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Abstract. In this paper, we review existing radius-incorporated Multi-
ple Kernel Learning (MKL) algorithms, trying to explore the similarities
and differences, and provide a deep understanding of them. Our analysis
and discussion uncover that traditional margin based MKL algorithms
also take an approximate radius into consideration implicitly by base
kernel normalization. We perform experiments to systematically com-
pare a number of recently developed MKL algorithms, including radius-
incorporated, margin based and discriminative variants, on four MKL
benchmark data sets including Protein Subcellular Localization, Pro-
tein Fold Prediction, Oxford Flower17 and Caltech101 in terms of both
the classification performance, measured by classification accuracy and
mean average precision. We see that overall, radius-incorporated MKL
algorithms achieve significant improvement over other counterparts in
terms of classification performance.

Keywords: Multiple Kernel Learning, Support Vector Machines, Ra-
dius Margin Bound, Minimum Enclosing Ball, Kernel Methods.

1 Introduction

Kernel methods have achieved great successes in machine learning community
and have been widely adopted. As well known, their performance heavily depends
on the choice of kernels. Many efforts have been devoted to address this issue by
designing data-dependent optimal kernel algorithms [10,1,4], so-called “learning
kernels from data”. Among these algorithms, Multiple Kernel Learning (MKL)
algorithms have been paid intensive attention since they are not only capable of
adaptively tuning an optimal kernel for a specific learning task, but also provide
an elegant framework to integrate multiple heterogenous source data.

The idea of MKL can be applied to both margin and class separability maxi-
mization criteria, leading to margin-based [1,5,4] and discriminative MKL algo-
rithms [14], respectively. In this paper, we mainly focus on margin based MKL
algorithms due to the popularity of margin maximization framework. There are
several research trends in existing margin based MKL algorithms. The first di-
rection focuses on designing computationally efficient MKL algorithms [1,11,13].
The second one aims to develop non-sparse and non-linear combination MKL al-
gorithms [13], which usually achieve superior performance compared with sparse
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counterparts. By arguing that the generalization error bound of SVMs is de-
pendent on both radius and margin, the last direction simultaneously takes the
margin and the radius of the minimum hyper-sphere which encloses all training
samples in the multi-kernel induced feature space into consideration [3,4,6,7].

Our work in this paper follows the last direction by proposing a radius-
incorporated MKL framework. Using this framework as a toolbox, we instantiate
three different radius-incorporatedMKL algorithms by approximating the radius
of Minimum Enclosing Ball (MEB) with the trace of each base kernel, the trace
of total scatter matrix, and the radiuses induced by each base kernel, respec-
tively. We further theoretically show that the above three radius-incorporated
MKL algorithms can be rewritten as the traditional MKL formulation with only
one difference being that different linearly weighted equality constraints on the
kernel combination coefficients are employed. Specifically, the trace of base ker-
nels, the trace of total scatter matrix of base kernels, and the base radiuses of
each base kernel are respectively applied to linearly weight the coefficients of
each base kernel in the above radius-incorporated MKL algorithms. Moreover,
we uncover the relationship between the radius-incorporated MKL algorithms
with kernel normalization which is still an open issue in existing MKL literature.
Though different kernel normalization manners have been used [5], there is still
lack of a principled way to explain why this normalization should be employed
and which normalization usually works well in real work applications. We answer
these questions by pointing out that different normalization manners in essence
correspond to different radius-incorporation manners, which further correspond
to different criteria in minimizing the generalization error of SVMs. From this
perspective, our proposed radius-incorporated framework builds a bridge be-
tween kernel normalization approaches and the generalization error criteria. The
contributions of this paper are highlighted as follows:

– We propose a radius-incorporated MKL framework which learns the base
kernel combination coefficients by simultaneously maximizing the margin be-
tween classes and minimizing the radius of MEB. Furthermore, three radius-
incorporated MKL algorithms instantiated from the framework are proposed
by calculating the radius of MEB with different approaches.

– We uncover the tight connection between kernel normalization and radius
incorporation, which provides a potential explanation for different kernel
normalization approaches in existing MKL algorithms.

– Wesystematically compare anumber of recentlydeveloped radius-incorporated
MKL algorithms in terms of classification accuracy, which paves a way for de-
signing excellent radius-incorporatedMKL algorithms.

