50 trees with an accuracy of 86.41%.

This [23] approach used the <uses–permission> and the <uses–feature> tags
present in the manifest file. Manhattan, Euclidean and Cosine distance were
applied and obtained AUC of 0.88 using Manhattan distance with average as
the combination rule (85% accuracy). Using Euclidean distance, they obtained
more than 0.90 of AUC with 87.57% of accuracy. The best results of 0.91 of
AUC and nearly 90% of accuracy was obtained using Cosine similarity.

MAMA [24] used permissions and feature tags within the manifest file. The
best results are obtained with Random Forest, using 100 trees, achieving an
accuracy of 87% and an AUC of 0.95 for malware detection.

DREBIN [26] performs static analysis by extracting maximum possible num-
ber of features of an app’s code from manifest file. The features are grouped in
sets of strings (such as permissions, API calls and network addresses) and are
embedded in a joint vector space. About 123,453 applications and 5,560 malware
samples are used for the investigation and it detects 94% of the malware with
relatively less false alarms.

Authors in [16], [17], [19] devised a supervised anomaly detector named An-
dromaly to extract 88 prominent features. Detection rates were better for the
database with benign games than benign tools when used in combination with
the 4 malicious apps. The NB and Logistic Regression were found to be the
better classifiers.

DroidAPIMiner in [25] was used to extract API calls using a modified An-
droguard tool and different classifiers were evaluated using the set of features.
They achieved an accuracy of 99% and false positive rate of 2.2% using k–NN
classifier.

In [27] the authors presented a static analyzer, Droid Permission Miner, that
mines prominent permissions present in the .apk files. Feature selection tech-
niques like Bi–Normal Separation (BNS) and Mutual Information (MI) were
used in their work and obtained an accuracy of 81.56% with 15 features proving
MI to be better method.

3 Proposed Methodology

This section deals with our static framework for Android malware detection that
implements machine learning techniques. Different features that belong to dis-
tinct feature categories are extracted and dimensionality reduction is employed
to prune the feature space. Androguard [1] is used for mining permissions, count
of permissions, software/hardware features and API calls for identifying mali-
cious apps. The permissions, software/hardware features and permission count
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are mined from the Android Manifest File. However, the API calls from each
.apk files are also extracted using the Androguard tool. The individual features
are used for classification in the first phase followed by the experimentation with
ensemble features. The architecture for our proposed model is shown in Figure 1
for individual features and Figure 2 for ensemble model. These models are briefly
described in the following subsections.
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Fig. 1. Individual feature model
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3.1 Dataset Preparation

Dataset is prepared using 1175 .apk files comprising of 575 malicious samples
collected from Contagiodump [2] and from different user agencies. Also, 600
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benign applications were downloaded from various publicly available Internet
sources. The benign samples are divided such that 300 files are included in the
test set and the other 300 samples are allocated to train set. From the 575
illegitimate samples, 287 .apk files are included in the test set and the remaining
288 files are added to the train set.

3.2 Feature Categories

The individual feature model as well as ensemble model generation requires
features that are extracted from five distinct categories. Different categories of
features are listed below.

– Permissions: The activities of an application depends upon the permissions
requested by it. It is declared statically and there is no provision to de-
clare it dynamically. Android architecture provides a well framed permission
mechanism to provide security.

– Permission count: This feature set is generated by computing the number
of permissions requested by an application.

– Hardware features: These are the features required by the app for its exe-
cution. It provides information about the set of hardware features on which
the application depends.

– Software features: These are the software features required by the application
for its execution.

– API calls: The application programming interface calls are invoked at the
execution time to perform some specific tasks.

3.3 Feature Extraction

The Android .apk files [18] are provided as input to the disassembler tool An-
droguard. These files are initially in the binary format. The .xml files are human
readable Manifest files generated from the input .apk files using python script
androaxml.py. The permissions (within <uses-permission> tag) as well as s/w
and h/w features (within <uses-feature> tag) are extracted from these xml files.
Similarly, the python script androapkinfo.py is used to mine the API calls of
the samples. After extracting permissions from each .apk file, the number of per-
missions requested by each file is determined. The count of permissions existing
in a file is considered as another feature for generating the classification model.

