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Abstract. This paper discusses aggregation of dynamic risks in financial
management. The total risks in dynamic systems are usually estimated
from risks at each time. This paper discusses what kind of aggregation
methods are possible for dynamic risks. Coherent risk measures and their
possible aggregation methods are investigated. This paper presents ag-
gregation of dynamic coherent risks by use of generalized deviations. A
few examples are also given.

1 Introduction

In the classical economic theory, the variance and the standard deviation have
been used as risk indexes. Recently quantile-based risk criteria are employed
widely in financial management. The concept of risk is different in its application
fields. In engineering risks are considered in the both upper and lower areas from
a true value since the risk is usually represented as the errors of the data to the
true value. On the other hand in economics the concept of risk is given in a
different way from the risk in engineering. The risk in economics is discussed
only in an area of low rewards since the risk is connected deeply to losses and
bankruptcy in financial management.

In this paper, we focus on the estimation of dynamic risks in financial manage-
ment. The total estimation of dynamic risks are important for the stability of finan-
cial systems. The total risks in dynamic systems are usually estimated from risks at
each time.Themost popularmethods for the total risks are theweighted arithmetic
mean and themaximumof the risks over all periods. Themethodwith the weighted
arithmetic mean is sometimes insensitive to find the serious risks in dangerous sit-
uations ([10]). On the other hand regarding the method with the maximum it may
happen to lose the chance to find out the other potential risks regarding the dy-
namic system since we observe only the largest risk through all periods. We can
give ad hoc methods to construct a total risk from risks at each time. However is
the total risk consistent as a risk measure? We need to investigate whether the to-
tal risk inherits propertires as a risk mesure from risks at each time. From the view
point of aggregation operators ([1] and [9, Section 4.1]), this paper discusses what
kind of aggregation methods are possible for dynamic risks.
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In Section 2 we investigate coherent risks and their possible direct aggregation
methods. In Section 3 we discuss generalized deviations and their aggregation
methods. In Section 4 we present aggregated dynamic coherent risks by use of
generalized deviations. A few examples are also given.

2 Coherent Risk Measures

In recent financial management, the risk indexes derived from percentiles are
used widely to estimate risks regarding losses and bankruptcy. Let (Ω,P ) be a
probability space, where P is a non-atomic probability measure. Let X be a set
of integrable real random variables on Ω. The expectation of a random variable
X(∈ X ) is written by E(X) :=

∫
Ω X dP .

Example 2.1 (Risk indexes defined by percentiles, Jorion [4], Tasche [7]).

(i) Value-at-risk (VaR): Let X(∈ X ) be a real random variable on Ω for which
there exist a non-empty open interval I and a strictly increasing and onto
continuous distribution function x(∈ I) �→ FX(x) := P (X < x). Then, the
value-at-risk (VaR) at a risk-level probability p is given by the p-percentile
of the distribution function FX as follows:

VaRp(X) :=

⎧
⎨

⎩

inf I if p = 0
sup{x ∈ I | FX(x) ≤ p} if 0 < p < 1
sup I if p = 1.

(2.1)

(ii) Average value-at-risk (AVaR): Take X in the same way as (i). The average
value-at-risk (AVaR) at a risk-level probability p is given by

AVaRp(X) :=

⎧
⎨

⎩

inf I if p = 0
1

p

∫ p

0

VaRq(X) dq if 0 < p ≤ 1.
(2.2)

Let R be the set of all real numbers. Rockafellar and Uryasev [5] and Artzner
et al. [2,3] introduce the following concept regarding risk measures.

Definition 2.1. A map R : X �→ R is called a (coherent) risk measure on X if
it satisfies the following conditions (R.a) – (R.e):

(R.a) R(X) ≤ R(Y ) for X,Y ∈ X satisfying X ≥ Y . (monotonicity)

(R.b) R(X + θ) = R(X)− θ for X ∈ X and real numbers θ.

