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Preface

It gives us immense pleasure to present the proceedings of the 4th International
Conference on Security, Privacy, and Applied Cryptography Engineering 2014
(SPACE 2014), held during October 18–22, 2014, at the Defence Institute of
Advanced Technology (DIAT), Pune, India. This annual event is devoted to
various aspects of security, privacy, applied cryptography, and cryptographic
engineering. This is indeed a very challenging field, requiring the expertise from
diverse domains, ranging from mathematics to solid-state circuit design.

This year we received 66 submissions from seven different countries, out of
which 18 papers were accepted for presentation at the conference after an exten-
sive review process. The submissions were evaluated based on their significance,
novelty, technical quality, and relevance to the SPACE conference. The submis-
sions were reviewed in a “double-blind” mode by at least three members of the
Program Committee. The Program Committee was aided by 29 sub-reviewers.
The Program Committee meetings were held electronically, with intensive dis-
cussions over a period of almost two weeks.

The program also includes six invited talks and tutorials on several aspects
of applied cryptology, delivered by world-renowned researchers: Virgil Gligor
(Carnegie Mellon University), Adrian Perrig (ETH Zurich), Anand Raghunathan
(Purdue University), Peter Schwabe (Radboud University Nijmegen), Vashek
Matyas (Masaryk University), and Phuong Ha Nguyen (Nanyang Technical Uni-
versity and Indian Institute of Technology Kharagpur). We sincerely thank the
invited speakers for accepting our invitations in spite of their busy schedules.

Over the last four years, the SPACE conference has seen a steady growth in
the number of submitted papers of outstanding technical merit. SPACE 2014 was
built upon the strong foundation led by dedicated academicians and industry
professionals. In particular, we would like to thank the Program Chairs of the
previous editions: Debdeep Mukhopadhyay, Benedikt Gierlichs, Sylvain Guilley,
Andrey Bodganov, Somitra Sanadhya, Michael Tunstall, and Marc Joye. Because
of their efforts, SPACE is already in the “must submit” list of many leading
researchers of applied security around the world. It still has a long way to go,
but it is moving in the right direction.

Like its previous editions, SPACE 2014 was organized in co-operation with
the International Association for Cryptologic Research (IACR). We would like to
extend our gratitude to Bimal Roy for his support through the aegis of the Cryp-
tology Research Society of India (CRSI). We are also thankful to the Defence
Institute of Advanced Technology (DIAT) for being the gracious hosts of SPACE
2014. The conference was sponsored by the Defence Research and Development
Organisation (DRDO), under the auspices of the Ministry of Defence (Govt. of
India), and the Cryptology Research Society of India (CRSI). We would like to
thank these organizations for their generous financial support, which helped us
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to avoid steep hikes in the registration fees in comparison to previous editions,
thus ensuring wider participation, particularly from the student community of
India.

There is a long list of volunteers who invested their time and energy to put to-
gether the conference, and who deserve accolades for their efforts. We gratefully
acknowledge all the members of the Program Committee and the sub-reviewers
for all their hard work in the evaluation of the submitted papers. Our hearti-
est thanks to Cool Press Ltd., owners of the EasyChair conference management
system, for allowing us to use it for SPACE 2014. EasyChair was largely in-
strumental in the timely and smooth operation needed for managing such an
international event. We also sincerely thank our publisher, Springer, for agree-
ing to continue to publish the SPACE proceedings as a volume in the Lecture
Notes in Computer Science (LNCS) series. We are further very grateful to all
the members of the local Organizing Committee, for their assistance in ensuring
a smooth organization of the conference, especially Arun Mishra who had the
dual roles of organizing chair and finance chair, and the prime mover of manag-
ing the local affairs at DIAT. Special thanks to our general chairs, Veezhinathan
Kamakoti and Sanjay Burman, for their constant support and encouragement.
We would also like to thank Abhijit Das, Mahesh Jagtap, and Rajesh Pillai
for managing the tutorials and the pre-conference workshop. We would like to
thank Swarup Bhunia for taking on the extremely important role of publicity
chair. No words can express our sincere gratitude to Debdeep Mukhopadhyay,
for being constantly involved in SPACE since its very inception, and being the
person most responsible for SPACE reaching its current status. We thank Durga
Prasad for his commendable job in maintaining the website for SPACE 2014,
and timely updates.

Last, but certainly not least, our sincere thanks go to all the authors who
submitted papers to SPACE 2014, and to all the attendees. The conference is
made possible by you, and it is dedicated to you. We sincerely hope you find the
proceedings stimulating and inspiring.

October 2014 Rajat Subhra Chakraborty
Vashek Matyas

Patrick Schaumont



Message from the General Chairs

We were pleased to extend a warm welcome to all participants of the 4th Interna-
tional Conference on Security, Privacy, and Applied Cryptographic Engineering
2014 (SPACE 2014). Over the years, SPACE has progressed to become a major
international forum for researchers to present and discuss ideas on challeng-
ing problems in the ever-expanding field of security and applied cryptography.
SPACE 2014 was held at the Defence Institute of Advanced Technology (DIAT),
Pune, Maharashtra, India, during October 18-22, 2014, in cooperation with the
International Association for Cryptologic Research (IACR). The proceedings are
being published by Springer as an LNCS volume.

The importance of SPACE, as a platform for the development and discussions
on “engineering the system right” by the researchers working in the areas of
security, privacy, and applied cryptography, needs to be seen in the light of the
revelations of Edward Snowden. These revelations demonstrate the ease with
which current deployed security in today’s connected world can be subverted.
Society’s trust in the increasing use of information systems in critical applications
has been severely eroded. This is a challenge that needs to be addressed by the
research community, to ensure that the necessary assurance about the adequacy
of the security technologies can be provided.

With emerging technologies and increasing complexity of hardware and soft-
ware systems, security is not confined to a single layer and needs to be addressed
across layers: hardware, microarchitecture, operating system, compiler and ap-
plication software. We are happy to note that over the years there has been a
steady increase in the diversity of topics in the submissions to SPACE.

The program chairs, Rajat Subhra Chakraborty, Vashek Matyas, and Patrick
Schaumont, deserve a special mention for their efforts in selecting an outstand-
ing Program Committee and conducting a rigorous review process. Our sincere
thanks go to the Program Committee members and sub-reviewers for their time
and efforts in reviewing the submissions and selecting high-quality papers. The
main technical program was accompanied by several tutorials, invited talks, and
a two-day workshop. We are extremely grateful to DRDO, CRSI, and all the
other sponsors for their generous financial support. The conference would not
have been possible without their support. Last but not the least, our special
thanks to the local Organizing Committee at DIAT, especially Arun Mishra for
ensuring the smooth operation of the conference.

October 2014 Sanjay Burman
Veezhinathan Kamakoti
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SCION: Scalability, Control, and Isolation on

Next-Generation Networks

Adrian Perrig

Network Security Group D-INFK, ETH Zürich
CAB F 85.1, Universitätstrasse 6, 8092 Zürich, Switzerland

adrian.perrig@inf.ethz.ch

Abstract. We present an Internet architecture designed to provide route
control, failure isolation, and explicit trust information for end-to-end
communications. SCION separates ASes into groups of independent rout-
ing sub-planes, called isolation domains, which then interconnect to form
complete routes. Isolation domains provide natural separation of routing
failures and human misconfiguration, give endpoints strong control for
both inbound and outbound traffic, provide meaningful and enforceable
trust, and enable scalable routing updates with high path freshness. As a
result, our architecture provides strong resilience and security properties
as an intrinsic consequence of good design principles, avoiding piecemeal
add-on protocols as security patches. Meanwhile, SCION only assumes
that a few top-tier ISPs in the isolation domain are trusted for provid-
ing reliable end-to-end communications, thus achieving a small Trusted
Computing Base. Both our security analysis and evaluation results show
that SCION naturally prevents numerous attacks and provides a high
level of resilience, scalability, control, and isolation.



Multiprecision Arithmetic

Peter Schwabe

Radboud University Nijmegen
Digital Security Group

PO Box 9010, 6500GL Nijmegen, The Netherlands

peter@cryptojedi.org

All modern microprocessors offer native support for arithmetic on certain fixed-
size integers. Typical sizes range from 8-bit integers through 16-bit and 32-bit
integers to 64-bit integers. Many processors additionally offer native support for
arithmetic on single-precision, double-precision, or extended-precision floating-
point values. Furthermore, many processors support arithmetic on fixed-length
vectors of some of these data types. Arithmetic on data types, whose size exceeds
those of natively supported data types, is called multiprecision arithmetic. Most
important for cryptographic applications is multiprecision arithmetic on integers,
for example, integers of sizes between 160 bits and 512 bits for various security
levels of elliptic-curve cryptography and arithmetic on 1024-bit up to 4096-bit
integers for RSA.

The performance of cryptographic schemes that require multiprecision arith-
metic is typically largely determined by the efficiency of these arithmetic opera-
tions. Non-surprisingly, many papers describe efficient approaches to make best
use of the specifics of various computer architectures and microarchitectures for
multiprecision arithmetic. One might think that algorithms for addition, sub-
traction, multiplication, squaring, and modular reduction are well understood
and that after a new microarchitecture is introduced the community quickly set-
tles on the fastest approach to perform those operations on integers of various
relevant sizes on the new microarchitecture. However, this is not the case as
illustrated by recent papers that increase performance for multiprecision multi-
plication on simple RISC processors like the AVR ATmega, which exists for more
than 15 years. Furthermore, on more complex processors, there are many subtle
interactions between the representation of big integers, algorithms for arithmetic
on these integers, efficient vectorization of these algorithms, and higher-level al-
gorithmic choices, as, for example, representation of elliptic-curve points and
related elliptic-curve arithmetic.

In my tutorial talk I will explain the basic ideas behind efficient multiprecision
arithmetic and show that some of the algorithms we use today range back to
the 12th and 13th century, when mathematicians like Bhāskara in India and
Fibonacci in Italy considered efficient ways to perform arithmetic on multi-digit
integers. I will illustrate these ideas on the example of the AVR ATmega 8-bit
microcontroller and present recent results from joint work with Hutter, which
improve the performance of multiprecision multiplication on that architecture.

In a second part of my talk I will explain why the algorithmic design space
is much larger on processors that support arithmetic on larger integers and
processors with floating-point and vector units. I will conclude the talk with
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results from recent join work with Bernstein, Chuengsatiansup, and Lange. In
this work we use vectorized multiprecision arithmetic to set new speed records
for scalar multiplication at the 128-bit security level on Intel Sandy Bridge and
Ivy Bridge, and ARM Cortex-A8 processors.
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Lightweight and Secure PUFs: A Survey

(Invited Paper)

Phuong Ha Nguyen and Durga Prasad Sahoo

Secured Embedded Architecture Laboratory (SEAL),
Dept. of Computer Science and Engineering,

Indian Institute of Technology,
Kharagpur, West Bengal, INDIA–721302

phuongha.ntu@gmail.com, dpsahoo@cse.iitkgp.ernet.in

Abstract. In this paper, we study all existing designs for lightweight
PUF. We discuss the implementation and security analysis of those de-
signs.

1 Introduction

The modern secure systems are designed mostly based on the assumption of
black-box security model where the sensitive secrets of the system, i.e., pass-
words, the secret keys, are securely stored in a non-volatile memory (NVM).
In recent years, there is a large scale of physical attacks developed to directly
retrieve the stored secret from secure memory in efficient ways such as Side
Channel Attacks [16] and cold-boot attacks [8]. Thus, the black box model can-
not provide the expected level of security anymore, and Physically Unclonable
Function (PUF) [10,19] is a promising solution to mitigate the effect of physical
attacks.

Physically Unclonable Functions are physical entities that generate output
(response) based on the input (challenge) and intrinsic physical properties of
embedding hardware. It exploits only those physical properties of embedding
device that are random (but static) and uncontrollable to make the challenge-
response mapping instance-specific, unpredictable and unclonable. In addition,
PUF posses one-way property, i.e., computation of response R of a given chal-
lenge C is easy, but inverse computation is hard.

PUFs are used as the root-of-trust for cryptographic primitives. It is used to
generate secret on-fly and need not to store in secure NVM [11]. In addition, any
physical attempt to read out the PUF e.g., depackaging of PUF chip, destroy the
challenge-response behavior of PUF due to its tamper-evident property. PUFs
are also used in device identification and authentication [12], binding software to
hardware platforms [9], IP-protection, design of underlying cryptographic prim-
itive in security applications [1]. Since the modern devices become smaller and
resource-constrained, lightweight cryptographic primitives come to the picture.
In the recent days, RFID applications are employing PUF for security purpose.

R.S. Chakraborty et al. (Eds.): SPACE 2014, LNCS 8804, pp. 1–13, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. Architectural overview of controlled PUF

So, lightweight PUF design and its use in the development of lightweight secu-
rity primitives are most important areas of research in the context of PUF-based
security for resource-constrained devices.

All PUF designs can be categorized as follows:

1. Design from scratch. This approach is used in the design of primitive PUFs.
Objective is to design a process variation (PV) sensor that can sense the
effect of existing variations in the silicon devices, and a circuit to convert
the sensed signal to digital information. Ring Oscillator is one such tradi-
tional sensor to measure the effect of processor variation. Ring Oscillator
PUF (ROPUF) [25], Arbiter PUF (APUF) [10], Bistable-ring PUF [2], Loop
PUF [3], scan PUF [27] are designed based on this design style.

2. Design by composition. The Controlled PUF [7] (see Fig. 1) and Composite
PUF (coPUF) [21, 22, 24] (see Fig. 2) are two PUF designs that exploit the
multiple insecure PUF instances (e.g. Arbiter PUF) to improve the quality
of PUFs (e.g., uniqueness, uniformity, and reliability) and robustness against
machine learning based modeling attack, side-channel attack, and cryptanal-
ysis. Hash PUFs (HPUFs) [7] and Lightweight Secure PUFs (LSPUFs) [15]
are two controlled PUF designs.

However, a good PUF design is the one which is not only lightweight and
qualitative but also secure. A PUF instance P is considered to be secured if it
satisfies the unpredictability property: Let Q be a set of N challenge-response
pairs (CRPs) and it is said to be secured if there is no algorithm to predict the
response R of a given challenge C /∈ Q rather than brute-force search. In order to
analyze the security of PUFs and PUF-based applications, we need to analyze the
design with respect to: cryptanalysis, machine-learning based modeling attacks
(MA) and Side Channel Attacks based MA (SCA-based MA) [4,5,10,13,18,26].

In this article, we discuss the state-of-the-art lightweight PUF designs and their
security analysis. The rest of the article is organized as follows: Section 2 intro-
duces various PUF evaluation metrics that could be used to rank various PUF
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Fig. 2. Architectural overview of composite PUF

designs and the security threats on PUFs. In Section 3, we explain three design
approaches for lightweight PUFs. Then we make a comprehensive study on all
existing lightweight PUFs in Section 4. Finally, Section 5 concludes the paper.

2 Fundamental on PUF

2.1 Properties of PUF

Without loss of generality, we focus on intrinsic PUFs [12]. Intrinsic PUFs are
those PUFs which are constructed based on intrinsic physical properties of the
PUF hardware [10], for example the random delay in signal transmission. In gen-
eral, a PUF instance P posses the following properties: uniqueness, uniformity,
reliability, unclonability, unpredictability, one-way function, and tamper-evident.

We use notation (n,m)-bit P to represent a PUF instance P with n-bit chal-
lenge C and m-bit response R.

Uniqueness. Since the PUF instances are constructed based on the intrinsic
random properties of the embedding hardware, the challenge-response behavior
of a given PUF instance P is random and unique. In other words, for any given
pair of instances P1 and P2 of PUF (n,m)-bit P on two different chips, the event
∀C : P1(C) = P2(C) happens with probability 1

2m , i.e., Pr(P1(C) = P2(C)) =
1
2m , ∀C.

Uniformity. Let us consider a PUF (n,m)-bit P . Since R is a m-bit value, there
are 2m different values of R, i.e., R = 0, . . . , 2m − 1. The uniformity property is
formalized as follows: for each value of R, there are 2n−m different C such that
P (C) = R. Typically, the output distribution of a good quality PUF is close to
uniform distribution.
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Reliability. This property presents the ability of a PUF instance to generate
the same response for the repeated application of a given challenge. The value
of this metric is close to 100% for an ideal PUF. It is difficulty to achieve the
perfect stability in PUF’s behavior due to environmental noises namely, variation
in operating temperature and supply voltages, and aging of the CMOS gates.

Unclonability. Because of intrinsic randomness of hardware device where a
PUF P is implemented, it is considered to be impossible to clone the PUF P
physically. Typically, it is very hard to construct physically a new PUF instance
P ′ such that its challenge-response behavior is similar to that of a given PUF P .
Note that a good PUF is also needed to be proved that its challenge-response
behavior can not be reconstructed mathematically even a set Q of its challenge-
response pairs is available to adversary.

Unpredictability. The unpredictability property presents the fact that the
generation of a response R for a given challenge C is random or unpredictable.
Indeed, from the view of point of security, the unpredictability of a given PUF
P is very important. A PUF (n,m)-bit P is regarded as secure if only if there
is no attack predicting the value of the corresponding m-bit response R for any
challenge C with success probability larger than 1

2m even the set Q is available
to the adversary.

One-Way Function. Specifically, this property refers not only the computation
ability but also the security property of a PUF P . Without loss of generality, a
(n, n)-bit PUF P is considered and the challenge-response of this PUF is one-
to-one mapping. The generation of R for a given challenge C is easy but it is
very hard to compute the C for a given response R. This property is similar to
the one-way property of a cryptographic hash function and this is why PUF is
also regarded as physical one-way function.

Tamper-Evident. The tamper-evident property is very important and it helps
to detect the physical attacks on system where PUFs are used as the underlying
primitives. The tamper-evident makes sure that any external temptation to make
a very small change on PUF instance destroys its original challenge-response
behavior.

2.2 Security Threats

The security analysis of PUFs and PUF-based applications mainly focuses on
following attacks: cryptanalysis, Machine Learning based modeling attacks (MA)
and Side Channel Attacks based MA (SCA-based MA) [4, 5, 10, 13, 18, 26].

Cryptanalysis. The cryptanalysis attacks exploit a certain flaw in the design
of PUFs or PUF-based applications [23] and the set Q of CRPs to predict the
m-bit response R of a given n-bit challenge C or to reduce the search space of re-
sponse R that is less than 2m. A cryptanalysis attack is considered as successful
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when |Q| < 2n and time complexity is less than 2n. Note that the cryptanalysis
can not be applied to the true primitive PUFs such as APUFs, RO-PUFs be-
cause they are considered as true random resources. The cryptanalysis is only
applicable to controlled PUFs and composite PUFs where many true primitive
PUFs combined together to build a PUF instance [23].

Machine Learning Based Modeling Attack. Regarding machine-learning
based modeling attacks [26] (MA), the attack can be applied to primitive PUFs
such as APUFs, ROPUFs [26], composable PUFs (e.g., XOR-PUF) and con-
trolled PUFs (e.g, LSPUF) [13] based on given set Q of CRPs. The attack
does not exploit the architectural flaw in the design. Typically, the attack uses
machine-learning techniques to build a model by using set Q of CRPs. After
that, the constructed model of PUF instance is used to predict the response R
of an unknown challenge C. Compared to cryptanalysis, this method is more
powerful because it can be applied to true PUF primitive as well as controlled
and composite PUF. Indeed, we can develop an attack which is called MA-based
cryptanalysis where the cryptanalytic technique is used to weaken the considered
PUF instance and the MA is used to model that PUF instance. We can employ
MA-based cryptanalysis to attack coPUFs and LSPUFs as discussed in [23].

Side Channel Based Modeling Attack. Side channel attack (SCA) exploits
the information leaked from the physical implementation of security primitives.
It does not rely on theoretical weakness of security primitives. Leaked informa-
tion can be in the form of computing time, power consumption, electromagnetic
emission [16]. Some SCA needs the details of the physical implementation so
that it can relate the processing of secret information and leaked information.

In the context of PUF, side-channel information is used when raw CRPs of
PUF are inaccessible e.g., in case of XOR-PUF and LSPUF response of indi-
vidual PUFs are not accessible and subsequently it prevents the modeling of
individual APUFs. In [13], authors discuss about the power analysis in XOR-
PUF (XPUF) and LSPUF. Both of these designs use multiple APUFs, and
arbiters (or latches) of APUFs are the main source of information leakage and
it relates to the response of APUFs. It is difficult to determine what is the exact
latched value of arbiters of XPUF (or LSPUF), but we can observe the two spe-
cific patterns of outputs that are either all 0’s (minimum power consumption) or
all 1’s (maximum power consumption). In CMOS technology, dynamic power is
linearly proportional to the number of switching. So, power consumption is min-
imum (maximum) when all arbiters produce 0’s (1’s), assuming that all arbiters
are initialized by 0’s. Authors also mention that this information is not useful
for XOR-PUFs because it result same set of CRPs for all component APUFs of
XPUF and yield similar models for all APUFs though they are different. But
this power side-channel information is useful in case of LSPUF because inputs
of APUFs in LSPUF are different when they all generate either 0’s or 1’s. Thus,
it helps us to build model for each APUF by using machine learning and the
accuracy of modeling depends on how many CRPs adversary can collect relying
on the power traces of event: all APUFs generate either 0’s or 1’s. In the same
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paper, authors suggest a countermeasure to balance the power consumption by
introducing two arbiters that generate complementary responses for each APUF.
Though this concept of power side-channel is validated by HSPICE simulation,
we have observed that it difficult to separate the power traces corresponding to
all 0’s and all 1’s from other cases for FPGA implementation of LSPUF. So,
LSPUF is vulnerable to SCA-based MA. In general, it can be conclude that
SCA-based MA is the most powerful tool to analyze the security of PUFs and
the PUF-based applications.

3 Design Paradigm for Lightweight PUFs

In this section, we discuss three main design approaches for lightweight PUF.

3.1 First Approach: Lightweight Primitive PUF

Indeed, design a PUF primitive is a starting point in PUF topic. There are
many PUF primitives introduced already, for example optical PUFs [19], Arbiter
PUFs (APUFs) [10], or Ring Oscillator PUFs (ROPUFs) [20], etc. Regarding the
lightweight PUF, the Arbiter PUFs is a good PUF primitive because its hardware
overhead is linearly proportional to the number of challenge bits. However, the
major concern to the lightweight PUF primitive is the security, for example
APUFs is not secure [10].

3.2 Second Approach: Controlled PUF

Since developing a new lightweight PUF primitive is challenging, an alternative is
combining cryptographic primitives (hash functions, stream cipher, block cipher)
and true PUF primitives (e.g. APUFs) to design a lightweight secure PUF. This
approach is known as Controlled PUF [7,14]. The generic framework of controlled
PUF is shown in Fig. 1.

Typically, a controlled PUF consists of three layers, the first and the last
layers are implemented by using cryptographic primitives (e.g., hash functions).
The second layer is a combination of multiple primitive PUF instances which
are lightweight and insecure PUF primitives (e.g, APUFs). Lighweight Secure
PUF (LSPUF) (see Fig. 4) is one lightweight controlled PUF design that ex-
ploits simple XOR-networks in first and last layers instead of resource hungry
cryptographic primitives.

3.3 Third Approach: Composable PUF

The third approach is completely different from the second one. Specifically,
it combines many true PUF primitives to make a secure PUF instance with-
out using traditional cryptographic primitives. The constructed PUFs of the
third design are called composite PUFs (coPUFs) [21, 22, 24] (see Fig. 2) and
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XPUFs [10] (see Fig. 5). Advantage of this design approach is that we can im-
prove the quality and security of PUF at the cost of resources. In the design of
good composite PUF, designer has to find the good set of primitive PUFs and a
topology to connect the primitive PUFs. So, there are many parameters to tune
the PUF performance. This design style is useful for designing an Application-
specific PUF.

4 Case Study: Lightweight PUF Designs

4.1 Arbiter PUF as Primitive PUF

The Arbiter PUF (APUF) is a silicon PUF that extracts random noise in silicon
in terms of the delay difference of two symmetrically laid out parallel delay lines.
Ideally, delay difference between these path pairs should be 0, but it does not
happen due to uncontrollable and random variation in manufacturing process
that introduces random offset between the two delays. Fig. 3 depicts the classical
APUF design that comprises of n switches connected serially to build two dis-
tinct, but symmetrical paths. The arbiter at the end of two paths decides which
path is faster. The challenge bits are used as the control input of path-swapping
switches that eventually results two paths and input trigger signal runs through
these paths; the arbiter, at the end, declares which path wins the race in the
form of response.

Let, two paths pC1 and pC2 are emerged due to challenge C, and d1 and d2 are
propagation delays of trigger pulse through paths pC1 and pC2 , respectively. The
response of APUF is defined by (1).

r =

{
1, if d1 < d2

0, otherwise.
(1)

If the delay offset between the two paths is too small, the setup time constraint
or hold time constraint of the flip-flop arbiter will be violated, and its output
will not depend on the outcome of the race any more, but be determined by
random noise (as the flip-flop will go to a metastable state). The effect of such
metastability would be manifested as statistical noise in the PUF responses.

The most significant feature of this design is its small hardware overhead.
More specifically, the hardware overhead of n-bit APUF is linearly proportional

D Q

Arbiter

Path-swapping switch

C0 C
1 Cn

Clk

C = C
0

C
1

Cn
)(

R

the switch

signal

Fig. 3. Arbiter PUF
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to the number of challenge bits n. Although APUF is lightweight, it is not
recommended to use bare APUF as security primitive because it is not secure
against modeling attacks. Adversary can build a model by exploiting the set Q of
CRPs and machine learning techniques like Support Vector Machine (SVM) [10],
Logistic Regression (LR), and Evolutionary Strategy (ES) [26].

4.2 Controlled PUF

In order to make APUF robust against modeling attacks, we have to prevent
the adversary from accessing the CRPs of APUF. Controlled PUF is introduced
based on this design philosophy. It consists of three layers: input layer, PUF
layer, and output layer. Objective of input and output layers are used to hide
CRPs of bare PUFs (e.g., APUFs) which are used as component in PUF layers.
In practice, these two layers are implemented by using cryptographic primitives
e.g., hash function, block cipher, and stream cipher. We discuss two following
controlled PUFs:

– Hash PUF [7]. Input and output networks are built by using cryptographic
hash functions.

– LSPUF [14, 15]. XOR networks are used as input and output networks.

Hash PUF - Based on Cryptographic Primitives. Hash PUF (HPUF) [7]
is a representative design of controlled PUF where input and output layers are
implemented by using cryptographic hash functions to prevent chosen challenge
attack on component APUFs in PUF layer. PUF layer consists of multiple in-
dependent APUF instances.

Input and output hash functions are used to hide the value of the actual
CRPs of APUFs in PUF layers from model-building adversary. So, if adversary
attempts to build the model for HPUF in terms of the modeling of component
APUFs, then it is not applicable anymore. Note that the design of HPUFs is very
important because this design is proved to be resistant not only cryptanalysis but
also MA. Presence of hash functions at very beginning and at the end, prevents
adversary to apply the cryptanalysis.

Let P be a HPUF instance with n-bit challenge and m-bit response. The
structure of HPUF P consists of m APUFs e.g., A0, . . . , Am−1. We denote ri as
the output of Ai, then ri = Ai(C

′) and R′ = (r0, . . . , rm−1). In practice, designer
uses a m-bit register r to latch the output R′ of the PUF layer before applying
it to output layer to produce final response. Power side-channel information due
the latching activities of r can be used for SCA-based MA [13]. Fortunately,
HPUF is resistant against SCA-based MA because of its structure. Without
loss of generality, assume that the adversary can vary C and observe the power
consumption (Pcon) due to the storing of R′ in r to build a CRP set Q. Since
all the APUFs are being challenged by the same hashed challenge, the CRP set
Q of all APUFs are identical and it subsequently results identical model for all
APUFs though they are different.Therefore, SCA-based MA is not applicable
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Fig. 4. Lightweight Secure PUF

to HPUFs. Here we mention that HPUFs is resistant against power SCA-based
MA as in [13].

Moreover, the important drawback of this design is the significant increase in
PUF evaluation time and hardware overhead [17] due to the input and output
hash functions. So, HPUF is a good design in terms of security, but it is not
lightweight in terms of hardware overhead, execution time and energy consump-
tion. Note that there is one important thing with respect to unreliable property
is that using many APUFs might make the HPUF unreliable.

Lightweight Secure PUF - Based on Simple XOR-Networks. Since the
cryptographic hash functions in HPUF introduce a significant overhead in terms
of hardware, power and execution time, the LSPUF [14] is developed. In this
design, the input and output networks are implemented by using XOR networks.
LSPUFs was designed to ensure that it is secure against reverse engineering and
modeling attacks [14, 15].

As shown in Fig. 4, a (n,m)-bit LSPUF instance consists of three layers like
controlled PUF: (a) input network G = (g0, . . . , gk−1), (b) PUF layer consisting
of multiple APUFs (A0, . . . , Ak−1), and (c) output network H = (o0, . . . , om).
The input network G produces k n-bit inputs C0, . . . , Ck−1 based on n-bit input
C (e.g, Ci=gi(C), where i = 0, . . . , k−1). The output network produces m 1-bit
outputs o0, . . . , om−1 based on k 1-bit outputs r0, . . . , rk−1.

Input Network. The input network G produces intermediate challenges
C0, . . . , Ck−1 for APUFs in PUF layer using the external input C. These in-
termediate challenges are generated as follows.

1. Di = C >>> i, where C >>> i denotes the right rotation of challenge
vector C by i positions and Di = (di0, . . . , d

i
n−1) and C = (c0, . . . , cn−1).

2. Let us denote Ci = (ci0, . . . , c
i
n−1) for i = 0, . . . , k − 1, then

cin+u+1
2

= diu, u = 0

ciu+1
2

= diu ⊕ diu+1, u = 2, 4, . . . , n− 2

ciN+u+2
2

= diu ⊕ diu+1, u = 1, 3, 5, . . . , n− 1.
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PUF Layer. The inputs of PUF layer are C0, . . . , Ck−1 and it produces
(r0, . . . , rk−1), where ri = Ai(Ci) and Ai is a n-bit APUF instance.

Output Network. This layer is responsible for generating final response bits of
LSPUF. It generates response bits (o0, . . . , om−1) using intermediate responses
(r0, . . . , rk−1) as defined in (2)

oi =

x−1⊕
j=0

r((i+s+j) mod k), (2)

i=0, . . . ,m−1, and x(< k) and s are security parameters chosen by the designer.
However, the security claim of this design is challenged by Mahmoud et al. [13].

They show that this design is vulnerable to SCA-based MA as discussed in Sec-
tion 2.2. In [23], authors develop a more powerful attack to analyze the LSPUFs
and show that LSPUFs are insecure by exploiting a design flaw of output net-
work. Authors called this attack as MA-based Cryptanalysis.

4.3 Composable PUF

Unlike controlled PUF, composable PUF design consists of multiple layers of
PUFs. We discuss two PUF designs namely, XPUF [10] and composite PUFs [21,
22] (coPUF), under this category. CoPUF design consists of multiple small PUF
primitives of different types and they are connected with a topology so that resul-
tant PUF quality is improved. Whereas XPUF design exploits only lightweight
primitives like APUF as component.

XOR-PUF - Based on Lightweight PUF Primitives. In this design, sev-
eral insecure lightweight PUF instances having similar length of challenges are
combined together to make a lightweight and secure resultant PUF. A typical
instance of XOR-PUF (XPUFs) [10] is shown in Fig. 5. Let P be a XPUF in-
stance and it is defined by k different APUF instances {A0, . . . , Ak−1}. Then
response R for a given challenge C is defined as:

R = P (C) =

k−1⊕
i=0

Ai(C).
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Following three factors motivate to design XPUF:

1. a single APUF is not secure,
2. combining many APUFs results a secure PUF instance, and
3. the lightweight PUFs are used as components to achieve a lightweight resul-

tant PUF instance.

It is shown that when k > 6, machine learning based MA attack is compu-
tationally expensive. Since all component APUFs are challenged by same chal-
lenge, SCA-based MA [13] is not applicable for XPUF. It is worth to mention
that combining many APUFs makes the XPUF unreliable.

Composite PUF - Based on Smaller PUF Primitives. It is observed from
the reported PUF designs on FPGA and ASIC that lightweight PUF primitives
are not always good in the extraction of device intrinsic randomness. For in-
stance, APUF is lightweight, but both the uniformity and uniqueness are poor,
whereas the ROPUF can produce good uniformity and uniqueness at the cost ad-
ditional hardware resources. In addition, it is shown that APUF is vulnerable to
MA, but ROPUF is secure against MA attack though it is vulnerable to different
type of SCA [6]. In [24], authors propose composite PUF as a design paradigm
that exploits smaller PUFs of different types. Aim of this design approach is to
exploit the advantages of different type of PUF designs like APUF and ROPUF
together. Authors provide few examples to show the effectiveness of this design
paradigm and how quality of the resultant composite PUF significantly depends
on both the selected set of component PUFs and topology employed to connect
the component PUFs. Authors also report that reliability of composite PUF is
a function of both reliability of component PUFs and topology.

In general composite PUF consists of multiple layers. Figure 2 shows a com-
posite PUF structure that consists of two layers of PUFs. First layer contains
n PUF instances P0, . . . , Pn−1. Instead of applying challenge C to all first layer
PUFs, challenge is partitioned into n segments (e.g., C = (c0, . . . , cn−1)) and
challenge segment ci is apply to Pi, i = 0, . . . , n − 1. Responses of all PUFs at
first layer are applied as challenge to the second layer PUF Pn which is a PUF
with n-bit challenge. The response of Pn is that of composite PUF. One instance
of this design, reported in [24], consists of ROPUFs in first layer and one APUF
in the second layer.

Table 1. Summary of Lightweight PUFs

PUFs
Threats

Lightweight
Cryptanlaysis MA SCA-based MA

APUF No Yes Yes Yes
HPUF No No unknown No
LSPUF Yes Yes Yes Yes
XPUF No Yes No Yes
coPUF Yes Yes Yes Yes
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However, all the example designs reported in [24] are not secure against MA-
based Cryptanalysis as reported in [23]. In [23], authors develop an attack based
on the mutual independence among all challenge segment ci. This is a most
crucial flaw in the design of composite PUFs.

5 Conclusion

In this work, we study few well-known lightweight PUF designs. As discussed
above, all existing lightweight PUFs are not secure and all secure PUFs are not
lightweight. Table 1 shows the trade-off between the security and the hardware
overhead of all existing lightweight PUFs. Hence, designing a lightweight PUFs
which is secure and qualitative is still a challenging topic to explore.
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Abstract. Linear Feedback Shift Registers (LFSRs) with primitive con-
nection polynomials as feedback functions are used as primary compo-
nents of many stream ciphers and other cryptosystems. The motivation
of our work is to demonstrate that though hardware implementation
of Galois LFSR offers higher throughput than its Fibonacci counter-
part, the former could be more susceptible to power analysis attacks.
This gains more importance with the fact that both the LFSR config-
urations are theoretically equivalent. We propose a new attack strategy
that deduces the initial state of a Galois LFSR by determining the LFSR
output stream from the difference of power dissipation values in con-
secutive clock cycles. In addition, experimental results on power traces
of both configurations implemented on SASEBO-GII board show that
LFSR output stream retrieval from power dissipation values in Galois
LFSR involve much less error in bit sequences compared to its Fibonacci
counterpart.

Keywords: Fibonacci LFSR, Galois LFSR, Side Channel Attacks,
Hamming distance, Grain stream cipher, SASEBO-GII development
board, Dynamic Power Dissipation, Berlekamp-Massey algorithm.

1 Introduction

Encryption and decryption algorithms are used in embedded devices for secured
and authorized data communication between a transmitter and a receiver over
an insecure channel. These algorithms are embed secret key based cryptographic
primitives. Traditionally the robustness of the cryptographic primitives has been
determined using mathematical models and statistical analysis. However, the real
life implementations of these cryptographic ciphers can be studied and analyzed
to launch Side Channel Attacks (SCA). The potential threat of SCA based on
information leakage from power consumption [9], timing variations [8] and elec-
tromagnetic radiations [5] from physical implementation of the cipher system
has been well established in the recent past where system breakdown can be
achieved with relatively less computational cost compared to the conventional
mathematical cryptanalysis. In SCA the adversary exploits the unintentional
leakage of information into the environment from the system implementing the

R.S. Chakraborty et al. (Eds.): SPACE 2014, LNCS 8804, pp. 14–27, 2014.
c© Springer International Publishing Switzerland 2014
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block ciphers or stream ciphers to attack the cryptographic device in order to
reveal the secret key. These attacks are possible even on cryptosystems whose
theoretical robustness has been well established under various standard mathe-
matical models.

The vulnerability of a device implementation to differential power analysis
(DPA) attack was first proposed by Kocher et.al. in [9]. In subsequent literature,
research based on exploitation and countermeasure designs against information
leakage through power side channel has progressed immensely. Power attack can
be easily launched on a hardware implementation using widely available standard
test and measurement instruments.

LFSRs are used as building blocks for many stream ciphers and other crypto-
graphic primitives. They are widely used to generate pseudo-random numbers, in
fast digital counters, whitening sequences etc. The Galois LFSR is an alternative
of conventional Fibonacci LFSR. Both these LFSR configurations can generate
the same output sequence if the tap positions are reversed and the initial states
are cautiously selected [3]. In Galois configuration, the XOR operation is per-
formed within the LFSR and the propagation delay is reduced to that of one
XOR gate. This speeds up execution by computing the tap positions in parallel.
Even in software implementations, Galois form is more preferable as the XOR
operations can be performed in a word aligned format.

The vulnerability of stream ciphers based on Galois LFSRs is investigated in
[7] and those based on Fibonacci LFSRs is analyzed in [1]. In [7], information
leakage from XOR gates is exploited to execute simple side-channel attack. Liter-
ature shows that information leakage of linear operations like XOR operations in
power traces is much lesser compared to the register load operations [11]. Also
if leakage of the XOR gates is dominated by other operations in the ciphers,
the attack in [7] will fail. Moreover, the attack in [7] has been demonstrated on
simulated data. In this paper, our attack technique exploits the correlation be-
tween the absolute difference of Hamming distances (HDs) of consecutive LFSR
states and the absolute difference of power dissipation values in the correspond-
ing clock cycles. The novelties of our proposed attack strategy on Galois LFSR
are as follows:

1. The initial seed of the shift register can be determined using quite a small
number of power traces.

2. Our attack technique is feasible on actual hardware implementations.

The LFSR in our case has been considered for Grain v1 stream cipher [6] and
is implemented on Xilinx Virtex 5 FPGA device on SASEBO-GII development
board [4]. For CMOS logic based circuits, our attack scheme based on HD of
consecutive LFSR states is stronger. We demonstrate that retrieval of absolute
difference of HD values from the absolute difference of the corresponding power
dissipation levels has reduced bit errors in case of Galois LFSRs (and hence
increased vulnerability to power attacks) compared to Fibonacci LFSRs. We
have also analyzed the power traces in order to validate our proposed theoretical
model. The consecutive absolute differences of HD values are used to compute
the output keystream of the Galois LFSR in our attack technique. This output
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keystream can be further used to derive the secret initial state of LFSR by
applying Berlekamp-Massey (BM) algorithm [10].

The organization of the paper is as follows: In section 2 we provide a brief de-
scription of a LFSRand assumption regarding its power consumption.An overview
of Fibonacci LFSR and its power attack scheme (as proposed in [1]) is presented
in section 2.2. In Section 3, we present a detailed description of an n-stage Galois
LFSR and its power attack algorithm using power measurements of consecutive
clock cycles. Section 4 consists of descriptions of our practical implementation re-
sults and analysis. The final section has the conclusion of the paper.

2 Preliminaries

In this paper, we follow the conventions used in [1]. So for convenience, we restate
these conventions and some introductory concepts in the subsections 2.1, 2.2 and
appendix A.

2.1 Linear Feedback Shift Register

LFSRs with primitive connection polynomials as feedbacks are used as funda-
mental components of many binary stream ciphers because of their large peri-
odicity and ease of hardware implementation. An n-stage binary LFSR is con-
structed using an array of n flipflops and XOR gates in its feedback path. The
state of the LFSR at time t is denoted by STt.

The linear complexity L(s) of a finite binary sequence s is defined to be the
length of the shortest LFSR that generates s. If x is a subsequence of s of length
at least 2L(s), then the Berlekamp-Massey algorithm on input x can determine
the length L(s) of the LFSR along with its connection polynomial.

In the proposed SCA strategy presented in this paper, we make the following
assumption.

Assumption 1. If the number of toggles in the state of an LFSR in cycle t
is different than that in cycle t + 1 (in other words HDt �= HDt+1), then the
power consumed by the LFSR in the two cycles are also different, else they are
the same.

2.2 Fibonacci LFSR

A general Fibonacci LFSR structure is shown in figure 1. The state at time t+1
is computed by right shifting the LFSR by one bit. The value shifted into the
first (leftmost) stage, denoted by S(n), is a linear combination of the contents
of the n-stages as defined by the feedback polynomial used to realize the LFSR.
Therefore, if STt = (S(n− 1), · · · , S(0)) then,
STt+1 = (S(n), S(n − 1), S(n− 2), · · · , S(1))
where, S(n) = c(1)S(n − 1) ⊕ c(2)S(n − 2) ⊕ · · · ⊕ c(n)S(0), c(i) ∈ {0, 1}, ∀i,
1 ≤ i ≤ n.
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n−degree primitive polynomial

S(n−1) S(n−2) S(1) S(0)

c(n−1) c(n)c(2)c(1)

Nonlinear Boolean Function

Key Stream

Plain Text  Cipher Text

Fig. 1. An n-stage LFSR with a nonlinear filter [1]

Theorem 1. Let HDt be the Hamming distance between the n-bit vectors, STt

and STt−1. Let PDt = (HDt+1 − HDt). Then, PDt ∈ {−1, 0, 1}.

The proof of the above theorem and the side channel attack launched on Fi-
bonacci LFSR using O(n) power measurements in presented in [1]. The proposed
attack utilizes Berlekamp-Massey algorithm which determines the initial state of
a LFSR by only using twice the linear complexity number of consecutive output
bits.

In the attack strategy proposed in this paper, we extend the approach as pro-
posed in [1] to retrieve the initial seed of a Galois LFSR. Though both Fibonacci
and Galois configurations of LFSR are theoretically equivalent, we show that the
Galois LFSR is more vulnerable to power attacks than its Fibonacci counterpart.
The only assumption of the proposed SCA strategy is that the adversary can
compute the values of PDt by measuring the power consumed by the LFSR in
consecutive clock cycles.

3 Computing PDt for Galois LFSR

A general Galois LFSR structure is shown in figure 2. The state of the LFSR
after next clock cycle is computed by right shifting the LFSR, along with XOR
operation with the output bit in the necessary tap positions as defined by the
feedback polynomial. The value shifted into the first (leftmost) stage, denoted
by S(n), is the output of the previous state. As a result of this configuration,
when the output of a state is 0, then all the bits of the LFSR shift to the right
and S(n) becomes 0. On the other hand, when the output of a state is 1, then
all the bit values in the tap positions flip and then the entire register is shifted
to the right with S(n) being set to 1.
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Output

Plaintext Ciphertext

Keystream

Nonlinear Boolean Function

S(1) S(0)S(n−1) S(n−2)

toggle2 toggle1togglen−1

Fig. 2. An n-stage Galois LFSR with a nonlinear filter

Let us define a variable togglej ∈ {0, 1}, ∀j, 1 ≤ j ≤ n− 1, which denotes the
presence (by value 1) or absence (by value 0) of tap positions of an n-stage Galois
LFSR depending upon the connection polynomial chosen.
Let us denote the state of the LFSR at time t − 1 as follows:

STt−1 = (S(n − 1), S(n− 2), · · · , S(0)) (1)

If the output at time t− 1 (OPt−1) is 0, then the state of the LFSR at time t is
denoted as follows:

STt = (0, S(n− 1), S(n− 2), · · · , S(1)) (2)

Using equations 1 and 2, the corresponding Hamming distance at time t (HDt)
is obtained as follows:

HDt = HW (STt ⊕ STt−1)

= HW ((S(n − 1)⊕ 0), (S(n− 1) ⊕ S(n− 2)), · · · , (S(1) ⊕ S(0))) (3)

On the other hand, if OPt−1 is 1, then its state at time t is as follows:

STt = (1, S(n− 1)⊕ togglen−1, S(n− 2)⊕ togglen−2, · · · , S(1) ⊕ toggle1) (4)

Using equations 1 and 4, the corresponding HDt is obtained as follows:

HDt = HW (STt ⊕ STt−1)

= HW ((S(n − 1)⊕ 1), (S(n− 1)⊕ S(n − 2)⊕ togglen−1),

· · · (S(1) ⊕ S(0)⊕ toggle1))) (5)

If OPt is 0 and OPt−1 was also 0, then its state at time t+ 1 is given by:

STt+1 = (0, 0, S(n− 1), · · · , S(2)) (6)
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Using equations 2 and 6, the corresponding HDt+1 is obtained as follows:

HDt+1 = HW (STt+1 ⊕ STt)

= HW (0, (S(n− 1)⊕ 0), (S(n− 1) ⊕ S(n− 2)),

· · · , (S(2)⊕ S(1))) (7)

Similarly, if OPt is 0 and OPt−1 was 1, then the state of the LFSR at time t+1
is as follows:

STt+1 = (0, 1, (S(n− 1)⊕ togglen−1), · · · , (S(2)⊕ toggle2)) (8)

Using equations 4 and 8, the corresponding HDt+1 is obtained as follows:

HDt+1 = HW (STt+1 ⊕ STt)

= HW (1, (S(n− 1)⊕ togglen−1 ⊕ 1), (S(n− 1)⊕ togglen−1

⊕ S(n − 2)⊕ togglen−2), · · · , (S(2) ⊕ toggle2 ⊕ S(1)⊕ toggle1)) (9)

Again, if OPt is 1 and OPt−1 was 0, then the state at time t+ 1 is as follows:

STt+1 = (1, togglen−1, (S(n − 1)⊕ togglen−2), · · · , (S(2) ⊕ toggle1)) (10)

Using equations 2 and 10, the corresponding HDt+1 is obtained as follows:

HDt+1 = HW (STt+1 ⊕ STt)

= HW (1, (S(n− 1)⊕ togglen−1), (S(n − 1)⊕ S(n− 2) ⊕ togglen−2),

· · · , (S(2) ⊕ S(1)⊕ toggle1)) (11)

Similarly, if OPt is 1 and OPt−1 was also 1 then the state at time t + 1 is as
follows:

STt+1 = (1, (togglen−1 ⊕ 1), (S(n− 1) ⊕ togglen−1 ⊕ togglen−2),

· · · , (S(2)⊕ toggle2 ⊕ toggle1)) (12)

Using equations 4 and 12, the corresponding HDt+1 is obtained as follows:

HDt+1 = HW (STt+1 ⊕ STt)

= HW (0, (S(n− 1) ⊕ togglen−1 ⊕ togglen−1 ⊕ 1),

· · · , (S(2)) ⊕ toggle2 ⊕ toggle1 ⊕ S(1) ⊕ toggle1)) (13)

Considering OPt as 0 and OPt−1 also as 0, we get S(1) = 0 and S(0) = 0. Using
equations (3) and (7) we get the following expression for difference of power
consumptions at time t (PDt):

PDt = HDt+1 − HDt = HW (0) − HW (S(1)⊕ S(0))

= 0 (14)

Considering OPt as 1 and OPt−1 as 0, we get S(1) = 1 and S(0) = 0. Using
equations (3) and (11) we get the following expression for PDt:
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PDt = HDt+1 − HDt

= HW (1)− HW (S(1) ⊕ S(0))

+ HW (S(n− 1) ⊕ togglen−1) − HW (S(n− 1))

+ HW (S(n− 1) ⊕ S(n− 2)⊕ togglen−2)− HW (S(n− 1)⊕ S(n− 2))

...

+ HW (S(2)⊕ S(1) ⊕ toggle1) − HW (S(2)⊕ S(1))

= 1 − 1 +
∑

num taps−1

{1,−1}

=
∑

num taps−1

{1,−1} (15)

Considering OPt as 1 and OPt−1 as 1, we get S(1)⊕ toggle1 = 1 and S(0) = 1.
Using equations (5) and (13) we get the following PDt expression:

PDt = HDt+1 − HDt

= HW (0)− HW (S(0)⊕ S(1)⊕ toggle1)

+ HW (S(n− 1)⊕ togglen−1 ⊕ S(n − 2)⊕ togglen−2 ⊕ togglen−2)

− HW (S(n− 1)⊕ S(n− 2) ⊕ togglen−1)

...

+ HW (S(2)⊕ toggle2 ⊕ S(1)⊕ toggle1 ⊕ toggle1)

− HW (S(2)⊕ S(1)⊕ toggle2)

= 0 − HW (1 ⊕ 1)

= 0 (16)

Considering OPt as 0 and OPt−1 as 1, we get S(1)⊕ toggle1 = 0 and S(0) = 1.
Using equations (5) and (9) we get the following PDt equation:

PDt = HDt+1 − HDt

= HW (1)− HW (S(0)⊕ S(1)⊕ toggle1)

+ HW (S(n− 1)⊕ togglen−1 ⊕ 1)− HW (S(n− 1)⊕ 1)

+ HW (S(n− 2)⊕ togglen−2 ⊕ S(n − 1)⊕ togglen−1)

− HW (S(n− 1)⊕ S(n− 2) ⊕ togglen−1)

...

+ HW (S(2)⊕ toggle2 ⊕ S(1)⊕ toggle1)

− HW (S(2)⊕ S(1)⊕ toggle2)

= 1 − HW (1 ⊕ 0) +
∑

num taps−1

{1,−1}

=
∑

num taps−1

{1,−1} (17)
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In case of a Galois LFSR with primitive connection polynomial, the number
of taps is always even. Therefore, if the magnitudes of successive outputs are
same then the corresponding value of PDt is zero, while for complementary
such outputs it is a nonzero odd value. The maximum possible magnitude that
such a nonzero odd value can attain is one less than the number of taps.

3.1 Proposed Attack Strategy on Galois LFSR

Let PD
′
t be defined as follows: PD

′
t = 0 when, HDt=HDt+1, else it is a non-zero

value from the set {1, 3, 5, · · · , num taps− 1}. Let POW (k) and outbitk denote
the dynamic power consumed by the nonlinear filter generator and the output
bit of the Galois LFSR respectively at time instant k.

1. Measure POW (0) and POW (1)
• PD

′
0= POW (1)-POW (0)

(a) if(PD
′
0=0)

outbit1=0 [ Assumption: outbit0=0. ]

(b) else

outbit1=1

2. for each time instant k,k ≥ 2
• Measure POW (k)
• PD

′
k−1= POW (k)-POW (k − 1)

(a) if(PD
′
k−1=0)

outbitk= outbitk−1

(b) else
outbitk= outbitk−1

3. Input outbitk into the Berlekamp-Massey (BM) Algorithm. If BM terminates
then exit for loop in step2 else repeat step2 .

4. Result

(a) BM algorithm outputs the length n of the Galois LFSR and the connec-
tion polynomial of the register.

(b) Now that the length of the LFSR and its connection polynomial are
known, an attack can be launched to determine the initial register poly-
nomial using the following equation:

I(x) = C(x).O(x) (18)

where I(x) is the initial register polynomial, C(x) is the connection poly-
nomial realized by the Galois LFSR and O(x) is the output sequence
polynomial.

The attack will be easier in cases where the feedback polynomial of the shift reg-
ister is known as the adversary can construct a set of linear equations which must
be simultaneously satisfied. But our attack strategy works even if the feedback
polynomial is unknown.
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4 Experimental Evaluation

4.1 Experimental Results

The detailed descriptions of our evaluation environment and the technique of
retrieval of difference of consecutive Hamming distances from real power traces
are presented in appendices B and C respectively. We selected the primitive
connection polynomial of the LFSR of Grain v1 stream cipher [6] as the feed-
back polynomial for both the Fibonacci and Galois LFSR implementations. The
connection polynomial f(x) of degree 80 is as follows:

f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80

It is to be noted that the number of taps for Galois LFSR with f(x) as
feedback polynomial is 6. We collected power traces with a known initial state for
both Fibonacci and Galois LFSR configurations. In figures 3 and 4 we present a
comparison of the absolute difference of power dissipation values (obtained from
SASEBO-GII board) in consecutive clock cycles with the theoretical absolute
difference of corresponding Hamming distance values (HDs) of Fibonacci and
Galois LFSR states respectively. This was repeated for different, fixed length
windows of successive clock cycles and after each such iteration, the size of the
window was varied. The number of samples of successive absolute differences
is one less than the window length of consecutive clock cycles. Henceforth we
will refer to the number of samples of consecutive absolute differences as sample
window length. Figures 3 and 4 show such plots for different magnitudes of
sample window length, corresponding to Fibonacci and Galois configurations
respectively.

4.2 Analysis and Discussions

The interesting point to be noted from the figures 3 and 4 is that for a Galois
LFSR configuration, with feedback polynomial f(x), the theoretical absolute
difference of HDs can take a value from the set {0, 1, 3, 5} compared to a value
from the set {0, 1} for corresponding Fibonacci LFSR counterpart. This can be
easily established from equations 14, 15, 16, 17 in section 3 and theorem 1 in
section 2.2. In both the LFSR configurations, the 0 value of absolute difference
of consecutive HDs signify that the absolute difference of consecutive power
dissipation values is ideally zero or less than a certain threshold power value.
On the other hand, a non zero value corresponds to a high absolute difference.
Therefore, a proper threshold value must be chosen to distinguish between two
such power difference levels (PDLs).

The differences of consecutive power traces do not always correctly correlate
to corresponding difference of Hamming distance, especially when the variation
is small. This is due to the fact that the sample points with low Signal-to-noise-
ratio (SNR) degrades the overall power signature in a clock cycle [11]. The lesser
the difference between PDLs, more is the influence of the noisy sample points.
In other words, a higher difference between PDLs means an implementation is
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(a) sample window length : 20
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(b) sample window length : 40
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(c) sample window length : 60
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(d) sample window length : 80

Fig. 3. Comparison of theoretical absolute difference of consecutive Hamming distances
with absolute difference of successive power consumption values for Fibonacci LFSR

more susceptible to power analysis attack as it easier to obtain a suitable thresh-
old value. For a Fibonacci LFSR with primitive feedback polynomial f(x), as
the nonzero absolute difference of consecutive HDs can only attain value 1, the
corresponding power difference values will be considerably lesser than its Galois
counterpart in certain cases. This is because in a Galois LFSR with the same
feedback polynomial f(x), the nonzero absolute difference of successive HDs can
be also 3 and 5 apart from 1. This means the PDLs for a Galois LFSR can be
significantly higher in certain cases than that for the corresponding Fibonacci
LFSR. This can be seen for Fibonacci and Galois LFSRs from the the values of
PDL in figures 3 and 4 respectively. It can also be observed from those two figures
that the maximum value of PDL for Fibonacci LFSR is significantly below the
value 6× 10−4, while for its Galois counterpart there are a large number of PDL
values above that magnitude. So for a predetermined noise margin, threshold-
ing operation on consecutive absolute power differences to obtain corresponding
absolute difference of HDs will involve less error for a Galois LFSR compared
to its Fibonacci counterpart. This makes the Galois LFSR based design more
vulnerable to power analysis.

To reduce the effect of noise, we considered the mean of power traces with a
constant initial state for both the LFSR configurations. As the Fibonacci LFSR
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(a) sample window length : 20
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(b) sample window length : 40
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(c) sample window length : 60
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(d) sample window length : 80

Fig. 4. Comparison of theoretical absolute difference of consecutive Hamming distances
with absolute difference of successive power consumption values for Galois LFSR

implementation is more prone to be affected by noise due to lower range of PDL
values compared to a Galois LFSR design, we took an average over repeated
5, 550 power traces for the Fibonacci configuration whereas for its Galois counter-
part we took an average over 2, 400 power traces. Then we observed thresholding
results for different window sizes and for both the implementations of the LFSRs.
For every sample window length, we considered the best case results of thresh-
olding operation which produced maximum correct output bits. Those bits were
declared correct for which there was a match between theoretically derived abso-
lute differences of consecutive HDs and the corresponding absolute differences of
power dissipation values obtained from the experimental setup. The comparison
of correctness of thresholding results for Fibonacci and Galois configurations of
the LFSRs for different sizes of sample window length is shown in figure 5. It is
evident from the figure that Galois LFSR implementation shows higher percent-
ages of correctness post thresholding than its Fibonacci counterpart for every
sample window length. Therefore, even though an average over significantly more
number of power traces was considered for the Fibonacci LFSR compared to its
Galois counterpart, lower values of PDLs in the former case lead to the lower
percentages of correct determinations of HDs. Again, correct determination of
consecutive absolute differences of HDs leads us to successfully recover the initial
secret seed of a LFSR using Berlekamp-Massey algorithm as discussed earlier.
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Fig. 5. Comparison of best case thresholding results between Fibonacci and Galois
LFSRs for different values of sample window length

The results obtained are based on an assumption that all equal values of
differences among HDs correspond to same differences of power dissipations in
consecutive clock cycles. However, in practice this may not hold true [11]. There-
fore, the adversary may need to construct power trace templates for all possible
HD classes in order to classify an unknown power trace with the aid of the
preconstructed templates [2]. This kind of a template attack may lead to high
success rates of correct power trace classification. In [12], the authors have out-
lined several novel techniques to increase the rate of successful classifications of
differences among consecutive HDs.

5 Conclusion

In this paper, we present a theoretical formulation based on differences of Ham-
ming distances of three consecutive states of a Galois LFSR and use them to
approximate the differences in power dissipation values in corresponding clock
cycles. We compare this formulation with that of a Fibonacci LFSR as proposed
in [1]. We observe that Galois LFSRs are more vulnerable to power attacks com-
pared to its Fibonacci counterpart. We conclude this based on the thresholding
results over various sample window length values in case of both the LFSR con-
figurations. Our proposed formulation can be used as an efficient tool to mount a
power analysis attack in order to determine the initial state (secret key) of a Ga-
lois LFSR implementation. The presented attack strategy may also expose the
vulnerability of stream ciphers (realized using Galois LFSRs) to power attacks.
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A Dynamic Power Consumption of an LFSR

The dynamic power consumed by a digital circuit is directly proportional to
the switching activity (number of components in the circuit that has a state-
transition from 0 to 1 or vice-versa). In the case of LFSRs the dynamic power
consumed during the transition in cycle t+1, that is, from time period t to time
period t+1, is proportional to HDt+1, as the computed Hamming distance is a
measure of the total number of toggles in the state of the LFSR during the time
interval t to t+ 1.

B Experimental Evaluation Environment

We implemented both Fibonacci and Galois configurations of a 80-bit length
LFSR on SASEBO-GII Side-Channel Attack Standard Evaluation Board and
evaluated the feasibility of our proposed attack technique on the LFSR based
designs. SASEBO-GII consists of two Xilinx FPGAs − Spartan-3A and Virtex-
5. The control circuit and the targeted LFSR were implemented in Spartan-3A
XC3S400A and Virtex-5 xc5vlx50 (driven by a 2 MHz clock) respectively. The
power consumptions of the LFSR circuit were captured using a Tektronix digital
oscilloscope DPO 4034B at a sampling rate of 2.5 GSa/s.

http://www.rcis.aist.go.jp/special/sasebo/index-en.html
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Fig. 6. Samples of power traces collected for Fibonacci (left) and Galois (right) con-
figurations of LFSR using SASEBO-GII board

C Retrieval of Differences of Hamming Distances from
LFSR Power Dissipation Profile

In our proposed attack strategy, we considered the absolute difference of power
consumptions over consecutive clock cycles to determine the absolute difference of
corresponding Hamming distances (HDs) of LFSR states. Let us suppose that the
power dissipation values of the LFSR during t0, t1 and t2 are Pt0, Pt1 and Pt2 re-
spectively. TheHDof the LFSR states between times t0 and t1 is denoted byHDt1,
while the HD between times t1 and t2 is denoted byHDt2 as shown in figure 7.

Fig. 7. Relationship between LFSR power dissipation profile and corresponding Ham-
ming distance values

In order to determine the absolute difference of successive HDs, we first took
the mean of about 300 sample points after the positive clock edge of each clock
cycle for which there was a significant value of power consumption (as shown in
figure 7) and then computed the absolute difference of the mean values of two
consecutive clock cycles. Finally we performed thresholding on such absolute
differences of power dissipation values to retrieve the discrete values of absolute
differences of corresponding HDs.
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1 INRIA, LFANT, CNRS, UMR 5251, Univ. Bordeaux, IMB, 33400 Talence, France
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Abstract. This study reports on an implementation of cryptographic
pairings in a general purpose computer algebra system. For security lev-
els equivalent to the different AES flavours, we exhibit suitable curves in
parametric families and show that optimal ate and twisted ate pairings
exist and can be efficiently evaluated. We provide a correct description of
Miller’s algorithm for signed binary expansions such as the NAF and ex-
tend a recent variant due to Boxall et al. to addition-subtraction chains.
We analyse and compare several algorithms proposed in the literature
for the final exponentiation. Finally, we give recommendations on which
curve and pairing to choose at each security level.
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1 Pairings on Elliptic Curves

In this article, we treat cryptographic bilinear pairings G1×G2 → GT on elliptic
curves E defined over some finite field Fq of characteristic p. We emphasise that
our aim is not to set new speed records for particular curves, cf. [2,20,1], but to
compare different choices of pairings and parameters at various security levels,
using a general purpose, but reasonably optimised, implementation in a general
purpose computer algebra system. Such an analysis will be meaningful assuming
that the ratios between the various operations remain constant when switching
to hand-optimised assembly implementations in each instance.

We fix the following standard notations and setting. Let E(Fq) denote the
Fq-rational points on E, and let r be a prime divisor of #E(Fq) = q + 1 − t
that does not divide q− 1, where t is the trace of Frobenius. Let the embedding
degree k be the smallest integer such that r divides qk − 1, and denote by π
the Frobenius map E(Fqk) → E(Fqk), (x, y) 	→ (xq , yq). The r-torsion subgroup
E[r] is defined over Fqk , and it contains the non-trivial subgroup E(Fq)[r] of
Fq-rational r-torsion points. Denote by μr the subgroup of r-th roots of unity
in F∗

qk .

Typically, GT = μr, G1 = E(Fq)[r], and G2 is a subgroup of order r of either
E[r] or of E(Fqk)/rE(Fqk).
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1.1 Functions with Prescribed Divisors

Let E be given over Fq by an equation in the variables x and y. For a rational
function f ∈ Fq(E) := Fq(x)[y]/(E) and a point P ∈ E, denote by ordP (f)
the positive multiplicity of the zero P of f , the negative multiplicity of the
pole P of f , or 0 if P is neither a zero nor a pole of f . Denote by div(f) =∑

P ordP (f)[P ] the divisor of f , an element of the free abelian group generated
by the symbols [P ], where P is a point on E.

The definition and computation of pairings involve certain rational functions
with given divisors, in particular, fn,P with

div(fn,P ) = n[P ]− [nP ] − (n− 1)[O],

the lines �P,Q through two (not necessarily distinct) points P and Q with

div(�P,Q) = [P ] + [Q] + [−(P +Q)]− 3[O]

and the vertical lines vP through a point P with

div(vP ) = [P ] + [−P ]− 2[O].

All these functions are defined up to a multiplicative constant, and they are

normalised at infinity by the condition
(
f
(
Y
X

)ordO(f)
)
(O) = 1.

In particular, we have �P,−P = vP , f1,P = 1 and f−1,P = 1/vP .
The function fn,P is of degree O(n) and may be evaluated in O(log n) steps

by the algorithms of §3.

1.2 Cryptographic Pairings

We quickly recall the main cryptographic pairings. In applications, they are
usually restricted to E(Fq)[r] in one argument and to a subgroup of order r in
the other argument.

Weil Pairing

eW : E(r) × E(r) → μr, (P,Q) 	→ (−1)r
fr,P (Q)

fr,Q(P )

Computing the pairing requires the evaluation of two functions; moreover, with
P ∈ E(Fq) and Q ∈ E(Fqk), the function fr,Q is much costlier to evaluate by
the algorithms of §3.

Tate Pairing

eT : E(Fq)[r] × E(Fqk)/rE(Fqk ) → F∗
qk/(F

∗
qk)

r 
 μr,

(P,Q) 	→ fr,P (Q) ↔ fr,P (Q)(q
k−1)/r.

The pairing requires only one evaluation of a rational function, but the original
definition with a quotient group as domain is unwieldy since there is no easy
way of defining unique representatives. The final exponentiation step of raising

to the power qk−1
r realises an isomorphism with μr, and the resulting pairing is

usually called the reduced Tate pairing.
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Ate Pairing. By restricting its arguments to the two eigenspaces of E[r] under
the Frobenius with eigenvalues 1 and q, respectively, the ate pairing introduced
in [14] replaces fr,P (Q) with r ∈ O(q) by fT,Q(P ), where T = t−1 ∈ O(

√
q). This

saving may be offset by the swap of arguments P and Q, so that the function is
defined over Fqk instead of Fq.

eA : E(Fq)[r] × E[r] ∩ ker(π − q) → μr, (P,Q) 	→ fT,Q(P )(q
k−1)/r.

Twisted Ate Pairing. The curveE admits a twist of degree d = gcd(k,#Aut(E));
let e = k/d. The twisted ate pairing of [14] works again with a function over Fq,
at the expense of a factor of O(e) in its evaluation:

eA′ : E(Fq)[r] × E[r] ∩ ker(π − q) → μr, (P,Q) 	→ fT e,P (Q)(q
k−1)/r.

Optimal Pairing Generalisations of the ate and twisted ate pairings requiring
several functions for their evaluation have been given in [13,23]. All of them take
G1 = E(Fq) and G2 = E[r] ∩ ker(π − q). They are evaluated with low degree
functions, typically requiring O(log r/ϕ(k)) operations (not counting the final
exponentiation), where ϕ is Euler’s function.

Let λ = mr =
∑n

i=0 λiq
i be a suitably chosen multiple of r with r � m such

that the λi are small; more precisely, one requires a short addition-subtraction
sequence passing through all λi. An optimal ate pairing is obtained by

eO : G1 × G2 → μr, (P,Q) 	→
(

n∏
i=0

f qi

λi,Q
(P )

n−1∏
i=0

�si+1Q,λiqiQ(P )

vsiQ(P )

)(qk−1)/r

,

where si =
∑n

j=i λjq
j . Since λ = ϕk(q) yields a degenerate pairing, one may

assume n < ϕ(k); a precise condition for non-degeneracy is given in [23, Th. 4].
Finding such a multiple of r with small coefficients in base q is a common integer
relation problem. It may be solved, for example, by using the LLL algorithm to
find a short vector (λ0, . . . , λϕ(k)−1) in the lattice generated by (r, 0, . . . , 0) and
the (−qi−1, 0, . . . , 0, 1, 0, . . . , 0) with 1 at position i for i = 2, . . . , ϕ(k).

Optimal Twisted Pairing. In the presence of a twist of degree d such that k = de,
a pairing can be obtained in a similar fashion from λ = mr =

∑n
i=0 λiT

ei with
n < ϕ(d). The only interesting cases are d ∈ {3, 4, 6} with ϕ(d) = 2 (otherwise,
we obtain again the twisted ate pairing). Then

eO′ : G1 × G2 → μr, (P,Q) 	→
(
fλ0,P (Q)f qe

λ1,P
(Q)vλ0P (Q)

)(qk−1)/r

defines a pairing, where (λ0, λ1) is a short vector in the lattice generated by (r, 0)
and (−T e, 1).
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2 Curves and Associated Optimal Pairings

2.1 Curve Selection

Pairing-based cryptographic settings should be designed so that the discrete log-
arithm problem is intractable in each group involved. Current best attacks on a
subgroup of prime order r of an elliptic curve require on the order of

√
r oper-

ations. For the sake of efficiency of the implementation and to save bandwidth
in transmitting points on the curve, it would be desirable that #E(Fq) = r ≈ q
by Hasse’s theorem. This condition, however, is not easily met for arbitrary
embedding degree k, and the parameter ρ = log q

log r measures to which extent it
is violated: Values close to 1 would be optimal. Discrete logarithms in finite
fields Fqk of large characteristic, which we deal with in this article, may be com-
puted by algorithms with subexponential complexity Lqk(1/3) (as opposed to
quasi-polynomial complexity in small characteristic [5]). One is thus looking for
parameter values such that

√
r ≈ Lqk(1/3) = Lrρk(1/3). Taking logarithms on

both sides shows that for bounded ρ, the embedding degree k grows asymptoti-
cally as log2 q.

Several studies have refined this argument. Table 1 summarises security levels
equivalent to the AES secret key sizes, all given in bits, according to the Ecrypt2
recommendations [22], validated by a large community of cryptologists.

Table 1. Recommended curve sizes

Security log2 r log2 q
k Target kρ

128 256 3248 12.7
192 384 7936 20.7
256 512 15424 30.1

For each security level, we have selected from [9] several curve families ap-
proximately fulfilling the requirements on the parameter sizes, trying to stay as
close as possible to the ideal kρ values.

These curves, together with their main parameters, are given in Table 2; for
more details, see Appendix A. The entries in column “construction” refer to the
algorithms of [9]. Supersingular curves are ruled out at these security levels by
their too small embedding degree k ≤ 6, so we restricted the search to ordinary
curves. Since non-prime base fields Fq are virtually impossible to reach, all curves
are defined over prime fields Fp. We favoured a small Hamming weight of r and
field extensions Fpk which may be defined by a binomial Xk − a with a small
a ∈ Fp. For comparison purposes, we also included the Barreto-Naehrig curves
E12,2 and E12,3, widely considered the best choice for 128 bit security due to
their optimal value of ρ = 1, for security levels of 192 and 256 bits by artificially
increasing p. Some curve families are very sparse, which forced us to relax the
constraints, for instance for E25.
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Table 2. Main curve parameters

Security k ρ kρ Curve Construction deg q deg r deg t ϕ(k)
128 9 4/3 12.0 E9 6.6 8 6 4 6

11 6/5 13.2 E11 6.6 24 20 12 10
12 1 12 E12,1 6.8 4 4 2 4

192 12 1 12 E12,2 6.8 4 4 2 4
15 3/2 22.5 E15 6.6 12 8 6 8
16 5/4 20 E16 6.11 10 8 5 8
17 19/16 20.2 E17 6.2 38 32 2 16
18 4/3 24 E18 6.12 8 6 4 6
19 10/9 21.1 E19 6.6 40 36 20 18

256 12 1 12 E12,3 6.8 4 4 2 4
24 5/4 30 E24 6.6 10 8 1 8
25 13/10 32.5 E25 6.6 52 40 26 20
26 7/6 30.34 E26 6.6 28 24 14 12
27 10/9 30 E27 6.6 20 18 10 18

2.2 Optimal Pairings

Each curve family gives rise to different optimal pairings, which are obtained via
short vectors in certain lattices as explained in §1.2. For each curve family in
Table 2, such short vectors are given in Table 11. Notice that for E17 and E24,
the ate pairings are already optimal, and that for d �∈ {3, 4, 6} and moreover for
E24, the twisted optimal pairings are exactly the twisted ate pairings.

3 The Miller Loop

The procedure to evaluate the function fn,P is given by Miller in [17] and relies
on the recursive relations f1,P = 1 and

fn+m,P = fn,P fm,P
�nP,mP

v(n+m)P
, (1)

which can be easily checked by taking divisors on both sides of the equality,
see §1.1. This allows to compute fx,P alongside xP in a standard double-and-
add fashion, resulting in the special case of Algorithm 1 in which all digits xi

are 0 or 1. To avoid field inversions, the numerator and the denominator of the
function are kept separate; the correctness of the algorithm may be derived from
the loop invariant fx′,P (Q) = f/g, where x′ =

∑n−i−1
j=0 xi+j+12

j .
Techniques for speeding up scalar products on elliptic curves may be adapted.

For instance, allowing addition-subtraction chains for computing xP , preferably
by writing x in non-adjacent form (NAF), in which no two consecutive digits are
non-zero, results in Algorithm 1. Notice the additional multiplication by vP in
the case of a digit −1, due to f−1,P = 1/vP , which is often incorrectly left out in
the literature; in particular, [17, Algorithm 1] is only correct for addition chains.
The common omission may be explained by the use of denominator elimination:
If k is even and G2 = E(Fqk)∩ker(π−q), then the x-coordinates of P and Q and
thus all values vR(Q) lie in the subfield Fqk/2 and disappear for reduced pairings
involving a final exponentiation. In particular, g may be dropped completely.



Implementing Cryptographic Pairings at Standard Security Levels 33

Algorithm 1. Miller’s algorithm using a NAF

Input: P �= O, Q �= λP , two points on an elliptic curve E over a field
x =

∑n
i=0 xi2

i with xi ∈ {−1, 0, 1}
Output: fx,P (Q)
R ← P
f ← 1, g ← 1
for i ← n− 1 downto 0 do

f ← f2�R,R(Q)
R ← 2R
g ← g2vR(Q)
if xi = 1 then

f ← f�R,P (Q)
R ← R + P
g ← gvR(Q)

if xi = −1 then
f ← f�R,−P (Q)
R ← R − P
g ← gvR(Q)vP (Q)

return f/g

An observation made in [7] allows to simplify the expression in the case xi =
−1 also for odd k. Denote by λ the slope of the line between R and −P . Then

�R,−P (Q) = y(Q) + y(P )− λ
(
x(Q) − x(P )

)
,

which is computed with one multiplication, and f and g are updated with four
multiplications altogether, or with two multiplications if denominator elimina-
tion applies. Then

�′R,−P (Q) :=
�R,−P (Q)

vP (Q)
=

y(Q) + y(P )

x(Q) − x(P )
− λ (2)

is obtained without any multiplication since the first term may be precomputed
once and for all. So replacing the block in the case of xi = −1 by

f ← f�′R,−P (Q), R ← R − P, g ← gvR(Q)

reduces the number of multiplications to 2, the same as in the presence of de-
nominator elimination.

In the same article [7], Boxall et al. introduce a variant of the algorithm based
on

fn+m,P = (f−n,P f−m,P �−nP,−mP )
−1,

which contains only three factors instead of the four in (1), but requires a swap
of the numerator and the denominator for each doubling or adding on the elliptic
curve. The algorithm of [7] is given only for addition chains, but can be gener-
alised to addition-subtraction chains, yielding Algorithm 2. The correctness of
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Algorithm 2. Boxall et al.’s algorithm using a NAF

Input: P �= O, Q �= λP , two points on an elliptic curve E over a field
x =

∑n
i=0 xi2

i with xi ∈ {−1, 0, 1}
Output: fx,P (Q)
h ← n+#{xi|xi �= 0}0≤i≤n − 1

δ ← (−1)h

g ← fδ,P (Q), where f1,P = 1 and f−1,P = 1/vP
f ← 1, R ← P
for i ← n− 1 downto 0 do

if δ = 1 then
f ← f2�R,R(Q) // f−2n,P = (f2

n,P �[n]P,[n]P )
−1

g ← g2

R ← 2R, δ ← −δ
if xi = 1 then // fn+1,P = (f−n,P f−1,P �[−n]P,−P )

−1

g ← g�′−R,−P (Q)
R ← R + P, δ ← −δ

if xi = −1 then // fn−1,P = (fn,P �[−n]P,P )
−1

g ← g�−R,P (Q)
R ← R − P, δ ← −δ

else
g ← g2�−R,−R(Q) // f2n,P = (f2

−n,P �[−n]P,[−n]P )
−1

f ← f2

R ← 2R, δ ← −δ
if xi = 1 then // f−(n+1),P = (fn,P �[n]P,P )

−1

f ← f�R,P (Q)
R ← R + P, δ ← −δ

if xi = −1 then // f−(n−1),P = (fn,P f−1,P �[n]P,−P )
−1

f ← f�′R,−P (Q)
R ← R − P, δ ← −δ

return f/g

the algorithm stems from the equations given in commentary and (2), and the

loop invariant fδx′,P (Q)δ = f/g, where x′ =
∑n−i−1

j=0 xi+j+12
j. The value of h

is the total number of curve doublings, additions and subtractions carried out
during the algorithm; δ is +1 or −1, respectively, depending on whether the
number of curve operations still to be carried out is odd or even. In the end,
δ = 1, and f/g is the desired result.

4 Final Exponentiation

After the evaluation of a rational function, most pairings require a final powering
to obtain a uniquely defined result. It has been suggested that at high levels of se-
curity the final exponentiation would become so computationally expensive that
the Weil pairing should be preferred to the Tate pairing [16], but this conclusion
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was quickly contradicted by a finer analysis of the exponentiation step [11]. The
rather special form of the exponent (qk − 1)/r makes the final powering less
daunting than it may first appear. This exponent can be decomposed into three
parts as follows. Let i be the smallest prime divisor of k.

qk − 1

r
= (qk/i − 1) · qk − 1

(qk/i − 1)Φk(q)︸ ︷︷ ︸
easy

· Φk(q)

r︸ ︷︷ ︸
hard

where Φk is the k-th cyclotomic polynomial. The first two factors are sums
of powers of q and are easily computed using only a few applications of the
Frobenius map x 	→ xq and multiplications in GT , together with an extra division
in GT for the first part. Consequently, the powering by N = Φk(q)/r, dubbed
the “hard part”, is the only truly expensive step of the final exponentiation. It is
usually carried out with multi-exponentiation techniques.

Generic Exponentiation. An algorithm proposed by Avanzi and Mihăilescu in [3]
makes particularly intensive use of the Frobenius map, which is very efficient
for finite field extensions given by binomials, see Table 4. To compute bN ,
it first decomposes N in base q, then each coefficient in base 2� for a suit-

ably chosen small �, such that N =
∑�logq N�

i=0

∑�log
2�

(q−1)�
j=0 nijq

i2j�, and bN =∏
j

(∏
i b

nijq
i
)2j�

. After precomputing all possible values of bnij with about 2�

multiplications, for each j the inner product is evaluated in a Horner scheme;
altogether, this requires O((logN)/�) Frobenius maps and as many multiplica-
tions. The outer product is then computed by a square-and-multiply approach
with O(log q) = O((logN)/k) multiplications, most of which are squarings. No-
tice that for 2� ∈ O(logN/ log logN) and k growing sufficiently fast with respect
to N (which is the case due to the security equivalence of §2), the total com-
plexity becomes O(logN/ log logN) operations, which is sublinear in the bit size
of N .

As can be seen in Table 4, the Frobenius is not completely negligible when
the field extension is realised by a trinomial, so we investigated an alternative
approach due to Nogami et al. [18], which purportedly requires fewer applications
of the Frobenius map. Let � be an integer and c = �(logq N)/��, and let t =
�log2 q�. The algorithm of [18] creates a binary matrix with � rows and ct columns
by first writing N in basis qc. Each coefficient corresponds to one row and is
decomposed into c coefficients in base q, each of which is in turn written with
t coefficients in base 2. These form the columns of the matrix, organised into c
blocks of t columns each. To compute bN , first the powers b2

i

are precomputed
with t − 1 multiplications. If the same column occurs d ≥ 2 times in e ≤ c
column blocks, its occurrences can be combined with d − 1 multiplications and
e − 1 applications of the Frobenius map. Taking into account that there are at
most 2� − 1 different non-zero columns, this step can thus be carried out with
at most ct− 1 multiplications and (c− 1)(2� − 1) Frobenius maps. Heuristically,
a fraction of 1/2� of the columns are zero, for which there is nothing to do;
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so one expects a number of multiplications closer to ct(1 − 1/2�), a noticeable
difference for small values of �. For each row, the combined columns which have
a 1 in this row need to be multiplied, with at most �(2�−1 − 1) multiplications.
Finally, the rows are combined with � − 1 multiplications and � − 1 Frobenius
maps. We arrive at a complexity of (c − 1)(2� − 1) + � − 1 Frobenius maps and
ct+�(2�−1−1)+�+t−3 multiplications. The latter can be tightened heuristically
by multiplying the first term with 1 − 1/2�, which turns out to be close to the
experimentally observed values. Asymptotically, the number of multiplications is
equivalent to (log2 N)/�+�2�. Recall from the security equivalence of §2 that k is
of the order of log2 q, so that c ∈ O

(
(logN)2/3/�

)
and the number of Frobenius

maps is in O
(
2�(logN)2/3/�

)
. Letting 2� = (logN)1/3 yields a sublinear total

complexity of O(logN/ log logN). The analysis also shows that by preferring
smaller values of �, one may reduce the number of Frobenius maps compared to
Avanzi and Mihăilescu’s algorithm, at the price of more multiplications. Notice
that � fixes c, and that the exponentiality in � implies that an optimal value is
found easily in practice.

Family-Dependant Exponentiation. Scott et al. proposed in [21] an exponentia-
tion technique for polynomial families of parameters q(x) and r(x). The exponent
is written first in base q(x), then each coefficient in base x as

N(x) = Φk(q(x))/r(x) =
∑�degN(x)/ deg q(x)�

i=0

∑deg q(x)−1
j=0 λi,jx

jq(x)i.

To obtain bN(x0), the values bx
j
0q

i

are precomputed with first deg q(x) expo-
nentiations by x0, which can be done with O(log q) multiplications, then about
degN(x) applications of the Frobenius map. The final result is then obtained
by multi-exponentiation with the exponents λi,j . The exact complexity of this
step depends on the length of an addition sequence passing through all of the
λi,j . If Λ = max |λi,j |, then the best rigorous bound currently available is
log2 Λ + degN(x)O(logΛ/ log logΛ), where degN(x) is the number of poten-
tially different values of λi,j , realised, for instance, by [24]. In practice, the co-
efficients are small, and there are addition sequences with only few additional
terms, see Table 12, leading to a heuristic complexity of O(degN(x)) multipli-
cations. The total complexity then becomes O(log q+degN(x)) multiplications
and O(degN(x)) Frobenius maps, where degN(x) ≈ logN/ log x0.

5 Implementation

We have implemented the various pairings for the different curves of §2 in the
PARI library and linked them into the free number theoretic computer algebra
system GP [15]. Our aim was not to provide an optimal ad hoc implementation
for any one of the curves or pairings, but rather to keep a sufficient level of
genericity appropriate for a general purpose system, while still implementing
algorithmic optimisations that apply in a broader context. All benchmarks were
performed on a Macbook Pro with a 2.5 GHz Core 2 Duo processor, and timings
are given in milliseconds (rounded to two significant digits).
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5.1 Finite Field Arithmetic

Arithmetic in Fp is already available in PARI. The field extensions Fpk are
defined by binomials Xk − a for all curves but E11, E19 and E25, for which
only trinomials of the form Xk +X + a exist. A defining binomial can be found
if and only if all prime factors of k divide p−1, and, additionally for 4 | k, if p ≡ 1
(mod 4) [19, Theorem 2], which happens quite often in our context where k has
only few prime factors and there is a certain freedom in the choice of p. Fast
reduction modulo binomials and trinomials had to be added to PARI. Definition
by a binomial is crucial for an efficient pairing implementation, see Table 3,
which shows the effect for the ate pairing on E18 when artificially switching to
a trinomial.

Table 3. Timings for ate pairing depending on the finite field defining polynomial

Defining polynomial unreduced ate unreduced optimal

x18 + x+ 6 490 ms 120 ms
x18 + 19 150 ms 35 ms

In several places in the literature, it is suggested to build Fpk by successive
extensions of degree dividing k, in particular of degree 2 or 3. It is unclear
where the benefits of this strategy lie for multiplication: Virtually the same effect
may be reached by using Karatsuba (degree 2) and Toom-Cook (degree 3) for
polynomial arithmetic, which moreover speeds up the computations also when
k is not a power product of 2 and 3. By keeping a single extension, it is also
easier to reach the thresholds for asymptotically fast algorithms. In particular,
PARI uses Kronecker substitution to replace the product of polynomials by that
of large integers which is outsourced to the GMP library [12]; in experiments,
this turned out to be faster than Karatsuba multiplication.

Note that using a binomial to define the field extensions also indirectly speeds
up the arithmetic when field elements lie in subfields of Fqk , which happens
systematically for the group G2 = E[r]∩ ker(π− q) in the presence of twists. As
an example consider again the curve E18. Let D ∈ Fp3 be a quadratic and a cubic

non-residue in Fp3 , which implies that Fp18 = Fp3 [D1/6]. Then E18: y
2 = x3 + b

admits a sextic twist E′ : y2 = x3 + b/D, explicitly given by φ6 : E′(F3) →
E(F18) : (x, y) 	→

(
3
√
Dx,

√
Dy
)
, which yields an isomorphism of E′(Fp3)[r]

with G2. If F18 is defined by a binomial X18 + A, then D = A1/3 = X6, the
elements of Fp3 are written as a12X

12 + a6X
6 + a0, and an element Q of G2

is given as φ6(Q
′) = (a14X

14 + a8X
8 + a2X

2, a15X
15 + a9X

9 + a3X
3) with all

ai ∈ Fp. These sparse polynomials lead to a faster arithmetic, and part of the
speed gains for binomial field extensions as shown in Table 3 may be attributed
to this implicit handling of subfields.