3.4 Pre–processing Phase

In this phase, feature pruning is carried out to eliminate the attributes that
results in misclassification. After removing the irrelevant attributes, features
common to both the classes (M ∩B) are considered. Common features are given
high precedence over other category of attributes such as union of malware and
benign features (M∪B), discriminant benign and discriminant malware features
as they are reported to be insignificant for the detection of malicious samples [27].
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3.5 Feature Selection Techniques

Feature selection is exercised to synthesize the input data into convenient size so as to
extract a subset of k prominent features from a set of n features (large feature space).
The techniques discussed below implements dimensionality reduction to exclude re-
dundant features. The selected attributes are used to fabricate the classification model
to predict unknown samples. Equations of the five feature selection techniques used in
this work are discussed in Table 1.

Table 1. Feature selection techniques

Method Equation Description

BNS [10]
[11] [12]

BNS = |F−1(tpr)− F−1(fpr)|
TruePositiveRate =

(TP )

(TP + FN)

FalsePositiveRate =
(FP )

(TN + FP )

Selects positive and negative fea-
tures and is not biased to any
class. Its value is determined
from the statistical table for Z–
Score [4].F−1 is the inverse cumu-
lative probability function of stan-
dard normal distribution

MI [8] MI(f,C) =
∑

C∈{M,B}

∑

f

P (f, C)log

(
P (f, C)

P (f)P (C)

)It gives the extent to which an at-
tribute f reduces the uncertainty
in determining the appropriate
class C. P(f,C) is the joint proba-
bility distribution, P(f) and P(C)
are the marginal probability dis-
tributions of variables f and C.

RS [7] RS(tk, Ci) = log

(
(P (tk|Ci) + d)

(P (t̄k|C̄i) + d)

)
It is based on the conditional
probabilities of a feature in the
training set. P (tk|Ci) is the pres-
ence of feature tk in class Ci

,P (t̄k|C̄i) is the absence of feature
tk in class Ci and d is the number
of samples with feature tk in class
Ci.

KO [14] KO(f) =

|C|∑

j=1

p(f) (p(f |Cj)−p(f |C̄j)) This method scores each feature
f depending on its relation with
the classes Cj , C̄j . P (f |Cj) is the
presence of feature f in class Cj ,
P (f |C̄j) is the presence of feature
f in class C̄j , |C| is the total
number of classes and P (f) is the
probability of feature f.

KL [14] KL(f) = −P (f |M)log

(
P (f)

P (f |M)

)
−

P (f |B)log

(
P (f)

P (f |B)

)
P (f |M) is the presence of feature
f in class M (malware), P (f |B) is
the presence of feature f in class
B(benign) and P (f) is the proba-
bility of an attribute f.
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These techniques are applied to the top 78 common permissions and prominent 2166
APIs common to both malware and benign train set to reduce the feature space. The
common features (M ∩B) are arranged in the decreasing order of their BNS, MI, RS,
KO and KL scores respectively. The top BNS scored attributes are not used as it does
not provide better accuracy according to the previous work [27]. Hence, we considered
bottom BNS and top MI, RS, KO and KL attributes with diverse feature lengths.

3.6 Ensemble Features

This feature space is generated by combining the optimal feature sets of five individual
categories of feature (Permissions, count of permissions, s/w and h/w features and API
calls). The top ranked features are combined to create ensemble feature space to im-
prove the classification accuracy. The ensemble features are constructed by discarding
all extraneous attributes (refer Fig.2).

3.7 Classification

The malware and benign models are developed using classifiers (AdaBoostM1 with J48
as base classifier (ADA) [28], Random Forest (RF)[9] [No: of Trees= 40, seed=3] and
J48) implemented in WEKA [15]. Unknown samples are predicted using these learned
models.

