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Abstract. Non-rigid registration algorithms that align source and target images 
play an important role in image-guided surgery and diagnosis. For problems in-
volving large differences between images, such as registration of whole-body 
radiographic images, biomechanical models have been proposed in recent years. 
Biomechanical registration has been dominated by Finite Element Method 
(FEM). In practice, major drawback of FEM is a long time required to generate 
patient-specific finite element meshes and divide (segment) the image into non-
overlapping constituents with different material properties. We eliminate time-
consuming mesh generation through application of Meshless Total Lagrangian 
Explicit Dynamics (MTLED) algorithm that utilises a computational grid in a 
form of cloud of points. To eliminate the need for segmentation, we use fuzzy 
tissue classification algorithm to assign the material properties to meshless grid. 
Comparison of the organ contours in the registered (i.e. source image warped 
using deformations predicted by our patient-specific meshless model) and target 
images indicate that our meshless approach facilitates accurate registration of 
whole-body images with local misalignments of up to only two voxels. 

1 Introduction 

Registration of medical radiographic images plays an important role in cancer diagno-
sis, therapy planning and treatment [1, 2]. Many algorithms that solely rely on image-
processing techniques have been successfully validated for registration of images of 
selected organs [1, 3, 4]. However, such algorithms exhibit important deficiencies in 
capturing large deformations of soft body organs/tissue and skeletal motion associated 
with registration of whole-body computed tomography (CT) or magnetic resonance 
(MR) images. For such problems, application of biomechanical models, that utilise 
the principles of computational mechanics, has been advocated to compute deforma-
tions of soft body organs/tissues to register (align) two images [5-7]. 

Biomechanics-based image registration has been historically dominated by Finite 
Element Method (FEM). In practice, the 8-noded hexahedral element is a preferable 
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choice when building the models as it does not exhibit volumetric locking for incom-
pressible/nearly incompressible materials such as soft tissues [8]. However, for  
abdominal organs and other anatomical structures with complex geometry, spatial 
discretisation (meshing) using hexahedral elements requires time-consuming manual 
corrections even if state-of-the-art software specifically designed for generation of 
meshes of anatomical geometries is applied [9, 10].  

To eliminate tedious hexahedral mesh generation, meshless methods of computational 
mechanics, that use easy-to-generate computational grids in a form of cloud of points, 
have been proposed in the literature for patient-specific biomechanical models [11, 12]. 
In this study, we use Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithm 
[11-13] previously successfully applied in computing the brain deformations for neuro-
image registration [11, 14]. 

Conventionally, the material properties of body organs/tissues are assigned by di-
viding (segmenting) CT/MR images into non-overlapping constituents with different 
material properties. Although attempts have been made to automate segmentation 
algorithms [15], in practice, time-consuming manual correction that relies on analyst 
skills and somewhat subjective interpretation of the images is often needed. Follow-
ing the studies [9, 14] on application of patient-specific biomechanical modelling for 
CT and MR image registration, we eliminate the need for segmentation by assigning 
the material properties using fuzzy tissue classification. The fuzzy tissue classification 
relies on the Fuzzy C-Means algorithm to calculate the material properties using 
fuzzy membership functions for the specified image intensity clusters (corresponding 
to types of tissue depicted in the image) for each voxel in the image [14, 16]. Such 
classification is an automated process, and the number of tissue classes (image inten-
sity clusters) is the only parameter that needs to be defined by an analyst. 

In this study, we demonstrate feasibility and accuracy of the proposed approach by 
applying it to register two whole-body CT image-sets (referred to as source and target 
set) acquires at different time for the same patient. We conduct verification by com-
paring the deformations, that align the source image-set to the target one, computed 
using patient-specific models implemented by means of the MTLED algorithm com-
bined with fuzzy tissue classification and traditionally used finite element method that 
relies on meshing for spatial discretisation. Accuracy of the proposed meshless ap-
proach is evaluated by comparing the organ contours in the registered (i.e. source 
image warped using deformations predicted by our patient-specific meshless model) 
and target images. 