Explicit towers of finite fields could be useful for realising the Frobenius auto-
morphism of Fpk/Fp, since the non-trivial automorphism of a quadratic extension
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is a simple sign flip; while those of cubic extensions require a multiplication in
the smaller field anyway. We chose instead to implement the Frobenius, as well
as its powers, as linear maps by multiplying with precomputed k × k matrices.
We originally intended to study the use of optimal normal bases of Fpk/Fp, in
which the Frobenius π is realised as a simple permutation of the coordinates. It
turns out, however, that again binomial field extensions yield an efficient arith-
metic: In their presence, the matrix of π is the product of a diagonal matrix and
a permutation, so π and its powers can be computed with k multiplications in Fp

[4, Theorem 3]. In the trinomial case, the Frobenius is computed with close to
k2 multiplications in Fp.

Table 4 summarises the relative costs of the Frobenius π, the multiplication
M2 and the inversion I2 in Fpk and the multiplication M1 and the inversion I1
in Fp. The effect of a defining trinomial on the cost of π is clearly visible.

Table 4. Costs of arithmetic in finite prime and extension fields

E9 E11 E12,1 E12,2 E15 E16 E17 E18 E19 E12,3 E24 E25 E26 E27

M1/μs 0.41 0.36 0.27 0.82 0.64 0.57 0.66 0.64 0.49 2.2 0.74 0.83 0.73 0.64
I1/M1 11 11 15 12 13 14 12 12 13 10 13 12 12 13
M2/M1 55 90 110 80 120 130 130 140 170 70 250 210 250 240
I2/M2 8.0 7.9 8.6 8.1 8.1 8.7 9.2 8.8 8.7 8.1 9.2 9.5 10 10
π/M2 0.19 0.63 0.19 0.17 0.15 0.15 0.15 0.16 0.95 0.18 0.14 1.2 0.16 0.15

5.2 Miller Loop

Given the cost of inversion in Table 4, we implemented the elliptic curve arith-
metic using affine coordinates. Timings for the Miller loop are summarised in
Table 5. While mathematically not necessary, the Tate and Weil pairings have
also been restricted to the subgroups G1 and G2 of eigenvalue 1 and p, respec-
tively, which assures a fairer comparison and incidentally a type 3 pairing in the
notation of [10], see also [8]. For even embedding degree, we applied denomina-
tor elimination. The first row uses a double-and-add approach, the second one
a signed NAF with Algorithm 1. The variant of Algorithm 2 is only of interest
when k is odd; we give its timings with a double-and-add chain and a NAF in
the third and fourth rows, respectively. It makes an impressive difference.

Generically, one expects a NAF to save about 11% of the number of operations.
For our curves, the effect is often much less. This can be explained by the sparsity
of the integer r derived from a curve family, which is thus closer to non-adjacent
form than a random integer. For instance, the binary decomposition of r for
E12,1 has only 87 entries 1 out of 256, a density that would be expected in a
NAF of a random number. The NAF has 37 entries 1 and −1 each. Also counting
the squarings, the gain in the number of operations is less than 4%. One could
reduce the number of multiplications even further by combining with a sliding
window technique; since the number of squarings is unchanged, the effect will be
more and more marginal with an increasing window size.
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Table 5. Timings of the function evaluation in milliseconds

Curve eT eA′ eO′ eA eO eW deg q deg r deg t ϕ(k)

E9 31 64 15 50 14 100 8 6 4 6
29 59 15 45 14 97
21 46 11 46 12 85
20 42 11 42 12 80

E11 43 – – 110 20 230 24 20 12 10
39 – – 100 20 200 24 20 12 10
31 – – 100 20 200
28 – – 96 19 180

E12,1 14 13 7 18 9 70 4 4 2 4
14 13 7 18 9 67

E12,2 93 91 53 110 54 420 4 4 2 4
91 91 52 110 54 410

E15 130 520 73 270 44 460 12 8 6 8
130 480 71 240 41 440
90 360 53 240 41 370
88 330 50 220 37 360

E16 64 170 35 150 230 360 10 8 5 8
62 160 34 140 220 340

E17 160 – – 54 54 930 38 32 2 16
140 – – 50 50 820
110 – – 51 51 830
100 – – 47 47 740

E18 78 160 39 160 35 400 8 6 4 6
75 150 36 150 35 380

E19 130 – – 350 40 760 40 36 20 18
120 – – 320 35 680
93 – – 340 40 670
88 – – 300 34 610

E12,3 410 400 240 450 220 1800 4 4 2 4
400 400 240 450 230 1700

E24 190 88 88 55 55 960 10 8 1 8
180 85 85 56 56 900

E25 450 – – 1400 120 2700 52 40 26 20
410 – – 1300 130 2400
310 – – 1400 130 2400
300 – – 1200 120 2200

E26 210 – – 660 99 1600 28 24 14 12
190 – – 610 90 1400

E27 370 1900 190 570 54 1300 20 18 10 18
350 1800 180 510 53 1300
260 1300 130 530 52 1100
250 1200 130 450 47 1100
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At these high security levels and consequently big values of k, the ate pair-
ing eA is clearly in general slower than the Tate pairing; the smaller multiplier is
more than offset by the need to work over the extension field. The only exception
is E24 with a particularly small trace (t(x) of degree 1 for r(x) of degree 8). In
fact, the ate pairing for this curve is already optimal. As can be expected, the
twisted ate pairing eA′ is even less efficient except for small values of k combined
with a high degree twist: The power of the trace T e = T k/d quickly exceeds r
itself (in the table, we computed with T e; one could reduce modulo r and ar-
rive at the same timings as the Tate pairing, but may then as well stick with
the original). The optimal versions indeed keep their promises. Due to the over-
head of computing several functions, the total running time is not reduced by a
factor of ϕ(k), but the optimal ate pairing is generally faster than the Tate pair-
ing. Twisted pairings are asymptotically slower, but interesting for the medium
values of k = 9, 12 or 16 which admit a twist of (relatively) high degree 3, 6 or 4.

The Weil pairing with its two function evaluations could be expected to be-
have like a Tate followed by an ate pairing; due to the different loop lengths,
the part fr,Q(P ), however, has a complexity closer to deg r(x)/ deg t(x) times
that of ate, as can be roughly verified in the table. As already stated in the
literature, the enormous overhead of the Weil pairing is not offset by saving the
final exponentiation, see §5.3.

At higher security levels, odd values of k lead to a bigger ϕ(k) and thus a
higher gain in the optimal pairing; together with the Miller loop improvement
of [7], odd and in particular prime values of k become attractive. Notice that
E11, E19 and E25 are heavily penalised by the trinomial field extension. Indeed,
odd or, worse, prime values of k make the divisibility conditions for the existence
of a binomial extension harder to satisfy. Moreover, the degree of p(x) also grows
with ϕ(k), so that the polynomial represents fewer numbers in the desired range
and leaves less choice for p or a value of x0 with low Hamming weight. Even if
a binomial field extension exists, odd values of k that are not divisible by 3 (in
particular, prime k again) suffer from a lack of twists and thus a less efficient
field arithmetic as discussed in §5.1.

5.3 Final Exponentiation

Timings for the final exponentiation are compiled in Table 6.
The first column corresponds to a direct exponentiation by (qk − 1)/r via the

sliding window algorithm built into PARI. The second column does so for the
hard part, while computing the easy one using Frobenius maps. The next two
columns relate the implementation of the hard parts following [3] and [18]. At low
security level, the differences between these two algorithms are minimal. For the
medium and high security range, our implementation confirms the claim of [18]:
Their algorithm becomes faster when Frobenius maps are more expensive, as for
the three curves E11, E19 and E25. The k = 12 curves stand out: The low value
of ϕ(k) makes the final exponentiation much easier with these two algorithms
that rely on an expansion in base q.
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Table 6. Final exponentiation times in milliseconds

Curve ϕ(k) Naive Hard naive AM04 NMKM08 SBCPK09

E9 6 56 36 15 15 8

E11 10 80 78 28 24 21

E12,1 4 58 17 8 8 4

E12,2 4 380 100 41 37 26

E15 8 490 250 85 110 50

E16 8 420 200 66 80 44

E17 16 580 550 180 200 110

E18 6 680 210 78 83 49

E19 18 460 460 150 110 83

E12,3 4 1800 470 170 170 120

E24 8 2000 640 150 200 97

E25 20 2600 2100 700 470 320

E26 12 2300 1000 240 270 170

E27 18 2100 1400 290 310 130

While the theoretical analysis of §4 is not conclusive, the experiments are
unequivocal: The algorithm of [21] (which we used, as explained in the article,
to potentially compute a small power of the true pairing if the coefficients of the
polynomial contain denominators) is clearly the fastest one for curves obtained
from polynomial families.

6 Overall Timings and Conclusion

For each of our reference curves, Table 7 summarises the timings obtained for
the fastest pairing.

Optimal pairings are indeed optimal for higher security levels. Their unre-
duced version benefits from high values of ϕ(k), as can be seen by comparing
E24 and E27. However, part of this advantage is offset by the lack of denomina-
tor elimination for odd k, although Boxall et al.’s variant almost closes the gap
again. Moreover, the higher cost for the final exponentiation more than com-
pensates the gain in the Miller loop. The decision which pairing to take then
also depends on the concrete cryptographic protocol: Not all of them require
reduced pairings throughout their execution. For instance, verification protocols
such as [6] make do with testing equality of products of several pairings. All of
these may then be computed unreduced, and only a final quotient of products
needs to be raised to the power, which makes this exponentiation negliglible.

For a reduced pairing at lower security levels, Barreto–Naehrig curves with k =
12 remain unbeaten, profiting from an exceptionally fast final exponentiation.

At 192 bit security, Barreto–Naehrig curves need to work with a larger than
optimal size of the underlying elliptic curve, but still provide the fastest pairings.
An equivalent performance, however, may be reached for k = 16 with curve E16.
The suboptimal ρ = 5/4 notwithstanding, this curve is of size 501 bits instead of
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Table 7. Timings of the fastest reduced pairing variants

Security Curve ϕ(k) Pairing Unreduced Final exp Reduced

128 bit E9 6 eO′ 11 8 19
E11 10 eO 19 21 40
E12,1 4 eO′ 7 4 11

192 bit E12,2 4 eO′ 52 26 78
E15 8 eO 37 50 87
E16 8 eO′ 34 44 78
E17 16 eA = eO 47 110 157
E18 6 eO 35 49 84
E19 18 eO 34 83 120

256 bit E12,3 4 eO 220 120 340
E24 8 eA = eO 55 97 150
E25 20 eO 120 320 440
E26 12 eO 90 170 260
E27 18 eO 47 130 180

663 bits for the Barreto–Naehrig curve, resulting in less bandwidth for exchanging
curve points. Thus our study shows thatE16 is preferable atmedium security level.

At the highest AES equivalent of 256 bit, Barreto–Naehrig curves are no
longer competitive speed-wise. Here the curve E24 stands out. Although gaining
only a factor of 8 in the Miller loop length, it profits from a very fast final
exponentiation, while even the unreduced variant remains comparable to the
closest competitor E27.

As becomes clear from this study, extension fields Fpk that do not allow a
binomial as a defining polynomial are to be banned, see E11, E19 and E25.

Whether odd or even embedding degrees are preferable remains undecided.
Our results seem to indicate that odd degrees are slightly slower. This can be
explained by their higher probability of requiring a trinomial field extension,
sparser families and the lack of twists as explained at the end of §5.2. Often, the
gain odd and, in particular, prime embedding degrees provide through larger
values of ϕ(k) for the optimal pairings is more than offset by an expensive final
exponentiation, as is well illustrated by E17. In protocols that work with mostly
unreduced pairings, however, Boxall et al.’s variant of the Miller loop makes odd
embedding degrees competitive, see E15 and E27.

A definite conclusion is made difficult by the lack of choice for any given
security level: Some families are so sparse that they contain no curves of prime
cardinality in the desired range or, if they do, no curves allowing to work with
extension fields defined by binomials. Even if suitable curves exist, the sparsity
of a family may have a big impact on the efficiency of the Miller loop. Notice that
the loop for E27 is more than twice shorter than that of E24. Nevertheless, the
unreduced pairing is computed in almost the same time. This can be explained
by the Hamming weight of the multiplier: The family of E27 is instantiated with
x0 of weight 13, that of E24 with x0 of weight 7. So the search for new curve
families remains a research topic of interest, not only for families with optimal ρ,
as witnessed by the good performance of E15 despite its very bad ρ = 3/2.
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A Curve Parameters

Tables 8 to 10 give the exact parameters for the curves we studied for different
security levels. The following notations are used: p(x), r(x) and t(x) are the
polynomials representing the cardinality of the finite prime field Fq, a (large)
prime factor of the curve cardinality and the trace of Frobenius, respectively;
x0 is the numeric value of the variable x; (a, b) gives the equation of the curve
y2 = x3 + ax+ b; F is the irreducible polynomial defining Fpk . For k = 16 or 17,
no prime values r(x0) exist in the desired range. We thus admit a small cofactor
and let r0 denote the actual large prime factor of r(x0).

Table 11 provides the short lattice vectors yielding our optimal ate pairings
eO and optimal twisted ate pairings eO′ , see §2.2.

Table 12 records the addition sequences used in the final exponentiation of
[21]. To remove denominators, the power s of the original pairing is computed; n
is the number of (not necessarily distinct) non-zero coefficients λij , see §4. The
underlined terms are those that are added to the sequence. As can be seen, there
is in general a very small number of very small distinct coefficients, and only a
tiny number of terms, if any, needs to be added.

Table 8. Curves for security level 128 bit

E9 p(x) = (x8 − x7 + x6 − x5 − 2x4 − x3 + x2 + 2x+ 1)/3
r(x) = (x6 − x3 + 1)/3
t(x) = −x4 + x + 1
(a, b) = (0, 7) F (X) = X9 + 3 x0 = 43980465324080

E11 p(x) = (x24 − x23 + x22 − x13 + 4x12 − x11 + x2 − x + 1)/3
r(x) = x20 + x19 − x17 − x16 + x14 + x13 − x11 − x10 − x9 + x7 + x6 − x4 − x3 + x + 1
t(x) = x12 + 1
(a, b) = (0, 4) F (X) = X11 + X + 11 x0 = 11210

E12,1 p(x) = 36x4 + 36x3 + 24x2 + 6x + 1
r(x) = 36x4 + 36x3 + 18x2 + 6x + 1
t(x) = 6x2 + 1
(a, b) = (0, 5) F (X) = X12 + 5 x0 = 6917529027641094616

http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
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Table 9. Curves for security level 192 bit

E15 p(x) = (x12 − x11 + x10 − x7 − 2x6 − x5 + x2 + 2x + 1)/3
r(x) = x8 + x7 − x5 − x4 − x3 + x + 1
t(x) = −x6 + x+ 1
(a, b) = (0, 13) F (X) = X15 + 13 x0 = 271533021386417

E16 p(x) = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x + 3125)/980
r(x) = (x8 + 48x4 + 625) r0 = r(x0)/20641250
t(x) = (2x5 + 41x + 35)/35
(a, b) = (1, 0) F (X) = X16 + 2 x0 = 2251799888961585

E17 p(x) = (x38 + 2x36 + x34 + x4 − 2x2 + 1)/4
r(x) = x32 − x30 + x28 − x26 + x24 − x22 + x20 − x18 + x16 − x14 + x12 − x10

+x8 − x6 + x4 − x2 + 1 r0 = r(x0)/12071636373225929
t(x) = −x2 + 1
(a, b) = (13, 0) F (X) = X17 + 2 x0 = 12681

E18 p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401)/21
r(x) = (x6 + 37x3 + 343)/343
t(x) = (x4 + 16x + 7)/7
(a, b) = (0, 19) F (X) = X18 + 19 x0 = 48422703193491756920

E19 p(x) = (x40 − x39 + x38 − x21 − 2x20 − x19 + x2 + 2x+ 1)/3
r(x) = x36 + x35 − x33 − x32 + x30 + x29 − x27 − x26 + x24 + x23 − x21 − x20 + x18

−x16 − x15 + x13 + x12 − x10 − x9 + x7 + x6 − x4 − x3 + x + 1
t(x) = −x20 + x + 1
(a, b) = (0, 9) F (X) = X19 + X + 23 x0 = 1274

E12,2 p(x) = 36x4 + 36x3 + 24x2 + 6x + 1
r(x) = 36x4 + 36x3 + 18x2 + 6x + 1
t(x) = 6x2 + 1
(a, b) = (0, 13) F (X) = X12 + 5
x0 = 29230032746618058364073696654325660393118650866996

Table 10. Curves for security level 256 bit

E24 p(x) = (x10 − 2x9 + x8 − x6 + 2x5 − x4 + x2 + x + 1)/3
r(x) = x8 − x4 + 1
t(x) = x + 1
(a, b) = (0, 1) F (X) = X24 + 19 x0 = 18446744073709602433

E25 p(x) = (x52 − x51 + x50 − x27 − 2x26 − x25 + x2 + 2x+ 1)/3
r(x) = x40 + x35 − x25 − x20 − x15 + x5 + 1
t(x) = −x26 + x + 1
(a, b) = (0, 31) F (X) = X25 + X + 19 x0 = 6995

E26 p(x) = (x28 + x27 + x26 − x15 + 2x14 − x13 + x2 − 2x+ 1)/3
r(x) = x24 + x23 − x21 − x20 + x18 + x17 − x15 − x14 + x12 − x10 − x9 + x7 + x6 − x4 − x3 + x + 1

t(x) = x14 − x + 1
(a, b) = (0, 12) F (X) = X26 + 4 x0 = 2685463

E27 p(x) = (x20 − x19 + x18 − x11 − 2x10 − x9 + x2 + 2x + 1)/3
r(x) = (x18 − x9 + 1)/3
t(x) = −x10 + x + 1
(a, b) = (0, 9) F (X) = X27 + 3 x0 = 374298113

E12,3 p(x) = 36x4 + 36x3 + 24x2 + 6x + 1
r(x) = 36x4 + 36x3 + 18x2 + 6x + 1
t(x) = 6x2 + 1
(a, b) = (0, 7) F (X) = X12 + 2
x0 = 934494328215398161047821996449179050138683228531035586851830703422221130029\

030240635045913079014
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Table 11. Optimal pairings

Curve Pairing Vector

E9 eO
(
1
3
(x− 2), 1

3
(x+ 1), 1

3
(x+ 1),− 1

3
(x+ 1),− 1

3
(x− 2),− 1

3
(x− 2)

)
eO′

(
1
3
(x3 + 1), 1

3
(2− x3)

)
E11 eO

(
x2,−x, 1, 0, 0, 0, 0, 0, 0, 0

)
E12,i eO (6x+ 2, 1,−1, 1)

eO′
(
2x+ 1, 6x2 + 2x

)
E15 eO (1, 0, 0, 0, x, 0, 0, 0)

eO′
(
x3 + x2 − 1, x4 + x3 − x− 1

)
E16 eO ((2x− 15)/35,−(11x− 30)/35,−(2x− 1)/7, (x+ 10)/35,

(2x+ 5)/5, (8x+ 10)/35, (2x+ 6)/7, (17x+ 30)/35)), x = 25 mod 70
eO′

(
49x4/625, 7 + 168x4/625

)
E17 eO

(
x2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
E18 eO (1, 3x/7, 3x/7 + 1, 0,−2x/7,−2x/7− 1)

eO′
(
18(x/7)3 + 1,−(x/7)3

)
E19 eO

(
x2,−x, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
E25 eO

(
x2,−x, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
E26 eO

(
x2, x, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
E27 eO (x, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

eO′
(
x9, 1

)

Table 12. Addition sequences

Curve s n Addition sequence

E9 1 6 [1, 2, 3]

E11 3 10 [1, 2, 3, 4, 5, 6]

E12,i 1 4 [1, 2, 3, 6, 12, 18, 30, 36]

E15 3 8 [1, 2, 3, 4, 5, 6]

E16 857500 8 [1, 2, 4, 6, 10, 11, 15, 20, 22, 25, 29, 30, 40, 50, 54, 55, 75, 100, 125,
145, 220, 250, 272, 278, 300, 440, 585, 625, 875, 900, 950, 1025, 1100,
1172, 1226, 1280, 1372, 1390, 1750, 1779, 2290, 2780, 2925, 3000,
3300, 4250, 4375, 4704, 4750, 4850, 5125, 9700, 13000, 13250, 15000]

E17 4 16 [1, 2, 3, 5]

E18 1029 6 [1, 2, 3, 4, 5, 7, 14, 15, 21, 25, 35, 49, 54, 61, 62, 70, 87, 98, 112, 131,
224, 245, 249, 273, 319, 343, 350, 364, 434, 450, 504, 581, 609, 784,
931, 1057, 1407, 1715, 1911, 2842, 4753, 4802, 6517]

E19 3 18 [1, 2, 3, 4]

E24 3 8 [1, 2, 3]

E25 3 20 [1, 2, 3]

E26 3 12 [1, 2, 3, 4]

E27 3 18 [1, 2, 3]
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1 Introduction

Secret sharing scheme is one of the key components in various cryptographic
protocols and in particular distributed systems. Shamir [26] and Blakley [4]
independently addressed this problem in 1979 when they introduced the concept
of the threshold secret sharing. A (t, n) threshold scheme is a method where n
pieces of the secret, called shares are distributed to n participants so that the
secret can be reconstructed from the knowledge of any t + 1 or more shares,
while it cannot be reconstructed from the knowledge of fewer than t+ 1 shares,
where t + 1 ≤ n. More formally, in a secret sharing scheme, there exist a set of
n parties, denoted by P = {P1, . . . , Pn} and a special party called the dealer,
denoted by D. A (t, n) threshold secret sharing scheme consists of two phases:

1. Sharing Phase: During this phase, the dealer D shares the secret among
the n participants. In this phase the dealer sends some information, known
as share, to each participant.

2. Reconstruction Phase: In this phase, a set of parties (of size at least t+1)
pool their shares to reconstruct the secret.

In the sharing phase, the dealer wants to share the secret in such a way that
satisfies the following two conditions:

1. Correctness: Any set of t+1 or more parties can reconstruct the secret by
pooling their shares.

2. Secrecy: Any set of t or less participants can not reconstruct the secret.
Moreover, for perfect secrecy, any set of t or less participants will have no
information regarding the secret.

In the basic form of secret sharing schemes, it was assumed that everyone
involved with the protocol is semi-honest. But for the real life scenario, this as-
sumption may not hold good due to the presence of adversary. This idea leads
to the development of secret sharing under various adversarial models. It may
happen that some participants behave maliciously during the execution of the
protocol. Malicious participants may submit incorrect shares resulting in incor-
rect secret reconstruction. Secret sharing schemes that either detect or identify
participants who submit incorrect shares during the recovery of secret have been
extensively studied. Tompa and Woll [28] first presented a cheater-detecting se-
cret sharing scheme and this work is followed by several other works (for exam-
ple, [1], [2], [11], [6], [23], [24]). McEliece and Sarwate [21] were the first to point
out cheater identification in secret sharing schemes and this work is followed by
several other works (for example, [17], [22], [8], [31]). Verifiable secret sharing
schemes [12] have been proposed for environments where the shares given to
participants by the dealer may not be correct i.e., the dealer of these shares
may be corrupted. These typically involve protocols that can be performed by
various subsets of participants in order to check that the shares they possess are
consistent in some sense. While such schemes make it apparent that cheating has
occurred, they do not necessarily permit honest participants to recover the cor-
rect secret. This observation led to robust secret sharing schemes [25]. Informally,
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robust secret sharing schemes allow the correct secret to be recovered even when
some of the shares presented during an attempted reconstruction are incorrect.
In this paper, we deal with robust secret sharing schemes. More specifically, we
show that the share size in Cevallos et al. scheme [5] can be further reduced.

1.1 State of the Art and Our Contribution

In case of up to t cheaters among n (≥ 3t+ 1) participants, it was observed by
McEliece and Sarwate [21] that Shamir secret sharing scheme [26] is robust via
its connection to Reed-Solomon codes. However, for the case when n = 2t+ 1,
the above observation does not work. One solution to this problem, considered
e.g., by Rabin and Ben-Or [25] is for the dealer to authenticate shares using
some message authentication code [30].

In perfectly secure (even not robust) secret sharing schemes, the size of a share
is at least that of the secret. Therefore, the main point in optimization of robust
secret sharing is to reduce the overhead needed for ensuring robustness while
efficiently reconstructing the secret. If efficient reconstruction is not required
and n ≥ 2t + 2 then one may use the ideal (i.e. without any overhead) scheme
by Jhanwar and Safavi-Naini [15]. The case n ≥ 2t+ 1 can also be handled by
the scheme of Cramer et al. [9] which features a constant overhead. Finally, a
(quasi-)linear overhead in the number of players and the security parameter with
efficient reconstruction was achieved by Cevallos et al. [5].

In this paper, we show that the overhead in Cevallos et al. scheme [5] can
be further reduced by applying an authentication tag compression technique by
Carpentieri [7]. The later technique was in fact proposed for improving the share
size of the Rabin and Ben-Or scheme [25], which was a basis of Cevallos et al.
construction. Since the scheme [5] is nearly-optimal, we achieve a constant factor
improvement in the overhead. For example, for t ≤ 2 we improve the overhead
of Cevallos et al. by the factor of about 2/3.

Table 1. Comparison of Our Proposal to Existing Efficient Robust Secret Sharing
Schemes

Scheme Overhead (bits)

Rabin and Ben-Or [25] 3nk
Cevallos et al. [5] 3nq

Proposed (2n+ t− 2)q

Here, k is the security parameter and q, which depends on k, is the parameter associated
with the overhead (more specifically, the elements used to authenticate shares are
chosen from the field of size 2q).
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1.2 Applications of Robust Secret Sharing Schemes

In the information-theoretically secure setting, the most natural application of
robust secret sharing is related to the distributed information storage, such as
for instance, secure cloud storage. User’s data can be stored with several stor-
age providers in a shared form. Clearly, an ordinary Shamir secret sharing pro-
vides protection against passive attacks where unqualified coalitions of storage
providers may try to recover the secret. Also, reliability is ensured such that
an information loss at several (few enough) providers does not hinder the re-
construction. However, in case of active attacks, when provider(s) deliberately
submit incorrect shares, the recovery of a correct secret becomes crucial – and
this is exactly the scenario [29,18], where robust secret sharing manifests its
importance.

Moreover, robust secret sharing is also related to Secure Message Transmission
(SMT) protocols [13,20]. Here, the sender is connected with the receiver by n
distinct channels, t of which are controlled by an adversary. SMT realizes a
private and reliable transmission in this setting. Finally, the techniques used in
robust secret sharing schemes may also be applied to realizing verifiable secret
sharing and secure multi party computation [25].

1.3 Roadmap

In section 2, the necessary prerequisites for the proposed construction are pro-
vided. In section 3, we discuss the related definition, the adversarial model and
authentication techniques. In section 4, our construction along with its security
proof is provided and finally we conclude in section 5.

2 Preliminaries

2.1 Message Authentication Codes

Carter and Wegman [30] invented unconditionally secure message authentication
code which is a tool that enables to verify the integrity of a message without
assuming any computational hardness.

Definition 1. A message authentication code (or MAC) for a finite message
space M consists of a function MAC : M × K → T for finite sets K and T . It
is called ε-secure if for all m,m′ ∈ M with m �= m′ and for all τ, τ ′ ∈ T :

P [MAC(m′,K) = τ ′|MAC(m,K) = τ ] ≤ ε,

where the random variable K is uniformly distributed over K .

Example: MAC : F× F2 → F with (m, (α, β)) → α.m + β is a ε-secure MAC
with ε = 1/|F|, where M is a finite field F.
More generally, as first shown in [10], [16], [27]

MAC : Fl × F2 → F, ((m1, . . . ,ml), (α, β)) → Σl
k=1α

i.mi + β (1)

is a ε-secure MAC with ε = l/|F|.
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2.2 The Reed-Solomon Code

Let (a0, . . . , at) ∈ Ft+1 and f(x) = a0+a1x+. . .+atx
t ∈ F[X ] be a polynomial of

degree at most t. Let x1, x2, . . . , xn ∈ F\{0}, for n > t, be distinct elements. Then
C = (f(x1), f(x2), . . . , f(xn)) is a codeword of Reed-Solomon error correcting
code [19] of the message (a0, . . . , at). Reed-Solomon code can correct up to e
erroneous symbols, i.e. when e out of n evaluation points f(xi) (1 ≤ i ≤ n) are
manipulated, the polynomial (i.e., the message) can be uniquely determined if
and only if n ≥ t+1+2e. Note that there exist efficient algorithms implementing
Reed-Solomon decoding, such as Berlekamp-Welch algorithm [3].

3 (t, δ) Robust Secret Sharing Scheme

In a (t, δ) robust secret sharing scheme, there exists a set of n participants,
denoted by P = {P1, . . . , Pn} and two special participants called the dealer and
the reconstructor, denoted by D and R respectively. A (t, δ) robust secret sharing
scheme consists of two phases:

1. Sharing Phase: During this phase, the dealer D shares the secret among
the n participants. In this phase the dealer sends some information, which
is known as share, to each participant.

2. Reconstruction Phase: In this phase, all the participants communicate
their shares to the reconstructor.

In the sharing phase the dealer, in presence of an adversaryA who can corrupt
at most t participants, wants to share the secret s (∈ secret space) in such a
way that satisfies the following two conditions:

1. Privacy: Before reconstruction phase is started, the adversary has no more
information on the shared secret s than he had before the execution of shar-
ing phase. This is called perfect privacy.

2. Reconstructibility: At the end of reconstruction phase, the reconstructor
R outputs s = s′ except with probability at most δ.

3.1 Adversarial Model

The dealer D and the reconstructor R are assumed to be honest. The dealer
delivers the shares to respective participants over point-to-point private channels.

We assume that A is computationally unbounded, active, adaptive, rushing
adversary who can corrupt up to t < n/2 participants (but neither D nor R).
Once a participant Pi is corrupted, the adversary learns her share and internal
state. Moreover from that point onwards, A has full control over Pi. By being
active, we mean that A can deviate from the protocol in an arbitrary manner.
By being adaptive, we mean that after each corruption, A can decide on whom to
corrupt next, depending on the information she has obtained so far. During the
reconstruction phase, the adversary gets to see the communication between all
participants Pi and the reconstructor R. By assumption, the adversary controls
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the information that the corrupted participants send to R. By being rushing
we mean that in every communication round, A can decide the messages of
corrupted participants after seeing the messages of honest participants.

Note that assuming R to be honest is equivalent to assuming a broadcast
channel available to each participant. In the later case, each participant sim-
ply broadcasts her share, executes the reconstruction algorithm and output the
result.

3.2 Share Authentication

Suppose the dealer D wants to share the secret s with the help of a polynomial
f(x) of degree at most t over a finite field F as in Shamir scheme [26]. Then
the share of a player Pi is just f(αi), where αi is a publicly known non-zero
field element. Now, if there are some malicious participants, who can alter the
original share at the time of reconstruction, the correctness may not hold good.

Let si be the Shamir share for the player Pi. For every pair of players Pi and
Pj , Pi’s Shamir share si is authenticated to the player Pj with an authentication
tag τi,j obtained by message authentication code, where the corresponding au-
thentication key kj,i is held by player Pj . Specifically, this step may be done by
choosing kj,i = (gj,i, bj,i) uniformly at random from F × F and then computing
τj,i = sigj,i + bj,i.

This similar method was used by Rabin and Ben-Or [25], but Carpentieri [7]
observed that the authentication tags can be compressed as follows. Instead of
first choosing the authentication key and then calculating the authentication tag,
one may first fix the authentication tag and then may find the authentication
key.

In Rabin and Ben-Or setting, for pairwise authentication, each player will
get n − 1 keys and n − 1 tags. By using the above trick, one may, instead
of sending n − 1 tags to each player, send a seed ci to player Pi. Then, the
necessary authentication tags will be generated from the seed ci together with
some public information. In fact, the seed for Pi is ci = (di,1, . . . , di,t), where di,j
for j ∈ {1, . . . , t} is randomly chosen from F and the authentication tag of Pi

against Pj ’s key is τi,j = αidj,1 + α2
i dj,2 + · · ·+ αt

idj,t. Compared to the setting
of Rabin and Ben-Or, each player now gets a seed of t field elements from which
the n− 1 authentication tags are generated. Thus, the share size of each player
is reduced by n− t − 1 field elements.

4 Optimal Cheater Resilient Robust Secret Sharing with
Improved Share Size

The paper [5] can be considered as an adaptation of the Rabin and Ben-Or [25]
scheme with modified reconstruction technique (against rushing adversary). In
our proposal, we use the share authentication method derived from that of [7] (as
described in the previous section) and adapt it to the reconstruction technique
of [5].
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4.1 Proposed Scheme

– Initialization: For i = 1, . . . , n, let the distinct elements αi ∈ F2m \ {0}
be fixed and public. Moreover, let αi be also non-zero and distinct in F2q ,
where m, q are two positive integers and the cardinalities of both fields are
larger than n.

– Sharing Phase:
• The dealer D chooses randomly a polynomial f(x) ∈ F2m [X ] of degree
at most t, where f(0) = s is the secret to be shared, and computes
f(αi) = si in F2m , where i = 1, . . . , n.

• If q < m, we let l = m/q (for simplicity, assuming that l is an integer)
and sj = sj,1|| . . . ||sj,l.
D chooses randomly di,1, . . . , di,t and gi,j from F2q , and computes

bi,j =

{
gi,jsj +Σt

k=1α
k
i dj,k for q ≥ m

Σl
k=1g

k
i,jsj,k +Σt

k=1α
k
i dj,k for q < m

where j = 1, . . . , i− 1, i+ 1, . . . , n and i = 1, . . . , n.

• D privately sends to each Pi the share

Si = (si, di,1, . . . , di,t, gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n,

bi,1, . . . , bi,i−1, bi,i+1, . . . , bi,n).

– Reconstruction Phase:
• Round 1: Each Pi sends (s

′
i, d

′
i,1, . . . , d

′
i,t) to the reconstructor R.

• Round 2: Each Pi sends
(g′i,1, . . . , g

′
i,i−1, g

′
i,i+1, . . . , g

′
i,n, b

′
i,1, . . . , b

′
i,i−1, b

′
i,i+1, . . . , b

′
i,n)

to the reconstructor R.
• Computation by R:

1. R sets vij , i, j ∈ {1, 2. . . . , n}, to be 1 if Pi’s authentication tag is ac-

cepted by Pj , i.e., if b
′
i,j =

{
g′i,js

′
j +Σt

k=1α
k
i d

′
j,k for q ≥ m

Σl
k=1g

′k
i,js

′
j,k +Σt

k=1α
k
i d

′
j,k for q < m

,

otherwise she sets vij to 0.
2. R computes the largest set I ⊆ {1, 2, . . . , n} with the property that

∀i ∈ I : |{j ∈ I|vij = 1}| = Σj∈Ivij ≥ t+ 1.

Clearly, I contains all honest participants. Let e = |I| − (t + 1) be
the maximum number of corrupted participants in I.

3. Using the error correction algorithm for Reed-Solomon code, R com-
putes a polynomial f(x) ∈ F2m [X ] of degree at most t such that
f(αi) = s′i for at least (t+ 1) + e

2 participants i in I.
If no such polynomial exists then output ⊥,
otherwise, output s = f(0).

Remark 1. In the proposed scheme, a tradeoff between cheating probability and
share size can be arranged. So, within the natural restrictions, the parameters
can be set flexibly. Hence, q can be smaller or larger than m.
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4.2 Security Proof

Lemma 1. The above scheme provides perfect secrecy, i.e. the adversary A con-
trolling any t participants during the sharing phase will get no information about
the secret s.

Proof: The dealer D shares the secret s through a polynomial f(x), where the
degree of the polynomial is at most t in x, and the share of each Pi is

Si = (si, di,1, . . . , di,t, gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n,

bi,1, . . . , bi,i−1, bi,i+1, . . . , bi,n).

Without loss of generality, we may assume that the first t participants P1, . . . , Pt

are under A’s control. Now, according to Lagrange’s interpolation, t + 1 such
values si fully define a degree-t polynomial. Thus, we need to choose one more
si, where i ∈ {1, 2, . . . , n} \ L and L = {1, 2, . . . , t}. Without loss of generality,
we may assume that i = t + 1. Let us now estimate the information regarding
st+1 which is available to each Pi, i ∈ L, via (gi,t+1, bi,t+1).

Case 1 (q ≥ m):

For all i ∈ L,

bi,t+1 = gi,t+1st+1 + αidt+1,1 + α2
i dt+1,2 + · · ·+ αt

idt+1,t.

So, for all i ∈ L,

bi,t+1 − gi,t+1st+1 = αidt+1,1 + α2
i dt+1,2 + · · ·+ αt

idt+1,t.

Note that the above system of linear equations is associated with the following
matrix, which is non-singular in F2q :⎡⎢⎢⎣

α1 α2
1 . . . αt

1

α2 α2
2 . . . αt

2

. . . . . . . . . . . .
αt α2

t . . . αt
t

⎤⎥⎥⎦ .

It is trivial to see that the linear system is consistent for all possible values
of st+1. Now, we conclude that A can guess the correct st+1 with probability at
most 1

2m as st+1 ∈ F2m .

Case 2 (q < m):
For all i ∈ L,

bi,t+1 = Σl
k=1g

k
i,t+1st+1,k +Σt

k=1α
k
i dt+1,k.

Here q < m, l = m/q (for simplicity, l is assumed to be an integer) and sj =
sj,1|| . . . ||sj,l. So, for all i ∈ L,

bi,t+1 − Σl
k=1g

k
i,t+1st+1,k = Σt

k=1α
k
i dt+1,k.
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Now, for any fixed value of st+1 = st+1,1|| . . . ||st+1,l, we can use the same ar-
gument as in Case 1 in order to show that the probability for A to guess st+1

correctly is at most (1/2q)l = 1/2m.

Lemma 2. Any corrupted participant Pi who submits s′i �= si in Round 1 of the
reconstruction phase will be accepted by an honest participant with probability at

most ε =

{
1
2q for q ≥ m
l
2q for q < m

.

Proof: Without loss of generality, we assume that the corrupted participant is
P1 who submits s′i �= si in Round 1 of the reconstruction phase.

Case 1 (q ≥ m):
P1 will be accepted by honest Pj if bj,1 = gj,1s

′
1 +αjd

′
1,1 + α2

jd
′
1,2 + · · ·+αt

jd
′
1,t.

Thus P1 has to guess gj,1 correctly. Now, let

gj,1s
′
i +Σt

k=1α
k
j d

′
1,k = gj,1si +Σt

k=1α
k
j d1,k.

Then,
gj,1 = (s′1 − s1)

−1Σt
k=1α

k
j (d1,k − d′1,k).

Note that gj,1 is independent of all information that the adversary A has
obtained and gj,1 ∈ F2q . Thus, P1 will be accepted by Pj with probability at
most 1

2q ≥ Pr(v1j = 1). Therefore, any dishonest participant Pi submitting
s′i �= si in Round 1 of the reconstruction phase will be accepted by a honest
participant Pj with probability Pr(vij = 1) ≤ 1/2q.

Case 2 (q < m):

P1 will be accepted by honest Pj if bj,1 = Σl
k=1g

′k
j,1s

′
1,k+Σt

k=1α
k
j d

′
1,k. As s1 �= s′1,

at least one of s1,k �= s′1,k. Assume that only one s1,k �= s′1,k. So, as in Case 1, P1

will be accepted by Pj with probability at most 1
2q ≥ Pr(v1j = 1). Taking into

account the union bound, P1 will be accepted by Pj with probability at most
l
2q ≥ Pr(v1j = 1). Therefore, any dishonest participant Pi submitting s′i �= si
in Round 1 of the reconstruction phase will be accepted by a honest participant
Pj with probability Pr(vij = 1) ≤ l/2q.

Theorem 1. For any positive integer t such that n = 2t+ 1, the proposed con-
struction forms (t, δ)-robust secret sharing scheme for n participants with the
space of secrets F2m and

δ ≤ e.((t+ 1)ε)(t+1)/2

where e = exp(1) and ε =

{
1
2q for q ≥ m
l
2q for q < m

.

Proof:
Privacy: Follows from Lemma 1.
Reconstructability: From Lemma 2, we have found that Pr(vij = 1) ≤ ε. The
rest of the proof is the same as in [5, Theorem 3.1].
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4.3 Discussion

Let us compute the share size. During the sharing phase, each party gets one
element from F2m and 2n+ t− 2 elements from F2q . Therefore, the share size of
each participant is m+ (2n+ t − 2)q bits.

Consider the following instantiation. By Theorem 1, the resulting secret shar-
ing scheme is δ-robust for δ ≤ e.((t+ 1)ε)(t+1)/2. Therefore, for a given security

parameter k, setting q =

{
�log(t+ 1) + 2

t+1 (k + log(e))� for q ≥ m

�log(t+ 1) + log(l) + 2
t+1 (k + log(e))� for q < m

,

we obtain δ ≤ 2−k.
Every perfectly secure secret sharing scheme must have the share size at least

that of the secret. The first term in the sum is responsible for this, while the
second term characterizes an overhead required for the share authentication. In
Table 1, we compare the overhead of our scheme with those of the schemes by
Rabin and Ben-Or [25], and Cevallos et al [5]. We can see that when t ≤ 2, our
scheme reduces the overhead by the factor about 2/3 as compared to that of
Cevallos et al.

5 Conclusion

We have shown and analyzed a new robust secret sharing scheme, which combines
the techniques of [7] and [5] with an improvement of share size over the robust
secret sharing scheme of [5]. The scheme of [5] has nearly-optimal share size, so
that our improvement is by a constant factor. To the best of our knowledge, the
proposed scheme has the smallest share size, among other efficient (t, δ) robust
secret sharing schemes with optimal cheater resilience, secure against rushing
adversary.
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Abstract. In this paper, we propose a new Cellular Automata (CA)
based scalable parameterized hash function family named CASH. The
construction of CASH is inspired by sponge function and the internal
round transformation employs linear CA. For the first time, we have
managed to merge the classical add-round-constant and subsequent dif-
fusion layers. The primitive function of CASH family is proved to be
secure against the state-of-the-art attacks. All the designs are imple-
mented on Xilinx Virtex-6 FPGAs and compared with the best reported
results in literature. The results show that CASH outperforms the SHA-3
finalists with respect to throughput and throughput/area.

Keywords: cellular automata, hash function, sponge function, FPGA.

1 Introduction

Cryptographic hash function is a one-way function that maps an arbitrary mes-
sage input to a fixed length output. One-way Hash functions play a major role
in secured communication. In todays world of mobile devices, where the operat-
ing environment is increasingly becoming resource constraint, it is imperative to
design systems that are resource efficient and at the same time have low compu-
tational overhead. Even in the recently completed SHA-3 competition, NIST had
stressed on the hardware efficiency of hash designs. It is evident from literature
that designs that are provably secure are essentially inefficient from the imple-
mentation perspective. This brings researchers to the classical trade-off scenario
where one tries to construct near optimal designs while compromising on some
of the provable criterion. In this work we try to follow a similar path. In our
research we have tried to exploit the properties of the Cellular Automata(CA)
construction to design a hash function. In doing so we leverage on the sim-
ple, regular, modular and cascadable structure of CA with local interconnection
structure that ideally suits VLSI technology. This directly gives us a construction
that is by definition efficient due to the simplicity of operations involved making
it suited for both software and dedicated hardware implementations. Because of
its parallel execution and bit-wise operations, the regular structure of Cellular
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Automata is well suited for hardware implementations [1], [2]. Our main aim is
to construct parameterized as well as efficiently computable internal function. In
addition, we provide sound theoretical proofs to affirm that our design remains
secure in the light of current state-of-the-art attacks.

The idea of using CA for hash design was first proposed in CRYPTO’89 by
Damgard [3]. CA was one of the three ideas to design hash function given by him.
However, diffusion deficiency was reported in [1] which consequently broke the
system. In the same paper, the authors promoted another hash function based
on CA– CellHash [1]. It was Chang [4] who found the theoretical weakness of
CellHash and he calculated that second preimage attack on it requires about
2128.5 -calls ( < 2256) of the compression function. In recent literature a few fast,
lightweight hash proposals SPONGENT [5], GLUON [6], QUARK [7], PHOTON
[8], [2] have taken place. Meanwhile, NIST has standardized Keccak [9] as SHA-3
hash algorithm. This standardization is for general purpose as far as usability is
concerned. There are several usages of hash functions where better flexibility as
well as better performance is required without deteriorating security.

In this paper, we propose a secured, parameterized, flexible hash family. The
hash primitive is based on Cellular Automata. We are able to merge the clas-
sical AddRoundConstants layer and Diffusion layer into a single linear layer
retaining all the advantages of those specific layers. Instead of employing same
diffusive function to all rounds, our internal transformation applies round depen-
dent distinct linear functions for different rounds. Moreover, diffusion can also
be controlled by tuning an external parameter. Security analysis of the whole
function has been made to show its resistance against other known attacks. The
performance of the hash is compared with the top five hash designs of SHA-3
competition.

Our Contributions :

– CASH–a new hash function is proposed which is designed based on the simple
and elegant CA structure and employs only bitwise operations making it
hardware friendly.

– The construction and eventual security evaluation of CASH incorporates
lessons learned during the past few years of extensive research triggered by
the SHA-3 competition. This in turn implies that CASH is less likely to be
susceptible to more recent attacks. The resistance against most attacks has
already been theoretically proven in this work.

– The diffusion scheme adopted in CASH is innovative and introduces a new
strategy to achieve round dependent diffusion that reduces hardware foot-
print and may motivate further mathematical analysis of this construction.

– CASH can encourage designers to look in CA based designs as an alternative
design technique.

The rest of the paper is organized as follows. Section 2 describes the design in
detail including design rationale of CASH. Hardware implementation results are
given in Section 3. Security analysis is carried out in Section 4 and we conclude
in Section 5.



CASH: Cellular Automata Based Parameterized Hash 61

2 CASH Design

The underlying primitive of CASH is Cellular Automata. So, before introducing
the design, we briefly outline the concept of CA. Cellular Automata are discrete
lattice of cells with a particular geometry. Each cell consists of a memory element
(Flip-Flop) and a combinatorial logic. Cells can assume values from a finite setQ.
At each clock pulse, the cells are updated simultaneously. A function f : Qk → Q
is said to be local transition rule depending on which the cell values are updated.
The transition function f totally depends on local neighborhoods of cell and here
the number of neighbors is denoted by k. e.g. for 3-neighborhood CA ith cell at
tth clock cycle evolves as follows:

St+1
i = f(St

i−1, S
t
i , S

t
i+1) (1)

If the CA is capable to generate all non-null states, starting from any non-null
state, the CA is termed as maximum length CA. It has also been proved that the
characteristic polynomial of an n−bit maximal length CA becomes a primitive
polynomial of degree n. As for an example, the primitive polynomial x4 + x+ 1
over GF (2) corresponds to the maximal length CA [1, 0, 1, 0] where rule-90 is
represented by ′0′ while rule-150 is represented by ′1′.

2.1 The Domain Extension Algorithm

In our design we have adopted a domain extension algorithm that is inspired
from the sponge-construction. Though most hash algorithms use the Merkle-
Damgard(MD) [10,3] mode of operation but it has been shown to be prone to
several generic attacks [11] like length-extension attack, multi-collision attack
[12], herding attack [13] etc. Moreover, the feed-forward nature of MD limits ef-
ficient hardware implementation thereby degrading performance. Sponge, which
was introduced by Bertoni [14] gained immediate popularity in the research com-
munity. It is worth mentioning that Keccak [9], the SHA-3 winner, also has a
Sponge-based mode of operation. Sponge function has several advantages over
MD construction. It provides a security measure which depends on its tunable
parameter. Unlike MD construction, it does not require feed-forward type state
transition and hence require less hardware. Getting variable number of output
bits is its another advantage. The proposed hash function follows Sponge func-
tion (Fig.1) as the mode of operation and thus provides simplicity, security and
tuning flexibility.

For clear understanding, here we briefly sketch the sponge function. It uses a
fixed internal transformation to be iterated to produce hash value. The internal
state is divided into two parts : c-bit capacity and r-bit bit-rate. Initially the
state is fed with some fixed value. A suitable padding rule is applied so that
the length of the padded message becomes a multiple of r and with the sole
constraint that the last message block be never all zero. It is then partitioned
into r-bit blocks. These blocks go into the state sequentially by XORing with the
bit-rate part. Then a fixed internal transformation (h) is executed over b = (c+r)
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bit state. The convention to assign bit position number 0 to left-most bit and
b− 1 to right-most bit in the b bit state is adopted here.

The function Sponge is proved to be indifferentiable [15] from random oracle
when the internal function is assumed to be random transformation. The security
bound for an n-bit hash value, assuming h to be random transformation, is
min{2n

2 , 2
c
2 } for collision resistance, min{2n, 2c,max{2n−r, 2

c
2 }} for preimage

security and min{2n, 2 c
2 } for second-preimage resistance. So for optimal collision

security it is enough to take c = n. To get optimal preimage security c should be
at least (n + r) and that for second-preimage security it should be at least 2n.
Hence, for general purpose hash, one needs to set c ≥ 2n to get optimal security
for collision, preimage as well as second-preimage. Depending on the various
requirements, one can make security-memory trade-offs tuning the parameter c.
Padding is an important step in the preprocessing phase and must be properly
dealt with to avoid attacks like the length-extension attack. In the next sub-
section we illustrate the padding scheme of CASH.

Fig. 1. Sponge Hash Construction[14]

2.2 State Preprocessing and Padding

The message M to be hashed is first padded with ‘1’ followed by minimum
number of ‘0’s which makes padded message a multiple of r and such that the
last r bits are never all-zero. The padded message is then partitioned into j

number of chunks {m1,m2, . . . ,mj}, each of length r bits, where j = ( |Pad(M)|
r ).

Before executing absorbing phase, state is initialized with b number of 0s. In
absorbing phase, right most r bits are XORed with incoming message chunk
and then the internal transformation is applied. When the absorbing phase is
over, r right most state bits are outputted and the same internal transformation
is applied. This process is continued till n bits comes out. If n is not a multiple of
r, the squeezing phase is executed �n

r � times and then the output is truncated to
n−bits. We now illustrate the round transformation function which encompasses
the main novelty of this work.
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2.3 Internal Transformation

The security as well as efficiency of sponge-like hash function directly depends
on the security and efficiency of the underlying transformation. As mentioned
earlier, our internal function is based on Cellular Automata. It acts on whole
(c + r) bit state and consists of nr rounds, each of which (denoted by h) is
composed of three different layers :

Permutation layer, Non-linear layer, Linear layer.

– Permutation Layer: A bitwise permutation1 (Pb) is defined over the state
to reorder the bit positions. The intention here is to distribute the input
message bits into the state uniformly, setting the parameter αi as follows:

αi ≡ i × 11 mod (c − 1) (2)

where i varies from 1 to r; any two consecutive entering message bits are
placed 11-bit distance apart. As each permutation can be written as compo-
sition of disjoint cycles2, the permutation Pb is represented as follows

Pb = (c, α1) ◦ (c+ 1, α2) · · · ◦ (c+ r − 1, αr).

– Non-linear Layer: CASH uses the Sbox given in Table 6 of LHASH hash
function [16] The ANF of the Sbox is as follows:

y0 = 1 ⊕ x0 ⊕ x2x3 ⊕ x1x3 ⊕ x0x2 ⊕ x0x1x3

y1 = 1 ⊕ x0 ⊕ x3 ⊕ x1x2 ⊕ x1x3 ⊕ x0x1 ⊕ x0x3 ⊕ x0x1x2 ⊕ x0x1x3

y2 = 1 ⊕ x0 ⊕ x1 ⊕ x3 ⊕ x1x2 ⊕ x1x3

y3 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x0x1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3)

– Linear Layer: Linear 3-neighborhood Cellular Automata whose rules are
determined from a set of primitive polynomials are employed at the linear
layer. For each round of the linear layer a different CA-rule has to be gen-
erated. The ith rule is denoted by ηi, i ∈ {1, 2, · · · , nr}. The primary rule,
denoted by K, corresponding to each CASH variant is given in Table 5. Once
K is selected, the CA rule for the ith round is derived from a CA of length
|K| with rule K and seed ηi−1 where i �= 1. For i = 1, rule = seed = K.
This helps us to avoid storing an extra seed for the primary CA. ηi is then
expanded to get the rule for the entire state. The expansion strategy to
compute the rule for full state of CA from ηi is discussed in Section 2.4.

Selection of different parameters related to the hash algorithm is vital for mak-
ing claims and ensuring and measuring the resulting security. The parameters
selected in design of CASH are given in the following subsection.

1 The permutation (
1 2 3
1 3 2

)
is equivalently represented by the cycle (2,3).

2 The cycle (c, α1) states that cth bit goes to αth
1 position and vise versa after the

application of Pb.
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2.4 Selection of Parameters

– Choice of Round Dependent Parameters : In order to construct round
dependent linear function, first we have to compute LHCA3 corresponding
to a polynomial. The method [17] based on Euclidean algorithm serves this
purpose well. For the sake of efficiency, we choose primitive polynomials of
degree L ← ( b

2�
) such that 2� divides b and (2L − 1) ≥ nr. List of primitive

polynomials corresponding to different hash digests are given in Table 5. We
generate b bit round dependent parameters from primitive polynomials of
degree L in the following procedure. First K, the LHCA corresponding to a
primitive polynomial of degree L is generated using the technique given in
[18]. From K compute η1 = [d1, d2, · · · dL−1, dL] as given in Section 2.3 and
let us assume η1 corresponds to the polynomial [Q(x)]. Then the expanded
form of LHCA [d1, d2, · · · d̄L, d̄L, · · · , d2, d1] corresponds toQ2 and the LHCA

[d1, d2, · · · d̄L, d̄L, · · · , d2, d̄1, d̄1, d2 · · · , d̄L, d̄L, · · · , d2, d1] corresponds to Q22

and so on [19]. Now Q being a primitive polynomial, (except the all zero
state) minimum number of cycle length that can appear in the state transi-

tion diagram of the expanded LHCA corresponding to Q2� is 2L − 1. If 2L

is large enough, it is sufficient to choose primitive polynomials of degree L
instead of b.

– Value of ‘c’ : We impose two constraints on the selection of the parameter
c. First it must satisfy the inequality c ≥ n for n-bit hash digest. Secondly
it is to be remembered that4 (c − 1) must be a prime number.

– Value of ‘r’ : The parameter r has a direct relation with the efficiency
rather than security. So, depending on the application r can be any number
with the constraints

• b = (c+ r) is a multiple of size of the Sbox

• L /b and be such that b
L becomes 2� for some non-negative integer �

– Value of ‘q’ : The parameter q is the number of clock cycles given in
LHCA for each round function. As LHCA is composed of 3-neighborhood one
dimensional CA, a single bit affects 2q+1 consecutive bits after q clock cycles.
So it provides high diffusion and as can be seen in Theorem1 that minimum
number of diffusion occurs at rounds 2i. We argue that the minimum value
of q is 3 and q should not be a power of 2.

The specific values of the parameters c, r, n and security parameters are given
in the Table 1.

Next subsection provides underlying reasons for the choice of various opera-
tions and parameters in the design of CASH hash function.

3 A Cellular Automaton is called linear if it consists of linear functions only. Again a
linear CA is called Linear Hybrid CA (LHCA) if all cells do not use the same rule.

4 From Equation(2), we learn that to have a permutation, c should be chosen in such
a way that (c− 1) will become a prime.
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Table 1. Specification of CASH Family

Hash Family Hash
length
(n)

nr Capacity
(c)

Bit-rate
(r)

Preimage Se-
curity

2ndPreimage
Security

Collision
Security

CASH-80 80 11 80 16 264 240 240

CASH-128 128 13 132 92 266 266 264

CASH-160 160 15 164 92 282 282 280

CASH-256A 256 15 264 248 2132 2132 2128

CASH-256B 256 15 444 68 2222 2222 2128

2.5 Design Rationale

The choice of operations in CASH design have sound theoretical background
and are not heuristic. The following points will provide a better understanding
of the theoretical framework behind the design of CASH.

– The fixed permutation provides dispersion. The permutation Pb distributes
the r message bits to the entire state uniformly. Hence nearby entering bits
get remote positions.

– In this nonlinear layer, each bit of the state gets updated by nonlinear func-
tions. This being the only nonlinear part in the function, strength of security
lies upon this section heavily. The smallest non-linear component is the 4×4
Sbox whose algebraic degree as well as inverse degree is 3. It can be formed
from the Linear Approximation table given in Table 7 that the nonlinearity
of the Sbox is 4.

– The contribution of linear layer is many-fold. LHCA is given q iterations to
produce much needed diffusion5. So each input bit propagates to a span of
(2q+1) output bits and each output bit depends on (2q+1) input bits. Here
user is allowed to get desired diffusion by fixing the tweakable parameter
q. Note that SHA-3 algorithm Keccak achieves maximum diffusion when a
single input bit is flipped and it propagates to fixed 11 output bits and each
output bit depends on 11 input bits. CASH achieves as much diffusion as
Keccak if one runs linear CA for 5(= q) cycles only and thus the diffusion
of CASH can very easily be increased by increasing the number of cycles in
LHCA. The name tweakable Diffusion is well justified as the diffusion can
be controlled by the parameter q. Unlike other state-of-the-art primitives,
the parameter q makes a trade-off between security and efficiency.

In the next section, the hardware implementations of CASH are outlined.

5 Diffusion is measured by branch number. A measure is given in Section 4.1.
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3 CASH Hardware

The hardware implementation of the CASH family has been carried out on Xilinx
Virtex-6 FPGA and the results are presented in Table 2. The architectural details
are given in Fig. 2.

Fig. 2. The hardware architecture of CASH family

Table 2. Device Utilization of CASH Family on Virtex-6

Hash Function Hash Length Slices Slice LUTs Slice Registers

CASH-80 80 113 345 215

CASH-128 128 214 776 471

CASH-160 160 224 870 535

CASH-256A 256 483 1773 1047

CASH-256B 256 417 1589 1047

The hardware design of CASH has been made with the aim of achieving high ef-
ficiency in terms of throughput per unit area.We have compared CASH with work
by Kerckhof et. el. [20] where they report compact hardware implementations of
the SHA-3 finalists. We choose [20] since it is the nearest to our design strategy
and as the implementation platform is also identical. This translates into a fair
comparison which is summarized in Table 3. It can be seen that CASH is able
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reach throughputs as high as 1.675 Gbps which is almost double of the nearest
competitor Groestl. Though the number of occupied slices is higher than others
but the throughput to area ratio - 3.46 is significantly better than the rest of the
hash functions. Only Groestl with an efficiency of 3.13 is closest to CASH. It is
worth noting that CASH performs considerably better than the SHA-3 winner
Keccak, which reasserts one of the motivations of this work.

Table 3. Comparative Study with compact 256-bit digest implementations of SHA-3
finalists [20] on Xilinix Virtex-6 platform

Blake Groestl JH Keccak Skein CASH-256A CASH-256B

Input block message size 512 512 512 1088 256 248 68

Clock cycles per block 1182 176 688 2137 230 45 45

Number of LUTs 417 912 789 519 770 1773 1589

Number of Registers 211 556 411 429 158 1047 1047

Number of Slices 117 260 240 144 240 483 417

Frequency (MHz) 274 280 288 250 160 304 304

Throughput (Mbps) 105 815 214 128 179 1675 459

Efficiency (Mbps/slice) 0.9 3.13 0.89 0.89 0.75 3.46 1.1

The following section deals with the security evaluation of CASH in the light
of classical and current state-of-the-art attacks.

4 Security Analysis

The domain extension algorithm being a Sponge function, the security of the
hash directly depends upon the underlying function. In this section we ana-
lyze the security of the underlying internal function to satisfy the Hermetic
Sponge[14] strategy.

4.1 Differential and Linear Cryptanalysis

Differential cryptanalysis (DC) is an important method to measure the crypto-
graphic strength of a function. A differential of a function g : A → B is denoted
by (a, b) with input difference a and output difference b. The cardinality of dif-
ferential (a, b) is the cardinality of the set

{(x, y) ∈ A × A : (x ⊕ y = a)&(g(x) ⊕ g(y) = b)}

and the differential probability is the above cardinality divided by the cardinality
of {(x, y) ∈ A × A : x ⊕ y = a}. Truncated differential attack is proved to be
more efficient than classical differential attack. Here instead of fully specifying
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input-output difference patterns, active group of bits6 are only concerned. The
applicability of truncated differential cryptanalysis mostly depends on number of
active Sboxes 7. The following theorem measures a lower bound on the number
of active Sboxes for CASH internal function.

Theorem 1. A strict lower bound on the number of active Sboxes in a 2x (x ∈
N , the set of Natural numbers) rounds differential trail is given by the sequence
U2x = {U2x−1, 2U ′

2x−1 , 2} where U ′
2x−1 is the sequence of number of active Sboxes

after (2x−1 − 1) rounds; initially U21 = {2, 2}.
Proof of the theorem is given in Appendix A.

Table 4. Strict Lower bound on Active Sboxes

#Round 2 4 8 16 32

#Active Sbox 5 11 29 83 245

Table 4 shows a lower bound on the number of active Sboxes for some specific
rounds. The internal permutation of CASH is composed of parallel applications
of Sbox. The input-output values of this Sbox are given in hexadecimal in Table
6. From the Difference Distribution Table we see that maximum differential
probability is 2−2. So, any nr round differential trail consists of at least r1
(determined by the recursive relation given in above theorem) active Sboxes and
hence the maximum differential probability of any trail cannot be more than
2−2r1 . Similarly from the Linear Approximation Table, we see that the maximum
linear approximation probability is 2−2. Because of the duality nature between
differential and linear trails similar bounds can be made for linear cryptanalysis
as obtained in differential probabilities.

4.2 Algebraic Attack

Algebraic attacks are used to get an insight to the internal function through
equations in inputs and outputs. As can be seen in Section 2.3 the algebraic
degree of the employed Sbox is 3 and hence any nr forward round CASH must
have degree at most 3nr . The algebraic degree of inverse of the Sbox is seen
to be also 3 and hence similar bounds can be found for backward direction. An
attacker tries to represent the Sbox in terms of equations in minimum number of
input-output variables with minimum number of degree. It is a well known fact
that any 4-bit Sbox can be expressed through at least 21 quadratic equations
in 8 variables in GF (2). So the internal function consisting of nr rounds can
be represented by 21( b4 )nr quadratic equations with 2bnr variables over GF (2)
which is simply out of reach even for powerful attacker.

6 The bits in a group is the size of the employed Sbox.
7 The security against DC increases proportionally with the number of active Sboxes.
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4.3 Zero-Sum Distinguisher

It is expected that a randomly chosen function does not have many zero-sums
[21] because the existence of several such subsets of inputs can be seen as a
distinguishing property of the internal permutation (h). This attack is a threat
for any cryptographic primitive all of whose operations are bit oriented. CASH
being a primitive composed of several bit oriented operations, it has to provide
a good security margin against this attack. In this regard it is to be noted that
full rounds of SHA-3 standard Keccak got distinguished by this attack [22].

Here, distinguisher collects some subsets ({Sj}) of input vectors (xi) which
sum to zero, and for which their corresponding h− images also sum to zero.∑

Sj

xi = 0;
∑
Sj

h(xi) = 0 ∀Sj (4)

Here degree of the round function is exploited. The main concept applies here
is: if the round function h is of degree u, then the (u + 1)th or higher order
derivative8 of h must be zero. Hence as u gets smaller, the cardinality of the
required set {Sj} also gets smaller. Moreover one can reach more rounds by
starting from intermediate round in such a way that the degree of forward and
backward rounds be approximately same. So the attack is suitable for a function
whose degree of forward as well as inverse round is small. Though zero-sum for
any internal function does exist but the attack is practically applicable once u
becomes reasonably small. The efficiency of the distinguisher directly depends
on the set {Sj}: as the cardinality of the set decreases, the strength of the attack
increases. In this regard, it is to be noted that the upper bound of degree of p
forward round function of Keccak is only 2p and that for CASH is 3p while
the degree of backward round function of both are same. The complexity of
finding 9 zero-sum partition for (2p + 1) round CASH is computed to be 3p.
Hence CASH shows better resistance against this attack over Keccak. This
attack also provides a measure on the number of rounds and that for CASH is
nr = 2p+ 3 where p is determined by the relation 3p > min{n, c}. The number
of rounds for different variant of the hash family is shown in Table 1.

4.4 Super Sbox in Rebound Attack

Rebound attack [24] is a threat for any permutation based or block cipher based
hash function. The core of the attack is based on well chosen (truncated) dif-
ferential path that contains minimum number of active Sboxes. Rebound attack
consists of two main phases –inbound and outbound. In inbound phase, most
expensive part of the path i.e., the part of the path where more active bytes
are present is covered by match-in-the middle technique. Outbound phase ful-
fills the differential path probabilistically and hence outbound part should have

8 The derivative in GF(2) of a function h over the set {S} is defined by
⊕

t∈S h(x⊕ t)
where S contains all linearly independent vectors.

9 using the technique given in [23].
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low complexity. So, a trail with most of its complexity at the middle is suit-
able for this attack. Basically, this sort of differential trails are found in AES
based hash functions which have been successfully attacked. Unlike other hash
constructions each round of CASH employs different diffusion layers and hence
it is difficult to get a number of suitable truncated differential trails over a full
internal permutation. Moreover, super Sbox in rebound attack tries to merge
two Sbox layers into one in the inbound phase by the application of Super Sbox
technique. This method is possible due to the fact that few linear operations
commute with Sbox layer in AES based permutation and hence two Sbox lay-
ers in two rounds become close enough to form a Super Sbox layer. However
in CASH internal permutation, linear transformation does not commute with
Sbox layer and hence two Sbox layers cannot be made close enough to form
Super Sbox.

4.5 Rotational Cryptanalysis

As there is no ’Add round constant’ layer used in CASH, a natural choice for an
attacker is to try with rotational cryptanalysis. In this regard, it is to be noted
that reduced version of K eccak has been attacked through rotational crypt-
analysis [25,26]. The very low Hamming weight of employed round constants
on Keccak has been utilized to mount the attack. The basic philosophy of this
attack is to exploit the rotational symmetries of the operations. Here we recall
that if all the CA cells obey the same rule then the CA is called uniform CA
and on the other hand when different cell uses different linear rule, the CA is
called linear hybrid CA (LHCA). So in LHCA, updating rule depends on the
position of the cell and it has been shown in Section 2.4 that the rules in different
rounds are different. So rotational relations get ’refreshed’ in linear layer of every
round. Moreover, the non-linear Sbox layer also contributes in randomizing the
relations and thereby removing any such symmetry.

5 Conclusion

This paper presents a new hash function based on Cellular Automata named
CASH. Here, linear CA are employed to construct the internal function along
with a permutation layer. Round constant addition is merged with linear com-
ponent to form round dependent linear function which provides high diffusion.
CASH family is designed and implemented with different hash length and se-
curity parameters. All the designs are implemented on FPGA and the results
conclude that CASH offers better throughputs and efficiency when compared
with the best reported results of the top 5, SHA-3 candidates.
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Appendix

A Proof of Theorem Given in Section 4.1

Theorem 2. A strict lower bound on the number of active Sboxes in a 2x (x ∈
N) rounds differential trail is given by the sequence U2x = {U2x−1, 2U ′

2x−1 , 2}
where U ′

2x−1 is the sequence of number of active Sboxes after (2x−1 − 1) rounds;
initially U21 = {2, 2}.

Proof. The linear layer is constructed with linear CA (LHCA) which are defined
by predetermined rules. If the infected bit corresponds to rule-150, infection
spreads to three bits after 1 clock pulse while infected bit corresponding to rule-
90 spreads into two bits. So, minimum diffusion will occur only when the local
transition CA rules (in LHCA layer) corresponding to infected bits be rule-90
and at the same time they remain 2q bit distance apart (Fig.3).

Fig. 3. Structure after round 2

Any configuration different from Fig.3 must produce more active Sboxes. As
our intention is to find out minimum number of active Sboxes, throughout our
analysis we will consider this structure as minimum diffusive structure.

If a single bit is infected at the initial state, after first round it will affect at
least 2 bits with 2q bits apart thereby effecting 2 Sboxes i.e., if we denote U2x

(x ∈ N) by the sequence of number of active Sboxes, then U20 = 2. Second round
will infect only 2 Sboxes as internal 4 active bits will disinfect each other (Fig.4).
So after second round, the sequence of least active Sboxes becomes U21 = {2, 2}.
The maximum internal disinfection of the active bits will happen in each of 2x

rounds only when infected bits be 2q distance apart. After each 2x round, there
will be only two active nodes. The active nodes maintain the stated distance
for round ri iff 2qri ≤ b. Going further, we see that the minimum bit distance
between two infected nodes will become 2q at round 3. At round 22, the whole
structure up to round (21 − 1) repeats at each of its (after 2nd round) last two
nodes.
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Fig. 4. Structural Relation

So after 4th round the sequence of active Sboxes become U22 = {U21 , 2U
′
21 , 2}

where U ′
21 is the sequence after (21 − 1) rounds. If we are to maintain the mini-

mum diffusive structure, the sequence of active Sboxes after 2x rounds become
U2x = {U2x−1, 2U ′

2x−1 , 2} as long as 2qr2x ≤ b.

U ′
21 = 2,

U22 = {2, 2, 4, 2} ⇒ U ′
22 = {2, 2, 4}

U23 = {2, 2, 4, 2, 4, 4, 8, 2} ⇒ U ′
23 = {2, 2, 4, 2, 4, 4, 8}

U24 = {2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2}
and so on

For ease of analysis we have ignored the effect of permutation Pb. But we
assert that including the effect of Pb would led to more number of active Sboxes
as it would violate the minimum diffusive structure. So in practice, the exact
number of active Sboxes must be more than what we calculated. ��
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B Linear Approximation Table for LHASH[16] Sbox

Table 5. Primitive Polynomials corresponding to CASH variant

Hash Family b Polynomial (Q(x)) K
CASH-80 96 x6 + x+ 1 011000
CASH-128 224 x7 + x+ 1 1011001
CASH-160 256 x8 + x4 + x3 + x2 + 1 00000110
CASH-256A 512 x8 + x4 + x3 + x2 + 1 00000110
CASH-256B 512 x8 + x4 + x3 + x2 + 1 00000110

Table 6. Sbox [16] used for the non-linear layer in CASH

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] E 9 F 0 D 4 A B 1 2 8 3 7 6 B 5

Table 7. Linear Approximation Table

in � out 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 -2 2 2 -2 -4 -4 0 0 2 -2 2 -2

2 0 0 0 -4 -2 -2 2 -2 2 2 -2 2 0 0 0 -4

3 0 -4 0 0 0 0 0 4 2 -2 2 2 2 2 2 -2

4 0 0 0 0 4 0 4 0 0 0 0 0 4 0 -4 0

5 0 0 0 0 -2 -2 2 2 0 0 4 -4 -2 -2 -2 -2

6 0 0 0 -4 2 -2 -2 -2 -2 -2 2 -2 0 4 0 0

7 0 4 0 0 0 -4 0 0 2 -2 2 2 2 -2 2 2

8 0 0 0 0 0 0 0 0 -4 4 4 4 0 0 0 0

9 0 0 -4 -4 -2 2 -2 2 0 0 0 0 2 -2 -2 2

A 0 0 4 0 -2 -2 -2 2 -2 -2 -2 2 0 0 -4 0

B 0 4 0 0 0 0 0 4 -2 2 -2 -2 2 2 2 -2

C 0 0 0 0 -4 0 4 0 0 0 0 0 0 4 0 4

D 0 0 -4 4 -2 -2 -2 -2 0 0 0 0 2 2 -2 -2

E 0 0 -4 0 2 -2 2 2 -2 -2 -2 2 -4 0 0 0

F 0 4 0 0 0 4 0 0 2 -2 2 2 -2 2 -2 -2
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Abstract. At Eurocrypt 1998, Blaze, Bleumer and Strauss [8] presented
a new primitive called Proxy Re-Encryption (PRE ). PRE is a public key
encryption which allows a semi trusted proxy to alter a ciphertext for
Alice (delegator) into a ciphertext for Bob (delegatee) without knowing
the message. To the best of our knowledge there does not exist any lattice
based identity based unidirection PRE scheme. In this paper, we have
costructed lattice based identity based unidirection PRE scheme. Our
scheme is noninteractive. In this scheme, we have used Micciancio and
Peikert’s strong trapdoor [16] for lattices which is simple, efficient and
easy to implement than [3].

Keywords: Lattice, Proxy Re-encryption (PRE), Learning With Error
(LWE).

1 Introduction

The concept of identity-based cryptosystem was introduced by Adi Shamir in
1984 [19]. In this new paradigm a user’s public key can be a publicly known
string which uniquely identifies the user. For example an email or phone number
can be a public key. The corresponding private key can only be computed by
a Private-Key Generator (PKG) who knows the master secret key. As a result,
it significantly reduces system complexity and cost of establishing public key
infrastructure. Although Shamir constructed an identity-based signature scheme
using RSA function but he could not construct an identity-based encryption and
this became a long-lasting open problem. Only in 2001, Shamir’s open problem
was independently solved by Boneh and Franklin [9] and Cocks [10].

Lattice based cryptography is a public key cryptography which is based on
lattice hard problem. Seminal result of Ajtai [2] on the average case / worst
case equivalence sparked great interest in lattice based cryptography. Informally,
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it means breaking the lattice based cryptosystem in the average case is as hard as
solving some lattice based hard problems in the worst case. So we can construct
strong provable secure cryptosystem whose security depends on the hardness of
lattice problem in the worst case. In addition to this, lattice based schemes enjoy
following other advantages:

• Peter Shor [20] showed that once quantum computer becomes a reality all
of the widely used and known public-key algorithms such as the RSA or
Diffie-Hellman cryptosystems used to protect the Internet will be broken
easily. Lattice based schemes are conjectured to be secure against quantum
computers and holds a great promise for post-quantum cryptography.

• Lattice based schemes involve matrix vector multiplication and matrix addi-
tion with relatively small modular prime integer q. Typically q is small inte-
ger, so that basic operations involving mod q can be efficiently implemented
without “big-num” library. These operations can be made more efficient us-
ing parallel algorithms.

• Fully homomorphic encryption pioneered by Gentry [12] is a powerful cryp-
tographic primitives which makes possible the secure computation on en-
crypted data. Almost all fully homomorphic encryption schemes are based
on lattices.

Recently Regev [18] defined the Learning With Error (LWE) problem and proved
that it also enjoys similar average case / worst case equivalence hardness prop-
erties under a quantum reduction.

At Eurocrypt 1998, Blaze, Bleumer and Strauss [8] presented a new primitive
called Proxy Re-Encryption (PRE ). PRE is a public key encryption which allows
a semi trusted proxy to alter a ciphertext for Alice (delegator) into a ciphertext
for Bob (delegatee) without knowing the message. This primitive can be used in
email forwarding, law enforcement monitoring, secure file system etc. Blaze et
al. gave first PRE scheme which was bidirectional and multi-use. Bidirectional
means proxy can alter a ciphertext for Alice to a ciphertext for Bob and vice-
versa without knowing the message. In multi use, proxy can alter a ciphertext
from Alice to Bob, then from Bob to Charlie and so on. Ateniese et al. [6]
presented a first unidirectional PRE scheme. In unidirectional, proxy can alter
a ciphertext for Alice to a ciphertext for Bob but does not allow vice-versa.

It will be interesting to combine three cryptographic primitives: lattice, iden-
tity based and PRE and construct lattice based identity based unidirectional
proxy re-encryption scheme.

Related Work: Combining these two concepts: lattice and PRE, Xagawa [23]
presented lattice based proxy bidirectional re-encryption scheme under LWE as-
sumption. Singh et al. [21] gave lattice based identity based bidirectional proxy
re-encryption scheme. Recently Aono et al. [4] presented first unidirectional lat-
tice based proxy re-encryption scheme. Singh et al. [22] have shown that Aono et
al.’s scheme [4] is not secure under master secret security model and presented
unidirectional PRE which is also secure under master secret security model.
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Our Contribution: To the best of our knowledge there does not exist any lat-
tice based identity based unidirection proxy reencryption scheme. In this paper,
we have costructed lattice based identity based unidirection PRE which is also
secure under master secret security model. Our scheme is noninteractive. In this
scheme, we have used Micciancio and Peikert’strong trapdoor [16] for lattices
which is simple, efficient and easy to implement than [3].

Paper Outline: Our paper is organized as follows. In section 2, we describe
basic definitions, security models, results and hard problems required to under-
stand rest of the paper. In section 3, we briefly describe Micciancio and Peikert’s
strong trapdoor [16] for lattices. In section 4, we describe our scheme. In section
5 we give conclusion and related open problems.

2 Preliminaries

2.1 Notation

We denote [j] = {0, 1, ..., j}, set of real numbers by R and the set of integers by
Z. We assume vectors to be in column form and are written using small letters,
e.g. x. Matrices are written as capital letters, e.g. X . ‖S‖ denotes the length of
the longest vector in S, i.e. ‖S‖ := maxi|si| for 1 ≤ i ≤ k.

We say that negl(n) is a negligible function in n if it is smaller than the inverse
of any polynomial function in n for sufficiently large n.

Gram Schmidt Orthogonalization: S̃ := {s̃1, ..., s̃k} ⊂ Rm denotes the
Gram-Schmidt orthogonalization of the set of linearly independently vectors
S = {s1, ..., sk} ⊂ Rm. It is defined as follows: s̃1 = s1 and s̃i is the component
of si orthogonal to span(s1, ..., si) where 2 ≤ i ≤ k . Since s̃i is the component
of si so ‖s̃i‖ ≤ ‖si‖ for all i. For more details please see [14].

2.2 Identity Based Unidirectional Proxy Re-Encryption
Scheme(IB-UPRE)

IB-UPRE consists of six algorithms.

Setup(n): On input a security parameter n, this algorithm outputs the master
public key mpk and the master secret key msk.

Extract(mpk,msk, id): On input master public key mpk, a master secret key
msk, and an identity id, this algorithm outputs private key SKid corresponding
to an identity id.

Encrypt(mpk, id,m): On input master public key mpk, an identity id, and a
message m, this algorithm outputs ciphertext Cid.

RKGen(mpk, skidi , idj): On input a secret key SKidi and a identity idj , this
algorithm outputs a re-encryption key rkidi,idj .
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Re-encryption(PP, rkidi,idj , Cidi): On input a ciphertext Cidi under identity
idi and re-encryption key rkidi,idj , this algorithm outputs a re-encrypted cipher-
text Cidj for an identity idj .

Decrypt(PP, skid, Cid): On input master public keympk, a private key SKid =
eid and a ciphertext Cid, this algorithm outputs message m.

Correctness: Identity Based Unidirectional Proxy Re-encryption is correct if
suppose Cidi ← Encrypt(mpk, idi,m), rkidi,idj ← RKGen(PP, SKidi, skidj)
and Cidj ← Re-encryption(mpk, rkidi,idj , Cidi), then the following equation
holds.

• Decrypt (mpk, SKidi, Cidi) = m.
• Decrypt (mpk, SKidj , Cidj ) = m.

2.3 Adaptive-ID Security Model for IB-UPRE Scheme

Here security model is adapted from [6]. Security of PRE is defined using two
properties: semantic security (IND-p-CPA) and master secret security.

2.3.1 Semantic Security (IND-p-CPA)
Following security model captures the idea that when a group of polynomially
bounded adversarial users and proxy collude against target delegator B, they can
not get any bit of information with the condition that target delegator B never
gives delegation rights to any adversarial users (including delegatee). We define
security model using a following game that is played between the challenger
and an adversary. This property implies both semantic security and recipient
anonymity.

Setup: The challenger runs Setup (1n) and gives the master public key (mpk)
to the adversary and keeps master secret key msk to itself. Here CU denotes set
of users for which adversary has made private key query (corrupted users) and
HU denotes set of users for which adversary has not made private key query
(honest users).

Phase 1: The adversary can make following queries.

• The adversary can issue a private key query on the identity id, challenger
runs the extract algorithm and returns private key query did to the adversary
A. Adversary can repeat this polynomial number of times for different pair
of identities adaptively.

• The adversary can issue re-encryption key query rki,j corresponding to identi-
ties idi and idj such that either idi, idj ∈ HU or idi, idj ∈ CU . Adversary can
repeat this polynomial number of times for different pair of identities adaptivly.

• The adversary can issue re-encryption key query rki,j corresponding to iden-
tities idi and idj such that idi ∈ CU and idj ∈ HU . Adversary can repeat
this polynomial times for different pair of identities adaptivly. Although it
is not required since adversary knows the secret key so he can compute the
re-encryption key.
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• The adversary can issue re-encryption query corresponding to the identities
idi and idj such that either idi, idj ∈ HU or idi, idj ∈ CU . Challenger runs
RKGen algorithm to obtain rki,j corresponding to identities idi and idj then
challenger generates ciphertext Cidj by running Re− encryption algorithm.

• The adversary can issue re-encryption query corresponding to the identities
idi and idj such that either idi ∈ CU or idj ∈ HU . Challenger runs RKGen
algorithm to obtain rki,j corresponding to the identities idi and idj then
challenger generates ciphertext Cidj by running Re− encryption algorithm.

Challenge: The adversary submits identity id∗ and message m. Identity id∗

should belong to setHU . Challenger picks a randombit r ∈ {0, 1} and a randomci-
phertext C. If r = 0 it sets the challenge ciphertext to C∗ :=Encrypt(PP, id∗,m).
If r = 1 it sets the challenge ciphertext to C∗ := C. It sends C∗ as challenge to the
adversary.

Phase 2: Phase 1 is repeated except that for private key query on the identity
id �= id∗ should not be part of re-encryption key query and re-encryption query
of phase 1.

Guess: Finally, the adversary outputs a guess r′ ∈ {0, 1} and wins if r = r′.
We refer an adversary A as an IND-pID-CPA adversary. We define the ad-

vantage of the adversary A in attacking an IB-PRE scheme ξ as

Advξ,A(n) = |Pr[r = r′] − 1/2|

Definition 1. We say that an IB-UPRE scheme is IND-pID-CPA if for all prob-
abilistic polynomial time algorithm A and negligible function ε, Advξ,A(n) ≤ ε.

2.3.2 Master Secret Security
Ateniese et al. [6] introduced master secret security as another security require-
ment for unidirectional PRE. Security model captures the idea that no coalition
of dishonest proxy and malicious delegatees can compute the master secret key
(private key) of the delegator. Ateniese et al. [6] gave following motivation for
master secret security.

1. Some PRE may define two or more types of encryption schemes. In one en-
cryption scheme ciphertext may be decrypted by only master secret key (pri-
vate key) of the delegator and re-encrypted ciphertext can not be decrypted
by the private key of the delegatee. Other encryption scheme re-encrypted
ciphertext may be decrypted by the private key of the delegatee.

2. Delegator may want to delegate just decryption rights to delegatee but may
not want to delegate signing rights to the delegatee.

We define security model using the following game played between the challenger
and an active adversary.

Setup: The challenger C runs Setup(1k) and gives the master public key mpk
to an adversary and keeps master secret key msk to itself.

Challenge: The adversary submits target delegator’s identity id∗.
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Query Phase:

1. The adversary can issue private key query SKidi corresponding to any iden-
tities idi �= id∗ adaptively.

2. The adversary can issue re-encryption key query rki,j corresponding to any
identities idi and idj .

3. The adversary can issue re-encryption query rki,j corresponding to any iden-
tities idi and idj.

Guess: Finally, the adversary outputs a guess x for private key SKid∗ of target
delegator’s identity id∗ and wins the game if x = SKB.
We define the adversary’s advantage in winning this game as AdvMSSξ,A(n) =
|Pr[x = SKB]|

Definition 1. We say that a PRE scheme is secure if for all probabilistic
polynomial time algorithm A and negligible function ε, Advξ,A(n) ≤ ε and
AdvMSSξ,A(n) ≤ ε.

2.4 Integer Lattices ([11])

A lattice is defined as the set of all integer combinations

L(b1, . . . , bn) =

{
n∑

i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n

}

ofn linearly independent vectors {b1, . . . , bn} ∈ Rn. The set of vectors {b1, . . . , bn}
is called a basis for the lattice. A basis can be represented by the matrix B =
[b1, . . . , bn] ∈ Rn×n having the basis vectors as columns. Using matrix notation,
the lattice generated by a matrix B ∈ Rn×n can be defined as L(B) = {Bx : x ∈
Zn}, where Bx is the usual matrix-vector multiplication. The determinant of a
lattice is the absolute value of the determinant of the basis matrix det(L(B)) =
|det(B)|.
q-ary Lattices. Most of the cryptogrsaphic constructions based on lattices use
q-ary lattices as a basis. q-ary lattices are lattice L which satisfy the condition
qZn ⊆ L ⊆ Zn for some prime q. In other words, any vector x ∈ L′ if and only
if x mod q ∈ L′, where L′ is a q-ary lattices.
For prime q, A ∈ Zn×m

q and u ∈ Zn
q , three m-dimensional q-ary lattices are

defined as follows:

Λq(A) := {e ∈ Zm s.t. ∃s ∈ Zn
q where AT s = e (mod q)}

Λ⊥
q (A) := {e ∈ Zm s.t. Ae = 0 (mod q)}

Λu
q (A) := {e ∈ Zm s.t. Ae = u (mod q)}
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2.5 Discrete Gaussians

Let L be a subset of Zn. For any vector c ∈ Rn and any positive parameter s,

let Gaussian function centered in c be ρc,s(x) = exp(−π ‖x−c‖
σ2 ). Total ρc,s(L) =∑

x∈L ρc,s(x) over L,
So n-dimensional probability function DL,c,s is given as

∀x ∈ L , DL,c(x) =
ρc,s(x)

ρc,s(L)

Theorem 1. ([2,3]) Let q ≥ 3 be odd and m := �6nlg q�.
There is probabilistic polynomial-time algorithm TrapGen(q, n) that outputs a
pair (A ∈ Zn×m

q , T ∈ Zn×m) such that A is statistically close to a uniform

matrix in Zn×m
q and T is a basis for Λ⊥

q (A) satisfying

‖T̃‖ ≤ O(
√

n log q) and ‖T ‖ ≤ O(n log q)

with all but negligible probability in n.