3.8 Evaluation Parameters

Accuracy [30] gives the degree of correctness of a model in classifying the test samples.
Here, FP gives the misclassification of benign samples, TP indicate correctly classified
malware instances, FN represents wrongly classified malware samples and TP denotes
correctly classified malware files.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

The investigations carried out in this work are listed below:

1. Determination of robust feature selection method.

2. Evaluate the optimal feature vector length.

3. Estimation of best feature category (permissions, permission count, software/
hardware features or API calls).

4. Determination of the best classifier that reduced misclassification.

5. Comparative study of ensemble and individual features.

4 Experiments and Findings

The experiments are performed on a computer with Ubuntu 12.04 OS, Intel core i3
CPU and 4GB RAM. The two phases involve (1) considering independent attributes
and (2) use of ensemble features. The experiments are carried out in two ways; using
test/train set and cross validation.



310 A. M. Aswini and P. Vinod

4.1 Evaluation Based on Train and Test Set

Performance Evaluation with Independent Features. The models for classifica-
tion are created by considering the frequencies of attributes in each file, and individually
recording the presence/absence of an attribute (known as Boolean features). In each
sample, the permissions and software/hardware features are declared only once so their
presence/absence (0 or 1) are considered in the feature vector. In case of API call, the
investigation is carried out in two ways (presence/absence and frequency).

Boolean Feature Vector Table (FVT): From the training samples, a total of
195 and 109 unique permissions are obtained respectively from benign and malware files
and 78 common permissions are obtained from these unique lists. These 78 permissions
are arranged based on their BNS, MI, RS, KO and KL scores in descending order. BNS
features are selected from the bottom and top MI, RS, KO and KL scored attributes are
considered. For KO, 34 benign as well as 44 malware prominent features are obtained
from the 78 common permissions. Classification models are generated using top 10, 20
· · · 70 ranked permissions based on the five selection methods. The same activity is
carried out with the permission count for the training samples. A total of 7,174 and
29,765 unique API calls are obtained for malware and benign apps. During the pre–
processing phase, 50% of infrequent APIs are eliminated thus reducing the feature space
to 14,882 benign and 3587 malware APIs respectively. From this pruned feature set,
2166 common APIs are determined. After implementing Kolmogorov dependence (KO),
out of 2166 api calls, 786 malware and 1378 benign prominent features are obtained.
Classification models are generated using significant API calls (scored on the basis
of five feature selection methods), specifying their presence/absence in a sample for
variable feature length (i.e. 50, 100, 200 · · · 1000). The 40 h/w and 7 s/w attributes
obtained are used without reducing their feature space.

Table 2. Accuracies for BNS, MI, RS and KL scored permissions

Feature selection Method BNS MI RS KL��������������Feature Length
Classifier

J48 ADA RF J48 ADA RF J48 ADA RF J48 ADA RF

10 82.14 82.31 84.69 84.69 85.03 85.03 83.84 82.31 83.33 85.20 85.71 85.20

20 85.03 85.37 89.62 86.05 87.24 87.58 85.37 86.90 88.77 82.14 86.56 87.07

30 87.92 89.79 92.51 84.69 87.24 87.58 88.77 86.56 89.96 83.50 86.73 88.09

40 86.90 88.26 92.00 84.35 88.09 91.49 87.92 88.94 90.98 84.86 88.09 90.98

50 87.24 89.11 92.17 86.56 89.62 91.66 87.07 90.47 91.32 86.56 88.94 92.51

60 87.41 89.28 91.15 87.58 88.94 92 87.41 88.60 91.66 87.58 88.94 92

70 87.41 89.11 91.83 87.41 89.29 92.51 87.41 89.11 91.83 87.41 89.28 92.51

The results of the above experiments are reviewed here. The 30 BNS permission
feature resulted in higher accuracy using Random Forest (i.e. 92.51%). It is observed
that the classification model generated using MI, RS, KO and KL features does not
identify malicious apps effectively as it uses more number of permissions than BNS for
improved performance (refer Table 2). Similar experiment is performed for the count
of permissions. The optimal feature length is observed to be 71 with an accuracy of
92.34% using BNS/MI/KL with Random Forest (refer Table 3). For API calls, the
Boolean features (with feature length of 50) provided improved accuracy of 90.81% us-
ing BNS (refer Table 4). The results obtained using the software and hardware features
without implementing feature selection technique are shown in Table 6. The 40 h/w
and 7 s/w features depicted less accuracy (56.12 and 52.04% respectively).
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Due to lack of space, the accuracies for Kolmogorov dependence (KO) with feature
lengths that are found to be optimal are only projected in Table 6.