2 Methods 

2.1 Analysed Whole-Body CT Image Dataset 

The analysed CT image dataset was acquired from the publicly available Slicer Regis-
tration Library database, Case #20: Intra-subject whole-body/torso PET-CT 
(http://www.na-mic.org/Wiki/index.php/Projects:RegistrationLibrary:RegLib_C20b). 
The dataset consists of two image sets with original resolution of 1mm×1mm×5mm 
acquired at different time-points for the same patient. The sagittal sections of the two 
image sets are shown in Fig. 1.  
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2.2 Meshless Total Lagrangian Explicit Dynamics (MTLED) Algorithm  

As the detailed description of the Meshless Total Lagrangian Explicit Dynamics 
(MTLED) algorithm has been provided in [11-13], only brief summary is given here. 
Computational efficiency of the MTLED algorithm has been achieved through appli-
cation of Total Lagrangian (TL) formulation of computational mechanics [17] for 
updating the calculated variables and Explicit Integration in the time domain com-
bined with mass proportional damping. In the Total Lagrangian formulation, all the 
calculated variables (such as displacements and strains) are referred to the original 
configuration of the analysed continuum. The decisive advantage of this formulation 
is that all derivatives with respect to spatial coordinates can be pre-computed [17, 18], 
which reduces the number of floating point operations per time step in comparison to 
Updated Lagrangian (UL) formulation used in vast majority of commercial dynamic 
finite element and meshless solvers.  

The MTLED algorithm relies on modified Galerkin method. The field variable is 
approximated and interpolated using moving least-squares (MLS) shape functions 
over the domain geometry discretised using nodes (points) [12]. Following [12], we 
use regular hexahedral background grid with one integration point per cell for spatial 
integration. The grid was generated automatically as we do not require the integration 
cells to conform to the geometry of the anatomical structures depicted in the images. 
The accuracy of this approach has been previously confirmed by Horton et al.  
[12, 14]. 

To illustrate how the domain volume geometry is discretised, Fig. 2 shows the 
whole-body model discretised using a “cloud” of nodes. 

2.3 Loading  

Following our previous study [9], we load the meshless model by applying prescribed 
displacements (essential boundary conditions) on the vertebrae. We select vertebrae 
as the areas to determine the displacements and prescribe the essential boundary con-
ditions since they can be reliably distinguished from the surrounding tissue in CT 
images. The displacements between vertebrae in source and target images are calcu-
lated using the built-in rigid registration algorithm in the 3D SLICER 
(http://www.slicer.org/)— an open-source software for visualisation, registration, and 
segmentation of medical images developed by Artificial Intelligence Laboratory of 
Massachusetts Institute of Technology and Surgical Planning Laboratory at Brigham 
and Women’s Hospital and Harvard Medical School [19].  

2.4 Constitutive Properties and Constitutive Model 

Following the approach verified in [9], we use fuzzy tissue classification that utilises 
the Fuzzy C-Means (FCM) clustering algorithm to assign constitutive properties  
directly from the images based on the intensity of different tissues of anatomical 
structures depicted in the images [14, 16].  
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Source Target 

Fig. 1. Sagittal sections of whole-body CT image dataset analysed in this study 

 

 

Fig. 2. Whole-body meshless model used in this study. “Cloud” of nodes is used for spatial 
discretisation.  

In the FCM clustering algorithm, each pixel (voxel) in the image is assigned to a 
number of different tissue types (classes) with different probability. This is done by 
clustering similar intensity data (pixels) through computation of the membership 
functions that link the intensity at each pixel with all the specified (i.e. defined by the 
analyst) cluster centres [14, 16].  

There is a vast body of experimental evidence confirming that soft tissues behave 
like incompressible/nearly incompressible hyperelastic/hyperviscoelastic materials 
[20, 21]. Therefore, following [20], we used the Neo-Hookean hyperelastic model — 
the simplest constitutive model that satisfies this requirement. Following [14], the 
shear modulus G at each integration point of the meshless model was calculated from 
the FCM-determined membership function u using linear interpolation: 

௝ܩ  ൌ ∑ ௝௞ݑ ൈ ௞஼௞ୀଵܩ    (1) 
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where Gj is the shear modulus at integration point j, Gk is the shear modulus for a 
given tissue class k, and C is the number of tissue classes (centres of the intensity 
clusters in the images). Following [9], we use eight  clusters (tissue types) with the 
shear modulus for each class given in Table 1. As the membership function u is com-
puted from pixel intensity, Equation (1) links the information about image intensity 
with the mechanical properties of anatomical structures depicted in the image. 