2.6 The LWE Hardness Assumption ([18,1])

The LWE (learning with error) hardness assumption is defined by Regev [18].

Definition 2. LWE: Consider a prime q, a positive integer n, and a Gaussian
distribution χm over Zm

q . Given (A,As+x) where matrix A ∈ Zm×n
q is uniformly

random and x ∈ χm.
LWE hard problem is to find s with non-negligible probability.

Definition 3. Decision LWE: Consider a prime q, a positive integer n, and a
Gaussian distribution χm over Zm

q . The input is a pair (A, v) from an unspecified
challenge oracle O, where A ∈ Zm×n

q is chosen uniformly. An unspecified chal-
lenge oracle O is either a noisy pseudo-random sampler Os or a truly random
sampler O$. It is based on how v is chosen.

1. When v is chosen to be As+ e for a uniformly chosen s ∈ Zn
q and a vector

e ∈ χm, an unspecified challenge oracle O is a noisy pseudo-random sampler
Os.

2. When v is chosen uniformly from Zm
q , an unspecified challenge oracle O is

a truly random sampler O$.

Goal of the adversary is to distinguish between the above two cases with non-
negligible probability.
Or we say that an algorithm A decides the (Zq, n, χ)-LWE problem if |Pr[AOs =
1]− Pr[AO$ = 1]| is non-negligible for a random s ∈ Zn

q .

Above decision LWE is also hard even if s is chosen from the Gaussian distri-
bution rather than the uniform distribution [5,15].
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2.7 Small Integer Solution (SIS) Assumption ([2])

SIS and ISIS hard problems were proposed by Ajtai [2] in 1996.

Definition 4. Given an integer q, a matrix A ∈ Zn×m
q and real β, find a short

nonzero integer vector x ∈ Zm
q such that Ax = 0 mod q and ‖x‖ ≤ β.

OR find a nonzero integer vector x ∈ Zm
2 such that Ax = 0 mod q.

2.8 Inhomogeneous Small Integer Solution (ISIS) Assumption

Definition 5. Given an integer q, a matrix A ∈ Zn×m
q , a syndrome u ∈ Zn

q

and real β, find a short nonzero integer vector x ∈ Zm
q such that Ax = u mod q

and ‖x‖ ≤ β.
OR find a nonzero integer vector x ∈ Zm

2 such that Ax = u mod q.

3 Strong Trapdoors for Lattices

Ajtai [2] has given a PPT algorithm that outputs a pair (A ∈ Zn×m
q , S ∈ Zm×m

q )
such that A is statistically close to uniform and trapdoor S is a short basis for
Λ⊥
q (A). Later on it was improved by [3]. These trapdoor generation algorithms

are complex and involves costly computations of Hermite normal forms and
matrix inverses.

Micciancio and Peikert [16] has given a new algorithm for generating and using
strong trapdoor for lattices which are simple, efficient and easy to implement.
Here we briefly describe Micciancio and Peikert’s strong trapdoor for lattices
[16] which is shown to be very efficient [7].

In this method, there is a gadget matrix G for which inversion ( f−1
G and g−1

G )
is easy. We know that f−1

A and g−1
A are hard without trapdoor as short basis. In

this method strong trapdoor is matrix R not the short basis. So to invert using
strong trapdoor matrix R first f−1

A and g−1
A are converted to f−1

G and g−1
G for

gadget matrixG and then we know that f−1
G and g−1

G are easy. Detail description
is as follows.

3.1 Gadget G and Inversion( f−1
G and g−1

G ) Algorithms

Let q ≥ 2 be an integer modulus and k ≥ 1 be an integer dimension. Vector
g = (g1, ..., gk) ∈ Zk

q is called primitive vector if gcd(g1, ..., gk, q) = 1. Let matrix

Sk ∈ Zk×k
q is a basis of lattice Λ⊥(gt), i.e, gt.Sk = 0 ∈ Z1×k

k . A matrix G is
a primitive matrix if its columns generate all of Zn

q i.e. G.Zm = Zn
q . Matrix

G = In ⊗ gt ∈ Zn×nk
q and basis of Λ⊥(G), S = In ⊗ Sk ∈ Znk×nk. Matrix G,

basis of Λ⊥(G) i.e. S are the direct sums of n copies of gt and Sk respectively.
Let gG(s, ε) = stG + et and fG(x) = Gx mod q. gG and fG can be inverted
in polynomial time. These inversions are parallelizable and offline. Inverting the
functions gG and fG are summarized in the following theorem.
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Theorem 2. (Theorem 4.1 of [16]) For any integers q ≤ 2, n ≤ 1, k = �log2q�
and m = nk, there is a primitive matrix G ∈ Zn×m

q such that

• The lattice Λ⊥(G) has a known basis S ∈ Zm×m with ‖S̃‖ ≤
√
5 and ‖S̃‖ ≤

max{
√
5,

√
k}. Moreover, when q = 2k, we have S̃ = 2I (so ‖S̃‖ = 2) and

‖S‖ =
√
5.

• Both G and S require little storage. In particular, they are sparse (with only
O(m) nonzero entries) and highly structured.

• Inverting gG(s, ε) = stG + et can be performed in quasilinear O(n.logc n)
time for any s ∈ Zn

q and any e ∈ P1/2(q.B−t), where B can denote either S

or S̃. Moreover, the algorithm is perfectly parallelizable, running in polylog-
arithmic O(logc n) time in n processors. When q = 2k, the polylogarithmic
term O(logc n) is essentially just the cost of k additions and shifts on k-bit
integers.

• Preimage sampling for fG(x) = Gx mod q with Gaussian parameter s ≥
‖S̃‖.w

√
(log n) can be performed in quasilinear O(nlogc n) time, or parallel

polylogarithmic O(logcn) time using n processors. When q = 2k, the polylog-
arithmic term is essentially just the cost of k additions and shifts on k-bit
integers, plus the (offline) generation of about m random integers drawn from
DZ,s.

3.2 G ↔ A

First matrix G is converted into semirandom matrix A′ = [A|HG], where A ∈
Zn×m
q is chosen at random and H ∈ Zn×n

q is the desired tag. Now this semi
random matrix A′ is converted into random matrix A by applying random uni-

modular transformation T =

(
I −R
O I

)
where matrix R ∈ Zm×w is “short”

trapdoor matrix which is chosen from Gaussian distribution D.

A = [A|HG]

(
I −R
O I

)
= [A|HG− AR]

Definition 6. Let A ∈ Zn×m
q and G ∈ Zn×w

q be matrices m ≥ w ≥ n. A G-

trapdoor for A is a matrix R ∈ Z(m−w)×w such that A

(
R
I

)
= HG for some

invertible matrix H ∈ Zn×n
q . Matrix H is referred as the tag of the trapdoor.

3.3 f−1
A , g−1

A to f−1
HG, g−1

HG:

g−1
A to g−1

HG: Given a trapdoor of R for A ∈ Zn×m
q and an LWE instance

bt = stA + et mod q for some short error vector e ∈ Zm. We compute b̂t =

bt
(
R
I

)
= stA

(
R
I

)
+ et

(
R
I

)
= st(HG) + et

(
R
I

)
.
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If et
(
R
I

)
is in [−q/4, q/4) then g−1

A is reduced to g−1
HG.

f−1
A to f−1

HG: Given a trapdoor R for A ∈ Zn×m
q , syndrome u ∈ Zn

q and f−1
HG,

we have to compute f−1
A which does not leak any information about trapdoor

R. Inverting function f is finding short vector x such that Ax = u.
We sample a Gaussian z with parameter s from Λ⊥

u (G) such that Gz = u.

Since G = A

(
R
I

)
so A

(
R
I

)
z = u and y =

(
R
I

)
z lie in Λ⊥

u (A). How-

ever the distribution of y is non-spherical. This leaks information about the
trapdoor R. This is corrected using convolution technique from Peikert [17].
Specifically, a perturbation p ∈ Zm is sampled from Gaussian distribution

having covariance s2 −
(
R
I

)∑
G[R

tI]. Syndrome u is changed to syndrome

v = u − Ap. For this syndrome v, Gaussian z is sampled from Λ⊥
u (G) such

that Gz = v. Now A

(
R
I

)
z = v, y =

(
R
I

)
z ∈ Λ⊥

u (A) and Ay = v. This implies

Ay = u−Ap ⇒ A(y+ p) = u or Ax = u where x = y+ p. Since the distribution
of y is non-spherical and the covariances of p and y are additive, the overall
distribution of x = y + p is spherical and does not leak any information about
the trapdoor R.

4 Lattice Based Identity Based Unidirectional Proxy
Re-Encryption Scheme

Before describing our scheme, first we describe functions Bits() and Power2()
used in [4]. These functions are also used in our scheme.
Let v = (v1, . . . , vm) ∈ Zm

q , k = �lg q� and (bi,1, . . . , bi,k) be the bit representa-

tion of vi such that vi =
∑k

j=1 2
jbi,j . Then Bits() is defined as

Bits(v) = [b1,1 . . . bm,1|b1,2 . . . bm,2| . . . |b1,k . . . bm,k] ∈ {0, 1}1×mk

(First m bits are first bit of v1, . . . , vm and next m bits are second bit of
v1, . . . , vm and so on).
Let X = [X1| . . . |Xl] ∈ Zm×l

q where Xi are columns. Then

Power2(X) =

⎡⎢⎢⎢⎣
X1 . . . Xl

2X1 . . . 2Xl

...
...

2k−1X1 . . . 2
k−1Xl

⎤⎥⎥⎥⎦ ∈ Zmk×l
q

It can be shown that

Bits(v)Power2(X) = vX ∈ Z1×l
q

Now we describe our scheme which is based on [13,4].
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Setup(n): On input a security parameter n, we set the parameter modulus
q = poly(n), a parameter m = O(nlog q) = O(nlog n) and k = �lg q�. We
choose two hash functions K1,K2 such that K1 : {0, 1}∗ → Zn×l

q and K2 :

{0, 1}∗ → Znk×l
q where l is the length of the message. We choose two Gadget

matrices G1 ∈ Zn×nk
q and G2 ∈ Znk×nkk

q . Gadget matrix G1 is converted into

random matrix A ∈ Zn×m
q by A = [A|G1−AR], where A ∈ Z

n×(m−nk)
q is chosen

at random and R1 ∈ Z
(m−nk)×nk
q is “short” trapdoor matrix.

Similarly Gadget matrix G2 is converted into random matrix X ∈ Znk×mk
q by

X = [X |G2 − XR2], where X ∈ Z
nk×(mk−nkk)
q is chosen at random and R2 ∈

Z
(mk−nkk)×nkk
q is “short” trapdoor matrix chosen from Gaussian distribution D

chosen from Gaussian distribution D. For more detail please see section 3. So
master public key mpk is (A,X) and master secret key is msk = R = (R1, R2).

Extract(mpk,R = (R1, R2), id): Let U1 = (u1,1, . . . , u1,l) = K1(id) ∈ Zn×l
q

and U2 = (u2,1, . . . , u2,l) = K2(id) ∈ Znk×l
q . Secret key SKid,U1 corresponding

to the identity id and U1 is collection of l short column vector x1,i’s such that
Ax1,i = u1,i mod q for all 1 ≤ i ≤ l (or x1,i ← f−1

A (u1,i)). So SKid,U1 =
x1,1, . . . , x1,l ∈ Zm×l

q . Secret key SKid,U2 corresponding to the identity id and
U2 is collection of l short column vector x2,i’s such that Ax2,i = u2,i mod q for
all 1 ≤ i ≤ l (or x2,i ← f−1

A (u2,i)). So SKid,U2 = x2,1, . . . , x2,l ∈ Zmk×l
q . Return

SKid = (SKid,U1 , SKid,U2) ∈ Zm×l
q × Zmk×l

q .

Encrypt(PP,m, P1, P2): To encrypt a messagem ∈ {0, 1}l, we do the following.

• We choose s ← Zn
q uniformly.

• Compute c1 = AT s+ e, where e ← χm. Here χm is error (Gaussian) distri-
bution.

• Compute c2 = UT
1 s +m� q

2� + e, where e ← χl. Here χl is error (Gaussian)
distribution.

• Output the ciphertext C = (c1, c2) ∈ Z
1×(m+l)
q .

RKGen(PP, id, SKid = (SKid,U1 , SKid,U2)): On input of Alice’s private key
SKidA and Bob’s public key idB, we do the following.

1. We choose noise vectors e1 ∈ ψmk×nk
s and e2 ∈ ψmk×l

s where ψs is a Gaussian
distribution.

2. We compute proxy re-encryption key rkidA,idB = Q where

Q =

[
e1X e1U2 + e2 + Power2(SKidA)
0l×mk Il×l

]
∈ Z(mk+l)×(mk+l)

q

Re-Encrypt(mpk, rkidA,idB , CidA): On input of re-encryption key rkidA ,idB ,
proxy alters Alice’ciphertext CidA to Bob’s ciphertext CidB by the following
equation.

CidB = (c1B, c2B) = [Bits(c1)|c2].rkA,B ∈ Z1×(mk+l)
q
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Decrypt(PP, SKid, C): To decrypt C = (c1, c2), we do the following.

1. If size of the ciphertext ‖C‖ = m+ l (ciphertext is normal ciphertext) then

– We compute b = c2 − SKT
id,U1

c1 ∈ Z1×l
q . We parse b as b1, . . . , bl.

– If bi is closer to 0 than � q
2� mod q then bi = 0 else bi = 1.

– Output b = b1, . . . , bl.

2. Else if the size of the ciphertext ‖C‖ = mk + l (ciphertext is re-encrypted
ciphertext) then

– We compute b = c2 − SKT
id,U2

c1 ∈ Z1×l
q . We parse b as b1, . . . , bl.

– If bi is closer to 0 than � q
2� mod q then bi = 0 else bi = 1.

– Output b = b1, . . . , bl.

Correctness: First we decrypt the normal ciphertext

c2 − SKT
id,U1

c1 = e− SKT
id,U1

e+m� q
2
�,

which will yield m if e − SKT
id,U1

e is less than � q
4�. Since these terms e, e, and

SKidA,U1 are drawn from Gaussian distribution ψs so with some s = αq it is
possible that e − SKT

id,U1
e is less than � q

4�. Now we decrypt the re-encrypted
ciphertext

[Bits(c1)|c2].rkidA,idB .

[
−SKidB

Il×l

]
= [Bits(c1)|c2].

[
e1X e1U2 + e2 −Power2(SKidA,U1)

0l×mk Il×l

][
−SKidB,U2

Il×l

]
= [Bits(c1)|c2].

[
e2 −Power2(SKidA)

Il×l

]
= Bits(c1)e2 −Bits(c1)Power2(SKidA,U1)+ c2

= Bits(c1)e2 − c1SKidA,U1 + c2

= Bits(c1)e2 − eSKidA,U1 + e+m�q
2
�

which will yield m if Bits(c1)e2 − eSKidA,U1 + e is less than � q
4�.

Since e2, e, e, SKidA,U1 are from Gaussian distribution ψs so with some s = αq

it is possible that Bits(c1)e2 − eSKidA,U1 + e is less than � q
4�.

Theorem 3. Lattice based identity based unidirectional PRE scheme is
IND-p-CPA (semantic) secure assuming the decision LWEq,χ is hard or
AdvB,LWEq,χ(n) = Advχ,A(n).

Proof: Here proof is similar to the proof of [4,22]. We now show semantic
security of PRE. We will show that if there exist a PPT adversary A that
breaks unidirectional PRE scheme with some non-negligible probability then
there must exist a PPT challenger B that solves decision LWE hard problem
with non-negligible probability by simulating views of A. Here CU denotes set
of users for which adversary has made private key query (corrupted users) and
HU denotes set of users for which adversary has not made private key query
(honest users). For our proof, we make following assumptions.
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1. We assume that for CU , adversary will directly ask (not like hash then
private key query) private key query and challenger will return private key
with hash of the identity of the user.

2. For HU , adversary will ask only hash query of the identity of the user.

Challenger (adversary B) randomly chooses the matrices A ∈ Zn×m
q and X ∈

Znk×mk
q sets the master public key is (A,X).

• Hash Queries: Whenever adversary A submits a hash query on idi ∈ HU ,
challenger randomly chooses two matrices Ui,1 ∈ Zn×l

q and Ui,2 ∈ Znk×l
q

uniformly and returns Ui,1, Ui,2 to the adversary and stores (id1, (Ui,1, Ui,2))
in a hash table (UHT ).

• Whenever A submits a user secret key query for identity idj ∈ CU , chal-
lenger B randomly choose two short matrices ej,1 ∈ Zm×l

q and ej,2 ∈ Zmk×l
q

(short matrices means whose column vectors are short) from Gaussian dis-
tribution D and computes Uj,1 = Aej,1 and Uj,2 = Xej,2 as hash values of
idj . Challenger B returns ej,1, ej,2 as secret key and Uj,1, Uj,2 as hash values
of the identity idj and stores the tuple (idj , (Uj,1, Uj,2), (ej,1, ej,2)) in key
table (KT ).

Re-Encryption Queries: Challenger B answers re-encryption key queries and
re-encryption queries of the adversary A in following way.

• Whenever A submits a re-encryption key query for the the identities idj
and idk such that idj, idk ∈ HU , challenger B randomly choose matrices
X1 ∈ Zmk×mk

q , X2 ∈ Zmk×l
q and returns

Q =

[
X1 X2

0l×mk Il×l

]
to the challenger B.

• Whenever A submits a re-encryption query for the identities idj and idk such

that idj , idk ∈ HU , challenger B returns a random vector in Z
1×(mk+l)
q .

• Whenever A submits a re-encryption key query or a re-encryption query for
the identities idj and idk such that idj , idk ∈ CU . Since private key is known
to corrupted users so adversary himself can compute re-encryption key or
re-encrypted ciphertext. (This query may not be required)

Challenge Ciphertext: Now adversary A submits a messagem and challenged
identity id∗. Challenger B retrieves the hash values U∗ = (Uj,1, Uj,2) from the
table UHT . Since Matrix A and matrix U∗ are statistically close to uniform,
challenger B obtains the m LWE samples from LWE oracle, which is parsed as
(A, c1 = AT s+ e). Similarly challenger B again obtains the l LWE samples from
LWE oracle, which is parsed as (U∗

1 , cc = U∗
1 s+ x). Now challenger B computes

c∗1 = c1 and c∗2 = c2 +m� q
2� and sends C∗ = (c∗1, c

∗
2) to adversary A. Adversary

has to answer whether the challenged ciphertext is a valid ciphertext or a random
ciphertext.
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Phase 2: Adversary can ask query with some restriction same as in phase one.
Now adversaryA outputs that challenged ciphertext is a valid ciphertext, then

challenger will output that oracle O as pseudo-random LWE oracle. If adversary
A outputs random ciphertext then adversary will output random LWE oracle.
In other words if adversary A terminates with some output then challenger
B terminates with same output and ends the simulation. So if adversary A
breaks the scheme then there exists challenger B which solves decision LWE
hard problem.
AdvB,LWEq,χ(n) = Advχ,A(n). Hence our scheme is semantically secure.

Theorem 4. Lattice based unidirectional PRE scheme is master secret security
assuming the search LWEq,χ is hard or AdvB,LWEq,χ(n) = AdvMSSχ,A(n).

Proof: Here proof is similar to proof of [4,23]. We now show semantic security
of unidirectional PRE. We will show that if there exist a PPT adversary A that
can compute private key of the delegator D in our unidirectional PRE scheme
with non-negligible probability then there must exist a PPT challenger B that
solves LWE hard problem with non-negligible probability by simulating views
of A. Challenger (adversary B) randomly chooses the matrices A ∈ Zn×m

q and

X ∈ Znk×mk
q sets the master public key is (A,X).

Challenger answers the hash query, private key query, re-encryption key query
and re-encryption query as in the previous theorem.

Challenge Ciphertext: Now adversary A submits a messagem and challenged
identity id∗. Challenger B retrieves the hash values U∗ = (Uj,1, Uj,2) from the
table UHT . Since Matrix A and matrix U∗ are statistically close to uniform,
challenger B obtains the m LWE samples from pseudo-random LWE oracle,
which is parsed as (A, c1 = AT s + e). Similarly challenger B again obtains the
l LWE samples from LWE oracle, which is parsed as (U∗

1 , cc = U∗
1 s + x). Now

challenger B computes c∗1 = c1 and c∗2 = c2 +m� q
2� and sends C∗ = (c∗1, c

∗
2) to

adversary A.
Now adversary A outputs private key SKid of the target delegator, challenger

B can compute e then s or in other words challenger can solve LWE hard problem.
AdvB,LWEq,χ(n) = Advχ,A(n). Hence our scheme is secure under master secret
security.

5 Conclusion

We have proved that our scheme is not only semantically secure but also secure
under master secret security model.

Acknowledgments. We would like to thank anonymous reviewers for their
useful comments.
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1 Government CERT, Czech Republic
2 Masaryk University, Brno, Czech Republic

ostadal@mail.muni.cz, {svenda,matyas}@fi.muni.cz

Abstract. Usage of various key (pre-)distribution schemes (KDSs) in
networks with an active attacker results in a partially compromised net-
work where some fraction of keys used to protect link communication
is known to the attacker. The secrecy amplification protocols were pro-
posed to secure again some previously compromised communication links
by using non-compromised paths to deliver new secure keys. Design of
suitable secrecy amplification protocols remains a challenge in scenarios
where a trade-off between necessary resources (e.g., energy necessary for
transmission of message) and improvement in the number of secure links
must be balanced. We inspect classes of secrecy amplification protocols
known as node-oriented and group-oriented protocols proposed for use
in wireless sensor networks (WSN).

We combine analysis of given protocol participant placement via a
simulator and manual post-processing to provide a simpler, practically
usable hybrid protocol with less steps and lower communication over-
head, yet still better in terms of re-secured links than previously proposed
protocols.

Keywords: Evolutionary algorithms, key establishment, secrecy ampli-
fication protocols, wireless sensor networks.

1 Introduction

Secure link communication is the building block for many security services main-
tained by a wireless sensor network (WSN). Secure link is usually achieved by a
secret key shared between communicating parties, requiring suitable key manage-
ment techniques. Common assumption in WSNs is the inevitability of a partial
compromise in a network when nodes can be captured and keys extracted from
the memory as no tamper resistance is usually assumed.

Our work targets scenarios where a link between nodes can be compromised
yet the nodes themselves are not. A typical example comes with schemes based
on symmetric cryptography, where the attacker learns a fraction of used keys,
resulting in a partially compromised network. Substantial improvements in re-
silience against node capture or key exchange eavesdropping can be achieved
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c© Springer International Publishing Switzerland 2014



A New Approach to Secrecy Amplification 93

when a group of neighbouring nodes cooperates in an additional secrecy ampli-
fication (SA) protocol after the initial key establishment protocol. This concept
was originally introduced in [1] for the key infection plaintext key exchange,
but can be also used for a partially compromised network resulting from node
capture in probabilistic pre-distribution schemes [7]. A secrecy amplification pro-
tocol can be executed to secure again some of the compromised links, resulting
in a less compromised network. SA protocols were shown to be very effective,
but for the price of a significant communication overhead. Our aim is to provide
SA protocols that can secure a high number of links, but require only a small
number of messages and are easy to execute and synchronize parallel executions
in the real network – properties not found together in previously published SA
protocols.

Also, we like to challenge the ways how performance of key distribution
schemes is currently judged. If SA protocols are efficient enough to be used,
performance of key distribution schemes should be also compared with the op-
tion that an SA protocol will be applied.

The contributions of our work are: 1) Detailed analysis of impact of different
node placement in previously published SA protocols; 2) design of a new class of
SA protocols combining advantages of previously known SA protocols; and 3) a
concrete efficient SA protocol outperforming previously published ones, together
with its analytical and experimental evaluation.

This paper is organized as follows: the next section provides a short introduc-
tion to wireless sensor networks and compromise patterns resulting from differ-
ent KDSs and attack strategies. Section 3 highlights related security issues and
provides an overview of related work on node and group oriented secrecy ampli-
fication protocols. Section 4 describes the proposed approach of hybrid protocols
taking the best from reviewed technique. Upper bound for secrecy amplification
and our new manually constructed hybrid protocol are presented in Section 5.
Section 6 provides a comparison with (so far) best node- and group-oriented
protocols based on overall success rate. Conclusions are given in Section 7. The
Appendix A provides detailed settings and observations of hybrid protocol prop-
erties in terms of number of amplifications and messages.

2 Partial Network Compromise

A wide range of key distribution, establishment and management techniques were
proposed (see [4] for an overview). Distinct key distribution schemes behave dif-
ferently when a network is under attack targeted to disturb link key security.
The impact on link key security differs based on the attack strategy used. Al-
though various schemes significantly differ in the way how keys are distributed
and managed, similar compromise patterns can be detected. A compromise pat-
tern provides us with a conditional probability that link Y is compromised when
other link X is compromised after a relevant attack.

The characteristics of a particular compromise pattern may significantly influ-
ence the success rate of the secrecy amplification executed later. We will perform
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analysis of secrecy amplification protocols according to the following two possi-
ble compromise patterns, but our work can be extended to additional patterns
as well.

2.1 Random Compromise Pattern

Random compromise pattern arises when a probabilistic key pre-distribution
scheme [7] and later variants [3,6,8] are used and an attacker extracts keys from
several randomly captured nodes.

In case of a node capture, all links to the captured node are compromised. If
some probabilistic pre-distribution scheme like [3,7] is used, then some additional
links between non-compromised nodes become compromised as well. Probabilis-
tic key pre-distribution schemes exhibit almost uncorrelated pattern resulting
from node capture and extraction of randomly selected keys.

2.2 Key Infection Compromise Pattern

Compromised networks resulting from key infection distribution [1] form the
second inspected pattern. Here, link keys are exchanged in plaintext (no keys
are pre-distributed) and an attacker can compromise them if the transmission
can be recorded by an attacker’s eavesdropping device. The weakened attacker
model assumes that an attacker is not able to eavesdrop on all transmissions,
yet has a limited number of restricted eavesdropping nodes in the field. The
closer the link transmission is to the listening node and the longer the distance
between link’s peers, the higher the probability of a compromise. Typically, if
the eavesdropping node is close to a legal node, most of the links to the latter
can be compromised.

An eavesdropping of the exchanged key in the key infection approach [1] does
not compromise nodes directly, but compromises links in the reach of eavesdrop-
per’s radio instead. Key infection distribution forms a significantly correlated
pattern due to locality of eavesdropping – links close to the eavesdropper have
a higher probability of being compromised.

3 Secrecy Amplification

Several secrecy amplification protocols were previously published and can be
grouped according to general principles of their construction. In multi-path key
establishment, node A generates q different random values and sends each one
along a different path via node(s) Ci to node B, encrypted with existing link
keys. This operation will be denoted as the PUSH protocol. All values combined
together with the already existing key between A and B are used to create the
new key value. An attacker must eavesdrop on all paths to compromise the new
key value. A second method, called multi-hop key amplification, is basically a
1-path version of the multi-path key establishment with more than one interme-
diate node Ci.
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3.1 Node-Oriented Protocols

Node-oriented security amplification protocols were firstly introduced in [1] and
later enhanced and expanded in [5]. Node-oriented protocol is executed for all
possible k-tuples of neighbours in the network. Note that the number of such
k-tuples can be high, especially for dense networks (e.g., more than 10 direct
neighbours) and resulting communication overhead is significant1.

A variant of the PUSH protocol, called the PULL protocol, was presented in
[5]. The initial key exchange is identical to the PUSH protocol. However, node
C decides to help improving the secrecy of the key between nodes A and B
instead of node A making such decisions as in the PUSH protocol. This in turn
decreases the area affected by the attacker eavesdropping node and thus increases
the number of non-compromised link keys (valid for key infection distribution).

The impact of a key composition mechanism called mutual whispering on
subsequent amplification was also examined [5]. Mutual whispering is a key
exchange where a pairwise key between A and B is constructed simply as K12 =
K1 ⊕ K2, where K1 is the key whispered2 from A to B and K2 from B to A.
Repeated iterations of the PULL protocols lead to a strong majority of secure
links even in networks where up to 20% of nodes are the attackers’ eavesdropping
nodes. Note that the assumption that an attacker controls only a fraction of
nodes (e.g., 10%) is reasonable, as an attacker must place his nodes before the
network is deployed and therefore the density of the deployed legal network can
be set to achieve the desired ratio. A detailed analysis of secrecy amplification
protocols with respect to the network density and number of eavesdropping
nodes was presented in [10].

One of the most advanced node-oriented protocols was defined in [11], using
the method for automatic generation of secrecy amplification protocols, which uti-
lized linear genetic programming (LGP) [2]. A detailed analysis showed that the
protocol consists of previously defined mutual whispering, PUSH protocol, PULL
protocol and also the multi-hop version of PULL amplification.We are using those
protocols as a base for construction of more advanced hybrid protocols.

3.2 Group-Oriented Protocols

In group-oriented protocols, an identification of the parties in the protocol is
no longer “absolute” (e.g., node number 1, 2, 3), but it is given by the relative
distance from other parties (we are using the distance from two distinct nodes).
It is assumed that each node knows the approximate distance to its direct neigh-
bours. This distance can be approximated from the minimal transmission power
needed to communicate with a given neighbour. If the protocol has to express the
fact that two nodes Ni and Nj are exchanging a message over the intermediate

1 E.g., (avg neigh) * (avg neigh - 1) * msg per protocol execution for a three-party
protocol, where avg neigh is the average number of neighbours.

2 Transmission is performed with the minimal radio strength necessary to communi-
cate between two nodes, therefore nodes more distant from the sending node are not
able to hear the transmission.
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node Nk, only relative distances of such node Nk from Ni and Nj are indicated
in the protocol (e.g., N0.30 0.70 is a node positioned 0.3 of the maximum trans-
mission range from Ni and 0.7 from Nj). Based on the actual distribution of the
neighbours, the node closest to the indicated distance(s) is chosen as the node
Nk for a particular protocol run. There is no need to re-execute the protocol
for all k-tuples (as was the case for node-oriented protocols) as all neighbours
can be involved in a single execution, reducing the communication overhead
significantly. See [11] for a detailed description of group-oriented protocols.

Note that inferring the relative distance from the received signal strength
indication (RSSI) is usually a burden with errors resulting from the generally
unreliable propagation of wireless signal and also as the relation between distance
and RSSI is not linear. Relative distances used in group-oriented protocols are
robust against moderate inaccuracies as a precise node position is not required
for a protocol to succeed.

4 Hybrid Protocols

In this paper, we propose a new kind of protocols that combine advantages of
both node- and group-oriented protocols. A protocol consists of several primi-
tive instructions as described later in Section 5.1. Its construction is based on
knowledge gained from analysis of node-oriented and group-oriented protocols.

Both mentioned types of secrecy amplification protocols covered in Section 3
have their advantages and disadvantages. As described previously, node-oriented
protocols exhibit polynomial increase of messages with respect to the number
of neighbours in the network. An additional issue is unknown number of di-
rect neighbours and their placement. A protocol prepared for a fixed number of
parties could fail due to lack of participants.

The group-oriented protocols do not share those issues and they show only a
linear increase in messages sent with respect to the number of neighbours. The
main difficulty is their complexity and complicated analysis of their behaviour.
They consist of multiple times more instructions when compared with node-
oriented protocols (e.g., the best performing group-oriented protocol presented in
[9] has 41 instructions and might include cooperation of up to 34 nodes. Compare
this to the PUSH protocol with 3 instructions and only 3 nodes involved.). Those
are issues limiting practical implementation and further adoption.

Hybrid protocols proposed in this work show only a linear increase in mes-
sages sent with respect to the number of neighbours and do not require storing
multiple values transmitted during the protocol execution, easing synchroniza-
tion during parallel runs occurring in a real network. They are using relative
distance from special nodes NC and NP in the same way as group-oriented
protocols. They contain a lower number of instructions and their construction,
analysis and implementation are simpler than for group-oriented protocols.
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Steps of a hybrid protocol are as follows:

1. Every node in the network is separately and independently processed once,
in the role of a central node NC for each amplification iteration. Only direct
neighbours of NC might be involved in the protocol execution.

2. A separate protocol execution is performed once for each direct neighbour
(node in the radio transmission range), this neighbour will have a special
role in this execution and will be denoted as NP (e.g., if there are 10 direct
neighbours around NC , then there will be only 10 protocol executions with
the same central node NC , each one with a different NP ).

3. The node NP provides a list of distances from all its neighbours (as the
minimal transmission power needed to communicate with a given neighbour)
to node NC . Based on the actual deployment of nodes, parties of the protocol
are replaced by real identification of the nodes that are positioned as close as
possible to the relative identification given by NC and NP in the protocol.

4. The key is updated after every protocol execution and only between nodes
NC and NP . Also the memory slots of all participants are cleared.

 

 NC NP 
Multi-hop PULL protocol RNG N0.80_0.50 R3 SND N0.80_0.50 NP R3 R3 SND N0.80_0.50 N0.30_0.70 R3 R3 SND N0.30_0.70 NC R3 R3 

PUSH protocol RNG NC R1 SND NC N0.70_0.70 R1 R1 SND N0.70_0.70 NP R1 R1 
PULL protocol RNG N0.20_0.20 R2 SND N0.20_0.20 NC R2 R2 SND N0.20_0.20 NP R2 R2 

N0.70_0.70 

N0.20_0.20  

N0.60_0.10  

N0.70_0.70 

Fig. 1. An example of instructions of a basic hybrid secrecy amplification protocol. The
PUSH, PULL and multi-hop version of PULL protocol are included. Selected node-
relative identification (distance from NC and NP ) of involved parties are displayed
as the geographically most probable areas, where such nodes will be positioned. A
probabilistic layout is shown for the case where the distance between nodes NC and
NP is 0.5 of the maximal transmission range.

We construct protocols with application of knowledge from node-oriented pro-
tocols and statistical data about the most suitable placement of participating
intermediate nodes. A hybrid protocol is executed for every pair of neighbouring
nodes instead of every k-tuple as in node-oriented protocols. Other participating
intermediate nodes are used for transmission of n different values for shared key
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update in the same fashion as previously described basic node-oriented protocols
(mutual whispering, PUSH, PULL, multi-hop versions of PUSH and PULL). A
visualisation of an example protocol can be seen in Figure 1. Participating inter-
mediate nodes are not required to store any forwarded values and can erase them
as soon as a message with the amplification value is forwarded to the next node
towards destination. This allows for a simple synchronization even within large
and dense WSNs. We incrementally improve the results of the protocol utilizing
the greedy search approach for intermediate node(s) placement. All evaluations
are performed on our reference network consisting of 100 legal nodes (7.5 legal
neighbours on average) with originally 50% links compromised.

5 Optimal Node Placement

As was demonstrated in previous work, secrecy amplification protocols are able
to provide a significant increase in secure links, e.g., from 50% of originally
secured links to more than 90%. To achieve such an improvement, there is a
considerable overhead in communication and on-node processing. In the subse-
quent section, we use a combination of different analysis techniques backed by
large data sets about merits of different positions of intermediate nodes in hybrid
protocols obtained from the simulator for selected compromise patterns.

5.1 Network Simulator

New hybrid protocols proposed throughout this work are evaluated using the
same simulator that was developed specifically for security analysis of key dis-
tribution protocols and message routing by the authors of [11]. Commonly used
simulators like ns2 or OMNeT++ work with an unnecessary level of details for
our purposes (e.g., radio signal propagation or MAC layer collisions), signifi-
cantly slowing evaluation of given network scenarios. The simulator is able to
simulate a secrecy amplification protocol on fifty networks with 100 nodes each
in about 3 seconds when executed on one core CPU @ 1.7 GHz.

The simulator is capable of performing:

– Random or patterned deployment of a network with up to 105 nodes together
with neighbour establishment, secure links establishment and simple routing
of messages.

– Evaluation of the number of secure links of probabilistic key pre-distribution
protocols as described in [4]. Deployment of attacker’s nodes and their eaves-
dropping impact on the network and evaluation of the number of secure links
of published protocols for secrecy amplification of key infection approach (see
[1] for details).

Protocols evaluated in the simulator are described in a metalanguage of pro-
posed primitive instructions. Each party (a real node in network) in the protocol
is modelled as a computing unit with a limited number of memory slots, where all
local information is stored. Each memory slot can contain either a random value,
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encryption key or message. Protocol instructions were selected with the aim of
describing all published secrecy amplification protocols and use only (crypto-
graphic) operations available on real nodes.

The instruction set is as follows:

– NOP – No operation is performed.
– RNG Na Ri – Generate a random value on node Na into slot Ri.
– CMB Na Ri Rj Rk – Combine values from slots Ri and Rj on node Na and

store the result to Rk. The combination function may vary on the application
needs (e.g., a cryptographic hash function such as SHA-3).

– SND Na Nb Ri Rj – Send a value from Ri on node Na to slot Rj on Nb.
– ENC Na Ri Rj Rk – Encrypt a value from Ri on node Na using the key

from Rj and store the result to Rk.
– DEC Na Ri Rj Rk – Decrypt a value from Ri on node Na using the key

from Rj and store the result to Rk.

5.2 Upper Bound for Amplification Success

At first, an upper bound for amplification success (maximum number of secure
links achievable by any sort of secrecy amplification protocol) can be established.
A given link between nodes A and B is securable if there exists at least one secure
path (no links on such a path are compromised) between nodes A and B via
other nodes Ci.
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Fig. 2. Maximal possible increase in the number of secured links with dependency on
the number of intermediate nodes. Results are displayed for both random compromise
(RC) pattern and key infection (KI) compromise pattern. As can be seen, strong major-
ity of secure links (> 90%) can be obtained even when the initial network compromise
is 50% (for RC pattern) or 70% (for KI pattern).

The upper bound of secured links can be achieved by a secrecy amplification
protocol by sending fresh new keys via all possible paths between any two nodes.
If there is a secure link, it will be used. However, there are two main practical
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limitations to such approach. First is the extraordinary high number of such
paths even in a small network, resulting in unacceptable transmission overhead.
Second is a high fragility to packet loss – as a network is usually not aware when
particular links are compromised, fresh keys must be sent and combined together
(e.g., via hash function) from all such paths – if even a single fresh key is lost,
A and B will not be able to establish the same secure key value.

We used modified Floyd-Warshall algorithm to establish an upper bound for
given network. The Floyd-Warshall algorithm is a graph analysis algorithm for
finding the shortest paths in a weighted, directed graph. A single execution of the
algorithm will find the shortest path between all pairs of vertices. As the precise
compromise pattern for a given network is not known in advance (depends on
an attacker, secrecy amplification protocol, exact placement of nodes, etc.), we
perform multiple evaluations for different networks to obtain an average result.
Details of used algorithm are available in Section A.

In the rest of this paper, we will focus more on the random compromise pattern
as there are more key distribution schemes resulting in this pattern after an attack
and also a bigger potential for improvement in fraction of secure links.

5.3 Intermediate Nodes Placement

We have used fifty random deployments of our reference network for the eval-
uation of the best placement of an intermediate node. We need to be able to
address a sufficient number of distinct neighbours from two specific nodes NC

and NP . We chose granularity of 0.01 and 0.03, respectively, as they allow us
to address 10 000 (0.01 granularity used for both NC and NP ) and 1 156 (0.03
granularity) different neighbours, respectively. Both numbers give us a satisfac-
tory number of distinct positions in two-dimension plane as we do not expect
the network density more than 100 neighbouring nodes. The granularity 0.01 is
used for placement of one intermediate node w.r.t. PUSH and PULL protocols.
The granularity 0.03 is used for multi-hop versions of PUSH and PULL proto-
cols as the placement of two intermediate nodes has to be found and it presents
(already high) computational demand increased by two orders.

In our protocol design, the basic protocols taken over from the node-oriented
approach are used. Those are mutual whispering, simple PUSH and PULL proto-
cols, and their multi-hop versions. Focusing on the random compromise pattern,
mutual whispering does not provide us with any improvements and there is no
difference between the PUSH and PULL protocol (see [5] for reasoning). The
same holds also for multi-hop versions of these.

We incrementally select five intermediate nodes for PUSH and PULL protocols
with the greedy search approach. Choosing the sixth node would give us only
a negligible improvement with respect to the portion of secure links. We have
evaluated every possible placement and the resulting number of secure links after
the protocol execution. We were able to get the 83% of secure links with a single
amplification. Final results are shown in Figure 6 in Appendix.

A different approach for analysis of multi-hop versions of PUSH and PULL
protocol is necessary as it is not feasible to evaluate all possible particular results
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due to exponential state explosion with every additional intermediate node. We
inspect three cases closely: 1) Specific placement of two nodes where the portion
of secure links is biggest. 2) The average number of secure links calculated across
all results for the first intermediate node placement is biggest. 3) The average
number of secure links calculated across all results for the second intermediate
node placement is biggest. In all cases, the best results were observed for place-
ment of both intermediate nodes into the same position, effectively reducing
the number of intermediate nodes. We interpret this in a way that a standard
PUSH/PULL protocol gives us better or the same results as a multi-hop version
of the PUSH/PULL protocol. The reason is that in the random compromise
pattern, less intermediate hops mean a lower probability that compromised link
will be used. Less intermediate hops also mean a lower number of all possible
paths, but hybrid protocol is constructed so that not all paths are taken anyway.

A secrecy amplification protocol might be iterated multiple times for the same
pair of nodes. As new links are secured in the first iteration, following iterations
have a better starting position than the first one, potentially securing additional
links. The final protocol works comparably with the node-oriented version of
PUSH/PULL protocols on the random compromise pattern and consists of 5
independent sub-protocols (each corresponds to one PUSH/PULL protocol), re-
sulting in 15 instructions. With initial 50% compromised links and two ampli-
fications, we managed to get the network with 92.5% links secured, with three
amplifications 94% secured links. When network has 40% initially compromised
links, 91.9% links are secured after one amplification and 97.6% after three am-
plifications.

The search for intermediate node placement was conducted with simulations
executing with only one amplification of particular basic protocols. As we expect
more than one amplification of our final protocol (e.g., three) will be used (see
results above), we also inspected difference when three amplifications are used
for the search. Resulting graphs share the overall shape with those presented
in Figure 6. The difference of the lowest and the highest success rate of the
protocol is generally lower using three amplifications of the protocol than in the
case of using only one, but overall difference is not significant enough to change
instructions in the proposed protocols.

5.4 Constructing New Protocol

The resulting protocol is shown in Figure 3. There are still several ways for its
optimization. We focus on minimization of the communication overhead. The
tool we use is protocol pruning. Protocol pruning is a process of progressively
removing every primitive instruction from the protocol and evaluating the change
in the success ratio after a modified protocol execution. It gives us the loss of
secured links when the instruction is removed from the protocol.

We were able to iteratively remove sub-protocols 4 and 5 with the success
ratio loss of only 0.0012 when employing three amplifications. This means that
the fraction of secured links is reduced only by 0.12 percent, which is negligible.
Removing the first block means reduction by 0.9 percent, which is also a relevant
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trade-off given the fact that two messages are spared in every execution. We
tested the final protocol on five hundred of deployments with an average success
ratio 93.21% (secured links). Removing block two or three causes the success
ratio loss of 17.0% or 14.5%, respectively.

# instructions

0 RNG N0.32 0.85 R1

1 SND N0.32 0.85 NC R1 R1

2 SND N0.32 0.85 NP R1 R1

3 RNG N0.69 0.98 R2

4 SND N0.69 0.98 NC R2 R2

5 SND N0.69 0.98 NP R2 R2

6 RNG N0.01 0.39 R3

7 SND N0.01 0.39 NC R3 R3

8 SND N0.01 0.39 NP R3 R3

9 RNG N0.56 0.70 R4

10 SND N0.56 0.70 NC R4 R4

11 SND N0.56 0.70 NP R4 R4

12 RNG N0.89 0.01 R5

13 SND N0.89 0.01 NC R5 R5

14 SND N0.89 0.01 NP R5 R5

Fig. 3. Best performing hybrid protocol
(HPBEST )

# instructions

0 RNG NC R2

1 SND NC N0.69 0.98 R2 R2

2 SND N0.69 0.98 NP R2 R2

3 RNG NC R3

4 SND NC N0.01 0.39 R3 R3

5 SND N0.01 0.39 NP R3 R3

Fig. 4. Final hybrid protocol (HPFINAL)

It is not efficient to remove more instructions as the success ratio loss becomes
excessive. However, we can achieve a higher success ratio gain by increasing
the number of repetitions of an amplification protocol. As we are taking the
number of messages sent as the primary measure of how demanding a protocol
is, we compare the efficiency of our final protocol (4 messages transmitted per
protocol execution and 3 amplifications) with only one sub-protocol (2 messages
transmitted per protocol execution and 6 amplifications). The best performing
sub-protocol was the first one from Figure 3. It was able to secure nearly 90%
links in the network, but this is worse than our original protocol. It is not possible
to substitute any of the remaining instructions by amplifications preserving the
performance of the protocol. Even if more amplifications would be able to do so,
the communication overhead would exceed our final protocol.

To simplify synchronization of parallel protocol executions, we put full control
over the protocol execution to the central node. As there is no difference between
the PUSH and PULL protocol for the random compromise pattern, originally
used PULL sub-protocols could be replaced by the PUSH ones. Both nonce
generations are performed by the central node NC and consequently transmitted
to the intermediate node NK . NK only forwards the nonce to NP and can forget
it immediately. This will help with management of parallel protocol execution.
The final protocol is shown in Figure 4.
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We tested the performance on fifty larger networks with 1 000 nodes and
initially with 50% links marked as compromised. The average number of neigh-
bours was 7.5. The performance of the protocol was very similar as computed
on smaller networks, with deviations of success ratio only around 0.5%.

6 Success Rate

The impact of the best known node- and group-oriented protocols together with
our final hybrid protocol (as described in Section 4) for the random compromise
pattern is compared in Figure 5. The NOBEST performs slightly better than our
hybrid protocol for the fraction of 20% initially secured links. For 40% and more,
the HPFINAL provides the best results among the tested protocols. The overall
success rate is also very close to the theoretical reachable maximum computed
by the modified Floyd-Warshall algorithm in Section 5.2.
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Fig. 5. An increase in the number of secured links after secrecy amplification protocols
in the random compromise pattern. The best performing node-oriented protocol [11]
is denoted as NOBEST . The best performing group-oriented protocol [9] is denoted as
GOBEST . The pruned version of best hybrid protocol HPBEST consists of 6 instructions
(4 are SEND) is denoted as HPFINAL. HPFINAL is executed with 3 amplifications as
it requires a comparable communication overhead. As can be seen, a strong majority
of secure links (> 90%) can be obtained even when the initial network had one half of
compromised links.

The more detailed comparison covering number of required messages, the im-
pact of repeated secrecy amplifications and details of practical implementation
for the TelosB hardware platform with the TinyOS 2.1.2 operating system and
tested on our laboratory test-bed with 30 nodes positioned atop of nine inter-
connected offices can be found in Annex A.

7 Conclusions

Our work presented in this paper demonstrates that hybrid amplification proto-
cols can provide better trade-off between security and efficiency than currently
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known approaches for secrecy amplification. Hybrid protocols show only a linear
increase in messages sent with respect to the number of neighbours and do not
require storing multiple values transmitted during the protocol execution. Pro-
posed hybrid protocols also contain fewer instructions and their construction,
analysis and implementation are simpler than for group-oriented protocols. The
synchronization of the protocol steps and parallel execution on multiple nodes is
easier than for previous approaches, making this approach practically usable on
current platforms like TelosB as demonstrated by our prototype implementation.
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of the Czech Science Foundation.
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A Protocol Evaluation

A.1 Upper Bound for Amplification Success - Details

Let us define the graph G(V,E), where V represents the nodes in our WSN
deployment and E represents neighbour relationships. After basic whispering
(for the key infection compromise pattern) or after random key pre-distribution
(for the random compromise pattern), we assign weight one to the edge between
nodes Ni and Nj if and only if there exists a secure link key established between
those nodes. If the link key is compromised, we assign weight equal to infinity.

After the Floyd-Warshall algorithm execution, we obtain the shortest path
between all nodes and we can interpret the results as follows:

– If the nodes Ni and Nj are neighbours and there exists a shortest path
between them, the link can be secured. The length of this path reduced by
one is also the minimum number of intermediate nodes needed to secure the
link.

– If the nodes Ni and Nj are neighbours and there is no shortest path calcu-
lated, the link cannot be secured.

We carried out several experimental calculations. Every calculation was con-
ducted on fifty random deployments of our reference network. As can be seen
in Figure 2, there is a significant difference between two inspected compromise
patterns. In the random compromise pattern, we are able to secure significantly
more link keys than in the key infection compromise pattern. We can explain
this situation by the fact that in the key infection compromise pattern, the com-
promised links are concentrated in particular areas around eavesdropping nodes
and it is more probable that such links cannot be secured. It can be also seen
that the most benefit can be gained using two intermediate nodes. With more
nodes, the increase in secure links fraction is very small.

A.2 Number of Amplifications

Different classes of secrecy amplification protocols use different capabilities to
improve security throughout the network. A node-oriented protocol sends key
updates via every possible neighbour or neighbours by a simple protocol. Group-
oriented protocols share key updates inside the bigger group of cooperating nodes
identified by relative distances. Hybrid protocols use sub-protocols (similarly to
node-oriented), relative distances (similarly to group-oriented) and additionally
utilize several repetitions of the whole process. Figure 7 shows the performance
of particular protocols in our reference network with respect to the number of
amplifications.

The most important observation is that with an increasing number of ampli-
fications, the difference in success among distinct types of protocols is smaller,
being negligible when four or more amplifications are used. That fact implies
that protocol repetitions can substitute other methods used in node- and group-
oriented protocols. We expect that three amplifications of a protocol will be a
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Fig. 6. Iterative search of intermediate nodes for PUSH/PULL protocols. Horizontal
axis depicts distance from the node NP , depth axis depicts distance from the node
NC , vertical axis represent the portion of secure links (quality of protocol with given
position of nodes, scaled between 0 and 1). Based on our results, the first intermediate
node is selected as N0.32 0.85 with the resulting success ratio 0.71 (a), second node as
N0.69 0.98 with the success ratio 0.77 (b), third node as N0.01 0.39 with the success ratio
0.815 (c), fourth node as N0.56 0.70 with the success ratio 0.82 (d) and fifth node as
N0.89 0.01 with the final success ratio of 0.83 (e).

proper compromise between a overall success of the hybrid protocol and the
communication overhead it requires.

A.3 Number of Messages

The best performing node-oriented protocol was presented in [11]. The protocol
consists of 10 instructions (6 are SEND) and requires participation of 4 different
nodes. We will refer to it asNOBEST . The best performing group-oriented proto-
col was presented in [9]. It has 41 instructions (24 are SEND) and might include
cooperation of up to 34 nodes (but does not require such a number of distinct
nodes). We will refer to is as GOBEST . Our final hybrid protocol consists of 15
instructions (10 are SEND) before pruning and it might include cooperation of
up to 7 nodes. We will refer to this protocol as HPBEST . The pruned version
of our protocol consists of 6 instructions (4 are SEND) and it might include
cooperation of up to 4 nodes. We will refer to this protocol as HPFINAL.

Figure 8 shows the number of messages sent by every node in protocol execu-
tion in our reference network with 7.5 legitimate neighbours on average. It can
be seen that our final protocol has less messages sent with 5 amplifications than
node- or group-oriented protocols with a single execution. As the communication
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Fig. 7. Random compromise pattern (7.5 legal neighbours on average). Displayed re-
sults correspond to 50% originally compromised links. Node-oriented protocol performs
better than others with only one amplification. Hybrid protocols perform comparably
when a higher number of amplifications is performed.
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Fig. 8. Total number of messages per single node required to perform the best node-
oriented and the best group-oriented secrecy amplification protocols (7.5 neighbours on
average assumed). The hybrid protocol even with five amplifications sends considerably
less messages than node or group oriented protocols with a single execution.

overhead is our primary metric for comparison of protocols, the proposed hybrid
protocol gives more than 94% secure links (on average) from original 50% in our
reference networks. This is a better result than node- or group-oriented protocol
can provide with the same communication overhead.

The number of messages also depends on the number of participating parties
and the average number of neighbours. Node-oriented protocols exhibit a poly-
nomial increase of messages with respect to the number of neighbours in the
network and an exponential increase of messages with respect to the number of
communicating parties in the protocol execution. Group-oriented protocols ex-
hibit only a linear increase of messages and the same dynamics holds for hybrid
protocols. The growth in the number of messages depends on the count of SEND
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instructions within a protocol. This favours hybrid protocols even with a higher
number of amplifications.

A.4 Test-Bed Results

To prove the practicality of the proposed protocol, we ran a prototype imple-
mentation for the TelosB hardware platform with the TinyOS 2.1.2 operating
system and tested it in our laboratory network with 30 nodes positioned atop of
nine interconnected offices.

Every node acts in three different roles according to a currently received
message: master (being node NC from the hybrid protocol), slave (being node
NP ) and forwarder (being intermediate node). The implementation contains
six phases executed mostly in parallel on all nodes in a network with a partial
synchronization required only during the radio distance discovery:

1. A discovery of radio distance to neighbours – every node Ni periodically
broadcasts AM MEASURE message that is received together with the corre-
sponding RSSI by its neighbours during the defined time-frame. Once broad-
casting is finished, neighbours of Ni can compute the average RSSI value
from the received packets, forming radio distance to Ni. Radio distance can
be also computed from the RSSI of regular packets sent during ordinary net-
work traffic, saving necessity to transmit special AM MEASURE messages.
This phase can be executed in parallel for all nodes with utilization of ran-
dom back-offs between AM MEASURE messages on different nodes to limit
packet collisions.

2. A broadcast of measured distances to node’s neighbours – once radio dis-
tances to other nodes are established, neighbours are notified about values
measured by node Ni by the message AM DISTANCES containing pairs of
node’s identification and its measured RSSI together with identification of
measuring node. If node Ni receives the AM DISTANCES message from a
node that is its neighbour, measured values are stored locally. When node
Ni receive measurements from all neighbours, next phase can be executed.
Synchronization of remaining phases with other nodes is not required.

3. A computation of mapping to real nodes – mapping between nodes denoted
in the hybrid protocol description and real nodes according to radio dis-
tances is performed locally. E.g., instead of node with N0.69 0.98 identifica-
tion, a particular node Ni is selected. Note that mapping from the RSSI
values distributed according to the logarithmic log-normal shadowing model
of wireless signal propagation to the linear distance from a sending node is
required. A different mapping model can be used where appropriate.

4. An execution of the hybrid protocol – node NC executes the protocol as
master to a selected neighbouring slave node NP via intermediate forwarder
nodes. Node NC prepares its message with the sub-key as well as the routing
path towards node NP and sends it by the message AM SECAMPLIF. In-
termediate nodes act as simple forwarders with link transmission protected
by already existing link keys. This phase can be executed in parallel for all
nodes.



A New Approach to Secrecy Amplification 109

5. A verification phase – node NC asks node NP whether all sub-keys trans-
mitted during the hybrid protocol execution or some were lost (e.g., due
to packet loss) using message AM VERIFY. If any sub-key is missing, a
relevant sub-protocol for this sub-key is executed again.

6. A combination phase – all sub-keys, together with the existing link key
between nodes NC and NP , are combined together using cryptographic hash
function, forming the new shared link key. Optionally, a key confirmation can
be executed before the old key is replaced by the new key value.

The hybrid protocol implementation has a small memory footprint – addi-
tional (N ∗41) bytes of RAM are required (where N is the number of neighbours)
and less then 3KB of additional code in EEPROM. Less then (N ∗ 4 ∗ 23 +N ∗
2 ∗ 5 + 28) bytes of payload divided into about (N ∗ 6) messages are transmit-
ted on average during hybrid protocol execution by every single node (including
verification messages, but excluding messages send during radio distance discov-
ery phase and retransmission of lost messages). When 10 neighbours on average
are assumed, around 1 KB of payload is transmitted by every node during se-
crecy amplification by the proposed hybrid protocol. Master node stores the
current state of the hybrid protocol executed with the selected slave node, the
slave node stores only received sub-keys and forwarder node stores no additional
value. Due to the parallelization possibility, execution of hybrid protocols from
the same master to different slave nodes can be interleaved without having long
message buffers on a single node.

Times required to finish different phases are highly dependent on the network
density and the signal propagation characteristics of the surrounding environ-
ment resulting in a different packet loss ratio. The prototype implementation
performed was intended to verify memory, computational, transmission and syn-
chronization requirements, not to provide detailed performance results for differ-
ent environments and settings. Still, reasonable estimates about time required
to finish separate phases can be inferred from experiments performed with our
laboratory test-bed.

The radio discovery (phase one) took most of the time to complete as multiple
AM MEASURE messages had to be sent from every node in the network to
obtain a reliable averaged RSSI value. Required time is roughly minutes or tens
of minutes to finish, depending on the required precision and network density
(influencing the length of necessary random back-off to limit packet collisions).
A broadcast of measured RSSI (phase two) is fast and requires only one or
two messages, unless a high number of neighbours is present (more than 20).
A mapping computation (phase three) is a fast local computation taking less
than 1 second for a node with 10 neighbours and the optimized hybrid protocol
with two sub-protocols described in Section 3. An execution of the optimized
hybrid protocol (step four) takes 1-2 seconds, extending to tens of seconds when
the packet loss is high and the verification phase (phase five) has to be executed
repeatedly. Combination of received values by a hash function (phase six) is local
and negligible.
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Abstract. Power analysis attack is one of the most important and ef-
fective side channel attack methods, that has been attempted against
implementations of cryptographic algorithms. In this paper, we investi-
gate the vulnerability of SIMON [5] and LED [16] lightweight block ciphers
against Differential Power Analysis (DPA) attack. Firstly, we describe
the power model used to mount the attack on Field Programmable Gate
Array (FPGA) implementation of SIMON and LED block ciphers. Then, we
proceed to experimentally verified DPA attack, which is the first success-
ful DPA attack on the algorithms. Our attack retrieves complete 64-bit
key of SIMON32/64 and LED-64 with a complexity of 176 and 218 hy-
potheses respectively. Finally, we present our analysis on other versions
of SIMON and LED. Our DPA results exhibits the weakness of algorithms,
which emphasize the need for secure implementation of SIMON and LED.

Keywords: Lightweight block cipher, FPGA implementation, differen-
tial power analysis.

1 Introduction

Generally security analysis of block ciphers are performed in two directions.
One is based on mathematical cryptanalysis; Other is based on analysis of leak-
age from cryptographic device termed as side-channel attacks. Mathematically
strong crypto-primitives need not necessarily secure enough against side channel
attacks(SCA). Therefore, it is essential to investigate ciphers in both directions
towards the standardisation of the cipher.

Of all side-channel attacks, differential power analysis (DPA) attack found to
be significantly successful against iterated block ciphers. DPA attack exploits
the power consumed by the device when it performs cryptography operations.
In 1999, Kocher et al. [19] showed that power analysis attack can efficiently
reveal the secret key. Based on the knowledge of adversary about the imple-
mentation, leakage model is categorised in two classes of SCA, namely Profiled
and Non-profiled. In profiled SCA, adversary has privilege to learn the pre-
cise leakage model in training phase in order to make use of on-the-fly attack
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detection; whereas in non-profiled SCA, less precise model is used to mount
the attack. Models of non-profiled SCA are Correlation Power Analysis (CPA),
Mutual Information Analysis (MIA), algebraic side channel collision analysis
were presented in [9,14,7]. Similarly, models of profiled SCA such as Template,
Scholastic model, Linear Regression Analysis(LRA), Side Channel Cube Analy-
sis and Algebraic SCA were published in [10,25,27,13,24].

Recently, in [22], information leakage through static power consumption of
FPGA is exploited to mount DPA. By the advancement of technology, the static
power consumption of CMOS circuit is almost equal to dynamic power con-
sumption, which becomes a major concern for physical implementation. Static
power consumption of LUTs, registers and connection switches of FPGA are
investigated to mount higher order attacks. A.Moradi and F. X. Standaert [23]
experimented Moments-Correlating Profile(MCP) and Moments-Correlating
Collision(MCC) through statistical moments to explore the leakage of thresh-
old implementation. The author suggest moments-correlating DPA as a natural
candidate for leakage detection tests and advanced features for the evaluation of
higher-order attacks.

After the advent of DPA, designers of cryptographic algorithm had started
concentrating on the new design strategies to improve the defence quality against
the attack. However, few algorithms are still vulnerable to DPA attack [30]. This
motivated us to evaluate algorithms against DPA. The two familiar designs of
lightweight block ciphers are Substitution- Permutation Networks (SPN) [6,8]
and Feistel structure [17,26]. For analysis, we have taken SIMON and LED based
on Feistel and SPN designs respectively.

SIMON and SPECK are two ultra lightweight block ciphers designed by U.S Na-
tional Security Agency (NSA). SIMON is designed to provide optimal performance
in hardware [4]. Linear, differential cryptanalysis and differential fault attacks
were reported in [1,2,28]. Light Encryption Device (LED) is designed to be very
compact in hardware compared to other lightweight block ciphers with similar
design parameters. Differential attack [21] on reduced round of LED and fault
attack [18] were reported recently.

In order to investigate the vulnerabilities of these algorithms against DPA,
FPGA is the preferred platform due to its low cost and flexibility [11]. There-
fore, we used customized I/O protocol [3] for SASEBO-G board, operated at
24 MHz, to practically verify our attack. SIMON and LED are implemented us-
ing Verilog Hardware Descriptive Language (HDL) in Xilinx FPGA (XC2VP7),
where the drop voltage at a shunt resistor (1Ω) in the power line is measured.
The oscilloscope captures the power trace at 2 Giga samples per second when
the encryption starts.

Our Contribution. In this work, we present the power model chosen for power
analysis attack on SIMON and LED. Then we present practically verified DPA at-
tack on these algorithms using SASEBO-G board. Our attack reduces hypotheses
complexity from 264 to 176 and 218 for SIMON and LED-64 respectively. We ana-
lyzed our approach, which is adoptable for other versions of SIMON and LED. To
the best of our knowledge, this is the first DPA attack on SIMON and LED.
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Outline. This paper is organised as follows. Section 2 describes, brief on SIMON,
its hardware implementation, power model and DPA attack on its physical im-
plementation. In Sect. 3, implementation details, power model and practical
attack of LED are discussed in detail. Finally we conclude the paper in Sect. 4.

2 Differential Power Analysis on SIMON

This section provides a brief description of SIMON followed by a detailed descrip-
tion of the power model to mount DPA attack on SIMON. Then we present the
experimental results and complexity of our attack.

2.1 Description of SIMON

SIMON is based on Feistel structure and the algorithm supports various block
and key sizes. The version of SIMON is denoted as SIMON2n/mn, where 2n refers
to the block size and mn refers to the key size. The n and m refer to word of
16, 24, 32, 48 or 64 and key word of 2,3 or 4 respectively. Feistel structure is an
iterative structure with an internal function called round function. Single round
function of SIMON is depicted in Fig. 1. A round function is defined as

RK(Li+1, Ri+1) = (Ri ⊕ f(Li)⊕ Ki, Li); (1)

f(Li) = (S1(Li) & S8(Li)) ⊕ S2(Li) (2)

where, i ∈ {1, · · · , T − 1},
T : Total number of rounds,
Sr: Left circular shift by r bits,
Ki: ith round key,
⊕ : Bitwise exclusive-or,
& : Bitwise and.

R
i

L
i

R
i+1L

i+1

S1

S2

S
8

i
K

&

Fig. 1. SIMON Round Function
Fig. 2. Power consumption of
SIMON32/64
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FPGA Implementation of SIMON: SIMON32/64, refers 32-bit plaintext block
with 64-bit key. The implementation takes 32 clock cycles to complete one block
of encryption, that is one round is executed in one clock cycle. The algorithm
requires three 16-bit registers and a few boolean operations (exclusive-or and
and operations) as hardware space. Initially, the plaintext is divided into two
halves and then loaded in two 16-bit registers, namely left and right registers.
These two registers are updated for every round function. The 64-bit key (K)
is divided into four 16-bit keys, which are loaded in 16-bit key register for the
first four rounds. From fifth round onwards the round keys are generated using
key scheduling algorithm, which is described in [5]. The first round 16-bit key is
represented as K1, second round key is represented as K2 and so on. Hardware
implementation of SIMON32/64 is as shown in Fig. 3.

Fig. 2 shows the power consumption of SIMON32/64 during one encryption
and the trace pattern is high for 32 rounds.

2.2 Power Model

We used Hamming distance based power model to describe the power consump-
tion, since this suits the power consumption of a FPGA implementation very
well. In order to use the Hamming distance model, the state of a cell in the
circuit before or after it processes the targeted intermediate result needs to be
known [20]. The intermediate result is selected in such a way that it must be a
function of plaintext/ciphertext and a portion of the key (k). The length of the
relevant portion of the key must be as small as possible when compared to the
original key (K) size of the algorithm, i.e. |k| << |K|. Therefore, complexity of
attack is significantly lesser than the exhaustive key search space.

The power model described in this section is generic for all variants of SIMON.
Therefore, the version of the algorithm is not specifically mentioned in this sec-
tion. In the first round of SIMON, the key bits are exclusive-ored with the plaintext

Fig. 3. Implementation module of SIMON32/64
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and not diffused with the non-linear function. Key bits start diffusing with the
state value in non-linear fashion from second round onwards. Therefore our tar-
geted intermediate value to reveal key bits start from second round output. The
power consumption of SIMON for ith round can be represented as follows:

P i+1
total =

n∑
j=1

Li
j ⊕ Li+1

j +
n∑

j=1

Ri
j ⊕ Ri+1

j (3)

where index i refers to the round number and index j refers to bit position. In
SIMON, n refers to the word size.The R register is directly mapped from previous
state of L register. Therefore, the value of R register is not explicitly mentioned
hereinafter. Each bit in the left register can be represented as follows:

Li+1
j = Ki

j ⊕ Ri
j ⊕ Li

(j+2) mod n ⊕ (Li
(j+1) mod n & Li

(j+8) mod n) (4)

Therefore the Hamming distance model for the power analysis is given below:

HD = HW (Li+1
j ⊕ Li

j) (5)

2.3 Description of Our Attack

For the purpose of demonstration of power analysis attack,
SIMON32/64 was chosen. Initially, Plaintext P is loaded in two 16-bit registers
(R and L) as given in (6) and (7).

Initial Register value

R1 = P16, P15, ...P1 (6)

L1 = P32, P31, ...P17 (7)

Register value after First round

L2 = (K1
16 ⊕ R1

16 ⊕ L1
14 ⊕ (L1

15&L1
8))︸ ︷︷ ︸

L2
16

,

(K1
15 ⊕ R1

15 ⊕ L1
13 ⊕ (L1

14&L1
7))︸ ︷︷ ︸

L2
15

, ... (K1
1 ⊕ R1

1 ⊕ L1
15 ⊕ (L1

16&L1
9))︸ ︷︷ ︸

L2
1

(8)

After the first round, value of left register L2 has linear dependency on key bits,
so the second round register value is considered.

Register value after Second round

L3 = (K2
16 ⊕ R2

16 ⊕ L2
14 ⊕ (L2

15&L2
8))︸ ︷︷ ︸

L3
16

,

(K2
15 ⊕ R2

15 ⊕ L2
13 ⊕ (L2

14&L2
7))︸ ︷︷ ︸

L3
15

, ... (K2
1 ⊕ R2

1 ⊕ L2
15 ⊕ (L2

16&L2
9))︸ ︷︷ ︸

L3
1

(9)
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In (9), L3
1 bit has non-linear function of L2

16 and L2
9, depends on key bits K1

16

and K1
9 . Therefore, L

3
1 bit shall be considered as an intermediate result, as it

satisfies the requirement to perform DPA. Hence, the first bit of (9), L3
1, will be

correlated with first bit of (8), L2
1, for all possible hypothetical values for the key

bits present in the equations. The bit L3
1 involves four key bits K1

16,K
1
9 ,K

1
15,K

2
1

and L2
1 involves one key bit K1

1 . As a result, intermediate hypothetical value is
correlated with captured power reveals 5-bit of key.

Similarly, L3
2 is correlated with L2

2. Here, bit L3
2 involves four key bits K1

16,
K1

10, K
1
2 , K

2
2 and L2

2 involves one key bit K1
2 . Whereas, K1

16 and K1
2 are known

from first bit correlation. Consequently, number of hypothesis required for corre-
lation is reduced from five to three bits. In order to reduce the complexity, same
procedure is repeated for next six bits, L3

3 to L3
8 to reveal 24-bit key in the first

two rounds. In the same way, remaining key bits are retrieved between round L4

and L3 as well as between round L5 and L4 with corresponding correlation bits
as shown in Table 1.

2.4 Summary of Our Results

We recorded the power consumption of SIMON32/64 while it encrypts D (with
minimum of 65,000 samples) randomly generated plaintexts using a fixed key K1.
With the experimental set-up described in Sect.1, trace points were captured and
stored in a matrix format.

Intermediate hypothetical value is calculated for D plaintexts using (8) and
(9). Hypothetical power consumption value is calculated by taking Hamming
distance between L2

1 and L3
1. Then the hypothetical power consumption value

is correlated with the actual power consumption value. Fig. 4 shows the plot
for 5-bit key hypothesis. The peak appears at 12, this means the correct key
is 11 (because the index for key hypothesis in the plot starts from 1) with the
correlation value of 0.01789. The correct key and its corresponding bit positions
are given below.

Second bit of (9) is correlated with corresponding bit of (8) for key bits K1
10,

K1
2 , K

2
2 . Fig. 5 shows peak value at 5 with the correlation value of 0.0201, this

means key bit value is 4 and its corresponding individual bit values as shown
above.

The same procedure is repeated for next six bits, L3
3 to L3

8, to reveal 24-bit
key out of 32-bit in the first two rounds. In the same way, the key used in third
and fourth rounds are also revealed. The overall complexity of attack to reveal
complete 64-bit key is 27 + 25 + 24 = 176 using DPA as shown in Table 1. The
possibility of DPA attack on other versions of SIMON is presented in Appendix A.

1 The key K that was used for experiment is K = [6 9 A 5 7 1 8 E C 3 8 1 5 A 6 9],
represented in hexadecimal.
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Fig. 4. First bit correlation between (8)
and (9)

K1
16 K1

15 K1
9 K1

1 K2
1

0 1 0 1 1

Fig. 5. Second bit correlation between (8)
and (9)

K1
10 K1

2 K2
2

1 0 0

Table 1. Attack complexity of SIMON32/64

Correlation between
rounds

Correlation bits Attack bits(Key) Hypothesis

L3
1 , L2

1 K1
16, K1

15, K1
9 , K1

1 , K2
1 32

L3
2 , L2

2 K1
10, K1

2 , K2
2 8

L3
3 , L2

3 K1
11, K1

3 , K2
3 8

L3
4 , L2

4 K1
12, K1

4 , K2
4 8

L3, L2 L3
5 , L2

5 K1
13, K1

5 , K2
5 8

L3
6 , L2

6 K1
14, K1

6 , K2
6 8

L3
7 , L2

7 K1
7 , K2

7 4

L3
8 , L2

8 K1
8 , K2

8 4

L4
1 , L3

1 K2
16, K2

15, K2
9 , K3

1 16

L4
2 , L3

2 K2
10, K3

2 4

L4
3 , L3

3 K2
11, K3

3 4

L4, L3 L4
4 , L3

4 K2
12, K3

4 4

L4
5 , L3

5 K2
13, K3

5 4

L4
6 , L3

6 K2
14, K3

6 4

L4
7 , L3

7 K3
7 , K3

8 4

L5
1 , L4

1 K3
16, K3

15, K3
9 , K4

1 16

L5
2 , L4

2 K3
10, K4

2 4

L5
3 , L4

3 K3
11, K4

3 4

L5
4 , L4

4 K3
12, K4

4 4

L5
5 , L4

5 K3
13, K4

5 4

L5, L4 L5
6 , L4

6 K3
14, K4

6 4

L5
7, L5

8 , L4
7, L4

8 K4
7 , K4

8 4

L5
9, L5

10 , L4
9, L4

10 K4
9 , K4

10 4

L5
11, L5

12 , L4
11, L4

12 K4
11, K4

12 4

L5
13, L5

14 , L4
13, L4

14 K4
13, K4

14 4

L5
15, L5

16 , L4
15, L4

16 K4
15, K4

16 4

Combined hypothesis 176

3 Differential Power Analysis of LED

In this section we describe a DPA attack on LED. Firstly, we give a brief descrip-
tion of LED and its hardware implementation. Then we describe a power model
chosen for DPA attack and experimental verification of our attack is presented.
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3.1 Description of LED

LED is based on a design principles of Advanced Encryption Standard (AES) [12].
The algorithm has a fixed block size of 64-bit, and key size of 64 or 128-bit. The
version of LED is specified using its key size, namely, LED-64 and LED-128. LED
operates on 4×4 row-major order matrix of nibbles, termed as state. The key size
used for LED determines the number of iteration that have to be performed, which
is called step function. The number of step functions required to convert
given plaintext to ciphertext is eight for LED-64. A step function consists of
four rounds, each round is combination of AddConstants, SubCells, ShiftRows,
and MixColumnsSerial operations. The AddRoundKey is performed once in every
four rounds which exclusive-ored with the state value.

AddConstants is a linear operation, where the state matrix is bitwise exclusive-
ored with round constant as given in [16].

SubCells is a non-linear operation, where each nibble in the state matrix is
replaced by a nibble generated using PRESENT Sbox [6]. ShiftRows is a linear
operation, where row i of the state matrix is rotated i cell positions to the left,
where i varies from 0 to 3.

MixColumnsSerial is also a linear operation presented in [16], where each
column of the state matrix is multiplied by matrix (M = A4, where A is a base
matrix).

FPGA Implementation of LED: LED-64 takes 32 clock cycles to produce
ciphertext, which means that a single round of operation is executed in one
clock cycle. The implementation flow is depicted in Fig. 6.

The encryption starts with loading the plaintext in 64-bit data register,
Data-Reg, which is updated for every round function output. The state value
refers to the intermediate value computed during the transformation of data reg-
ister value from one round to the next round. The selection signal sel chooses
the AddRoundkey operation once in four rounds. In the first AddRoundkey, the
key(K ) is exclusive-ored with the plaintext that is stored in Data-Reg. Round
function is implemented as combinational circuit and all four operations are

Fig. 6. Implementation of LED-64 Fig. 7. Power consumption of LED-64
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computed in single clock cycle. In our implementation, the AddConstants(AC)
operation fetches the corresponding pre-computed round constant value from
the memory. SubCells(SC) and ShiftRows(SR) are implemented as a single
module. SC is implemented through the characteristic equation as defined in [6].
The MixColumnsSerial(MC) takes the base matrix(A) for multiplication, which
is multiplied four times with the state value.

Fig. 7 shows the power consumption of LED-64 during one encryption. It can
be observed from Fig. 7 that the 32 patterns in the trace shows the 32 rounds
of LED-64.

3.2 Power Model

We chose Hamming distance model for the reason mentioned in Sect. 2.2. In
our attack, the targeted intermediate result is the first round output, which is
the function of plaintext and key. In the first round, each input nibble of the
S-box depends on a nibble of the key of LED. Each nibble in the output of first
round depends on four nibbles of the key of LED as shown in Fig. 8. Based on
this observation, we built suitable Hamming distance model for the attack. The
targeted register is Data-Reg (as shown in Fig. 6) that stores the plaintext first
and then stores the intermediate result after every round function.

3.3 Description of Our Attack

LED operates on row-major matrix, the elements of the state matrix are arranged
as shown in Fig. 8, where a0 denotes the most significant nibble and a15 denotes
the least significant nibble. For AddConstants, SubCells and AddRoundKey op-
erations every nibble is operated independently. In ShiftRows operation the
position of nibbles are changed, which plays a major role in choosing plaintext
positions for deriving power model.

Fig. 8. Power model for first round attack
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In each round, MixColumnsSerial diffuses four nibbles within the column.
Hence the 64-bit state can be regarded as four small separate mappings each of
which diffuses the nibbles of the corresponding column.

Since the MixColumnsSerial takes a column for multiplication and each out-
put nibble depends on the values of the other nibbles of that particular column,
the key hypothesis has to be performed for all four nibbles used in that column.
The ShiftRows operation shuffles nibble row-wise before the MixColumnsSerial.
Therefore, the plaintext and key position have to be chosen suitably, so that
MixColumnsSerialgets a column for computing hypothetical intermediate value.
From the above consideration, the state value for the first round attack is parti-
tioned into four diagonals – The value [a0, a5, a10, a15] forms the first column,
[a1, a6, a11, a12] the second column, [a2, a7, a8, a13] the third and [a3, a4, a9,
a14] the fourth column respectively after ShiftRows operation.

As illustrated in Fig. 8, the first output nibble b0 depends on the key value of
k0, k5, k10 and k15 and its corresponding plaintext value. Therefore, we need to
perform key hypothesis for 16-bit key (k0, k5, k10 and k15) to derive the power
model and hence the key search space has become 216. To reveal the entire 64-bit
key, three more DPA attacks are necessary for the key positions [k1, k6, k11 and
k12], [k2, k7, k8 and k13] and [k3, k4, k9 and k14]. Therefore, the complexity of
attack is 216 × 4 = 218.

3.4 Summary of Our Results

We recorded the power consumption of LED-64 while it encrypts D (with min-
imum of 4000 samples) randomly generated plaintexts using a fixed key K2.
With the experimental set-up described in Sect. 1, trace points were captured
and stored in a matrix format for analysis. Based on the D plaintexts, the hy-
pothetical intermediate values have been calculated by performing first round
function of LED-64 for every plaintext and every possible choice of key. Since,
the attack is performed for four nibbles, the key search space is 216.

The next step of the DPA attack is to map hypothetical intermediate value
to a matrix of hypothetical power consumption values. In LED implementation,
the first round output is stored in the same register as the plaintext. Therefore,
hypothetical power consumption values can be calculated by taking Hamming
distance between the corresponding plaintext position a0, a4, a8 and a12 and the
first round output nibbles b0, b4, b8 and b12 as shown in Fig. 8.

Finally, the correlation coefficient between the hypothetical power consump-
tion values of each key hypothesis and the recorded power traces are calcu-
lated as explained in [20,9]. A plot of the correlation matrix shows that a
significant peak, that uniquely determines the correct key as shown in Fig. 9.

2 We had chosen key K = [0 1 2 3 4 5 6 7 8 9 A B C D E F] as it is given in test vectors
of [16]. Nevertheless, the attack was successful on other set of randomly chosen keys
as well.
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Fig. 9. Correlation Power Analysis result of LED-64

The correlation value is 0.0620 for the correct key [0 5 A F]3 at key positions
k0, k5, k10 and k15 respectively. This process was repeated for three more diag-
onals to retrieve the complete key of LED-64. Therefore the attack complexity
to retrieve the complete 64-bit key equals 218. DPA on other versions of LED is
given in Appendix B.

4 Conclusion

In this paper, we presented the DPA attack on SIMON and LED with very less
key search space. To retrieve 64-bit key, the required key search space for SIMON
is 176 and LED is 218. Our results highlight the need of countermeasures against
the proposed attack. Therefore suitable countermeasures have to be designed to
resist against the attacks. Such countermeasures have to be analysed for these
algorithms in terms of resources and throughput. The power model proposed in
our attack is targeted for hardware implementations like FPGA, ASIC. However,
the attack complexity may vary for other platforms.
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3 The peak appears at 1456 in the plot, since the MATLAB tool starts the plot from
1 rather than 0, the correct key value has to be reduced by one from the peak value,
which is the decimal value of 0x05AF.
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A Appendix

Attack complexity of other variants of SIMON: SIMON versions depend on
values of m and n. Based on m, key is divided in to n word size and used in first
m rounds of algorithm. For example, in SIMON 32/64, m is 4; from the above
table it is clear that, we need to perform DPA up to m+1 rounds to retrieve
complete 64-bit key. In the case of SIMON 48/72, m is 3, therefore m+1 rounds
are required to reveal the key with the complexity of (25+24+(23×5)+(22×24))=
184 shown in the Table 2. Similarly, in SIMON 96/96, m is 2;that means m+1
rounds are require to reveal the key. The attack complexity of SIMON 96/96 is
(25+(23 × 5)+ (22 × 38))= 224, given in Table 3. This shows that our approach
can be adoptable to attack all versions of SIMON.

Table 2. Attack complexity of SIMON48/72

Correlation between
rounds

Correlation bits Attack bits(Key) Hypothesis

L3
1 , L2

1 K1
24, K1

23, K1
17, K1

1 , K2
1 32

L3
2 , L2

2 K1
18, K1

2 , K2
2 8

L3
3 , L2

3 K1
19, K1

3 , K2
3 8

L3
4 , L2

4 K1
20, K1

4 , K2
4 8

L3
5 , L2

5 K1
21, K1

5 , K2
5 8

L3
6 , L2

6 K1
22, K1

6 , K2
6 8

L3
7 , L2

7 K1
7 , K2

7 4

L3, L2 L3
8 , L2

8 K1
8 , K2

8 4

L3
9 , L2

9 K1
9 , K2

9 4

L3
10 , L2

10 K1
10, K2

10 4

L3
11 , L2

11 K1
11, K2

11 4

L3
12 , L2

12 K1
12, K2

12 4

L3
13 , L2

13 K1
13, K2

13 4

L3
14 , L2

14 K1
14, K2

14 4

L3
15 , L2

15 K1
15, K2

15 4

L3
16 , L2

16 K1
16, K2

16 4

L4
1 , L3

1 K2
24, K2

23, K2
17, K3

1 16

L4
2 , L3

2 K2
18, K3

2 4

L4
3 , L3

3 K2
19, K3

3 4

L4
4 , L3

4 K2
20, K3

4 4

L4
5 , L3

5 K2
21, K3

5 4

L4
6 , L3

6 K2
22, K3

6 4

L4
7, L4

8 , L3
7, L3

8 K3
7 , K3

8 4

L4
9, L4

10 , L3
9, L3

10 K3
9 , K3

10 4

L4, L3 L4
11, L4

12 , L3
11, L3

12 K3
11, K3

12 4

L4
13, L4

14 , L3
13, L3

14 K3
13, K3

14 4

L4
15, L4

16 , L3
15, L3

16 K3
15, K3

16 4

L4
17, L4

18 , L3
17, L3

18 K3
17, K3

18 4

L4
19, L4

20 , L3
19, L3

20 K3
19, K3

20 4

L4
21, L4

22 , L3
21, L3

22 K3
21, K3

22 4

L4
23, L4

24 , L3
23, L3

24 K3
23, K3

24 4

Combined hypothesis 184
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Table 3. Attack complexity of SIMON96/96

Correlation between
rounds

Correlation bits Attack bits(Key) Hypothesis

L3
1 , L2

1 K1
48, K1

47, K1
41, K1

1 , K2
1 32

L3
2 , L2

2 K1
42, K1

2 , K2
2 8

L3
3 , L2

3 K1
43, K1

3 , K2
3 8

L3
4 , L2

4 K1
44, K1

4 , K2
4 8

L3
5 , L2

5 K1
45, K1

5 , K2
5 8

L3
6 , L2

6 K1
46, K1

6 , K2
6 8

L3
7 , L2

7 K1
7 , K2

7 4

L3
8 , L2

8 K1
8 , K2

8 4

L3
9 , L2

9 K1
9 , K2

9 4

L3
10 , L2

10 K1
10, K2

10 4

L3
11 , L2

11 K1
11, K2

11 4

L3
12 , L2

12 K1
12, K2

12 4

L3
13 , L2

13 K1
13, K2

13 4

L3
14 , L2

14 K1
14, K2

14 4

L3
15 , L2

15 K1
15, K2

15 4

L3
16 , L2

16 K1
16, K2

16 4

L3
17 , L2

17 K1
17, K2

17 4

L3
18 , L2

18 K1
18, K2

18 4

L3
19 , L2

19 K1
19, K2

19 4

L3
20 , L2

20 K1
20, K2

20 4

L3
21 , L2

21 K1
21, K2

21 4

L3
22 , L2

22 K1
22, K2

22 4

L3
23 , L2

23 K1
23, K2

23 4

L3
24 , L2

24 K1
24, K2

24 4

L3, L2 L3
25 , L2

25 K1
25, K2

25 4

L3
26 , L2

26 K1
26, K2

26 4

L3
27 , L2

27 K1
27, K2

27 4

L3
28 , L2

28 K1
28, K2

28 4

L3
29 , L2

29 K1
29, K2

29 4

L3
30 , L2

30 K1
30, K2

30 4

L3
31 , L2

31 K1
31, K2

31 4

L3
32 , L2

32 K1
32, K2

32 4

L3
33 , L2

33 K1
33, K2

33 4

L3
34 , L2

34 K1
34, K2

34 4

L3
35 , L2

35 K1
35, K2

35 4

L3
36 , L2

36 K1
36, K2

36 4

L3
37 , L2

37 K1
37, K2

37 4

L3
38 , L2

38 K1
38, K2

38 4

L3
39 , L2

39 K1
39, K2

39 4

L3
40 , L2

40 K1
40, K2

40 4

L3
41, L2

42 , L3
41, L2

42 K2
41, K2

42 4

L3
43, L2

44 , L3
43, L2

44 K2
43, K2

44 4

L3
45, L2

46 , L3
45, L2

46 K2
45, K2

46 4

L3
47, L2

48 , L3
47, L2

48 K2
47, K2

48 4

Combined hypothesis 224

B Appendix

DPA on other versions of LED. LED-64 and LED-128 differs only by key size
and so it differs only in AddRoundKey. LED-128 performs 48 rounds and the 128-
bit key is divided into two parts K = K0‖K1, and used alternatively for every
four rounds. The first 64-bit key K0 is retrieved using the same attack strategy
employed for LED-64. After computing the first four rounds of operation using
K0, the next 64-bit key K1 is retrieved.