Table 3. Accuracies for BNS, MI, RS and KL scored permission count

Feature selection Method BNS MI RS KL��������������Feature Length
Classifier

J48 ADA RF J48 ADA RF J48 ADA RF J48 ADA RF

11 84.69 86.90 87.07 86.22 87.41 88.09 85.54 84.01 86.05 86.22 87.07 86.90

21 85.20 87.92 90.81 86.05 87.75 89.62 86.39 87.75 90.13 84.35 87.07 89.96

31 87.41 88.26 91.15 84.69 88.77 89.96 88.26 89.28 90.81 84.35 87.41 90.30

41 86.90 89.11 91.83 84.35 88.77 91.83 87.92 88.94 91.32 84.86 87.41 91.66

51 87.24 89.11 91.83 86.56 87.92 91.83 87.07 89.28 91.83 86.56 89.62 91.34

61 87.41 88.43 92.17 87.58 87.58 92.17 87.41 88.77 90.98 87.58 87.58 92.17

71 87.41 88.43 92.34 87.41 88.43 92.34 87.41 88.43 92.17 87.41 88.43 92.34

Table 4. Accuracies for BNS, MI, RS and KL scored API calls (Boolean features)

Feature selection Method BNS MI RS KL��������������Feature Length
Classifier

J48 ADA RF J48 ADA RF J48 ADA RF J48 ADA RF

50 84.01 86.22 90.81 83.50 82.99 82.48 83.84 85.54 88.94 83.50 82.82 82.99

100 87.24 88.77 90.81 85.54 86.73 88.60 86.39 89.28 91.49 85.30 85.54 87.41

200 87.75 89.45 89.79 85.71 89.79 88.26 87.58 89.28 91.32 85.71 87.24 88.43

300 86.05 89.79 90.81 85.71 90.64 89.79 87.07 90.47 90.47 85.71 88.09 88.09

400 86.05 90.81 89.79 85.54 87.58 90.47 86.73 88.94 91.32 86.05 88.43 88.77

500 86.90 89.79 90.47 87.41 90.30 90.81 86.73 89.79 92.34 86.22 88.77 89.79

600 87.75 90.81 90.13 87.41 90.47 91.15 87.07 90.13 91.15 86.22 88.60 89.45

700 89.11 88.77 90.98 86.22 89.11 90.47 87.07 88.09 91.32 86.22 89.45 89.62

800 88.94 90.13 91.15 87.75 90.81 90.47 87.07 88.77 90.98 87.41 89.11 89.28

900 88.77 90.64 91.15 87.75 90.47 90.81 88.09 91.15 91.49 87.41 89.11 90.47

1000 88.77 90.64 90.64 87.75 90.30 90.47 88.09 91.15 90.47 87.41 89.28 90.30

Frequency FVT: For API calls, the classification model is generated using the
frequencies of API in the samples. BNS gives an accuracy of 91.83% with 100 fea-
tures using Random forest. A minor increase in accuracy is attained using Relevancy
Score (Acc. 92.51% with 400 features) but MI, KO and KL shows less performance (re-
fer Table 5 and Table 6). Summarizing the results for independent features, BNS is
better for every feature categories as it uses less attributes for classification. Permis-
sions give 92.51% accuracy compared to API calls and permission count (refer Tables
2-6). For all the cases, Random Forest gives better results.