(R.c) R(λX) = λR(X) for X ∈ X and nonnegative real numbers λ. (positive
homogeneity)

(R.d) R(X + Y ) ≤ R(X) +R(Y ) for X,Y ∈ X . (sub-additivity)

(R.e) limk→∞ R(Xk) = R(X) for {Xk} ⊂ X andX ∈ X such that limk→∞ Xk =
X almost surely. (continuity)
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The property (R.b) in Definition 2.1 is called translation invariance in finan-
cial management. We can easily check the following lemma for Example 2.1.

Lemma 2.1. An index R = −VaR given by the value-at-risk satisfies the con-
ditions of Definition 2.1 except for the sub-additivity (R.d). However an index
R = −AVaRp given by the average value-at-risk is a risk measure in the sense
of Definition 2.1.

Let T be a positive integer. Now we introduce risk measures for a stochastic
sequence, where a random event at time t(= 1, 2, · · · , T ) is denoted by a real
random variable Xt(∈ X ). In this paper, we represent the stochastic sequence
simply as a random vector X = (X1, X2, · · · , XT ). We discuss aggregation of
risk measures R1(X1), R2(X2), · · · , RT (XT ) for a stochastic sequence of random
variables X1, X2, · · · , XT . Denote a vector space of random variables in X by
the product space X T . For random variables X = (X1, X2, · · · , XT ) ∈ X T and
Y = (Y1, Y2, · · · , YT ) ∈ X T , a partial order X ≥ Y implies Xt ≥ Yt for all
t = 1, 2, · · · , T . We introduce the following definition from Definition 2.1.

Definition 2.2. A map R : X T �→ R is called a (coherent) risk measure on X T

if it satisfies the following conditions (R.a) – (R.e):

(R.a) R(X) ≤ R(Y ) for X,Y ∈ X T satisfying X ≥ Y . (monotonicity)
(R.b) R(X+θ) = R(X)−θ forX ∈ X T and real vectors θ = (θ, θ, · · · , θ) ∈ R

T .
(translation invariance)

(R.c) R(λX) = λR(X) for X ∈ X T and nonnegative real numbers λ. (positive
homogeneity)

(R.d) R(X + Y ) ≤ R(X) +R(Y ) for X,Y ∈ X T . (sub-additivity)
(R.e) limk→∞ R(Xk) = R(X) for {Xk} ⊂ X T and X ∈ X T such that

limk→∞ Xk = X almost surely. (continuity)

We note that R(0) = 0 and R(θ) = −θ for real vectors 0 = (0, 0, · · · , 0) ∈
R

T and θ = (θ, θ, · · · , θ) ∈ R
T . The risk criterion R of a random variable

X = (X1, X2, · · · , XT ) ∈ X T is given by aggregation of risk indexes R1(X1),
R2(X2), · · · , RT (XT ). Let a set of weighting vectors WT := {(w1, w2, · · · , wT ) |
wt ≥ 0 (t = 1, 2, · · · , T ) and

∑T
t=1 wt = 1}. The following proposition can be

checked easily.

Proposition 2.1. Let Rt be a risk measure on X at time t = 1, 2, · · · , T . The
following (i) – (iii) hold.

(i) The weighted average: Let a weighting vector (w1, w2, · · · , wT ) ∈ WT . Define
a map R : X T �→ R by

R(X) :=

T∑

t=1

wtRt(Xt) (2.3)

for X = (X1, X2, · · · , XT ) ∈ X T . Then R is a risk measure on X T .
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(ii) The order weighted average (Torra [8]): Let (w1, w2, · · · , wT ) ∈ WT be a
weighting vector satisfying w1 ≥ w2 ≥ · · · ≥ wT ≥ 0. Define a map R :
X T �→ R by

R(X) :=

T∑

t=1

wtR(t)(X(t)) (2.4)

for X = (X1, X2, · · · , XT ) ∈ X T , where R(t)(X(t)) is the t-th largest risk
values in {R1(X1), R2(X2), · · · , RT (XT )}. Then R is a risk measure on X T .

(iii) The maximum: Define a map R : X T �→ R by

R(X) := max{R1(X1), R2(X2), · · · , RT (XT )} (2.5)

for X = (X1, X2, · · · , XT ) ∈ X T . Then R is a risk measure on X T .