The latest version of LED block cipher is published in [15]. This version is intro-
duced to address the problem of using variable size keys, where the key size is not
a multiples of 64-bit. This makes minor modification on both AddRoundKey(AK)
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and AddConstants(AC). In case of key size not in multiples of 64-bit, like 80-
and 92-bit, the key is circularly appended to the second part of the key until
it matches the required key size. In AddConstants, size of key denoted in eight
bits are included in the first column of the matrix.

Our attack will work in the latest version of LED, as the round operation and
its diffusion property remains same as the previous version. However, we have
experimented with the same measurement set-up and power model described
in Section 3 for the latest version of LED. The attack worked with the attack
complexity of (218 + 26) for 80-bit key size.

LED can also be attacked from the last round. We have experimented with
the same set of captured power traces, the attack was successful with the same
complexity.

In our attack on LED the data register is updated for every round. The imple-
mentation can be serialised by updating the data register for every operation in
a round as prescribed in [16]. In that case, if the intermediate result is chosen
after the SubCells operation, then the key search space shall be reduced to 28

from 218 to reveal 64-bit key.
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Abstract. The paper shows that designing lightweight block ciphers for the
increasingly popular Field Programmable Gate Arrays (FPGAs) needs a new
revisit. It shows that due to the underlying FPGA architecture many popular
techniques for lightweight block ciphers which work on Application Specific In-
tegrated Circuits (ASICs) does not apply to FPGAs. The paper identifies new
methods and design criteria for lightweight block ciphers operating on FPGAs.
Using these guidelines, a new block cipher Khudra based on the recursive Feistel
structure is designed, which has a 64 bit block size and 80 bits of key. Rigorous
cryptanalysis, ranging from linear and differential cryptanalysis to more powerful
attacks like impossible differential, related key attacks etc. have been performed
to justify that 18 rounds of Khudra provide sufficient security margin. Finally, the
cipher has been implemented in two different flavors, Khudra-I and Khudra-II,
on low cost FPGAs like Xilinx Spartan-III XC3S400 and extensively compared
with other contemporary ciphers like PRESENT, Piccolo and compact imple-
mentations of other standard cipher like AES, Camellia etc. The implementation
results show that Khudra requires at least around 45% less slices and 29% less
AT product compared to round wise implementation of any of the contemporary
lightweight block cipher.

Keywords: Lightweight, Block Cipher, FPGAs, Efficient Implementation.

1 Introduction

With the rapid increase of pervasive devices, lightweight cryptography has become a hot
topic today. The area of cryptography, which deals with the design, analysis and imple-
mentation of cryptographic algorithms for devices with extremely constrained resources
is formally termed as lightweight cryptography. Designing this kind of cryptographic
algorithms always require a trade-off between security, efficiency and resources. As
lightweight ciphers are constrained by area, power, and cost, application specific de-
sign opportunities in ASIC and amenability to mass productions makes ASIC a popular
choice for lightweight crypto-systems. But ASIC chips cannot be reconfigured or modi-
fied. On the other hand, Field-programmable gate array (FPGAs) can be reconfigured or
upgraded after manufacture. Although ASICs are popular choice for lightweight cryp-
tography, recent low cost FPGAs make them an alternative for battery powered devices
(WSN)[31]. Low cost FPGAs seem ideal for the customer producing small amount of
WSN or RFIDs. The reconfiguration feature of FPGAs, allowing in-house update of

R.S. Chakraborty et al. (Eds.): SPACE 2014, LNCS 8804, pp. 126–145, 2014.
© Springer International Publishing Switzerland 2014
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design, is suited for several applications. With the growing popularity of FPGAs for
networking applications, designing lightweight cipher helps to add more functionality
and security.

In ASIC designs for lightweight cryptography, the libraries are specially designed.
In those cases the synthesizer is forced to use the particular gates, having less GE. For
example, Piccolo [27] uses a particular type of cell for XOR and XNOR, not avail-
able in UMC18 used by PRESENT [6]. However on FPGAs all designs are mapped
to Look-up-Tables (LUTs). Further the number of LUTs largely depend on the number
of input variables in the function. To demonstrate this, four 4 × 4 S-boxes with differ-
ent GE, has been implemented in Xilinx Spartan 3 FPGA and the result is compared
in Table 1. Even though their properties and GE are different, all of them take same
number of LUTs. So a cipher which possesses less Gate Equivalence in ASIC, may not
necessarily have smaller footprint in case of FPGA implementations. A compact design
of a cipher on FPGA, typically follows serialized implementation (use of same mod-
ule repeatedly). Serialized implementation reduces the area-time(AT) product which is
also not desirable even for lightweight devices [8]. A further constraint is to remove
the memory elements in the design. This necessitates further strategies for realizing
lightweight ciphers on FPGAs.

In this paper, first we show that the strategies used for traditional lightweight ASIC
implementation are not suitable for FPGAs. Then we propose new general strategies
for designing block ciphers on FPGAs. Keeping these strategies in mind, we propose a
new lightweight block cipher for FPGAs, Khudra, which encrypts 64 bit plaintext using
80 bit keys. Khudra provides sufficient security not only against the classical cryptanal-
ysis but also against the more stronger attacks like MIME and related-key differential
attacks. The implementation of Khudra not only consumes less resource on FPGAs but
also produces good throughput without using any BRAMs. The results have been found
to out-perform two of the most popular lightweight block ciphers designed for ASIC
(namely PRESENT and Piccolo) and other compact implementation of well known
block ciphers. To the best of our knowledge, this is the first reported work in designing
a new lightweight cipher specifically for the growingly popular FPGA platforms.

The paper is organized as follows : Section 2 discusses the existing lightweight block
ciphers along with their optimization strategies used for ASIC implementation. Section
3 discusses the broad design ideas, followed by detailed design principles in section 4.
The security analysis of Khudra has been discussed in section 5. Section 6 presents the
hardware implementation details of Khudra and comparison with the compact FPGA
implementation of some well known block ciphers. Finally, we summarize the work
done and conclude in section 7.

Table 1. Comparison of Different S-boxes

Implementation Platform PRESENT[6] MIBS[28] LBlock[39] Piccolo[27]

ASIC (GE) 28 24 22 12
FPGA (SLICE) 2 2 2 2



128 S. Kolay and D. Mukhopadhyay

2 Related Works

Almost all the lightweight block ciphers are targeted for ASIC implementations. Here is
a list of some lightweight block ciphers: compact implementation of AES [4] and DES
[21], Kasumi [38], mCrypton [10], HIGHT [13], DESL and DESXL [18], CLEFIA
[35], PRESENT [6], Puffin [20], MIBS [28], KATAN [11], Klein [41], TWINE [37],
LED [23] and Piccolo [27] etc. Generally, these ciphers use at least one of the following
strategies for lightweight implementation in ASICs:

A: SPN structure with bit permutation.
B: Feistel ‘F-Function’ with less Gate Equivalence.
C: S-box with less Gate Equivalence.
D: Using less register in the design.

Table 2. Comparison among the Lightweight Block Ciphers

Cipher Structure Strategies Cipher Structure Strategies
Adopted Used Adopted Used

AES1 SPN C CLEFIA Feistel B
PRESENT SPN A, C MISTY Feistel B
Puffin SPN A, C Kasumi Feistel B
LED SPN C, D Twine Feistel B, C
DESL, DESXL Feistel B MIBS Feistel B, C
HIGHT Feistel B Piccolo Feistel B, C, D

Table 2 shows the strategies used in the lightweight block ciphers for the ASIC imple-
mentations. The reason for adopting these strategies are as follows:

A: Substitution-Permutation Network(SPN) consists of a Substitution layer followed
by a permutation layer. A bit permutation in hardware comes free of cost, because it can
be done by just a ‘wiring’. Hence, the use of bit permutation as the Permutation layer
definitely reduces the area.

B, C: Both these two strategies directly reduce the Gate Equivalence.
D: In ASICs, a register consumes much more ‘GE/per bit’ than any ‘logic gates’.

Additionally, implementation results of these lightweight ciphers show that the area
consumed only by the registers can be up to 55% of the total area of the whole design.
In round wise implementation, registers are generally required for storing intermediate
data in data processing part and key scheduling part. Latest lightweight block ciphers
like LED and Piccolo use ‘no key schedule’ and ‘multiplexer based key schedule’ re-
spectively, which does not require any register to implement the key schedule.

Some techniques have been proposed in [31] for the serialized implementations of
two well known lightweight block ciphers: HIGHT and PRESENT on FPGAs, These
implementations reduce the slice requirements about 2 times but require 4.7 and 8 times
more clock cycles than the round-wise implementations of HIGHT and PRESENT re-
spectively. For this reason, area-time product decreases significantly. In [17], involutive

1 Compact implementation of AES [4].
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ciphers ICEBERG has been proposed specifically for FPGA implementation. There are
also few compact implementations on FPGAs of some well known traditional block
ciphers, like AES [22,32,40], Serpent[1], Camellia [30] and Misty[29]. These imple-
mentations generally use some special techniques for serialization to occupy less slices
on FPGAs.

3 Goals and Methods for Designing Lightweight Ciphers on
FPGAs

In this section, first we discuss the design constraints for lightweight implementation on
FPGAs. We argue that lightweight block ciphers mentioned on table 2 will not produce
equivalently lightweight designs on FPGAs. Based on these observations, we propose a
new design strategy for lightweight cryptography on FPGAs and show how it is applied
to our new lightweight block cipher, Khudra.

3.1 Motivation of Designing Lightweight Ciphers for FPGAs

For compact design, serialized architectures are often used in both ASICs and FPGAs.
In this technique, the same hardware is used repeatedly in some clock cycles to process
one block of data. Thus, it definitely reduces the area in both platforms, but also reduces
the throughput significantly. Hence, it is not a good option for lightweight cryptogra-
phy, where throughput also now comes into consideration [8]. Let us review the ASIC
strategies discussed in section 2 with respect to the FPGA platforms.

A: In both ASIC and FPGA, bit permutation can be implemented by simple wiring
(if there is no routing congestion). So, this strategy reduces the area requirement in both
cases.

B, C: For ASICs, less gates are desirable, while for FPGAs, less LUTs are desirable.
Strategies B and C are both targeted for ASICs. As discussed in Section 1 and Table 1,
the FPGA resources namely slices which are comprised of LUTs, depend on the number
of inputs of a function. This rules out any optimization due to the choice of S-boxes with
less gates as used in PRESENT and Piccolo to be effective in reducing LUTs on FPGA.
Similarly the choice of suitable diffusion layers have no effect in reducing LUTs.

D: An n-input LUT can map any combinatorial logic with n input variables and
the flip-flops inside the slice are used to design any sequential circuit. For FPGAs the
ratio between the registers and the LUTs are crucial. While applying strategy D, if a
design require more LUTs than flip-flops, then some slice will be occupied only to use
the LUTs in the slice. Thus use of less register in the design may leads to unutilized
flip-flops in some slices.

The above reasons show that except strategy A, none of them are useful for
lightweight implementations on FPGAs. From table 2 we can see that all the block
ciphers with SPN structure adopt strategy C and all ciphers with the Feistel Structure
adopts strategy B. Besides some of these adopt strategy D. Hence, we can say that for
lightweight FPGA implementation, most of the strategies do not work. Thus, an exist-
ing lightweight cipher may not be equally lightweight on FPGAs. Furthermore, it also
motivates to develop block ciphers which are secured and are also lightweight on FPGA
platforms.
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3.2 Lightweight Strategy for FPGA Implementation

Smaller and cheaper FPGAs, that are suitable for lightweight implementation, normally
contain LUTs that has only one output pin. So any function that produces an output
of n bits and each of the output bit is dependent on at least 2 input bits, cannot be
implemented using less than n LUTs on these FPGAs. Generally, two design strategies
are followed for designing block cipher: Substitution - Permutation Network (SPN) and
Feistel Network. A lower bound of the LUT requirements for implementing both these
structures on FPGAs is provided, considering the plaintext size of n bits and key size
of k.

SPN Structure:
Key XORing: n bit key XORing has been done in this step, thus requires n LUTs.
Substitution Layer: It is a n × n function, thus requires at least n LUTs.
Permutation Layer: This step can be realized using bit permutation, thus no LUT

is needed.
Feistel Structure:

Key XORing: At least n/2 bit key XORing has been done in this step, thus requires
at least n/2 LUTs.

F-Function: Inside this function substitution and diffusion layer is used.
Substitution Layer: At least n/2 bit substitution layer is used in this step, thus

requires at least n/2 LUTs.
Diffusion Layer: It is a m× n/2 mapping, where 2 ≤ m ≤ n/2, so this step will

also require at least n/2 bit LUTs.
Permutation Layer: It is the default Feistel Permutation, which requiresn/2XORs,

thus the LUT requirement is n/2.

Here, we have not considered the Key-scheduling, which also require significant amount
of LUTs. Further, as the encryption is done in some rounds, n+k bit registers and n+k
number of 2 : 1 mux is also required for the feedback of message and keys of the previ-
ous round. For this purposes, n+ k flip-flops and n+ k LUTs are required. Thus, total
number of LUTs required is at least 3× n+ k and register is at least n+ k. Generally,
an FPGA slice contains equal number of LUTs and Flip-Flops, so finally in most of the
slices only the LUTs are used and Flip-Flops remained unused.

From this observation, we can say that number of slices can be reduced if we can
decrease the LUT requirements by utilizing some more flip-flops. For this reason, we
have denoted the ratio between total number of LUT utilization and total number of
Flip-Flop utilization as (RLUT/FF ) and propose the following strategy for balancing
LUTs and Flip-Flops:

– To choose a new design for which number of LUTs reduces, number of flip-flops
increases and the ratio (RLUT/FF ) is close to 1.

Note that RLUT/FF = 1 does not produce the smallest implementation, but reduce
the number of under utilized slices. The novelty of the work shows that such design
criteria leads to a compact architecture yet not fully serialized, thus having promising
throughput.
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3.3 Proposed Cipher Architecture Based on the Strategies

Data Processing Part. For the same block size, Feistel structure with ‘SP F-function’
uses half of the number of S-boxes than SPN, but due to the use of costly diffu-
sion(permutation) layer, both of the structures require almost same resources. There-
fore, we plan to use the Feistel structure in our design to reduce the number of S-boxes
but without using any extra diffusion layer. Feistel structure has two parts: F-function
and a Feistel permutation. Inside the F-function of a Feistel structure, two types of
approaches are generally used: SP and SPS. SP provides one substitution layer fol-
lowed by a permutation layer and SPS provides one substitution layer followed by a
permutation layer and followed by another substitution layer. Realizing the F-function
of our Feistel structure, we have used r rounds of Feistel structure recursively inside
the F-function. A simple n block Feistel permutation requires only n/2, 2 input XORs,
where as for the same block size, Camellia type of diffusion layer (used in MIBS) or
MDS matrix (used in Clefia and Piccolo) requires much more area. Instead, by using
the proposed recursive architecture, we reduce both the number of S-boxes and resource
requirement for the permutation layer. The number of rounds: r, inside the F-function
is decided, considering both security and efficiency. As the F-function is computed in
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rounds, the intermediate values are stored in some registers. As discussed, these regis-
ters improve the utilization of the slices, by reducing the wastage of the FFs in the slices.
The further advantage is the reduction in the LUTs. Thus the ratio RLUT/F−F reduces
and slice utilization also reduces. Hence we propose the design of a new lightweight
cipher, Khudra, with this recursive design structure.

Key Scheduling Part. For key scheduling, recently proposed lightweight block ciphers
either have chosen simple multiplexer based key-schedule or no key-schedule. Both of
these techniques do not require any register for storing the master keys or the round keys
but the master keys should be hold in the input pins, throughout the entire encryption
process. As the low cost FPGAs, generally comes with limited number of I/O pins,
so this strategy is not very much suitable for lightweight implementation on FPGAs.
Again, the above mentioned strategy also occupy only LUTs and no FFs (as there is
no need of registers). Keeping these facts in mind, we have planned to used a shift-
register base key-schedule, which require less number of LUTs and more FFs. As for
the data processing part, Khudra require more LUTs compared to FFs, so the planned
key-schedule will improve the overall RLUT/F−F ratio.

4 Detailed Design

Having discussed the ideas which governed the design of Khudra, in this section, a
detailed description of the design is provided.

4.1 Data Processing Part

To encrypt a 64 bit plaintext block using a 80 bit key, Khudra uses “Generalized type-2
transformations” [19] of Feistel Structure(GFS), which is an extension of the traditional
Feistel Structure. The detailed algorithm is presented in algorithm 2. For a 64 bit block
cipher using 4 branch type-2 GFS, we need two 16 × 16 F-Functions. We have imple-
mented these two F-functions using a two level recursive structure.

The F-function. The similar structure i.e. the same 4 branch type-2 generalized Feistel
Structure is used in Khudra as the construction for the F-Function. Figure 1 shows the
structure of Khudra. The left structure in Figure 1 will be considered as Outer Structure,
and the right structure, that is the structure for the F-function as Inner Structure. In the
inner structure, 4×4 S-boxes are used to provide non-linearity. The output of the S-box
is then XORed with the next branch and passed through the Feistel permutation.

The S-box. In Khudra, we have used PRESENT’s S-box for the substitution layer be-
cause of its ‘Higher Algebraic Degree’ and ‘Low Differential and Linear Probability’[6].

4.2 Key Scheduling Part

The key scheduling part of Khudra takes a master key of 80 bits and generates 16 bit
round-keys RKi(0 ≤ i < 36) and 16 bit whitening keys WKi(0 ≤ i < 4). Initially,
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input keys are stored in a 80 bit key register K and represented as k0||k1||k2||k3||k4,
where each ki is of 16 bits for 0 ≤ i < 5). Whitening keys (WKi) and round keys
(RKi) are generated according to algorithm 1. RCi denotes the 16 bit round constant
and i(6) is the 6 bit representation of the round counter i.

Algorithm 1. Key Scheduling (k0, k1, k2, k3, k4)

WK0 ← k0,WK1 ← k1,WK3 ← k3,WK4 ← k4
for i ← 0 to 35 do

RCi ← {0||i(6)||00||i(6)||0}
RKi ← ki mod 5 ⊕ RCi

end

Algorithm 2. Encryption
Input: Plaintext P [63 : 0] and Round Key RK[36][15 : 0]
Output: Ciphertext C[63 : 0]
begin

for i = 0 to 17 do
tp3[15 : 0] ← P [63 : 48], tp1[15 : 0] ← P [31 : 16] ;
for j = 0 to 5 do

tq3[3 : 0] ← P [63 : 60], tq1[3 : 0] ← P [55 : 52] ;
P [63 : 60] ← S(P [63 : 60]) ⊕ P [59 : 56] ;
P [55 : 52] ← S(P [55 : 52]) ⊕ P [51 : 48] ;
P [59 : 56] ← tq1[3 : 0], P [51 : 48] ← tq3[3 : 0] ;
tr3[3 : 0] ← P [31 : 28], tr1[3 : 0] ← P [23 : 20];
P [31 : 28] ← S(P [31 : 28]) ⊕ P [27 : 24] ;
P [23 : 20] ← S(P [23 : 20]) ⊕ P [19 : 16] ;
P [27 : 24] ← tr1[3 : 0], P [19 : 16] ← tr3[3 : 0] ;

end
P [63 : 48] ← P [63 : 48] ⊕ P [47 : 32]⊕RK[2× i+ 1][15 : 0];
P [31 : 16] ← P [31 : 16] ⊕ P [15 : 0]⊕RK[2× i][15 : 0];
P [47 : 32] ← tp1[15 : 0], P [15 : 0] ← tp3[15 : 0] ;

end
end

5 Security Analysis

In this section, we will discuss the security analysis of Khudra against some popular at-
tacks, like differential cryptanalysis, linear cryptanalysis, impossible differential attack,
differential-linear attack, algebraic attack, boomerang type attacks, slide key attack and
related key attack.
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5.1 Differential Cryptanalysis (DC) and Linear Cryptanalysis (LC)

In order to measure the resistance of Khudra against linear and differential cryptanal-
ysis, we have calculated the minimum number of so called ‘active S-boxes’, and their
differential or linear approximation probabilities. An exhaustive search has been per-
formed using the properties mentioned in Appendix A to compute the number of active
S-boxes. For the inner structure of Khudra, we have found at least 6 active S-boxes
in the differential and linear characteristics. These S-boxes have both differential and
linear probability of 2−2. So, the F-function of Khudra has a differential and linear
probability 2(−2)×6=2−12. Then, we have computed the minimum number of ‘active
F-Functions’ in both differential and linear characteristics. Table 3 shows the number
of ‘active F-Functions’, with the varying number of rounds. From this table, We see that
6 rounds of Khudra have at least 6 ‘active F-Functions’. Combining the probabilities
of these 6 ‘active F-Functions’, Khudra consisting of at least 6 rounds has no differen-
tial or linear characteristics whose probabilities are more than 2−72. Thus, we conclude
that the full round of Khudra, which have both the linear and differential properties of
2−216, is sufficiently secure against both linear and differential cryptanalysis.

Table 3. Minimum number of active F-Functions in Single-key and Related-key settings

No. of rounds: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Min # active Single-key 0 1 2 3 4 6 6 7 8 9 10 12 12 13 14 15 16 18
F-Functions Related-key 0 0 0 1 2 3 3 3 4 5 6 6 7 7 8 9 9 10

5.2 Impossible Differential Cryptanalysis (IDC)

Impossible Differential Cryptanalysis is one of the most powerful attack for Feistel
Structure, due to its slow diffusion and use of smaller S-boxes in the F-function. To
show the resistance against this kind of attack, first we have considered 16-bit truncated
differential followed by 4-bit truncated differential. To search for the impossible dif-
ferential, we have followed the steps mentioned in [25]. We have found that for 16-bit
truncated differential, 7 rounds of Khudra has no impossible differential. While for 4-
bit truncated differential, 10 rounds of Khudra has no impossible differential. Based on
these observations, we have tried to attack 11 rounds of Khudra with the impossible dif-
ferential found after 9 round. The detailed attacking methodology has been described
in Appendix B. In this case, the number of chosen plain text required is 257 and the
time complexity for finding RK19 and RK21 is around 261 encryptions for 11 round
of Khudra. Hence, we claim full round Khudra has immunity against the impossible
differential cryptanalysis.

5.3 Truncated Differential Attacks (TDA)

Truncated differential cryptanalysis is a general technique for the analysis of block
ciphers with byte oriented structure [26]. To find the best round-reduced truncated dif-
ferentials we have used the approach mentioned in [3] combined with the following
standard assumptions:
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1. S-boxes have no effect on the probability because they cannot change an active
nibble into an non-active nibble and vice versa.

2. XOR can cancel two active nibbles with probability 2−4.

Table 4. Round-wise best truncated differential probabilities (TDP) of Khudra

Number of Rounds 1 2 3 4 5 6 7 8 9 10

Best 4-bit TDP 0 2−12 2−24 2−40 2−56 2−84 2−84 2−96 2−108 2−124

Lower bound on best TDP 0 2−11.7 2−23.4 2−39 2−54.6 2−81.9 2−81.9 2−93.6 2−105.3 2−120.9

Second row of the table 4 provides the best 4 bit truncated differential probabilities
(TDP) with the varying number of rounds. Further, we consider a more stronger sce-
nario, where the attacker can even control the difference within a nibble. In this case,
we assume that each time attacker able to cancel two active nibbles with the differ-
ence that has the maximum probability. For Present’s s-box the maximum probability
is 1

15 ≈ 23.9. Using this over estimation, we have computed the best truncated differ-
ential probability and results has been provided in the third row of the table 4. For both
of this cases, we can see that no truncated differential exists after 6 rounds of Khudra.
Thus, we can conclude that the full round Khudra has sufficient security margin against
truncated differential attacks.

5.4 Differential-Linear Cryptanalysis

Differential-Linear Cryptanalysis was proposed by Langford and Hellman in [34]. In
this technique, the attacker utilizes the differential characteristic for the first part of
the cipher and linear approximation for the remaining part of the cipher. ‘Letting p be
a probability of a certain differential characteristic and letting q be a probability of
a certain linear approximation, the complexity of the differential-linear cryptanalysis
would have the complexity order of about p2q2 [33]’. As discussed in Appendix , any
round of Khudra has the same ‘Differential’ and ‘Linear’ probability. So, if p be the
differential probability for the first part of the cipher, and q be the linear probability for
the remaining part of the cipher, we can say that q is also the differential probability of
the remaining part of the cipher. Thus, the full round differential probability can be at
most pq, which is greater than p2q2 (as, 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1). Therefore, we
can say that for Khudra, differential-linear cryptanalysis is weaker than the differential
cryptanalysis.

5.5 Boomerang Type Attacks (BA)

Various kinds of boomerang attacks like ‘The Boomerang’ [12], ‘Amplified Boomerang’
[24] and ‘Rectangle Attack’ [16] have been proposed. These attacks divide the cipher
into two sub-ciphers, then find a boomerang quartet with high probability. To show the
resistance against these kind of attacks, we have computed the number of differential ac-
tive F-Function in each sub-cipher. From table 5, we can see that any combination of two
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sub-ciphers of 8 round Khudra has at least 6 active F-Functions. Again, an F-Function
of Khudra has differential probability of 2−12. So, the highest probability boomerang
quartet of 8 round Khudra can have the probability at most 2−72. Likewise, the full
round Khudra, has the highest probability boomerang quartet of at most 2−192, and
thus provide enough immunity against the boomerang type attacks.

Table 5. # active F-functions for all combinations of sub-ciphers on 8 round Khudra

# rounds in sub-cipher1 / active f-function: 1/0 2/1 3/2 4/3
# rounds in sub-cipher2 / active f-function: 7/6 6/6 5/4 4/3
Total #active F-function after 8 rounds: 6 7 6 6

5.6 Key Scheduling Attacks

Slide Attack and Related Key Attack. Two well known attacks on the key-scheduling
algorithm, namely slide [2] and related key attacks [14], use the simple relations and
similarities among the round-keys to get the actual master key. To remove the self-
similarity in the key scheduling algorithm, in each round, we have different round con-
stants, generated by the round counter. This strategy makes Khudra secure against these
two key-scheduling attacks.

Related-Key Differential Cryptanalysis (RDC). In related-key differential cryptanal-
ysis, adversary can control the difference both in plaintext and key-schedule to cancel
out differences in data processing part. In order to show the resistance of Khudra against
these kind of attacks, we have calculated the minimum number of ‘active F-functions’
in related-key settings. Table 3 shows the number of ‘active F-Functions’ in the related-
key settings, with the varying number of rounds. 11 rounds of Khudra has at least 6
‘active F-Functions’. Thus, we conclude that the full round of Khudra is secure against
related-key differential cryptanalysis.

Related-Key Boomerang Attacks (RBA). We also consider boomerang and rectangle
attacks [9] in related-key settings. To show the resistance against these kind of attacks,
we have computed the number of differential active F-Function in each sub-cipher in
the related-key settings. From table 3, we can see that any combination of full round
Khudra has at least 6 active F-Functions. So, the highest probability boomerang quartet
of 14 round Khudra can have the probability at most 2−72 and thus provide enough
immunity against related-key boomerang type attacks.

Meet-in-the-Middle Attack (MITM). The recently proposed 3-subset meet-in-the-
middle attack works well for block cipher with simple key schedule and slow diffusion.
The computational complexity (Ccomp) of the attack can be bounded by the following
estimation [5]:

Ccomp = 2|A0|(2|A1| + 2|A2|) + (2l−m + 2l−m−b + 2l−m−2b + · · · )
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The notations are used as mentioned in [5]. We have performed an exhaustive search on
12 round Khudra as discussed in section 5.6 previously for calculating the first part of
the equation (shown in bold font). The computational complexity is found to be at least
280 for any case. Hence, we can rule out a possibility for such an attack.

Table 6. Comparison of the Security Margin

Cipher DC LC IDC BA RDC RBA MITM

PRESENT[6] 25 rounds
(2−100)

28 rounds
(2−43)

Not
Reported

Not
Reported

Not
Reported

Not
Reported

Not
Reported

Piccolo[27] 7 rounds
(2−65.1)

8 rounds
2−64

7 round
(4 bit TD)

9 rounds
(2−65.1)

14 rounds
(2−65.1)

17 rounds
(2−65.1)

19 rounds
(> 280)

Khudra 6 rounds
(2−72)

6 rounds
2−72

9 round
(4 bit TD)

8 rounds
(2−72)

11 rounds
(2−72)

14 rounds
(2−72)

12 rounds
(> 280)

Table 6 provides number of rounds required for PRESENT, Piccolo and Khudra to
achieve sufficient security margin against different kinds of attacks. In the table, the
entries corresponding to the attacks best on linear and differential cryptanalysis (DC,
LC, IDC, BA, RDC, RBA) mention the probability for linear or differential trail. While
that for MITM mentions the computational complexity. This discussion shows that full
round Khudra provides security margin comparable to PRESENT and Piccolo.

6 Implementation Details and Comparison

Having analyzed the security of Khudra, now comes the vital step of implementing
the cipher in hardware. In this section, first we will describe the architecture for FPGA
implementation along with the comparison of the implementation result with some of
the lightweight ciphers for ASICs and other compact implementations of standard well
known block ciphers.

6.1 FPGA Implementations

Data Processing Part. Figure 2 shows an overall block diagram of the hardware im-
plementations of the outer structure of Khudra. In figure, X denotes the 64 bit plaintext
input and Y denotes 64 bit state of the cipher, which is updated in every round. The
architecture exactly follows the structure of Khudra as shown in fig. 1. ‘F-Function’ of
Khudra can be implemented in various ways. Here, we have shown two different ways
to implement the ‘F-function’ and depending on that, we have named two variants of
Khudra: Khudra-I and Khudra-II. ‘2r Feistel’ and ‘3r Feistel’ block contains hardware
for the 2 and 3 rounds of the ‘inner structure’ respectively.

In our implementation, to use more flip-flops and minimize the use of LUTs, we have
first computed the ‘F-function’ of Khudra, in some clock cycles and the value is stored
in a 16 bit register. Adopting this strategy, we do not need dedicated hardware for the
whole ‘F-function’, thus we can save some LUTs. In the ‘F-function’ of Khudra - I,
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Fig. 2. Block Diagram for Hardware Implementation

due to the ‘2r Feistel’, we need 3 clock cycles to compute the ‘F-function’, as the inner
structure of Khudra has 6 rounds. Similarly, in case of Khudra-II we need 2 clock cycles
to compute the ‘F-function’. After the computation of the ‘F-function’, this value is used
in the ‘Outer Structure’. Hence, to complete the whole encryption process, we need
14× 3 = 42, 14× 2 = 28 clock cycles respectively for Khudra-I and Khudra-II. It can
be noted that by incrementally unrolling the serialized implementation, RLUT/FF = 1
can be reached, but throughput reduces drastically. In [8], Poschmann et al. have shown
that beyond certain point, minimizing the area using serialization does not produce the
best result in terms of AT product. This is the reason for not using hardware for one
round of the inner structure to compute the ‘F-function’.

Key Scheduling Part. As discussed earlier, to reduce the i/o port requirement we have
implemented the key scheduling part using shift register. To load the master key in
the register, our design requires 5 clock cycles. Note that these extra 5 clock cycles
only require if user wants to change the keys, do not require for every encryption if
the key is same. This shift register base implementation reduces the requirements of
the multiplexer and also increases the requirements of registers, which improve the
RLUT/FF ratio.

6.2 Implementation Results and Comparison

We have implemented both the variants of Khudra in Verilog on the Spartan-III XC3S400
(Package FG456 with speed grade -5) FPGA core from Xilinx. In table 7, we have com-
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pared the implementation results of Khudra with HIGHT, PRESENT and Piccolo on the
same FPGA device. First two rows of the table 7 shows the fully serialized implemen-
tation results of HIGHT and PRESENT. Though the slice requirement reduces due to
the serialized implementation but AT product increases significantly. The next two rows
show the round wise implementation results of PRESENT and Piccolo. This compari-
son shows the improvement on the ratio RLUT/FF over these two ciphers. Due to the
recursive structure, our design requires less LUTs compared to PRESENT and Piccolo
but requires more flip-flops. One slice of Spartan-III XC3S400 contains two LUTs and
two slice flip-flops. So it is also clear from the result that any of the two implementations
of Khudra, does not need any additional flip-flops except the available flip-flops on the
occupied slice. Thus, this increase in the number of flip-flops, has no adverse effect on
the resource requirements of the cipher. Further, we have compared the implementation
result of Khudra with some other compact implementations of popular block ciphers in
table 8. In this comparison, we can clearly see that Khudra has less slice requirements
as well as AT product than any of these block ciphers.

Table 7. Comparison with Lightweight Ciphers

Flip Area Cycles Throughput AT Product
Cipher LUTs -Flop RLUT/FF (Slice) per @ 100 kHz (slice × cycles)

block (kbits)

PRESENT [31] 159 114 1.39 117 256 25 29,952

HIGHT [31] 132 25 5.28 91 160 40 14,560

PRESENT [7] 350 154 2.27 202 32 200 6,464

Piccolo 374 73 5.12 235 27 237 6,345

Khudra-I∗ 214 182 1.17 112 54 118.5 6,048

Khudra-II∗ 240 181 1.32 128 36 177.8 4,602

* Though the number of Flip-Flops are more compared to others, it does not require any extra Slice as the
RLUT/FF ratio is greater than 1

Table 8. Comparison of Khudra with Well known Block Ciphers

Platform and Block Area Cycles Throughput AT Product
Cipher Implementation Size (slice) per @ 100 kHz (slice × cycles)

Strategy (bits) block (kbits)

ICEBERG [17] Virtex-II, L 64 631 34 188.2 21,454

ICEBERG [17] Virtex-II, L(R) 64 526 34 188.2 17,884

AES [22] XC2S30, S 128 393 534 23.9 209, 862

AES [32] XC2S30, S(R) 128 222∗ 46 278 10,212

Camellia [30] XC3S50, S 128 318 875 14.63 278, 250

Camellia [30] XC3S50, S(R) 128 214 875 14.63 1462.89

Khudra-I XC3S400 64 112 54 118.5 6,048

Khudra-II XC3S400 64 128 36 177.8 4,602

L: Loop Architecture [17], S: Serialize Architecture, (R): Block RAM based implementation
∗ The equivalent slice implementation requires 522 slices [36]
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7 Conclusion

In this paper, we have shown that the strategies for designing lightweight block cipher
on ASICs are not suitable for FPGAs. Further, we have identified new methods and de-
sign criteria for designing lightweight block ciphers on FPGAs. Using these guidelines,
this paper puts forward an idea of a new lightweight block cipher, Khudra, using a recur-
sive Feistel structure, which uses 80 bit keys to encrypt 64 bit data. Extensive security
analysis have also been provided to justify the security of the scheme against conven-
tional attacks. The paper suggests new criteria based on the parameter, RLUT/FF to de-
velop lightweight FPGA implementations for ciphers, and shows how the architecture
for Khudra achieves the same. Finally, the comparisons with well known lightweight
ciphers and compact implementations of standard ciphers have been provided to demon-
strate the benefits of the method.
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A Exhaustive Search Procedure for Active S-boxes and Active
F-Functions

Active S-boxes in Differential Characteristic: In the inner structure of Khudra, there
are four branches, each of the branch contains four bits. For each branch, we will
consider two cases: the differential of a branch containing all zero bits and the dif-
ferential containing at least one non-zero bits. We will use the following properties:

– Due to the bijectiveness of s-boxes, whenever a non zero branch differential is
passed through a s-box, it will produce another non-zero branch differential. In
other words we can say, if the input differential of a s-box is non-zero, then the
output differential will also be non-zero.

– If a branch containing zero differential value is XORed with another branch
containing zero differential value, it will produce a zero differential value.

– If only one of the branch involved in the XOR contains a non-zero differential
value, it will produce a non-zero differential branch value.

– If a branch containing non-zero differential value is XORed with another branch
containing non-zero differential value, it will produce a zero differential value(if
the input differential of two branches values are equal) or it will produce a zero
differential value(if the input differential of two branches values are not equal).

Using these four conditions, an exhaustive search has been performed to compute
the number of active s-boxes in the inner structure.

Active S-boxes in Linear Characteristic: In case of linear characteristic, whenever a
branch X splits into two branches Y and Z , the mask value of X becomes the XOR
of the mask value of Y andZ . Again if X = Y ⊕Z , mask value of all three becomes
same[15]. The propagation of mask value in a linear characteristic is same as the
propagation of difference in a differential trail with the role of XOR and branching
being interchanged. Thus the number of linear active s-boxes is exactly same as the
number of differential active s-boxes.
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Active F-Functions in Differential and Linear Characteristic: Now as the F-
Functions are also bijective and the inner structure is identical with the outer struc-
ture. So, the same techniques can also be applied for the exhaustive search of the
minimum number of active ‘F-functions’ in the differential characteristic. Further,
due to the previously mentioned reason, minimum number of active ‘F-functions’
in the linear characteristics will be exactly same as the differential characteristics.

B Impossible Differential Attack on Khudra

As discussed earlier, to show the resistance against this kind of attack, we have per-
formed an automated search using the algorithm mentioned in [25]. The only differen-
tials that are found to be impossible after 9 rounds are:

[0(16), 0(16), 0(16), αin(16)] � [0(16), 0(16), αout(16), 0(16)]

Table 9. Differential values for αin(16) and αout(16)

αin(16) αout(16) αin(16) αout(16)

1 16, 32, 48, 64, 80, 96, 112, 128, 144,
160, 76, 192, 208

2 16, 32, 48, 64, 80, 96, 112, 128, 144,
160, 176, 192, 224

3 16, 32, 48, 64, 80, 96, 112, 128, 144,
160, 176

4 16, 32, 48, 64, 80, 96, 112, 128, 144,
160, 192, 208, 224

5 16, 32, 48, 64, 80, 96, 112, 128, 144,
192, 208

6 16, 32, 48, 64, 80, 96, 112, 128, 160,
192, 224

7 16, 32, 48, 64, 80, 96, 112 8 16, 32, 48, 64, 80, 96, 128, 144, 160,
176, 192, 208, 224

9 16, 32, 48, 64, 80, 128, 144, 160, 176,
192, 208

10 16, 32, 48, 64, 96, 128, 144, 160, 176,
192, 224

11 16, 32, 48, 128, 144, 160, 176 12 16, 32, 64, 80, 96, 128, 144, 160, 192,
208, 224

13 16, 64, 80, 128, 144, 192, 208 14 32, 64, 96, 128, 160, 192, 224

where 0(16) denotes 16-bit zero difference, αin(16) and αout(16) denote 16-bit non-zero
difference. Table 9 shows the differential values for αin(16) and αout(16). To demon-
strate the best possible attack using these 9 round differential, here we are considering
αin(16) = 1 and αout(16) = 112. The reasons for choosing this impossible difference
are as follows:

1. If αin(16) = 1, then there is only one brunch with non-zero input difference as the
Hamming weight of 1 is 1. Now as we are considering 4-bit truncated differential,
so we need to induce input difference in 1 × 4 = 4 bits, which is easier from the
attacker point of view. Note that αin(16) can also be 2, 4 and 8 for the same reason.

2. While choosing the output difference, we need to pick the one with highest Ham-
ming weight so that we can rule out more bits of round keys which can lead to
this impossible output difference. Here we have chosen αout(16) = 112, which has
Hamming weight of 3. Again in this case, we can pick αout(16) = 192, which also
has Hamming weight of 3.
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Key Recovery Attack on 11-round Khudra. We choose the impossible differential
of input difference [0(16), 0(16), 0(16), [0(4), 0(4), 0(4), X ]] and output difference [0(16),
[0(16), [0(4), Y1, Y2, Y3], 0(16)] after 9 rounds, where 0(16) and 0(4) denote 16 bit and 4
bit zero difference respectively, X,Y1, Y2, Y3 are 4-bit non-zero difference. This dif-
ference will become [0(16), [0(4), Y1, Y2, Y3], β(16), 0(16)] after 10 rounds and it will
become [[0(4), Y1, Y2, Y3], β(16), γ(16), 0(16)] after 11 rounds. Here β(16) and γ(16) rep-
resents 212 − 1 values that can be obtained as the output difference of the ‘F-function’
of Khudra, for the input difference [0(4), Y1, Y2, Y3] and β(16) respectively. The prob-
ability of obtaining such plaintext-ciphertext pair is 1/216 × (212 − 1)/216 × (212 −
1)/216 × (212 − 1)/216 ≈ 2−28.

Round key of 10-th round, RK19 and 11 round RK21 can be derived as follows:

1. Guess an element in the key space of RK19 and RK21

2. Using the collected ciphertexts and the guessed key values, calculate the output
differences of the ‘f-function’, denoted by ΔF1 and ΔF2 respectively.

3. Check whether the following conditions are satisfied:

ΔF1 ⊕ β = 0

ΔF2 ⊕ γ = 0

4. If the condition above are satisfied, the guessed key value is not correct. Eliminate
the key from the key space.

The probability that an element in the key space survives the check with such a pair
is 1 − 2−28. Therefore, let N be the number of pairs required for narrowing down the
candidates to 16-bit correct key, RK19 and RK21 . So, we have

232(1 − 2−28)N = 1

N is about 233.16. Hence, the number of required chosen plaintext pairs is 228×233.16 =
261.16. If we choose two different plaintexts from a set of 24 plaintexts (referred as
structures) for which the first three branch and the first 12 bits of the last branch are
fixed, we can make 24C2 ≈ 26.9 pairs. In other words, it is possible to obtain the
number of ciphertext pairs that are required for the attack by choosing 261.16−6.9 =
254.26 structures.Hence, RK19 can be obtained by using 254.26 × 24 = 256.26 chosen
plaintexts. So, the time complexity required for the attack is as follows:

– For obtaining ciphertexts: 257 encryptions.
– For reducing the key candidates: 233.16 × 232 = 265.16 F-function computation
> 261 encryptions, where 233.16 is for choosing ciphertext pairs and 232 is for
guessing RK19 and RK21.

Khudra. Hence, the overall time complexity is 261 encryptions.

B.1 ASIC Implementations

We have estimated the gate equivalence (GE) for the ASIC implementation of Khudra
following the architecture shown in figure 3. The GE for each component is estimated
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according to the 0.13μm standard cell library used for implementing Piccolo, where
Scan Flip-Flop=6.25GE, XOR=2 GE, D Flip-Flop=4.5GE and Mux (2 : 1)=2 GE [27].
The estimated gate equivalence for each module of Khudra has been shown in table 10.
Further, the modules of Khudra, can be implemented using lesser GE than provided in
the table 10. For example, we have considered the GE of a 4 : 1MUX is equivalent to the
GE of 3 2 : 1 MUX, whereas the first should take lesser area in actual implementation.
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Fig. 3. Block Diagram for Hardware Implementation

Table 10. Area Requirement for ASIC Implementation

Module Component Utilized GE Module Component Utilized GE

Data State Scan Flip-Flop 32 200.00 Key State Scan Flip-Flop 16 100.00
2:1 MUX 64 128.00 D Flip-Flop 64 288.00

D Flip-Flop 32 144.00 Key-XOR XOR 16 32.00

Diffusion XOR 16 32.00 Round Const. XOR 16 32.00

F-Function S-box 12 288.00 Key
XOR 48 96.00 Schedule 452.00

Data Control
Processing 888.00 Logic 22.00

Total 1362.00
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Abstract. We propose a practical flexible (or arbitrary) length small
domain block cipher, FNR encryption scheme. FNR denotes Flexible
Naor and Reingold. It can cipher small domain data formats like IPv4,
Port numbers, MAC Addresses, Credit card numbers, any random short
strings while preserving their input length. In addition to the classic Feis-
tel networks, Naor and Reingold propose usage of Pair-wise independent
permutation (PwIP) functions based on Galois Field GF(2n). Instead we
propose usage of random N ×N Invertible matrices in GF(2).
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1 Introduction

There is a compelling need for privacy of sensitive fields before data is shared
with any cloud provider, semi-trusted vendors, partners etc. Network telemetry
data, transaction logs etc. are often required to be shared for benefiting from
variety of Software-as-Service applications like security monitoring etc. Such
sensitive data fields are of well defined data formats like NetFlow, IPFIX etc.
For example Port(16), IPv4(32), MAC (48) , IPv6 (128) etc.

While designing privacy for sensitive fields, it may be desirable to preserve
the length of the inputs, in order to avoid any re-engineering of packet formats
or database columns of existing systems. Traditional AES-128/256 encryption
would encrypt plaintext (of any smaller lengths) to result in a 128 bit ciphertext
with the aid of padding. Expansion of ciphertext length may be undesirable for
said reasons.

Small domain block ciphers are useful tool in designing privacy of sensitive
data fields of smaller length (<128 bits). In addition to the classic Feistel net-
works, Naor and Reingold propose usage of Pair-wise Independent Permutation
(PwIP) functions based on Galois Field GF (2n) in first and last rounds of LR
constructions. It is proven to provide additional randomness and security. But
GF (2n) representations for arbitrary lengths of inputs is difficult in practice.
We propose usage of invertible matrices to provide a neat and generic way to
achieve Pair-wise independence for any arbitrary length.
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2 Prior Art

Luby Rackoff Constructions are considered seminal work in formalizing secure
block cipher design [6]. They have been subjected to rigorous theoretical analysis
and well laid security bounds are established. Further variable input

Fig. 1. Two Round NR

length block ciphers have been proposed in
[3],[10]. These constructions require multiple ap-
plication of original block cipher in order to make
them arbitrary length block ciphers. This makes
them computationally intensive and inefficient.
Design of ciphers for arbitrary domains were also
proposed in [4]. The Prefix Cipher, Cycle Walking
mentioned in their work would be very expensive
in practice. The Generalized Feistel Network ap-
proach mentioned in their work uses DES as PRF.
RC5 has features for arbitrary domain lengths but
it is patented. Elastic block cipher design has been
proposed in [5] but they are not subjected to rig-
orous independent analysis.

Feistel Networks also form the foundational
blocks for Format Preserving Encryption(FPE).
FPE has been studied rigorously theoretically [2].
A white paper is available from Voltage Inc. [13]
which has good overview. A very good synopsis
is given by Rogaway [11]. Few modes of FPE have been recently proposed for
NIST standardization [1].

Usage of Pair-wise Independent Permutations in LR constructions was first
proposed by Naor and Reingold [7] as shown in the figure 1. While their tech-
niques are based on performing operations in GF(2n) we propose to operate on
invertible matrices. This makes our scheme flexible enough to perform on any
arbitrary input fields.

2.1 Definitions

2.2 Secrets

There are various secret keys used in FNR.

1. Key: A 128 bit long secret key, K, is needed. This is used internally by
Pseudo Random Function (PRF) i.e AES algorithm. This is generated by a
good entropy source or derived by using good key derivative function from
a user supplied password.

2. Tweak: A tweak, T, is like salt or IV. In practice, A string is supplied by
the user, as tweak, which is then encoded as fixed length binary string using
some cryptographic hash function.
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3. A, B are two matrices. A is invertible binary matrix of N ×N dimension. B
is binary vector of 1×N dimension. Where N denotes number of bits in the
input. Both A,B should be uniformly distributed and randomly generated.

An,n =

⎛⎜⎜⎜⎝
a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

⎞⎟⎟⎟⎠ where ai,j ∈ {0, 1} ∀i, j ∈ {1 · · ·n} (1)

B1,n =
(
b1,1 b1,2 · · · b1,n

)
where b1,j ∈ {0, 1} ∀j ∈ {1 · · ·n} (2)

2.3 Pair-Wise Independent Permutation (PwIP)

It is combinatorial construction to achieve a uniformly distributed permutation
of given input. It has the property that for any two distinct inputs x, y, and any
two distinct outputs x1, y1, the probability that x1=PwIP(x) and y1=PwIP(y)
is uniform, that is, is 1/((2n) ∗ (2n − 1)) independent of x, y, x1, y1.

Let the input X be a binary vector of n bits length, considered as 1 X Nmatrix,
then PwIPA,B(X) as defined below gives a uniformly distributed permutation.
The matrix operations ∗,⊕,÷ are performed in GF(2). Also instead of bit-wise
XOR operation, modular addition could be used too.

X1,n =
(
x1,1 x1,2 · · · x1,n

)
where x1,i ∈ {0, 1} ∀i ∈ {1 · · ·n} (3)

PwIPA,B(X) = (X × A) ⊕ B where A,B are defined in 1 and 2 (4)

Inverse PwIP. The inverse of such a PwIP is defined as follows. Note: In case
modular addition is used while performing PwIP, then Addition and Subtraction
are same in Galois Field, GF(2).

PwIP−1
A,B(Y ) = ((Y ⊕ B)× A−1) (5)

2.4 Feistel Networks

Feistel is symmetric structure to construct block ciphers. One round of Feistel
is a 2n bit permutation δ, with an n bit round function as defined below

δf (L,R) = (R,L ⊗ f(R)) where|L| = |R| = n (6)

An r round Feistel network is simply the composition of r one round Feistel
structures, transforming r n-bit functions f1, f2...fr into a 2n bit permutation.

δf1,f2....fr(L,R) = δ(f1) ◦ δ(f2) ◦ ....δ(fr) (7)
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The security of PRP constructed by a Feistel Network based scheme relies
on security of underlying PRF (i.e round function) [6]. The security guarantee
depends on ensuring a different round function for each round. We propose using
AES in ECB mode as the round function. Now to ensure the output is distinct in
each round, we could use unique round key or by ensuring the inputs to the round
function is distinct for each round. We achieve this by mixing a round const for
each round to the input to to PRF.

round constr={0x00, 0x03, 0x0c, 0x0f, 0x30, 0x33, 0x3c} where r ∈ {1, 7}
(8)

2.5 Encryption

The inputs to encryption algorithm are plaintext P, that needs to be encrypted,
a secret key K, a tweak T and the matrices A,B. The output of an encryption
function is n bits of ciphertext C.

Overview Input plaintext is subjected to PwIP to get a uniformly distributed
permutation of the same. This follows by a Feistel network of r = 7 rounds. The
output of the Feistel network is subjected to PwIP−1. The final output is then
considered as ciphertext. The algorithm for the same is described in Algorithm.1.

Algorithm 1. FNR Encryption Algorithm

Inputs : key k, char* tweak,Matrix A, Matrix B, bitvector plain, integer n
/* n is max number of bits and even */

Output: bitvector cipher
/* cipher and plain are of same bit length */

1 Function Encrypt(k, tweak, plain, n) is
2 begin
3 if (|plain| �= n) then return ⊥;
4 bitvector d = PwIP (A,B,plain,n);
5 while i < r do
6 begin
7 left = d[0..n/2] ;
8 right = d[n/2 .. n-1] ;
9 left = right ;

10 right = left ⊗AESkey(round consti ‖ tweak ‖ right) ;
11 d = left ‖ right ;
12 i++;

13 end

14 bitvector cipher =PwIP (−1)(A,B,d,n);
15 return cipher;

16 end

2.6 Decryption

The inputs to decryption algorithm are ciphertext C, secret key K, tweak T and
the matrices A,B. The output is plaintext P.



150 S. Dara and S. Fluhrer

Overview. The algorithm is very similar to encryption except that the processing
is done in reverse way. The algorithm for the same is described in Algorithm.2 .
The differences with encryption algorithm can be observed as shown in line 11

3 Security

Security of LR schemes under went rigorous analysis by the community over
many years. Also usage of PwIP is later proven to mitigate basic linear and
differential cryptanalysis [14].

3.1 Round Functions

If assume that the AES output for any given input is uniformly distributed, that
means that the AES output bits we actually use in the Feistel will be independent
between even and odd rounds (even if the attacker could engineer a collision with
probability 1; the fact that the collision probability between even and odd round
is actually considerably smaller turns out to be irrelevant). As we add the round
constants as defined in equation.8 as last byte to the input to AES

Algorithm 2. FNR Decryption Algorithm

Inputs : key k, char* tweak,Matrix A, Matrix B, bitvector cipher, integer n
/* n is max number of bits and even */

Output: bitvector plain
/* both cipher and plain are n bits */

1 Function Decrypt(k, tweak, cipher, n) is
2 begin
3 if (|cipher| �= n) then return ⊥;
4 /* perform pair wise permutation */

5 bitvector d = PwIP (A,B,cipher,n);
6 while i < r do
7 begin
8 left = d[0..n/2] ;
9 right = d[n/2 .. n-1] ;

10 left = right ;
11 right = left ⊗AESk(round const(r−i) ‖ tweak ‖ right)
12 d = left ‖ right ;
13 i++ ;

14 end
15 /* perform inverse of permutation */

16 bitvector plain = PwIP (−1)(A,B,d,n);
17 return plain;

18 end

3.2 Round Count

A minimum of 7 rounds are needed to mitigate adaptive chosen plaintext and
chosen ciphertext attacks due to Patarin’s proof [9].
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The security measure of block ciphers is based on the probability with which
an attacker can distinguish the ciphertext from a random text. Although our
PwIP is different from theirs, without loss of generality, detailed proof given in
[7] holds good for FNR.

If r is round count, n is number of bits of input domain,m is number of queries
an attacker needs to make, then the security measure for FNR, is defined as in
Equation.9.

(r/2 ∗ m2/2(1−1/r)∗n)where r ≥ 4 (9)

It is to be noted that without the use of PwIP functions the security measure
of pure Feistel Networks due to Patarin’s proof [8] is defined as in Equation.10

5 ∗ (m3)/(2n) (10)

So for example an input domain of 32 bits and round count of 7, it requires
approximately 8757 pairs of plaintext and ciphertext. Where as without the
use of PwIP functions attacker just needs around 950 pairs of plaintext and
ciphertext.

4 Implementation

4.1 Feistel Network

Our reference implementation is slightly different from most implementations
of LR, in that we don’t divide the block into two separate halves; instead, we
use the even bits as one half and the odd bits as other half, and we don’t swap
them; instead, we alternate between rounds which half we use as the input to
our random function, and which half we XOR the output of the random function
into. Since we have an odd number of rounds (r = 7), this all works out.

Nits: if the block we’re encrypting has an odd number of bits, this is strictly
speaking an unbalanced Feistel (if unbalanced only by a single bit). In addition,
if we’re encrypting a single bit, this really isn’t a Feistel at all (because one half
is empty).

4.2 Performance

The performance of the algorithms have been benchmarked in Figure.2. The
graphs are plotted for both AES and AES-NI instructions as options for internal
PRP. The benchmarking is performed an virtual machine that runs Ubuntu
12.4 with 8 GB RAM on an Intel Sandy Bridge Generation of Processor’s with
4 vCPU’s. The source code is available under LGPLv2[12].
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(a) IPv4 Addresses (b) Credit Card Numbers

Fig. 2. Performance of FNR

4.3 Test Vectors

For generating the below test vectors, the key used is ‘0000000000000000’ and
tweak used is ‘tweak-is-string’. Tweak is an arbitrary length string which is
expanded into a fixed length form. Note that even though same secrets are used,
the results might vary due to the choice of A,B Matrices used in PwIP function.

The test vectors for various IPv4 Addresses, Credit Card numbers are given
in Table.1 and Table.2. Each IPv4 is ranked as 32 bit integer before it is en-
crypted, the resultant ciphertext is a 32 bit integer which is de-ranked into a
dotted notation. Each CC number is ranked as 15 digit number by dropping
the LUHN CHECKSUM. The ranked integer is then encrypted to get a cipher-
text that is again 15 digit number. Such integer is de-ranked by appending a
LUHN CHECKSUM at the end into a valid Credit card number.

Table 1. Test Vectors for IPv4 Addresses

Plain Text Cipher Text

Raw(Dotted) Ranked(Integer) Raw(Integer) De-ranked(Dotted)

192.168.1.0 3232235776 2676870780 159.141.206.124

192.168.1.1 3232235777 2129658955 126.240.4.75

192.168.1.2 3232235778 3505438271 208.240.190.63

192.168.1.3 3232235779 3073749301 183.53.177.53

192.168.1.4 3232235780 2962433103 176.147.36.79

Table 2. Test Vectors for Credit Card numbers

Plain Text Cipher Text

Raw Ranked Raw De-ranked

4556584414106354 455658441410635 975846115884519 9758461158845197

4486224784662570 448622478466257 716640796278824 7166407962788248

4929883910358398 492988391035839 665162088006340 6651620880063403

4929880239524890 492988023952489 932731766659682 9327317666596825

4916550835157636 491655083515763 949857941349711 9498579413497119
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5 Conclusions

In this paper we proposed a flexible and practical arbitrary block domain cipher.
We provide the reference implementation’s performance results, test vectors.
Also we provided examples of how to preserve formats of few data types like
IPv4 addresses and Credit card numbers. Our work is flexible variant of Naor
and Reingold’s work. We recommend using this block cipher for domain sizes
32 bits to 128 bits. FNR does not provide authentication and integrity. FNR
does not provide any semantic security when used in ECB mode (like all other
deterministic modes)
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Abstract. We present a Message Authentication Code (MAC) with in-
tegrated error correction capability, called AEC. The MAC itself can
detect/correct errors upto a certain limit and provides an estimate of
the number and location of the errors. The security of AEC lies in the
random selection of the underlying error correcting code (ECC). In this
work, we propose a new on-the-fly solution to this problem of random
ECC selection, making it highly secure. Moreover, this solution combined
with the simple and regular structure of Cellular Automata (CA) based
ECC, makes it highly suitable for efficient hardware implementation. De-
tailed FPGA implementations of both standalone and compact variants
of AEC, are presented on the Spartan-3 FPGA platform. The compact
implementation has low area footprint and high throughput making it
particularly suitable for resource constrained applications. To the best of
our knowledge this is the only practical design of an ECC-MAC scheme.

Keywords: MAC, ECC, Cellular Automata, Mersenne Prime.

1 Introduction

Message Authentication Code (MAC), also referred to as a keyed hash function,
is a cryptographic primitive that verifies the integrity of data and the authentic-
ity of its sender. However, as traditional MACs are susceptible to any alteration
in the message, even simple channel noises are detrimental to its functionality,
causing straightaway rejection of authentic messages. Though this is preferable
in some situations, many of the less information-sensitive applications, such as
image and other multimedia communications, can allow few errors occurred dur-
ing transmission. The message should be rejected only if large number of errors
are present, indicating a probable attempt of forgery. But, classical MAC algo-
rithms do not convey any information about the number or location of the errors.
This concludes the need for a MAC construction technique with integrated error
correction property that offers some resilience against random channel noises,
especially in environments where latency is a concern or resources are limited.

R.S. Chakraborty et al. (Eds.): SPACE 2014, LNCS 8804, pp. 155–170, 2014.
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Krawczyk [1] first exploited the idea of constructing MAC with error correc-
tion capabilities. He used Cyclic Redundancy Code(CRC) to construct the hash
function and proved it to be unconditionally secure if used with a perfect one-
time pad. But this is a purely theoretical construction and lacks any equivalent
realization in practical applications. Later, Liu and Boncelet came up with a
series of ideas in [2–4], for noisy message authentication. Though NTMAC [2]
works well with a modest number of errors, it suffers from a higher collision
rate. The CRC-NTMAC [3] and BCH-NTMAC [4] schemes try to improve upon
NTMAC, but no optimal choice of parameters are given. Moreover, as the secu-
rity of these two schemes is directly related to the secrecy of the pseudo-random
partitioning of the message, it is particularly hard to achieve in hardware. The
authors suggested two ways to achieve this, but neither of them suffices for effi-
cient implementation, as one of them depends on true-random number generator
and the other suffers from a collision attack. Further in [5], Bhaumik and Roy
Chowdhury proposed a Reed Solomon Code based alternative, extricating the
use of a true-random number generator. It was shown to be resistant against
any existential MAC forgeries if used with a randomly selected ECC. However,
the authors did not mention any efficient technique for the random selection of a
generator polynomial cum the ECC. One obvious choice to accomplish this is by
storing all possible polynomials in memory and selecting one of them at random
based on the secret key. But the space complexity of this approach is exponential
in the degree of the polynomial, making it unrealizable in hardware. Addition-
ally, storing of polynomials in memory is not a viable option as it gets vulnerable
to several side-channel attacks like cache attack or cold-boot attack [6].

In this paper, we offer a solution to this problem by presenting a practical and
secure integrated ECC-MAC design, named AEC. We show how by combining a
certain number theoretic result with theory of cellular automata, such a design
can be accomplished. Here, we capitalize on the fact that the simple and regular
structure of CA based ECC is highly efficient in hardware both in terms of area
and speed, to construct an efficient implementation of our design, missing in
related work of [5]. Moreover, we also present a customized version of our design
tailored for highly resource constrained environments. The contribution of this
work can be summarized as below:

– A secure hardware efficient integrated ECC-MAC scheme
– New secret key based approach for randomized selection of CA based ECC
– Detailed implementation of both standalone and compact unit on FPGA

The rest of the paper proceeds as follows. Section 2 describes the proposed
scheme for authentication with integrated error correction. The security of the
scheme is evaluated in Section 3. Details of the hardware architecture is furnished
in Section 4 and Section 5 presents the implementation cost on FPGA. Finally,
the paper is concluded in Section 6.
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2 Design of AEC: Authentication with Integrated Error
Correction

In this section, we present the design of an authentication scheme with integrated
error correction capability, suitable for practical applications. We reiterate the
fact that our ECC is based on CA (refer Appendix A), making it highly efficient
in hardware. The authentication algorithm works in two different stages, MAC-
GENeration stage and the MAC-VERification stage.

MAC Generation

The MAC generation process starts with sharing two keys k1 and k2 between
the sender and the receiver before the initiation of a session. At first, the data
goes through a optional padding phase if necessary and partitioned into blocks
of size w (w is the number of the cells in the cellular automata, used for error
correction). Now, with the help of key k1, a CA based error correcting code is
selected, which serves the purpose of forward error detection/correction. Next,
the checkbytes computed by the ECC, are mixed with key k2 in a non-linear
fashion by NMix to get the MAC. This MAC value is then transmitted to the
receiver along with the data as (Message, MAC) pair. The MAC generation
process is depicted in Fig. 1, and Algorithm 1 shows the detail.

Algorithm 1. MAC-GEN(t,m, k1, k2) � |m| ≤ 2w, |k1| = w − 1, |k2| = w

1: procedure Preprocess(m)

2: m′ ← P(m) �

{
P is the padding function

|P(m)| = w × n, n ∈ Z+

3: {m1,m2, · · · ,mn} ← B(m′) � B partitions m′ into n blocks
4: end procedure
5: procedure Select Random CA(k1)
6: r1 ← prefixed linear CA rule1 � |r1| = w − 1
7: s ← Cr1(k1) � Apply CA with rule r1, CA initialized with seed k1
8: S ← {1, s, 1}
9: while Irreducible(S) = FALSE do � Rabin’s Test [7]

10: s ← Cr1(s)
11: S ← {1, s, 1}
12: end while
13: r2 ← SythesizeCA(S)
14: return r2 � r2 is the randomly selected CA
15: end procedure
16: procedure Compute MAC(B(m′), r2, t, k2)
17: ci ← CA Encoder(B(m′), t, i), 0 ≤ i ≤ 2t− 1
18: maci ← NMix(ci, k2) � NMix is a non-linear function
19: return MAC ← {mac0,mac1, · · · ,mac2t−1}
20: end procedure

1 r1 is any maximal length 90,150 CA rule.
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Fig. 1. MAC generation at the Sender

MAC Verification

At the receiving end, verification of the MAC is performed to detect the presence
of errors in the transmitted data, if any. At first, checkbytes C are recomputed
from the received data. This step is identical to the checkbyte computation pro-
cedure described in the MAC generation process. In parallel to this, the received
MAC is subjected to the inverse of the non-linear transformation (INMix) to get
back the original checkbytes C′ transmitted by the sender. Next, the received
checkbytes C′ and the computed checkbytes C are passed to the CA based de-
coder to find out if the transmitted message has arrived correctly, or not. If all
of the syndromes are zero, the message is readily accepted as its error-free. How-
ever, if any error creeps in, a decision is to be taken depending on the number
of words in error. If the number of errors are greater than the error correction
capability of the code, it leads to straightaway rejection of the message. Other-
wise, its corrected and subsequently accepted. The whole process is depicted in
Fig. 2, and Algorithm 2 shows the detail.

Fig. 2. MAC verification at the Receiver
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Algorithm 2. MAC-VER(m,MAC, t, k1, k2)

1: Preprocess(m)
2: Select Random CA(k1)
3: C ← CA Encoder(B(m′), t, i), 0 ≤ i ≤ 2t− 1 � C = {c0, c1, · · · , c2t−1}
4: C′ ← Inverse NMix(maci) � C′ = {c′0, c′1, · · · , c′2t−1}
5: X ← C ⊕ C′ � X = {x0, x1, · · · , xt} is the syndrome
6: X ′ ← {xi : xi �= 0}
7: if X ′ = ∅ then � All zero syndrome
8: return Accept
9: else

10: if No. of Errors > t then
11: return Reject � More that t errors, so discard m
12: else
13: Correct and Accept
14: end if
15: end if

2.1 Random Selection of CA with Key k1

In this section, we describe how to randomly select a CA with the help of key
k1 and still make efficient implementation of it. It is to be noted that if the
checkbytes are also used to provide authenticity, it will be vulnerable to sim-
ple forgeries if a fixed known ECC is used. In their work [5], Bhaumik and
Roy Chowdhury acknowledged the importance of randomly selecting a linear
code, but failed to account for an efficient technique for accomplishing that.
Straightforward way of achieving that could be storing of all possible generator
polynomials over a field and then selecting one of them at random with the help
of secret key. But, the space complexity of this approach is exponential in the
degree of the polynomial, rendering it infeasible for any practical applications.
In favor of this statement, we highlight that for any prime q and any positive

integer n, there are
(

φ(qn−1)
n

)
number of primitive polynomials over the field

GF (qn) where φ is the Euler’s Totient function. This implies that in order to

meet the present day security standard of 80-bit,
(

φ(280−1)
80

)
≈ 1025 units of

disk space would be required, which is beyond practical limits. Herein, lies the
main contribution of AEC, which constitutes a complete on-the-fly solution to
the problem of randomly choosing a linear code.

To come up with an efficient solution, we exploit the work of Cattel and Muzio
[8], where they presented a detailed method for the synthesis of a one-dimensional
linear hybrid CA from a given irreducible polynomial. But, to be able to use such
CA based ECC, one must first find a maximum-length CA i.e. having a period2

of (2n − 1), n being the number of cells in the CA. To tackle this issue, we
exploit another important result in [9], where the authors claimed that if a given
irreducible polynomial is primitive, then the synthesized CA will be unique as

2 The no of iterations after which a CA returns to its initial state.
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well as ofmaximum-length. This result is interesting, since it maps the problem of
randomly selecting a linear code to the problem of finding a primitive polynomial
over a finite field. However, finding primitive polynomials in large finite fields is a
non-trivial problem. The verification of primitive polynomials and its associated
complexity is too costly to implement either in software or in hardware, and
hence, not suitable for any practical application. The fastest known algorithms
for testing primitivity of polynomials of degree n require the factorization of
(2n − 1) to be known beforehand, in addition to finding a primitive root over
the defining field. To overcome this, we use the result given by the following
theorem, which establishes a one-to-one correspondence between primitive and
irreducible polynomials.

Theorem 1. If 2r − 1 is a prime number (Mersenne Prime) then all degree-r
irreducible polynomials are also primitive [10].

The result furnished in Theorem 1 reduces the hard problem of finding a
primitive polynomial to the easier problem of finding an irreducible polynomial.
Once such a w (2w − 1 ∈ P) is fixed, one can choose any irreducible polynomial
of degree w, and synthesize it into a maximum-length CA using the technique
described in [8].

Due to the arguments stated above, random CA based ECC selection turns
out to be equivalent to selecting an irreducible polynomial randomly. Next, we
illustrate how to select an irreducible polynomial at random with the help of
secret key k1. First, we fix GF(2w) as the extension field in accordance with
Theorem 1. A polynomial f(x) =

∑
bi ·xi, 0 ≤ i ≤ w over GF(2w) is represented

as the bit string {bw, bw−1, · · · , b0}. Now, the key k1 serves as the seed to a PRNG
(in this work, CA based PRNG [11,12] is used). A (w− 1)-bit CA based PRNG
produces random patterns of (w − 1) bits, to which 1 is concatenated at either
end to get a pattern of (w + 1) bits. The reason behind prepending 1 is quite
straightforward as the polynomials are monic3. The appending of 1 at the LSB is
also trivial; otherwise, x will be a non-trivial factor of the polynomial, implying
it not irreducible. The polynomial corresponding to the resulting bit-pattern is
subjected to Rabin’s irreducibility test [7]. This whole process continues until we
find an irreducible polynomial. Finally, this irreducible polynomial is synthesized
into an equivalent maximum-length CA according to [8]. This step corresponds
to Select Random CA(k1) in Algorithm 1.

Estimate of Success of Irreducible(S). We now give an estimate of the
number of trials before which the random polynomial generated by the PRNG
passes the irreducibility test. Let us first calculate the total number of irreducible
polynomials of degree n over a field Fq. This is given by the following formula

In =
1

n

∑
k|n

μ(k)qn/k, μ → Möbius function. [13].

3 Highest degree coefficient is 1.
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It follows that qn − 2qn/2 ≤ nIn ≤ qn. Therefore, a fraction very close to
(

1
n

)
of the polynomials of degree n over any finite field Fq are irreducible. Therefore,
the expected running time of this step is linear in the degree of the polynomial
being tested. Once the CA has been synthesized, we can proceed to the encoding
phase of the CA based ECC.

2.2 Calculation of Checkbytes and Subsequent Error Correction

After a suitable maximum-length CA is selected, it is used for the calculation
of checkbytes which helps to keep track of transmission errors. But before any
computation begins, the data goes through a optional padding phase to make it
a multiple of word-size(w), where w : 2w − 1 ∈ P and partitioned into blocks of
size equal to w. This corresponds to procedure Preprocess(m) of Algorithm
1. After this, the data is passed to the CA based Encoder for the computation
of checkbytes. CA based ECC is widely used in literature for its simplicity and
efficiency in hardware [9]. The checkbytes and syndromes for a t-word error
correcting code, where each word is n-bit long, can be generated using an n-cell
maximum-length4 CA in the following manner:

Ci =

N−1⊕
j=0

T i×(N−1−j)[Bj ],

⎧⎪⎨⎪⎩
i = {0, 1, · · · , 2t− 1};
B = [B0, B1, · · · , BN−1];

T is the characteristic matrix of the CA

(1)

Si = Ci ⊕ C′
i 0 ≤ i ≤ 2t− 1

{
Ci is the received checkbyte

C′
i is the checkbyte computed

Locating and subsequent correction of the erroneous byte(s) using CA are further
discussed in [9]. In this paper, we have worked with single-word error correcting
and double-word error locating code.

Now, we elaborate how the choice of t i.e. the error correction capability of
the code, relates to the security of the scheme. Here, the inherent belief lies on
the fact that in wireless transmission systems, burst errors are more common in
nature, and are confined to a small part of the data. Thus, it can at most affect
a few words of information rather than spanning over the whole data. However,
if some intentional tampering or some outright forgery happens, the chances are
more that it will be spanned throughout the data. This causes a large number of
errors and the message is discarded accordingly. This leads to the careful choice
of t by the user.

2.3 Generating MAC Using ECC

Finally, we describe how the checkbytes computed in the previous section also
serves the purpose of authentication. However, due to its linear nature check-
bytes alone are not sufficient enough to provide authentication, as it’s linear

4 CA having a period of (2n − 1).
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property makes it susceptible to several well known cryptanalysis techniques
like linear/differential cryptanalysis. However, a non-linear operation can pre-
vent these type of threats, making it secure. So, for this purpose, we have taken
NMix [14] as the nonlinear key mixing function in our design.

Justification of Using NMix. The choice of NMix is driven by the fact that
it is a non-linear bent function, i.e. it is as different as possible from all linear or
affine functions and thus, naturally hard to approximate.

The proposed scheme involves calculation of checkbytes using ECC which is
known to be linear. The following equations show how an adversary can mount a
successful forgery for a message by exploiting this linear property . From Eq.(1)
we get that,

Ci = BN−1 ⊕ T i([BN−2]⊕ T i([BN−3] ⊕ · · · ⊕ T i([B1] ⊕ T i([B0])) · · · )
= Li(B) (2)

As T is a matrix operator is can be viewed as a linear transformation Li on
input B. Suppose, we have another pari (B′, C′) known to the attacker.

C′
i = Li(B

′) (3)

Now from, Eq. (2) and (3) we get,

Ci ⊕ C′
i = Li(B) ⊕ Li(B

′)
= Li(B ⊕ B′) [Since Li is a linear operator]

Thus, with only two known message-mac pair (B,C) and (B′, C′), the attacker
is able to forge mac C′′ for a third message B′′, where B′′ = B ⊕ B′ and
C′′ = C ⊕C′. This attack is valid for any combination of two or more messages.
Due to this reason, nonlinearity has been introduced in our design, so that Eq.(2)
and (3) does not hold any longer. This is due to the fact that,

NMix(X, r) ⊕ NMix(Y, r) �= NMix(X ⊕ Y, r)

Now, as shown at line 18 of Compute MAC in Algorithm 1, NMix is applied
to the checkbytes C ← {c0, c1, · · · , ct} with key k2 as the random pad r to
get the MAC ← {mac0,mac1 · · · ,mact} as output. These MAC values along
with the message, is then sent to the receiver as the authenticator. However,
for different messages the value of r (say, by some PRNG) must be changed as
otherwise it may be vulnerable to some key recovery attack. At the other end,
after receiving the MAC, the receiver applies inverse NMix on it to get back the
checkbytes C. These checkbytes are then passed to the CA based decoder for
subsequent error detection/correction, described in the previous section. It is to
be noted that applying non-linear mixing may propagate the error to multiple
bits within a single word. However, as CA based decoder deals with word-errors
rather than bit-errors, NMix does not affect the error correction property of the
code.
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3 Security Analysis

This section summarizes the formal security arguments of AEC against state-of-
the-art cryptanalysis techniques and proves the robustness of the scheme.

3.1 Linear Cryptanalysis

Linear Cryptanalysis (LC) tries to exploit the high bias that may be present
amongst message bits, MAC bits and key bits. The approach is based on finding
affine approximation to the action of the MAC scheme to derive the key. Since
ECC is linear in nature, it alone offers little or no resilience against LC and thus
used with a non-linear bent function NMix to resist it.

In [14] the bias of best linear approximation of NMix was shown to 2−i, where
2 ≤ i ≤ w. Thus, the probability of recovering key bits by linear approximation
of NMix is bounded by the following equation

Pr[LC(NMix)] =
1

2
× 1

22
× 1

23
· · · × 1

2w
= 2(−1)×Σw

i=1 ≤ 1

2w

3.2 Differential Cryptanalysis

Differential Cryptanalysis (DC) is a general form of cryptanalysis technique
which studies how the differences in an input can affect the resultant differ-
ence at the output. It is usually a chosen message-MAC attack, discovering any
non-random behavior exhibited by the MAC and exploiting such properties to
recover the key. In AEC, differential resistance is provided by the non-linear
mixing function Nmix, which has been shown to be resistant against any kind
of DC technique in [14]. It is known that the best linear approximation of the
differential terms decreases exponentially in case of NMix. Suppose, for a partic-
ular instance, the input difference is denoted by ΔX and the output difference
by ΔY for a fixed key K. Then, the Pr(ΔY |ΔX) is bounded by 2−w (same
argument holds as that of LC), where w is the length of the word.

3.3 Other Attacks

Birthday Attack : The effort required for a successful birthday attack against
AEC is 2n/2, n being the length of the MAC output, and hence is infeasible in
current scenario for reasonable choices of n.

MAC Forgery : The success of MAC forgery is directly related to the success
of linear/differential cryptanalysis technique and is thus upper bounded by 2−w,
w being the length of the word.

Generator Polynomial Recovery : The generator polynomial recovery, which
seems to be the most suitable of all the attacks, requires computational effort of(

φ(2w−1)
w

)
, w being the word-size.

Table 1 summarizes the bounds on the complexity of all the generic attacks
against AEC, while Table 4 in Appendix B gives statistical analysis of the MAC
function against the NIST Test Suite. Here, w denotes the word-size of AEC.



164 A. Sengupta et al.

Table 1. Computational Effort Required for Different Attacks against AEC

Attack Name w = 61 w = 89 w = 127

Linear Cryptanalysis 261 289 2127

Differential Cryptanalysis 261 289 2127

Birthday Attack 2122 2178 2254

MAC Forgery Attack 261 289 2127

Generator Polynomial Recovery 255 282 2120

4 Architectural Design

This section presents the detailed hardware architecture of proposed AEC
scheme. It has been implemented in two different ways, standalone and resource
constrained implementation.

Standalone Implementation

In a standalone implementation, the device is a transceiver unit, comprising
of both a transmitter and a receiver as shown in Fig. 3. Though this unit is
capable of functioning without having to rely on any other central authority, the
downside is, it is much slower than its highest possible operating frequency.

Fig. 3. Standalone Implementation
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Resource Constrained Implementation

In this implementation, the functionality of Select Random CA has been sep-
arated from the transceiver shown in Fig. 4. For communication, the transceiver
relies on a central authority for the generation of maximum-length CA. The
central authority performs the Select Random CA as described in Algorithm
1 and sends the rule itself as the key to the transceiver. This design strategy is
much faster as it leverages the transceiver from synthesizing a maximum-length
CA, which is the slowest and heaviest component in the design of AEC. Logic
diagrams for the encoder, decoder and Nmix are produced in Appendix C.

Fig. 4. Separate Key Generator and Transceiver

5 Results

The design has been implemented and verified in Xilinx Spartan-3
(XC3S1500-4FG676C) FPGA platform. Table 2 compares the communica-
tion overhead of AEC with generic composition of HMAC and then CA based
ECC. We have chosen Keccak as the hash primitive in the HMAC construc-
tion. The choice of Keccak is motivated by the fact that it has been adopted as
the latest SHA-3 standard. Hence, it is important to verify how AEC performs
when compared with a state-of-the-art algorithms like Keccak. Here, t denotes
the number of error correction capability and w signifies the word size of AEC.
From the table it immediately gets clear that AEC reduces the overhead almost
by a factor of two. It is known that for hash length of 2n bits Keccak offers n-bit
security. So, for comparison, hash value nearest to the double of the word size
of AEC is chosen so that both systems have similar levels of security.
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Table 2. Comparison of Communication Overhead

AEC HMAC then ECC

t w=89 w=127 w=521 Keccak-224 Keccak-256 Keccak-512

1 178 254 1042 356 508 2084

2 267 381 1563 445 635 2605

3 356 508 2084 534 762 3126

Table 3 shows the hardware requirements for both types of implementations,
Standalone and Resource constrained environments. It shows the complexity of
AEC with RS(255,251) code implemented using CA. For a standalone system
the key generator is a part of the transceiver unit and hence, no separate re-
sult is given. Moreover, it can be seen, that separating the key generator from
the transceiver largely improves performance. This kind of implementation is
suitable for environments where latency is a concern, as we can see the separate
transceiver has much higher throughput than the standalone unit. To the best of
our knowledge, this is the first practical scheme suitable for real life applications.

Table 3. Implementation Summary in Xilinx XC3S1500 FPGA

Transceiver Key Generator

Standalone System

Number of LUTs 8121 -

Number of Slices 5048 -

Frequency (MHz) 81 -

Throughput (Mbit/s) 0.871 -

Resource Constrained

Number of LUTs 1866 4936

Number of Slices 986 3250

Frequency (MHz) 121 81

Throughput (Mbit/s) 163 0.330

6 Conclusion

This paper presents a new MAC algorithm for message authentication with
error correction capabilities. The proposed work overcomes the weaknesses and
limitations of previous works by proposing a low cost architectural design of the
proposed scheme. It also introduces a new efficient technique for random selection
of an error correcting code making it secure. The security analysis of AEC has
been carried out against well-known generic attacks to show the robustness of
the scheme.
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A Basics of Cellular Automata

Cellular Automata (CA) is a linear finite statemachine composed of 1-dimensional
array ofn-cells. The state of a cell changes its value at discrete time steps, governed
by some predefined rule which uniquely characterizes the CA. In this paper, we
assume all CAs having 3-neighborhood property. However, it turns out that out of
22

3

possible boolean functions, only two linear functions are of prime interest viz.,
rule 90 and 150 (ascertained from the decimal value of their position in function
table). The state of i-th cell at time instant t can be expressed as:

s
(t+1)
i = s

(t)
i−1 ⊕ di · s(t)i ⊕ s

(t)
i+1, di =

{
0, if di → rule 90

1, if di → rule 150

Thus, a CA rule can be completely specified by an n-tuple R = [d1, d2, ......dn].
The transition function f : {0, 1}n → {0, 1}n of an n-cell CA can be represented
by a n× n square matrix T , referred to as the characteristic matrix of the CA.
The detailed theory of CA can be found in [9].

CA is widely used in literature for its error correction property as it is highly
efficient as well as being very easy to implement in hardware. A t-word error
correcting code, where each word is n-bit long, can be generated with the help
of an n-cell maximum-length5 cellular automata. The 2t checkbytes are gener-
ated by running the CA for N(≤ 2n − 1) cycles, while sequentially feeding the
N information words, where N is the block length in number of words. The
expression for the i-th checkbyte is given below.

Ci =

N−1⊕
j=0

T i×(N−1−j)[Bj ],

⎧⎪⎨⎪⎩
i = {0, 1, · · · , 2t− 1};
B = [B0, B1, · · · , BN−1];

T is the characteristic matrix of the CA

(4)

In decoder, the syndrome corresponding to the i-th checkbyte, Si is computed
using the expression given below.

Si = Ci ⊕ C′
i 0 ≤ i ≤ 2t− 1

{
Ci is the received checkbyte

C′
i is the checkbyte computed

One or more non-zero syndromes signify the presence of errors in the received
data. Locating and subsequent correction of the erroneous byte(s) using CA are
further discussed in [9].

B Statistical Analysis of the MAC Function

In this model, statistical analysis of the MAC function has been carried out
against the NIST Statistical Test Suite and Table 4 summarizes the results. The
tests are performed by taking the MAC values for 10, 000 messages for a fixed
key and length of each MAC is 356-bits.

5 CA having a period of (2n − 1).
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Table 4. Results of NIST Statistical Test Suite

Test Name Status

Frequency (Monobit) Test Pass

Frequency Test within a Block Pass

Runs Test Pass

Discrete Fourier Transform (Spectral) Test Pass

Non-overlapping Template Matching Test Pass

Overlapping Template Matching Test Pass

Serial Test Pass

Approximate Entropy Test Pass

Cumulative Sums (Cusum) Test Pass

C Architecture of Encoder

In this paper, the scheme has been implemented taking word size of 89-bits due
to aforementioned arguments. Here, we present the architecture of CA based
RS(255,251) Encoder in Fig. 5. Checkbytes C0, C1, C2 and C3 are generated by
running CA-I, CA-T ,CA-T 2 and CAT 3 respectively for 251 cycles, while se-
quentially feeding the information bytes (Starting from D0 to D250). The char-
acteristic matrix of one such CA, CA-T is shown in Fig. 6. The architecture of
decoder is essentially same as encoder.

After, generation of checkbytes they are mixed with key k2 in a nonlinear
manner by NMix, which is given in Fig. 7. As the architecture of inverse NMix
is same as that of forward Nmix it is omitted.

Ca_enable

Clk

89−bits

89−bits

89−bits

CA−I

CA−T

Control Circuit

C0

C1

C2

C3

89−bits

B
u
ff

er
 R

eg
is

te
r

done

Mod 251 Counter

CA−T^3

CA−T^2

Reset

D0−D250 89−bits D0−D250

Fig. 5. Architecture of RS(255,251) Encoder
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Abstract. Radio Frequency IDentification (RFID) systems are gaining
enormous interests in industry due to their vast applications such as
supply chain, access control, inventory, transport, health care and home
appliances. Although tag identification is the primary security goal of
an RFID system, privacy issue is equally, even more important concern
in the RFID system because of pervasiveness of RFID tags. Over the
years, many protocols have been proposed for RFID tags’ identification
using symmetric key cryptography and other primitives. Many of them
have failed to preserve tags’ privacy. In order to achieve privacy and to
provide scalability and anti-cloning features of RFID system, public-key
primitives should be used in an RFID authentication protocol [1]. In this
paper, we present a mutual authentication protocol for RFID systems
using elliptic curves arithmetic. The proposed protocol provides narrow-
strong and wide-weak privacy under standard complexity assumption.