Table 5. Accuracies for BNS, MI, RS and KL scored API calls (Frequency features)
Feature selection Method BNS MI RS KL��������������Feature Length

Classifier
J48 ADA RF J48 ADA RF J48 ADA RF J48 ADA RF

50 84.69 85.20 90.13 83.50 81.46 82.48 87.58 88.60 90.64 83.50 83.50 82.65

100 87.07 89.62 91.83 83.84 86.56 88.94 86.22 89.45 90.47 85.03 86.05 86.90

200 87.24 89.45 91.35 85.37 88.94 90.47 87.58 88.60 90.81 85.54 88.43 88.77

300 86.22 89.28 89.96 85.54 89.62 90.13 88.60 91.49 91.49 85.54 88.09 88.09

400 86.22 88.77 90.98 86.05 90.30 89.79 88.09 91.15 92.51 84.69 85.71 88.77

500 86.39 89.28 91.81 84.86 89.79 90.81 88.09 89.79 92 86.05 89.11 90.30

600 86.73 89.79 91.32 84.86 90.13 90.47 88.09 90.64 90.98 86.05 88.60 90.13

700 86.73 90.81 91.32 87.92 89.45 90.98 88.26 91.15 90.98 86.05 87.92 90.13

800 87.75 90.64 91.66 88.43 90.13 90.81 88.26 91.66 91.32 87.24 88.94 89.28

900 87.41 90.81 91.68 88.26 90.64 90.30 87.41 89.96 91.32 87.24 88.43 90.13

1000 87.41 90.30 91.32 88.26 90.13 91.49 87.41 89.96 91.66 87.24 89.62 90.47
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Table 6. Accuracies for software/hardware features and KO features (API calls, per-
missions and permission count) for benign and malware feature lists (projected the
accuracies only for optimal feature lengths of corresponding feature categories due to
lack of space)

Features s/w h/w

API calls Permissions & count
Boolean Frequency Permissions Permission count

Benign Malware Benign Malware Benign Malware Benign Malware��������������Classifier
Feature Length

7 40 1000 200 200 600 30 30 35 45

J48 51.19 53.23 83.50 88.26 84.35 85.03 67.68 84.69 82.82 85.88

Adaboost MI (J48) 51.19 54.08 86.90 89.45 87.24 87.58 68.53 84.18 85.37 87.24

Random Forest 51.04 56.12 89.11 90.13 90.64 90.13 70.40 88.09 86.90 89.79

Performance Evaluation with Ensemble Features
Two ensemble models are generated for the five feature selection techniques using (1)
the frequencies of prominent API in each file and (2) considering the Boolean value
of APIs with the presence/absence of other four categories of features. From Table 7,
ensemble model fabricated using frequency with BNS gives an accuracy of 93.87% (for
218 features) with RF classifier. MI (Acc. 94.04%), RS (Acc. 93.87%), KO (93.36% with
Benign prominent feature set) and KL(93.53%) depict similar accuracy but employs
1118, 518, 292 and 598 features respectively. The ensemble model designed by Boolean
values in FVT of API calls, permissions, count of permissions and software/hardware
features is found to be 93.02% with BNS (for 168 features). MI(Acc. 93.53%), RS(Acc.
93.84%), KO(92.85% with malware prominent feature set) and KL(94.21%) have im-
proved accuracies using 718, 618, 292 and 998 features respectively. These two obser-
vations indicates that that the ensemble model constructed by employing the Boolean
features with BNS provide higher accuracy with 168 features.

Permissions and API calls that are rarely and widely used by malicious and legiti-
mate samples with their descriptions are given in the Appendix A (Tables 10-13).

4.2 Cross–Validation

Cross–validation [29] is implemented to predict the accuracy of a learning model. This
approach is significant in the cases where the size of the learning data is very small
or when the model is generated with large number of attributes. For a dataset of
N specimens, k -fold cross–validation (also known as rotation-estimation) splits the
dataset into k mutually exclusive subsets and testing/training are performed k times.
In order to estimate the accuracy of a classifier, we performed 10-fold cross–validation
(refer Table 8 for the results). In case of KO, ’M’ represents malware features and ’B’
represents benign attributes .