Comprehensive experiments have been conducted on Protein Subcellular Local-
ization, Protein Fold Prediction, Oxford Flower17, Caltech101 and Alzheimer’s
Disease data sets to compare the proposed radius-incorporated MKL algorithms
with state-of-the-art MKL algorithms in terms of classification performance.
As the experimental results indicate, our proposed radius-incorporated MKL
algorithms achieve better or comparable performance compared to many
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state-of-the-art MKL algorithms, which validates the effectiveness of the pro-
posed radius-incorporated MKL framework.

2 Related Work

In this section, we first review some margin based MKL algorithms, and then fo-
cus on the MKL algorithms in [3,4,6,7] which optimizes both radius of MEB and
margin. Let {(xi, yi)}ni=1 be a given training set, where xi and yi ∈ {−1,+1} rep-
resent i-th training sample and its corresponding label, respectively. Let {φp}mp=1

be a group of feature mappings where φp induces a kernel function kp. One can
define Kp as the kernel matrix computed with kp on the training set {xi}ni=1.
In existing MKL literature, each sample xi is mapped onto m feature spaces by
φ(x;γ) � [

√
γ1φ1(x), · · · ,√γmφm(x)]�, where γp is the coefficient of the p-th

base kernel. Correspondingly, the induced kernel function can be expressed as a
linear combination of p base kernels, k(γ) =

∑m
p=1 γpkp andK(γ) =

∑m
p=1 γpKp.

The objective of MKL algorithms is to learn the base kernel coefficients γ
and the structural parameters (ω, b) jointly. To achieve this goal, most of MKL
algorithms [1,11,5] propose to minimize the following optimization problem,

min
γ,ω,b,ξ

1

2
‖ω‖2+C

∑n

i=1
ξi s.t. yi(ω

�φ(xi;γ) + b) ≥ 1− ξi, ξi ≥ 0, ∀i, ‖γ‖q = 1, γ � 0,

(1)

where ω is the normal of the separating hyperplane, b the bias term, ξ =
[ξ1, · · · , ξn]� is the vector of slack variables, and γ is the base kernel coeffi-
cients. Another important issue in Eq. (1) is that q > 1 will induce non-sparse
kernel coefficients (called non-sparse MKL) while q = 1 will lead to sparse kernel
combination (called sparse MKL).

Several recent research on MKL has gradually realized the importance of
radius of MEB in MKL and successfully incorporated this radius into the tra-
ditional MKL formulation, achieving better kernel learning performance [3,4,6].
The theoretical justification for the radius incorporation lies at that the gener-
alization error bound of SVMs is dependent on both the margin and the radius
of the MEB of training data [10]. Furthermore, as pointed out in [4], only max-
imizing the margin with respect to γ will cause scaling and initialization issues.
A larger margin could be arbitrarily achieved by scaling γ to τγ (τ > 1), and
this will affect the convergency of the optimization problem. Usually, a norm-
constraint is imposed on γ to address this issue. Nevertheless, identifying an
appropriate norm-constraint for a given kernel learning task remain an open
issue itself [5]. Moreover, even if a norm-constraint is imposed, a good kernel
could still be misjudged as a poor one by simply down-scaling the corresponding
kernel weight [4]. These issues can be removed or mitigated by the incorporation
of radius information. In the following, we review the radius-incorporated MKL
algorithms in literature.
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The pioneering work on radius-incorporated MKL in [3] proposes to minimize
the optimization problem in Eq (2).

min
γ,ω,b,ξ

1

2
R2(γ)‖ω‖2 + C

2

n∑

i=1

ξ2i s.t. yi(ω
�φ(xi;γ) + b) ≥ 1− ξi,∀i,

m∑

p=1

γp = 1, γ � 0,

(2)

where R2 is the squared radius of the MEB in the multi-kernel induced space
and can be calculated as

R2(γ) =
{
max

β
β�diag(K(γ))− β�K(γ)β s.t. β�1 = 1, 0 ≤ βi, ∀i

}
. (3)