When we construct aggregation R directly from of risk indexes R1(X1),
R2(X2), · · · , RT (XT ), it is difficult to find other methods except for the methods
(i) − (iii) in Proposition 2.1 from the view point of aggregation operators ([1]
and [9, Section 4.1]).

Example 2.2 (Average value-at-risks). By Proposition 2.1, the following (2.6)
– (2.8) are risk measures induced from Example 2.1:

R(X) =

T∑

t=1

wt(−AVaRpt(Xt)) = −
T∑

t=1

wtAVaRpt(Xt), (2.6)

R(X) =

T∑

t=1

wt(−AVaRp(t)
(X(t))) = −

T∑

t=1

wtAVaRp(t)
(X(t)), (2.7)

R(X) = max{−AVaRp1(X1),−AVaRp2(X2), · · · ,−AVaRpT (XT )} (2.8)

for random variables X = (X1, X2, · · · , XT ) ∈ X T , where pt (0 < pt < 1) is a
given risk-level probability at time t = 1, 2, · · · , T and −AVaRp(t)

(X(t)) is the
t-th largest risk values in {−AVaRp1(X1),−AVaRp2(X2), · · · ,−AVaRpT (XT )}.

Let n be a positive integer. When we aggregate n risk indexes for a random
variable X , we can use the following corollary derived from Proposition 2.1.

Corollary 2.1. Let Ri be a risk measure on X for item i = 1, 2, · · · , n. The
following (i) – (iii) hold.

(i) The weighted average: Let a weighting vector (w1, w2, · · · , wn) ∈ Wn. Define
a map R : X �→ R by

R(X) :=

n∑

i=1

wiRi(X) (2.9)

for X ∈ X . Then R is a risk measure on X .
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(ii) The order weighted average: Let (w1, w2, · · · , wn) ∈ Wn be a weighting vec-
tor satisfying w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. Define a map R : X �→ R by

R(X) :=

n∑

i=1

wiR(i)(X) (2.10)

for X ∈ X , where R(i)(X) is the i-th largest risk values in {R1(X), R2(X),
· · · , Rn(X)}. Then R is a risk measure on X .

(iii) The maximum: Define a map R : X �→ R by

R(X) := max{R1(X), R2(X), · · · , Rn(X)} (2.11)

for X ∈ X . Then R is a risk measure on X .

In the next section we discuss relations between risk measures and deviations
to introduce other kinds of aggregation of risk measures.

3 Deviation Measures

Risk measure is related to deviation measures ([6]). In this section we introduce
deviation measures to investigate indirect approaches which are different from
direct methods in the previous section. Denote L2(Ω) and L1(Ω) the space of
square integrable real random variables on Ω and the space of integrable real
random variables on Ω respectively. We use a notation a− := max{−a, 0} for
real numbers a.

Example 3.1 (Classical deviations). The following criteria are classical devia-
tions in financial management, engineering and so on.

(i) Let the space X = L2(Ω). The standard deviation of a random variable
X(∈ X ) is defined by σ(X) := E((X − E(X))2)1/2.

(ii) Let the space X = L1(Ω). The absolute deviation of a random variable
X(∈ X ) is defined by W (X) := E(|X − E(X)|).

(iii) Let the space X = L2(Ω). The lower standard semi-deviation of a random
variable X(∈ X ) is defined by σ−(X) := E(((X − E(X))−)2)1/2.

(iv) Let the space X = L1(Ω). The lower absolute semi-deviation of a random
variable X(∈ X ) is defined by W−(X) := E((X − E(X))−).

Recently Rockafellar et al. [6] has studied the following concept regarding
deviations.

Definition 3.1. Let X be a set of real random variables on Ω. A map D : X �→
[0,∞) is called a deviation measure on X if it satisfies the following conditions
(D.a) – (D.e):

(D.a) D(X) ≥ 0 and D(θ) = 0 for X ∈ X and real numbers θ. (positivity)
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(D.b) D(X+θ) = D(X) for X ∈ X and real number θ. (translation invariance)
(D.c) D(λX) = λD(X) for X ∈ X and nonnegative real numbers λ. (positive

homogeneity)
(D.d) D(X + Y ) ≤ D(X) +D(Y ) for X,Y ∈ X . (sub-additivity)
(D.e) limk→∞ D(Xk) = D(X) for {Xk} ⊂ X andX ∈ X such that limk→∞ Xk =

X almost surely. (continuity)

Hence, we have the following lemma for Example 3.1.