Table 1. Shear modulus (×103Pa) of different tissue classes for assigning the constitutive 
properties at integration points using Eq. (1). Note that voxels with different intensity can 
depict the same tissue (as for lungs and bones in the image datasets analysed here).  

Intensity  
Cluster Centre 

-826 -537 -326 -90 -32 43 274 661 

Tissue Classes Lung Lung Lung Fat Ligament Muscle Bone Bone 
Shear Modulus 

(kPa) 
0.53 0.53  0.53 1.07  3.57  4.05  rigid rigid 

3 Results 

3.1 Verification of Meshless Models 

We verified the computation results (nodal displacements) predicted by means of the 
proposed patient-specific meshless model implemented using the MTLED algorithm 
by comparing them with the results predicted using finite element model created and 
validated in the study by Li et al. [9]. As shown in Fig. 3, for almost all nodes (over 
99.5%), the differences between the displacements predicted using the two models are 
less than 1 mm and the maximum difference is 2.8mm. As these differences are ap-
preciably less than the resolution (1mm×1mm×5mm) of whole-body CT image data-
set analysed here, they can be safely treated as negligible. 

3.2 Evaluation of Registration Accuracy 

Following Li et al. [9] and Mostayed et al. [22], we evaluated the registration accu-
racy by comparing the edges/contours of the organs in registered (i.e. source image 
warped using the deformations predicted by our patient-specific meshless model) and 
target images. As the lung is a large organ that can be reliably distinguished, we quali-
tatively evaluate the registration accuracy by comparing the contours of the lung ex-
tracted from the registered and target images. It can be seen (Fig. 4) that the lung 
contour extracted from the registered image are very close to those extracted from the 
target image. The distance between the two contours (registration error) is less than 
two times of image voxel size of the source image. As the registration accuracy is 
limited by the image resolution, the edge/contour pair having a distance less than two 
times of voxel size of the original source image can be regarded as successfully regis-
tered. 
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Fig. 3. Verification of the meshless model with fuzzy tissue classification used here for whole-
body image registration. Differences between the nodal displacements predicted using the 
meshless model created in this study and previously validated [9] finite element model. 

 

Fig. 4. Evaluation of registration accuracy. The dotted line and dashed line (they are nearly 
overlapping) represent lung contours extracted from images registered using deformations 
predicted by means of the meshless model used in this study and previously validated finite 
element model [9], respectively. The solid line is the lung contour extracted from the target 
image.  

4 Discussion and Conclusions 

In this study, we demonstrate feasibility of patient-specific computation of or-
gan/tissue deformation for registration of whole-body CT images using meshless 
discretisation combined with fuzzy tissue classification. Unlike traditionally used 
finite element method, meshless discretisation (we used Meshless Total Lagrangian 
Explicit Dynamics MTLED algorithm with hexahedral background integration grid) 
facilitates automated and rapid generation of computational grid. Fuzzy tissue classi-
fication eliminates the need for tedious image segmentation to subdivide the image 
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into non-overlapping regions that correspond to different tissue types. Instead, the 
material properties are assigned at the integration points directly from the image. 
Fuzzy C-Means algorithm is adapted here to calculate the material properties using 
the fuzzy membership functions. 

For the whole-body CT image dataset analysed in this study, the displacements 
predicted using the proposed meshless approach were very close to those previously 
obtained by Li et al. [9] using the validated finite element model. The organ contours 
in the registered (i.e. source image warped using deformations predicted by our pa-
tient-specific meshless model) image were close to the contours in the target image. 
The distance between the organ contours in the registered and target images was 
within the commonly used accuracy threshold of two times the voxel size. 
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