Like the margin, R2 is also a function of γ. Instead of solving the optimization
problem in Eq. (2) directly, the authors turn to minimize the following upper
bounding convex optimization problem:

min
γ,ω,b,ξ

1

2
‖ω‖2 +

C

2
∑m

p=1 γpR
2
p

n∑

i=1

ξ2i s.t. yi(ω
�φ(xi;γ) + b) ≥ 1− ξi,∀i,

m∑

p=1

γp = 1, γ � 0,

(4)

where R2
p is the squared radius of the MEB in the p-th base kernel induced space

and can be calculated as

R2
p =

{
max

β
β�diag(Kp)− β�Kpβ s.t. β�1 = 1, 0 ≤ βi, ∀i

}
. (5)

The work in [3] focuses on how to approximate the optimization problem in
Eq. (3) with a convex one in Eq. (4), and does not address the scaling issue
mentioned above. Differently, the work in [4] directly solves the optimization in
Eq. (6) and carefully discusses how the scaling issue can be addressed.

min
γ,ω,b,ξ

1

2
R2(γ)‖ω‖2 + C

n∑

i=1

ξi s.t. yi(ω
�φ(xi;γ) + b) ≥ 1− ξi, ∀i, ξi ≥ 0, γ � 0.

(6)

In detail, a tri-level optimization problem is proposed in that work,

min
γ

Ĵ (γ) s.t. γp ≥ 0, ∀p. (7)

where

Ĵ (γ) =
{
max
α

α�1− 1

2R2(γ)

(
α ◦ y

)�
K(γ)

(
α ◦ y

)
s.t. α�y = 0, 0 ≤ αi ≤ C, ∀i

}
(8)

and R2(γ) is calculated by Eq. (3). To solve the optimization problem, a tri-
level optimization structure is developed accordingly. Specifically, in the first
step, R2 is computed by solving the Quadratic Programming (QP) in Eq. (3)
with a given γ. Then, the obtained R2 is taken into Eq. (8) to solve another

QP to calculate Ĵ (γ). The last step is to update the base kernel coefficients γ.
The above procedure is repeated until a stopping criterion is satisfied. Compared
with traditional MKL algorithms, an extra QP is introduced and solved at each
iteration. This can considerably increase the computation cost of SVMs based
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MKL, especially when the size of training set is large. Moreover, the performance
of MKL could be adversely affected by the notorious sensitivity of this radius to
outliers. In [6], instead of directly incorporating the radius of MEB, the authors
propose to incorporate its close relative, the trace of data scattering matrix, to
avoid the above problems. Specifically, their optimization problems is as follows
in Eq. (9),

min
γ,ω,b,ξ

1

2
tr (St(γ)) ‖ω‖2 + C

n∑

i=1

ξi s.t. yi(ω
�φ(xi;γ) + b) ≥ 1− ξi,∀i, ξi ≥ 0, γ � 0,

(9)

where

tr (St(γ)) = tr(K(γ))− 1

n
1�K(γ)1 (10)

with 1 is a column vector with all elements one. Though usually demonstrating
superior performance from the experimental perspective, it is criticized from the
theoretic perspective since it may not be a upper bound of generalization error
bound such as Radius Margin Bound [10].

In the following, we propose a radius-incorporated MKL framework where
different radius variants could be integrated. Then we theoretically show that
radius-margin based framework can be equivalently addressed by solving a tra-
ditional margin based MKL algorithms, with a difference being that a weighted
constraint on the base kernel coefficients encoding the radius information. Fur-
thermore, we formally, for the first time, uncover the connection between radius
incorporation and kernel normalization.

3 Radius-Incorporated MKL Framework

3.1 The Proposed Framework

The radius-incorporated MKL framework in this paper is presented as follows,

min
γ

J (γ), s.t. γp ≥ 0, ∀p. (11)

where

J (γ) =
{
min
ω,b

1

2
R2(γ)‖ω‖2 + C

n∑

i=1

ξi s.t. yi
(
ω�φ(xi;γ) + b

) ≥ 1− ξi, ξi ≥ 0,∀i
}

(12)

Proposition 1. J (τγ) = J (γ), where τ > 0 is any positive scalar. And the
SVM decision function using the combined kernel is not affected by τ .

Proof. The proof is elaborated in our earlier publication [7].

Proposition 1 indicates that our formulation in Eq. (11) is invariant when the
kernel combination weights are uniformly scaled up by a positive scalar τ . In this
case, the optimal value of ω will correspondingly be down scaled by 1/τ , leaving
the SVMs decision function unchanged. Based on Proposition 1, the following
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Theorem 1 demonstrates that our objective function can be rewritten as the
common form used by the existing margin based MKL algorithms, with only
one difference that a constraint is imposed on the kernel coefficients encoding
the radius information.