Lemma 3.1. The standard deviation σ, the absolute deviation W , the lower
standard semi-deviation σ− and the lower absolute semi-deviation W− are devi-
ation measures in the sense of Definition 3.1.

Proof. We have |a+ b| ≤ |a|+ |b| and (a+ b)− ≤ a− + b− for a, b ∈ R. We can
easily check this lemma with these inequalities and Schwartz’s inequality. 	


For a deviation measure D, we put

N(X) :=
D(X) +D(−X)

2
(3.1)

for X ∈ X . Then N is a semi-norm on X , i.e, it satisfies the following conditions
(N.a) – (N.c):

(N.a) N(X) ≥ 0 and N(0) = 0 for X ∈ X . (positivity)
(N.b) N(λX) = |λ|N(X) for X ∈ X and real numbers λ. (homogeneity)
(N.c) N(X + Y ) ≤ N(X) +N(Y ) for X,Y ∈ X . (sub-additivity)

We find from (3.1) that we can aggregate deviation measures in a similar way
to norms on the space X . Let D(X ) denote the family of all deviation measures
on X . Then the following proposition shows D(X ) becomes a convex cone, and it
indicates a hint to construct a deviation criterionD of a random variableX from
deviations D1(X) and D2(X) estimated by two viewpoints D1(·) and D2(·).
Proposition 3.1

(i) Let D ∈ D(X ) and a nonnegative real number λ. Then λD ∈ D(X ).
(ii) Let D1, D2 ∈ D(X ). Then D1 +D2 ∈ D(X ).

The sum, the scalar multiplication and the shift on the vector space X T are
defined as follows: We put X + Y = (X1 + Y1, X2 + Y2, · · · , XT + YT ), λX =
(λX1, λX2, · · · , λXT ) and X + θ = (X1 + θ,X2 + θ, · · · , XT + θ) for X =
(X1, X2, · · · , XT ) ∈ X T ,Y = (Y1, Y2, · · · , YT ) ∈ X T and real numbers λ and
real vectors θ = (θ, θ, · · · , θ) ∈ R

T . We introduce the following definition for
random vectors from Definition 3.1.

Definition 3.2. A map D : X T �→ R is called a deviation measure on X T if it
satisfies the following conditions (D.a) – (D.e):
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(D.a) D(X) ≥ 0 and D(θ) = 0 for X ∈ X T and real vectors θ = (θ, θ, · · · , θ) ∈
R

T . (positivity)

(D.b) D(X + θ) = D(X) for X ∈ X T and real vectors θ = (θ, θ, · · · , θ) ∈ R
T .

(translation invariance)

(D.c) D(λX) = λD(X) forX ∈ X T and nonnegative real numbers λ. (positive
homogeneity)

(D.d) D(X + Y ) ≤ D(X) +D(Y ) for X,Y ∈ X T . (sub-additivity)

(D.e) limk→∞ D(Xk) = D(X) for {Xk} ⊂ X T and X ∈ X T such that limk→∞
Xk = X almost surely. (continuity)

The following proposition shows methods to construct a deviation D on
X T from deviations D1(X1), D2(X2), · · · , DT (XT ) for a random vector X =
(X1, X2, · · · , XT ) ∈ X T .

Theorem 3.1. Let Dt be a deviation measure on X at time t = 1, 2, · · · , T . Let
d be a real number satisfying 1 ≤ d < ∞. The following (i) – (iii) hold.

(i) The generalized weighted average: Let a weighting vector (w1, w2, · · · , wT ) ∈
WT . Define a map D : X T �→ [0,∞) by

D(X) :=

(
T∑

t=1

wtDt(Xt)
d

)1/d

(3.2)

for X = (X1, X2, · · · , XT ) ∈ X T . Then D is a deviation measure on X T .