Keywords: RFID System, Mutual Authentication, Tracking Attack,
Elliptic Curve Cryptography, Privacy, Un-traceability.

1 Introduction

Radio Frequency IDentification (RFID) systems have found enormous appli-
cations in industry such as supply chain management, access control system,
inventory control, transport system, health care, home appliances, object track-
ing, and so on. An RFID system consists of a set of tags, one or more readers
and a back-end server. Typically, all the readers are connected with the back-end
server. The communication channel between the readers and the back-end server
is assumed to be secure. For simplicity, the reader and the back-end server can
be considered as a single entity, we consider it “a reader”. A tag is basically
a microchip with limited memory along with a transponder. Based on RFID
chip capacity, RFID tags can be divided into three types - Active, Passive and
Battery-Assisted Passive (Semi-Passive). Passive tags are less expensive and they
can be made small enough to fit on almost any product. A passive tag does not
have a power source. It only transmits a signal upon receiving RF energy emit-
ted from a reader in its proximity. Active and semi-passive tags have internal
batteries to power their circuits. An active tag uses its battery to broadcast radio
waves to a reader, whereas a semi-passive tag gets activated in the presence of

R.S. Chakraborty et al. (Eds.): SPACE 2014, LNCS 8804, pp. 171–182, 2014.
c© Springer International Publishing Switzerland 2014
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an RFID reader and relies on the reader to supply the power for broadcasting
the message. A reader is a device used to interrogate RFID tags. The reader
consists of one or more transceivers which emit radio waves.

Although tags’ authentication is the main goal of RFID system, the system
should guarantee that tags are not being tracked by attackers with a motive of
compromising privacy of tag-enabled objects. Furthermore, RFID authentica-
tion protocols should preserve operational and cryptographic properties like sys-
tem scalability and security against cloning and tracking attacks. Recent works
in RFID authentication protocols suggest that public-key cryptography (PKC)
primitives are necessary to address these requirements [2], [1]. In particular,
ECC (Elliptic Curve Cryptography) arithmetic is preferred over other PKC al-
gorithms because of its smaller key size and existence of efficient algorithms for
elliptic curve arithmetic.

Privacy of tags has become an important issue in the RFID system. Privacy can
be termed in two concepts: anonymity and un-traceability [3]. The real ID of a tag
must not be known by others to achieve anonymity. To achieve un-traceability, the
equality or inequality of two tags must be impossible to ascertain. Therefore, un-
traceability is a stronger privacy requirement than anonymity. Several theoretical
models have been proposed so far which address the privacy of RFID systems [4],
[5], [6], [2]. The privacy model of Vaudenay [2] was one of the first and most com-
plete privacy models that featured the notion of strong privacy. According to [2],
if an attacker has access to the result of the tag’s authentication (accept or reject)
in a reader, he is defined as a wide attacker. Otherwise, he is a narrow attacker. If
an attacker is able to extract the tag’s secret and still that tag remains active in
the set of tags, then he is a strong attacker. If the tag is inactive after the corrup-
tion by the attacker then he is a weak attacker. Therefore, a wide-strong attacker
is defined as the most powerful.

In this paper, we present a mutual authentication protocol for RFID system
using ECC arithmetic, which provides narrow-strong and wide-weak privacy un-
der standard complexity assumption. We compare the proposed mutual authen-
tication protocol with similar works and show that the protocol is efficient and
provides strong privacy in comparison to other protocols.

The remainder of this paper is organized as follows. In section 2, we discuss
preliminaries and security and privacy properties of RFID system. In section 3,
we review some ECC-based RFID security protocols. In section 4, we present
our protocol. We analyze the proposed protocol in section 5. We conclude the
paper with section 6.

2 Preliminaries

2.1 Elliptic Curves and Computational Assumptions

An elliptic curve E over a field F is a cubic curve with no repeated roots [7]. The
general form of an elliptic curve is Y 2 + a1XY + a3Y = X3 + a2X

2 + a4X + a5,
where ai ∈ F , i = 1, 2, · · · , 5. The set E(F ) contains all points P (x, y) on the
curve, such that x, y are elements of F along with an additional point called the
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point at infinity (O). The set E(F ) forms an Abelian group under elliptic curve
point addition operation with (O) as the additive identity. For all P,Q ∈ E(F ),
let Fq be a finite field with order of a prime number q. The number of points
in the elliptic curve group E(Fq), represented by #E(Fq), is called the order of
the curve E over Fq . The order of a point P is the smallest positive integer r,
such that rP = O. Without loss of generality, the elliptic curve equation can be
simplified as y2 = x3 + ax+ b (mod q), where a, b ∈ Fq satisfy 4a3 +27b2 �= 0, if
the characteristic of Fq is neither 2 nor 3. There are mainly three operations on
ECC, namely point addition, scalar multiplication of a point and map-to-point
operation, which are commonly used in security protocols.

Elliptic Curve Discrete Logarithm Problem: Elliptic Curve Discrete Log-
arithm Problem (ECDLP) is a standard assumption upon which ECC-based
cryptographic algorithm can rely. The ECDLP is stated as: Given two elliptic
curve points P and Q (= xP ), where x is sufficiently large, finding scalar x is
an intractable problem with best known algorithms and available computational
resources. x is called the discrete logarithm of Q to the base P .

Decisional Diffie-Hellman (DDH) Assumption: Let P be a generator of
E(Fq). Let x, y, z ∈R Zq and A = xP , B = yP . The DDH assumption states
that: The distribution 〈A,B,C(= xyP )〉 and 〈A,B,C(= zP )〉 is computation-
ally indistinguishable.

2.2 Security and Privacy Properties of RFID System

An RFID system must meet following security and operational properties
[2], [8].

Security: Ensuring That Fake Tags are Rejected. Authentication: Au-
thentication of tag ensures its legitimacy to reader. Depending on application re-
quirement, tags’ authentication or tag-reader mutual authentication is achieved
in RFID system.

Integrity: Integrity allows a reader to detect data tampering/alteration upon
receiving data from a tag. As tag-reader communication takes place over radio
waves, RFID security protocol must ensure data integrity property.

Privacy: Ensuring That Privacy of Legitimate Tags is not Compro-
mised. RFID tags are small and thus, can be attached to consumer goods,
library books, home appliances for identification and tracking purposes. In case
of any misuse (e.g., stolen RFID-enabled items), the reader can trigger an ap-
propriate message to seller/vendor/owner of the item. The use of radio waves
makes adversary’s task easy for eavesdropping tag-reader communication and
thereby, the information relating to the tag is an easy target of the adversary.
Furthermore, the tag of an object can be tracked or monitored wherever the
object is lying.

Resistance: Ensuring That the Protocol is Secure Against Cloning. If
a group of tags share the same secret key and use it for the authentication, then
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it will be possible for an attacker to clone all tags in the group once any single
tag of the group is cracked by him. It can also cause the tracking problem, as
the attacker can decrypt the exchanged messages. Therefore, secret information
should be pertinent only to a single tag so that an attacker cannot use revealed
secret information to clone other tags but the cracked one.

Forward/Backward Un-traceability: Ensuring That the Cracked Tag
Cannot Be Tracked from Its Past or Future Sessions. Suppose, a tag
is cracked and the private key of that tag is stolen by an attacker. A protocol
satisfies the feature of the forward/backward un-traceability if the attacker is
unable to decode the messages of the previous/future protocol runs initiated by
the same tag.

3 Related Works

In recent times, many RFID protocols have been devised using public key cryp-
tographic primitives in order to prevent tracking attacks [9], [10], [11], [12]. In
particular, elliptic curve cryptography (ECC) [7] has been realized in RFID au-
thentication protocols [13], [12], [8], [14], [15], [16], [17], [18], [19], [3]. Many RFID
protocols use the concept of the Schnorr [20] identification protocol, where, the
prover acts as the tag and the verifier acts as the reader. The RFID protocol
which is based on the Schnorr protocol might not preserve the privacy of tag,
as the goal of the Schnorr protocol is to identify the communicating principal.
Lee et al [12] proposed an RFID authentication protocol, known as EC-RAC
(Elliptic Curve based Randomized Access Control), claiming that it is secure
against tracking attack. However, the claim is not correct as shown in [16] and
[17]. Subsequently, randomized Schnorr protocol [16], revised EC-RAC [8] (we
refer here EC-RAC mutual authentication version only, termed it as EC-RAC-4)
have been proposed to eliminate tracking attacks. Later, attacks on revised EC-
RAC have been found [21]. Both randomized Schnorr and EC-RAC-4 protocols
are narrow-strong privacy-preserving, but not wide-weak privacy-preserving. Lee
et al then proposed low-cost untraceable authentication protocols [3] claiming
narrow-strong and wide-weak privacy. However, it is found that the protocol in
[3] suffers from man-in-the-middle attack [19].

4 The Proposed Protocol

The protocol has two phases – Setup and Authentication. The Setup phase is a
one-time computation, configured with tags and reader before they are deployed
into the field. The Authentication phase is invoked when tag and reader start
communication.

Protocol’s Goal and Assumptions: The protocol aims to provide mutual au-
thentication along with narrow-strong and wide-weak privacy. If there are more
than one readers in the RFID system then all the readers share the same pri-
vate key. If we keep the private keys different then all the tags need to store the
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public keys of all the readers, which is not preferred. Moreover, privacy is pre-
served even if the private key is kept same across all the readers. In the protocol,
it is assumed that, before mutual authentication, the tag should have the public
key of the reader. The reader should also have access to the public key of all tags.
In our protocol, we consider active tags who can initiate communication with
a reader. We further assume that communicating tags have similar computing
resource that we have in contactless smart cards [22].

4.1 Setup Phase

Setup phase is implemented only once, before the deployment of the tags and
the reader. Let P be the base point of an admissible elliptic curve. The reader
shares its public key Y (=yP ) with all the tags and stores its private key y
securely with it. Each tag shares its public key X (=xP ) with the reader (which
gets stored in back-end server) and stores its private key x securely with it.

4.2 Authentication Phase

The Authentication phase works as follows.

Tag → Reader : rt1 ,K, T1

The tag chooses random numbers k and rt1 . Then it computes

1. rs ← f(rt1 , [kY ])
2. K ← kP
3. T1 ← rsxY

Here, [P ] indicates the x-coordinate of the Elliptic Curve point P . To avoid the
man-in-the-middle attack as shown in [19], the value of k should be different from
the multiples of order of Y on the elliptic curve and zero. f() is a cryptographic
pseudo-random function. Tag sends rt1 ,K, T1 to the reader.

Reader → Tag : T2

Upon receiving tag’smessage< rt1 ,K, T1 >, the reader first computes f(rt1 , [yK])
(say r′s). It checks whether T1y

−1r′−1
s = X . If it holds, then tag’s authentication

is confirmed. Reader now computes T2 ← yr′sK and sends it to the tag.
After receiving reader’s response, the tag checks whether T2k

−1r−1
s = Y . If it

holds, then the reader authentication is confirmed.
In order to get the value of X , the reader requires the access of the list of

public keys of all the tags. If the reader finds the derived value matching with
any entry in the list, the communicating tag is considered as authentic one. The
protocol is depicted in Figure 1.

5 Analysis of the Protocol

5.1 Narrow-Strong Privacy

A narrow attacker does not have access to the result of authentication of the
tag. It is noted that the outcome of the result query is a bit indicating success-
ful/unsuccessful authentication of the tag at the reader side. A strong attacker
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Tag (prover) Reader (verifier) 

k, rt1 Zq* 

rs          f(rt1, [kY]) 

K         kP 

T1        rsxY 
rr s         f(rt1, [yK]) 

If  T1y -1rr s -1 = X   holds 

then  T2         yrr s K T2k -1rs
-1 = Y 

rt1, K, T1 

T2 

Fig. 1. The Proposed Protocol

can corrupt a tag and still that tag remains in the set of the valid tags, that
is, the tag can communicate with the reader even after it has been corrupted
by the attacker. A narrow-strong attacker has properties of narrow attacker and
strong attacker both. Suppose, the attacker has cracked tag and has retrieved
the private key x of tag. Now, any of the tags starts a new protocol run with the
reader. The attacker can manipulate messages sent by this tag. Given the mes-
sages sent by this tag, the narrow-strong attacker has to determine whether this
tag is the same which is cracked by him or not with the probability significantly
greater than 1/2 to carry a successful attack.

The messages exchanged in our protocol are rt1 , T1, K and T2, where K is a
random ephemeral elliptic curve (EC) point, rt1 is a random number generated
by the tag, and T2 is a EC point generated by the reader. It is easy to see that
these three messages do not include any information about the tag. Message T1

contains the private key of the tag (x ), public key of the reader (Y ) and the
random number (rs) which depends on rt1 and k. It is computationally infeasible
to link message T1 with any particular tag, as rs is a result of one-way pseudo-
random function which takes two arguments. Out of these two arguments, rt1
is communicated in plain text form to the reader. However, the attacker can
not learn rs without knowing k. Although K = kP , the attacker can not get
any clue of k from K, as it is an ECDLP, an intractable problem. As a result,
the attacker can not calculate the value of rs, which is used to calculate T1.
Therefore, even if the attacker knows the private key of a tag, x, it does not
help him in decrypting T1 as he does not have value of rs. Therefore, given a
private key of any tag and a message set sent by some other tag to the reader,
the attacker can not determine if the protocol run was initiated by the corrupt
tag or uncorrupt tag.
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5.2 Wide-Weak Privacy

The attacks on protocols in [3] observed in [19] use the fact that the reader
sends the random number in plain form to the tag, which can be modified by
the attacker. In our protocol, we have taken care of this and the protocol provides
wide-weak privacy as proved below.

A wide-weak attacker has properties of both, wide attacker and weak attacker.
A weak attacker can not corrupt a tag. A wide attacker has one-bit extra in-
formation compared to a narrow attacker: the decision of the reader whether
to accept a tag or not (result of the tag authentication). This extra bit of in-
formation can be used by a wide-weak attacker to perform a tracking attack.
The goal of a wide-weak attacker is to determine if two sets of protocol instance
originate from the same tag. One of these sets contains authentic messages from
the past. We denote the source (i.e. the tag) of these messages by tag A. The
other set contains the messages of tag B. The tracking attack is successful when
the attacker can determine the (in)equality of these two tags with a probability
significantly greater than 1/2.

The attacker has four messages from the protocol run initiated by tag A. We
denote them by rAt1 , T

A
1 , KA and TA

2 . We also denote the messages sent by tag B
to the reader by rBt1 , T

B
1 and KB. Before the messages from the protocol run of

tag B reaches the reader, the attacker can manipulate them. Based on the result
of the authentication of tag B, the attacker tries to guess whether both tags are
same or not. Both the tags are same if xA and xB are same. Note that KA and
KB are two random points on EC and contain no information about the tag.
The same argument applies to rAt1 and rBt1 as both of them are random numbers.
We now prove that this protocol is wide-weak privacy-preserving by the method
of the contradiction. Suppose, the proposed protocol is not wide-weak privacy-
preserving and the attacker manipulates messages sent by tag B to the reader
and from the result of the tag authentication by the reader, it can determine if
tag A and B are equal or not with probability greater than 1/2. Following three
scenarios may arise.

Modification in rBt1 : The Attacker Changes the Value of rBt1 Which is
Sent from the Tag B to the Reader. Suppose, the attacker replaces rBt1 with

r
′
t1 . However, he can not pass TB

1 validation at the server end. The reason for the
same is rBt1 is used for calculating rBs , which in turn is used to calculate TB

1 . But,
to calculate rBs by its own, the attacker has to retrieve the value of kB from KB,
which he can not do because of the ECDLP hardness problem. Now suppose,
he selects his own ephemeral random number k

′
, calculates K

′
and replaces KB

with K ′. However, he can not calculate a valid T
′
1 to replace TB

1 , because T ′
1

should have involvement of the private key xB of the tag B. But, the attacker
does not have the information of the private key of the tag B. Therefore, the
attacker can not generate the valid pair of messages in this case and hence attack
is not feasible.
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Modification in KB: The Attacker Changes the Value of KB Which is
Sent from the Tag B to the Reader. Suppose, the attacker does not change
the value of rBt1 and keeps it as it was sent originally by the tag B. As mentioned
in the previous point, if the attacker tries to replace KB by selecting his own K

′
,

then he has to calculate a valid T
′
1. However, without knowing the private key

of the tag B, he can not calculate a valid T
′
1, and the attack can not take place.

Modification in TB
1 : The Attacker Changes the Value of TB

1 Which is
Sent from the Tag B to the Reader. Suppose, the attacker modifies TB

1 by
adding TA

1 or any T1 message intercepted from the previous run of the protocol.
Suppose, the tag A and tag B are same. As tag A and tag B are same, xB = xA

and the following condition will hold.

rBs x
BY(= TB

1 ) + rAs x
AY(= TA

1 ) = (rBs + rAs )x
BY

Now, for successful authentication at the reader end, the attacker has to replace
rBt1 by r

′
t1 and/or K

B by K
′
such that the reader gets the value of rs as (r

B
s + rAs ).

If the attacker successfully derives these values and if the reader authenticates
the tag B then the attacker can conclude that tag A and tag B are same. If the
reader does not authenticate the tag B then the attacker can conclude that both
the tags are different.

In order to derive the values of the r
′
t1 and/or K

′
, the attacker has to retrieve

the value of (rBs + rAs ) from the message which was resulted after addition of two
messages, that is, (rBs + rAs ) x

BY. However, this can not be done, as the attacker
has to solve the ECDLP which he can not, with the best available algorithms
and resources. Therefore, the attacker can not retrieve the value of (rBs + rAs ),
and the attack is not possible. Similarly, if both the tags are not same then the
following condition will hold.

rBs x
BY(= TB

1 ) + rAs x
AY(= TA

1 ) = (rBs x
B + rAs x

A)Y

Here, the attacker has to replace the values of rBt1 and/or KB such that the
reader gets the value of rs as (rBs x

B + rAs x
A). But the attacker can’t retrieve

the value of (rBs x
B + rAs x

A) from the (rBs x
B + rAs x

A) Y as it is an ECDLP,
an intractable problem. Therefore, in both the cases modification in TB

1 does
not help the attacker to carry a successful attack. Our initial assumption stated
that the attacker can manipulate the messages sent by the tag B and can break
wide-weak privacy. As we have shown above, the attacker is unable to carry out
wide-weak attack by manipulating messages. These results show that the initial
assumption was false and the proposed protocol provides the wide-weak privacy.

5.3 Forward/Backward Un-traceability

Suppose the attacker cracks the tag and reveals all the information pertinent to
that tag. However, the attacker cannot track the tag in the past communications.
The tag chooses two random numbers rt1 and k. rt1 is sent in plain text form
by the tag to the server and hence accessible to the attacker. However, the
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attacker cannot decrypt the value of T1 due to dependence of T1 on rs. The rs is
calculated by passing two parameter values to the pseudo-random function, out
of which first one rt1 is accessible to the attacker. But, to calculate the second
parameter, the attacker has to calculate k from K (=kP ), which is ECDLP,
an intractable problem. As attacker cannot calculate the value of rs, he cannot
operate inverse functions on T1 and cannot get clue whether the communication
has been originated from the same tag or not. In the similar way, backward
un-traceability can be proved in which the attacker cannot track the tag in the
future communications. Therefore, the proposed protocol provides both forward
and backward un-traceability.

5.4 Anti-Cloning and Replay Prevention

Cloning is an important issue when an RFID system is relying on group key
management. In case of group key, if one tag is cracked then the attacker can
forge other tags of the group of the system as all tags within the group use the
same key for communication. In our protocol, the attacker is unable to forge the
other tags of the system. However, if the attacker crack a tag and retrieve its
private key along with the other parameters pertinent to that tag then he can
clone that tag to the system. The protocol also prevents replay attempts, as a
new session must be composed of a random number chosen by the tag, which
has to be validated by the reader with tag’s previous sessions’ state stored in it.

5.5 Computational Cost

We provide the computational cost of the protocols in Table 1. The notations
used in the Table 1 indicate as follows: PM - Point Multiplication; PA - Point
Addition. The low-cost untraceable authentication protocol [3] provides only tag
authentication and requires three point multiplications on each side. It requires
one point addition on the server side. However, it does not provide mutual au-
thentication. Moreover, the protocol is not wide-weak privacy-preserving [19].
The EC-RAC-4 [8] requires four point multiplication operations on each side.
It also requires one point addition on the server side. EC-RAC-4 provides only
narrow-strong privacy and not wide-weak privacy. Moreover, EC-RAC-4 is vul-
nerable to tracking attack [21].

The proposed protocol requires four and three point multiplication on the tag
and the reader side, respectively. The protocol doesn’t require any point addition
operation on either side. However, the pseudo-random function is used on each
side to generate a random number from two arguments. When compared to low-
cost untraceable authentication protocol [3], the proposed protocol requires one
more point multiplication on the tag side and requires pseudo-random function
on each side. But, the proposed protocol provides the mutual authentication as
well as wide-weak privacy whereas the former one does not. In comparison to
EC-RAC-4 [8] (which supports mutual authentication), the proposed protocol
takes one less point multiplication and one less point addition operation on
the server side. In addition, the proposed protocol provides wide-weak privacy
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Table 1. Comparison of computational cost

Performance ⇒ Tag side comp. Reader side comp.
Protocol ⇓
Low-cost untraceable Protocol [3] 3 PM 3 PM + 1 PA

EC-RAC-4 [8] 4 PM 4 PM + 1 PA

Proposed Protocol 4 PM 3 PM

whereas the former does not. However, the proposed protocol requires pseudo-
random function computation on each side. Therefore, the proposed protocol is
computationally comparable with other protocols, and it also provides wide-weak
privacy along with mutual authentication.

5.6 Communication Cost

Table 2 depicts the communication cost of the protocols in terms of the total
number of parameters sent by the tag and the reader in one protocol run. The
notations used in the Table 2 indicate as follows: mr - scalar number; mec - EC
point. Low cost untraceable protocol [3] and EC-RAC-4 [8] - each consists of
three messages in a protocol run. In these protocols, the tag sends two messages
and the reader sends one message in a protocol run. Whereas, our protocol is a
two-message protocol in which the tag and the reader sends one message each
in entire protocol run. EC-RAC-4 [8], the tag sends three EC points; the reader
sends one scalar number and one EC point. Whereas, in our protocol, the tag
sends two EC points and one scalar number, and the reader sends one EC point
only. As a result, our protocol takes less communication cost than EC-RAC-4
[8] (as it is reasonable to assume that the size of the random number is less
than size of EC point). Furthermore, the proposed protocol is scalable as the
computation amount is fixed and independent of the number of tags.

Table 2. Comparison of the communication cost

Comparison ⇒ Tag side comm. Reader side comm.
Protocol ⇓
Low-cost untraceable Protocol [3] 2 mec 1 mr

EC-RAC-4 [8] 3 mec 1 mr + 1 mec

Proposed Protocol 1 mr + 2 mec 1 mec

6 Conclusions

We have proposed a new RFID mutual authentication protocol. The proposed
protocol provides wide-weak and narrow-strong privacy with less computational
load compared to [8], [3]. The proposed protocol resists to all attacks that oc-
cur in EC-RAC variants and other related protocols. The performance analysis
provided in tables 1 and 2 showed that the proposed protocol is comparable to
related RFID authentication protocols, and it preserves privacy of the tags.
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Abstract. Multi-variate side-channel attacks allow to break higher-
order masking protections by combining several leakage samples. But
how to optimally extract all the information contained in all possible d-
tuples of points? In this article, we introduce preprocessing tools that an-
swer this question. We first show that maximizing the higher-order CPA
coefficient is equivalent to finding the maximum of the covariance. We
apply this equivalence to the problem of trace dimensionality reduction
by linear combination of its samples. Then we establish the link between
this problem and the Principal Component Analysis. In a second step
we present the optimal solution for the problem of maximizing the co-
variance. We also theoretically and empirically compare these methods.
We finally apply them on real measurements, publicly available under
the DPA Contest v4, to evaluate how the proposed techniques improve
the second-order CPA (2O-CPA).

Keywords: Bi-variate attacks, second-order correlation power analysis
(2O-CPA), principal component analysis, interclass variance, covariance
vector.

1 Introduction

For more than a decade now Side-Channel Attacks (SCA [6]) have been an impor-
tant threat against embedded systems. As a consequence protection techniques
and countermeasures have been an important research topic. Data masking [9] is
one of the most popular protection technique. These schemes have in turn been
the target of higher-order SCA [24,18].

In some particular masking implementations, the two shares [16] depending on
the same mask leak at different moments (e.g., in software). Second-order attacks
that combine two different time samples are called bi-variate SCA. When the
masking scheme uses d shares, multi-variate SCA are still able to reveal the
secret key by combining leakage samples corresponding to each of the d shares.
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Note that, depending on the implementation and the measurement setup each
share may leak in multiple samples.

To enhance the results of SCA several preprocessing tools can be used. In the
case of bi-variate SCA it is particularly interesting to take into account all the
information spread over the time. Indeed, the number of possible pairs increases
quadratically in the number of leakage samples. For example, if the first share
leaks over T1 samples and the second share over T2 samples, we could perform
a bi-variate SCA on T1 × T2 possible combined points. So, taking into account
all these leaks may undoubtedly increase the efficiency of an attack.

More generally, to break (d− 1)-order masking schemes the attacker needs to
combine d samples corresponding to d shares. So, if Ti is the number of samples
which leak the i-th share then the attacker could perform multi-variate SCA
on
∏

1≤i≤d Ti different d-tuples. In other words, the number of possible d-tuples

to perform multi-variate SCA is in O(T d) where T is the number of samples
each share leaks (and assuming that each share is leaking the same number of
samples, i.e., ∀i ∈ �1, d�, Ti = T ).

Many methods have been presented in the area of SCA to combine the infor-
mation spread over time: the Principal Component Analysis (PCA) for dimen-
sionality reduction [1] for Template attacks [7] but also as a preprocessing tool [2]
for DPA [13]. Recently in [11] Hajra and Mukhopadhyay present an approach
based on match filters to find the optimal preprocessing. Other methods have
been designed to combine samples from different acquisitions ([22,20]). Addi-
tionally, PCA has also been used as a distinguisher in [21]. Some other methods
could be applied like the Canonical Correlation Analysis [17] to improve CPA [6].
Interestingly, all these methods lead to a dimensionality reduction.

Another approach to improve the efficiency of SCA is to find the optimal
model. A linear-regression approach may be used. In [17] Oswald and Paar
introduce optimization algorithms to determine numerically the optimal linear
combination before CPA. By choosing a different objective we can give a formal
expression for the result of the optimization problem, and then have an optimal
method without any utilization of sophisticated optimization algorithms that
would require “parameter settings”, which could be costly in time. Still, we
notice that the approach in [17] and our could be advantageously combined.

Our Contributions. In this paper we tackle the question how to optimally
combine the information spread over multiple time samples, for HO-CPA attacks
of arbitrary order? We present the optimal preprocessing method and express it
as a generic synthetic formula. By linking the PCA to the problem of maximizing
the result of the CPA we are able to evaluate the presented method. We compare
these two methods theoretically and prove that they are optimal under some
assumptions. We then compare these methods empirically as preprocessing tools
to boost 2O-CPA attacks on a first-order masking scheme. In particular, we test
these methods on real measurements (DPA contest v4 [23]). In summary, we
show that taking into account all possible pairs of leakage points will significantly
improve the effectiveness of 2O-CPA, in one attack.
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Outline of the Paper. The rest of the paper is organized as follows. In Sect. 2
we present our case study and a theoretical comparison between PCA and the
covariance method as a method to obtain the optimal preprocessing for second-
order CPA. The attacks are then applied on a real masked implementation in
Sect. 3. Sect. 4 provides another case study to apply these methods as prepro-
cessing tools. Finally, conclusions and perspectives are drawn in Sect. 5.

2 Theoretical Optimal Preprocessing Function

2.1 Case Study

Let us assume that each measurement trace can be seen as a vector of points.
So the leakage of the measurements can be defined as: L = (Lt)t∈T where Lt =
St+Nt, St being the part of the leakage which is linked to the internal operation
processed on the target component and Nt being the noise that assumed to be
independent of LT . It can be noted that, we simply refer to interval �1, T � as T ,
whenever there is no risk of confusion. It can also be assumed that these traces
are centered and also reduced, i.e., E [Lt] = 0 ∀t and Var [Lt] = 1 ∀t. Note that,
the attacker is always able to center by removing the empirical mean and reduce
by dividing the empirical standard deviation.

Let Z be the internal variable (depending on the sensitive variable) manip-
ulated during the algorithm and let f define the leakage model. In the case of
CPA, a transformation of the initial data (preprocessing) may increase the cor-
relation coefficient. To consider all information contained in L an option would
be to use a linear transformation as a prepossessing. Note that, combining all
points by a weighted sum leads to a dimensionality reduction. More precisely,

max
α

|ρ [L · α, f(Z)]|, (1)

where ρ is the Pearson coefficient, α is a vector in RT and · the scalar product.

Remark 1. The solution of max
α

|ρ [L · α, f(Z)]| is also a solution of max
α

ρ [L · α, f(Z)]
2
.

Remark 2 (EIS (Equal Images under the Same key) assumption [19]). The only
part of the correlation that allows to distinguish the key is the covariance.

After the preprocessing we do not need to normalize by the variance of the
traces, because we compare key guesses between each other for a given time
sample not on a direct scale. So, as seen in Remark 2 the normalization by the
variance does not impact the way we distinguish the key. Thus, we can simply
focus on maximizing the following equation:

max
‖α‖=1

Cov [L · α, f(Z)]2. (2)

As the covariance is not bounded we introduce the constraint ‖α‖ = 1 where
‖·‖ is the Euclidean norm, namely ‖α‖ =

√
α · α.
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In this section we assume that the attacker has a “learning device” with a
fixed key on which he is unrestricted in the number of acquisitions, which is
typically more than the required number to successfully perform the attack. As
a consequence we can reasonably assume that the attacker knows the key on the
learning device and he is able to identify the zones of interest in �1, T � where the
internal variable leaks. Moreover, he is able to estimate the weights of the linear
combination (see Eq. (2)) on the learning device. In the rest of this study we
call this step the “learning phase”. In the final step the attacker targets another
device that is expected to leak in a similar way as the learning one. However,
on the device under attack he is no longer able to acquire an unlimited amount
of traces. In particular, in this “attack phase” his main goal is to retrieve the
secret key using only the minimum number of traces.

2.2 Principal Component Analysis

A classical way to recombine information with linear combinations is to apply
PCA [12]. Let us define X as a set of data that is composed of N vectors of size
T . Accordingly, we write X as an N × T matrix.

Definition 1. The PCA is an orthonormal linear projection of the data, which
maximizes the variance of the projected subspace of dimension T ′ ≤ T . More
formally, we search the projection which maximizes the variance of the projected
data. For the first dimension of the subspace this leads to:

max
‖u1‖=1

Var [Xu1] = max
‖u1‖=1

tu1
tXXu1.

For the second dimension, as we want an orthonormal projection, this yields:

max
‖u2‖=1
u2·u1=0

tu2
tXXu2.

The process is iterated for each dimension T ′ ≤ T .

Remark 3. In general, most of the variance lays within a few dimensions (i.e.,
much less than T ).

Proposition 1. The solution of the problem in Def. 1 is the T ′ eigenvectors of
X associated to the T ′ maximal eigenvalues.

Proof. The proof can be found in [12]. ��

As the problem of maximizing the covariance depends on the expected leakage
model the preprocessing is defined such that it takes f into account. This implies
that the given preprocessing methods are model-dependent. We can explicit the
Proposition 1:
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Proposition 2. If we link our measurements L to their conditional expectations
E [L|f(Z)] knowing a model f(Z), then the PCA yields the principal direction:

max
‖α‖=1

Var [E [L|f(Z)] · α].

This result means that the eigenvector of largest eigenvalue is the projection that
maximizes the inter-class variance.

Proof. Let f1, f2, . . . , fN the values that f(Z) can take. Then, the lines of ma-
trix X are E [L|f(Z) = f1], E [L|f(Z) = f2], . . ., E [L|f(Z) = fN ]. Apply Propo-
sition 1. ��

2.3 Preprocessing on Modulated Side Channel Traces

Definition 2. Let us now define a modulated trace as a trace in which each
time sample can be expressed as a modulation of a model (static in time) plus
an independent noisy part:

L = (βtf(Z) +Nt)t∈T = f(Z)β + (Nt)t∈T , (3)

where β is a vector in RT and each Nt is drawn from an independent identical
distribution N . In specific, the variance of the noise does not depend on the time
sample t ∈ T .

Theorem 1. In the case of modulated traces the solution of PCA is equivalent to
maximizing the covariance (Eqn. (2)). More precisely, if L = (βtf(Z) +Nt)t∈T

then

α ∈ argmax
‖α‖=1

Cov [L · α, f(Z)]2 ⇐⇒ α ∈ argmax
‖α‖=1

Var [E [L|f(Z)] · α] .

Proof. The proof is given in Appendix A. ��

In a particular case of Theorem 1 we can explicitly describe α.

Lemma 1. If α and β are linearly dependent, we have:

β

‖β‖ ∈ argmax
‖α‖=1

Cov [L · α, f(Z)]2 . (4)

Proof. The proof is given in Appendix B. ��

After projection into the new reduced space the covariance matrix will be zero
everywhere except at (0, 0). Moreover, all the variance should be contained in
the first principal direction, thus, we do not need to take the other eigenvectors
into consideration.

As β does not depend on a particular model we also maximize the covariance
for wrong keys in the same proportion as the covariance for the good key. Thus
we do not change the way we distinguish the good key from the wrong ones
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(the relative distinguishing margin is unchanged [25]). However, the dimension-
ality reduction leads to an improvement of the attack by increasing the signal-
to-noise ratio (SNR). We define the SNR as the variance of the signal divided by
the variance of the noise. This definition of SNR coincides with the Normalized
Inter-Class Variance (NICV [5,4]).

Lemma 2. If the noise Nt is identically distributed (i.d.) for all t, then the
noise is unchanged by any linear combination of unitary norm.

Proof. By hypothesis, Var
[
(Nt)t∈T · α

]
= ‖α‖2Var [N ] = Var [N ]. ��

Proposition 3. If the noise Nt is i.d. for all t, then the signal-to-noise ratio is
maximum after the projection:

max
t∈T

Var [βtf(Z)]

Var [N ]
≤

max
‖α‖=1

Var [E [L|f(Z)] · α]

Var [N ]
.

Proof. By definition of α we have max
t∈T

Var [βtf(Z)] ≤ max
‖α‖=1

Var [E [L|f(Z)] · α].
Besides, by lemma 2, the numerator of the SNR does not depend on our prepro-
cessing, since is satisfies ‖α‖ = 1. ��

Remark 4. In the case of modulated traces the PCA gives the solution of a
matched-filter [14].

2.4 Covariance Vector as a Preprocessing Method

In the general case when the model is not known or in the presence of noise, the
variance may not only be contained in the first eigenvector [2]. Therefore, it may
be useful to also take the other directions of the PCA into account. Note that, we
still obtain an optimal function to reduce the dimensionality before conducting
a CPA under the same leakage model assumption.

Proposition 4.(
Cov [Lt; f(Z)]

‖(Cov [Lt; f(Z)])t∈T ‖

)
t∈T

∈ argmax
‖α‖=1

Cov [L · α, f(Z)]2

Proof. The proof is given in Appendix C. ��

So, the normalized covariance is the optimal preprocessing method to maxi-
mize the value of the covariance when using linear combinations of traces points.
In the rest of this study we call this method the “covariance method” and the
result the “covariance vector”.

Remark 5. Note that, the model of the actual leakage of the traces is not used
in the proof of Appendix C. The results are therefore applicable for any leakage
model such as the one presented in [10].
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2.5 Discussion

The previous subsection shows that the projection of the differential traces on the
covariance vector gives a solution to the problem of maximizing the covariance
after dimensionality reduction (i.e., after having learned the best linear form).
This method is better than the state-of-the-art, where each tuple of samples is
processed on its own (see the big picture in Fig. 1); it can be seen as a general-
ization to higher-order attacks of [11]. Some other preprocessing tools have been
proposed to reduce the dimensionality and enhance the quality of the CPA. The
PCA [2] is a known way to preprocess the data to reduce the dimension and
increase the efficiency of attacks. As defined in Sect. 2.3, PCA is directly linked
to the maximization problem, which is also underlined by our empirical results
given in Sect. 3.

Oswald and Paar showed in [17] that the best linear combination (“best” in the
sense of separating the highest peaks from the nearest rival) can be approached
by numerical resolutions. The model presented in [11] is not totally applicable
to our study case. If we are in the case of modulated traces, the expectation
over each sample of the combined traces could be null. In this case the method
presented is not directly suitable.

The point of this study is not to exhibit a better method for dimensionality
reduction but to show that we can solve this problem in an easier way by using
the vector of covariance.

Other preprocessing methods can be used before any dimensionality reduction
such as reduction filtering using a Fourier or a Hartley transform [3].

3 Empirical Results

In Sect. 2 we defined two preprocessing methods (the PCA and the “covariance
method”). They were described in general, but can also apply to second-order
CPA; the only difference is that the interval �1, T � where samples live is replaced
by the Cartesian product �1, T1� × �1, T2�, where T1 and T2 are the window
lengths containing the leakage of the two shares. Accordingly, the leakage L
is the suitable combination (e.g., the centered product [18]) of samples from
each window, which is reflected in the model (See for instance Eqn. (5) and
(6)). We will now compare these two methods on real measurements. These
methods combine in one point the information spread over several points. The
more samples to combine, the more the dimensionality reduction increases the
success of the attacks.

3.1 Implementation of the Masking Scheme

To evaluate these two methods we use the publicly available traces of the DPA
contest v4 [23], which uses a first order low-entropy masking protection applied
on AES called Rotating S-box Masking (RSM). In RSM only sixteen Substitution
boxes (S-boxes) are used and all the sixteen outputs of SubBytes are masked by
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Leakage L

α = cov(L;f(Z))
||cov(L;f(Z))||

Correlation |ρ(L; f(Z))| Distinguishers:

Projection
by linear
combination

(1’)

max
k,t∈�1,T1�×�1,T2�

max
k

|ρ(L · α; f(Z))|

(0’)
(1’)

|ρ(Lt; f(Z))|

L · α
(scalar)

T1

T2

(1) (2)

t1

t2

1

1 t1

t2

t2

t1

(2’)

Fig. 1. Big picture of the “covariance method”. The usual 2O-CPA computes a cor-
relation for each pair (t1, t2) of leakage (step (1)), and then searches for a maximum
over the keys and the time instances (step (2)). Our new method obtains a “covari-
ance vector” (termed α) on a “learning device” (step (0’)), and then first projects the
leakage L on α (step (1’)), before looking for the best key only while maximizing the
distinguisher (step (2’)). Notice that the model f(Z) depends implicitely on the key
guess k.

a different mask. We take great in this paper to exploit second-order leakage
(in particular, we avoid the first-order leakage identified by Moradi et al. [15]).
Moreover, the same mask is used for the AddRoundKey operation where it is
XORed to one plaintext byte P and in the SubBytes operation where it is XORed
with the S-box output depending on another plaintext byte P ′. As a consequence
a bi-variate CPA can be built by combining these two leaks knowing P and P ′.
The leakage model in this case is given by:

f(Z) = E [(wH(P ⊕ M) − 4) · (wH(Sbox[P ′ ⊕ K]⊕ M) − 4) |P, P ′,K] , (5)

where P , P ′, K are two bytes of the plaintext and a byte of the key respectively,
together noted Z = (P, P ′,K), and where wH( · ) is the Hamming weight func-
tion and the expectation is taken over K. We denote this combination as (XOR,
S-Boxes).

Moreover, we also define another way to combine points in order to compen-
sate the mask. As only sixteen different masks in RSM are used, also a link
between the masks used at the output of the S-boxes exists. Accordingly, the



Boosting Higher-Order Correlation Attacks by Dimensionality Reduction 191

combination of the outputs of two different S-boxes are not well balanced and
we could consider an attack depending on two different S-Boxes which use two
different masks. In this case the leakage model for the bi-variate CPA is:

f(Z)=E
[
(wH(Sbox[P ⊕K]⊕M)− 4) · (wH(Sbox[P ′ ⊕K′]⊕M ′)− 4

) |P, P ′,K,K′] .
(6)

In this equation, which we denote as (S-Boxes, S-Boxes), P and K (resp. P ′

and K ′) are the plaintext and key bytes entering the first (resp. the second) S-
Box, and Z is a shortcut for the quadruple (P, P ′,K,K ′). We notice that there
exists a deterministic link between M and M ′; M and M ′ belong to some subset
{m0,m1, . . . ,m15} of F8

2. We assume that M enters S-box 0 ≤ i ≤ 15 and M ′

S-box 0 ≤ i′ ≤ 15. Then when M = moffset for some 0 ≤ offset ≤ 15, we have
that M ′ = moffset+i′−i mod 16.

3.2 Leakage Analysis

We assume that the adversary is able to identify the area where the two oper-
ations leak during the “learning phase”. In order to analyze the leakage of the
two operations, we first calculate the covariance of the traces when the mask is
known using 25000 measurements.

Figure 2a presents the absolute value of the covariance between the points
where the mask is XORed with the plaintext and the leakage model wH(P ⊕
M ⊕ K) − 4. The covariance is computed for all key guesses K, where the
wrong keys are plotted in grey and the correct key in red. Note that, as we
target an XOR operation the maximum of the absolute value of the covariance
is reached for two key guesses, namely the correct one and its opposite. It is
quite clear, in Fig. 2a, that the traces are reasonably modulated (as per Def. 2);
consequently, the relative distinguishing margin is constant over all the whole
trace (as underlined in Sec. 2.3). In the sequel, we use as leakage for the first
share wH(P ⊕ M) − 4 instead of wH(P ⊕ M ⊕ K) − 4. As the second share
is key-dependent, this choice allows us to restrict ourselves to one key search
instead of two.

Figure 2b presents the covariance between the points where the output of an
S-box leaks and the leakage model wH(Sbox[P ′ ⊕ K]⊕ M)− 4.

In both cases the mask leaks over several points; 50 samples represent less
than 1 clock cycle. In this case the leakage is not uniformly spread over the
points, thus it is reasonable to use a weighted sum to reduce the dimensionality
of the data.

As the two leakages do not depend on the same operations their shapes are
different. Interestingly, the distance between the correct key (red) and the next
rival (grey) is much smaller in Figure 2a than in Figure 2b, Indeed the covariance
plotted in Figure 2a is computed using a leakage depending on AddRoundKey,
whereas the covariance plotted in Figure 2b is computed using a leakage caused
by SubBytes. More precisely, the second plot corresponds to a time window
when the value of the S-box output is moved during the ShiftRows operation
that follows SubBytes.
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(a) Leakage caused by AddRoundKey
(b) Leakage caused by the Sbox output
while in ShiftRows

Fig. 2. Covariance absolute value, for (a) XOR and (b) S-box

Figure 3a (resp. 3b) presents the covariance between the points where the
output of an S-box leaks and the leakage model wH(Sbox[P ⊕ K] ⊕ M) − 4
(resp. wH(Sbox[P ′ ⊕ K ′] ⊕ M ′) − 4). It can be noticed that the leakages of
two different S-boxes indeed differ. The reason of this difference is that the two
leakages are not due to the execution of the same operations. Figure 3b shows
the covariance between the leakage of the S-box output due to the ShiftRows
operation that follows and the corresponding model, whereas Figure 3a shows
the covariance between the leakage due to the SubBytes operations and the
corresponding model. As looking-up and moving a byte are different operations,
they leak differently.

3.3 Experimental Protocol

In this experiment we select two windows of 50 points corresponding to the
leakage of the two shares. Then all possible pairs of points have been combined
using the centered product function [18]. In all the experiments, the prepro-
cessing method and the 2O-CPA are applied on these “combined” traces. We
compare 2O-CPA with and without preprocessing.

We used the 50000 first traces of the DPA contest v4 for the learning phase
and the remaining for the attack phase. To compute the success rate we repeated
the experiment as many times as we could due to the restricted amount of traces.

(a) Leakage caused by SubBytes (b) Leakage caused by ShiftRows

Fig. 3. Covariance absolute value, for (a) S-box and (b) S-box+ShiftRows
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Note that, several attacks using profiling or semi-profiling have been published
in the Hall of Fame of the DPA contest v4. Most of these attacks are specially
adapted to the vulnerabilities of the provided implementation or the particu-
larities of RSM. However, our proposed preprocessing tools do not particularly
target RSM, moreover, they are generic and could be applied to any masking
scheme leaking two shares.

3.4 Comparison of the Two Preprocessing Methods and Classical
Second-Order CPA

First of all, for the (XOR, S-Boxes) combination we see in Fig. 4 that the prepro-
cessing improves the efficiency of the attacks. We need less than 200 measure-
ments to reach 80% of success with the covariance or PCA preprocessing while
we need more than 275 measurements for the classical 2O-CPA, which gives an
improvement of 30%.

Figure 5 shows a 3-D representations of the vectors using the PCA (which
returns the first eigenvector) and the covariance method (which returns the

Fig. 4. Comparison between the classical second-order CPA and second-order CPA
with preprocessing using (XOR, S-Boxes)

Fig. 5. Comparison between covariance vector and the first eigenvector
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covariance vector). The larger the value on the z-axis of Fig. 5 and 7, the higher
the contribution (weight) of this point. The axes “leakage 1” and “leakage 2”
represent the part depending on the two leakages of XOR (Fig. 2a) and S-box
(Fig. 2b) operations in the combined traces. We can see in Figure 5 that the two
methods highlight the same points of the combined traces and have the same
shape (approximately the same values). Thus, the two methods give similar
results in terms of success rate, which is confirmed by Figure 4.

As can be seen in Figure 6, in case of the (S-Boxes, S-Boxes) combination
we need around 275 traces to reach 80% of success for the 2O-CPA after the
two preprocessing methods, while the raw 2O-CPA needs around 550 traces
to succeed. So, using the preprocessing method decreases the number traces to
perform the attack by 50%. It can be seen that the two methods yield apparently
exactly the same results, which means that we are precisely in the framework of
Theorem 1: the display traces that are almost perfectly modulated by one static
leakage model.

One explanation of the effectiveness of the preprocessing can be found in
Figure 7. There are much more leaking points in the same window size when we

Fig. 6. Comparison between the classical second-order CPA and second-order CPA
with preprocessing using (S-boxes, S-Boxes)

Fig. 7. Comparison between the covariance vector and the first eigenvector
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combine two S-boxes. It can be seen in Sect. 3.5 that another explanation can
be the fact that when we apply these preprocessing methods the attacks are less
sensitive to the noise.

3.5 How is the Preprocessing Linked to the Noise?

We have theoretically shown in Proposition 3 that the presented preprocess-
ing methods improve the SNR. We now empirically verify this results. In each
point we add Gaussian noise to mimic real noisy measurements. We perform this
experiment on the same points and with the same model as used for Figure 4.

Figure 8a shows that using preprocessing methods improves second-order CPA
in presence of noise. In this case we added Gaussian noise with a standard
deviation of 3. The attacks after preprocessing need around 225 measurements
to reach 80% of success whereas the 2O-CPA needs more than 550 measurements.
Thus, preprocessing leads to a gain over 50%. As shown in Figure 4 the gain was
close to 30% without noise.

(a) Standard deviation of 3 (b) Standard deviation of 5

Fig. 8. Comparison between 2O-CPA with preprocessing method and without in pres-
ence of Gaussian noise, with a standard deviation of 3 for (a) with a standard deviation
of 5 for (b)

In Figure 8b we can see that for Gaussian noise with a standard deviation of 5
the gain is more than 75%. Indeed the 2O-CPA after preprocessing needs around
250 traces reach 80% of success rate whereas for 2O-CPA 1000 measurements
are not sufficient.

So this kindofpreprocessingbydimensionality reduction iswell designedagainst
noisy implementation where the noise is not correlated with the time or the data.

4 On the Fly Preprocessing

We have defined a case study when the attacker owns a “learning device”. As a
consequence he is able to acquire a sufficient number of measurements to well



196 N. Bruneau et al.

estimate the covariance matrix for the PCA and the covariance vectors. However,
the attacker might not always have this powerful tool.

As seen in Subsect. 3.4 even for a small number of traces for the learning
phase we have a significant improvement when we use preprocessing methods.
We therefore evaluate these tools also as “on the fly” preprocessing methods.

4.1 Case Study

We now model a less powerful attacker who does not have a “learning device” and
estimates the value of the coefficient of the linear transformation directly on the
traces used for the attack. Because the key is unknown the preprocessing method
has to be computed for each key hypothesis. Finally, the adversary applies the
covariance between the transformed data and the model depending on the key
hypothesis. In this experiment we use the 10000 first traces of the DPA contest
to compute the success rate which results in 25 repetitions.

4.2 Empirical Results

Figure 9a illustrates the success rate after preprocessing for different sizes of the
learning set for PCA (green) and the covariance vector (red). One can observe
that the covariance method performs better than PCA when a low number of
traces is used during the learning phase, accordingly, this method is a good choice
as a “on the fly” preprocessing method. The reason why the PCA method needs
more measurements for the learning than the covariance method to reach its
maximum efficiency during the attack phase could be the fact that the covariance
matrix (see the term tXX in Def. 1) needs more traces to be well estimated.

(a) Comparison between covariance and
PCA depending on the size of the learning
base

(b) Comparison between covariance in
line preprocessing and 2O-CPA

Fig. 9. Evaluation of inline preprocessing methods
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Figure 9b shows that with the “on the fly” preprocessing we can perform 2O-
CPA using 225 measurements. This represents a gain of 18% compared to raw
(sample-wise) 2O-CPA.

5 Conclusions and Perspectives

In this article we presented the covariance method as an optimal preprocessing
method for second-order CPA. By using all possible leakage points our method
improves the efficiency of the attacks and as the number of combined leak-
age points grow quadratically, thus our preprocessing method is well adapted
for bi-variate CPA. We further theoretically linked the PCA to the problem
of maximization of the covariance. We demonstrated theoretically the result of
the covariance method to be the optimal linear combination for maximizing the
covariance and underlined empirically that this method improves the result of
bi-variate CPA.

Compared to 2O-CPA, the attack based on the optimal covariance method is
significantly improved, particularly in presence of noise and when the number
of leaking points is important. This is partly explained by the fact the optimal
covariance considers all the relevant sampling points, whereas the 2O-CPA con-
siders only the best pair of samples and does not exploit the other interesting
pairs.

We have also shown that the optimal covariance method is more efficient than
PCA when the learning phase is performed on the fly. All the results have been
validated by experiences on real traces corresponding to masking implementation
of the DPA contest v4. As a consequence dimensionality reduction by linear
combination is well adapted to the case of multi-variate CPA. Moreover, the
higher the order of masking, the more efficient the attack after preprocessing.

In our future work we will extend the previous results on other implementa-
tions which are less favorable to attacker, e.g., with more noise. Also we plan to
compare the method presented in this article and the method presented in [11]
in these cases. We will additionally apply these methods on different masking
scheme especially on higher-order masking schemes.
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A Proof of Theorem 1

Proof. On the one side we have

Cov [L · α, f(Z)] = (Cov [St + Nt, f(Z)])t∈T · α
= (Cov [St, f(Z)])t∈T · α
= (E [Stf(Z)])t∈T · α .

The other side yields Var [E [L|f(Z)] · α] = Var
[
(St)t∈T · α

]
. Now if St = βtf(Z),

then we have for both sides⎧⎨⎩Cov [L · α; f(Z)]2 = (α · β)2 E
[
f(Z)2

]2
,

Var [E [L|f(Z)] · α] = Var [(α · β) f(Z)] = (α · β)2 E
[
f(Z)2

]
,

which proves equivalence. ��

B Proof of Lemma 1

Proof.

argmax
‖α‖=1

Cov [L · α, f(Z)]
2
= argmax

‖α‖=1

(α · β)2 E
[
f(Z)2

]2
= argmax

‖α‖=1

(α · β)2 , because E
[
f(Z)2

]2
> 0.

By the Cauchy-Schwarz theorem, we have: (α · β)2 � ‖α‖2×‖β‖2,where equal-
ity holds if and only if α and β are linearly dependent, i.e., α = λβ. Accordingly,
if ‖α‖ = 1 we have λ = 1

‖β‖ , which gives us the required solution. ��

http://www.DPAcontest.org/v4/
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C Proof of Proposition 4

Proof.

Cov [L · α, f(Z)] = (Cov [Lt; f(Z)])t∈T · α .

Similar to the proof of Lemma 1, we use the Cauchy-Schwarz inequality. In
particular,

(
(Cov [Lt; f(Z)])t∈T · α

)2 � ‖α‖2 × ‖(Cov [Lt; f(Z)])t∈T ‖2.

We have the equality,(
(Cov [Lt; f(Z)])t∈T · α

)2
= ‖α‖2 × ‖(Cov [Lt; f(Z)])t∈T ‖2,

if and only if α = λ (Cov [Lt; f(Z)])t∈T .
So, if ‖α‖ = 1 we have λ = 1

‖(Cov[Lt;f(Z)])t∈T ‖ . ��



Analysis and Improvements

of the DPA Contest v4 Implementation

Shivam Bhasin1, Nicolas Bruneau1,2, Jean-Luc Danger1,3, Sylvain Guilley1,3,
and Zakaria Najm1

1 TELECOM-ParisTech, Crypto Group, Paris, France
2 AST division, Rousset, France

3 Secure-IC S.A.S., Rennes, France

Abstract. DPA Contest is an international framework which allows re-
searchers to compare their attacks under a common setting. The latest
version of DPA Contest proposes a software implementation of AES-256
protected with a low-entropy masking scheme. The masking scheme is
called Rotating Sbox Masking (RSM) which claims first-degree security.
In this paper, we review the attacks submitted against DPA Contest
v4 implementation to identify the common loop holes in the proposed
implementation. Next we propose some ideas to improve the existing
implementation to resist most of the proposed attacks at affordable per-
formance overhead. Finally we compare our implementation with the
original proposal in terms of complexity and side-channel leakage.

Keywords: Side Channel Attacks, DPA Contest, Low Entropy Masking
Schemes, Shuffling.

1 Introduction

Physical systems are now an integral part of our life. Such systems use embedded
computers and sensors to perform desired computation based on feedback from
physical processes and vice-versa. Some typical application of physical systems
are in domains like health management, traffic management, data-centers, power-
grids, etc. Given the critical nature of applications, it becomes an attractive
target for all kinds of attacks. This brings in the need for security and privacy.

A common solution to security threats is to use cryptography. Modern cryp-
tographic algorithms are based on strong mathematical problems and are con-
sidered secure from a theoretical view point. On the other hand, when these
algorithms are implemented in a physical systems, they become vulnerable.
These attacks which compromise the physical implementation of cryptography
are known as physical attacks or “Side-Channel Attacks” (SCA [1,2]). In such
cases, designers resort to countermeasures. Countermeasures for SCA tend to
modify the implementation in a way that the mere basis of SCA is removed.
Having said that, a perfect countermeasure is not possible to design. This is
because certain non-linearities in the target device which are not under the con-
trol of designer leave the countermeasure imperfect. Therefore a common trend

R.S. Chakraborty et al. (Eds.): SPACE 2014, LNCS 8804, pp. 201–218, 2014.
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in SCA countermeasure research is to make the design harder to attack, given
the design constraints. In this paper, we focus on symmetric ciphers that run as
software codes on embedded computers.

Common countermeasures for software implementations of ciphers are mask-
ing and shuffling [3,4]. Another lesser studied countermeasure for software im-
plementations is hiding [5]. All the countermeasures come at a significant cost
overhead in terms of memory, time or both. Hiding based countermeasure makes
the leakage uniform and independant of the data processed. Shuffling is a sim-
ple countermeasure which plays on randomizing the order of operations of the
cipher. Masking on the other hand uses a random value called “mask” which is
mixed with the sensitive data. The mixing is done by using different operations
like XOR, addition, multiplication etc. Out of the three countermeasures for
software implementations, masking is the most studied one.

Recently, researchers have started looking into the lightweight solutions for
SCA countermeasures. These countermeasures are designed to resist not all but
a selection of important and powerful attacks. One such countermeasure is Ro-
tating Sbox Masking (RSM) which is a type of Low-Entropy Masking Scheme
(LEMS). RSM was initially proposed for hardware implementations [6] and fur-
ther tuned for software targets in [7]. We choose RSM because it has been studied
widely by researchers worldwide under the framework of DPA Contest [8]. DPA
Contest allows researchers to apply their attacks on a common set of available
side-channel traces, in order to find the best attacks. During the fourth version
of the contest i.e. DPA Contest v4 (DPACv4 [9]) the target was a AES-256
implementation protected with RSM running on an ATMEL AVR-163 micro-
controller. Both the implementation and the traces were made available as a
part of the framework.

In this paper, we review the attacks proposed in DPACv4 framework to iden-
tify the common pitfalls of the proposed implementation. Next we try to propose
an improved implementation of RSM which does not suffer from some of the ob-
vious and noted pitfalls. The rest of the paper is organised as follows: Sec. 2
provides general background on DPA contest and its latest version and RSM. In
Sec. 3, we review the attacks proposed under the framework of DPACv4 with
prime focus on non-profiled attacks to identify the main pitfalls in the imple-
mentations. A proposition to improve the original implementation of DPACv4
is given in Sec. 4 followed by security evaluation in Sec. 5. Finally conclusions
are drawn in Sec. 6. Technical proofs are in appendix.

2 General Background

2.1 DPA Contest

DPA Contest is an international contest which allows researchers from all over
the world to compete on a common ground. It was launched in 2008 and since
then four versions of the contest have completed. The first version of the contest
targeted an unprotected DES implementation running on a ASIC fabricated in
ST 130 nm technology. Version 2 of the contest targeted a unprotected AES
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implementation running on an FPGA platform [25]. The database of traces of
both implementations was made available online, with a goal to find the attack
which recovers the secret key using minimum number of traces. The next version
of the contest (v3) was an acquisition competition which focused on finding the
best measurement setup. The latest or the fourth version of the contest was
launched last year. This contest targets a protected AES-256 implementation on
a 350 nm metal-3 layer ATMEL AVR-163 microcontroller. Protection applied is
RSM which is a LEMS and discussed in next subsection.

2.2 Masking and RSM

Masking splits sensitive data Z ∈ Fn
2 into (d+ 1) variable random shares, noted

R = (Ri)i∈�0,d�, in such a way that the relation R0 ⊥ · · · ⊥ Rd = Z is satisfied
for a group operation ⊥ [10].. Typically, ⊥= ⊕, the exclusive-or (XOR) opera-
tion. Such schemes claim dth-order security. When a cryptographic algorithm is
modified to introduce masking, two computations are performed: masked sen-
sitive and mask compensation computation. In software, this computation is
performed in serial. The linear operations can be easily masked. Masking the
non-linear sbox S involves computing S(Z)⊕M ′ from the variables M , Z ⊕M
and M ′ (new mask) without compromising with SCA resistance.

GLUT [11], a proposed solution, pre-computes a look-up table, associated to
the function S′ : (X,Y, Y ′) 	→ S(X⊕Y )⊕Y ′. This approach is very expensive in
practice. Rotating Sbox Masking (RSM) is based on precomputed table look-ups
at the same time reducing the area overhead of GLUT. The optimization comes
from reusing sboxes and removal of computation of mask compensation. RSM is
a LEMS but the low-entropy is covered for by carefully choosing the mask set
M . From a security point of view, M is chosen such that the jth order moment
of the conditional leakage Lj|Z = z given a guess on the sensitive variable Z are
all the same for j = 1, 2, · · · , d. Thus only an attack of order (d+1) can succeed.
Under this constraint, the masks set M must be an orthogonal array of strength
d [12].

The unmasking and masking which is integrated into the precomputed masked
sbox removes the need for computation of corresponding mask compensation.
The set of chosen mask M can be a public parameter however M should be
shifted by a random offset before each encryption. The linear operations are
masked by a simple XOR operation with precomputed constants applied at the
end of each round. For a linear operation P , a mask mi can be computed as
P (mi) ⊕ mi on the fly or stored precomputed in memory. We refer interested
readers to [6], [7] and [13] for details of RSM and its security analysis.

2.3 DPACv4 Implementation

DPACv4 targets an AES-256 implementation protected with RSM. It was mostly
written in the C language, and compiled using avr-gcc. The overall algorithm
running on the smartcard is described in Alg. 4 in Appendix A.
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A quick glossary for Alg. 4 is as follows:

– MaskedSubBytesi(X) = SubBytes(X ⊕ Mi) ⊕ Mi+1

– MaskCompensationoffset = Maskoffset ⊕ MixColumns(ShiftRows(Maskoffset))
– MaskCompensationLastRoundoffset = Maskoffset ⊕ ShiftRows(Maskoffset)

The MaskedSubBytes operation firstly calls the 8 sboxes with even index fol-
lowed by remaining 8 sboxes with odd index. The Maskoffset operation applies
16 mask bytes to 16 state bytes according to the computed index. The mask set
used for DPACv4 is:

Mi∈�0,15� = {0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a,
0x95, 0x9a, 0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff} .

3 Summary of Attacks Presented in DPACv4

Since the launch of DPACv4 in July 2013, 28 attacks have been submitted and
evaluated. The results of all these attacks along with their brief description is
available on the website of the contest. In general, the submitted attacks can
be classified in two categories: profiling based attacks and non-profiling based
attacks.

Some of the attacks submitted under the DPACv4 framework proved to be
very efficient. For instance, in the profiling based attack category, 14 attacks have
been proposed. The best attack in this category can break the implementation
and recover the secret key with a single trace (attack phase). On the other
hand, for the non-profiling based attacks, the best attack takes as low as 14
side-channel traces to recover the secret key. In the following we focus on
non-profiling attacks.

The first attack which is a univariate correlation power attack (CPA [2])
was proposed by Moradi et al. [14]. This attack exploits a vulnerability which
arises from a basic design error. A vulnerability in RSM arises when a sbox
input xi masked with mask mi, is written over by a sbox output yi masked
with mi+1 in the same register. The activity of the register can be written as
(xi ⊕ yi)⊕ (mi ⊕mi+1). Now under the RSM countermeasure both the mask mi

and mi+1 are balanced. The set of mask for RSM belong to a code and carefully
chosen to satisfy certain properties and provide desired security. However, the
composite mask mi ⊕mi+1 turns out to be unbalanced. This unbalance leads to
a first-order leakage which can be exploited by a simple univariate CPA.

The next attack by Kanghong et al. unrolls in two steps. In the first step, the
attacker tries to guess the value of initial offset used for each encryption. The
attackers exploit the fact that the Hamming weight HW of mask m0 ⊕ m15 is
8, while for all other mask combinations (mi ⊕ mi+1) it is 4. This difference in
Hamming weight can be observed in DPACv4 traces and the temporal location of
this maximum difference gives an idea of the offset. In the second and final step,
an attacker can group all traces with the same offset and launch a univariate
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CPA attack to recover the secret key. Kanghong et al. used 69 traces to recover
the key.

Thereafter several attacks exploiting the same vulnerability were proposed.
Each time the method to determine the offset was novel. Junrong et al. propose
two attack using maximal difference to determine the offset and recovering the
key in 110 traces. Zhou et al. use maximal difference and pattern matching to
determine the secret key in 14 traces. Next , Nakai et al. retrieve the offset using
F-Test followed by a CPA to find the key in 43 traces. Another attacker who
remains anonymous uses a first order CPA to first recover the offset followed by
a DPA to find the key.

Two more attacks belonging to the non-profiled category were proposed under
DPACv4. Zhou et al. attacked RSM using a second order CPA attacks. This at-
tack exploited the joint leakage which came from combination of sbox output with
input mask mi and plaintext blinding with mask mi+1. Although the individual
leakages of plaintext blinding and sbox output are masked, the joint leakage be-
comes unmasked, which can be exploited by a CPA attacks. The other attack was
a collision attack. Firstly the attacks detects collision using Pearson’s correlation
to compute the 15 key differences between first byte and other 15 bytes of the key.
Next the whole key can be recovered by a simple brute force attack.

Apart from the DPA Contest framework, few other attacks were published on
the implementation proposed in DPACv4. Kutzner et al. [21] proposed several
attacks on the hardware and software implementations of RSM. Considering
the software implementation (as of DPACv4), two attacks were proposed. The
first attack guesses the offset followed by univariate CPA. In other words, it
exploits the same vulnerability as majority of the attacks. The second attack
proposed was by Kutzner et al. is indeed unique. It exploits a property called
constant difference in the RSM mask. Authors discovered that the difference
in mask between mi and mi+8 is constant. In other words,mi⊕mi+8 is constant.
This property was used to mount a 1st − order correlation enhanced collision
attack [15] to recover the secret key. A third (simulated) attack was presented
on hardware RSM in the same paper [21]. We noticed that this attack can also
be a potential threat to software implementation of RSM. It exploits the fact
that the mask mi used by sbox S0 in the first round is same as used by S7 in
last round, which allows collision attacks.

Few other papers were also published which attacked the DPACv4 traces. Bel-
garric et al. [16] demonstrated practical bivariate attacks (using preprocessing
tools like Discrete Hartley Transform) by attacking in frequency domain. More-
over, Ye et al. [17] proposed a couple of attacks based on mutual information and
collisions to exploit LEMS like RSM. All the attacks in those two papers were
possible owing to the fact that the attacker is aware of the predictable sequence
of AES operations.

To summarize the threats exploited by attacks submitted in DPACv4, we can
identify four implementation pitfalls:

1. The mask (mi,mi+1) although balanced by itself, were not balanced when
XORed together ((mi ⊕ mi+1)).
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2. Mask (m0,m15) have a higher Hamming distance than other mask, which
leaks the the value of the offset.

3. As the offset is incremented by a constant in every round, it lead to pre-
dictable sequence of operations which can be exploited by collision attacks.

4. The unaltered and predictable sequence of operations allows combination of
points, thereby leading to second-order CPA and collision attacks.

4 Proposition for Improving DPACv4 Implementation

In this section, we propose some improvements to the original DPACv4 imple-
mentation based on our know-how of its pitfalls. These pitfalls are discussed
and analyzed in the previous section. As stated earlier, designing a perfect coun-
termeasure is not possible. Trying to thwart all attacks at once is not an ob-
vious task. Of course, some solutions proposed by Rivain and Prouff [18] and
Coron [19] can be applied. However, it would lead either to explosion in imple-
mentation cost. In the following, we attempt to boost the security level of the
AES RSM implementation at reasonable cost overhead. We discuss each of the
pitfall in detail and make an attempt to fix it.

The first pitfall arises from the fact that the value mi ⊕ mi+1 exist in the
implementation, directly or indirectly. As stated earlier the mask mi and mi+1

are balanced, but the value mi ⊕ mi+1 is unbalanced. We analysed the code
of DPACv4 implementation. The original code was written in C language. It is
compiled using avr-gcc to generate assembly code. If we check the original C
code, mi ⊕mi+1 is never computed itself. However on compilation with avr-gcc

certain instances of such nature may occur. avr-gcc reuses several general pur-
pose registers and 2-stage pipeline to optimize the design. Suppose there exist a
value x ⊕ mi in a register or pipeline. This value is followed by y ⊕ mi+1. The
side-channel activity at next clock will correspond to x⊕ y ⊕mi ⊕mi+1, which
is unbalanced.

Now looking into the DPACv4 implementation, the result of plaintext blinding
xi⊕mi stored in a register is overwritten by its sbox outputMaskedSubBytes(xi⊕
mi). The latter term can be written as SubBytes(xi)⊕mi+1 It is well known that
the activity of the register follows the value update model i.e. xi⊕SubBytes(xi)⊕
mi⊕mi+1. Thus the accidental mi⊕mi+1 leakage occurs which can be exploited
in side-channel.

A straightforward way to avoid accidental computation of the form mi ⊕
mi+1 in the implementation flow, is to rewrite the complete code in assembly
language. However writing assembly code is a tedious and error-prone task. A
common practice is to write only the sensitive modules of the code in assembly.
This is considered as best practice to avoid any surprises from compilation.
Another precaution which must be taken at this stage is register precharge.
If we precharge every general purpose register to ‘0’ value before writing in a
new value, we can avoid all leakages of form mi ⊕ mi+1. By ensuring these two
conditions, one can get rid of accidental univariate leakage like the one presented
in [14].
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The second pitfall identified in DPACv4 implementation is that the value of
offset is leaked in side-channel. In fact, the mask (m0 = 0x00,m15 = 0xFF )
have considerable higher Hamming distance of 8. All other adjacent masks have
a Hamming distance of 4, which can be identified in side-channel traces The fact
that, after each sbox, offset ← offset+ 1, allows to retrieve the offset since there
is a constant temporal distance between mask 0x00 and 0xFF . We consider
this vulnerability to be very serious as it was exploited by most of the attacks
submitted under DPACv4. Once the offset is know to the attacker, the attacker
can easily sort the traces with same offset. Same offset for a set of traces trans-
lates to same mask values i.e. a constant mask denoted by mk. Since the mask
is constant, the Pearson correlation ρ(x ⊕ mk, y) simplifies to ρ(x, y). This is
equivalent to a totally unmasked implementation.

To protect against such attacks, we propose to use a random offset for each
sbox. Although we use a random offset for each sbox, the basic set of 16 mask
remains unchanged. Therefore all the security proofs which apply to RSM also
apply to our implementation. The random offset is applied by using a random
array of 16 independent indices. This array is generate to address the array of 16
masks independently for each sbox. Unlike the original implementation, this im-
plementation can (sometimes) use same mask for multiple sboxes. Moreover by
using independant offset for each sbox, we also solve the problem of collision at-
tacks as proposed in [21]. The correlation-enhanced collision attack [21] exploits
the fact that SubBytes(xi+ki) = SubBytes(xi+8)+ki+8+0x95. By randomizing
the manipulation of mask of indices i and i + 8, this attack is no more possi-
ble, as mi and mi+8 will not have same temporal distance. Similarly in [21] the
collision attack exploiting the first and last round becomes irrelevant. The over-
head associated with this countermeasure is that the set of MaskCompensation
becomes very large to store in the memory. To solve this problem we compute
the MaskCompensation on the fly which has a time penalty as overhead.

Finally, there were certain bivariate and higher order attacks proposed un-
der the framework of DPACv4. In [7], authors tweak the original RSM scheme
for software implementation to claim first degree security. Thus if higher order
attacks work on RSM, it is as expected. There are two possible ways to boost
the security level of this implementation. The first way is to modify the masking
scheme in order to resist higher-order attacks [20]. On the other hand, one can
combine countermeasures to boost the security level while keeping overhead in
check. We choose the second method and use shuffling [4] as an additional coun-
termeasure. As the prime targets of SCA are first and last rounds of AES, we
only shuffle the order of sbox execution of first and last round of the AES. This
shuffling is performed by drawing a random permutation for indices of execution
of sboxes for first and last round for each encryption. In the middle rounds, the
sboxes are executed as before i.e. 8 even sbox indices followed by remain 8 odd
indices. Since the window of execution of the concerned sboxes will change, the
selection of trace windows for combination will not be easy. For the same reason,
attack proposed in [17] becomes impractical.
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The attacks on DPAcv4 and the corresponding countermeasures proposed in
this section are all summarized in Tab. 1.

Table 1. Attacks on DPACv4 implementation and corresponding countermeasures
proposed in this article
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First-order attack [14] x x
Recover the offset [9] . x

Collision on the sbox [21] x x
Collision 1st-last rounds [21] x x

Bivariate attacks [16] x
MIA [17] x

4.1 Target Platform

To analyze our implementation we use the same platform as of DPACv4. The
target is a 8-bit AVR microcontroller Atmega163 embedded in a smartcard. It
contains 16Kb of in-system programmable flash, 512 bytes of EEPROM, 1Kb of
internal SRAM and 32 general purpose working registers. The smartcard is read
using a simple reader interface mounted on SASEBO-W board and controlled by
Xilinx Spartan-VI FPGA. The traces are acquired using a LeCroy WaveRunner
6100A oscilloscope using an EM probe. The acquisition bandwidth is 200 MHz
and the sampling rate FS = 500 MS/s.

4.2 Implementation

The proposed implementation is written in assembly language and carefully
checked to avoid most identified pitfalls. This implementation takes the well
optimized Rijndael furious and DPACV4 implementations as references.

Tab. 2 compares the unprotected Rijndael furious and DPACv4 implementa-
tions with our improved design. Please note that the numbers includes the cost
of key expansion as well as the embedded OS used in DPACV4. Rewriting the
sensitive part in assembly actually accelerated the proposed design compared
to original one. Please note that Tab. 2 does not take into account the cost of
embedded CSPRNG which is used to generate the randomness needed for the
shuffled masking scheme. We make sure that the blinding operation is performed
in a specific order to avoid some horizontal attacks. Also, direct manipulation of
private shares with known variables is avoided. For example the key should first
be blinded with the random mask before blinding the plaintext. The improved
algorithm running on the smartcard is described in Alg. 1.
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Algorithm 1. Modified AES implementation to overcome pitfalls of
DPACv4.
Input : 16-bytes Plaintext X �X0, X1 · · ·X15�,

SubKeys, 15 16-bytes constants RoundKey[r], r ∈ �0, 14�,
16 masks of 8 bit, called Mask[]

Output: 16-bytes Ciphertext X �X0, X1 · · ·X15�

/* Draw 16 4-bit (uniformly random, unknown) offset[] for the key

blinding */

/* Draw of 2 shuffling functions (uniformly random permutations),

Shuffle0, Shuffle13 : �0, 15� → �0, 15�, bijective */

RoundKey[0] ← RoundKey[0]⊕Mask[offset[]]

/* All rounds but the last one */

for r ∈ �0, 12� do
X = X ⊕ RoundKey[r] /* AddRoundKey */

if r = 0 then
for i ∈ Shuffle0(�0, 15�) do

Xi = MaskedSubBytesoffset[i]+r(Xi)

end

else
for i ∈ �0, 15� do

Xi = MaskedSubBytesoffset[i]+r(Xi)

end

end
X = ShiftRows(X)
X = MixColumns(X)
for i ∈ �0, 15� do

MaskCompensation[i] =
ShiftRows(MixColumns(Mask[offset[i]+(r+1)]))⊕Mask[(offset[i]+(r+1))]

end
X = X ⊕MaskCompensation[]

end

/* Last round */

X = X ⊕ RoundKey[13]
for i ∈ Shuffle13(�0, 15�) do

XShuffle[i] = MaskedSubBytesoffset[i]+13(Xi)

end
X = ShiftRows(X)
X = X ⊕ RoundKey[14]

/* Ciphertext unmasking */

for i ∈ �0, 15� do
MaskCompensationLastRound[i] =
ShiftRows(Mask[offset[i] + 14]) ⊕Mask[(offset[i] + 14)]

end
X = X ⊕MaskCompensationLastRound[]
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Table 2. Cost Complexity of the original (DPACv4) over the new implementation and
Rijndael Furious

Architecture Rijndael Furious
Original Improved

Overhead
(protected) (protected)

Code Size (bytes) 2596 11136 17847 60%
RAM (bytes) 1 8 12 50%

Number of cycles 3579 113600 16004 −86%

4.3 Shuffling Algorithms

To generate the shuffle, we propose two algorithms:

1. the first one (Alg. 2) generates a full entropy permutation of �0, 2n − 1�, and
works in O(n2 log(2n)) time;

2. the second one (Alg. 3) generates a low entropy permutation of �0, 2n − 1�,
but works in linear time O(n).

Alg. 2 redraws numbers repeatedly till there is no collision. Notice that we
suggest to draw numbers in {0, 1, . . . , 2n−1}, because it is easy to draw uniformly
n bits. Instead, randomly drawing numbers in an interval is not trivial (applying
a “modulo” would break the uniformity).

Lemma 1. The expected running time of Alg. 2 is 2n
∑2n

m=1
1
m , that is equiva-

lent to O(2n log(2n)) for large values of n.

Proof. See Appendix B.

Algorithm 2. Full Entropy Shuffling

input : None
output: A permutation Fn

2 	→ Fn
2

Initialize a vector of 2n elements of Fn
2 ;

for ω ∈ {0, 1, . . . , 2n − 1} do // Scrambling

r ←R U(�0, 2n − 1�) ;
while r ∈ S[0, i− 1] do

r ←R U(�0, 2n − 1�) ;
end
S[i] ← r ;

end
return S
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Alg. 3 is inspired from the key scheduling of RC4.

Algorithm 3. Low Entropy Shuffling

input : k[2n], an array of 2n elements of Fn
2

output: A permutation Fn
2 	→ Fn

2

S[2n], an array of 2n elements of Fn
2 ;

for ω ∈ {0, 1, . . . , 2n − 1} do // Initialisation
S[ω] ← ω

end
j ← 0 for ω ∈ {0, 1, . . . , 2n − 1} do // Scrambling

j ← j + S[ω] + k[ωmod2n];
swap(S[ω], S[j]) ;

end
return S

5 Security Evaluation

We acquired 32K side-channel traces for the proposed implementation using the
setup described above. The plaintexts and the key used were same as of DPACv4.
The main aim is to check for any first-order or univariate leakage present in
the implementation. To do so, we rely on leakage detection technique. More
precisely we use Normalized Inter-Class Variance (NICV [22]). NICV detects any
univariate leakage present in the side-channel traces and does not depend on a
leakage model. It is computed with respect to public parameters like plaintext
or ciphertext. NICV is expressed as:

NICV =
Var [E [Y |X ]]

Var [Y ]
,

where Y denotes side-channel traces and X represent a chosen part of plain-
text or ciphertext. We compute NICV with respect to a input plaintext byte
for the collected traces. The results are shown in Fig 1(a). It can be deduced
from Fig 1(a), that no univariate leakage is present in the improved implemen-
tation in the SubBytes and further. We can see two big peaks during the initial
AddRoundKey in figure which indicate presence of a possible univariate leak-
age. We further investigated the peak using a univariate CPA attacks. Indeed
these peaks correspond to the loading of the raw plaintext byte into different
section of the card i.e. memory and ALU. This leakage does not contain any
information about the key used and therefore not sensitive. We can also see this
non-sensitive leakage on the NICV computed on traces of the original imple-
mentation of DPACv4 as shown in Fig 1(b). Moreover in Fig. 1(b), we detect a
univariate leakage related to the plaintext during the SubBytes operation. Such
leakage can be sensitive. We further investigated the leakage in the SubBytes
of original DPACv4 implementation. It turned out to be the same leakage as
exploited by Moradi et al [14].
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Fig. 1. NICV computed on the (a) proposed implementation; (b) original implemen-
tation of DPACv4

Next we investigate the leakage corresponding to the offset. In order to show
that our new implementation is less prone to folding attacks than the DPACV4
implementation we check that traces contains less leakage points related to the
offset value. We computed NICV with respect to the 4 bit offset used in the
first implementation. We can see in Fig. 2 that there are 48 significant peaks.
Those leakage points corresponds to the loading of the single 4 bit offset index
used to address the mask table, the sBox and the mask correction table. If the
device leaks in value, a single folding attack on one of those leakage point can be
sufficient to recover the full key. If the offset is partially leaked at each leakage
point , the attacker can exploit multiple leakage point to mount more robust
folding attacks.

Then we computed NICV with respect to the first 4-bit offset of 16 on our
new implementation. The results are shown in Fig 3. We can see three big peaks.
Those tree peaks corresponds to the loading of the index that is used to read
the mask,the sBox and the mask correction table in memory. Those leakage
are sensitive because it provide information on the byte of mask used to blind
the key. However, it is no longer possible to mount horizontal attacks since each
byte of mask is selected by a different random 4 bit offset. Knowing those leakage
point can however be used to mount ”folding” type attacks, provided that the
target leaks in value. If the target appears to leak in value, 16 folding attacks are
however not sufficient to recover the full key because the attacker should also
fold the dataset depending the 16 4-bit random shuffle. If the offset values are
partially leaked , only 3 leakage point per offset nibble are available to guess the
leaked value, which is not sufficient.

5.1 Insight on Horizontal Attacks

In this section, we compare a full entropic sbox masking against improved
RSM proposed in Sec 4. A way to mask the non linear sbox is to use sbox
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recomputation [23]. As presented in [24] this kind of masking scheme can be
defeated by using “horizontal” attacks to first recover the mask and then per-
forming first order attacks. These attacks are possible due to the fact that the
mask is used 256 times (in the case of AES) during the sbox recomputation.
Mainly the input mask of the sbox is sequentially XORed with all the possible
values in F8

2. These leakages allow an attacker to recover the value of the mask
using for example a CPA.

In DPACv4, it was also possible to build ”horizontal” attacks to recover the
random offset, and then the mask of all the sbox outputs. Indeed for each plain-
text byte there was the leakage depending on the following operation: xi ⊕ mi.
Then as the sequence of mask is known there is only 16 possible guesses, corre-
sponding to 16 masks, to recover the mask using for example a CPA.

Remark 2. Note that there are 256 different exploitable leakages in the case of
the sbox recomputation and only 16 for RSM. But the results of the “horizontal”
attacks on RSM allows to recover the mask of the sixteen bytes of the states
whereas (depending on the implementation) the “horizontal” attack on the sbox
recomputation allows to recover the mask of only one byte of the state.

In our proposition, a random offset is used to mask each byte and it is no
longer possible to perform “horizontal” attack. Indeed it is necessary to guess
1616 values. Moreover, the shuffling makes the attack even more difficult as it is
necessary to guess the 16! possible orders of plaintext.

The Success Rate is given by the formula [10]: SR = 1 − e−n×k where n is
the number of traces, in our case the number of different leakages depending
on the mask, and k is a first order exponent (obtained from a Chernov bound).
Figure 4 shows the difference of the success rate for the recovering the mask for
improved RSM and the sbox recomputation.

Fig. 4. Difference of Success Rate for normal sbox recomputation vs our proposition
of RSM
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Remark 3. The sbox recomputation can also be done in a random order but it
is necessary to generate a permutation on 256 value. This generation could be
costly (see Alg. 2 and 3).

6 Conclusions and Perspectives

LEMS has its own advantages and shortcomings. An example of LEMS was
proposed in DPACv4, where researchers from all over the world were able to
attack a common implementations. 18 profiled and non-profiled attacks were
proposed revealing 4 major pitfalls of the proposed implementation. In this pa-
per, we analyze these pitfalls and propose an improved implementation. Our
results demonstrate that it is possible to resist the non-profiled attacks at an
overhead of 27% in code size, 50% in memory and 1.5% in computation time.

Disclaimer

The exact specifications of the improved implementation of the DPA contest v4
will be posted on the official website and related social media [9].

Acknowledgments. Authors are grateful to Guillaume Duc for the animation
of the DPA contests, and to all the DPA contest participants, who made these
competitions live and very active.
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A Algorithm of DPACv4 Implementation

The algorithm running on the smartcard for DPACv4 is described in Alg. 4.

Algorithm 4. AES implementation used for the DPACv4 (Source: [9]).

Input : 16-bytes Plaintext X �X0, X1 · · ·X15�,
Key, 15 16-bytes constants RoundKey[r], r ∈ �0, 14�

Output: 16-bytes Ciphertext X �X0, X1 · · ·X15�

Draw a random offset, uniformly in �0, 15�
X = X ⊕Maskoffset /* Plaintext blinding */

/* All rounds but the last one */

for r ∈ �0, 12� do
X = X ⊕ RoundKey[r] /* AddRoundKey */

for i ∈ �0, 15� do
Xi = MaskedSubBytesoffset+i+r(Xi)

end
X = ShiftRows(X)
X = MixColumns(X)
X = X ⊕MaskCompensationoffset+1+r

end

/* Last round */

X = X ⊕ RoundKey[13]
for i ∈ �0, 15� do

Xi = MaskedSubBytesoffset+13+r(Xi)
end
X = ShiftRows(X)
X = X ⊕ RoundKey[14]

/* Ciphertext unmasking */

X = X ⊕MaskCompensationLastRoundoffset+14

B Proof of Lemma 1

The running time of Alg. 2 is probabilistic because of the conditional redraws
at line 2. Let i, 0 ≤ i < 2n, be the number of values already chosen. Then, a
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uniformly drawn value r in �0, 2n−1� is a new value with probability (2n−i)/2n.
If it is not a new value, then j redraws are required, with probability(

i

2n

)j

× 2n − i

2n
.

Thus, the average number of random number drawing is:

1 +

+∞∑
j=1

j

(
i

2n

)j

× 2n − i

2n

= 1 +

+∞∑
j=1

j

(
i

2n

)j−1

× (2n − i)i

22n

= 1 +
i

2n − i
.

because 1
(1−x)2 =

∑∞
i=1 ix

i−1 for all x ∈ R such that |x| < 1.

Thus, the average time of Alg. 2 is

2n−1∑
i=0

1 +
i

2n − i

= 2n +

2n∑
m=1

2n − m

m
(m ← 2n − i)

= 2n
2n∑

m=1

1

m
.