Table 7. Accuracies for Ensemble features (Boolean and Frequency of features)

Model Ensemble features (Frequency) Ensemble features (Boolean)

Feature selection method BNS MI RS KO KL BNS MI RS KO KL��������������Classifier
Feature Length

218 1118 518 292 598 168 718 618 292 998

J48 87.92 87.41 87.92 87.75 88.94 88.26 89.28 89.64 88.77 87.92

Adaboost M1(J48) 90.64 91.83 91.49 93.19 90.30 91.15 90.64 91 91.32 93.02

RF (40) Seed 3 93.87 94.04 93.87 93.36 93.53 93.02 93.53 93.84 92.85 94.21
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Table 8. Accuracies attained by Random forest classifier after cross validation with
prominent features of individual feature categories and ensemble features for five feature
selection methods; Represented in the form α/(β); where, (α) represents accuracy and
(β) represents feature space

Selection
techniques

Features

Permissions
Permission
count

API Calls
(Frequency)

API Calls
(Boolean)

Ensemble
(Frequency)

Ensemble
(Boolean)

BNS 91.14/(30) 91.23/(71) 90.97/(100) 89.53/(50) 93.53/(218) 92.51/(168)
MI 91.40/(70) 91.65/(71) 91.74/(1000) 90.80/(600) 94.04(1118) 94.12/(718)
RS 91.23/(70) 91.57/(71) 91.82/(400) 92.08/(500) 93.95/(518) 93.36/(618)
KL 91.57/(50) 91.65/(71) 90.72/(500) 91.40/(900) 93.95/(598) 93.61/(998)
KO 86.72/(30,M) 87.82/(45,M) 90.97/(200,B) 89.02/(200,M) 91.23/(292) 92.51/(292)

4.3 Processing Time

The time consumed by prominent BNS features for processing are computed in seconds
(secs). This is compared with the time taken by the prominent attribute sets of other
feature selection techniques that give improved accuracies with increased feature space
(refer Table 9).

Table 9. Processing time (in secs) of prominent BNS features compared with the
attribute sets of other feature selection techniques (that exhibit improved accuracy
with more features); represented in the form δ(β, γ); where, (δ) represents processing
time for Random forest, (β) depicts feature space and (γ) gives attribute selection
technique

Classification
approach

Attributes

Permissions
API Calls
(Frequency)

API Calls
(Boolean)

Ensemble
(Frequency)

Ensemble
(Boolean)

Test/train set
1.21 × 10−9[30,BNS]/

1.45 × 10−9[50,KL]

1.46 × 10−9[100,BNS]/

2.3× 10−9[400,RS]

1.28 × 10−9[50,BNS]/

2.15 × 10−9[500,RS]

1.43× 10−9[218,BNS]/

1.77× 10−9[1118,MI]

1.33× 10−9[168,BNS]/

1.68× 10−9[718,MI]

Cross validation
0.33[30,BNS]/
0.46[50,KL]

0.52[100,BNS]/
1.07[400,RS]

0.39[50,BNS]/
1.38[500,RS]

0.61[218,BNS]/
2.23[1118,MI]

0.57[168,BNS]/
1.63[718,MI]

5 Inference

The following are the inferences made from this work:

– For independent features, permissions are found to be the desired attributes as the
accuracy attained with BNS is 92.51% (with a small feature length of 30). The
functioning of an app is based on the permissions requested by it and all malicious
apps need some permissions that are different from the benign .apk files.

– Ensemble models combine the optimal feature space of individual features and
gains the strength of this combination. So these models are better than the models
built using individual features.

– BNS assigns higher rank to an attribute in comparison with MI, RS, KO and
KL (refer Appendix B, Figure.3 and Figure.4).

– Random Forest being an ensemble based learning method aggregated the results
from multiple classifiers and performed better in all cases.
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– Increase in feature length included the features that are not apt for model gener-
ation and reduced the classification accuracy.

– In PUMA [22], permissions and count of permissions are used as features to attain
86.41% accuracy. MAMA [24] extracted permissions as well as features present in
the uses–feature tags and obtained best results with Random Forest (accuracy of
87%). Droid Permission Miner [27], extracted permissions and implemented Bi–
Normal Separation (BNS) and Mutual Information (MI) to obtain an accuracy
of 81.56% (with MI using 15 features). Our work with five feature categories and
ensemble features show reasonable performance when compared with [22], [24]
and [27]. Here, the accuracy attained is 92.51% with 30 permissions. Using the
count of permissions, the accuracy is 92.34%. With 100 API calls, the accuracy
is 91.83% for BNS with Random forest classifier. The accuracies of the proposed
ensemble model using BNS is 93.02% (with Boolean features using 168 features)
and 93.87% (with frequency attributes using 218 features) with Random Forest
classifier.