(ii) The generalized order weighted average: Let (w1, w2, · · · , wT ) ∈ WT be a
weighting vector satisfying w1 ≥ w2 ≥ · · · ≥ wT ≥ 0. Define a map D :
X T �→ [0,∞) by

D(X) :=

(
T∑

t=1

wtD(t)(X(t))
d

)1/d

(3.3)

for X = (X1, X2, · · · , XT ) ∈ X T , where D(t)(X(t)) is the t-th largest de-
viation values in {D1(X1), D2(X2), · · · , DT (XT )}. Then D is a deviation
measure on X T .

(iii) The maximum: Define a map D : X T �→ [0,∞) by

D(X) := max{D1(X1), D2(X2), · · · , DT (XT )} (3.4)

for X = (X1, X2, · · · , XT ) ∈ X T . Then D is a deviation measure on X T .

Proof. (i) We can check this proposition easily with Minkowski’s inequality.
(ii) Let (t) denote indexes for the t-th largest deviation values in {D1(X1 +
Y1), D2(X2 + Y2), · · · , DT (XT + YT )}. By Minkowski’s inequality, we get
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D(X + Y ) ≤
(

T∑

t=1

wt

(
D(t)(X(t)) +D(t)(Y(t))

)d
)1/d

≤
(

T∑

t=1

wtD(t)(X(t))
d

)1/d

+

(
T∑

t=1

wtD(t)(Y(t))
d

)1/d

≤ D(X) +D(Y ).

We can easily check the other conditions. 	

Let n be a positive integer. When we aggregate n deviation indexes for a

random variable X , we can use the following corollary derived from Proposition
3.1.

Corollary 3.1. Let Di be a deviation measure on X for item i = 1, 2, · · · , n.
Let d be a real number satisfying 1 ≤ d < ∞. The following (i) – (iii) hold.

(i) The generalized weighted average: Let a weighting vector (w1, w2, · · · , wn) ∈
Wn. Define a map D : X �→ [0,∞) by

D(X) :=

(
n∑

i=1

wiDi(X)d

)1/d

(3.5)

for X ∈ X . Then D is a deviation measure on X .
(ii) The generalized order weighted average: Let (w1, w2, · · · , wn) ∈ Wn be a

weighting vector satisfying w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. Define a map D : X �→
[0,∞) by

D(X) :=

(
n∑

i=1

wiD(i)(X)d

)1/d

(3.6)

for X ∈ X , where D(i)(X) is the i-th largest deviation values in {D1(X),
D2(X), · · · , Dn(X)}. Then D is a deviation measure on X .

(iii) The maximum: Define a map D : X �→ [0,∞) by

D(X) := max{D1(X), D2(X), · · · , Dn(X)} (3.7)

for X ∈ X . Then D is a deviation measure on X .

4 Construction of Risk Measures by Use of Deviation
Measures

In this section we construct coherent risk measures for random vectors by use
of deviation measures. Now we introduce the following definition for random
vectors.

Definition 4.1. A map E : X T �→ R is called an expectation measure on X T if
it satisfies the following conditions (E.a) – (E.d):
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(E.a) E(θ) = θ for real vectors θ = (θ, θ, · · · , θ) ∈ R
T .

(E.b) E(λX) = λE(X) for X ∈ X T and real numbers λ. (homogeneity)
(E.c) E(X + Y ) = E(X) +E(Y ) for X,Y ∈ X T . (additivity)
(E.d) limk→∞ E(Xk) = E(X) for {Xk} ⊂ X T and X ∈ X T such that limk→∞

Xk = X almost surely. (continuity)

The following lemma shows the relation between deviation measures D on X
and risk measures R on X .

Lemma 4.1

(i) Let D be a deviation measure on X . Suppose

D(X) ≤ E(X)− ess inf
ω

X(ω) for X ∈ X . (4.1)

Define
R(X) := D(X)− E(X)

for X ∈ X . Then R is a risk measure on X .
(ii) Let R be a risk measure on X . Suppose

R(X) + E(X) ≥ 0 for X ∈ X . (4.2)

Define
D(X) := R(X) + E(X)

for X ∈ X . Then D is a deviation measure on X .