Now,

lim
N→+∞

N∑
m=1

1

m
− lnN = −γ ,

where γ is the Euler-Mascheroni constant (γ ≈ 0.577). Thus, the average running
time of Alg. 2 is equivalent to 2n ln(2n) when n tends to the infinity.
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Abstract. The first output bit of TRIVIUM can be considered to be
a boolean function of 80 key and 80 IV variables. Choose n (n ≤ 30)
of the key variables and set the other variables to constant values. This
gives an n-variable boolean function. In this work, we experimentally find
examples of such boolean functions which deviate from a uniform random
n-variable boolean function in a statistically significant manner. This
improves upon the previously reported experimental ‘non-randomness’
result using the cube testing methodology by Aumasson et al in 2009
for TRIVIUM restricted to 885 rounds. In contrast, we work with full
TRIVIUM and instead of using the cube methodology we directly find
the algebraic normal form of the restricted version of the first output bit
of TRIVIUM. We note, however, that our work does not indicate any
weakness of TRIVIUM. On the other hand, the kind of experiments that
we conduct for TRIVIUM can also be conducted for other ciphers.

Keywords: stream ciphers, TRIVIUM, statistical test, non-randomness.

1 Introduction

TRIVIUM is a hardware oriented synchronous stream cipher that was submitted
to the Profile II (hardware) of the eSTREAM competition by Christophe De
Cannière and Bart Preneel [DCP]. TRIVIUM maintains an internal state of size
288 bits. The state is subdivided into 3 shift registers of sizes 93, 84 and 111 bits
each. It uses a simple quadratic state update function with 3 AND operations as
the only non-linear operations per round. There are 1152 initialization rounds.
During the key generation, at each step, the state is updated and a single key bit
is produced. This key bit is the XOR of 6 state bits. Over the years TRIVIUM
has received much attention from the research community due to its simple
structure. However, there is still no known attack on full version of TRIVIUM
which works better than exhaustive search.

To gain a better understanding of the full cipher, scaled-down variants, such as
Bivium A and Bivium B [Rad06], have been studied. Both Bivium A and Bivium
B use two shift registers as their internal state unlike TRIVIUM which uses three.
The attacks on TRIVIUM can be broadly classified into two categories. The first
type analyses the scaled-down variants (Bivium A and Bivium B [Rad06]) and
tries to extrapolate their results to the full TRIVIUM. The second approach has

R.S. Chakraborty et al. (Eds.): SPACE 2014, LNCS 8804, pp. 219–236, 2014.
© Springer International Publishing Switzerland 2014
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been to study the reduced-round variants of the cipher, i.e., TRIVIUM with ‘r’
rounds of key initialization where r ≤ 1152.

Early results on reduced-round variants of TRIVIUM can be found in [TK07]
and [Vie07]. In [TK07], Turan et al used Matsui’s linear cryptanalysis method to
get a linear approximation with a bias 2−31 for 288 rounds of key initialization.
Whereas in [Vie07], Vielhaber used an IV resynchronization attack with 26 IV’s
to break 576 rounds of TRIVIUM. Englund et al in [EJT07], experimentally
showed statistical weakness in the keystream of TRIVIUM when reduced to
736 rounds of key initialization. In [O’N07], O’Neal claimed that TRIVIUM
with 1152 rounds of key initialization may not be secure and proposed that
the initialization rounds for TRIVIUM should be increased to 4 × 1152 = 4608
rounds. Fischer et al in [FKM08] used a framework for chosen IV statistical
distinguishing analysis of stream ciphers to extract few key bits of TRIVIUM
when reduced to 672 rounds of key initializations.

The cube attack was proposed in [DS09] by Dinur et al and used to recover
the key after 767 initialization rounds. The attack required 245 bit operations
and the authors showed that this can be further reduced to 236 bit operations. In
[ADMS09], Aumasson et al introduced a new class of attacks called cube testers
and developed distinguishers for 790 rounds of TRIVIUM with 230 complexity
and were able to detect non-randomness over 885 rounds in 227 complexity,
improving on the original 767-round cube attack.

Recently in [FV13], Fouque and Vannet increased the number of attacked
initialization rounds by improving the time complexity of computing cube. They
were able to find a key recovery attack requiring 239 queries for 784 initialization
rounds and were also able to provide another key recovery attack up to 799
rounds with a complexity of 240 for queries and 262 for the exhaustive search
part. In their attack, they used the Moebius Transform to improve on the time
taken in the pre-processing stage of cube attack.

Our Results: The motivation for our work is the discovery of non-randomness
after 885 rounds of TRIVIUM reported in [ADMS09]. We briefly discuss this
result. The input key and IV variables are divided into two groups called cube
variables (CV) and superpoly variables (SV). Suppose g(x1, . . . , xc; y1, . . . , ys)
denotes the boolean function representing the first keystream bit of TRIVIUM.
There are c+s input variables, where CV = {x1, . . . , xc} and SV = {y1, . . . , ys}.
Then superpoly sCV of g corresponding to a cube of size c is defined as

sCV (y1, y2, . . . , ys) =
⊕

(x1,x2,...,xc)∈F
c
2

g(x1, x2, . . . , xc; y1, y2, . . . , ys),

which is an s-variable boolean function in the variables SV. The details about
the non-randomness of 885 rounds of TRIVIUM reported in [ADMS09] is a bit
sketchy. We try to provide some more details. A cube of size 27 of IV variables
mentioned in [DS09] was considered. Set all other IV variables to 0. It was
experimentally discovered that in the superpoly corresponding to this cube, the
key variables 1, 4 and 5 are neutral (i.e., changing their values does not affect the
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outcome of the polynomial). It is mentioned that the zero key was used which
would imply that all key bits other than 1, 4 and 5 were set to zero. It was
argued that the discovery of such a polynomial in the structure of TRIVIUM is
an evidence of non-randomness. This claim is also well accepted in the literature.

In general terms the above example can be viewed as follows. Let g(x1, . . . , xc;
y1, . . . , ys) be the first output bit of TRIVIUM (after 885 rounds). The authors
discover a transformation Φ such that the key bits 1, 4 and 5 are neutral for
the boolean function Φ(g). The transformation Φ consists of applying the cube,
setting IV and the other key bits to 0.

The above kind of experimentally discovered ‘non-randomness’ after 885
rounds reported in [ADMS09] forms the motivation for our work. We ask the
question as to whether it is possible to experimentally discover some kind of
‘non-randomness’ in full TRIVIUM. As above, if g denotes the boolean func-
tion representing the first output bit, our goal is to discover a transformatiion Ψ
such that the boolean function Ψ(g) shows some statistically quantifiable devia-
tion from a uniform random function. The Ψ that we consider does not involve
evaluating a cube. The function g depends on 80 key and 80 IV variables. The
transformation Ψ consists of choosing n key variables and setting the other key
and IV variables to constant values. As a result Ψ(g) is a boolean function on
n variables. We are able to experimentally obtain examples of Ψ(g) whose de-
viation from a uniform boolean function is statistically significant. Here n is a
parameter which is at most 30.

The main computational challenge is to obtain the algebraic normal form
(ANF) of Ψ(g). For this we discuss two methods. The first one symbolically
evolves TRIVIUM over the full 1152 rounds. This requires a fast algorithm for
multiplying two boolean functions given by their ANFs and for this task we use
the implementation reported in [Sam13]. The second method proceeds by first
obtaining the truth table representation for Ψ(g) and then using the Moebius
transformation to obtain the ANF. Either of the methods yields both the ANF
and also the truth table representation of Ψ(g).

Suppose u∗ is a uniform random boolean function of n variables. The weight
of u∗ is a random variable with mean 2n−1. Given a probability α, there is an
interval Iα such that the weight of u∗ is in Iα with probability at least α. We say
that Ψ(g) is unbalanced at level α if its weight lies outside the internal Iα. Similar
notions of algebraic unbalancedness for Ψ(g) can be defined with respect to the
total number of monomials in the ANF of Ψ(g) and also with respect to the
number of monomials of degree d in the ANF of Ψ(g). We also define a notion of
unbalancedness over an l-dimensional uniform random vectorial boolean function
ũ∗. Further details of the corresponding statistical tests are provided later.

In this work, we experimentally find concrete examples of Ψ(g) for n = 10, 20
and 30 which are unbalanced, algebraically unbalanced with respect to the to-
tal number of monomials and also with respect to monomials of certain spe-
cific degrees. We further provide give concrete examples of Ψ(g̃) for n = 20, 30
(where g̃ denotes an l-dimensional vectorial boolean function) which are un-
balanced. These results are obtained for level α corresponding to more than
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99% probability. For lower values of α, we are able to obtain examples of Ψ(g)
which simultaneously fail several of the statistical tests. Our experiments consist
of randomly selecting the n key variables and choosing the values for the other
160−n key and IV variables. This in effect randomly chooses the transformation
Ψ . The reported results are obtained by randomly choosing possibilities for Ψ
several thousands of times.

We make no claims that our results exhibit a weakness of TRIVIUM. There
are two implications of our work. First, our results show that to experimen-
tally discover some ‘non-random’ polynomial in the structure of TRIVIUM, the
complicated cube analysis technique of [ADMS09] is unnecessary. Instead one
can simply look at the boolean function representing the first output bit by
setting 160 − n of the input variables to constant values. Second, our work dis-
covers ‘non-randomness’ in TRIVIUM after the full 1152 rounds of initialization
whereas [ADMS09] reported results only after 885 rounds.

The method described here is not particular to TRIVIUM. It can be applied
to any cipher. Whether the results will be similar to that obtained for TRIVIUM
is not clear and exploring this can form possible future work.

Related Work: We are not the first to consider applying statistical tests to
the algebraic normal form of the output bits of a stream cipher. An early work
by Filio [Fil02] and later follow-up in [Saa06] had explored this possibility. Our
approach, however, differs from that of [Fil02,Saa06] in the following way. The
work considered the ANFs of the first N output bits of a stream cipher and
investigated the distribution of monomials of degree d in these ANFs for d ≤ 3.
The study was thus aggregated and unlike the specific ‘non-randomness’ example
reported in [ADMS09].

2 A Brief Description of TRIVIUM

TRIVIUM maintains a 288-bit internal state “S” denoted by S = (s1, s2, . . . ,
s288) and uses two algorithms, namely a key initialization algorithm, which we
call the key and IV setup, and a key stream generation algorithm. The state S is
further divided into 3 shift registers, namely S1 = (s1, s2, . . . , s93), S2 = (s94, s95,
. . . , s177) and S3 = (s178, s179, . . . , s288).

2.1 Key and IV Setup

The algorithm is initialized by loading an 80-bit key into the first 80-bits of the
state S, i.e., s1, s2, . . . , s80 and an 80-bit IV into the state bits s94, s95, . . . , s173
and setting all remaining bits to 0, except for s286, s287, and s288, which are set to
1. Each round of the iterative process extracts the values of 15 specific state bits
and uses them to update 3 bits of the state. This is repeated for 4× 288 = 1152
times. This can be summarized by the following pseudo-code (Algorithm 1):
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Algorithm 1: TRIVIUM - Key and IV Setup

(s1, s2, . . . , s93) ←(K1,K2, . . . ,K80, 0, . . . , 0)
(s94, s95, . . . , s177) ←(IV1, IV2, . . . , IV80, 0, 0, 0, 0)
(s178, s179, . . . , s288) ←(0, . . . 0, 1, 1, 1)
for i = 1 to 4 · 288 do

t1 ←s66 ⊕ s91 · s92 ⊕ s93 ⊕ s171
t2 ←s162 ⊕ s175 · s176 ⊕ s177 ⊕ s264
t3 ←s243 ⊕ s286 · s287 ⊕ s288 ⊕ s69
(s1, s2, . . . , s93) ←(t3, s1, . . . , s92)
(s94, s95, . . . , s177) ←(t1, s94, . . . , s176)
(s178, s179, . . . , s288) ←(t2, s178, . . . , s287)

end

2.2 Key Stream Generation

The key stream generation algorithm is similar to that of the key initialization
algorithm except that at each round, a single bit which is a linear function of six
state bits, is output before the state update. This process repeats itself until the
requested N ≤ 264 bits of key stream is generated. The complete description is
given by the following pseudo-code (Algorithm 2):

Algorithm 2: TRIVIUM - Key Stream Generation

for i = 1 to N do
t1 ←s66 ⊕ s93
t2 ←s162 ⊕ s177
t3 ←s243 ⊕ s288
zi ←t1 ⊕ t2 ⊕ t3
t1 ←t1 ⊕ s91 · s92 ⊕ s171
t2 ←t2 ⊕ s175 · s176 ⊕ s264
t3 ←t3 ⊕ s286 · s287 ⊕ s69
(s1, s2, . . . , s93) ←(t3, s1, . . . , s92)
(s94, s95, . . . , s177) ←(t1, s94, . . . , s176)
(s178, s179, . . . , s288) ←(t2, s178, . . . , s287)

end

3 Algebraic Normal Forms of the Output Bits of
TRIVIUM

Let us denote the key K by (k1, k2, . . . , k80) and the IV by (iv1, iv2, . . . , iv80).
If instead of bits, we consider the key and the IV as variables then the state is
initialized as follows:

(s1, s2, . . . , s93) ←(k1, k2, . . . , k80, 0, . . . , 0),

(s94, s95, . . . , s177) ←(iv1, iv2, . . . , iv80, 0, 0, 0, 0),

(s178, s179, . . . , s288) ←(0, . . . 0, 1, 1, 1).
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During each state update these state bits get multiplied and added in the
boolean function ring defined over the variables K and IV . Thus, considering
each state bit as a boolean function in 80 + 80 = 160 variables, one can view
each state update as performing 3 multiplications (1 for each ti, i = 1, 2, 3.) and
9 additions (3 for each ti, i = 1, 2, 3.). Addition is just bitwise XOR, whereas
multiplication is that of two boolean functions given by their ANF’s.

Handling the ANF of a boolean function on 160 variables is infeasible. Hence,
we reduce the number of variables in the following manner. The key and IV bit
positions which are to be treated as variables are randomly selected. These se-
lected bit positions are then renamed as variables k1, k2, . . . , knk

and iv1, iv2, . . . ,
ivniv , such that nk + niv = n. We work with n ≤ 30. The rest of the key and IV
bit positions are then set randomly to either 0 or 1. The outputs bits of TRIV-
IUM can then be considered to be boolean functions of n variables. We provide
two methods to compute the ANFs of the output bits.

3.1 Method - 1

A symbolic computation of TRIVIUM is carried out where the state bits are
treated as polynomials in k1, k2, . . . , knk

and iv1, iv2, . . . , ivniv . As a result, the
first output bit which is the bitwise XOR of six state bits, namely s66, s93, s162,
s177, s243 and s288 is also a polynomial in these variables.

The main time-consuming step in the above symbolic computation is that of
multiplying the ANFs of two boolean functions. We used the implementation
MultANF64 of multiplication described in [Sam13]. Using this algorithm, two
30-variable boolean functions can be multiplied in less than 2 seconds on a 3
GHz processor. Carrying out the simulation of full 1152 rounds of TRIVIUM
with n = 30 requires 3456 multiplications and the entire computation requires
about one-and-half hours.

The complexity of Method - 1 is dominated by the number of multiplications
of two n-variable boolean functions. We know from [Jou09] that the complexity
for multiplying two n-variable boolean functions in their ANF is of the order
of 3n2n. TRIVIUM uses 3 multiplications at each round. Therefore the total
complexity of Method - 1 when used to evaluate an r-round variant of TRIVIUM
(TRIVIUM with r rounds of key initializations) is of the order of 9rn2n.

3.2 Method - 2

The second method first constructs the truth table of the first output bit z1
which is a polynomial in n variables as mentioned above. A fast implementation
of TRIVIUM is used to evaluate z1 on all possible 2n input combinations. This
provides the truth table representation of z1. This is converted into the ANF
format using the Moebius transformation (see [Jou09] for a description of this
algorithm).

The complexity of Method - 2 when used to evaluate r-round variant of TRIV-
IUM is 2n computations of r-round TRIVIUM plus the cost required to convert
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the truth table of an n-variable boolean function into its corresponding ANF.
And the cost for the conversion of the truth table to its ANF is O (n2n).

3.3 Complexity of the Cube Tester

Let the IV variables be divided into two parts the cube variables (CV) and the
superpoly variables (SV). All the key variables are also treated as SV. Consider
an r-round variant of TRIVIUM, i.e., TRIVIUM with r rounds of key initializa-
tion. The cube tester [ADMS09] selects the cube variables from the 80 available
IV variables. It treats the remaining key and IV variables as SV. It further di-
vides the SV variables into two parts. Let us call the first part of variables as the
function variables (FV) and retain the name SV for the second part of variables.
In the cube testers for TRIVIUM mentioned in [ADMS09] the SV variables are
all set to zero whereas the FV variables are set to fixed random values. Then 2CV

many executions of r-round TRIVIUM is used to find the value of the super-
poly at (SV, FV). This is repeated for N different choices of FV. Therefore, to
test one particular superpoly the attacker needs N × 2CV executions of r-round
TRIVIUM. In their paper [ADMS09] the authors had mainly concentrated on
the cubes that were listed in the appendix of [DS09]. As mentioned in the paper
the maximum size of FV and CV considered are 5 and 30 respectively. Therefore
in order to compute the complete truth table of a 5-variable function the cube
tester has to compute 235 r-round variant of TRIVIUM.

4 Some Elementary Statistics

Let X1, . . . , Xn be independent Bernoulli distributed random variables with
Pr[Xi = 0] = p. Then X = X1 + · · · + XN follows Bin(N, p) with expected
value Np. Given a probability α, there is an interval Iα which is symmetric
about the mean, such that Pr[X ∈ Iα] ≥ α. If N is large enough, then the bino-
mial distribution is well approximated by the normal distribution and it is quite
routine to use the normal approximation to obtain Pr[X ∈ Iα]. Further, given α,
the interval Iα is found by converting to standard normal and then using tables
for the standard normal distribution.

Denote by u∗ a uniform random n-variable polynomial. For our study, we will
follow the above statistical approach for u∗ in the following settings.

Total Number of Monomials in u∗: Any particular monomial occurs in u∗

with probability 1/2 and is independent of the occurrence of any other monomial.
If we denote the 2n possible monomials of n variables as m0, . . . ,m2n−1, then
we have 2n random variables X0, . . . , X2n−1 where Xi is 1 if mi is present in u∗

and 0 otherwise. The random variables X0, . . . , X2n−1 are independent Bernoulli
distributed variables with Pr[Xi = 1] = 1/2. The number of monomials in u∗ is
X = X0 + · · · +X2n−1 and follows Bin(2n, 1/2).

Number of Monomials of Degree d in u∗: Consider the number of mono-
mials of degree d in u∗. There are a total of

(
n
d

)
such monomials. In a manner

similar to the above case, the number of monomials of degree d in u∗ follows
Bin

((
n
d

)
, 1/2

)
.
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Weight of u∗: For any input, the output of u∗ is 0 or 1 with probability 1/2
and this is independent of the output of u∗ on any other input. So, as in the
case of total number of monomials, the weight of u∗ follows Bin(2n, 1/2).

Determining Whether a Given Polynomial is ‘Non-random’: Given a
particular n-variable boolean function f , we can compute the total number of
monomials in f . If the number of monomials turns out to be ‘significantly’ away
from 2n−1, then this is usually taken as an indication of some kind of non-
randomness in f . We will use the term algebraically unbalanced to express the
idea that the total number of monomials in f deviates significantly from the
expected number of monomials in a uniform random polynomial.

Statistical tests will be conducted as follows. For a probability α, we first
compute the interval Iα such that the total number of monomials in u∗ will be
in Iα with probability at least α. Then the total number of monomials in the
given function f is calculated. If this lies outside the interval Iα, then we say
that the function f fails the algebraic balancedness test for probability α, or
that f is algebraically unbalanced at level α written as AUα.

In a similar manner we conduct tests on f for monomials of degree d and the
weight of f . Given an α, the interval Iα for the weight of f will be the same as
that for the total number of monomials. On the other hand, when considering

monomials of degree d, the interval I
(d)
α will depend on d. This is because the

number of trials in the binomial distribution corresponding to monomials of
degree d is

(
n
d

)
. If the number of monomials of degree d in f is outside the

interval I
(d)
α , then we will say that f is d-algebraically unbalanced at level α,

written as d-AUα. Similarly, if the weight of f is outside the interval Iα, then we
say that f is unbalanced at level α, written as Uα.

5 Unbalancedness over First l Output Bits

This section generalizes the test for unbalancedness of a boolean function f to
vectorial boolean functions of dimension l. An l-dimensional vectorial boolean
function is defined as f̃ : Fn

2 → Fl
2, such that

f̃ (x1, . . . , xn) = (f1 (x1, . . . , xn) , f2 (x1, . . . , xn) , . . . , fl (x1, . . . , xn))

where each fi (x1, x2, . . . , xn), i = 1, 2, . . . , l are n-variable boolean functions.
Denote a uniform random vectorial boolean function by ũ∗, where each of its co-
ordinates u∗

i , i = 1, 2, . . . , l behaves as uniformly and independently distributed
n-variable polynomials.

Statistics Involved: Let Xi,j ∈ {0, 1} , i ∈ {1, 2, 3, . . . , l} and j ∈ {1, 2, 3, . . . , N},
denote mutually independent random variables with Xi,j ∼ Ber (pi) for all j ∈
{1, 2, . . . , N}. Let Xi =

∑N
j=1 Xi,j , i ∈ {1, 2, 3, . . . , l}. Then X1, X2, . . . , Xl are

independently distributed with each Xi ∼ Bin (N, pi). For sufficiently large N ,
Xi’s are well approximated by normal distribution with mean Npi and variance
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Npi (1 − pi). Let Yi = Xi−Npi√
Npi(1−pi)

. Then the random variables Y1, Y2, . . . , Yl

and hence Y 2
1 , Y

2
2 , . . . , Y

2
l are mutually independent with each Yi ∼ N (0, 1)

and Y 2
i ∼ χ2 (1) (Chi-squared distribution with 1 degree of freedom). Therefore∑l

i=1 Y
2
i ∼ χ2 (l) (Chi-squared distribution with l degree of freedom). For a given

α and l degrees of freedom, we therefore can get an interval Iα =
[
0, χ2 (l)α

]
such that Pr

[∑l
i=1 Y

2
i ∈ Iα

]
= α.

Weight of ũ∗: For any input and any coordinate i (i ∈ {1, 2, . . . , l}), the output
of u∗

i is 0 or 1 with probability 1/2 and this is independent on any other input
and coordinate i. For a given coordinate i we denote the 2n (= N) possible
outputs of the n-variable boolean function u∗

i as Xi,0, Xi,1, . . . , Xi,2n−1, where
Xi,j is 1 if the jth output of u∗

i is 0 and 0 otherwise. Given i, the random
variables Xi,0, Xi,1, . . . , Xi,2n−1 are independent Bernoulli distributed variables
with Pr[Xi,j = 1] = 1/2. Thus the number of zeros in the 2n outputs of u∗

i is

Xi =
∑2n−1

j=0 Xi,j and follows Bin(2n, 1/2). For n ≥ 5,Xi’s are well approximated

by N
(
2n−1, 2n−2

)
. Hence, the mutually independent random variables Y 2

i =(
Xi−2n−1√

2n−2

)2
∼ χ2 (1) for all i ∈ {1, 2, . . . , l}. Therefore,

∑l
i=1 Y

2
i ∼ χ2 (l).

Determining a l-Dimensional Vectorial Boolean Function to Be ‘Non-
random’: Given an l-dimensional vectorial boolean function f̃ in variables
x1, x2, . . . , xn, we construct its l-dimensional truth table. For each of the 2n

possible values of the variables x1, x2, . . . , xn, we consider the corresponding
values of f̃ (x1, x2, . . . , xn). This corresponds to the l-dimensional truth table of
f̃ . Each coordinate i of this l-dimensional truth table individually corresponds
to the truth table of fi. Let ni denote the number of zeros in the truth ta-

ble corresponding to fi. Compute
∑l

i=1

(
ni−2n−1√

2n−2

)2
For a given α and l, if∑l

i=1

(
ni−2n−1√

2n−2

)2
> χ2 (l)α then we say that the l-dimensional vectorial boolean

function f̃ is unbalanced at level α, written as Ul,α

6 Searching for (Algebraically) Unbalanced Polynomials

As mentioned earlier, the first output bit of Trivium can be written as a boolean
function of 80 key and 80 IV variables. Since, it is infeasible to handle 160-
variable boolean functions, we have used the following strategy to search for
unbalanced polynomials.

1. Fix n to be an integer which is at most 30.
2. Out of the 80 key variables, choose n key variables.
3. Set the remaining 80−n key variables and 80 IV variables to random binary

values. This defines the first output bit to be a function f of the n key
variables.
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4. Use either Method-1 or Method-2 to obtain both the truth table represen-
tation and the algebraic normal form of the first output bit.

5. Determine whether f is AUα, d-AUα, Uα or Ul,α. For all the test except Ul,α

we have used 6 values α1, . . . , α6 with αi = 1− 1/2i+1 to conduct the tests.
These values roughly correspond to 75%, 87.5%, 93.75%, 96.88%, 98.44%
and 99.22% probabilities respectively. For Ul,α the value of α was set at
99.5%.

Note that the above method randomly searches for a function f which fails one
or more of the tests. For a fixed n, Steps 2 and 3 above perform the task of
selecting an f ; Step 4 performs the task of generating the ANF of f ; and finally
Step 5 performs the test on f . If f fails one or more of the tests, then this f is
reported.

The tests for different values of α are not independent. For i > j, αi > αj

and so, Iαi ⊃ Iαj . As a consequence, if a function f is AUαi then it is also AUαj .
Similar comments hold for d-AUα and Uα.

6.1 Experimental Results

The experiments were conducted by taking values of n = 10, 20 and 30. Table 1
gives some polynomials for n = 10, 20, 30, which are Uα6 , i.e., these polynomials
are unbalanced at level α6. In the Table the column “Key Variables” indicate the
key bit positions that were treated as variables. The columns “Key Constant”
and “IV Constant” gives the values of 80− n and 80 bits of the key and IV bits
which were set to constant values.

Consider once more what it means for a polynomial to be unbalanced at level
α6. With probability α6, i.e., with about 99% probability, the weight of a uniform
random function will be in the interval Iα6 . Here we report examples of f whose
weight lies outside the interval Iα6 . This indicates significant unbalancedness.

Table 1. Table showing list of polynomials which are Uα6 . The values given in the
table are for n = 10, 20, 30 and 1152 key initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Number
of 0’s

10
1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX452D5AA716418A9CC OXBC925DE125682B159CB4 465

OX1476803AD7850AD36 OXA1D62667224E6CF221CF 465

OX31D5EC5914E3D922F OXE24571405777B5521A 555

OX54CD8D3B53FC0A114 OXD4702BB150946D98D944 556

OX238009F2E69728CB8 OX68131089DB607D1981F1 556

OX53DB1C63D36BB4FD2 OXCF5050997F8601AB88EF 558

OX42F216A6B2AFCEC17 OX30E66D573F151F784B58 560

OX17485DC470A73061E OXD54A1D5A59055062EFB6 571

Continued on next page
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Table 1 – Continued from previous page
n Key Variables Key Constant IV Constant

Number
of 0’s

15, 16, 20, 27, 31, 37, 41, 45, 58, 73 OX27F50AF693342B6F9 OX706CCD7801037A0A49 437

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX3625E972822DB6A OXB2D91DF4E87047E9B8C6 522657

OX80F5C4876AADE17 OXA380363693475CFCCEB 522768

OXB7521EE35C15C4B OX309D70CFFD406A96299A 522860

OXBCEFBB60D3A6BAF OXB0EC6893275307067F03 522862

OXCD8AC4B29BEE0B1 OX1DFF5B9FFE4363C2F1A3 522902

30

1, 4, 7, 9, 10, 12, 13, 14, 15, 21,
25, 27, 30, 31, 32, 33, 34, 44, 52, 54,
55, 56, 58, 59, 62, 66, 69, 70, 74, 79

OX290C10B0294D2 OX586A33527C2928DDE2C6 536920658

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX1FD41217D312F OXC8C051B0D49C69D1A7DD 536822130

OX12C5E491E4B6F OX99E4748853D60D6617EC 536920867

Table 2, gives some polynomials for n = 10, 20, 30, which are AUα6 , i.e., these
polynomials are algebraically unbalanced at level α6. Further, the entries d in
the column “Monomial Degrees” indicate that the corresponding function is also
d-AUα6 . The entry “None” in the column “Monomial Degrees” means that the
corresponding function is not d-AUα6 for any value of d = 2, 3, . . . , n− 2. Again
we note that the reported functions show algebraic unbalancedness at a level
corresponding to 99.22% probability which indicates a significant deviation.

Table 2. Table showing list of polynomials which are AUα6 . Some of them are also
d-AUα6 . The values given in the table are for n = 10, 20, 30 and 1152 key initialization
rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37FE4B0255D1D295C OXD70079FAE0F0308EC206 6, 8

OX457B6B0466DE7552E OXD167CC3093E7E699466 None

OX0484EB9A3E80085D OX9B10785F6BF67CA8D5CB None

OX243E3DFA82D00EE44 OXB4526FDF61F96D7FCAE3 None

15, 16, 20, 27, 31, 37, 41, 45, 58, 73 OX5EE252240CE406D5 OX3F0E2249DE7C031CF797 None

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX56B4A18579E0D3E OXAC576EF0BDDE67E72619 None

OXFC12A46241151AD OX10E6744E590F46973ADD 13

OXADC520A5DA98587 OX77EC7B17675B6489CAD8 None

OXC6AFA4B133A47F7 OX61207A01BCC272B683F9 None

OX43ED55256B3CFF5 OX822E158DE22B7390747F None

OXAA1BE875BC0B948 OXE49D3F5E9DF3726567A 10

OX44B684623514BE0 OX9CB0767A4B911C07655B 13

OXF9BB1A903D2B55A OXBEFF617BF05E74ED8172 11

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OXE65F1294C96A OXEB482AFBDFE04F8DAD56 14

OX128D80C2688E3 OX3CF5643BE9AD30EAC0C8 None

OX199D831A8D833 OX9F7651D0129823F00C61 None

OX1DBD945A6AD33 OXDB855A93A2834AC2FE5C 15
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Experiments to test Ul,α were done by taking values of n = 20, 30 and l = 8.
Tests were done by setting α = 0.995. Table 3 gives examples of polynomials
which are U8,0.995 for n = 20, 30. For n = 20, we found 4 such polynomials
whereas for n = 30 we found 6 polynomials.

Table 3. Table showing U8,0.995 polynomials for n = 20, 30

n Key Variables Key Constant IV Constant

20
0, 4, 10, 11, 18, 19, 20, 21, 29, 30,
32, 35, 38, 41, 42, 43, 45, 56, 66, 69

OXE83EDFD172DA59E OXD6985433DD11269B7EEC

OX8976F5F031C8922 OX7F8322315CFB6675E72C

OX671FA8E37FA1559 OX52CCAD8EF5C7C69766A

OX25FB47658CE713C OX73D27D4741280A814760

30

0, 2, 3, 4, 7, 8, 12, 19, 23, 26,
30, 33, 35, 37, 38, 39, 42, 43, 44, 49,
54, 58, 60, 62, 63, 64, 65, 70, 72, 76

OX3646D112845B2 OXB1E95646DCFA6FF10729

OX259294BDB83A1 OX6028CA379F720ABC080

OX11C4515398DDF OXCEB11DDCCDCE6CD72BC1

OX188CF40F48433 OXE2F81539EA2F476236B3

0, 1, 5, 6, 7, 12, 13, 14, 21, 24,
36, 37, 40, 43, 47, 52, 55, 56, 58, 61,
63, 64, 65, 68, 72, 73, 75, 77, 78, 79

OX1067524FF3553 OXD91F545A23C53ADC5796

OX2588D2C38E8BF OX388A1E1866F8247F8D51

We note that our experiments did not find any polynomial which simultane-
ously fail the tests for balancedness, total number of monomials and monomials
of certain degrees at level α6. On the other hand, as we go down from level α6

to level α1, the experiments find more and more examples of polynomials si-
multaneously failing the tests for balancedness, total number of monomials and
monomials of certain degree. Some examples are noted below and the details are
given in the appendix.

1. Table 5 (Appendix A) gives a few polynomials which simultaneously fails
the test for balancedness and the test for the total number of monomials at
level α4. In addition, the table also gives the monomial degrees for which the
test fails. We found 3 polynomials for n = 10 and 2 polynomials for n = 30
which had failed the test. However, we did not find any example for n = 20.

2. Tables 4, 5, 6, 7, 8 (Appendix A) give examples of polynomials which simul-
taneously fail the three tests at levels α5, α4, α3, α2 and α1, respectively. In
case of α = α5, we can see from Table 4 that corresponding to n = 10 we
have only two polynomials which failed the tests, whereas we could not find
any such examples for n = 20, 30. However, when the value of α was relaxed
to α1, we found 45, 61 and 28 polynomials for n = 10, 20 and 30, respectively.
Due to space constraint Table 8 gives 27 and 38 polynomials corresponding
to n = 10 and 20 (for the full table refer to [SS14]). The tables also show
a steady increase in the number of monomials of a particular degree failing
the test as α decreases.
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7 Conclusion

In this paper, we have reported results of experiments conducted on the boolean
function representing the first output bit of full TRIVIUM. These results show
that by suitably restricting some of the input variables to constant values, it is
possible to obtain polynomials which deviate from a uniform random polynomial
in a statistically quantifiable manner. Our results may be considered as show-
ing some kind of ‘non-randomness’ in full TRIVIUM. This is to be contrasted
with the experimental evidence of ‘non-randomness’ after 885 rounds reported
in [ADMS09] using the complicated machinery of cube testers. We note on the
one hand, that our results do not indicate any weakness in TRIVIUM, and on
the other hand, that similar tests can be carried out on other ciphers.

At this point, we do not have any theoretical explanations for the experimen-
tally obtained observations. Looking for such observations can form the task of
future research.
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A Tables

Table 4. Table showing list of polynomials which are both AUα5 and Uα5 . Some of
them are also d-AUα5 . The values given in the table are for n = 10, 20, 30 and 1152 key
initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78
OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 None

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 7

Table 5. Table showing list of polynomials which are both AUα4 and Uα4 . Some of
them are also d-AUα4 . The values given in the table are for n = 10, 20, 30 and 1152 key
initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 None

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 5, 8

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX11D3963CFE658 OXE9F618EC66862A0DEB4E 12

OX191766116C74F OX1E8B7D71045E0F56A4EA 4, 24

Table 6. Table showing list of polynomials which are both AUα3 and Uα3 . Some of
them are also d-AUα3 . The values given in the table are for n = 10, 20, 30 and 1152 key
initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 None

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 2, 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 5, 8

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX6725535534737CA OXDDAE21B901422A1643A None

OXDDAE21B901422A1643A OXF51C70E932C18D17D41 None

Continued on next page
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Table 6 – Continued from previous page
n Key Variables Key Constant IV Constant

Monomial
Degrees

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX11D3963CFE658 OXE9F618EC66862A0DEB4E 12

OX3C25D092EFEF9 OXEE0C5AA49BA676F04E05 14, 15

OX613242AFA99E OX74996C308B57426EC1FF 4, 13

OX191766116C74F OX1E8B7D71045E0F56A4EA 4, 24

Table 7. Table showing list of polynomials which are both AUα2 and Uα2 . Some of
them are also d-AUα2 . The values given in the table are for n = 10, 20, 30 and 1152 key
initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5 3, 4

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 2, 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 4, 5, 8

OX22C82FA5C4FF1FFA7 OX8E6C7CCC6DA42DE02582 6

OX46F73734324A8C3CF OXED6F602BFE6161C4B002 5, 7, 8

OX548E1A39B23F3483B OX2C2B1447188F2DF15053 6, 8

OX52A20EB6B6861FD2B OX69EF224FC6FB72AC6C37 2, 3

OX243E3DFA82D00EE44 OXB4526FDF61F96D7FCAE3 5, 6

OX21FEF73EB0DC5739A OX7598278A31B96B6E06F5 3

OX36B1281D43A9240B3 OXE58A191A1E6C333C8EFD 3, 5

OX1185DD59742FE8169 OX89B62A60C21C42A0E6B2 4,

OX37FE4B0255D1D295C OXD70079FAE0F0308EC206 6, 7, 8

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX6725535534737CA OXDDAE21B901422A1643A
8, 12, 15,

17

OXC481FD7BC1F523 OXC37057969DFB005C79DC
5, 6, 8,

9

OXDF7305B0CFDB228 OXC9C17DF5198908297669 8

OX3480FFC0AD084D6 OXF51C70E932C18D17D41 9, 15

OX80A26F93FFE786E OX49025F652E977970AAA3
3, 5, 6,

9

OX99997304FBA97AB OX91A0123D835369D66539 3, 10, 11

OX1438B4C6E410610 OXEC881E225AE17BE12D06 6, 16

OX2B8619E6B23FD69 OXF24C75F66F5957352674 None

OX2E93E577A837AAC OXF50C2B06C5B100F1D712 2, 14

OXFDAFFE872B1ECA6 OX63F0791A5BD92EA49167 2, 7, 10

OX1E15EFE0723A1A0 OXAFF45320480C32FE05AD
11, 12, 13,

14, 17

OX94252897FEBA OX40B53BED60BA2A4EF7BD 7

OX5A4644E0DCF37F1 OXAFE71BE0360E0C918B9C 3, 9, 13

OXAA07D7C6F262C91 OX4F821468B1891D2AD371
2, 3, 4,

12

OX748AA0B4C4431F6 OX6BB3415153E252D74428 9

OX82641E96DDFE210 OXA045545ADF754FE49440 4, 16, 17

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX11D3963CFE658 OXE9F618EC66862A0DEB4E 12, 15, 18

OX3C25D092EFEF9 OXEE0C5AA49BA676F04E05 14, 15, 23

Continued on next page
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Table 7 – Continued from previous page
n Key Variables Key Constant IV Constant

Monomial
Degrees

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OXCDCA70B4903D OX28094F93A84519B6030
2, 12, 21,

26

OX613242AFA99E OX74996C308B57426EC1FF
4, 13, 15,
19, 24, 26,

27

OX191766116C74F OX1E8B7D71045E0F56A4EA
4, 18, 24,

25

Table 8. Table showing list of polynomials which are both AUα1 and Uα1 . Some of
them are also d-AUα1 . The values given in the table are for n = 10, 20, 30 and 1152 key
initialization rounds of TRIVIUM.

n Key Variables Key Constant IV Constant
Monomial
Degrees

10 1, 4, 22, 38, 42, 44, 53, 56, 61, 78

OX37BDD3EAD0BAFABC0 OXDB565D9DB98F4E3389C5
2, 3, 4,

5

OX47E214EB5727E04C9 OXD34F684B1055DAECE93 2, 4, 7

OX4547D85442C8D68CF OXD08829A188F6241E7C2D 4, 5, 8

OX46F73734324A8C3CF OXED6F602BFE6161C4B002 5, 7, 8

OX548E1A39B23F3483B OX2C2B1447188F2DF15053 6, 7, 8

OX32C3B8564711127E2 OXC3B65FA580064682A886
2, 5, 6,
7, 8

OX36700C6F525F4A15E OX76C0CA72E4037279E52 2, 5, 7

OX52A20EB6B6861FD2B OX69EF224FC6FB72AC6C37 2, 3, 6

OX243E3DFA82D00EE44 OXB4526FDF61F96D7FCAE3 5, 6, 7

OX36B1281D43A9240B3 OXE58A191A1E6C333C8EFD 2, 3, 5

OX25964FF8044895C95 OXCFC776D1C4E100F35C85 2, 4, 5

OX2628BA81850F8F769 OX1FCF571CE4612534B608 4, 8

OX043DACA1A2026DBDA OXBDC5DCD77F921AABDF6 4, 7

OX2126745C279E5A10C OX1248772E03E133CE0B7B 2, 7

OX368252990744C0C7 OX74DF32D819F351C27B0E 2, 3, 4

OX52FFFC0FF6FD88EBD OXF66572321FFA19728935 3, 7

OX14B0825030BA0A96B OX207C5A11622E7FE89689 2, 3, 7

OX568F9EDC3FA5CFC5 OXCD8D6086AF815B848C24 3, 6, 8

OX37A8A2D3F4AD45193 OXD49B28D3ABC66F27C37E 3, 6

OX457B6B0466DE7552E OXD167CC3093E7E699466 5, 6

OX2188425AC63CCD33F OX90C929DD67D3678472EE
2, 4, 5,
6, 8

OX2454FEF2819CFDFE8 OX9E71576A5F36051743D5 6, 7

OX37FE4B0255D1D295C OXD70079FAE0F0308EC206
4, 6, 7,

8

OX53CD508F74BBC7DBE OXC37E2A7F2F8164D022BB 5, 7, 8

OX4708A09334FCAFE4F OX4A4C60F2FECB3B1FFA4F 2, 3, 5

OX11CCD131147B71B01 OX82C85493CE4525CC267A 4, 7

OX073A6C0377AF88B83 OX6351165578DB3B77F014 3, 5

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OXCD8AC4B29BEE0B1 OX1DFF5B9FFE4363C2F1A3
2, 5, 8,
13, 17

OX6725535534737CA OXDDAE21B901422A1643A
8, 12, 15,
16, 17

OXC481FD7BC1F523 OXC37057969DFB005C79DC
5, 6, 8,
9, 14

OXDF7305B0CFDB228 OXC9C17DF5198908297669
4, 6, 8,
17, 18

Continued on next page
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Table 8 – Continued from previous page
n Key Variables Key Constant IV Constant

Monomial
Degrees

20
0, 1, 9, 10, 14, 19, 27, 29, 41, 42,

52, 55, 62, 64, 68, 69, 71, 75, 78, 79

OX3480FFC0AD084D6 OXF51C70E932C18D17D41
4, 6, 9,
14, 15

OXF79DC891384AFF0 OXDDAF2C635F1725E5722C
2, 3, 5,

11, 15, 17

OX80A26F93FFE786E OX49025F652E977970AAA3
3, 4, 5,
6, 9, 14

OX1438B4C6E410610 OXEC881E225AE17BE12D06
2, 6, 7,
9, 16

OX3907E66406C1230 OXCC4F643389D174E09308
9, 11, 12,

17

OX1C2904C43FF6577 OXE73A4739E4C117D70E8E
7, 11, 12,
13, 16, 17

OX2E93E577A837AAC OXF50C2B06C5B100F1D712
2, 3, 5,
13, 14

OXFDAFFE872B1ECA6 OX63F0791A5BD92EA49167
2, 5, 7,
10, 15

OX1B3537B58870F55 OXA33A411FC4173976088F
2, 3, 5,
8, 9, 10,
14, 15, 18

OX1E15EFE0723A1A0 OXAFF45320480C32FE05AD
2, 6, 11,

12, 13, 14,
15, 17

OX7E51F8E40591536 OXB9C6CEF795453064BE6
9, 10, 14,
15, 17

OXD241FF6460C6208 OX5C725E6A96F9353ECCE8
2, 5, 12,
14, 18

OX69219DE1A75C6B5 OX59FB6A44546208BBA473
5, 8, 9,

12, 13, 15

OX8CA5215750A80AE OXBBFE302CAEC030A95C66
2, 7, 11,

18

OX92E4EE44F4AA9B0 OXB2E35370E80D3FA438FE
5, 7, 8,

9, 10, 11,
12, 14

OXC906517717370E8 OX407C62FEAAD57DE22435
6, 8, 9,

15

OX5E2587E52504105 OX492770685C260EB94076
3, 4, 5,
7, 9, 11,

14

OX66BE1B647D74852 OXE2B64E025081086192F3
2, 4, 5,
7, 8, 11,

13

OXC987FF2679818EA OXECBC1922F4E82FE0E298
3, 9, 14,
15, 16

OXA01F4042A39D2AF OXB42E343741AE2885A4B8
8, 10, 11,
15, 16

OX6FEDB601C5D0F7 OXACF51C7A59AC427CBA18
2, 4, 13,

14, 16, 17,
18

OX349068A2D3BE11B OXF51A7B67A45C5173EDB0
2, 6, 9,

10, 11, 12

OX9904566610C1359 OX5C921B727602478B4F1F
2, 11, 13,

18

OX631BFA24A283F98 OX8BEE5BDF986177DEFCB7
2, 4, 7,

8, 14, 15,
17

OX41B6D6E060B45 OXF4301269A0A373516F83
4, 6, 7,
9, 15

OX6AE3E77490E6D0B OXED4B6FCC7E5B1FFAA681
2, 6, 12,
15, 17

OXF9BB1A903D2B55A OXBEFF617BF05E74ED8172
6, 9, 11,

18

OXADB103911781696 OX78001622345E7535AF89
2, 3, 10,
12, 13, 14

OXD4BAF7074479E09 OX3CB7239F46CD1A18C135
5, 6, 13,
16, 18

OXBCF4D6769BCEFB OX6D344C7B4AC745BC07FC
10, 11, 12,

18

OXD989E1257E60721 OX85F9933760D63491E6D
2, 8, 13,

18

OXFE4EC2B5DF70C87 OX7E0D7707ABF24E5811D8
4, 7, 8,

10, 11,14,
17

OXAA07D7C6F262C91 OX4F821468B1891D2AD371
2, 3, 4,
5, 7, 12

OX82641E96DDFE210 OXA045545ADF754FE49440
4, 12, 13,
16, 17

Continued on next page
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Table 8 – Continued from previous page
n Key Variables Key Constant IV Constant

Monomial
Degrees

30

7, 15, 20, 21, 22, 26, 29, 30, 32, 33,
34, 41, 42, 49, 52, 54, 55, 56, 57, 59,
60, 63, 64, 65, 66, 72, 75, 76, 78, 79

OX2A3B12E5B3AAA OX9107625D556D1E48A3B5
3, 7, 13,

16, 17, 18,
20, 23, 25

OX11D3963CFE658 OXE9F618EC66862A0DEB4E
9, 12, 13,
14, 15, 18

OXF8534CF8A0C4 OXCEDD5CCE04F12DF6FA42
7, 9, 10,
14, 15, 18

OXE0D05859F75D OXDE0D17F6F4A032F4345A
2, 4, 5,

8, 13, 15,
16, 18

OX1767659F97A78 OXDB0E189FAA7523B7F38C
3, 5, 11,

12, 13, 16,
18, 19, 24

OX3C25D092EFEF9 OXEE0C5AA49BA676F04E05
4, 8, 10,

14, 15, 23,
24

OX358F63BC9862E OX2B8A12AF7C7513BFB545
4, 5, 8,

10, 14, 15,
16, 23, 25

OXCDCA70B4903D OX28094F93A84519B6030
2, 6, 12,

16, 21, 24,
26

OX186E1140CAE7A OXE5893222F3CF2AD91C84
3, 10, 17,
21, 24

OXF5633C0E0766 OX3A2161ED1A9A6C545C99
6, 8, 14,

16, 17, 18,
23, 25

OX3EF1C76CC3786 OX91441019D7A5F99C0E2
5, 8, 15,

16, 19, 22,
26, 27

OX1E3305EE66BF7 OX84052206580263DB7246
3, 9, 12,
14, 23

OX2BFEF0DB6F4F7 OX21D64C13071A1E0AA4DF
10, 14, 24,

28

OX22BE07DCB8255 OX14B48826D4E3EE8AA4A
10, 11, 13,
14, 17, 22,

24, 25

OX2C53E5CA904F8 OX4CF8318FB91A7BD1C2D0

4, 5, 8,
14, 17, 18,
19, 22, 24,

27

OX93726691E2D0 OX2C4C389C765606937AF4
6, 10, 15,
18, 19, 13,

16

OX3ED1D244BD2B1 OXBB5B758E8FB029E57666
2, 6, 7,

8, 15, 23,
25

OX2DF6C79AE5433 OX920D16223BEE4EB5822E
3, 4, 8,

9, 12, 13,
20

OX378C02C3FDF2B OX77681A2286592408308D
3, 10, 11,
13, 15, 22,
23, 26, 28

OX3B97E24D24147 OX694F280DCB2B108F1385
2, 9, 11,
12, 24, 28

OXC7294829B50A OXF303799BF930108F4B0F
4, 8, 11,
15, 16

OX378763FE6C96 OX2FBC5FB87C8125734B6E

2, 3, 6,
7, 8, 12,

16, 18, 23,
25, 28

OX3BECF5CC75818 OXC3B33304C9FD300B28F3
5, 12, 14,
17, 19, 21,
22, 23, 24

OX3049A0E2FB512 OX50986952B94273E8F099
9, 13, 16,
24, 26

OX313C07B28B127 OX30005763E511714B24C0
10, 11, 17,
18, 25, 26

OX613242AFA99E OX74996C308B57426EC1FF

4, 5, 8, 11,
12, 13, 15,
17, 19, 21,
22, 24, 25,

26, 27

OX5AE80FC1F4DB OXD5776A122F7F7B0049B1
3, 10, 15,
21, 23, 24

OX191766116C74F OX1E8B7D71045E0F56A4EA
4, 13, 17,
18, 24, 25
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Abstract. In AfricaCrypt 2012, several algorithms are proposed for the batch
verification of ECDSA signatures. In this paper, we propose three randomization
methods for these batch-verification algorithms. Our first proposal is based
on Montgomery ladders, and the second on computing square-roots in the
underlying field. Both these techniques use numeric arithmetic only. Our third
proposal exploits symbolic computations leading to a seminumeric algorithm. We
theoretically and experimentally establish that for standard ECDSA signatures,
our seminumeric randomization algorithm in tandem with the batch-verification
algorithm S2′ gives the best speedup over individual verification. If each ECDSA
signature contains an extra bit to uniquely identify the correct y-coordinate of
the elliptic-curve point appearing in the signature, then the second numeric
randomization algorithm followed by the naive batch-verification algorithm N′

yields the best performance gains. We detail our study for NIST prime and
Koblitz curves.

Keywords: ECDSA, Elliptic curve, Koblitz curve, Montgomery ladder,
Symbolic computation, Batch verification, Randomization.

1 Introduction

An ECDSA signature on a message M is a triple (M,r,s), where r is the x-coordinate
of an elliptic-curve point R, and s is an integer that absorbs the hash of M. Both r and
s are reduced modulo the size n of the elliptic-curve group. During verification, two
scalars u,v are computed using modulo n arithmetic, and the point R is reconstructed as
R = uP+vQ, where P is the base point in the elliptic-curve group, and Q is the signer’s
public key. Verification succeeds if and only if x(R) = r.

Suppose that we want to verify a batch of t ECDSA signatures (Mi,ri,si). For the i-th
signature, the verification equation is Ri = uiP+viQi. The t signatures can be combined
as

t

∑
i=1

Ri =

(
t

∑
i=1

ui

)
P+

(
t

∑
i=1

viQi

)
. (1)

Since the y-coordinates of Ri are not available in the signatures, we cannot straightaway
compute the sum on the left side. In AfricaCrypt 2012, several batch-verification algo-
rithms are proposed to solve this problem [1]. The naive algorithms are based upon the

R.S. Chakraborty et al. (Eds.): SPACE 2014, LNCS 8804, pp. 237–255, 2014.
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determination of the missing y-coordinate of each Ri using a square-root computation
(we have y2

i = r3
i +ari+b). The symbolic-manipulation algorithms treat the unknown y-

coordinates as symbols. Batch verification involves the eventual elimination of all these
y-coordinates from Eqn(1) using the elliptic-curve equation. The symbolic algorithm
S2′ turns out to be the fastest of the batch-verification algorithms proposed in [1].

In IndoCrypt 2012, Bernstein et al. [2] propose two attacks on these algorithms.
They suggest that these attacks can be largely eliminated by randomizing batch verifi-
cation (a concept introduced by Naccache et al. [3]). For random non-zero multipliers
ξ1,ξ2, . . . ,ξt , the verification equations are now combined as

t

∑
i=1

ξiRi =

(
t

∑
i=1

ξiui

)
P+

(
t

∑
i=1

ξiviQi

)
. (2)

Since the y-coordinates of Ri are not available, Eqn(2) is not directly applicable. In this
paper, we propose three efficient ways of randomizing the batch-verification algorithms
of [1]. We mostly concentrate on standard ECDSA signatures. If the ECDSA signature
contains an extra bit to identify the correct square-root y of r3 + ar+ b [4], we call this
an ECDSA# signature. In another variant known as ECDSA* [4,5], the entire point R
replaces r in the signature. Neither ECDSA# nor ECDSA* is accepted as a standard.
Since ECDSA* results in an unreasonable expansion in the signature size without any
increase in the security, we do not consider this variant in this paper. ECDSA#, however,
adds only one extra bit to a signature, and so we study the implications of having this
extra bit. Our three randomization techniques are based on the following ideas.

– Montgomery ladders: Given only the x-coordinate of an elliptic-curve point R, one
can uniquely obtain the x-coordinate of any non-zero multiple ξ R [6]. We first
compute x(ξiRi) for all signatures in the batch. Then we feed these x-coordinates
to the batch-verification algorithms.

– Numeric computation: We explicitly compute yi from each ri by taking a square-
root of r3

i + ari + b. In ECDSA#, we uniquely obtain Ri from the extra bit. In
ECDSA, we have two possibilities ±R. We start with any possibility and numeri-
cally compute ξ R or −ξ R using standard elliptic-curve doubling and addition for-
mulas.1

– Seminumeric computation (Joye’s method): We treat each yi as a symbol, and
compute ξiRi as a point in the form (hi,kiyi), where the field elements hi and ki

are computed from the knowledge of ri = x(Ri) alone. We precompute the quan-
tity r3

i + ari + b and follow a slightly modified version of the standard elliptic-
curve scalar-multiplication algorithm. Joye in [7] proves that in prime fields the
y-coordinate of ξiRi is of the form (hi(ri),ki(ri)yi) for functions hi,ki of ri alone.
Here, we complement that study by providing explicit computational determina-
tion of hi,ki, and exploit this procedure to obtain a randomization algorithm that
performs better than the above two methods for standard ECDSA signatures. We
also derive such explicit formulas for Koblitz curves.

1 A study of this method is inspired by a comment from an anonymous referee of an earlier
version of this paper.
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Since the only batch-verification algorithms that deal with standard ECDSA signatures
are found in [1], randomizing these algorithms is of practical importance in real-time
cryptographic applications like the authentication of messages in vehicular ad hoc net-
works.

We experiment with the NIST prime family of elliptic curves [8]. Montgomery lad-
ders face a few problems. Each iteration in the scalar-multiplication loop involves one
addition and one doubling. More importantly, it is not known how to adapt Montgomery
ladders to windowed scalar multiplication.Montgomery’s paper [9] proposes some ways
of generating short Montgomery chains. As pointed out in [10,11], the creations of the
addition chains in these improved variants are rather costly. The practical method of
[9] is effective only when the scalar multiplier remains constant, so the addition chain
can be precomputed. Since this is not the case with randomizers, we have implemented
only the binary ladder. The numeric and the seminumeric randomization algorithms can
be adapted to any windowed variant. We theoretically and experimentally establish that
the binary Montgomery ladder is slower than the best known windowed variants of the
numeric and the seminumeric algorithms. Montgomery arithmetic is efficient for prime
curves of the particular form By2 = x3 +Ax2+x. However, the NIST prime curves have
large prime orders and cannot be converted to a curve in the Montgomery form which
contains the point (0,0) of order two. Point multiplication using Montgomery ladders is
more resistant to simple side-channel attacks (SCA) than the numeric and seminumeric
methods. In this paper, SCA resistance is not of concern, since verification of signatures
uses no private keys.

The rest of this paper is organized as follows. In Section 2, we provide a brief intro-
duction to the ECDSA batch-verification algorithms and the attacks against those. Sec-
tions 3 elaborates the three randomization methods introduced above. Section 4 makes
a theoretical and experimental comparison of the relative performances of the three
methods, and discusses the effects of randomization on the performance of the batch
verification of ECDSA and ECDSA# signatures. Section 5 deals with NIST Koblitz
curves. Section 6 concludes the paper.

2 Background and Notations

Let (Mi,ri,si), i = 1,2, . . . , t, be a batch of t ECDSA signatures that we want to verify
simultaneously. We work over the elliptic curve

y2 = x3 + ax+ b. (3)

defined over a large prime field Fp. We assume that the group E(Fp) is of prime order
n with a generator P. For simplicity, we assume that all of the t signatures come from
the same signer, that is, Qi = Q for all i.

2.1 ECDSA Batch Verification

The right side of Eqn(1) can be computed numerically using two scalar multiplications
(or one double scalar multiplication). Let this point be (α,β ). If Ri are reconstructed as
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uiP+viQ, the effort is essentially the same as individual verification. The algorithms of
[1] solve this problem in many ways.

The naive method N computes yi by taking the square root of r3
i + ari + b. Since

there are two square roots (in general) for each ri, the ambiguity in the sign of yi can
be removed by trying all of the m = 2t combinations. If Eqn(1) holds for any of these
choices, the batch of signatures is accepted. In ECDSA#, the yi values can be uniquely
identified, and we can avoid trying all the m= 2t combinations. This variant of the naive
method is referred to as N′. If the underlying field is large, the square-root computations
may have huge overheads.

Algorithms S1 and S2 avoid this overhead by computing the left side of Eqn(1) sym-
bolically. Each yi is treated as a symbol satisfying y2

i = r3
i + ari + b. Symbolic addition

gives (g(y1,y2, . . . ,yt),h(y1,y2, . . . ,yt)) = (α,β ), where g and h are polynomials in yi

with each yi-degree � 1.
Algorithm S1 makes a linearization by repeatedly squaring g(y1, y2, . . . ,yt) = α (or

multiplying by even-degree monomials). At this stage too, the equations y2
i = r3

i +
ari + b are used to keep the yi-degrees � 1 in each generated equation. The linearized
system has 2t−1 − 1 = m

2 − 1 variables corresponding to the square-free monomials in
y1,y2, . . . ,yt of even degrees. The system is solved by Gaussian elimination. The equa-
tion h(y1,y2, . . . ,yt) = β is then used to solve for each yi. Finally, it is verified whether
y2

i = r3
i + ari+ b for all i.

Algorithm S2 uses a faster elimination trick. The equation g(y1, y2, . . . ,yt) = α is
written as γ(y2,y3, . . . ,yt)y1 + δ (y2,y3, . . . ,yt). Multiplying this by γy1 − δ and using
y2

1 = r3
1 + ar1 + b gives an equation free from y1. The other variables y2,y3, . . . ,yt are

eliminated one by one in the same way. Eventually, the batch is accepted if we obtain
the zero polynomial after all yi are eliminated.

An improved variant of S1 and S2 significantly speeds up the symbolic-addition
phase. Let τ = �t/2�. Eqn(1) is rewritten as ∑τ

i=1 Ri = (α,β )− ∑t
i=τ+1 Ri. The two

sides are individually computed symbolically. These variants of S1 and S2 are referred
to as S1′ and S2′.

2.2 Attacks on ECDSA Batch Verification

In the first attack of Bernstein et al. [2], the batch verifier handles t − 2 genuine sig-
natures along with the two forged signatures (r,s) and (r,−s) on the same message M.
Since the sum of the elliptic-curve points (r,s) and (r,−s) is O , the entire batch of t
signatures is verified as genuine.

In the second attack, the forger knows a valid key pair (d1,Q1), and can fool the veri-
fier by a forged signature for any message M2 under any valid public key Q2 along with
a message M1 under the public key Q1. The forger selects a random k2, computes R2 =
k2P and r2 = x(R2). For another random s2, the signature on M2 under Q2 is presented
as (r2,s2). For the message M1, the signature (r1,s1) is computed as R1 = r2s−1

2 Q2,
r1 = x(R1), and s1 = (e1 + r1d1)(k2 − e2s−1

2 )−1, where e1 = H(m1), e2 = H(m2), and
H is a secure hash function. Now, R1 +R2 and (e1s−1

1 + e2s−1
2 )P+ r1s−1

1 Q1 + r2s−1
2 Q2

have the same value as (k2P+ r2s−1
2 Q2). These forged signatures are verified if they are

in the same batch.
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Both these attacks become infeasible by the use of randomizers. If the verifier
chooses l-bit randomizers, the security of the batch-verification procedure increases by
2l . The randomizers need not be of full lengths (of lengths close to that of the prime or-
der p of the relevant elliptic-curve group). As discussed in [12], much smaller random-
izers typically suffice to make most attacks on batch-verification schemes infeasible. If
the underlying field is of size d bits, then the best known algorithms (the square-root
methods) to solve the ECDLP take O˜(2d/2) times. As a result, d/2-bit randomizers do
not degrade the security of the ECDSA scheme. Another possibility is to take l = 128
to get 128-bit security independent of the security guarantees of ECDSA.

3 Randomization of ECDSA Batch Verification

For randomizing ECDSA batch verification as per Eqn(2), the basic problem is to com-
pute the x-coordinate x(ξ R) from r = x(R) and an l-bit scalar ξ = 1ξl−2ξl−3 . . .ξ1ξ0.

3.1 Montgomery Ladders

Montgomery ladders are discussed in [13,14,6]. For the sake of completeness, we
present the relevant formulas for point addition and doubling. Suppose that x(P1) = h1,
x(P2) = h2 and x(P1 −P2) = h4 are known to us. We can compute h3 = x(P1 +P2) and
h5 = x(2P1) by Eqns (4) and (5), respectively.

h3h4(h1 − h2)
2 = (h1h2 − a)2 − 4b(h1+ h2). (4)

4h5(h
3
1 + ah1 + b) = (h2

1 − a)2 − 8bh1. (5)

The above formulas [13] are adapted from Montgomery’s original derivation [6]. Fis-
cher et al. [15] propose a slightly improved addition formula given by

(h4 + h3)(h1 − h2)
2 = 2(h1 + h2)(h1h2 + a)+ 4b.

The Montgomery ladder described in Algorithm 1 never uses nor computes the y-
coordinate of any point in its repeated double-and-add point-multiplication loop. The
loop maintains the invariance T − S = R. Since x(T ), x(S) and x(T − S) = x(R) are
known, we can compute x(T + S), x(2S) and x(2T ).

Algorithm 1. Montgomery Ladder for Computing x(ξ R) from ξ and x(R)
Initialize x(S) := x(R) and x(T ) := x(2R).
For (i = l −2, l −3, . . . ,1,0) {

If (ξi = 0), assign x(T ) := x(T +S) and x(S) := x(2S);
else assign x(S) := x(T +S) and x(T ) := x(2T );

}
Return x(S).

In many cases, using projective coordinates can speed up the Montgomery-ladder
loop. Both the x- and the z-coordinates can be computed from the knowledge of x(R)
alone (we assume z(R) = 1). Some explicit formulas can be found at [16,17].



242 S. Karati, A. Das, and D. Roychoudhury

Fischer et al. [15] propose an optimization of the Montgomery loop. Irrespective of
the bit value ξi, the loop computes the x- and z-coordinates of two points P+Q and
2P, where P is one of the points S,T , and Q is the other point. These operations can
be combined together yielding a reduced count of field operations. The problem with
Algorithm 1 is that no effective windowed adaptation of it is known (see [10,11]).

3.2 Numeric Computation

We first compute a square-root y of r3 + ar+ b. The point R is either (r,y) or (r,−y).
An ECDSA# signature has enough information to identify which of these two points is
the correct R. An ECDSA signature cannot resolve this ambiguity. However, that is not
a serious problem, since both ξ R and −ξ R have the same x-coordinate. Therefore, we
start with any of the two points ±R, and compute its ξ -th multiple using any standard
elliptic-curve scalar-multiplication algorithm. The y-coordinate of this multiple is also
computed as a byproduct.

A square root of r3 + ar+ b modulo the prime p can be computed by well-known
algorithms (like Tonelli-Shanks algorithm). If p ≡ 3 (mod 4), then (r3 + ar+ b)(p+1)/4

(mod p) is such a square root. Each square-root finding algorithm essentially requires
the cost of an exponentiation in the field Fp.

The numeric method has an important bearing on the naive batch-verification meth-
ods N and N′ of [1]. These two algorithms start by computing the square roots of r3

i +
ari+b. If these algorithms are randomized by the numeric method, the y-coordinates of
ξiRi are already available (up to sign in ECDSA, and uniquely in ECDSA#), and need
not be computed again from the x-coordinates of ξiRi. This lets the naive algorithms
save significant time. The symbolic batch-verification methods (like S2′) do not use
and therefore do not benefit from an explicit knowledge of the y-coordinates.

The numeric method in the context of ECDSA# has another advantage. Since the
points Ri are now known uniquely, we can use multiple scalar multiplication. For ex-
ample, computing ξ1R1 + ξ2R2 in a single double-and-add loop needs only l doubling
and at most l addition operations, where l is the length of the randomizers. On the con-
trary, computing ξ1R1 and ξ2R2 separately by even the best windowed method requires
2l doubling operations and some more additions. Thus, the naive batch-verification
algorithm N′ derives an additional boost in its performance from multiple scalar multi-
plication.

3.3 Seminumeric Computation (Joye’s Method)

We treat the y-coordinate of R = (r,y) as a symbol satisfying y2 = r3 + ar+ b.

Theorem 1: Any non-zero multiple uR of R can be expressed as (h,ky), where h and
k are field elements fully determined by (u and) the x-coordinate r of R.

Proof. R itself can be so expressed with h = r and k = 1. Next, suppose that P1 =
(h1,k1y) and P2 = (h2,k2y) are two distinct non-zero multiples of R with P3 = P1+P2 �=
O . The addition formula gives P3 = (h3,k3y), where

h3 =

(
k1 − k2

h1 − h2

)2

(r3 + ar+ b)− h1− h2, and k3 =

(
k1 − k2

h1 − h2

)
(h1 − h3)− k1.
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Let P4 = 2P1. We have P4 = (h4,k4y), where

h4 =

(
3h2

1 + a
2k1

)2(
1

r3 + ar+ b

)
− 2h1, and k4 =

(
3h2

1 + a
2k1

)(
h1 − h4

r3 + ar+ b

)
− k1.

Finally, the opposite of (h,ky) is (h,(−k)y). This completes the inductive proof. •

We represent the multiple (h,ky) of R by the pair (h,k) of field elements. The symbol
y need not be explicitly maintained. R itself is represented by the pair (r,1). Upon (r,1)
as input, we precompute the quantity r3 + ar+ b and its inverse, and run the standard
repeated double-and-add loop of Algorithm 2 with these revised addition and doubling
formulas. At the end of the loop, the two computed field elements h,k yield the desired
multiple ξ R = (h,ky). In short, we do not need to carry out any symbolic computation
at all for obtaining ξ R.

Algorithm 2. Seminumeric Computation of ξ R = (h,ky) from ξ and R = (r,y)

Precompute the field elements r3 +ar+b and (r3 +ar+b)−1.
Initialize S := (r,1).
For (i = l −2, l −3, . . . ,1,0) {

Assign S := 2S (use seminumeric doubling formula).
If (ξi = 1), assign S := S+R (use seminumeric addition formula).

}
Return S.

The modified addition formula involves only one extra field multiplication (by the
precomputed quantity r3 + ar + b) compared to the standard elliptic-curve addition
formula. Point doubling requires two extra field multiplications (each by the precom-
puted inverse (r3 +ar+b)−1). In Jacobian projective coordinates, we can rearrange the
doubling formula to absorb those two extra field multiplications. The standard double-
and-add algorithm can be adapted to any windowed variant. Some variants require
precomputing multiples uR of R for some small values of u. These multiples are pre-
computed as pairs of field elements.

The knowledge of the entire points R1,R2 allows us to compute ξ1R1 +ξ2R2 using a
single double-and-add loop, yielding noticeable speedup over two point multiplications.
If the y-coordinates of R1 and R2 are treated as symbols y1,y2, then too ξ1R1+ξ2R2 can
be computed seminumerically. Any non-zero point of the form uR1 + vR2 can be ex-
pressed as (h+ jy1y2,ky1+ ly2) for field elements h, j,k, l uniquely determined by the x-
coordinates r1,r2 (and u,v) alone. Addition and doubling of such points can be rephrased
numerically in terms of these field elements. For example, let P1 = (h1 + j1y1y2,k1y1 +
l1y2) and P2 =(h2+ j2y1y2,k2y1+ l2y2) be two (distinct) points of the form uR1+vR2. In

order to compute their sum, we first compute the slope λ = (k1−k2)y1+(l1−l2)y2
(h1−h2)+( j1− j2)y1y2

. Using the
symbolic-manipulation techniques of [1], we free the denominator of y1,y2 (multiply by
(h1−h2)−( j1− j2)y1y2 and substitute y2

i = r3
i +ari+b for i= 1,2). We simplify the nu-

merator too to express λ as αy1+β y2. Therefore, λ 2 and x(P1+P2)= λ 2−x(P1)−x(P2)
are of the form γ + δy1y2. This process of symbolic computation of x(P1 +P2) can be
replaced by explicit numeric formulas in h1,k1, j1, l1,h2,k2, j2, l2. The y-coordinate of
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P1+P2 and point doubling can be analogously handled. The resulting numeric formulas
turn out to be clumsy, and are not expected to benefit the computation of ξ1R1 + ξ2R2

in a single double-and-add loop. For the weighted sum of three or more points, this idea
of seminumeric computation can be extended at least in theory, but chances of getting
practical benefits are rather slim.

4 Comparison among the Randomization Algorithms

In this section, we count the field operations in the randomization algorithms. For each
of these algorithms, we take the best variant (windowed, if applicable, and with a suit-
able choice of the coordinate systems) known to us. We then experimentally validate
our theoretical observations.

4.1 Comparison of Montgomery Ladders and Seminumeric Method

For the purpose of theoretical comparison, we use standard projective coordinates in the
Montgomery-ladder method, and Jacobian projective coordinates in the NAF variant
of the seminumeric method. The Montgomery-ladder method in standard projective
coordinates produced the best results almost always, whereas the NAF variant of the
seminumeric method in Jacobian projective coordinates gave us the best results for
curves over large fields. Comparisons among other variants can be analogously carried
out.

Let us analyze the Montgomery-ladder implementation first. Let P1 = (h1,k1, l1),
P2 = (h2,k2, l2), and P1 − P2 = (r,−y,1) ∈ E(Fp) be given in projective coordinates.
We do not use the y-coordinates k1,k2,y. We only compute the x- and z-coordinates of
P1 +P2 and 2P1 using the following formulas [15]:

x(P1 +P2) = 2(h1l2 + h2l1)(h1h2 + al1l2)+ 4bl2
1l2

2 − r(h1l2 − h2l1)
2,

z(P1 +P2) = (h1l2 − h2l1)
2,

x(2P1) = (h2
1 − al2

1)
2 − 8bh1l3

1 , and z(2P1) = 4h1l1(h
2
1 + al2

1)+ 4bl4
1.

If we precompute the field element −4b, point addition and point doubling require
MMont = 14M + 5S+ 9A+ 5(2∗) field operations (see Table 1 for the notations, and
[15] for the derivation of this count). For an l-bit randomizer, the Montgomery-ladder
scalar-multiplication does lMMont operations.

Next, we analyze the seminumeric method. Any non-zero multiple of (r,y,1)∈ E(Fp)
is of the form (βx,βyy,βz) with βx,βy,βz ∈Fp. Let P1 =(h1,k1y, l1) and P2 = (h2,k2y, l2)
be two such multiples, where P1 �=±P2, and y satisfies the equation y2 = r3+ar+b with
r known. We modify the point-addition and doubling formulas of Section 3.3 as given
in [18]. These formulas assume that a = −3. In particular, the x-, y- and z-coordinates
of P3 = P1 +P2 = (h3,k3y, l3) and P4 = 2P2 = (h4,k4y, l4) are computed as:

H = h2l2
1 − h1l2

2 , R = k2l3
1 − k1l3

2 , R′ = R2y2, h3 = R′ −H3 − 2h1l2
2H2,

k3 = R(k1l2
2 − h3)− k1l3

2 , and l3 = Hl1l2.

H1 = 3(h1 − l2
1)(h1 + l2

1), H2 = H2
1/y2, R′′ = 4h1k2

1, h4 = H2 − 2R′′,

k4 = H1(R
′′ − h4)/y2 − 8k4

1, and l4 = 2k1l1.
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Table 1. Descriptions of the Symbols

Symbol Description
M Finite field Multiplication
S Finite field Square
I Finite field Inverse
A Finite field Addition or subtraction
(u∗) Finite field multiplication by the constant element u
MMont Montgomery-ladder merged addition-doubling in projective coordinates
ASemi Seminumeric point addition in the mentioned coordinates
DSemi Seminumeric point doubling in the mentioned coordinates

We need to perform ASemi = 13M + 4S + 6A+ 1(2∗) and DSemi = 6M + 3S + 5A+
1(3∗)+ 4(2∗)+ 1( 1

2∗) field operations for point addition and doubling, respectively
(with 1

2 , y2 and y−2 precomputed). Each point addition requires only one extra field
multiplication than the best implementations mentioned in [16]. Point doubling has the
same multiplication count as these best implementations. If we use the w-NAF repre-
sentation of l-bit randomizers, then there are on an average l

w+1 non-zero digits. For
each of these non-zero digits, ASemi operations are required. Point doubling (DSemi) is
done for each of the l bits. Furthermore, for precomputing 2w−2 multiples of (r,y,1),
we need 2w−2 − 1 point additions and one point doubling. Opposites of these multiples
take almost zero computation cost.

The seminumeric algorithm is faster than Montgomery-ladder algorithm if:(
2w−2 − 1+

l
w+ 1

)
ASemi +(l+ 1)DSemi � lMMont (6)

Following the convention of [17], we ignore the times required to multiply a field ele-
ment by a constant (such as 2, 3 or 1/2) and to add two field elements, since these op-
erations take negligible times compared to field multiplication and squaring. Moreover,
as suggested in [16], we take the squaring and multiplication times the same (that is,
1S= 1M). With these simplifications, Eqn(6) can be rewritten as 17

(
2w−2 − 1+ l

w+1

)
+

9(l+1)� 19l. Rearrangement of this equation gives
(
10− 17

w+1

)
l � 9+17(2w−2 −1).

Putting w = 4 in the equation, we get l � 9.09. This theoretically establishes that for
l � 10, the seminumeric algorithm is faster than the Montgomery ladder.

It is important to highlight that the worst-case overhead (ASemi+ DSemi) of an itera-
tion of the seminumeric loop is more than the overhead MMont of each iteration of the
Montgomery-ladder loop. However, the windowed variants of the seminumeric itera-
tion are much more efficient than this worst case, on an average. Montgomery ladders,
on the other hand, are unable to take this advantage.

4.2 Comparison of Numeric and Seminumeric Methods

The numeric and seminumeric methods use essentially the same formulas of scalar mul-
tiplication. A seminumeric point addition uses one extra field multiplication by the pre-
computed quantity r3 + ar+ b. Seminumeric point doubling requires exactly the same
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number of field multiplications as needed by numeric point doubling. The numeric al-
gorithm, on the other hand, has the extra overhead of a square-root computation. As
mentioned in Section 3.2, this overhead is essentially that of an exponentiation in Fp.
We use an efficient windowed modular exponentiation algorithm. The effect of this
overhead on the computation of ξ R depends on the bit length of ξ . If ξ is a full-length
scalar (that is, of bit length near that of p), then the extra overhead is slightly less than
that associated with the extra multiplication in the seminumeric loop. The cryptograph-
ically most meaningful length of ξ is about half of that of p. In this case, the square-
root computation overhead per bit of the randomizer ξ is doubled, and we expect the
seminumeric to be faster than the numeric method.

More precisely, let d be the bit length of q. Each square-root computation by the
w-NAF method needs (1S+(2w−2 − 1)M)+ (dS+ d

w+1 M) field operations. If we put

1S = 1M, this is the same as 2w−2 + d
(
1+ 1

w+1

)
multiplications. The w-NAF scalar-

multiplication time with an explicitly known y-coordinate and an l-bit scalar is about
the same as that of 16

(
2w−2 − 1+ l

w+1

)
+ 9(l+ 1) field multiplications [16]. Thus, the

total overhead of the numeric method is that of

2w−2 + d

(
1+

1
w+ 1

)
+ 16

(
2w−2 − 1+

l
w+ 1

)
+ 9(l+ 1)

multiplications for each point. On the other hand, the seminumeric method with an l-
bit scalar needs an equivalent of 17

(
2w−2 − 1+ l

w+1

)
+ 9(l + 1) field multiplications

for each point, yielding a saving of
(
d + d−l

w+1 + 1
)

field multiplications. For l = d
2 and

w = 4,
(

11
10

)
d + 1 multiplications are saved.

4.3 Experimental Comparison

The algorithms are implemented in a 2.33 GHz Xeon server running Ubuntu Linux
Server Version 2012 LTS. The algorithms are implemented using the GP/PARI calcu-
lator [19] (version 2.5.0 compiled by the GNU C compiler 4.6.2). We have used the
symbolic-computation facilities of the calculator in our programs. All other functions
(like scalar multiplication and square-root computation) are written as subroutines with
minimal function-call overheads. Since the algorithms are evaluated in terms of number
of field operations, this gives a fair comparison of experimental data with the theoreti-
cal estimates. We have implemented windowed, w-NAF and frac-w-NAF methods. We
have used affine and projective (standard or Jacobian) coordinates.

The average times of randomization achieved by the Montgomery-ladder and the
seminumeric algorithms are listed in Tables 2 and 3 for two NIST prime curves. Here,
w is the window size, and l is the bit length of the scalar multiplier (randomizer in
the batch-verification application). As mentioned in Section 2.2, we have chosen l to
be 128, d/2 and d (where d = |p|). The seminumeric algorithm is found to be faster
than the Montgomery-ladder algorithm, particularly for large randomizers. For NIST
prime curves, the experimental speedup is about 25–30%, which is consistent with the
theoretical estimates.

Tables 2 and 4 list the overheads associated with the numeric randomization method.
In order to compare the performances of the numeric method and the seminumeric
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Table 2. Times of Numeric and Seminumeric Scalar Multiplication

Numeric Scalar Multiplication Semiumeric Scalar Multiplication
Length of (Jacobian Projective Coordinates) (Jacobian Projective Coordinates)

Curve randomizer Time w-Algorithm Time w-Algorithm
(in bits) (in ms) (in ms)

P-256 128 2.04 5-NAF-numeric 2.04 4-NAF-seminumeric
256 3.92 4-NAF-numeric 4.12 4-NAF-seminumeric
128 2.69 4-NAF-numeric 2.81 4-NAF-seminumeric

P-521 256 5.48 4-NAF-numeric 5.92 4-NAF-seminumeric
521 10.60 5-NAF-numeric 11.44 5-NAF-seminumeric

Table 3. Times of Montgomery-Ladder and Multiple-Scalar Multiplication

Montgomery Ladder ∗ Multiple Scalar Multiplication
Length of (Standard Projective Coordinates) (Jacobian Projective Coordinates)

Curve randomizer Time Time
(in bits) (in ms) (in ms)

P-256 128 2.72 2.93
256 5.29 5.67
128 3.76 4.37

P-521 256 7.45 7.89
521 15.09 16.30
∗ No effective windowed variant of Montgommer ladders is known

Table 4. Times for the computation of square roots

Curve Time Algorithm w
(in ms)

P-256 0.28 w-numeric 5
P-521 0.76 w-numeric 5

method, we add the best possible numeric scalar multiplication time to the best possi-
ble square-root computation time. For full-length randomizers, the best total overheads
of the numeric algorithm are 3.92+ 0.28 = 4.20 and 10.60+ 0.76= 11.36 for the two
curves P-256 and P-521. In this case, the best overheads incurred by the seminumeric
method are very close: 4.12 and 11.44. For half-length randomizers, the best total over-
heads of the numeric method are 2.04+ 0.28 = 2.32 and 5.48+ 0.76 = 6.24 for the
two curves. The same overheads for the seminumeric method are slightly better: 2.04
and 5.92. This is the expected pattern as evident from our theoretical estimates. Both
the numeric and the seminumeric methods run significantly faster than Montgomery
ladders.

In ECDSA#, there is a possibility of using multiple scalar multiplication. Table 3
lists the times for computing the sum ξ1R1 + ξ2R2 using a single double-and-add loop.
These times are much less than two separate scalar-multiplication times even by the
best windowed method.
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In an individual verification, one can compute uiP+ viQ by a double scalar multipli-
cation. Since P is a fixed base, we can use fixed-base scalar multiplication to compute
uiP. However, Q is not considered to be fixed across different batches (it is assumed to
be the same in each batch). So the benefits of double fixed-base scalar multiplication
is not clear during individual verification, particularly if the number of signatures with
fixed Q is small.

Table 5. Speedup obtained by randomized batch-verification algorithms

Batch-verification Randomization t P-256 P-521
algorithm algorithm None∗ l = 128 None∗ l = 128 l = 256

3 2.55 1.33 2.60 1.82 1.39
4 3.15 1.48 3.25 2.12 1.55

N Numeric 5 3.50 1.55 3.72 2.30 1.65
6 3.46 1.54 3.85 2.36 1.68
7 2.93 1.43 3.53 2.23 1.61
8 2.10 1.20 2.75 1.89 1.43
3 2.61 1.48 2.63 1.91 1.53
4 3.34 1.79 3.37 2.32 1.86

N′ Numeric 5 4.01 1.89 4.05 2.58 1.97
6 4.63 2.11 4.69 2.88 2.20
7 5.20 2.15 5.28 3.05 2.25
8 5.73 2.31 5.83 3.27 2.42
3 2.98 1.37 2.99 1.97 1.43
4 3.91 1.54 3.95 2.35 1.62

S2′ Seminumeric 5 4.73 1.65 4.87 2.65 1.76
6 5.41 1.72 5.70 2.87 1.86
7 5.61 1.74 6.24 3.01 1.91
8 4.96 1.68 6.08 2.97 1.90

∗ Without randomization

4.4 Effects of Randomization on Batch-Verification Algorithms

Table 5 illustrates the performance degradation caused by randomization. The speedup
figures are computed over individual verification and pertain to the situation where all
the signatures come from the same signer. In the table, t is the batch size and l is the bit
length of the randomizer. We have taken two cryptographically meaningful values of l
(half-length and 128). For original ECDSA signatures, the seminumeric randomization
method gives the best performance. For ECDSA#, the extra square-root identifying
bits give the points Ri uniquely, so the numeric randomization method is the preferred
choice. In each case, the best possible windowed variant is used to compute the speedup.
Whenever possible, the best windowed variants are replaced by the faster multiple scalar
multiplication method. Table 5 also lists the speedup figures without randomization.
Although the increased security provided by randomization incurs reasonable overhead,
we still have sizable speedup over individual verification.
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5 Adaptation of Randomization Methods to Ordinary Binary
Curves

As an illustrative example, we take the family of Koblitz curves recommended by
NIST [8]. These curves are defined over binary fields F2d by the equation

y2 + xy = x3 + ax2 + 1, with a = 0 or 1. (7)

5.1 Montgomery-Ladder Formulas

We now represent elliptic-curve points in the standard projective coordinates. Let P1 =
(h1,k1, l1) and P2 = (h2,k2, l2) be two non-zero multiples of R. Suppose that P1 �= ±P2

and P1 −P2 = (h4,k4, l4). We assume that only the x- and z-coordinates of these points
are available. We can compute these coordinates of P1 +P2 = (h3,k3, l3) using the fol-
lowing formulas:

l3 = (h1k2)
2 +(h2k1)

2, x3 = l3h4 +(h1k2)(h2k1).

Compute point doubling 2P1 = (h5,k5, l5) as:

h5 = (h2
1 + l2

1)
2, l5 = h2

1l2
1 .

We can easily modify Algorithm 1 to the case of projective coordinates.

5.2 Numeric-Computation Formulas

Now, the relevant problem is the computation of the two values of y from the equation
y2 + ry+ (r3 + ar2 + 1) = 0. We first replace y by ry to convert the equation to the

form y2 + y+α = 0, where α = r3+ar2+1
r2 . The converted equation is solvable if and

only if the absolute trace Tr(α) is zero. In that case, if d is odd, a solution for y is

α21
+α23

+α25
+ · · ·+α2d−2

, and the other solution is 1 plus the first solution. These
solutions can be efficiently obtained using a half-trace calculation [18].

5.3 Seminumeric-Computation (Joye-Method) Formulas

Let R = (r,y) with y treated as a symbol satisfying the Koblitz-curve equation y2 + ry =
r3 + ar2 + 1.

Theorem 2: Any non-zero multiple of R can be expressed as
(

h,k+
(y

r

)
h
)

.

Proof First, notice that P itself can be so expressed with h= r and k= 0. Next, suppose
that P1 = (h1,k1 +

( y
r

)
h1) and P2 = (h2,k2+

( y
r

)
h2) are two distinct non-zero multiples

of R with P3 = P1 +P2 �= O . The point-addition formula on Koblitz curves implies that
P3 = (h3,k3 +

( y
r

)
h3), where

h3 =

(
k1 + k2

h1 + h2

)2

+

(
k1 + k2

h1 + h2

)
+ h1 + h2 + a+

(
r3 + ar2 + b

r2

)
=

h1(h2
2 + k2)+ h2(h2

1 + k1)

h2
1 + h2

2

,

k3 =

(
k1 + k2

h1 + h2

)
(h1 + h3)+ h3 + k1.
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The double P4 of P1, if non-zero, can be expressed as (h4,k4 +
( y

r

)
h4), where:

h4 = h2
1 +

b

h2
1

, k4 = h2
1 +

(
h1 +

k1

h1
+ 1

)
h3.