6 Conclusion and Future Scope

We presented a static malware analysis framework using permissions, count of per-
missions, software/hardware features and API calls by implementing machine learning
algorithms. The ensemble model performed better compared to the individual model. In
this work, BNS synthesized precise features that improved the classification accuracy.
The accuracy for ensemble model with Boolean features is 93.02% with 168 features
and individual model with 30 permissions are 92.51% using BNS. Thus, our proposed
method can be used for the initial classification of .apk samples with reduced false
alarms. In future, features like Dalvik opcode, Java reflection and Android Manifest
attributes can also be used individually and as ensemble features. Also, data flow and
analysis on API call with and without parameters can be used as in [25] to improve
the applicability of our implemented scheme.

Acknowledgements: We would like to thank all the anonymous reviewers for their
valuable suggestions that assisted us to enhance the quality of our work.
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Appendix A

Table 10. Prominent permissions and their description

Permissions Description

WRITE EXTERNAL STORAGE Permission for an application to write to the external stor-
age

READ PHONE STATE Permission read only access to phone state

CHANGE WIFI STATES Allows changing wi-fi connectivity state

WAKE LOCK Allows using PowerManager WakeLocks to keep processor
from sleeping or screen from dimming

SEND SMS Allows an app to send SMS Permission for the app to access
network information

ACCESS WIFI STATE Permission for the app to access network information

ACCESS COARSE LOCATION Permission for the app to access approximate location by
means o towers and wi-fi

ACCESS FINE LOCATION Permission for the app to access precise location by means
of towers and wi-fi

READ CONTACTS To read contact list of the device’s user
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Table 11. Trivial permissions and their description

Permissions Description

RECEIVE WAP PUSH Permission to monitor incoming wap push

WRITE CALL LOG Permission for an application only to write user’s contact data

READ CALL LOG Permission for an application to read call log

CLEAR APP CACHE Permission for an application to clear the caches of all apps
that are installed

UPDATE DEVICE STATUS Permission for an application to update device statistics

DEVICE POWER Permission for an application for low-level access to power
management

CALL PREVILEGED Permission for an application to call any phone number with-
out using dialer user interface to confirm the call

BATTERY STATS Permission for an app to collect battery statistics

Table 12. Significant API calls and their description

API calls Description

onCreateOptionsMenu() It is called only one time, i.e, the first time when the options
menu is shown. It is used to initialize the contents of the
activity’s standard options menu. Menu items are placed in
menu

onDraw() Override these calls to implement custom view. Used when
the contents of the view has to be changed

onActivityResult() Gives the results back from an Activity when it ends

onCreateDialog() To implement dialog designs present in the dialog design
guide

onTouchEvent() Called when an event like a touch screen motion event oc-
curs

onOptionItemSelected() Called when an item in the options menu is selected

onAttachedToWindow() It is called when the view is window attached

onKeyUp() Called at the time of an event like a key up event

Table 13. Trivial API calls and their description

API Calls Description

setLanguage() Sets the text to speech language

setMarginEnd() Provides additional space on the end side of this view. It
sets the end margin

setWebViewClient() Sets the webViewClient that is capable of receiving re-
quests

shouldOverrideKeyEvent() Provides chance to the host application to handle the key
events simultaneously

setPitch() Sets the speech pitch

addSpeech() Adds mapping between text and a sound file

setSpeechRate() API calls to set speech rate

setName() API calls to set name of the suit
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Appendix B

Fig. 3. Comparing the ranks of bottom BNS scored API calls with their MI, RS, KO
and KL ranks (Lower ranks indicate high significance)

Fig. 4. Comparing the ranks of bottom BNS scored permissions with their MI, RS,
KO and KL ranks (Lower ranks indicate high significance)
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