Proof. (i) From (D.b) − (D.d), we can easily check (R.b) − (R.d). (R.a) Let
X,Y ∈ X satisfying X ≥ Y . Let Z := X−Y ≥ 0. Then from the assumption, we
have D(Z) ≤ D(Z) + ess infω Z(ω) ≤ E(Z). Then R(Z) ≤ 0. Then from (R.d)
we obtain R(X) = R(Y + Z) ≤ R(Y ) +R(Z) ≤ R(Y ). Thus we also get (R.a).

(ii) From (R.b) − (R.d), we can easily check (D.b) − (D.d). (D.a) Let X ∈ X .
From the assumption we haveD(X) = R(X)+E(X) ≥ 0. Let θ be a real number.
From (R.c) we have R(0) = 0 and from (R.b) we also have R(θ) = R(0 + θ) =
R(0) − θ = −θ. Therefore we obtain D(θ) = R(θ) + E(θ) = −θ + θ = 0. Thus
this lemma holds. 	

Remark. The lower standard semi-deviation σ− and the lower absolute semi-
deviation W− satisfy the condition (4.1) in Lemma 4.1(i). On the other hand,
−AVaRp is a risk measure which satisfies the condition (4.2) in Lemma 4.1(i) if
limx↓inf I xFX(x) = 0.

Extending Lemma 4.1, the following lemma shows the relation between devi-
ation measures D on X T and risk measures R on X T .
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Lemma 4.2

(i) Let D be a deviation measure on X T . Suppose

D(X) ≤ E(X)− ess inf
ω

min
1≤t≤T

Xt(ω) for X ∈ X T . (4.3)

Define
R(X) := D(X)−E(X)

for X ∈ X T . Then R is a risk measure on X T .
(ii) Let R be a risk measure on X T . Suppose

R(X) +E(X) ≥ 0 for X ∈ X T . (4.4)

Define
D(X) := R(X) +E(X)

for X ∈ X T . Then D be a deviation measure on X T .

Proof. The proof is in the same way as Lemma 4.1. 	

From this lemma, we can derive indirect construction methods for risk mea-

sures for stochastic sequences.

Theorem 4.1. Let a weighting vector (v1, v2, · · · , vT ) ∈ WT and let an expec-
tation measure

E(X) =
T∑

t=1

vtE(Xt)

for X = (X1, X2, · · · , XT ) ∈ X T , Assume Rt(Xt) + E(X) ≥ 0 for X =
(X1, X2, · · · , XT ) ∈ X T and t = 1, 2, · · · , T . Let d be a real number satisfy-
ing 1 ≤ d < ∞. The following (i) and (ii) hold.

(i) The weighted average: Let a weighting vector (w1, w2, · · · , wT ) ∈ WT . Define
a map R : X T �→ R by

R(X) :=

(
T∑

t=1

wt(Rt(Xt) +E(X))d

)1/d

−E(X) (4.5)

for X = (X1, X2, · · · , XT ) ∈ X T . Then R is a risk measure on X T .
(ii) The order weighted average: Let (w1, w2, · · · , wT ) ∈ WT be a weighting

vector satisfying w1 ≥ w2 ≥ · · · ≥ wT ≥ 0. Define a map R : X T �→ R by

R(X) :=

(
T∑

t=1

wt(R(t)(X(t)) +E(X))d

)1/d

−E(X) (4.6)

for X = (X1, X2, · · · , XT ) ∈ X T , where R(t)(X(t)) + E(X(t)) is the t-th
largest risk values in {R1(X1) + E(X1), R2(X2) + E(X2), · · · , RT (XT ) +
E(XT )}. Then R is a risk measure on X T .
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Proof. (i) First we have Rt(Xt)+E(X) ≥ 0 for X = (X1, X2, · · · , XT ) ∈ X T .
Let

D(X) =

(
T∑

t=1

wt(Rt(Xt) +E(X))d

)1/d

(4.7)

for X = (X1, X2, · · · , XT ) ∈ X T . We can easily check D satisfies (D.a) – (D.c)
in Definition 3.2 since Rt(θ) = −θ, E(θ) = θ and Rt(Xt + θ) = Rt(Xt) − θ
for X ∈ X T and real vectors θ = (θ, θ, · · · , θ) ∈ R

T . Then by Minkowski’s
inequality we obtain that D is a deviation measure on X T .