The opposite of (h,k+
( y

r

)
h) is (h,(k+ h)+

(y
r

)
h). •

For Koblitz curves, the τ-NAF point-multiplication algorithm is computationally
very efficient. This motivates using the following theorem.

Theorem 3: The second-power Frobenius endomorphism on a point of the form(
h,k+

(y
r

)
h
)

gives a point in the same form.

Proof Let P1 = (h1,k1 +
( y

r

)
h1). Then, P5 = (h2

1,(k1 +
( y

r

)
h1)

2) can be expressed as
(h5,k5 +

( y
r

)
h5), where:

h5 = h2
1, k5 = k2

1 +

(
r3 + ar2 + b

r2

)
h2

1. •

It follows that for all relevant points of the form (h,k+
( y

r

)
h), it suffices to store the

values of h and k alone. The second term
( y

r

)
h in the y-coordinate carries no extra infor-

mation, and does not hamper the arithmetic operations on the points. Indeed, the point
negation, doubling, and the second addition formulas are now exactly the same as the
numeric formulas for Koblitz curves, without any extra operation. If a+ r3+ar2+b

r2 = r3+b
r2

is precomputed, the first formula for computing h3 does not lead to an increased opera-
tion count. Application of the second-power Frobenius endomorphism (computation of
k5), however, now involves a multiplication of h5 with the precomputed field element
r3+ar2+b

r2 , followed by an addition of this product to k2
1. After the h and k values of ξ R

are computed by any addition-chain method, one obtains the point ξ R =
(
h,k+

(
h
r

)
y
)
.

5.4 Comparison of Montgomery Ladders and Seminumeric Method

For Koblitz curves, we use standard projective coordinates in the Montgomery-ladder
method, and affine coordinates in the τ-NAF windowed variant of the seminumeric
method. These gave us the best respective running times. In fact, affine coordinates
outperformed López-Dahab (LD) coordinates [14] in our implementations.

To analyze the Montgomery-ladder implementation, we take P1 = (x1,y1,z1), P2 =
(x2,y2,z2), and P1 − P2 = (r,r + y,1) ∈ E(F2d ) in standard projective coordinates. We
only compute the x- and z-coordinates of P1 + P2 and 2P1 according to the formulas
given in [14,17]:

z(P1 +P2) = (x1z2)
2 +(x2z1)

2, x(P1 +P2) = z(P1 +P2)× r+ x1x2z1z2,

x(2P1) = x4
1 + bz4

1, and z(2P1) = x2
1z2

1

Following the implementation of [18], we need 5M+ 5S+ 2A to compute MMont .
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Now, we analyze the seminumeric algorithm in affine coordinates. All non-zero mul-
tiples of (r,y) ∈ E(F2d ) are of the form (βx,βy +

βx
r y) with βx,βy ∈ F2d . Let P1 =

(x1,y1 +
x1
r y) and P2 = (x2,y2 +

x2
r y) be two such multiples with P1 �= ±P2, and y sat-

isfies the equation y2 + ry = r3 + ar2 + b with r known. The following formulas are
derived assuming that b = 1 and that B = (r3 + ar2 + b)/r2 is precomputed. The x-
and y-coordinates of P3 = P1 +P2 = (x3,y3 +

x3
r y) and P4 = τ(P1) = (x4,y4 +

x4
r y) are

computed as follows:

λ =
y1 + y2

x1 + x2
, x3 = λ 2 +λ + x1 + x2 +B, yx = λ (x1 + x3)+ x3 + y1,

x5 = x2
1, and y5 = y2

1 +Bx5.

ASemi = 2M + 1S+ 1I + 6A and τSemi = 1M + 2S field operations are needed for each
point addition and application of τ , respectively (with B precomputed). Here, point
addition does not need any extra multiplication in affine or LD coordinates compared to
the formulas given in [20], but the application of τ needs one extra multiplication (in LD
coordinates, two extra multiplications are needed). If the addition chain for the scalar
multiplier is computed by the τ-NAF representation with w-bit windows [17,18,21],
then the density of non-zero digits is on an average 1

w+1 . For each of these non-zero
digits, ASemi is required, and τSemi is required for each non-zero digit in the addition
chain. In case of τ-NAF, we use special τ-chains in the precomputation stage [18,21],
where 3-, 4- and 5-bit windows need Π3 = 1τSemi + 1ASemi, Π4 = 3τSemi + 3ASemi and
Π5 = 6τSemi + 7ASemi curve operations, respectively.

For Koblitz-curve scalar multiplication, we have to pay a special attention to the
length of the addition chains. Let c be the co-factor of the Koblitz curve given by
Eqn (7). Then, we have #E(F2d ) = cn. Let μ = (−1)1−a, and α = (α1 + τα2) ∈ Z[τ].
The norm of α is given by N(α) = α1

2 +μα1α2 +2α2
2. The length of the τ-NAF rep-

resentation of α is approximately log2(N(α)). After the partial modular reduction [21],
the length of the addition chain reduces to a maximum of d + a. This reduction takes
place only if N(α) � 4

7 n. Therefore, we make our analysis on the basis of whether
N(α)� 4

7 n or not.

– Case 1: N(α) < 4
7 n

Let α = (α1 + τα2) with α2 = 0 be the scalar multiplier, and l = log2 α the bit
length of the multiplier. The length of the addition chain obtained by the τ-NAF
representation is approximately 2l. In contrast, the binary (and NAF) representa-
tions produce addition chains of approximate length l. The Montgomery-ladder
scalar multiplication needs CMont = lMMont = l(5M + 5S) field operations (ignor-
ing additions and subtractions). For w-bit windowed τ-NAF, the required operation
count in the seminumeric method is CτNAF = Πw + 2l

(
τSemi +

1
w+1 ASemi

)
= Πw +

2l
(
(1M+ 2S)+ 2M+1S+1I

w+1

)
. Our experimental environment shows the relations be-

tween M, S and I as 1S = 0.88M and 1I = 4.75M. Using these relations and putting
w = 5, we simplify the above operation counts as CMont = (9.40M)l, CτNAF =
(6.79M)l + (69.97M). Therefore, the seminumeric method is faster than Mont-
gomery ladders for l � 30.

– Case 2: N(α) � 4
7 n
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In this case, the length of the τ-NAF addition chain remains nearly d+a (irrespec-
tive of the length l of the scalar multiplier), whereas the length of the binary addi-
tion chain used by Montgomery ladders increases with l. As l increases, the running
time of the seminumeric algorithm remains nearly constant, and the running time of
the Montgomery ladder increases linearly with l. Similar operation counts as done
in Case 1 now shows that the seminumeric algorithm is faster than Montgomery
ladders for l � 0.36d+ 7.44. On the other hand, the condition N(α) � 4

7 n requires
l � 0.5d approximately. Therefore, the inequality l � 0.36d+ 7.44 is always satis-
fied. We have CτNAF

CMont
≈ 0.36 d

l . For l = d/2, the seminumeric algorithms takes about
72% of the running time of Montgomery ladders, and for l = d, about 36%.

Table 6. Times of Numeric and Seminumeric Scalar Multiplication

Numeric Scalar Multiplication Semiumeric Scalar Multiplication
Length of (Affine Coordinates) (Affine Coordinates)

Curve randomizer Time w-Algorithm Time w-Algorithm
(in bits) (in ms) (in ms)

K-283 128 196.00 5-τNAF-numeric 265.04 5-τNAF-Seminumeric
283 216.00 5-τNAF-numeric 286.64 5-τNAF-Seminumeric
128 516.00 4-τNAF-numeric 718.25 5-τNAF-Seminumeric

K-571 256 968.00 5-τNAF-numeric 1375.88 5-τNAF-Seminumeric
571 1072.00 5-τNAF-numeric 1530.30 5-τNAF-Seminumeric

Table 7. Times of Montgomery-ladder and Multiple-Scalar Multiplication

Montgomery Ladder ∗ Multiple-Scalar Multiplication
Length of (Standard Projective Coordinates) (Affine Coordinates)

Curve randomizer Time Time
(in bits) (in ms) (in ms)

K-283 128 292.70 417.00
283 651.62 908.62
128 824.02 1115.32

K-571 256 1659.40 2233.56
571 3714.01 4968.33

∗ No effective windowed variant of Montgommer ladders is known

Table 8. Times for Root Finding by Half-Trace Computation

Curve Time Algorithm
(in ms)

K-283 8.31 Quarter memory∗

K-571 30.84 Quarter memory∗
∗ See [18]

5.5 Experimental Comparison

We have used the same experimental setup as described in Section 4.3. The average times
of randomization achieved by the seminumeric and the Montgomery-ladder algorithms
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are listed in Tables 6 and 7 for two NIST Koblitz curves. Here, w is the window size, and l
is the bit length of the scalar multiplier (randomizer in the batch-verification application).
We have chosen l to be 128, d/2 and d. The seminumeric algorithm is found to be faster
than the Montgomery-ladder algorithm, particularly for large randomizers.

Tables 6 and 8 list the overheads associated with the numeric randomization method.
In order to compare the performances of the numeric method and the seminumeric
method, we add the best possible numeric scalar multiplication time to the best possible
time of root finding using a half-trace computation. Both the numeric and the seminu-
meric methods run much faster than Montgomery ladders. The seminumeric algorithm
is found to be faster than the Montgomery-ladder algorithm, particularly for large ran-
domizers. For Koblitz curves, the speedup is about 10%, 15% and 60% for 128-bit,
half-length and full-length randomizers. This pattern is consistent with the theoretical
estimates given above.

In ECDSA#, there is a possibility of using multiple scalar multiplication. Table 7 lists
the times for computing ξ1R1 + ξ2R2 using a single double-and-add loop. This method
is much slower than two separate invocations of the best windowed τ-NAF method.
In the windowed τ-NAF method, scalar-multiplication times for half-length and full-
length scalars are nearly the same (see Section 5.4). Moreover, the τ operation is much
more efficient than point doubling. Nevertheless, the randomization overhead being
substantial, we do not obtain much speedup from randomized ECDSA batch verification
on Koblitz curves (see Table 9). For individual verification, we do not consider fixed-
base double exponentiation for the computation of uiP+ viQ, since Q is not treated as
a fixed base across multiple batches.

Table 9. Speedup for NIST Koblitz Curves

Batch-Verification Randomization Batch K-283 k-571
Algorithm Algorithm Size(t) None∗ l = 128 None∗ l = 128 l = 256

2 1.85 1.00 1.90 1.30 1.02
3 2.44 1.16 2.64 1.61 1.20

N Numeric 4 2.55 1.18 3.01 1.75 1.28
5 2.09 1.07 2.80 1.67 1.24
6 1.39 0.85 2.10 1.40 1.08
7 0.79 0.58 1.31 0.99 0.82
2 1.90 1.02 1.93 1.32 1.03
3 2.78 1.23 2.84 1.69 1.24

N′ Numeric 4 3.61 1.37 3.72 1.96 1.39
5 4.39 1.47 4.57 2.18 1.49
6 5.14 1.54 5.38 2.35 1.57
7 5.85 1.60 6.17 2.48 1.63
2 1.97 0.89 1.98 1.19 0.87
3 2.89 1.04 2.94 1.48 1.02

S2′ Seminumeric 4 3.66 1.13 3.80 1.67 1.11
5 3.78 1.14 4.25 1.75 1.14
6 3.48 1.11 4.28 1.76 1.14
7 2.09 0.93 3.05 1.51 1.03

∗Speedup without randomization
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6 Conclusion

In this paper, three methods are studied for randomized batch verification of ECDSA
signatures. We theoretically and experimentally establish the superiority of the numeric
and seminumeric methods over Montgomery ladders. This study is particularly relevant
in the context of standard ECDSA signatures.
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Abstract. In AfricaCrypt 2012 and ACNS 2014, several algorithms are proposed
for the batch verification of ECDSA signatures. In this paper, we make a
comparative study of these methods for the Edwards curve digital signature
algorithm (EdDSA). We describe the adaptation of Algorithms N, N′, S2′

and SP for EdDSA signatures. The randomization methods are also explained
in detail. More precisely, we study seminumeric scalar multiplication and
Montgomery ladders during randomization of EdDSA signatures. Each EdDSA
signature verification involves a square-root computation. One may instead use
an ECDSA-like verification procedure which avoids the expensive square-root
computation. We study both these variants of EdDSA verification. Experimental
results show that for small batch sizes the Algorithms S2′ and SP yield speedup
comparable to what is achieved by Algorithm N′ which is originally proposed as
the default EdDSA batch-verification algorithm.

Keywords: Elliptic Curve, Edwards Curve, Montgomery Ladder, Symbolic
Computation, Batch Verification, ECDSA, EdDSA, Randomization.

1 Introduction

The concept of digital signatures is proposed in [1] by Diffie and Hellman. The first
practically applicable signature scheme RSA is proposed by Rivest, Shamir and Adle-
man in 1978 [2]. The security of the RSA algorithm is based allegedly on the hard-
ness of the factorization of products of two large primes. In 1985, ElGamal proposes a
new type of digital signature scheme based on the discrete logarithm problem in prime
fields [3]. The ElGamal signature scheme is the first digital-signature scheme which is
probabilistic in nature. The Digital Signature Algorithm (DSA) [4] is a variant of the
ElGamal digital signature scheme, proposed as a standard by the National Institute of
Standards and Technology (NIST) in 1991. In 2001, the Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) is proposed by Johnson et al. [5] and is again accepted as a
digital-signature standard. Bernstein et al. in 2011 propose the Edwards curve digital
signature algorithm (EdDSA) [6]. ECDSA and EdDSA derive their security from the
apparent intractability of the discrete logarithm problem in elliptic and Edwards curves
defined over finite fields.

To verify an ElGamal-like signature, one requires two finite-field exponentiations
(for DSA) or two scalar multiplications in the underlying curve (for ECDSA and Ed-
DSA). Each such modular exponentiation or scalar multiplication is considerably more
time-consuming than the other finite-field operations. EdDSA verification additionally

R.S. Chakraborty et al. (Eds.): SPACE 2014, LNCS 8804, pp. 256–271, 2014.
c© Springer International Publishing Switzerland 2014
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involves a square-root computation in the finite field. This overhead addresses the need
of easy batch verification but incurs significant overhead even during individual verifi-
cation. We can nevertheless adapt the ECDSA verification algorithm to EdDSA, thereby
avoiding the costly square-root computation.

In all these ElGamal-like signature schemes, signature verification is somewhat
slower than the signing procedure. Many applications (often real-time) need to verify
multiple signatures in batches. In 1994, Naccache et al. introduce a method to handle
signature batches [7]. They propose the concept of batch verification, where the veri-
fier simultaneously verifies a batch in time less than the total time associated with the
individual verification of the signatures. An interactive batch-verification procedure is
proposed for DSA signatures in [7]. In 1997, the concept of batch RSA is introduced by
Fiat [8]. Harn, in 1998, proposes an efficient scheme for the batch verification of RSA
signatures [9]. In this scheme (also see [10]), multiple signatures signed by the same
private key can be verified simultaneously. Harn’s scheme uses only one exponentiation
for batches of any size t. However, its drawback is that it does not adapt to the case of
signatures from multiple signers.

The key sizes of ECDSA signatures are much smaller than the key sizes of RSA and
DSA signatures at the same security level. In Table 1 derived from [11], L and N stand
for the bit lengths of the public and the private keys for DSA, k is the bit length of the
modulus in RSA, and f is the order of the base point of the elliptic-curve/Edwards-curve
group. In order to achieve 256-bit security, ECDSA/EdDSA needs only 512-bit keys. At
the same security level, the DSA and RSA key sizes should be at least (15360,512) and
15360 bits. Smaller key sizes make ECDSA/EdDSA attractive to many applications.
Moreover, smaller key sizes lead to faster verification for ECDSA/EdDSA compared to
RSA/DSA.

Table 1. Key sizes for digital-signature algorithms at different security levels

Bits of DSA RSA ECDSA/EdDSA
Security minimum (L,N) minimum k minimum f

80 (1024,160) 1024 160
112 (2048,224) 2048 224
128 (3072,256) 3072 256
192 (7680,384) 7680 384
256 (15360,512) 15360 512

The described batch-verification methods are not directly applicable to ECDSA sig-
natures. ECDSA*, a modification of ECDSA introduced by Antipa et al. [12], permits
an easy adaptation of the DSA batch-verification protocol of Naccache et al. Cheon and
Yi [13] study batch verification of ECDSA* signatures, and report speedup factors of
up to 7 for same signer and 4 for different signers. However, ECDSA* is not accepted as
a standard signature scheme like DSA, RSA or ECDSA [4]. Thus the use of ECDSA*
is unacceptable, particularly in applications where interoperability is of important con-
cern. Moreover, ECDSA* increases the signature size by approximately a factor of two
compared to ECDSA without increasing the security.

Edwards curves, a normal form of elliptic curves, are introduced by Edwards in [14].
Bernstein et al. [6] apply these curves to cryptographic usage. Edwards curves offer
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faster addition and doubling formulas than elliptic curves. Moreover, the unified ad-
dition and doubling formulas make Edwards-curve cryptosystems resistant to simple
side-channel attacks. A batch-verification procedure is also proposed by Bernstein et
al. for Edwards curve digital signatures (EdDSA).

An application of our batch-verification algorithms is in secure vehicle-to-vehicle
(V2V) communications in vehicular ad hoc networks (VANETs) (see [15] for a survey).
Since signature generation and verification are time-consuming operations, and since
vehicles have to verify signatures repeatedly, any algorithm that speeds up the authenti-
cation process is of great help in V2V communications. In a busy street where a vehicle
needs to authenticate messages from multiple vehicles in real time, individual verifica-
tion may result in practical bottlenecks. In this situation, it is also expected that multiple
messages from the same vehicle get accumulated for being verified. This is precisely the
case when our batch-verification algorithms produce the maximum benefits. Like other
batch-verification schemes, this performance gain comes at a cost, namely, we forfeit the
ability to identify individual faulty signatures. Our algorithm (like any batch-verification
algorithm) turns out to be useful only when most signatures are authentic.

The rest of this paper is organized as follows. In Section 2, we provide a brief intro-
duction to the ECDSA batch-verification algorithms of [16,17] and the attacks against
those [18]. Sections 3 elaborates the EdDSA algorithm given in [6]. An ECDSA-like
variant of EdDSA verification is also discussed. Section 4 explains the adaptation of
ECDSA batch-verification algorithms to EdDSA signatures. Section 5 deals with ran-
domization issues in the context of EdDSA batch verification. Our experimental results
are supplied and discussed in Section 6. Section 7 concludes the paper.

2 Background on ECDSA Batch Verification

We work over the elliptic curve

y2 = x3 + ax+ b. (1)

defined over a large prime field Fp. We assume that the group E(Fp) is of prime order
n. Let P be a fixed generator of E(Fp).

An ECDSA signature on a message M is a triple (M,r,s), where r is the x-coordinate
of an elliptic-curve point R, and s is an integer that absorbs the hash of M. Both r and
s are reduced modulo the size n of the elliptic-curve group. During verification, two
scalars u,v are computed using modulo n arithmetic, and the point R is reconstructed as
R = uP+vQ, where P is the base point in the elliptic-curve group, and Q is the signer’s
public key. Verification succeeds if and only if x(R) = r.

Suppose that we want to verify a batch of t ECDSA signatures (Mi,ri,si). For the i-th
signature, the verification equation is Ri = uiP+viQi. The t signatures can be combined
as

t

∑
i=1

Ri =

(
t

∑
i=1

ui

)
P+

(
t

∑
i=1

viQi

)
. (2)
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For simplicity, we assume that all of the t signatures come from the same signer, that is,
Qi = Q for all i. In this case, Eqn(2) can be simplified as

t

∑
i=1

Ri =

(
t

∑
i=1

ui

)
P+

(
t

∑
i=1

vi

)
Q. (3)

Since the y-coordinates of Ri are not available in the signatures, we cannot straightaway
compute the sum on the left side. In AfricaCrypt 2012, several batch-verification algo-
rithms are proposed to solve this problem [16]. The naive algorithms are based upon the
determination of the missing y-coordinate of each Ri using a square-root computation
(we have y2

i = r3
i + ari + b). The symbolic-manipulation algorithms treat the unknown

y-coordinates as symbols. Batch verification involves the eventual elimination of all
these y-coordinates from Eqn(2) or (3) using the elliptic-curve equation. The symbolic
algorithm S2′ turns out to be the fastest of the batch-verification algorithms proposed
in [16].

In IndoCrypt 2012, Bernstein et al. [18] propose two attacks on these batch-ver-
ification algorithms. They also suggest that these attacks can be largely eliminated
by randomizing the batch-verification process (a concept introduced by Naccache et
al. [7]). For randomly chosen non-zero multipliers ξ1,ξ2, . . . ,ξt , the individual verifica-
tion equations are now combined as

t

∑
i=1

ξiRi =

(
t

∑
i=1

ξiui

)
P+

(
t

∑
i=1

ξiviQi

)
(4)

or as

t

∑
i=1

ξiRi =

(
t

∑
i=1

ξiui

)
P+

(
t

∑
i=1

ξivi

)
Q (5)

for the case of the same signer. Since the y-coordinates of Ri are not available in the
ECDSA signatures, Eqn(4) or (5) is not directly applicable. Some efficient ways of
randomizing the batch-verification algorithms of [16] are proposed in [19]. We mostly
concentrate on standard ECDSA signatures (M,r,s) on M. If the ECDSA signature
contains an extra bit to identify the correct square-root y of r3 +ar+b [20], we call this
an ECDSA# signature. In another variant known as ECDSA* [20,21], the entire point
R replaces r in the signature. Neither ECDSA# nor ECDSA* is accepted as a standard.
Since ECDSA* results in an unreasonable expansion in the signature size without any
increase in the security, we do not consider this variant in this paper. ECDSA#, however,
adds only one extra bit to a signature, and so we study the implications of having this
extra bit.

2.1 ECDSA Batch Verification

The right side of Eqn(3) can be computed numerically using two scalar multiplications
(or one double scalar multiplication). Let this point be (α,β ). If Ri are reconstructed as
uiP+viQ, the effort is essentially the same as individual verification. The algorithms of
[16] solve this problem in many ways.
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The naive method N computes yi by taking the square root of r3
i + ari + b. Since

there are two square roots (in general) for each ri, the ambiguity in the sign of yi can
be removed by trying all of the m = 2t combinations. If Eqn(2) holds for any of these
choices, the batch of signatures is accepted. If we use ECDSA#, then the yi values can
be uniquely identified, and we can avoid trying all the m= 2t combinations. This variant
of the naive method is referred to as N′. If the underlying field is large, the square-root
computations may have huge overheads.

The symbolic algorithms S1 and S2 avoid this overhead by computing the left side
of Eqn(2) symbolically. Each yi is treated as a symbol satisfying y2

i = r3
i +ari+b. This

symbolic addition gives (g(y1,y2, . . . ,yt),h(y1,y2, . . . ,yt)) = (α,β ), where g and h are
polynomials in yi with each yi-degree � 1.

Algorithm S1 makes a linearization by repeatedly squaring g(y1, y2, . . . ,yt) = α (or
multiplying by even-degree monomials). At this stage too, the equations y2

i = r3
i +ari+

b are used in order to keep the yi-degrees � 1 in each generated equation. The lin-
earized system has 2t−1 − 1 = m

2 − 1 variables standing for the square-free monomials
in y1,y2, . . . ,yt of even degrees. The linearized system is solved by Gaussian elimina-
tion. The equation h(y1,y2, . . . ,yt) = β is then used to solve for each yi. Finally, it is
verified whether y2

i = r3
i + ari + b for all i.

Algorithm S2 uses a faster elimination trick. The equation g(y1, y2, . . . ,yt) = α is
written as γ(y2,y3, . . . ,yt)y1 + δ (y2,y3, . . . ,yt). Multiplying this by γy1 − δ and using
y2

1 = r3
1 + ar1 + b gives an equation free from y1. The other variables y2,y3, . . . ,yt are

eliminated one by one in the same way. Eventually, the batch is accepted if we obtain
the zero polynomial after all yi are eliminated.

An improved variant of S1 and S2 significantly speeds up the symbolic-addition
phase. Let τ = �t/2�. Eqn(2) is rewritten as ∑τ

i=1 Ri = (α,β )− ∑t
i=τ+1 Ri. The two

sides are individually computed symbolically. These variants of S1 and S2 are referred
to as S1′ and S2′.

In [17], Karati et al. propose a new ECDSA batch-verification algorithm based on
elliptic-curve summation polynomial. This algorithm is known as Algorithm SP and,
is theoretically and experimentally faster than S2′. In this algorithm, Eqns(2)–(5) are
rewritten as

t

∑
i=1

(ri,yi)+ (α,−β ) = O,

where (α,β ) is the numeric sum on the right-hand side. This equation is satisfied if and
only if ft+1(r1,r2, . . . ,rt ,α) = 0, where fk(x1,x2, . . . ,xk) is the k-th summation polyno-
mial that can be defined by induction on k [17].

2.2 Attacks on ECDSA Batch Verification

In the first attack of Bernstein et al. [18], the batch verifier handles t − 2 genuine sig-
natures along with the two forged signatures (r,s) and (r,−s) on the same message M.
Since the sum of the elliptic-curve points (r,s) and (r,−s) is O , the entire batch of t
signatures is verified as genuine.

In the second attack, the forger knows a valid key pair (d1,Q1), and can fool the veri-
fier by a forged signature for any message M2 under any valid public key Q2 along with
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a message M1 under the public key Q1. The forger selects a random k2, computes R2 =
k2P and r2 = x(R2). For another random s2, the signature on M2 under Q2 is presented
as (r2,s2). For the message M1, the signature (r1,s1) is computed as R1 = r2s−1

2 Q2,
r1 = x(R1), and s1 = (e1 + r1d1)(k2 − e2s−1

2 )−1, where e1 = H(m1), e2 = H(m2), and
H is a secure hash function. Now, R1 +R2 and (e1s−1

1 + e2s−1
2 )P+ r1s−1

1 Q1 + r2s−1
2 Q2

have the same value as (k2P+ r2s−1
2 Q2). These forged signatures are verified if they are

in the same batch.
Both these attacks become infeasible by the use of randomizers. If the verifier

chooses l-bit randomizers, the security of the batch-verification procedure increases by
2l . The randomizers need not be of full lengths (of lengths close to that of the prime or-
der n of the relevant elliptic-curve group). As discussed in [22], much smaller random-
izers typically suffice to make most attacks on batch-verification schemes infeasible. If
the underlying field is of size d bits, then the best known algorithms (the square-root
methods) to solve the ECDLP take O˜(2d/2) times. As a result, d/2-bit randomizers do
not degrade the security of the ECDSA scheme. Another possibility is to take l = 128
to get 128-bit security independent of the security guarantees of ECDSA.

3 Edwards Curve Digital Signature Algorithm (EdDSA)

Bernstein et al. in [6] propose the Edwards Curve Digital Signature Algorithm (Ed-
DSA). This signature scheme is based on the group structure of the twisted Edwards
curve over a prime field Fp defined as

E : −x2 + y2 = 1+ dx2y2, (6)

where d is not a square element in Fp and d /∈ {0,−1}. To set up EdDSA signatures,
one fixes the following domain parameters:

b = an integer � 10,

H = a cryptographic hash function whose output is 2b bits long,

p = a prime congruent to 1 modulo 4,

d = a non-square element in Fp, d �= 0,−1,

l = a prime in the range
[
2b−4,2b−3

]
,

B = a point of the curve that acts as the base point, B �= (0,1).

These domain parameters are same for all the entities participating in a network. The
Edwards-curve group is an additive group, where the sum of two points P1 = (x1,y1)
and P2 = (x2,y2) on the curve is the point P3 = P1 +P2 = (x3,y3) that can be computed
using the twisted Edwards-curve addition formula as given in [23]:

(x3,y3) = (x1,y1)+ (x2,y2) =

(
x1y2 + x2y1

1+ dx1x2y1y2
,

y1y2 + x1x2

1− dx1x2y1y2

)
(7)

Now, we describe the three parts of the EdDSA signature scheme. The signer creates
his/her key pair using Algorithm 1. Let M be a message, and the EdDSA signature of
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Algorithm 1. EdDSA Key Generation
INPUT: Domain Parameters.
OUTPUT: Public key A, private key k.

– Choose a random b-bit string as k.
– Compute H(k) = (h0,h1, . . . ,h2b−1).
– Compute a = 2b−2 +∑3≤i≤b−3 2ihi.
– Compute A = aB.

Algorithm 2. EdDSA Signature Generation
INPUT: Domain Parameters, message M, private key k, and H(k) = (h0,h1, . . . ,h2b−1).
OUTPUT: The EdDSA signature (R′,S) on M.

– Compute r = H(hb, . . . ,h2b−1,M).
– Compute R = rB ∈ E.
– R′ = (the sign bit of the x-coordinate of R) || (the y-coordinate of R).
– Compute S = r+H(R′,A,M)a (mod l).

the message be (R,S). Algorithm 2 generates the signature of the message. The validity
of the signature is checked by Algorithm 3.

In the verification Algorithm 3, we have to compute R from R′ which contains the
sign bit of the x-coordinate and the y-coordinate of the point R. From the known y-

coordinate, we first compute two x-coordinates by x ≡ ±
√

y2−1
dy2+1

(mod p), and then

solve the sign problem using the sign bit present in R′. We can avoid the square-root
computation in the verification method. We propose an alternative signature-verification
Algorithm 4 which is a straightforward adaptation of the ECDSA signature-verification

Algorithm 3. EdDSA Signature Verification
INPUT: Domain Parameters, message M, public key A, and signature (R′,S).
OUTPUT: Accept or reject.

– Compute H(R′,A,M).
– Compute R from R′ (using a square-root computation as described in the text).
– Accept the signature if and only if the equation SB = R+H(R′,A,M)A holds.

Algorithm 4. Alternative EdDSA Signature Verification
INPUT: Domain Parameters, message M, public key A, and signature (R′,S).
OUTPUT: Accept or reject.

– Compute H(R′,A,M).
– Extract the y-coordinate Ry of R from R′.
– Accept the signature if and only if the equation Ry = y(SB−H(R′,A,M)A) holds.
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algorithm. The correctness of Algorithm 4 can be easily proved as follows. We have
S = (r+H(R′,A,M)a) (mod l), that is, r = S−H(R′,A,M)a. Multiplying both sides by
B, we get rB = SB − H(R′,A,M)aB, that is R = SB − H(R′,A,M)A. Therefore y(R) =
y(SB−H(R′,A,M)A).

4 Batch Verification of EdDSA

Like ECDSA, only the y-coordinate of an Edwards-curve point is sent in an EdDSA sig-
nature. An extra bit to identify the correct x-coordinate is included in the signature. All
the batch-verification algorithms studied in connection with ECDSA apply equally well
to EdDSA signatures. Suppose that we want to verify a batch (M1,R′

1,S1),(M2,R′
2,S2),

. . . ,(Mt ,R′
t ,St) of t EdDSA signatures. Let Ri be the corresponding point of R′

i. We
combine the individual verification equations for the t signatures as:(

t

∑
i=1

Si

)
B−

t

∑
i=1

H(R′
i,Ai,Mi)Ai =

t

∑
i=1

Ri. (8)

If all the signatures are from the same signer, that is, A1 = A2 = · · · = At = A, then
Eqn(8) simplifies to:(

t

∑
i=1

Si

)
B−

(
t

∑
i=1

H(R′
i,Ai,Mi)

)
A =

t

∑
i=1

Ri. (9)

Eqn(9) requires only two scalar multiplications. Unlike ECDSA, an EdDSA signature
contains an extra bit of information to identify the x-coordinate of R uniquely (after
solving a quadratic equation). We can compute the full Edwards-curve point Ri from R′

i
for all i. This calls for t square-root computations modulo p. This algorithm is similar to
Algorithm N′ of [16] and is called Algorithm EdN′ here. If the extra bit is not available
in the EdDSA signature (or is ignored) to uniquely distinguish the x-coordinate, we have
to try all the 2t combinations of points to verify the batch. We call this naive method
Algorithm EdN. The original EdDSA paper [6] recommends Algorithm EdN′ as the
default batch-verification algorithm.

4.1 Adaptation of Algorithm S2′

We can remove the overhead of square-root computations altogether. The adaptation of
Algorithm S2′ can solve this problem. Let us call this adapted version Algorithm EdS2′.
We first divide the t Edwards-curve points R1,R2, . . . ,Rt in two groups. Then, we rewrite
Eqn (8) as:⎛⎝� t

2�
∑
i=1

Ri

⎞⎠=

(
t

∑
i=1

Si

)
B−

(
t

∑
i=1

H(R′
i,Ai,Mi)

)
A−

⎛⎝ t

∑
i=� t

2�+1

Ri

⎞⎠ . (10)

We treat the x-coordinates of the points Ri as symbols and compute the symbolic sum
of the two sides of Eqn(10). Let the symbolic sum on the left-hand side of Eqn(10)
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be Q1, and that on the right-hand side be Q2. For a valid batch, Q1 and Q2 are two

symbolic representations of the same point. We have y(Q1) ∈ Fp

[
x1,x2, . . . ,x� t

2�
]

and

y(Q2) ∈ Fp

[
x� t

2�+1,x� t
2�+2, . . . ,xt

]
. Let φ = y(Q1)− y(Q2), so φ is a polynomial in

Fp[x1,x2, . . . ,xt ]. In φ , the maximum degree of any xi is 1. We write φ as ux1+v, where
u,v ∈ Fp[x2, . . . ,xt ]. Multiplying φ with ux1 − v, we get

(ux1 − v)φ = (ux1 − v)(ux1 + v) = u2x2
1 − v2.

Substituting x2
1 by y2

1−1
dy2

1+1
, we get φ ′ =(ux1−v)φ = u2

(
y2

1−1
dy2

1+1

)
−v2. To keep the degrees

of all remaining xi to � 1, a substitution phase follows this elimination, in which we

replace x2
i by y2

i −1
dy2

i +1
for all i = 2,3, . . . , t. Using the same procedure, we eliminate all

the symbolic x-coordinates x2,x3, . . . ,xt one by one. At the end, if we obtain the zero
polynomial, we accept the batch of signatures, else we reject it.

4.2 Edwards-Curve Summation Polynomials and Adaptation of Algorithm SP

Here, we mention the adaptation necessary to make Algorithm SP of [17] work for
EdDSA batch verification. The two base cases f2 and f3 of Edwards-curve summation
polynomials, and the recurrence relation to compute the summation polynomial ft for
t ≥ 4 are:

f2(y1,y2) = y1 − y2,

f3(y1,y2,y3) = c2(V − d2Uy2
1y2

2)y
2
3 − 2y1y2(V − dU)y3 +(Vy2

1y2
2 −U),

where U = (c2 − y2
1)(c

2 − y2
2) and V = (1− c2dy2

1)(1− c2dy2
2),

ft (y1,y2, . . . ,yt) = ResY ( ft−k(y1, . . . ,yt−k−1,Y ), fk+2(yt−k, . . . ,yt ,Y ))

for t � 4 and for any k in the range 1 � k � t − 3.

The summation polynomial ft evaluated at the t arguments y1,y2, . . . ,yt is zero if and
only if there exists an xi in Fp for each yi, where 1 � i � t, such that −x2

i + y2
i = 1+

dx2
i y2

i . If the batch-verification condition of Eqn(8) or (9) is expressed as ∑t
i=1(xi,yi)+

(−α,β ) = O , it therefore suffices to check whether ft+1(y1,y2, . . . ,yt ,β ) = 0. To re-
strict our attention to curve points defined over Fp only, we need to carry out the sanity
check introduced in [17]. The sanity check for Edwards curves follows the same proce-

dure as for elliptic curves (check whether the Legendre symbol
(
(y2

i −1)/(dy2
i +1)

p

)
= 1).

5 Randomization of EdDSA Batch-Verification Algorithms

EdDSA signatures can be randomized easily by methods similar to the randomization
methods for ECDSA. For randomly chosen multipliers ξ1,ξ2, . . . ,ξt , we now verify
whether the following equality holds:(

t

∑
i=1

ξiSi

)
B−

t

∑
i=1

ξiH(R′
i,Ai,Mi)Ai =

t

∑
i=1

ξiRi. (11)
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For the case of the same signer, that is, A1 = A2 = · · · = At = A, Eqn(11) simplifies to:(
t

∑
i=1

ξiSi

)
B−

(
t

∑
i=1

ξiH(R′
i,Ai,Mi)

)
A =

t

∑
i=1

ξiRi. (12)

The default batch-verification algorithm for EdDSA is EdN′, in which we explicitly
and uniquely compute the points Ri by square-root computations modulo p. Subse-
quently, their multiples ξiRi can be computed numerically. We finally check whether
the condition of Eqn(11) or (12) holds. The process does not involve any symbolic or
summation-polynomial computation. In a variant denoted by EdN, we assume that Ri

cannot be uniquely determined, so we need to try all possible combinations of the signs
of xi. For each combination, randomization proceeds numerically as in the case of EdN′.

We may, however, ignore the presence of the extra bit in R′
i identifying the correct

value of xi. By doing so, we can adapt the randomized Algorithms EdS2′ and EdSP to
work for EdDSA. This is motivated by a need to avoid costly square-root computations
of Algorithm EdN′.

In order to apply Algorithm EdS2′ to the batch-verification Eqn(11) or (12), it suf-
fices to compute the y-coordinates of all ξiRi. As in the case of ECDSA, we can uniquely
compute y(ξiRi) from the knowledge of ξi and y(Ri) alone. More precisely, let R=(x,y)
be a point on the Edwards curve. Any multiple uR of R can be expressed as (hx,k),
where h,k ∈ Fp are fully determined by (u and) the y-coordinate of R. R itself is so ex-
pressed with h= 1 and k = y. The sum of two multiples P1 =(h1x,k1) and P2 = (h2x,y2)
of R is P1 +P2 = (h3x,k3), where

h3 = (h1k2 + h2k1)/(1+ dh1h2k1k2 f ),

k3 = (k1k2 + h1h2 f )/(1− dh1h2k1k2 f ),

with f precomputed as f = x2 = (y2 −1)/(dy2+1)∈ Fp. For Edwards curves, the dou-
bling formula is the same as the addition formula. That is, the double of P1 = (h1x,k1)
is 2P1 = (h4x,k4), where

h4 = 2h1k1/(1+ dh2
1k2

1 f ),

k4 = (k2
1 + h2

1 f )/(1− dh2
1k2

1 f ).

We henceforth refer to this computation of y(ξiRi) as the seminumeric randomization
method.

We can also use Montgomery ladders [24] to compute y(ξiRi). For deriving the
Montgomery-ladder formulas, let P1 = (h1,k1) and P2 = (h2,k2) be two points on the
curve. For point addition, we need the y-coordinate of the point P1 −P2 as follows.

y(P1 +P2) =
2k1k2(1+ dh2

1h2
2)

1− dh2
1h2

2(k1k2)2
− y(P1 −P2).

Here, h2
i = (k2

i − 1)/(dk2
i + 1) for i = 1,2. Finally, point doubling uses the formula

y(2P1) =
k2

1 + h2
1

1− dh2
1k2

1

,
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where h2
1 = (k2

1 − 1)/(dk2
1 + 1). These formulas can be easily converted to projective

coordinates.
Let us now theoretically compare the performance of the seminumeric method with

that of the Montgomery-ladder method. Let P1 = (α1x,β1,γ1) and P2 = (α2x,β2,γ2) be
two points on the curve in standard projective coordinates. The seminumeric method
computes the sum P3 = P1 +P2 = (α3x,β3,γ3) and the double P4 = 2P1 = (α4x,β4,γ4)
as given below:

Point Addition

A = γ1 · γ2, B = A2, C = α1 ·α2, C1 =C · fx, D = β1 ·β2, E = d ·C1 ·D, F = B−E,

G = B+E, α3 = A ·F · ((α1 +β1) · (α2 +β2)−C−D), β3 = A ·G · (D+C1),

γ3 = F ·G.

Point Doubling

B = (α1 +β1)
2, C = α2

1 , C1 =C · fx, D = β 2
1 , E1 =C1 +D, E2 =C+D, H = γ2

1 ,

J = E1 − 2 ·H, α4 = (B−E2) · J, β4 = E1 · (C1 +D), γ4 = E1 · J.

Each of seminumeric point addition and point doubling requires one extra field mul-
tiplication than the optimized implementation given in [25]. More precisely, seminu-
meric point addition and doubling take (11M + 1S) and (4M + 4S) field operations
respectively (ignoring the negligible time consumed by multiplication by d and field
addition).

The Montgomery-ladder method requires (14M+6S) field operations for each addi-
tion and doubling combined in each iteration.

We can use any windowed variant of point multiplication in the seminumeric point
multiplication method. On the contrary, no effective windowed variant is known for
Montgomery ladders. Moreover, the practical ladder described in [26] is efficient only
for constant multipliers, which is not the case with randomized batch verification. We
therefore use only the binary ladder.

Let us use l-bit randomizers. If we use the w-NAF method in the seminumeric
computation, the precomputation stage needs (4M+ 4S)+ (2w−1 − 1)(11M+ 1S) field
operations, and

(
l

w+1

)
(11M + 1S) field operations are required to perform the scalar

multiplication. The seminumeric scalar multiplication is faster than the Montgomery-
ladder method if

(4M+ 4S)+ (2w−1− 1)(11M+ 1S)+ (4M+ 4S)l+

(
l(11M+ 1S)

w+ 1

)
� l(14M+ 6S).

Putting w = 4 and assuming 1M ≈ 1S, we deduce that for l � 10 the seminumeric
method is faster than the Montgomery-ladder method.

6 Experimental Results

The algorithms are implemented in a 2.33 GHz Xeon server running Ubuntu Linux
Version 2012 LTS. The algorithms are implemented using the GP/PARI calculator [27]
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(version 2.5.0 compiled by the GNU C compiler 4.6.2). We have used the symbolic-
computation facilities of the calculator in our programs. All other functions (like scalar
multiplication and square-root computation) are written as subroutines with minimal
function-call overheads. Since the algorithms are evaluated in terms of the numbers of
field operations, this gives a fair comparison of experimental data with the theoreti-
cal estimates. We have implemented windowed, w-NAF and frac-w-NAF methods for
square-root computations and for numeric and seminumeric randomization methods.
We have used affine and standard projective coordinates. We have performed all the
experiments on the Edwards curve Ed25519 [6].

Table 2 lists the overheads associated with all the batch-verification algorithms. We
present the times required for the numeric and seminumeric scalar multiplications in
Table 4. The best results obtained are highlighted and used in speedup computations. In
the randomization of the batch-verification algorithms, the scalars are not constant, so
we have to compute the addition chain for each scalar multiplication. The timing figures

Table 2. Overhead (in ms) of different batch-verification algorithms for EdDSA

Batch Size Algorithm
t EdN EdN′ EdS2′ EdSP
2 0.08 0.03 0.06 0.06
3 0.24 0.04 0.12 0.10
4 0.63 0.06 0.24 0.12
5 1.54 0.07 0.52 0.28
6 3.71 0.08 0.96 1.36
7 8.74 0.10 2.02 2.72

Table 3. Times (in ms) of square-root computations in the underlying field

↓ Algorithm Times (in ms)
w = 3 0.36

w-numeric (affine) w = 4 0.28
w = 5 0.28
w = 3 0.28

w-NAF-numeric (affine) w = 4 0.28
w = 5 0.32
w = 3 m = 1 0.33

m = 1 0.28
w = 4 m = 3 0.32

m = 5 0.32
m = 1 0.32

Frac-w-NAF-numeric (affine) m = 3 0.32
m = 5 0.32

w = 5 m = 7 0.36
m = 9 0.32

m = 11 0.32
m = 13 0.36
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presented in Table 4 include the addition-chain computation times. Table 3 shows the
square-root computation times obtained by various windowed algorithms. The times
needed to carry out the Montgomery-ladder scalar multiplication are supplied in Ta-
ble 5. Finally, the overall speedup figures obtained by the four batch-verification al-
gorithms EdN, EdN′, EdS2′ and EdSP are listed in Table 6. In the speedup table, we
include the results using both the default signature-verification Algorithm 3 and the
ECDSA-like signature-verification Algorithm 4.

For batch sizes in the range 2� t � 7, the speedup obtained by Algorithms EdS2′ and
EdSP is competitive with that obtained by the default batch-verification
Algorithm EdN′. Algorithms EdS2′ and EdSP outperform Algorithm EdN′ if we use
the default Algorithm 3 for individual verification. On the other hand, if we use the
ECDSA-like verification Algorithm 4 for individual verification, Algorithm EdS2′

Table 4. Times (in ms) of the numeric and seminumeric randomization methods

↓ Algorithm Numeric Methods SemiNumeric Methods
l = 128 l = 255 l = 128 l = 255

w = 3 2.28 4.40 2.40 4.68
w-numeric (affine) w = 4 2.28 4.41 2.44 4.61

w = 5 2.45 4.40 2.60 4.69
w = 3 2.28 4.53 2.44 4.81

w-NAF-numeric (affine) w = 4 2.20 4.40 2.33 4.64
w = 5 2.28 4.25 2.36 4.48
w = 3 m = 1 2.44 4.77 2.61 5.01

m = 1 2.45 4.76 2.52 4.96
w = 4 m = 3 2.44 4.73 2.53 4.97

m = 5 2.44 4.73 2.56 4.89
m = 1 2.40 4.61 2.53 4.80

Frac-w-NAF-numeric (affine) m = 3 2.48 4.60 2.52 4.85
m = 5 2.44 4.64 2.57 4.85

w = 5 m = 7 2.49 4.69 2.56 4.88
m = 9 2.48 4.73 2.60 4.88
m = 11 2.48 4.68 2.60 4.89
m = 13 2.52 4.72 2.64 4.89

w = 3 1.28 2.48 1.40 2.76
w-numeric (Jacobian projective) w = 4 1.28 2.36 1.44 2.68

w = 5 1.36 2.44 1.52 2.68
w = 3 1.32 2.60 1.48 2.88

w-NAF-numeric (Jacobian projective) w = 4 1.24 2.49 1.44 2.81
w = 5 1.28 2.44 1.44 2.73
w = 3 m = 1 1.53 2.92 1.60 3.12

m = 1 1.48 2.88 1.64 3.12
w = 4 m = 3 1.48 2.84 1.60 3.12

m = 5 1.48 2.84 1.64 3.12
m = 1 1.49 2.80 1.60 3.04

Frac-w-NAF-numeric (Jacobian projective) m = 3 1.48 2.85 1.64 3.04
m = 5 1.48 2.80 1.60 3.04

w = 5 m = 7 1.48 2.84 1.60 3.09
m = 9 1.52 2.84 1.65 3.08
m = 11 1.53 2.81 1.64 3.04
m = 13 1.52 2.84 1.64 3.08

Table 5. Times (in ms) of the Montgomery-ladder randomization method

Coordinate system l = 128 l = 255
Affine 2.96 5.85
Standard projective 1.96 3.88



Batch Verification of EdDSA Signatures 269

outperforms Algorithm EdN′ for batch sizes t � 7, and Algorithm EdSP is faster than
Algorithm EdN′ for batch sizes � 5.

In short, replacing square-root computations by symbolic or resultant computations
does not degrade the batch-verification process, so long as we restrict only to small
batches of signatures. However, the overhead of the default batch-verification algorithm
EdN′ increases linearly with the batch size, whereas that of EdS2′ or EdSP increases ex-
ponentially. Consequently, EdN′ must eventually take over the exponential algorithms
(not demonstrated in the experimental results though).

Table 6. Speedup (over individual verification) obtained by different randomized and non-
randomized batch-verification methods in the case of the same signer for two verification al-
gorithms

Batch Verification Randomization Batch Algorithm 3 Algorithm 4
Algorithm Algorithm Size None∗ l = 128 None∗ l = 128

2 1.87 1.29 1.77 1.22
3 2.60 1.60 2.46 1.51

EdN Numeric 4 3.11 1.78 2.94 1.68
5 3.30 1.84 3.12 1.74
6 3.01 1.75 2.85 1.65
7 2.32 1.49 2.19 1.41
2 1.89 1.30 1.78 1.23
3 2.69 1.63 2.54 1.54

EdN′ Numeric 4 3.41 1.87 3.22 1.77
5 4.06 2.06 3.84 1.94
6 4.66 2.20 4.41 2.08
7 5.20 2.31 4.92 2.19
2 2.09 1.33 1.98 1.26
3 3.10 1.68 2.93 1.59

EdS2′ Seminumeric 4 4.03 1.93 3.81 1.82
5 4.78 2.08 4.52 1.97
6 5.30 2.17 5.01 2.06
7 5.23 2.16 4.95 2.05
2 2.09 1.33 1.98 1.26
3 3.11 1.69 2.94 1.59

EdSP Seminumeric 4 4.13 1.95 3.90 1.84
5 5.00 2.12 4.73 2.01
6 4.96 2.11 4.69 2.00
7 4.75 2.08 4.49 1.96

* without randomization

7 Conclusion

In this paper, we port several batch-verification algorithms proposed for ECDSA to
EdDSA signatures. We also address the issues of randomizing the batch-verification
process. Our experimental results demonstrate that the default batch-verification algo-
rithm proposed for EdDSA can be slightly improved by using the new developments
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based on symbolic and resultant computations, at least for small batch sizes. Further
advances in this new area of research can substantially enhance the applicability of the
new proposals for EdDSA signatures. It is a challenging open problem whether the time
complexities of the new algorithms can be brought down from exponential to polyno-
mial. Prospects of achieving breakthroughs are expected to keep research in this area
alive in near future.
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Abstract. Randomness testing plays an important role in cryptography.
Randomness is typically examined by batteries of statistical tests. One of
the most frequently used test batteries is the NIST Statistical Test Suite.
The tests of randomness should be rather fast since they usually process
large volumes of data. Unfortunately, this is not the case for the NIST
STS, where a complete test can take hours. Alternative implementations
do exist, but are not very efficient either or they do not focus on the
most time-consuming tests. We reimplemented all NIST STS tests and
achieved interesting speedups in most of the tests, including the tests
with the highest time complexity. Overall, our implementation runs 30
times faster than the original code.

Keywords: Berlekamp-Massey algorithm, NIST STS, randomness sta-
tistical testing.

1 Introduction

Randomness is connected with many areas of computer science, in particu-
lar with cryptography. Well designed cryptographic primitives like hash func-
tions, stream ciphers, etc., should produce pseudorandom data. Randomness
testing therefore plays an important and fundamental role in cryptography.
Randomness is typically examined by empirical tests of randomness. Each test
examines data by looking at a specific feature (number of ones, m-bit blocks,
etc.). Tests are usually grouped into test batteries (also called test suites) to
provide more complex randomness analysis. When testing any new source of
(pseudo)randomness, the statistical test suites are of crucial importance. New
sources of (pseudo)randomness include pseudorandom generators and entropy
collectors for various kinds of environments (including smartcard, wireless sensor
nodes, mobile devices, servers, desktops, etc.) and quite many new ideas and/or
environments are emerging, so the tests are run very frequently in practice. Pass-
ing statistical tests of randomness is an important step for a (pseudo)random
data generator being recognized or approved by certification bodies or other
authorities.

All tests measure how the observed statistics of the analysed feature fit the
expected statistics. Empirical tests of randomness compare the expected and
obtained characteristics by standard statistical methods. Thus randomness is
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characterized and described in the terms of probability. The result of each test
is a P -value that represents the probability that the chosen test statistic will
assume values that are equal to or worse than the observed test statistics. This
concept allows one to evaluate randomness according to several examined fea-
tures at once. Combination of several P -values increases the confidence about the
randomness/non-randomness of given data. Confidence about the data random-
ness can be also increased by increasing the analysed data volume. In practice,
the analysed data volume is usually in the order of GBs and therefore the speed
of these tests should be high. Unfortunately, most batteries are not implemented
efficiently.

There are five well-known batteries – NIST STS [3], Diehard [4], TestU01 [6],
ENT [7] and CryptX [8]. Only the first three batteries are commonly used for the
randomness analysis, since CryptX is a commercial software and ENT provides
only a very basic randomness testing. Position of the NIST STS is special as it has
been published as an official NIST document. Therefore NIST STS is often used
in preparation of formal certifications or approvals. Diehard and its novel imple-
mentation Dieharder were proposed for testing randomness of numbers rather
than bitstreams. The newest and most powerful battery TestU01 was introduced
in 2007 by Lecleuyer and Simard. TestU01 [6] incorporates new tests and im-
plements the current state of the art of randomness testing. Diehard/Dieharder
and TestU01 also implement some of the NIST tests, but they do not implement
all NIST tests (Diehard) or the tests are not efficient (TestU01).

From time to time, there appear news about optimised versions of NIST STS.
However, no such optimisation with either full description of the changes or
NIST ‘approval’ exists, at least to our best knowledge. The goal of our work
is to rewrite the NIST STS battery into a new version, with the same tests,
with much better time- and space-efficient implementation of empirical tests of
randomness and to provide a full description of the optimisations in an open
publication, together with the source code openly available.

This paper is organised as follows: Section 2 provides an overview of the NIST
tests, alternative implementations and the performance of the original code. Sec-
tion 3 briefly describes our improvements. Section 4 discusses how we evaluated
our algorithms and Section 5 summarizes the results of the performance testing.

2 Statistical Test Suites

The NIST tests are defined in [3]. The NIST Statistical Test Suite (NIST STS)
package implements all the NIST tests. Although some particular NIST tests are
also implemented in other test batteries (Diehard, TestU01), we further focus
on the reimplementation of the whole NIST STS package.

2.1 NIST Statistical Tests

The original NIST document [1] defined 16 empirical test of randomness. These
tests were developed to test the hardware or software based cryptographic ran-
dom or pseudorandom number generators. During the next two revisions [2,3],
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the Lempel-Ziv test was removed due to implementation problems identified by
the NIST. The current set of the NIST tests consists of 15 tests. All tests are pa-
rameterised by a parameter n that denotes the length (in bits) of the processed
bitstream. Although all the tests are proposed to detect deviations from random-
ness for the whole bitstream, only several tests can detect local non-randomness.
These tests are also parameterised by a second parameter denoted by m or M
[3]. Tests parameterised by m are developed to detect the presence of too many
m-bit patterns in a sequence. Tests with the second parameter M examine dis-
tribution of the specific feature across n/M parts (of equal size M bits) of a given
bitstream. All tests in NIST STS compute P -values using asymptotic reference
distributions (χ2 or normal) and therefore reasonable results are obtained only
for appropriate settings of the parameters n,m and M . Overview of all the tests
and meaningful settings of their parameters are summarized in Table 1.

Table 1. The recommended size n of the bitstream for the particular tests. Some
tests are parameterised by a second parameter m, M, respectively. The table shows
meaningful settings of the second parameter depending on n.

Test # Test name n m or M

1. Frequency (Monobit) n > 100 -

2. Frequency within a Block 20 ≤ M ≤ n/100

3. Runs n ≥ 100 -

4. Longest run of ones in a block

5. Binary Matrix Rank n > 38912 -

6. Discrete Fourier Transform (Spectral) n ≥ 1000 -

7. Non-overlapping Template Matching 2 ≤ m ≤ 21

8. Overlapping Template Matching 1 ≤ m ≤ n

9. Maurer’s Universal 1 ≤ m ≤ n

10. Linear complexity n > 106 500 ≤ M ≤ 5000

11. Serial 3 ≤ m ≤ �log2 n� − 3

12. Approximate Entropy m ≤ �log2 n� − 6

13. Cumulative sums n > 100

14. Random Excursions n ≥ 106

15. Random Excursions Variant n ≥ 106

2.2 NIST STS

The NIST test suite implements various random number generators and the 15
empirical tests developed to test randomness of binary sequences. The whole
package is written in ANSI C in order to obtain a platform independent code.
The source code of NIST STS was ported to Windows XP and Ubuntu Linux,
and with minor modifications it also may be ported to different platforms. The
NIST STS transforms an input file (stored as ASCII characters ‘0’ and ‘1’ or
as binary data) to a byte array, where each byte (value 0 or 1) represents a
single bit of the analysed bitstream. Byte representation of data allows one to
use the same implementation of tests on little- and big-endian systems. The code
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universality comes at the expense of memory and time inefficiency of tests. Some
of the tests have a preprocessing phase, but it is negligible for large volumes of
data. The time complexity of each test is linear according to data volume n. The
performance of the Rank test described in Figure 2 illustrates the linearity of
tests. Performance of the tests with the second parameter (m,M) depends on
its particular value. Table 2 shows run times of tests (implemented in the NIST
STS) obtained after processing 20 MB of pseudorandom data (n = 167, 772, 160)
with minimum and maximum recommended values of m or M . Table also shows
the percentage to identify the time critical tests.

Table 2. Run times of particular tests obtained for minimum and maximum values of
their second parameters m or M

Test m, M Time(ms) % m, M Time (ms) %

Frequency (Monobit) - 203 0.12 - 203 0.01

Frequency within a Block n/100 46 0.03 20 63 0.00

Runs - 1140 0.67 - 1140 0.08

Longest run of ones in a block - 656 0.39 - 656 0.04

Binary Matrix Rank - 3781 2.23 - 3781 0.25

Spectral - 24625 14.50 - 24625 1.63

Non-overlapping Template 2 1750 1.03 21 140015 9.28

Overlapping Template 2 672 0.40 24 3343 0.22

Maurer’s Universal - 2843 1.67 - 2843 0.19

Linear complexity 500 122390 72.04 5000 1187453 78.69

Serial 2 3687 2.17 24 85297 5.65

Approximate Entropy 2 4422 2.60 24 55860 3.70

Cumulative sums - 984 0.58 - 984 0.07

Random Excursions - 562 0.33 - 562 0.04

Random Excursions Variant - 2125 1.25 - 2125 0.14

Total 169886 100 1508950 100

2.3 NIST Reimplementations

There were some attempts to reimplement the NIST STS efficiently. In [9] au-
thors rewrite the NIST STS package to a byte-oriented implementation. Byte-
oriented code allows one to speed up most tests, since some precomputation
(lookup tables) can be used. Authors also made other improvements to the source
code and finally obtained 13.45 average speedup of tests. However, this average
speedup says nothing about the overall time, since it does not reflects the fact
that durations of particular tests are quite different. The most time-consuming
test (Linear complexity) is only 3 times faster in the reimplemented version [9].
Thus the overall speedup is significantly smaller and the whole testing process is
at most 4 times faster. In [10] authors also tried to reimplement the NIST STS,
but they obtained mostly worse results than in [9]. Unfortunately, both imple-
mentations are not publicly available and therefore we use only the published
textual results to compare the perfomance. We contacted the authors of both
papers, and we got some response with authors not sharing the source codes.
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3 Improvements

Although we probably use ideas and principles similar to those in [9] to speed
up some of the tests, our optimizations have been proposed and implemented
independently. Moreover, we were able to apply these ideas to speed up the most
time-consuming tests, which are Linear complexity, Non-overlapping template
matching and the Serial tests.

All our optimizations are based on three basic ideas. We use lookup tables
(LUTs), fast extraction of an integer from the byte array and word-word opera-
tions instead of bit-bit operations. Each optimization is used for a different type
of tests determined by its complexity. Although the run time of each NIST test is
linear to the number of bits n, the run times of particular tests vary significantly
as we can see in Table 2. Run times of fast (simple) tests are usually influenced
by the second parameter m. Poor performance of the most time-consuming tests
is caused by subroutines for complex algorithms like Berlekamp-Massey, Gauss
elimination or Fast Fourier Transformation.

3.1 Classes of Tests

NIST STS tests can be divided (according to their complexity and used opti-
mizations) into three classes as follows:

1. Fastest tests that process each bit of bitstream once – Frequency, Block
Frequency, Runs, Longest run, Cumulative sums, Random Excursion and
Random Excursion Variant.

2. Fast tests that process m-bit blocks – Non-overlapping template matching,
Overlapping template matching, Universal, Serial and Approximate entropy.
Run times of these tests are dependent on m since each bit of the m-bit
block is compared with some pattern in the NIST STS implementation.

3. Slow and complicated tests – Linear complexity, Spectral, Rank – tests that
use quadratic algorithms (Linear complexity, Rank) or sub-quadratic algo-
rithm (Spectral).

3.2 Optimizations of Simple Tests

Tests from the class 1 are optimized by the LUTs since these tests compute single
value characteristics of bits like proportion of ‘0’ and ‘1’ bits, frequency of bit
change (runs), length of runs and cumulative sum of bits. Tests use LUTs that
consist of precomputed values for all k-bit blocks indexed by a block interpreted
as an integer value. In our implementations, we use k = 8 as an appropriate
value since the LUTs have a reasonable number of entries (2k = 256). To run
the tests we need to divide the bitstream into 8-bit blocks and continuously
compute bit characteristics using corresponding table values. Choosing k = 8
we have 8-bit blocks since the bitstream is stored as a byte array. The use of
LUTs can be illustrated on the Frequency test that computes the number of
ones in the bitstream. The frequency test uses a LUT with entries LUT [i] = vi,



Faster Randomness Testing with the NIST Statistical Test Suite 277

where vi represents the number of ones (Hamming weight) in the index i (8-bit
block). To compute the number of ones in a bitstream, it is sufficient to sum the
corresponding LUT values for all bytes in a byte array. It should be noted that
for other tests we use several LUTs that describe the input, output and internal
characteristics of 8-bit blocks. For a more detailed description of tests from the
first class, look into the source code available at [11].

Tests from the class 2 processm-bit blocks of the bitstream. To speed up these
tests, we implemented a fast function get nth block that can extract arbitrarym-
bit block (m ≤ 25 ) from a given bitstream (byte array). Upper bound 25 of the
block size is sufficient for all the tests from this class since m is upper-bounded
by log2 n − 3 (Serial test). For 20 MB of data this upper bound has the value
m = 24 and therefore function get nth block can be used. Function get nth block
is fast and it is able to return all m-bit blocks from a 100 MB bitstream within
a second on a standard modern computer. More effective optimization is based
on the observation that all these tests (except Universal) can be evaluated from
a single histogram of m-bit blocks.

In these tests, we use the histogram represented by the array H of frequencies
(integers) of m-bit blocks indexed by blocks themselves. The histogram is com-
puted using the function get nth block that is used to extract overlapping m-bit
blocks bi for i ∈ {0, 1, · · · , n − m} from the bitstream. These blocks are used as
indexes to H for incrementing the corresponding frequencies H [bi]. Since access
to the array H and the increment are very fast operations, the histogram can be
obtained also within a second (on the standard modern computer for 100 MB
of data). Figure 1 illustrates the typical dependency between parameter m and
the performance of the test.

Fig. 1. Run times of the Non-overlapping test
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The time complexity of the test depends on the number of searched templates
(predefined k-bit patterns), which rise exponentially with the parameter m. Due
to exponential nature of the number of templates, the original implementation
imposes a practical limit on the maximum number of templates being tested
(148). This limit is in effect for all m > 9 as we can see in the Figure 1, where
the time complexity becomes constant.

Our implementation computes a histogram H for an arbitrary m < 25 in the
same way and in a single pass. Therefore the complexity of our implementation
is constant – independent on m (the real execution is influenced by processor
cache management as you can see in Figure 1). Moreover, we compute H for all
m-bit patterns and could easily provide complete statistics, yet for the reason
of compatibility with the original version we stick to the limit of the maximum
number of templates.

3.3 Spectral Test

The Spectral test is the only test that is not reimplemented in our battery. The
Spectral test uses the Fast Fourier Transformation and therefore its run time is
determined by the prime factors of n rather than by the value n itself. To speed
up this test, it suffices to use n with small factors. The best choice is to take n
of the form n = 2k, for which the Spectral test run time is comparable to fast
tests in the class 1.

3.4 Binary Matrix Rank Test

The Rank test uses the Gaussian elimination subroutine to examine whether the
rank of the 32x32 boolean matrix is 32, 31 or less. Our implementation is based
on the same idea as the Rank test in [9]. We use word-word operations instead of
bit-bit operations. Since the square boolean matrix has the size 32, we represent
it as an array of 32 unsigned integers, each of them representing a row of the
matrix. Rank of the matrix is computed using fast bitwise operations XOR, AND
and shift. The XOR operation realizes the row addition. Bitwise AND and shift
are used for the pivot finding. Although our implementation of the Rank test is
probably very similar to the implementation in [9], we improve it by adding the
stop condition. We stop the computation if there are two columns with no pivot
(thus the rank is less than 31).

3.5 Linear Complexity Test

The Linear complexity test is focused on determining the linear complexity L
of a finite binary sequence. The linear complexity of a sequence equals to the
length of the smallest linear feedback shift register (LFSR) that generates the
given sequence. The Linear complexity test uses an efficient Berlekamp-Massey
algorithm to compute this smallest LFSR. The Berlekamp-Massey (BM) algo-
rithm for a binary sequence can be described by the following pseudocode:
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Fig. 2. Run time of the Rank test

Data: binary sequence S = {s0, s1, · · · , sn−1} of the length n
Result: shortest LFSR generating S
Set arrays b, c to 1;
Set length L of c to 0;
m ← −1;
for N ← 0 to n-1 do

Compute d ← ∑L
i=0 cisN−i ;

if d = 1 (mod ) 2 then
update c by c ← c XOR ( b >> N-m) ;
t ← c;
if L ≤ n/2 then

t ← b;
L ← N + 1 - L;
m ← N ;

end

end

end
return c;

Algorithm 1. Pseudocode of the Berlekamp-Massey algorithm

The BM algorithm is an iterative method that constructs the smallest LFSR
cN generating the subsequence SN = {s0, s1, · · · , sN} of Sn = {s0, s1, · · · , sn−1},
sj ∈ {0, 1} in the N -th iteration. The BM tests whether the LFSR cN−1 that
generates the subsequence SN−1 also generates the SN sequence. The BM algo-
rithm computes the discrepancy d that denotes the Hamming weight of the
sequence SN masked with the shifted LFSR cN−1 (stored as binary array).
The BM algorithm uses another LFSR bN−1 (t is used to copy c to b) that
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represents the last LFSR (different to cN−1) computed up to N − 1 iteration.
If the discrepancy d is even then cN = cN−1 and bN = bN−1. Table 3 illus-
trates how the discrepancy is computed from the LFSR. The table shows that
the LFSR b = x2 + 1 stored as a bit-array b = 101 forms a LFSR for S4, i.e.,
b4 = 101 since all discrepancies (sequence masked by shifted b) are even.

Table 3. Principles of the Berlekamp-Massey algorithm

index 0 1 2 3 4 5 6 7

S10 = 0 1 0 1 1 0 1 1 1
b = 1 0 1 d = 0

b >> 1 = 1 0 1 d = 2
b >> 2 = 1 0 1 d = 1

index = 0 1 2 3 4 5 6 7 8

S10 = 0 1 0 1 1 0 1 1 1
b′ = b >> 2 = 1 0 1 d = 1
c′ = c >> 6 = 1 1 1 d = 3

c′′ = b′ XOR c′ = 1 0 1 1 1 1 d = 4

In the case of an odd d the LFSR cN is replaced by the right shifted c XOR-
ed with bN−1 >> (N − m) and bN is set to cN−1. The idea of combining of
cN−1, bN−1 to cN is to get even discrepancy for the application of a new cN .
Table 3 shows the principle of the combination of LFSRs b7, c7 (represented by
b′, c′) obtaining the new c8 (represented by c′′).

LFSR b = 101 forms the smallest LFSR for S3, but not for the sequence
S4 and therefore the discrepancy for LFSR b and the subsequence S4 is odd
(d = 1). LFSR c = 111 forms the smallest LFSR for S7, but not for the sequence
S8 (d = 3). The new smallest LFSR c for S8 is constructed in the way that
the discrepancy for a new c = 1010111 (represented by the bit array c′′) is
combined as XOR (in this case d = 1+3 = 4) of two odd discrepancies computed
earlier for b′, c′. It suffices to work with the shifted bit arrays b′, c′ instead of the
original LFSRs b, c. Bit-arrays b′, c′ represent b, c shifted appropriately for the
computation of d.
All improvements to the BM algorithm are based on the following observations:

1. the discrepancy d in the N -th iteration can be computed as the Hamming
weight of the masked sequence Sn by bit array c′,

2. the next discrepancy in N + 1-th iteration is computed using c′ = c′ >> 1
that is shifted one bit to the right.

Our speedup of the BM algorithm is based on word (integer, long) representation
of bit arrays Sn, c

′ and b′. This representation allows one to use fast bitwise
operations. AND is used for masking of the word array SN by the word array
c′. The discrepancy d is computed from the masked Sn using a LUT storing
the Hamming weights of bytes. XOR is used for the combination of b′ and c′

into a new c′′ = c′ XOR b′. In each iteration c′ is shifted one bit to the right
c′ = c′ >> 1. We made other improvements concerning elimination of processing
zero words. For more details about the improvements look at the source code [11].
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Fig. 3. Run time of the Linear complexity test (note the logarithmic scale of the y
axis).

4 Implementation Testing

After the implementation of the faster variants of the algorithms we ran series
of tests. The first tests were aimed at verification of the correctness. We verified
the correctness of all values that are outputs from the tests (we ran both the
original and new implementation and compared the results).

Many of the results are floating point numbers stored in the double type.
Comparing floating point numbers can be tricky. We compiled the program with
the improved consistency of floating-point operations. In majority of tests all the
results stored as doubles matched perfectly in all the bits. In exceptional cases
(Runs test) the results differed in a single (least significant) bit due to compiler
computational optimizations. In these cases we had to allow for the differences
in the least significant bit of the mantissa of the double type. Moreover we
allow for the negligible difference of FLT EPSILON for the same reasons in the
Approximate entropy tests. We also had to consider special values of floating
point numbers (e.g., the variable a storing the INDefinite value does not fullfil
the a == a condition) during comparison of the results.

We performed series of tests of all the algorithms with many different lengths
of the bitsteams and with different parameters. We used pseudorandom bit se-
quences and also special values such as zeros, ones and alternating ones and zeros.

We followed the NIST parameter recommendations and typically performed
the tests for all the bitstream lengths between 1 and 1,000,000 bits. We also
performed the tests for randomly chosen bitstream lengths between 1 bit and
800,000,000 bits such that the length ni+1 = ni ∗ 10 + rand()%8 was computed
to catch possible errors caused by bitstream lengths not being a multiple of 8.
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We were not able to perform all the above mentioned tests due to time com-
plexity of the tests (Spectral, Non-overlapping template matching, Approximate
entropy, Serial, Linear complexity) or high number of possible configurations
(Block Frequency) for the time-consuming tests. Therefore we only performed a
subset of the tests.

In a few configurations our implementation does provide a result while the
original implementation is not able to compute a result (e.g., the Random Ex-
cursion test is limited in the number of cycles), in some situations our implemen-
tation does not support unusual parameters while the original implementation
does (e.g., the Serial test with m > 25). In such situations, we could not com-
pare the results. In all other situations the results do match. The limitations of
our implementation with respect to the original implementation and the NIST
recommendations (see Table 1) are:

– Overlapping template matching test: m ≤ 25,
– Serial: m ≤ 25.

The above mentioned limitation of the m above 25 can be easily shifted towards
32 as described in the Readme.txt file at [11]. The verification tests are time-
consuming, but if you are interested you can run them on your own system as
described in the source codes.

5 Performance Testing

We measured both the number of CPU cycles and the time consumed in mil-
liseconds. As the results of both measurements are consistent, we present only
the results in milliseconds (for very short tests the duration in milliseconds is
recomputed from the number of CPU cycles). We performed all the tests ten
times and we used the minimum value to avoid the noise introduced by the OS
scheduling.

The source code, including the verification of the results and the speed mea-
surement, can be compiled on Linux systems (tested with gcc 4.4.7 on RHEL
6.5), but we primarily used MS Windows for testing. The speed improvement
was measured on a Windows 8.1 Fujitsu S792 notebook equipped with Intel Core
i7 having 2 cores1 running at 3 GHz and 8 GB of memory. The code was com-
piled using MS Visual Studio 2013. We produced a x64 binary in the Release
mode with the default parameters.

Although the speed measurements were performed with a 64-bit binary on a
64-bit operating system, our implementation compiles also on a 32-bit system
with a similar performance. The source code relies on the fact that the size of
int is at least 32 bits and the processor works in the little-endian architecture.

The speed improvements are summarized in the Table 4. As you can see, the
Linear complexity test significantly influences the overall numbers. We present
the final results with the Linear complexity test configured to m = 5000. For
the other extreme value of m = 500 the speedup factor of the test is 37x, which
decreases the overall speedup to 10x.

1 No multithreading is used in the application.
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Table 4. Run times (for 20 MB of data) of the original implementation NIST STS,
the implementation from [9] and our new implementation. Parameters m or M were
chosen to be able to compare all three implementations.

Test m,M
Original

(ms)
New
(ms)

Speedup Our
vs. NIST

Speedup [9]

vs. NIST

Frequency (Monobit) 203 15 13.5 9.82

Frequency within a Block 128 94 31 3.0 9.63

Runs 1140 31 36.8 5.84

Longest run of ones in a block 656 31 21.2 6.51

Binary Matrix Rank 3781 297 12.7 7.91

Spectral 24625 25062 0.98 -

Non-overlapping Template 9 139641 343 407.1 3.13

Overlapping Template 9 1359 406 3.3 15.15

Maurer’s Universal 2843 156 18.2 12.8

Linear complexity 5000 1187453 18421 64.5 3.92

Serial 9 24078 313 76.9 48.73

Approximate Entropy 8 16484 312 52.8 54.16

Cumulative sums 984 31 31.7 3.31

Random Excursions 562 515 1.1 1.26

Random Excursions Variant 2125 515 4.3 6.09

Total 1406028 46464 30.3 -

6 Conclusion

We reimplemented the NIST STS with the focus on tests with the non-linear
time complexity. Significant improvements were accomplished thanks to the byte
oriented data storage, word-oriented data processing, the use of look up tables
and other smart optimisations.

With the exception of the Spectral test, where the optimisations will be aimed
at the parameter n, we achieved excellent speedup results for the three most
time-consuming tests. The optimized Linear complexity test is 27.5x faster than
original implementation for m = 500 and the speedup improves towards 64.5x
for m = 5000. The speedup of the Non-overlapping template matching test is in
the interval between 5.3x and 483x, where for the most usual parameters m = 9
and m = 10 the speedup of 407x is outstanding. Improvements of the Serial
test relate to the use of a single pass calculation of block frequencies (instead
of three independent calculations) and bring the speedup improvements in the
range between 12x and 155x, in the dependence on m. The speedup is 155x for
the default value of m = 16. Due to above mentioned improvements, we were
able to achieve the overall speedup of about 30 times (compared to the NIST
STS implementation). This means that the typical test setups that require hours
to run can be executed within dozens of minutes now.
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Abstract. A t-private system consists of computing logic along with
ROMs to store the persistent private keys. Ishai et al. [4] have developed
a t-private logic schema with zero information loss against a probing
adversary with up to t probes per cycle. Valamehr et al. [12] describe
memory coding schemes to protect against a physical access adversary
who observes transistor level fatigue through destructive slicing of the
silicon chip. The two schemes cannot be combined to build a unified
t-private system consisting of both memory and computing logic. For in-
stance, Valamehr coding schemes do not have an associated computing
logic schema. The keys after being read from ROM first have to be de-
coded and then re-encoded for t-private logic, opening them to probing
attacks. In this paper, we propose a new unified computable t-private
model to support both memory coding and logic coding. We develop the
computing schema, logic preserving implementations of logic gates such
as AND, OR and NOT, for the new computable t-private memories. Our
computable t-private model takes fewer gates, less storage, fewer random
bits than the existing schemes, and yet limits the adversary success prob-
ability. The memory is analyzed in the physical adversary framework of
Valamehr, and computing logic is analyzed in the zero information loss
framework of Ishai et al. [4].

Keywords: memory attacks, t-private circuit, secure storage, side chan-
nel attack.

1 Introduction

Side channel leakage in computational systems is a long acknowledged problem.
Even though cryptographic systems have theoretically perfect secrecy, it can be
broken by an adversary using side channel leakage information which is corre-
lated to intermediate results or state of the algorithm. Side channel attacks in-
clude power attacks (SPA, DPA)[5] [7], electromagnetic radiation attacks [1] [10],
timing attacks [6] or probing attacks. The goal of countermeasures against side
channel attacks is to significantly reduce or remove the correlation between side
channel leakage and the data or state processed by the computational system.
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A representative approach to counteract side channel attacks is to mask inter-
mediate values with randomized bits at the gate level. Ishai et al. [4] proposed
t-private circuit using such a masking method. They assume that an adversary
can probe or observe up to t nodes in the circuit. Their assumption is that
the adversary is perfect, and hence able to probe the circuit state of the logic
with 100% certainty. The Ishai’s t-private circuits need at least t random bits
to ensure zero correlation between t probed nodes each clock cycle. This makes
information loss to the adversary equal to 0.

t-private logic only targets the privacy of computation. However, crypto-
graphic systems also include some memory, particularly, memories that hold
private keys which are typically Read Only Memory (ROM). Many secret keys
associated with a cryptographic system are stored in ROMs. For instance, hun-
dreds of 1024-bit RSA private keys are not uncommon for a Trusted Platform
Module (TPM) [2]. ROMs are especially vulnerable to t-probing adversary of
Ishai since their state does not change over time unlike computation. Moreover,
these keys in memory can be targeted directly by physical attacks [11]. The
adversary with physical access to the secret key part of the chip can succeed
even if power has been turned off. The physical access based attacks slice the
silicon until individual transistors are exposed by a Focused Ion Beam (FIB).
An electron microscope is used to examine the silicon. Halderman et al. [3] pro-
posed “cold-boot attack” which is a method to extract a significant fraction
of data stored in a powered-off memory (e. g. DRAM) by cooling the chip to
around −50◦C. Valamehr et al. [12] developed several masking methods to pre-
vent such memory attacks. The simplest of them is Ishai’s [4] t-private coding
applied to memory resident data. The key idea is that the secret key (xi) does
not need to be stored in the memory in its original form. Instead, a t+ 1-tuple
[r1, r2, . . . , rt, xi ⊕ r1 ⊕ · · · ⊕ rt] is stored. We call this memory masking with
t random bits a t-private memory. An adversary must learn all the t random
bits and the encoded bit in order to reveal even a single bit of the secret key.
The adversary attack model for ROM is based on the persistent physical access
attack - not the transient probing attack for computational logic. The memory
attack has statistical observation limitations. Therefore, Valamehr et al. [12] as-
sume that it succeeds only with probability p for each bit. Unlike Ishai’s perfect
secrecy analysis model, they define the success probability Psucc of this memory
attack as a new figure of merit. It captures the event that at least one bit of the
secret key has been learned. Even though a successful outcome of Psucc event
does not break a cryptographic system, the possible key space can be reduced
considerably when other side channel attacks are combined.

Practical computing systems consist of both memory and computational logic
components. In order to build a t-private system, we need both a t-private mem-
ory and t-private logic that integrate seamlessly. Ishai’s t-private scheme is not
the most efficient one when applied to memory protection. Most of Valamehr’s
memory protection schemes [12] are not computable in the sense that a com-
putational logic schema does not exist within the coded domain (unlike Ishai
scheme). These stored coded keys have to be decoded first before being used for
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computation, hence exposing them to probing attacks. This is a big weakness.
In this paper, we develop a unified computable coding scheme applicable to both
memory and computation logic. This scheme is more efficient than Valamehr’s
schemes in their memory analysis framework. It also shows zero information loss
in the Ishai’s analysis framework. We believe that our proposed coding scheme
is an ideal candidate to build t-private systems unifying the memory and com-
puting logic. In summary, this paper makes the following contributions:

1) We analyze the storage overhead and the success probability (Psucc) of various
t-private memory schemas within a unified framework that is easier to under-
stand than Valamehr’s. However, it may overestimate Psucc. We also quantify
and describe a trade-off between these two attributes – storage overhead and
Psucc.
2) We introduce a new notion of computable encoding method for t-private mem-
ories to capture the schemes which can compute with the encoded keys using
a complementary t-private logic. We also propose a new, computable, t-private,
inspection resistant memory with a corresponding computable encoding method.
This new approach requires new t-private logic combinational gates which are
more efficient than Ishai’s [4] t-private circuits in their use of random bits without
any loss of privacy.
3) We propose new combinational logic circuits suitable for our new memory
scheme.

We define our adversarymodel and the notation (variables/parameters used) in
Section 2. Our newmore general analysis of t-privatememories is presented in Sec-
tion 3. Section 4 develops our proposed t-private memory scheme. Logic schema
for our proposed memory is presented in Section 5. Hardware implementation re-
sults are presented in Section 6. Finally, Section 7 concludes the paper.

2 Assumptions and Notation

We assume that the memory leaks information in contrast to Micali’s paper [8]
in which they assume that only computation leaks information. An adversary
conducts experiments to reveal the bits stored in the memory with a measure-
ment apparatus. Let L be the leakage function selected by an adversary. The
value of leakage of any bit xi in the memory M is converted to the finite field
GF (2) based on the ability of an adversary: f : L(xi) → {0, 1} for xi ∈ M.

We assume that an adversary has limited capability to learn any memory
resident bit exactly due to noisy measurement apparatus. Hence, we define the
limited leakage probability of a bit as Pr[f(L(xi)) = xi] = p ∀xi ∈ M.

This p is the characteristic of the memory (encoding) schema. If adversary’s
target is computational circuit C, our assumption is the same as Ishai’s adver-
sary model [4]. In other words, an adversary can probe tp nodes every cycle:
Pr[f(L(yi)) = yi] = 1 ∀yi ∈ Y, Y ⊂ C, |Y | = tp.

A memory attack is a set of such experiments that are possibly adaptively
controlled. We assume that the goal of a memory attack is to reveal at least one
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bit in the memory with probability 1. Success probability of a memory attack
captures this goal.

Definition 1 (Success Probability). We define the success probability Psucc

of a memory attack as the probability that at least one bit of the original secret
key has been revealed.

Memory may store multiple keys with the same key length k. The parame-
ters/variables of the memory schema, adversary experiments, and memory at-
tacks are defined in Table 1. If not otherwise stated, these variables hold for the
rest of the paper.

3 t-Private Memory: Schemas, Architecture, and
Analysis

Table 1. Variables used in this paper

k key length
p leakage probability for 1 bit

Psucc probability of successful attack
ri random bit
xi one-bit secret key
t the number of random bits
tp the number of probing nodes per clock cycle
n the number of keys
c the number of bits to be stored per key
T random bit matrix
Tij the ith row and jth column element of T

�a = [a1, . . . , at] a binary vector
x̄ complement of x
∧ bit-wise AND operation

The k raw bits of a key
[xk, xk−1, . . . , x1] can be
stored in memory in
many ways. The t-
privacy schemes could
conceivably be transis-
tor level schemes. How-
ever, encoding schemes
applied at the write-port
of a memory are more
obvious and effective. A
memory schema is a pair
of encoding & decod-
ing functions for mem-
ory. The base case is to
do nothing - just store
and retrieve the raw bits

- with a schema of the identity function. All the following memory schemas ex-
cept for t-private system are from Valamehr et al. [12]. The unified analysis is
ours.

A bit xi of the secret key can be hidden by creating t+1 random shares using
t random bits [r1, r2, . . . , rt, xi ⊕ r1 ⊕ r2 ⊕ · · · ⊕ rt] where ri’s are random bits.
The t random bits constitute t shares. The (t+1)st share is derived by an XOR
of the t random bits and the original bit xi.

The easiest memory architecture for the secrecy is to store all the t+ 1 share
bits of a raw bit of the secret key. Therefore the total number of stored bits for
a secret key of length k is k(t+ 1). In this schema, each key bit uses a different
set of t random bits. The set of random bits can be re-used or shared between
various key bits. Depending on this reuse and sharing of random bits, the storage
overhead and the success probability of the memory attack can vary. There are
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four memory schemes in [12] which will be analyzed in this section (all except the
dynamic matrix scheme using hash function). Fig. 1 shows these architectural
memory schemes.

(a) The original memory scheme (b) The t-private memory scheme

(c) The t-private memory scheme
with a random matrix (d) The hybrid memory scheme

Fig. 1. 4 architectural memory schemes

3.1 Original Memory Scheme without Secrecy

Original memory refers to raw memory without any protection against memory
attacks. The total number of bits stored for the n secret keys with key length k is
nk. This value is the storage reference/baseline. We define the storage overhead
as the ratio of the number of bits used for the secret keys storage to the storage
reference. The success probability Psucc of memory attacks is 1− (1−p)k, where
(1 − p)k is the probability of the adversary experiments failing on all of the k
key bits.

3.2 t-Private Memory Scheme

Each bit xi of the secret key is represented by t random bits and the encoded bit
ei = xi⊕r1⊕. . .⊕rt which are stored in the memory. Each key bit uses its own set
of t random bits. Total number of bits stored for n secret keys is cn = (t+1)k ·n
and therefore the storage overhead is t+ 1. The success probability is

Psucc = 1 − (1 − p′)k (1)
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where p′ = pt+1, which is the probability that an adversary learns t random bits
and the encoded bit to reveal xi. p

′ is less than p since 0 ≤ p ≤ 1. As noted
earlier, this scheme mirrors the t-private circuits introduced in Ishai et al. [4].