Theorem 1. The optimal solution of optimization problem in Eq. (11), denoted
as γ�, can be written as γ� = R2(γ)η�, where η� is the optimal solution of the
following optimization problem in Eq. (13),

min
η

J (η) s.t. R2(η) = 1, ηp ≥ 0, ∀p. (13)

where

J (η) =
{
min
ω,b

1

2
‖ω‖2 + C

n∑

i=1

ξi s.t. yi
(
ω�φ(xi;η) + b

) ≥ 1− ξi, ξi ≥ 0, ∀i
}

(14)

Proof. The proof is elaborated in our earlier publication [7].

Theorem 1 indicates our proposed radius-incorporated MKL framework in Eq.
(11) can be reformulated as a traditional margin based one, with only one differ-
ence being that an additional constraint on the kernel combination coefficients
encoding radius information, as shown in Eq. (13).

3.2 Radius-Incorporated MKL Variants

In the following, we instantiate the calculation of R2(γ) by three different ap-
proaches: Tr(K(γ)), Tr(St(γ)) and

∑m
p=1 γpR

2
p.

TrK-margin MKL By substituting R2(γ) in Eq. (13) with Tr(K(γ)), we ob-
tain the objective of TrK-margin MKL as follows in Eq. (15),

min
γ

min
ω,b

1

2
‖ω‖2 + C

n∑

i=1

ξi s.t. yi
(
ω�φ(xi;γ) + b

) ≥ 1− ξi, ξi ≥ 0, Tr(K(γ)) = 1, γp ≥ 0.

(15)

where Tr(K(γ)) =
∑m

p=1 γpTr(Kp).

TrSt-margin MKL By substituting R2(γ) with Tr(St(γ)), we obtain the ob-
jective of TrSt-margin MKL as follows,

min
γ

min
ω,b

1

2
‖ω‖2 + C

n∑

i=1

ξi s.t. yi
(
ω�φ(xi;γ) + b

) ≥ 1− ξi, ξi ≥ 0, Tr(St(γ)) = 1, γp ≥ 0.

(16)

where Tr(St(γ)) = Tr (K(γ))− 1
n1

�K(γ)1 =
∑m

p=1 γp
(
Tr (Kp)− 1

n1
�Kp1

)
.
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Base Radiuses-margin MKL By substituting R2(γ) with
∑m

p=1 γpR
2
p, we

obtain the objective of Base Radiuses margin (BR-margin) MKL as follows,

min
γ

min
ω,b

1

2
‖ω‖2 + C

n∑

i=1

ξi s.t. yi
(
ω�φ(xi;γ) + b

) ≥ 1− ξi,
m∑

p=1

γpR
2
p = 1, γp ≥ 0.

(17)

where R2
p (p = 1, · · · ,m) is calculated by Eq. (5).

3.3 Algorithm

We propose an efficient algorithm to solve our proposed radius-incorporated
MKL algorithms. We take the TrK-margin MKL algorithm as an example to
show how it can be efficiently solved while this derivation can be directly applied
to TrSt-margin MKL and Base Radiuses-margin MKL algorithms.

By defining ω̃p =
√
γpωp, (p = 1, · · · ,m), Eq. (15) can be rewritten as

min
γ

min
ω̃,b

1

2

m
∑

p=1

‖ω̃p‖2

γp
+ C

n
∑

i=1

ξi s.t. yi
(

m
∑

p=1

ω̃p
�

φp(xi) + b
) ≥ 1 − ξi, ξi ≥ 0, Tr(K(γ)) = 1, γp ≥ 0.

(18)
The Lagrange function of Eq. (23) with respect to γ is

L(γ; τ ) =
1

2

m∑

p=1

‖ω̃p‖2
γp

+ C
n∑

i=1

ξi + τ

(
m∑

p=1

γpTr(Kp)− 1

)
. (19)

By letting the derivative of Eq. (19) with respect to γp (p = 1, · · · ,m) be zero,
we obtain,

∂L(γ; τ )

∂γp
= −1

2

‖ω̃p‖2
γ2
p

+ τTr(Kp) = 0. (20)

From Eq. (20), the optimal kernel combination weights can be analytically cal-
culated as,

γp =
‖ω̃p‖

√
Tr (Kp)

(∑m
p=1

√
Tr (Kp)‖ω̃p‖

) (21)

The overall algorithm for solving the TrK-margin MKL formulation is presented
in Algorithm 1.