Next we fix any random vector X = (X1, X2, · · · , XT ) ∈ X T . Put a constant
c = ess infω mint Xt(ω). Then we have Xt − c ≥ 0 for t = 1, 2, · · · , T . Since
Rt is a risk measure, from (R.a) – (R.c) in Definition 2.1 we get Rt(Xt) + c =
Rt(Xt − c) ≤ Rt(0) = 0 for t = 1, 2, · · · , T . Thus it holds that Rt(Xt) ≤ −c for
t = 1, 2, · · · , T and Xt ∈ X . Hence we have

D(X)−E(X) =

(
T∑

t=1

wt(Rt(Xt) +E(X))d

)1/d

−E(X)

≤
(

T∑

t=1

wt(−c+E(X))d

)1/d

−E(X)

= −c = − ess inf
ω

min
t

Xt(ω).

Thus by Lemma 4.1(i) we obtain that R = D−E is a risk measure on X T . We
can check (ii) in the same way. 	


Let n be a positive integer. When we have n risk indexes for a random variable
X , we can apply Theorem 4.1 to aggregation of these risk indexes.

Corollary 4.1. Let Ri be a risk measure on X satisfying Ri(·) + E(·) ≥ 0 on
X for item i = 1, 2, · · · , n. Let d be a real number satisfying 1 ≤ d < ∞. The
following (i) and (ii) hold.

(i) The weighted average: Let a weighting vector (w1, w2, · · · , wn) ∈ Wn. Define
a map R : X �→ R by

R(X) :=

(
n∑

i=1

wi(Ri(X) + E(X))d

)1/d

− E(X) (4.8)

for X ∈ X . Then R is a risk measure on X .
(ii) The order weighted average: Let (w1, w2, · · · , wn) ∈ Wn be a weighting vec-

tor satisfying w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. Define a map R : X �→ R by

R(X) :=

(
n∑

i=1

wi(R(i)(X) + E(X))d

)1/d

− E(X) (4.9)

for X ∈ X , where R(i)(X) is the i-th largest risk values in {R1(X), R2(X),
· · · , Rn(X)}. Then R is a risk measure on X .
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We obtain the following example since AVaRp(·) ≤ E(·) holds on X for prob-
abilities p (0 < p < 1).

Example 4.1 (Dynamic average value-at-risks). Let d be a real number sat-
isfying 1 ≤ d < ∞. Let pt (0 < pt < 1) is a risk-level probability at time
t = 1, 2, · · · , T . The following (i) and (ii) hold.

(i) The weighted average: Let a weighting vector (w1, w2, · · · , wT ) ∈ X . Define
a map R : X T �→ R by

R(X) :=

(
T∑

t=1

wt(−AVaRpt(Xt) +E(X))d

)1/d

−E(X) (4.10)

for X = (X1, X2, · · · , XT ) ∈ X T . Then R is a risk measure on X T .
(ii) The order weighted average: Let (w1, w2, · · · , wT ) ∈ X be a weighting vector

satisfying w1 ≥ w2 ≥ · · · ≥ wT ≥ 0. Define a map R : X T �→ R by

R(X) :=

(
T∑

t=1

wt(−AVaRp(t)
(X(t)) +E(X))d

)1/d

−E(X) (4.11)

for X = (X1, X2, · · · , XT ) ∈ X T , where −AVaRpt(Xt) + E(Xt) is the t-th
largest risk values in {−AVaRp1(X1) +E(X1),−AVaRp2(X2) + E(X2), · · · ,
−AVaRpT (XT ) + E(XT )}. Then R is a risk measure on X T .
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