3.3 t-Private Memory Scheme Using a Random Matrix T

The straightforward t-private memory requires t random bits per key bit. This
may be an unreasonably large random bit overhead. This scheme attempts to
reduce the number of random bits needed for the entire schema. Randomly se-
lected ti random bits Ri = {rj |rj ∈ R, |Ri| = ti} from a set of t random bits
R = {r1, r2, . . . , rt} per key bit are used to encode each bit xi of the secret key.

The encoded bit ei of xi is xi ⊕
[⊕

rj∈Ri
rj

]
. The position/index j of randomly

selected ti random bits are stored in a fixed t × k random matrix T. For ex-
ample, if r1, r2, r5 are randomly selected for encoding x1, the first column T1 of
the random matrix T is [1, 1, 0, 0, 1, 0, ...]T . The random matrix T is used for

decoding xi = ei ⊕
[⊕t

j=1 rj · Tji

]
. In this case, c is t + k and total number of

bits stored for n secret keys including a t × k random matrix table is equal to
(t+ k)n+ tk. The storage overhead is

(t+ k)n+ tk

nk
= 1 + t

(
1

n
+

1

k

)
.

In order to reveal a single secret key-bit xi, all of the t random bits and the ith
column Ti of the random matrix T should be required:

xi = ei ⊕

⎡⎣ t⊕
j=1

rj · Tji

⎤⎦ , where rj ∈ R, Tji ∈ Ti.

The failing cases of our memory attack scenario are divided into two cases. The
first case is that an adversary does not know all the random bits. The second
case corresponds to the case that an adversary does not know the ith column of
the random matrix T even though all the random bits are known. Note that we
assume that the leakage probability of the matrix T’s random bit is also p, which
is independently distributed. Thus, the failure probability Pfail of this attack is
equal to the sum of the probabilities of two cases . The success probability Psucc

is given by the following equations:

Psucc = 1 − Pfail = 1 − { 1 − pt︸ ︷︷ ︸
the first case’s probability

+ pt(1 − pt+1)k︸ ︷︷ ︸
the second case’s probability

}

= pt{1 − (1 − pt+1)k}. (2)

Compared with Eq (1), the success probability of the t-private memory scheme
using a random matrix is pt factor less than the success probability of the t-
private scheme for the same t.
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3.4 Hybrid Memory Scheme

The hybrid scheme is a combination of t-private memory scheme and t-private
memory scheme using a fixed random matrix. This scheme is devised in [12] in
order to minimize psucc per random bit. Intuitively, it uses a few of the t bits
to reduce p with the classical t-private scheme. The rest of the t private bits are
used in a random matrix schema. The details of the hybrid schema and analysis
in [12] are ambiguous. In the following, we have chosen a version of many possible
designs for the hybrid schema.

The number of random bits ti to encode each secret key bit xi with the t-
private scheme is a parameter individualized to each xi. We let the set of the
random bits be R′

i = {ri1, ri2, . . . , riti}. Another set of random bits per secret key
R = {r1, r2, . . . , rt} is required for the encoding method with a t × k random
matrix T. Each secret key bit xi can be encoded by the following equation:

ei = xi ⊕ {ri1 ⊕ · · · ⊕ riti} ⊕

⎡⎣ ⊕
rj∈Ri

rj

⎤⎦ for 1 ≤ i ≤ k

where Ri is a randomly selected subset of R = {r′1, . . . , r′t}.
The storage overhead is

n
[
t+

∑k
i=1(ti + 1)

]
+ tk

nk
= 1 + t

(
1

n
+

1

k

)
+

1

k

k∑
i=1

ti.

The failing cases for an adversary are also divided into two cases as in the t-
private scheme using a random matrix. The first case is that an adversary does
not know all of the t random bits {r1, r2, . . . , rt} to encode with the random
matrix. The second case is that an adversary does not know the ith column of
the random matrix T and all ti random bits for the t-private encoding even
though (conditioned on) all the random bits {r1, r2, . . . , rt} are known. The
success probability Psucc is

Psucc = 1 − Pfail = 1 − { 1 − pt︸ ︷︷ ︸
the first case’s probability

+ pt
k∏

i=1

(1 − pti+t+1)︸ ︷︷ ︸
the second case’s probability

}

= pt

[
1 −

k∏
i=1

(1 − pti+t+1)

]
. (3)

The t-private memory scheme with a random matrix is the special case of this
hybrid memory scheme when all ti for 1 ≤ i ≤ k is zero. Compared to the
t-private memory scheme with a random matrix when both t is equal and all
ti’s are the same, the success probability of the hybrid scheme decreases slightly
since pt+1 in Eq. (2) is larger than pti+t+1 Eq. (3). But the storage overhead
increases by ti.
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3.5 Comparison

Table 2 shows the storage overhead and the success probability of the 4 archi-
tectural schemes. We assume that the key length k is 128 bits and the number
of secret keys n is 10 and the leakage probability of each bit p is 0.9. Fig. 2
shows the storage overhead and the success probability of the t-private scheme,
the t-private scheme with a random matrix and the hybrid memory scheme with
ti = 10 parametrized by the number of random bits t. Compared to the t-private
memory scheme with a random matrix, the hybrid memory scheme does not have
any advantage since the storage overhead is larger without a significant reduc-
tion in the success probability. In the following sections, our proposed memory
scheme will be compared to the t-private memory scheme with a random matrix.

(a) The success probability (b) The storage overhead

Fig. 2. Comparison between t-private scheme, t-private scheme with a random matrix
and the hybrid scheme when p = 0.9, k = 128, n = 10, ti = 10

4 New Approach

Fig. 3. t-Private: (Left) Encoding; (Right) De-
coding

Note that all the encoding schemes
in Section 3 except for the classical
t-private memory scheme require
the stored keys to be decoded be-
fore they can be used in a crypto-
graphic computation (such as AES
encryption). A more secure and
private system can be designed if
the computation with the key is
also implemented as private logic
(along the lines of Ishai scheme
[4]). A memory encoding scheme

that does not require the key to be decoded so that the key can participate in a
computation implemented with private logic is called a computable encoding or
schema. In such cases, a private logic family consistent with the memory encod-
ing must exist. In a memory schema that is not computable, the decoded key
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can be attacked dynamically in flight. The only attacks that a non-computable
memory schema prevents against are static memory attacks such as chip slicing
based observation of transistor fatigue.

t-private encoding is obviously a computable schema. The t-private storage
can be used directly in the t-private encryption/decryption implementation with-
out additional decoding. Hence, the t-private memory scheme should be selected
in order to prevent the adversary from attacking the raw key at the decoding step
even though it does not have the best success probability and storage overhead
tradeoff.

Basic Encoding Scheme: t-private implementations require many random
bits - they do not share/reuse random bits (unlike the random matrix schema).
They pose a t2 factor area overhead and a factor t delay overhead. Our goal was
to come up with a computable version of random matrix method. Alternately, we
need a scheme that reuses random bits in a t-private logic implementation. We
propose the computable and t-private encoding with these properties. We could
use addition like invertible function with the t-private masking method to reduce
the success probability. Note that such a function is not commutative in the
bits of its operand. In other words, unlike the t random bits in Ishai’s t-privacy
schema, the order of these bits within the coding operand matters. Each ordering
of t random bits gives a different seed and hence a different encoding. This
allows any permutation of t random bits to give a different random seed from the
encoding perspective. This results in a possibility of t!/(a!b!) ≈ t!/((t/2)!∗(t/2)!)
reuses of t random bits, where a is the number of 1’s and b is the number of 0’s
of the t random bits.

Table 2. The storage overhead and the success probability of the 4 architectural
schemes

Original scheme t-private scheme t-private scheme with T Hybrid scheme

Storage overhead 1 1 + t 1 + t
(
1
n
+ 1

k

)
1 + t

(
1
n
+ 1

k

)
+ 1

k

∑k
i=1 ti

Psucc 1− (1− p)k 1− (1− pt+1)k pt{1− (1− pt+1)k} pt
[
1−∏k

i=1(1− pti+t+1)
]

Fig. 3 shows the basic idea. We add two t + 1-bit words for encoding. One
operand is derived by concatenating the bit to be encoded x with t random
bits rt, rt−1, . . . r1. This word is added to another random constant c (either one
c per chip or one c per x). Note that different permutations of the t random
bits rit , rit−1 , . . . ri1 lead to different encoded result when added to c. Decoding
consists of simply subtracting c from the encoded word et+1et . . . e1. The most
significant bit of the decoded word is x.

Refined Encoding Schema: The basic encoding schema has some flaws that
expose the bit x when forming complex entangling gates such as AND and OR as
discussed in Section 5. In order to fix that, instead of x at the MSB of arithmetic
word with random bits, we use the Ishai code x ⊕ rt ⊕ · · · ⊕ r1.
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We define the computable and t-private encoding for xi (bit to be coded) as
follows:

�ei = Encode(xi) = [xi ⊕ rit ⊕ rit−1 ⊕ · · · ⊕ ri1, �ri] + �ci

where �ri and �ci are vectors/words of t random bits [rit, r
i
t−1, . . . , r

i
1] and constant

bits [cit+1, c
i
t, . . . , c

i
1] respectively. Note that this schema uses a constant word

per xi. We form an arithmetic word comprising of t random bits and xi. By
placing xi at the most significant end we allow all the t random bits to effect
its encoding. A simpler encoding would have added [xi, rt, . . . , r1] to a constant
vector per chip or per computation session. Note that since the constant vector
�c is constant over longer periods - entire computation session, entire boot-up
phase, to be conservative, it may not contribute to the entropy of encoding. We
must assume that the adversary knows such a persistent �c.

The decoding can then be done as follows:

�di = Decode(�ei) = �ei − �ci = [xi ⊕ rit ⊕ · · · ⊕ ri1, r
i
t, . . . , r

i
1].

Most significant bit of �di is xi ⊕ rit ⊕ · · · ⊕ ri1. The decoded vector �di can be di-
rectly connected to t-private encryption/decryption logic. This computable and
t-private encoding method does not reveal the original key bit after this decod-
ing process. Algorithm 1 represents our computable t-private encoding/decoding
method. Note that this algorithm creates all m reuses of each bit within the
encoding of the same key. Such a localized reuse may not be optimal in prac-
tice. It is presented in the algorithm for its simplicity. In practice, for CAD, we
will likely incorporate global randomized reuse. Also note that we have used a
random instance of a permutation of t bits πr picked uniformly from t! space.
πr(i) = j maps the ith bit position to jth bit position. Fig. 4 shows our proposed
computable and t-private memory scheme.

Since t+1 encoded bits per key bit are stored in the memory in this scheme,
the storage overhead is

nk(t+ 1)

nk
= t+ 1.

Fig. 4. The proposed memory scheme

Constant Vector �c Storage/
Routing: The constant vector �ci
need not to be stored in memory. Its
lifetime is only from the producer
gate to the consumer gate. It can
be hardwired in the routing of wires
from the producer gate to the con-
sumer gate. For a per chip or per ses-
sion constant �c, similar hardwiring
will work with a bootup or session-
startup initialization step. For a ran-
dom choice of �ci per xi, we assume
that the adversary learns each bit
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Algorithm 1 Computable t-private memory encoding/decoding scheme

Encoding
Input : A k-bit secret key 
x = [xk, xk−1, . . . , xi, . . . , x1]; g = �k/m� distinct

t-bit random vectors 
r0 = [r0t , r
0
t−1, . . . , r

0
1], 
r1 = [r1t , r

1
t−1, . . . , r

1
1], . . . , 
rg−1 =

[rg−1
t , rg−1

t−1 , . . . , r
g−1
1 ]; constant vector (per chip or per computation session) 
c =

[ct+1, ct, . . . , c1]
Output : Encoded secret key bit vectors, 
ei for i = 1, 2, . . . , k such that e(
x) =

ek 
ek−1 . . . 
e1
for i = 1 → k do

j ← k % g
Key bit xi is XORed with the t random bits in jth random vector : yi = xi ⊕

rjt ⊕ rjt−1 ⊕ · · · ⊕ rj1
Concatenate XORed bit yi with a randomly picked permutation of t bits πr :

yi||πr(
rj)=
[
yi, r

j

π−1
r (t)

, rj
π−1
r (t−1)

, . . . , rj
π−1
r (1)

]
Add constant vector 
c : 
ei =

[
yi, r

j

π−1
r (t)

, rj
π−1
r (t−1)

, . . . , rj
π−1
r (1)

]
+ 
c

end for
Decoding
Input : Encoded secret key vectors, 
ei for i = 1, 2, . . . , k; constant vector 
c
Output : Decoded secret key vectors, 
di = [yi, rt, . . . , r1] for i = 1, 2, . . . , k
for i = 1 → k do

Subtract constant vector 
c : 
di = [eit+1, e
i
t, . . . , e

i
1] − 
c = [xi ⊕ rjt ⊕ rjt−1 ⊕ · · · ⊕

rj1, r
j
t , r

j
t−1, . . . , r

j
1] for j = k % g

end for

with probability 0.5 randomly. This requires the adversary to conduct all possi-
ble 2t+1 �ci experiments to reveal a key bit. The success probability Psucc then
is

1

2t+1
(1 − (1 − pt+1)k). (4)

However, since the goal of this paper is to save on random bits, henceforth in
this paper, we assume that �c is a constant per chip or per computation session.
Furthermore, the adversary knows �c. Hence we cannot use the entropy of �c in
our security analysis.

(1 − (1 − pt+1)k). (5)

If we assume instead the memory attack model with probability p to reveal
each bit of �ci then the success probability is Psucc = pt+1×(1−(1−pt+1)k). Simi-
larly, if we assume that the constant vector is fixed for the chip design or for each
boot-up session, we give the benefit of doubt to the adversary leading to Psucc =
(1−(1−pt+1)k). Effectively, this gives us two types of t-private systems: (1) ones
with constant �c with higher success probability but with lower number of random
bits requirement (which is the one analyzed in the following), (2) constant �ci per
xi with lower success probability at the cost of higher number of random bits.
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Fig. 5. The success probability according to
m reused random bits when p = 0.9, t = 91

When a permutation of a vector
of t random bits is reused upto m
times for encoding other informa-
tion/key bits, we need to consider
two cases for revealing the coded
bits. In the earlier analysis, we have
assumed probability p for slicing
attack to succeed at revealing a spe-
cific coded bit bi. The other possibil-
ity due to reuse is that another bit
al might be revealed through slicing
attack with probability p, and it is

reused at the bit position of bi. Eq. (5) should be changed into the following
equation to account for such reuse:

Psucc reuse =
(
1 − (1 − (p+ (1 − p)q)t+1)k

)
(6)

where q is the probability that a reused bit al is revealed through slicing attack
and is routed to the bit under consideration bi.

q = 1 −
(
1 − p

t

)m
. (7)

In Eq. (7), p
t is the probability that a reused bit bi is revealed by slicing attack

of another bit al. It results from the leakage/slicing attack success probability
p of another bit al and the probability that the reused bit al is routed to bi’s
position. Note that a random permutation πr maps a bit position i to another
bit position j with probability 1/t over all t! permutations. When slicing memory
inspection of a bit fails with probability (1 − p), the event that a reuse might
reveal needs to be considered resulting in the success probability Psucc reuse to
increase by the factor of (1− p)q.

Fig. 5 shows the success probability parametrized by reuse factor m when
p is 0.9 and t is 91. The success probability is 0.1 when the reuse factor m is
30. For m = 86, the success probability goes up to 0.9. Fig. 6 shows the success
probability of our proposed memory scheme and t-private schemes. Our proposed
schema requires only 5 random bits for Psucc = 0.0078 as in Fig. 6.(b).

Now let us consider the complexity of the t + 1-bit ripple carry adders used
for encoding and decoding in terms of number of logic gates. Since one of the
adder operands is a constant, a full adder bit-slice design can be made simpler
than the typical full adder. If a constant bit b0 is 0, the carry-out bit c1 is a0c0
where a0 and c0 is an input and a carry-in bit, respectively. The sum bit s0 is
a0 ⊕ c0. If a constant bit b0 is 1, the carry-out bit c1 is a0 + c0 and the sum bit
s0 is (a0 ⊕ c0)

′. Only 2 logic gates are needed for a specialized full adder leading
to total number of logic gates for the t+ 1-bit adder as 2(t+ 1).
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(a) The success probability
(b) The number of random
bits(t) when Psucc = 0.0078

Fig. 6. Performance comparison between proposed scheme and t-private schemes

5 New Computable and t-Private Logic Schema and
Gates

Consider an inverter y = x̄. If x is encoded with our schema, the incoming
(t + 1)-tuple represents the encoding (x, �rx, �cx). The inverter needs to recode
the output, however, with respect to the vector (y, �ry, �cy). This will require first
decoding the incoming (t+1)-tuple and then recoding it. Had we used the basic
encoding schema, this would have revealed x in the open temporarily, open to a
probing attack. No bit xi should be in-flight in the raw form even momentarily
creating a weak link. We overcome this by using xi ⊕ ri1 ⊕ ri2 ⊕ · · · ⊕ rit as MSB
in addition.

With this scheme, the MSB of the decoded vector �di = [xi ⊕ rit ⊕ · · · ⊕
ri1, r

i
t, . . . , r

i
1] is identical to Ishai encoding of private circuits [4], and hence can

be connected to Ishai’s t-private combinational logic gates. The classical t-private
scheme has t2 area and t time overhead. We only save on the random bits by
adopting this approach. We however propose a more efficient combinational logic
using the decoded vectors which have the same functionality as the traditional
logic operation with lower overhead.

5.1 AND Operation

Let two encoded bit vectors be �e1 = [x1 ⊕ r1t ⊕ · · · ⊕ r11 , �r1] + �c1 and �e2 =
[x2 ⊕ r2t ⊕ · · · ⊕ r21 , �r2] + �c2 from the memory. They are decoded by the decoder,

which are denoted by �d1 and �d2. First, consider the simple case in which t is 1.
Two decoded bit vectors are �d1 = [x1 ⊕ r1, r1] and �d2 = [x2 ⊕ r′1, r

′
1]. The result

of the AND operation should be [x1 · x2 ⊕ r′′1 , r′′1 ]. How can we obtain the result
and r′′1 ? Let us perform the following computation:

�d1 ∧ �d2 = [(x1 ⊕ r1) · (x2 ⊕ r′1), r1 · r′1]
= [x1 · x2 ⊕ r1 · x2 ⊕ x1 · r′1 ⊕ r1 · r′1, r1 · r′1]
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x1 · x2 ⊕ r1 · x2 ⊕ x1 · r′1 ⊕ r1 · r′1 in the above equation should be changed into
x1 ·x2⊕r1 ·r′1 in order to obtain desired result and thus additional computations
are required to remove r1 ·x2 ⊕x1 · r′1. We define the AND operation in this case
(t = 1) as the following equations:

AND( �d1, �d2) = [x1 ⊕ r1, r1] AND [x2 ⊕ r′1, r
′
1]

= [(x1 ⊕ r1) · (x2 ⊕ r′1)⊕(x1 ⊕ r1) · r′1 ⊕ (x2 ⊕ r′1) · r1︸ ︷︷ ︸
additional computations

, r1 · r′1]

= [x1 · x2 ⊕ r′′1 , r
′′
1 ]

where r′′1 is equal to r1 · r′1.
Let us now increase the value of t to develop our intuition. Two decoded

vectors are �d1 = [x1 ⊕
⊕

rj , �r] and �d2 = [x2 ⊕
⊕

r′j , �r′]. In this case, the AND
operation is equal to the following equation:

AND( �d1, �d2)=[x1 ⊕
⊕

rj , �r] AND [x2 ⊕
⊕

r′j , �r′]

=[(x1 ⊕
⊕

rj) · (x2 ⊕
⊕

r
′
j)⊕

{
(x1 ⊕

⊕
rj) · (

⊕
r
′
j)

}
⊕

{
(x2 ⊕

⊕
r
′
j) · (

⊕
rj)

}

︸ ︷︷ ︸
additional computations (6 operations)

,

(
⊕

r′j) · �r] (8)

=
[
x1 · x2 ⊕

{
(
⊕

rj) · (
⊕

r
′
j)

}
, (

⊕
r
′
j) · �r

]

where
⊕

rj = r1⊕r2⊕· · ·⊕rt and (
⊕

r′j)·�r = [(r′1⊕· · ·⊕r′t)r1, . . . , (r′1⊕· · ·⊕r′t)rt].
The number of gates required is t + 7 for t + 1 AND gates and 6 additional
operations. Thus, the area/gate complexity of this AND operation is O(t). This
is more efficient than Ishai’s t-private model which has the area complexity
of O(t2) [4]. Moreover, this computation can be performed in O(log t) time as
opposed to O(t) in the original private circuits.

5.2 OR Operation

We define the OR operation as follows:

OR( �d1, �d2) = [x1 ⊕
⊕

rj, �r] OR [x2 ⊕
⊕

r
′
j ,

�r′]

= [((x1 ⊕
⊕

rj) · (x2 ⊕
⊕

r′
j
))⊕

{
(x1 ⊕

⊕
rj) · (

⊕
r
′
j)

}
⊕

{
(x2 ⊕

⊕
r′
j
) · (

⊕
rj)

}

︸ ︷︷ ︸
additional computations (6 operations)

,

(
⊕

r
′
j) · �r] (9)

=
[
(x1 + x2) ⊕

{
(
⊕

rj) · (
⊕

r
′
j)

}
, (

⊕
r
′
j) · �r

]

An OR gate is a logic dual of an AND gate. Hence, OR operation logic also
has the same area complexity of O(t). It has the same structure as the AND
operation logic except for the additional NOT gates.
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5.3 NOT Operation

The NOT operation is modeled by the following equations:

NOT (�di) = [(xi ⊕ r1 ⊕ · · · ⊕ rt)
′, �r]

= [x′
i ⊕

⊕
rj , �r]

5.4 The Perfect Secrecy

The original secret bit xi must not be revealed when the adversary probes tp ≤ t
nodes in a t-private logic circuit. The t-privacy parameter determines the bounds
of probing experiments for perfect secrecy. In Ishai’s privacy model, there is no
grey zone analysis - you either have perfect secrecy (p = 0) or you are unaccept-
ably compromised. We develop a t-private circuit privacy analysis consistent with
our memory attack analysis. If the adversary can probe two nodes (x1 ⊕

⊕
r1j )

and
⊕

r1j in the proposed AND or OR logic circuit exactly, x1 is leaked eas-
ily. Assuming that the adversary can access any circuit node equally likely with
100% certainty, the probability that x1 is learned is given by the following equa-
tion:

Psucc =

(
t
2

)(
n
t

)
=

t(t − 1)t!(n− t)!

2n!

where n is the number of total nodes. Since n is much larger than t generally,
Psucc is very low. For example, when n and t are 100 and 10, respectively, Psucc

is 2.6 × 10−12. In order to make Psucc close to zero, (xi ⊕
⊕

rj) · (
⊕

r′j) which
consists of two terms in Eq. (8) or Eq. (9) can be resolved into

⊕
{(xi⊕

⊕
rj)·r′j}

which consists of t terms.
The perfect secret circuit is defined as a circuit that appears like a pseudo-

random number generator. There is no appreciable (poly adversary limited or
whatever other restrictions are placed on the adversary) correlation between
inputs and outputs. Given any input, the probability of any output vector should
be the same. It does not depend on the input :

Pr[y|xi] = Pr[y] ∀xi.

where xi is the input and y is the output. This is the same property required
of encryption functions. For example, the traditional AND gate does not have
perfect secrecy since the output depends on inputs. AND-XOR network with
a random bit has the perfect secrecy for inputs of AND gates [9]. Fig. 7 shows
the schematic of the first bit of the vector term in Eq. (8) which needs the perfect
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Fig. 7. An output of AND operation for the perfect
secrecy

secrecy. For the perfect se-
crecy, additional XOR gates
and new random bits are
inserted. Numbers in the
logic circuit represents the
probability that the node is
one. The probability that
the output is one is always
equal to 0.5, does not de-
pend on inputs. Also, the
vector (

⊕
r′j) · �r in Eq.

(8) should be changed into
[(
⊕

r′j)rt⊕r′′1 , (
⊕

r′j)rt−1⊕
r′′1 , . . . , (

⊕
r′j)r2 ⊕ r′′�t/2�,

(
⊕

r′j)r1 ⊕ r′′�t/2�] for the perfect secrecy. This technique can also be applied
to OR logic circuit for the perfect secrecy in a similar manner. We compare the
number of intermediate random bits for the perfect secrecy of three t-private
AND circuits which are Ishai’s t-private model, our earlier modified t-private
model [9] and computable t-private model. Table 3 shows the comparison of the
number of intermediate random bits per AND/OR gate for our HOST scheme,
Ishai’s t-private scheme, proposed computable t-private without perfect secrecy,
and proposed computable t-private with perfect secrecy. The last two rows show
the total number of random bits used among these private schemes for a circuit
with N gates.

Table 3. Number of Random Bits Used for an AND Gate and for an N-gate Circuit
AND Gate Modified t-private (HOST) Ishai’s t-private Computable t-private Computable t-private - perfect secrecy

# of random bits � t+1
2

� = O(t) t(t+1)
2

= O(t2) 2 � t
2
�

N-gate circuit Modified t-private (HOST) Ishai’s t-private Computable t-private Computable t-private - perfect secrecy

# of random bits Nt Nt2 N ∗ ((t/m) + 2) N ∗ ((t/m) + � t
2
� + 2)

6 Hardware Implementation

We implemented t-private memories including the random matrix method and
our proposed computable and t-private memory. We used Xilinx ISE tools for
the synthesis and the target device is Xilinx Virtex-5 FPGA (XC5VFX70T-
3FF1136). Table 4 shows the parameters and the number of used Block RAMs,
LUTs and delay for each decoder. In case of t-private memory, 63 random bits
are required for Psucc = 0.14. The stored bits of encoded keys in memory total
nk(t+1) = 10∗128∗ (63+1). Since the width of Block RAM in FPGA is limited
to 1152 bits, we set the width of the Block RAM to be 1024. Thus, 16 decoded
bits (1024 / 64) per 1 clock can be generated and 8 clock cycles are needed for
decoding 1 key, which is the reference clock to compare used LUTs and delays for
decoders of t-private memories. Since we set the total clock cycles for decoding
a key to be 8, 35 bits which include 19 bits for random bits and 16 encoded bits



t-Private Systems: Unified Private Memories and Computation 301

Table 4. Hardware Implementation on FPGA

t-private t-private with R.M proposed computable and t-private

# keys 10 10 10

# bits of a key 128 128 128

t 63 19 4

Psucc 0.14 0.135 0.016

Block RAM 1024 * 80 (35*80) + (304*8) 80*80

# decoded bits per 1 clock 16 16 16

Input bits of decoder 64*16 = 1024 19+16+(19*16) = 339 80

# LUTs 208 25 16

Delay(ns) 1.926 1.998 0.931

of 16 secret-key bits are released from a block RAM and 304 bits (16× 19) also
are output from another block RAM for a random matrix simultaneously.

Our proposed memory scheme has lower storage needs (only 7% of t-private
memory) even though the success probability is almost 10% lower than the t-
private memory. Also, the decoder of our proposed memory has lower area and
time overhead – specifically it requires 92% lower area, 51% less delay and 36%
less area, 53% less delay compared to t-private memory and t-private memory
with a random matrix, respectively.

7 Conclusions

Side channel attacks and static inspection attacks on silicon chips have neces-
sitated techniques to make circuit implementations resistant (private) to these
probes and inspections. t-private circuits protect the privacy of the data in flight
during computation. Memories (on-chip or off-chip) however are not protected
by t-private circuits.

Valamehr et al. [12] introduced a few memory protection schemes. We intro-
duce a unified analysis framework to compare these schemes. Effectiveness met-
rics for these schemes include area/gate count overhead, time overhead, number
of random bits needed, and adversary success probability per random bit. In this
paper, we specifically analyzed the storage overhead and the success probability
of t-private memories, t-private memories with random matrix (for random bits
reuse), and a hybrid private memory.

Ideally, we would like to design a private computing circuit with unified private
memory. In such a computing system, data and keys never appear in their raw
form, thereby protecting privacy of data and keys. We consider a memory scheme
to be computable if the encoded stored keys can be directly used in t-private
computations.

Most of the memory schemes presented in Valamehr et al. [12] are not com-
putable. The main new interesting technique they develop is to judiciously reuse
random bits while still limiting the adversary to low success probability. We
develop a new memory schema that is computable, and yet reuses many ran-
dom bits by bringing in an arithmetic function into encoding. We present the
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computable and t-private encoding method and corresponding logic operations
(AND, OR and NOT) suitable for our memory scheme. The new private circuits
are more efficient than Ishai’s t-private model (only t area overhead compared to
t2 area overhead of Ishai). We verified that our memory model has advantages in
performance (the success probability and delay) and area cost by implementing
it on FPGA.
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Abstract. This paper presents a static feature extraction framework
for Android malware analysis. The techniques are implemented by ex-
tracting prominent features from the components of Android application
package i.e. AndroidManifest.XML files. Five different types of features
likely permissions, count of permission, hardware features, software fea-
tures as well as API calls from 1175 .apk files are mined for performing
the investigation. The objective of this work is to evaluate if independent
features are effective in comparison to ensemble features. Feature reduc-
tion is performed to investigate the impact of varied feature length on
classification accuracy. Feature selection techniques such as Bi–Normal
Separation, Mutual Information, Relevancy score, Kolmogorov depen-
dence and Kullback Leibler are administered to choose the significant
attributes. The proposed method introduced here using dimensionality
reduction and machine learning algorithms produces an overall classifi-
cation accuracy of 93.02% with ensemble features. Comparing the em-
pirical results of ensemble features with individual features, the former
improved the classification accuracy with Bi–Normal Separation.

Keywords: Android malware, Ensemble features, Feature selection,
Static Analysis.

1 Introduction

Smartphones with complete functionalities of a basic phone are equipped with
the additional capabilities like web browsing, Wi–fi, digital media access etc.
These gadgets have the ability to incorporate small computer programs called
apps that can be used for entertainment as well as to perform many other useful
tasks.

Android is an OS based on the Linux kernel primarily designed for touchscreen
devices. It is the fastest growing mobile operating system that contributes a
world–class platform for the development of applications and games for its users
and provide an open marketplace for the distribution of these apps [5].

According to the Symantec Corporation Internet Security Threat Report
2014 [6], popular legitimate applications from the Google Play are downloaded
by the attackers and are repackaged with additional code thereby generating

R.S. Chakraborty et al. (Eds.): SPACE 2014, LNCS 8804, pp. 303–318, 2014.
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third party apps. Trojans mostly disguised as legitimate applications are a part
of these malicious codes injected to mobile apps. Such programs uploaded to the
mobile marketplaces are downloaded and installed by the users unaware of its
maliciousness.

The compromised smartphones are vulnerable to threats like stealing user
credentials, stack based buffer overflow resulting in arbitrary code execution,
activating unknown services in the device without user’s knowledge, denial of
service attacks etc. Some forms of attacks exercised by the malware authors are
execution of code using Android debugger bridge (adb), cross site scripting for
redirecting to vulnerable domains and memory corruption for gaining root priv-
ileges. The desktop security solutions in Antivirus based on signature generation
cannot detect zero–day malware attacks. These techniques are not completely
scalable for smartphones as it require more memory and processing power [13].

Due to these above mentioned drawbacks of the existing detection system,
we perform static analysis implementing dimensionality reduction and machine
learning algorithms for Android malware analysis. We extract permissions, soft-
ware/hardware features and Application Programming Interface (API) calls that
are significant for mobile malware identification. The contributions of this work
are the following:

– Employed attribute ranking methods like Bi–Normal Separation, Mutual In-
formation, Relevancy score, Kolmogorov dependence and Kullback Leibler to
mine precise attributes for classification.

– The most prominent attributes that contribute to the characterization of
mobile malware can be determined.

– Optimal feature length, best classifier as well as attribute selection method
are found out using this detection mechanism.

– An accuracy of 93.02% is achieved using ensemble features with Bi–Normal
Separation feature selection.

The remaining sections are organized as follows: Section 2 includes the related
works. Section 3 explains the proposed methodology. Section 4 contains the
experiment carried out followed by the results and findings. Section 5 discusses
about the inference and finally the conclusion and future work is presented in
Section 6.

2 Related Works

The authors [20] used permissions to detect malicious apps in Android OS. A
total of 124,769 benign and 480 malicious files were used in their work. The
requested and required permissions, number of required permissions, normal,
signature, dangerous permissions, number of files with .so extension, number
of elf files, count of executable, shared objects were considered as the features.
Results showed that a permission–based detector can detect more than 81% of
malicious samples.
The authors [21] proposed a machine learning based malware detector to dis-
criminate normal and malware applications. The features used were permissions
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mined from 200 .apk samples. The generated models were trained and evaluated
using the Area Under ROC Curve (AUC). They obtained an accuracy of 91.58%
using Random Forest classifier.

PUMA [22] detects malicious Android apps by extracting permissions. They
collected 239 Android malware samples, and obtained a 0.92 of AUC using the
Random forest classifier. Except the Bayesian–based classifiers, the methods
achieved accuracy rates higher than 80%. The best classifier was Random Forest
trained with 50 trees with an accuracy of 86.41%.

This [23] approach used the <uses–permission> and the <uses–feature> tags
present in the manifest file. Manhattan, Euclidean and Cosine distance were
applied and obtained AUC of 0.88 using Manhattan distance with average as
the combination rule (85% accuracy). Using Euclidean distance, they obtained
more than 0.90 of AUC with 87.57% of accuracy. The best results of 0.91 of
AUC and nearly 90% of accuracy was obtained using Cosine similarity.

MAMA [24] used permissions and feature tags within the manifest file. The
best results are obtained with Random Forest, using 100 trees, achieving an
accuracy of 87% and an AUC of 0.95 for malware detection.

DREBIN [26] performs static analysis by extracting maximum possible num-
ber of features of an app’s code from manifest file. The features are grouped in
sets of strings (such as permissions, API calls and network addresses) and are
embedded in a joint vector space. About 123,453 applications and 5,560 malware
samples are used for the investigation and it detects 94% of the malware with
relatively less false alarms.

Authors in [16], [17], [19] devised a supervised anomaly detector named An-
dromaly to extract 88 prominent features. Detection rates were better for the
database with benign games than benign tools when used in combination with
the 4 malicious apps. The NB and Logistic Regression were found to be the
better classifiers.

DroidAPIMiner in [25] was used to extract API calls using a modified An-
droguard tool and different classifiers were evaluated using the set of features.
They achieved an accuracy of 99% and false positive rate of 2.2% using k–NN
classifier.

In [27] the authors presented a static analyzer, Droid Permission Miner, that
mines prominent permissions present in the .apk files. Feature selection tech-
niques like Bi–Normal Separation (BNS) and Mutual Information (MI) were
used in their work and obtained an accuracy of 81.56% with 15 features proving
MI to be better method.

3 Proposed Methodology

This section deals with our static framework for Android malware detection that
implements machine learning techniques. Different features that belong to dis-
tinct feature categories are extracted and dimensionality reduction is employed
to prune the feature space. Androguard [1] is used for mining permissions, count
of permissions, software/hardware features and API calls for identifying mali-
cious apps. The permissions, software/hardware features and permission count
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are mined from the Android Manifest File. However, the API calls from each
.apk files are also extracted using the Androguard tool. The individual features
are used for classification in the first phase followed by the experimentation with
ensemble features. The architecture for our proposed model is shown in Figure 1
for individual features and Figure 2 for ensemble model. These models are briefly
described in the following subsections.
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Fig. 1. Individual feature model
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Fig. 2. Ensemble model

3.1 Dataset Preparation

Dataset is prepared using 1175 .apk files comprising of 575 malicious samples
collected from Contagiodump [2] and from different user agencies. Also, 600
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benign applications were downloaded from various publicly available Internet
sources. The benign samples are divided such that 300 files are included in the
test set and the other 300 samples are allocated to train set. From the 575
illegitimate samples, 287 .apk files are included in the test set and the remaining
288 files are added to the train set.

3.2 Feature Categories

The individual feature model as well as ensemble model generation requires
features that are extracted from five distinct categories. Different categories of
features are listed below.

– Permissions: The activities of an application depends upon the permissions
requested by it. It is declared statically and there is no provision to de-
clare it dynamically. Android architecture provides a well framed permission
mechanism to provide security.

– Permission count: This feature set is generated by computing the number
of permissions requested by an application.

– Hardware features: These are the features required by the app for its exe-
cution. It provides information about the set of hardware features on which
the application depends.

– Software features: These are the software features required by the application
for its execution.

– API calls: The application programming interface calls are invoked at the
execution time to perform some specific tasks.

3.3 Feature Extraction

The Android .apk files [18] are provided as input to the disassembler tool An-
droguard. These files are initially in the binary format. The .xml files are human
readable Manifest files generated from the input .apk files using python script
androaxml.py. The permissions (within <uses-permission> tag) as well as s/w
and h/w features (within <uses-feature> tag) are extracted from these xml files.
Similarly, the python script androapkinfo.py is used to mine the API calls of
the samples. After extracting permissions from each .apk file, the number of per-
missions requested by each file is determined. The count of permissions existing
in a file is considered as another feature for generating the classification model.

3.4 Pre–processing Phase

In this phase, feature pruning is carried out to eliminate the attributes that
results in misclassification. After removing the irrelevant attributes, features
common to both the classes (M ∩B) are considered. Common features are given
high precedence over other category of attributes such as union of malware and
benign features (M∪B), discriminant benign and discriminant malware features
as they are reported to be insignificant for the detection of malicious samples [27].
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3.5 Feature Selection Techniques

Feature selection is exercised to synthesize the input data into convenient size so as to
extract a subset of k prominent features from a set of n features (large feature space).
The techniques discussed below implements dimensionality reduction to exclude re-
dundant features. The selected attributes are used to fabricate the classification model
to predict unknown samples. Equations of the five feature selection techniques used in
this work are discussed in Table 1.

Table 1. Feature selection techniques

Method Equation Description

BNS [10]
[11] [12]

BNS = |F−1(tpr)− F−1(fpr)|
TruePositiveRate =

(TP )

(TP + FN)

FalsePositiveRate =
(FP )

(TN + FP )

Selects positive and negative fea-
tures and is not biased to any
class. Its value is determined
from the statistical table for Z–
Score [4].F−1 is the inverse cumu-
lative probability function of stan-
dard normal distribution

MI [8] MI(f,C) =∑
C∈{M,B}

∑
f

P (f, C)log

(
P (f, C)

P (f)P (C)

)It gives the extent to which an at-
tribute f reduces the uncertainty
in determining the appropriate
class C. P(f,C) is the joint proba-
bility distribution, P(f) and P(C)
are the marginal probability dis-
tributions of variables f and C.

RS [7] RS(tk, Ci) = log

(
(P (tk|Ci) + d)

(P (t̄k|C̄i) + d)

)
It is based on the conditional
probabilities of a feature in the
training set. P (tk|Ci) is the pres-
ence of feature tk in class Ci

,P (t̄k|C̄i) is the absence of feature
tk in class Ci and d is the number
of samples with feature tk in class
Ci.

KO [14] KO(f) =

|C|∑
j=1

p(f) (p(f |Cj)−p(f |C̄j)) This method scores each feature
f depending on its relation with
the classes Cj , C̄j . P (f |Cj) is the
presence of feature f in class Cj ,
P (f |C̄j) is the presence of feature
f in class C̄j , |C| is the total
number of classes and P (f) is the
probability of feature f.

KL [14] KL(f) = −P (f |M)log

(
P (f)

P (f |M)

)
−

P (f |B)log

(
P (f)

P (f |B)

) P (f |M) is the presence of feature
f in class M (malware), P (f |B) is
the presence of feature f in class
B(benign) and P (f) is the proba-
bility of an attribute f.
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These techniques are applied to the top 78 common permissions and prominent 2166
APIs common to both malware and benign train set to reduce the feature space. The
common features (M ∩B) are arranged in the decreasing order of their BNS, MI, RS,
KO and KL scores respectively. The top BNS scored attributes are not used as it does
not provide better accuracy according to the previous work [27]. Hence, we considered
bottom BNS and top MI, RS, KO and KL attributes with diverse feature lengths.

3.6 Ensemble Features

This feature space is generated by combining the optimal feature sets of five individual
categories of feature (Permissions, count of permissions, s/w and h/w features and API
calls). The top ranked features are combined to create ensemble feature space to im-
prove the classification accuracy. The ensemble features are constructed by discarding
all extraneous attributes (refer Fig.2).

3.7 Classification

The malware and benign models are developed using classifiers (AdaBoostM1 with J48
as base classifier (ADA) [28], Random Forest (RF)[9] [No: of Trees= 40, seed=3] and
J48) implemented in WEKA [15]. Unknown samples are predicted using these learned
models.

3.8 Evaluation Parameters

Accuracy [30] gives the degree of correctness of a model in classifying the test samples.
Here, FP gives the misclassification of benign samples, TP indicate correctly classified
malware instances, FN represents wrongly classified malware samples and TP denotes
correctly classified malware files.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

The investigations carried out in this work are listed below:

1. Determination of robust feature selection method.

2. Evaluate the optimal feature vector length.

3. Estimation of best feature category (permissions, permission count, software/
hardware features or API calls).

4. Determination of the best classifier that reduced misclassification.

5. Comparative study of ensemble and individual features.

4 Experiments and Findings

The experiments are performed on a computer with Ubuntu 12.04 OS, Intel core i3
CPU and 4GB RAM. The two phases involve (1) considering independent attributes
and (2) use of ensemble features. The experiments are carried out in two ways; using
test/train set and cross validation.
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4.1 Evaluation Based on Train and Test Set

Performance Evaluation with Independent Features. The models for classifica-
tion are created by considering the frequencies of attributes in each file, and individually
recording the presence/absence of an attribute (known as Boolean features). In each
sample, the permissions and software/hardware features are declared only once so their
presence/absence (0 or 1) are considered in the feature vector. In case of API call, the
investigation is carried out in two ways (presence/absence and frequency).

Boolean Feature Vector Table (FVT): From the training samples, a total of
195 and 109 unique permissions are obtained respectively from benign and malware files
and 78 common permissions are obtained from these unique lists. These 78 permissions
are arranged based on their BNS, MI, RS, KO and KL scores in descending order. BNS
features are selected from the bottom and top MI, RS, KO and KL scored attributes are
considered. For KO, 34 benign as well as 44 malware prominent features are obtained
from the 78 common permissions. Classification models are generated using top 10, 20
· · · 70 ranked permissions based on the five selection methods. The same activity is
carried out with the permission count for the training samples. A total of 7,174 and
29,765 unique API calls are obtained for malware and benign apps. During the pre–
processing phase, 50% of infrequent APIs are eliminated thus reducing the feature space
to 14,882 benign and 3587 malware APIs respectively. From this pruned feature set,
2166 common APIs are determined. After implementing Kolmogorov dependence (KO),
out of 2166 api calls, 786 malware and 1378 benign prominent features are obtained.
Classification models are generated using significant API calls (scored on the basis
of five feature selection methods), specifying their presence/absence in a sample for
variable feature length (i.e. 50, 100, 200 · · · 1000). The 40 h/w and 7 s/w attributes
obtained are used without reducing their feature space.

Table 2. Accuracies for BNS, MI, RS and KL scored permissions

Feature selection Method BNS MI RS KL��������������Feature Length
Classifier

J48 ADA RF J48 ADA RF J48 ADA RF J48 ADA RF

10 82.14 82.31 84.69 84.69 85.03 85.03 83.84 82.31 83.33 85.20 85.71 85.20

20 85.03 85.37 89.62 86.05 87.24 87.58 85.37 86.90 88.77 82.14 86.56 87.07

30 87.92 89.79 92.51 84.69 87.24 87.58 88.77 86.56 89.96 83.50 86.73 88.09

40 86.90 88.26 92.00 84.35 88.09 91.49 87.92 88.94 90.98 84.86 88.09 90.98

50 87.24 89.11 92.17 86.56 89.62 91.66 87.07 90.47 91.32 86.56 88.94 92.51

60 87.41 89.28 91.15 87.58 88.94 92 87.41 88.60 91.66 87.58 88.94 92

70 87.41 89.11 91.83 87.41 89.29 92.51 87.41 89.11 91.83 87.41 89.28 92.51

The results of the above experiments are reviewed here. The 30 BNS permission
feature resulted in higher accuracy using Random Forest (i.e. 92.51%). It is observed
that the classification model generated using MI, RS, KO and KL features does not
identify malicious apps effectively as it uses more number of permissions than BNS for
improved performance (refer Table 2). Similar experiment is performed for the count
of permissions. The optimal feature length is observed to be 71 with an accuracy of
92.34% using BNS/MI/KL with Random Forest (refer Table 3). For API calls, the
Boolean features (with feature length of 50) provided improved accuracy of 90.81% us-
ing BNS (refer Table 4). The results obtained using the software and hardware features
without implementing feature selection technique are shown in Table 6. The 40 h/w
and 7 s/w features depicted less accuracy (56.12 and 52.04% respectively).
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Due to lack of space, the accuracies for Kolmogorov dependence (KO) with feature
lengths that are found to be optimal are only projected in Table 6.

Table 3. Accuracies for BNS, MI, RS and KL scored permission count

Feature selection Method BNS MI RS KL��������������Feature Length
Classifier

J48 ADA RF J48 ADA RF J48 ADA RF J48 ADA RF

11 84.69 86.90 87.07 86.22 87.41 88.09 85.54 84.01 86.05 86.22 87.07 86.90

21 85.20 87.92 90.81 86.05 87.75 89.62 86.39 87.75 90.13 84.35 87.07 89.96

31 87.41 88.26 91.15 84.69 88.77 89.96 88.26 89.28 90.81 84.35 87.41 90.30

41 86.90 89.11 91.83 84.35 88.77 91.83 87.92 88.94 91.32 84.86 87.41 91.66

51 87.24 89.11 91.83 86.56 87.92 91.83 87.07 89.28 91.83 86.56 89.62 91.34

61 87.41 88.43 92.17 87.58 87.58 92.17 87.41 88.77 90.98 87.58 87.58 92.17

71 87.41 88.43 92.34 87.41 88.43 92.34 87.41 88.43 92.17 87.41 88.43 92.34

Table 4. Accuracies for BNS, MI, RS and KL scored API calls (Boolean features)

Feature selection Method BNS MI RS KL��������������Feature Length
Classifier

J48 ADA RF J48 ADA RF J48 ADA RF J48 ADA RF

50 84.01 86.22 90.81 83.50 82.99 82.48 83.84 85.54 88.94 83.50 82.82 82.99

100 87.24 88.77 90.81 85.54 86.73 88.60 86.39 89.28 91.49 85.30 85.54 87.41

200 87.75 89.45 89.79 85.71 89.79 88.26 87.58 89.28 91.32 85.71 87.24 88.43

300 86.05 89.79 90.81 85.71 90.64 89.79 87.07 90.47 90.47 85.71 88.09 88.09

400 86.05 90.81 89.79 85.54 87.58 90.47 86.73 88.94 91.32 86.05 88.43 88.77

500 86.90 89.79 90.47 87.41 90.30 90.81 86.73 89.79 92.34 86.22 88.77 89.79

600 87.75 90.81 90.13 87.41 90.47 91.15 87.07 90.13 91.15 86.22 88.60 89.45

700 89.11 88.77 90.98 86.22 89.11 90.47 87.07 88.09 91.32 86.22 89.45 89.62

800 88.94 90.13 91.15 87.75 90.81 90.47 87.07 88.77 90.98 87.41 89.11 89.28

900 88.77 90.64 91.15 87.75 90.47 90.81 88.09 91.15 91.49 87.41 89.11 90.47

1000 88.77 90.64 90.64 87.75 90.30 90.47 88.09 91.15 90.47 87.41 89.28 90.30

Frequency FVT: For API calls, the classification model is generated using the
frequencies of API in the samples. BNS gives an accuracy of 91.83% with 100 fea-
tures using Random forest. A minor increase in accuracy is attained using Relevancy
Score (Acc. 92.51% with 400 features) but MI, KO and KL shows less performance (re-
fer Table 5 and Table 6). Summarizing the results for independent features, BNS is
better for every feature categories as it uses less attributes for classification. Permis-
sions give 92.51% accuracy compared to API calls and permission count (refer Tables
2-6). For all the cases, Random Forest gives better results.

Table 5. Accuracies for BNS, MI, RS and KL scored API calls (Frequency features)
Feature selection Method BNS MI RS KL��������������Feature Length

Classifier
J48 ADA RF J48 ADA RF J48 ADA RF J48 ADA RF

50 84.69 85.20 90.13 83.50 81.46 82.48 87.58 88.60 90.64 83.50 83.50 82.65

100 87.07 89.62 91.83 83.84 86.56 88.94 86.22 89.45 90.47 85.03 86.05 86.90

200 87.24 89.45 91.35 85.37 88.94 90.47 87.58 88.60 90.81 85.54 88.43 88.77

300 86.22 89.28 89.96 85.54 89.62 90.13 88.60 91.49 91.49 85.54 88.09 88.09

400 86.22 88.77 90.98 86.05 90.30 89.79 88.09 91.15 92.51 84.69 85.71 88.77

500 86.39 89.28 91.81 84.86 89.79 90.81 88.09 89.79 92 86.05 89.11 90.30

600 86.73 89.79 91.32 84.86 90.13 90.47 88.09 90.64 90.98 86.05 88.60 90.13

700 86.73 90.81 91.32 87.92 89.45 90.98 88.26 91.15 90.98 86.05 87.92 90.13

800 87.75 90.64 91.66 88.43 90.13 90.81 88.26 91.66 91.32 87.24 88.94 89.28

900 87.41 90.81 91.68 88.26 90.64 90.30 87.41 89.96 91.32 87.24 88.43 90.13

1000 87.41 90.30 91.32 88.26 90.13 91.49 87.41 89.96 91.66 87.24 89.62 90.47
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Table 6. Accuracies for software/hardware features and KO features (API calls, per-
missions and permission count) for benign and malware feature lists (projected the
accuracies only for optimal feature lengths of corresponding feature categories due to
lack of space)

Features s/w h/w

API calls Permissions & count
Boolean Frequency Permissions Permission count

Benign Malware Benign Malware Benign Malware Benign Malware��������������Classifier
Feature Length

7 40 1000 200 200 600 30 30 35 45

J48 51.19 53.23 83.50 88.26 84.35 85.03 67.68 84.69 82.82 85.88

Adaboost MI (J48) 51.19 54.08 86.90 89.45 87.24 87.58 68.53 84.18 85.37 87.24

Random Forest 51.04 56.12 89.11 90.13 90.64 90.13 70.40 88.09 86.90 89.79

Performance Evaluation with Ensemble Features
Two ensemble models are generated for the five feature selection techniques using (1)
the frequencies of prominent API in each file and (2) considering the Boolean value
of APIs with the presence/absence of other four categories of features. From Table 7,
ensemble model fabricated using frequency with BNS gives an accuracy of 93.87% (for
218 features) with RF classifier. MI (Acc. 94.04%), RS (Acc. 93.87%), KO (93.36% with
Benign prominent feature set) and KL(93.53%) depict similar accuracy but employs
1118, 518, 292 and 598 features respectively. The ensemble model designed by Boolean
values in FVT of API calls, permissions, count of permissions and software/hardware
features is found to be 93.02% with BNS (for 168 features). MI(Acc. 93.53%), RS(Acc.
93.84%), KO(92.85% with malware prominent feature set) and KL(94.21%) have im-
proved accuracies using 718, 618, 292 and 998 features respectively. These two obser-
vations indicates that that the ensemble model constructed by employing the Boolean
features with BNS provide higher accuracy with 168 features.

Permissions and API calls that are rarely and widely used by malicious and legiti-
mate samples with their descriptions are given in the Appendix A (Tables 10-13).

4.2 Cross–Validation

Cross–validation [29] is implemented to predict the accuracy of a learning model. This
approach is significant in the cases where the size of the learning data is very small
or when the model is generated with large number of attributes. For a dataset of
N specimens, k -fold cross–validation (also known as rotation-estimation) splits the
dataset into k mutually exclusive subsets and testing/training are performed k times.
In order to estimate the accuracy of a classifier, we performed 10-fold cross–validation
(refer Table 8 for the results). In case of KO, ’M’ represents malware features and ’B’
represents benign attributes .

Table 7. Accuracies for Ensemble features (Boolean and Frequency of features)

Model Ensemble features (Frequency) Ensemble features (Boolean)

Feature selection method BNS MI RS KO KL BNS MI RS KO KL��������������Classifier
Feature Length

218 1118 518 292 598 168 718 618 292 998

J48 87.92 87.41 87.92 87.75 88.94 88.26 89.28 89.64 88.77 87.92

Adaboost M1(J48) 90.64 91.83 91.49 93.19 90.30 91.15 90.64 91 91.32 93.02

RF (40) Seed 3 93.87 94.04 93.87 93.36 93.53 93.02 93.53 93.84 92.85 94.21
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Table 8. Accuracies attained by Random forest classifier after cross validation with
prominent features of individual feature categories and ensemble features for five feature
selection methods; Represented in the form α/(β); where, (α) represents accuracy and
(β) represents feature space

Selection
techniques

Features

Permissions
Permission
count

API Calls
(Frequency)

API Calls
(Boolean)

Ensemble
(Frequency)

Ensemble
(Boolean)

BNS 91.14/(30) 91.23/(71) 90.97/(100) 89.53/(50) 93.53/(218) 92.51/(168)
MI 91.40/(70) 91.65/(71) 91.74/(1000) 90.80/(600) 94.04(1118) 94.12/(718)
RS 91.23/(70) 91.57/(71) 91.82/(400) 92.08/(500) 93.95/(518) 93.36/(618)
KL 91.57/(50) 91.65/(71) 90.72/(500) 91.40/(900) 93.95/(598) 93.61/(998)
KO 86.72/(30,M) 87.82/(45,M) 90.97/(200,B) 89.02/(200,M) 91.23/(292) 92.51/(292)

4.3 Processing Time

The time consumed by prominent BNS features for processing are computed in seconds
(secs). This is compared with the time taken by the prominent attribute sets of other
feature selection techniques that give improved accuracies with increased feature space
(refer Table 9).

Table 9. Processing time (in secs) of prominent BNS features compared with the
attribute sets of other feature selection techniques (that exhibit improved accuracy
with more features); represented in the form δ(β, γ); where, (δ) represents processing
time for Random forest, (β) depicts feature space and (γ) gives attribute selection
technique

Classification
approach

Attributes

Permissions
API Calls
(Frequency)

API Calls
(Boolean)

Ensemble
(Frequency)

Ensemble
(Boolean)

Test/train set
1.21 × 10−9[30,BNS]/

1.45 × 10−9[50,KL]

1.46 × 10−9[100,BNS]/

2.3× 10−9[400,RS]

1.28 × 10−9[50,BNS]/

2.15 × 10−9[500,RS]

1.43× 10−9[218,BNS]/

1.77× 10−9[1118,MI]

1.33× 10−9[168,BNS]/

1.68× 10−9[718,MI]

Cross validation
0.33[30,BNS]/
0.46[50,KL]

0.52[100,BNS]/
1.07[400,RS]

0.39[50,BNS]/
1.38[500,RS]

0.61[218,BNS]/
2.23[1118,MI]

0.57[168,BNS]/
1.63[718,MI]

5 Inference

The following are the inferences made from this work:

– For independent features, permissions are found to be the desired attributes as the
accuracy attained with BNS is 92.51% (with a small feature length of 30). The
functioning of an app is based on the permissions requested by it and all malicious
apps need some permissions that are different from the benign .apk files.

– Ensemble models combine the optimal feature space of individual features and
gains the strength of this combination. So these models are better than the models
built using individual features.

– BNS assigns higher rank to an attribute in comparison with MI, RS, KO and
KL (refer Appendix B, Figure.3 and Figure.4).

– Random Forest being an ensemble based learning method aggregated the results
from multiple classifiers and performed better in all cases.
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– Increase in feature length included the features that are not apt for model gener-
ation and reduced the classification accuracy.

– In PUMA [22], permissions and count of permissions are used as features to attain
86.41% accuracy. MAMA [24] extracted permissions as well as features present in
the uses–feature tags and obtained best results with Random Forest (accuracy of
87%). Droid Permission Miner [27], extracted permissions and implemented Bi–
Normal Separation (BNS) and Mutual Information (MI) to obtain an accuracy
of 81.56% (with MI using 15 features). Our work with five feature categories and
ensemble features show reasonable performance when compared with [22], [24]
and [27]. Here, the accuracy attained is 92.51% with 30 permissions. Using the
count of permissions, the accuracy is 92.34%. With 100 API calls, the accuracy
is 91.83% for BNS with Random forest classifier. The accuracies of the proposed
ensemble model using BNS is 93.02% (with Boolean features using 168 features)
and 93.87% (with frequency attributes using 218 features) with Random Forest
classifier.

6 Conclusion and Future Scope

We presented a static malware analysis framework using permissions, count of per-
missions, software/hardware features and API calls by implementing machine learning
algorithms. The ensemble model performed better compared to the individual model. In
this work, BNS synthesized precise features that improved the classification accuracy.
The accuracy for ensemble model with Boolean features is 93.02% with 168 features
and individual model with 30 permissions are 92.51% using BNS. Thus, our proposed
method can be used for the initial classification of .apk samples with reduced false
alarms. In future, features like Dalvik opcode, Java reflection and Android Manifest
attributes can also be used individually and as ensemble features. Also, data flow and
analysis on API call with and without parameters can be used as in [25] to improve
the applicability of our implemented scheme.

Acknowledgements: We would like to thank all the anonymous reviewers for their
valuable suggestions that assisted us to enhance the quality of our work.
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Appendix A

Table 10. Prominent permissions and their description

Permissions Description

WRITE EXTERNAL STORAGE Permission for an application to write to the external stor-
age

READ PHONE STATE Permission read only access to phone state

CHANGE WIFI STATES Allows changing wi-fi connectivity state

WAKE LOCK Allows using PowerManager WakeLocks to keep processor
from sleeping or screen from dimming

SEND SMS Allows an app to send SMS Permission for the app to access
network information

ACCESS WIFI STATE Permission for the app to access network information

ACCESS COARSE LOCATION Permission for the app to access approximate location by
means o towers and wi-fi

ACCESS FINE LOCATION Permission for the app to access precise location by means
of towers and wi-fi

READ CONTACTS To read contact list of the device’s user
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Table 11. Trivial permissions and their description

Permissions Description

RECEIVE WAP PUSH Permission to monitor incoming wap push

WRITE CALL LOG Permission for an application only to write user’s contact data

READ CALL LOG Permission for an application to read call log

CLEAR APP CACHE Permission for an application to clear the caches of all apps
that are installed

UPDATE DEVICE STATUS Permission for an application to update device statistics

DEVICE POWER Permission for an application for low-level access to power
management

CALL PREVILEGED Permission for an application to call any phone number with-
out using dialer user interface to confirm the call

BATTERY STATS Permission for an app to collect battery statistics

Table 12. Significant API calls and their description

API calls Description

onCreateOptionsMenu() It is called only one time, i.e, the first time when the options
menu is shown. It is used to initialize the contents of the
activity’s standard options menu. Menu items are placed in
menu

onDraw() Override these calls to implement custom view. Used when
the contents of the view has to be changed

onActivityResult() Gives the results back from an Activity when it ends

onCreateDialog() To implement dialog designs present in the dialog design
guide

onTouchEvent() Called when an event like a touch screen motion event oc-
curs

onOptionItemSelected() Called when an item in the options menu is selected

onAttachedToWindow() It is called when the view is window attached

onKeyUp() Called at the time of an event like a key up event

Table 13. Trivial API calls and their description

API Calls Description

setLanguage() Sets the text to speech language

setMarginEnd() Provides additional space on the end side of this view. It
sets the end margin

setWebViewClient() Sets the webViewClient that is capable of receiving re-
quests

shouldOverrideKeyEvent() Provides chance to the host application to handle the key
events simultaneously

setPitch() Sets the speech pitch

addSpeech() Adds mapping between text and a sound file

setSpeechRate() API calls to set speech rate

setName() API calls to set name of the suit
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Appendix B

Fig. 3. Comparing the ranks of bottom BNS scored API calls with their MI, RS, KO
and KL ranks (Lower ranks indicate high significance)

Fig. 4. Comparing the ranks of bottom BNS scored permissions with their MI, RS,
KO and KL ranks (Lower ranks indicate high significance)



Linux Malware Detection Using

eXtended–Symmetric Uncertainty

K.A. Asmitha and P. Vinod

Department of Computer Science & Engineering,
SCMS School of Engineering & Technology, Ernakulam, Kerala, India 683 582

{asmitha030,pvinod21}@gmail.com

Abstract. We propose a novel two step dimensionality reduction ap-
proach based on correlation using machine learning techniques for iden-
tifying unseen malicious Executable Linkable Files (ELF). System calls
used as features are dynamically extracted in a sandbox environment.
The extended version of symmetric uncertainty (X-SU) proposed by us,
ranks feature by determining Feature–Class correlation using entropy, in-
formation gain and further eliminate the redundant features by estimat-
ing Feature–Feature correlation using weighted probabilistic information
gain. Three learning algorithms (J48, Adaboost and Random Forest) are
employed to generate prediction models, from the system call traces. Op-
timal feature vector constructed using minimum feature length (27 no.)
resulted in over all classification accuracy of 99.40% with very less false
alarm to identify unknown malicious specimens.

Keywords: Dynamic analysis, Symmetric uncertainty, Linux malware,
Correlation, Feature selection.

1 Introduction

With the widespread use of computer system and network, the number of mal-
ware has increased to an unprecedented rate. The increased use of vulnerable
on–line systems, with heterogeneous operating systems are exposed to ever–
growing number of threats. Thus, the challenge is to track down and identify
threats which can be generalized to circumvent new attacks for preventing com-
puter systems. Linux is an operating system which seems to have a world-wide
acceptance. The primary reason for its high popularity is the open source nature
and acceptance in large number of desktop and server systems. The penetration
of Linux malware is exponentially increasing due to the lack of awareness as-
sociated with the Linux operating system. We cite two reports to highlight the
disquieting rate at which new malware is proliferating. The 2013 Server Security
Survey [19] reveal that organizations are facing increasing difficulty in identify-
ing and mitigating advanced attacks aimed at network servers. Also, most of the
companies rely on technologies that are ineffective and obsolete. According to
the global threat intelligence report [20] by the Security Engineering Research
Team, it is very expensive in terms of money to overcome the aftershock of an at-
tack, more than $3000 per day expense is incurred to mitigate and recover from
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malware attacks. Thus, there is an urgent need to undermine unseen threats
exposed to systems.

Zero day malware can easily bypass the existing commercial antivirus soft-
wares as the signature database comprises known patterns of malicious programs.
If the malware signature relies on the syntactic features of the suspicious code,
it can be easily evaded by obfuscation techniques by modifying the code struc-
ture without altering the program semantics. Moreover, the antivirus softwares
have to maintain a large signatures database to mitigate the threats. Also, the
signature generation and distribution is a time consuming process, as the for-
mer requires strict code analysis and later involve a trigger from user. Finally,
pattern–based detection demand human intervention which might not prove to
be an ineffective solution.

In order to resolve the above mentioned problems of the existing malware
detection system, we introduced a new approach employing non–signature tech-
nique based on mining system calls, which are extracted by executing each speci-
mens in a sandbox environment. Here, our approach is to obtain reduced feature
length that is highly correlated to class also have minimum feature to feature
redundancy. This improves classification rate and prediction of new samples at
reduced time.

Since system calls can capture the interactions of a program with its envi-
ronment, the unintended communication which cause security violations can be
captured. The major contribution of this paper is a novel approach which can
effectively classify unknown malware and benign executables with high accuracy
and minimum feature length. The effectiveness of the proposed scheme is evalu-
ated on a collection of Linux malware samples obtained from VX–heavens [17].
Following are the key contributions of this article: (a) A novel method to identify
Linux malware, (b) Extraction and evaluation of significant features(i.e. system
calls) by extermination of redundant features dynamically, (c) Automatic gener-
ation of efficient and generalised prediction models that capture the behavior of a
program as a whole and (d) Generation of optimal feature vector with minimum
feature length ensuring higher detection accuracy.

The rest of the paper is organized as follows: the related works are explained
in Section 2. The proposed method is discussed in Section 3. In section 4 we
present experiments, results and discussions. Finally, we conclude the work with
pointers to open research issues.

2 Related Works

Authors in [4] proposed an approach to discriminating worms from benign pro-
grams by mining feature set that examine the sequence of features present in a
process trace. Support vector machine (SVM) and Näıve Bayes (NB) are used for
classification and prediction. Also, the authors designed a “black-box” classifier
to avoid the user interpretation.
The authors in [1] proposed a detection scheme based on system call sequences.
In this, they analyzed the processes executing at high privileges, and compared
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the normal system call trace with the sequence of the system call obtained post
malware attack.

In [6] the author proposed a novel method to identify zero-day malware by
extracting features from Portable Executables. The methodology is a three–
fold approach comprising of (a) features selection (b) elimination of redundant
features and (c) classification using data mining techniques. The author in [10]
proposed a new approach for Linux malware detection by mining feature set
collected from ELF headers of Linux executables. Also, a number of well–known
classifiers implemented in WEKA [7][13] to evaluate the method.

In [5], author proposed a system called IMAD to identify zero–day malware
without any apriori knowledge. The proposed scheme detect malware programs
during its execution. Also, they developed a classifier to classify samples with
variable length feature vector (i.e. n-grams). Genetic algorithm was used to
optimize the learning process and detection accuracy was observed to increase by
tuning parameters. Also, authors performed comparative analysis of the obtained
results with well–known classification techniques namely SVM, RIPPER, C4.5,
Näıve Bayes.

The authors in [8] proposed a new approach known as hypergrams to rep-
resent variable length system call sequences for in–execution malware analysis
and detection. A k -dimensional hyperspace was used to visualize the n–grams
where, k represents the number of unique system call sequences of a program
in execution. The programs mark their impact in this space and explore the
matching paths in the hyperspace for classification. The results were compared
with traditional n–gram method.

In [9], [11] a new approach to detect run–time behavior of a process known as
genetic footprint was proposed. Information maintained in the process control
block (PCB) of an executing process was used as features. The author also
performed a comparison with other existing solutions.

3 Architecture

The proposed method operate by extracting the system call sequences (i.e. dy-
namic behavior) by executing the program, followed by elimination of redundant
features for the preparation of effective prediction models. Here, the architecture
of the proposed method and main components are discussed (refer, Figure 1).

3.1 Dataset Preparation

A total of 226 Linux malware samples of different families is collected from
VX-Heavens (http://vx.netlux.org) repository. Benign files comprising of 442
executables is gathered from different directories of Linux such as /bin, /sbin
and /usr/bin. Malware samples used in the dataset are (a) backdoor (13 no.)
(b) exploit (43 no.) (c) floodor (37 no.) (d) hacktool (22 no.) (e) virus (54 no.)
(f) rootkit (23 no.) and (g) net-worm (16 no.).
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Fig. 1. The Architecture of Proposed Method

Fig. 2. The steps for gathering system calls (1) take each sample from dataset (2) ex-
ecute using strace and fed logfile to X-SU (3) preprocess, prepare models and predict
unknown samples as benign or malware

3.2 System Call Logger

As our approach is based on dynamic analysis we intended to capture the dy-
namic properties of a process in the system. Thus, system call trace of exe-
cutables are extracted. As execution of malware specimens may harm the host
system, executable is monitored in virtual machine. A Linux application called
strace [18] is used to execute each process for a minute to capture system calls
interaction during its the execution.The collected trace file consists of arguments
and return values are preprocessed to extract system call name without parame-
ters and return values. An example of strace (with arguments and return values)
as well as preprocessed output file is depicted in Figure 2.

3.3 Divide the Dataset

A total of 668 files are considered in the dataset, out of which 442 are benign
226 are malware specimens. Dataset is splitted into two partitions (1) training
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Fig. 3. Extraction of system call from output of strace

set: which is used for feature extraction and preparation of learning models and
(2) test set: used to evaluate the appropriateness of the developed models. Out
of 226 malware samples 113 samples were used for both training and test set.
Likewise, 221 samples of total 442 benign files are used as training and test set.

3.4 Feature Selection

Noisy features can exaggerate the minor discrepancies in the dataset thereby
it can reduce the predictive performance of classification models. Thus, feature
selection is considered as a crucial approach to eliminate irrelevant attributes.
It reduces the training time involved, as few features are used to develop model
and for predictability of samples in future.

High–ranked system calls are determined that have greater ability to identify
malware from benign executable. In [12], it is already verified that the union and
intersection features demonstrates discriminating ability of target classes (mal-
ware or benign). Thus, we have utilized union features (149 system calls from
malware and benign samples). Through our study, we also figure out the impact
of varying feature length on detection accuracy.

Representative features (system calls) are identified using a feature selection
method called X–Symmetric Uncertainty (X-SU) and used to frame a powerful
classification model. The details of X–Symmetric Uncertainty and ranking of
system calls using the designated score for preparing models are discussed below.

(A) X–Symmetric Uncertainty(X–SU): Here, a two–step dimensionality
reduction is employed and the features are ranked based on estimating (a) first,
the feature to class correlation (i.e. the ability of a feature to predict a target
class) and (b) second, the feature to feature inter–correlation (i.e. the ability
to predict one feature using another feature). The above correlation is deter-
mined in terms of information theoretic feature technique known as entropy and
information gain. The representative feature space thus obtained contribute to
classification accuracy as it is less likely to have insignificant attributes.

There are mainly two broad methods to compute the inter–correlation among
two variables they are (1) determine the linear correlation coefficient which mea-
sure the degree of proximity between two variables and (2) using information
theory[3]. The former is not used as it assumes all correlations as linear in nature.
Thus, information theoretic methods like entropy and information gain is used
in our approach. Entropy is the measure of uncertainty of a feature, equation (1)
is used for computing entropy of a feature. We adopt a two step approach, ini-
tially, extract features that can identify malware or benign population. Score of a
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feature with respect to class is determined using equation 1. As the obtained fea-
tures may contain redundancy, this is further eliminated by preserving features
that have minimum correlation with other. Subsequently, using X–Symmetric
uncertainty (X–SU) values for each system call in range of [0-1] is obtained. A
value 1 indicate that feature can predict another feature and zero value depict
the features are least correlated and can considered relevant features.

H(A) = −
∑
i

p(ai) ∗ log2(p(ai)) (1)

where, H(A) is the entropy of feature A alone and p(ai) is the probability
of this feature. The two steps of dimensionality reduction adopted is briefly
discussed below.

Step 1. Feature–Class Correlation:

The features are ranked based on the feature to class correlation which
is computed using the entropy of each feature and information gain
of each feature with respect to the class. Entropy of feature can be
calculated using the equation (1) and information gain is determined
with equation (2) respectively.

IG(f, C) = −
|C|∑
i=1

P (Ci) ∗ log2(P (Ci)) +

|C|∑
i=1

P (f |Ci) ∗ log2(P (f |Ci))

+

|C|∑
i=1

P (f̄ |Ci) ∗ log2(P (f̄ |Ci))

(2)

where, P (Ci) is the probability of class and P (f |Ci) is the conditional
probability of a feature given the probability of class Ci. For feature–
class correlation, a high correlation to class indicate the feature identifies
the classes precisely. The biasing of information gain towards the higher
valued attributes is avoided by normalizing the correlations using sym-
metric uncertainty and it can be computed by using equation (3)

SUf = 2 ∗ (IG(f,C)/(H(f) +H(C))) (3)

Step 2. Feature-Feature Correlation:

The top 50 ranked features obtained previous step is used to determine
all possible bigrams of the system call. The process of extracting the
bigram features is depicted in the Figure 3. These bigrams are later
used for estimating the feature to feature inter–correlations. A high cor-
relation between the features indicate redundancy thus, a system call
is discarded considering it insignificant for classification. At the same
time, the zero or less inter–correlation among features indicate that fea-
tures can independently considered as the representative features for
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identification. The feature–feature inter–correlation is computed by us-
ing equations (1) and (4).

ProbIG(fa,fb) = −
|C|∑
i=1

P (Ci) ∗ log2(P (Ci)) +

|C|∑
i=1

P (fa) ∗ P (fa|fb) ∗ log2(P (fa|fb))

+

|C|∑
i=1

P (f̄a) ∗ P (f̄a|fb) ∗ log2(P (f̄a|fb))

(4)

where, the ProbIG(fa,fb) is the weighted probabilistic information gain,
P (fa) is the probability of feature f a in all unigrams and P (fa|fb) is
the probability of feature f a after observing another feature f b. Finally,
the symmetric uncertainty can be estimated using the equation (5).

SUfa,fb = 2 ∗ ((ProbIG(fa,fb))/(H(fa) +H(fb))) (5)

The top ranked features are determined and is further processed to
obtain prominent system calls from a pair (bigram) of system call se-
quence used for the classification/prediction. The extraction of system
calls from the significant bigrams after determining SU between pair of
system calls is represented in Figure 3.

Fig. 4. The schematic diagram depict extraction of significant system calls using X–SU

Algorithm 1 shows the extraction of prominent system call with X–Symmetric
Uncertainty.
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Algorithm 1. Extraction of prominent features using X-SU

Input: X-SU ((fa, fb, ......fn), C)
fi : feature/system call
C : Class Malware/Benign
δ : Feature Length
Output: F best = ((fa, fb, ......fj )) where j � n

1. Begin
2. //Compute SUfi,C for feature fi

for i = 1 ← N do
H(fi) = −∑|C|

i=1 p(fi) ∗ log2(p(fi))
H(C) = −∑|C|

i=1 p(ci) ∗ log2(p(ci))
Compute IG(F,C)
append (fi) to SList

end for

4. Sort SList in descending order of SU(fi,C)

5. fa = getFirstElement(SList)

if fa <> NULL then
fb=getNextElement(SList)

end if

if fb <> NULL then then
H(fa) = −∑|C|

i=1 p(fa) ∗ log2(p(fa))
H(fb) = −∑|C|

i=1 p(fb) ∗ log2(p(fb))
Compute ProbIG(fa,fb)

Compute X − SU(fa, fb)
append fa, fb to S′

List

end if

6. Order S′
List in increasing value of X − SU(fa, fb)

7. //prune prominent features

for i = 1 ← N do
p=extractUnigram(S′

List)
if p <> NULL && ! Present(Fbest, p) then

append p to Fbest

end if
end for

9. Return Fbest
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3.5 Learning and Classification

In this section, the details of classification phase is described and it particularly
consists of two steps (1) learning and (2) prediction. In first step, the selected
classifiers are used to develop learning models using the training set and later
its performance is evaluated using test set. Here, the AdaboostM1 with J–48 as
base classifier, J–48 and Random forest is utilized, motivated by prior work [12].
In this study, we used the standard implementations of classifiers in Waikato
Environment for Knowledge Acquisition (WEKA) with default settings.

4 Experiments and Results

In this section, we discuss the experimental setup and the results obtained from
our study. Following investigations are carried out:

– What is the effect of feature length on classification accuracy?

– Which classifier is suitable for identifying unseen malware & benign sam-
ples?

– Whether proposed method is effective in synthesizing robust attributes?

– A comparative study of the detection accuracies of the proposed system with
existing solutions.

4.1 Experimental Setup

The experiment is performed with 442 benign samples and 226 Malware samples.
50% of dataset is used for training and remaining is reserved for prediction phase.

A Linux OS installed virtual machine is used to extract the system calls from
the collected samples using “strace”. Each time a clean virtual machine state
was used to accurately collect the system call trace. The training models are
generated with optimal features (i.e. the top ranked features with minimum
feature length) using AdaboostM1(J48), J48 and Random forest.

J48: It is a decision tree based classification algorithm, in which a tree is
constructed with a set of input–output samples. It adopt a top–down learning
approach and resultant tree traversal produces rules that is used to identify the
samples as benign or malware.

Boosted Classifiers: The Boosted classifiers are ensemble based and it often
improve performance over single classifiers. Boosting employ a group of weighted
models by repetitive learning a model from a weighted data set, evaluating it,
and re–weighting the data set based on the performance. To predict the class
with the highest weight it uses the group of models and their weights.

Random Forest: Random forest [2] is ensemble–based classification approach.
It gives a degree of improvement over bagging by minimizing correlation between
classifiers in the ensemble. In this, multiple versions of a classifiers with random
subset of the features instead of all features.
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4.2 Evaluation Measures

Through our experimentation we are mainly focused on the over–all Detection
Accuracy (DA). The effectiveness of any malware scanner is based on high de-
tection rate with minimum false detection. The performance of classifiers are
estimated using certain matrices. Detection accuracy which measures the num-
ber of correctly classified instances (DA) can be calculated using equation (5):

Acc = (TP + TN)/(TP + TN + FP + FN) (6)

TruePositiveRate (TPR) = TP/(TP + FN) (7)

FalsePositiveRate (FPR) = FP/(TN + FP ) (8)

where, TP–True Positives which represent the number of correctly identified
malware instances, TN–True Negatives which denote correctly classified benign
samples whereas FP–False Positives designate misclassified benign files and FN–
False Negatives represents misclassified malware instances.

4.3 Results and Discussions

The classification accuracies for top ranked features with high feature–class cor-
relation and low feature–feature correlation with varying feature length is re-
ported in Table 1 and 2 respectively. The experiment is performed with variable
feature length (5, 10, 15...55). The feature length (FL) characterizes the number
of features considered at the time of preparing the prediction model.

Table 1. Accuracy (%) for Feature–Class correlation

��������������Classifiers
Feature Length

5 10 15 20 25 30 35 40 45 50 55

J48 96.10 96.10 96.10 96.10 96.70 97.00 97.40 97.60 97.60 97.6 97.60

AdaboostM1[J48] 98.80 98.80 98.80 98.80 98.80 99.40 97.6 99.40 99.40 99.40 99.40

Random Forest 98.10 99.10 99.10 99.10 99.10 99.40 99.40 99.40 99.40 99.40 99.40

In a realistic–scenario the classification model should be constructed using
optimal features with minimum length. From Table 1 and 2 it is seen that the
reduced feature length can represent the features of higher dimensions with sim-
ilar strength. Also, from Table 1 it can be observed that 30 prominent features
can predict the class with 99.4 % accuracy, and it is further reduced to a sig-
nificant 27 features reported in Table 2. If we further reduce the feature length,
the accuracy declines due to lack of significant features that can represent the
nature of whole dataset.

Subsequently, feature–feature inter–correlation can be used to eliminate the
highly correlated features which may lead to miss–classifications. Moreover, the
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Table 2. Accuracy (%) for Feature–Feature correlation were β indicate the number of
unique unigrams generated from the corresponding pair of system calls (α)

���������Classifiers
FL α(β)

5(6) 10(11) 15(16) 20(21) 25(24) 30(27) 35(29) 40(30) 45(30) 50(30) 55(35)

J48 88.32 95.80 97.60 97.60 96.40 97.60 97.40 97.60 97.60 97.6 97.60

AdaboostM1[J48] 90.41 98.50 98.80 98.80 98.80 99.40 97.6 99.40 99.40 99.40 99.40

Random Forest 92.21 98.50 98.80 98.80 99.10 99.40 99.40 99.40 99.40 99.40 99.40

model preparation time can be reduced by using minimum feature length and
thereby reduces prediction time. The details about the analysis of time is given
in Table 3. The optimum features and its descriptions are depicted in Table 5.

From Table 1–Table 3 we can conclude that the Adaboost and Random Forest
outperformed J48 in terms of detection accuracy as well as in terms of TPR and
FPR.

Accuracy alone can never be considered as an appropriate parameter. This is
due to the fact that an ideal malware scanner should report higher TPR with
low FPR. However, a real time antivirus does not attempt to achieve higher
accuracy but maintain minimum false alarm rate at reasonable TPR [14]. This
is to assure that the scanner does not flag a benign system file as malignant and
subsequently remove such erroneously reported files from system. This would
ultimately result in system/network break-down. The TPR and FPR is depicted
in Table 3 and it is observed that the feature length with 27 system calls produce
a TPR of 100% and FPR of .90%.

Table 3. Performance analysis of detector (TPR, FPR, prediction time) with X-SU
were α indicates the pair of system calls considered and β is the significant system calls
from a pair of calls

FL (α(β)) Classifier TPR FPR Time(μs)

10(11)
J48 91.15 1.80 .00036

AdaboostM1[J48] 98.50 1.35 .00047

Random Forest 99.11 1.80 .00048

15(16)
J48 95.57 1.35 .00034

AdaboostM1[J48] 98.23 0.90 .00047

Random Forest 99.11 1.35 .00054

20(21)
J48 93.80 1.35 .00039

AdaboostM1[J48] 98.23 0.90 .00048

Random Forest 99.11 1.35 .00066

25(24)
J48 93.80 1.35 .00042

AdaboostM1[J48] 98.23 0.90 .00053

Random Forest 99.11 1.35 .00062

30(27)
J48 95.50 1.35 .00034

AdaboostM1[J48] 100 0.90 .00052

Random Forest 100 0.90 0.00055

FL (α(β)) Classifier TPR FPR Time(μs)

35(29)
J48 95.50 1.35 .00037

AdaboostM1[J48] 100 0.90 .00057

Random Forest 100 0.90 .00057

40(30)
J48 95.57 1.35 .00039

AdaboostM1[J48] 91.15 1.80 .00053

Random Forest 91.15 1.80 .00067

45(30)
J48 91.15 1.80 .00039

AdaboostM1[J48] 100 0.90 .00053

Random Forest 100 0.90 .00067

50(30)
J48 91.15 1.80 .00039

AdaboostM1[J48] 100 0.90 .00053

Random Forest 100 0.90 .00067

55(35)
J48 91.15 1.80 .00041

AdaboostM1[J48] 100 0.90 .00057

Random Forest 100 0.90 .00059

The main focus of our study is to compare the proposed scheme with the
effectiveness of other feature selection methods such as Class Discrimination
Measure (CDM), Odds Ratio (OR) and Elimination of Sparse Features (ESF)
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reported in [12]. Table 4 exhibit that the detection accuracies of each feature
selection methods. Also, the information theoretic feature selection methods like
CDM and OR have a detection accuracy of 95.5% and 97.3% respectively. Our
new method (X–SU) achieves more than 99% detection rate. Also the minimum
feature length was 30 for the previous methods [12] and with the proposed scheme
it is further reduced to 27.

Table 4. Comparison of Percentage Accuracy of proposed scheme with other solutions

feature selection method Ex-SU OR CDM ESF��������������Classifiers
Feature Length

27 30 30 117

J48 97.60 94.91 76.64 96.40

AdaboostM1[J48] 99.40 96.70 78.14 96.10

Random Forest 99.40 97.30 79.94 96.10

5 Conclusion

In this paper we present a novel approach towards the detection of unseen Linux
malware samples based on dynamic analysis. The dynamic behavior of programs
like system calls of Linux malware and benign samples are collected. A two step
dimensionality reduction technique to accurately detect seen and unseen malware
specimens which is referred to us by extended Symmetric uncertainty (X–SU)
was developed. A total of 149 union features are used for the investigation, out
of which 27 optimum features are selected using X–SU. Top 50 Feature–class
correlated features further reduced using feature–feature correlations to prune
significant 27 system calls. The results of our investigation demonstrate that
proposed method achieves a detection accuracy of 99.4% with 100% TPR and
very less false alarms.

Our proposed method has the following advantages. The low overhead during
both prediction model preparation and detection makes it real–time deployable.
It examines the common system calls of complete dataset instead of relying
on one executable i.e. a generalized solution for detection. Therefore, it can
automatically identify new malware samples and could be used to assist malware
scanners.

Security analyst make use of automatic analysis tool for understanding the
behaviour of any suspicious program. Intelligent malware authors or black hat
hackers are already aware of such tool, and they develop sophisticated mal-
ware which remain dormant after detecting the presence of sandbox/analysis
environment. In order to address this issue coarse grained analysis of malware
specimens could be performed using hypervisors such as Ether[15], Cobra[16] or
Cuckoo sandbox [21] and our main focus will be to deal with stealthy malware
to improve our system.

Acknowledgements. We would like to thank all the anonymous reviewers who
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Appendix A

Table 5. Optimal features and its descriptions

Sl.No System calls Descriptions Sl.No System calls Descriptions

1 uname print system information 14 ioctl control device

2 socket create an endpoint for com-
munication

15 gettimeofday get time

3 set tid ad-
dress

set pointer to thread ID 16 getsockname get socket name

4 rt sigproc-
mask

examine and change blocked
signals

17 getresuid32 get real, effective and saved
user IDs

5 rt sigaction examine and change a signal
action

18 getdents64 get directory entries

6 read read from a file descriptor 19 getcwd get current working direc-
tory

7 poll wait for some event on a file
descriptor

20 futex fast userspace locking sys-
tem call

8 openat open a file relative to a di-
rectory file descriptor

21 fcntl64 manipulate file descriptor

9 open start a program on a new
virtual terminal (VT)

22 eventfd2 create a file descriptor for
event notification

10 munmap unmap files or devices into
memory

23 dup duplicate a file descriptor

11 mprotect set protection on a region of
memory

24 close close a file descriptor

12 mmap2 map files or devices into
memory

25 brk change data segment size

13 lseek reposition read/write file off-
set

26 access check real user’s permissions
for a file

http://sourceforge.net/projects/strace/
https://www.bit9.com/research/2013-server-security-survey-report/
http://www.solutionary.com/research/threat-reports/annual-threat-report/
http://www.solutionary.com/research/threat-reports/annual-threat-report/
http://www.cuckoosandbox.org/
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