Algorithm 1. Proposed Radius-incorporated MKL Framework

1: Initialize γ1
p.

2: i ← 1
3: repeat
4: Calculate ω̃p

i+1 (p = 1, · · · ,m) by a SVMs solver with γi
p.

5: Update γi+1 with ω̃p
i+1 (p = 1, · · · ,m) by Eq. (21).

6: i ← i+ 1
7: until Convergence
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It is worth noting that Algorithm 1 can be directly applied to solve the TrSt-
margin MKL and Base Radiuses-margin MKL algorithms with minor modifi-
cation. In detail, one can achieve this goal by only substituting Tr (Kp) in Eq.
(21) with

(
Tr (Kp)− 1

n1
�Kp1

)
in TrSt-margin MKL and R2

p in Base Radiuses-
margin MKL, respectively.

After we obtain the optimal ω̃p
�
, (p = 1, · · · ,m), b� and γ� by Algorithm 1,

we can directly write the SVMs decision function as

f(x) =
m∑

p=1

γ�
p (ω̃p

�)
�
φp(x) + b�, (22)

and it will be used for the prediction the labels of new samples.

3.4 Connections between Radius-Incorporation and Base Kernel
Normalization

As mentioned in [5], the base kernel normalization is important for MKL and
different normalization approaches will lead to fundamentally different results.
However, little systematical analysis on base kernel normalization has been done
in existing MKL literature. Moreover, there is also lack of a theoretical expla-
nation for existing base kernel normalization approaches. In the following, we
uncover that there is a tight relationship between radius-incorporated MKL al-
gorithms with kernel normalization approaches. This finding builds a bridge
between base kernel normalization and MKL optimization criteria.

There are two widely used base kernel normalization approaches: spherical
normalization [11] and multiplicative normalization [5], in existing MKL litera-
ture. In the following, we show the connections between spherical normalization
and TrK-margin MKL, and multiplicative normalization and TrSt-margin MKL,
respectively. In detail, by normalizing each base kernelKp (p = 1, · · · ,m) to have
unit trace as in [11], we obtain the following optimization problem,

min
γ

min
ω,b

1

2
‖ω‖2 +C

n∑

i=1

ξi s.t. yi
(
ω�φ(xi;γ) + b

) ≥ 1− ξi,

m∑

p=1

γp = 1, γp ≥ 0,

(23)

which is the exact objective function widely adopted by existing MKL algo-
rithms [11,13]. Therefore, we can clearly see that the current margin-based MKL
algorithms essentially implicitly incorporate the radius information via Tr(K).
Similar optimization problem can also be obtained by performing multiplicative
normalization on each base kernels.

With the proposed radius-incorporatedMKL framework as a tool,we can clearly
observe the tight relationship between radius incorporation variants and base ker-
nel normalization alternatives. Furthermore, this framework also establishes the
connection between kernel normalization approaches and radius-margin optimiza-
tion criteria, which potentially provides an explanation for kernel normalization
approaches from the perspective of minimizing generalization error theory.
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It is worth noting that there exists essential differences among the proposed
three radius-incorporatedMKL algorithms in terms of generalization error bound.
Neither TrK-margin nor TrSt-margin criteria are the upper bound of general-
ization error due to that Tr(K(γ)) and Tr(St(γ)) may not be an upper bound of
R2(γ), the squared radius of MEB. Differently, the base radiuses-margin crite-
rion is an upper bound of the generalization error since

∑m
p=1 γpR

2 is an upper

bound of R2(γ) [3]. With this observation, we can infer that the widely used
spherical normalization and multiplicative normalization in existing MKL liter-
ature do not strictly follow the generalization error bound. Though having such
a deficiency, TrSt-margin criterion can usually achieve superior performance,
which has been validated in our experiments.

4 Experimental Results

4.1 Experimental Setup

We conduct experiments to compare the proposed radius-incorporated MKL al-
gorithms with many stat-of-the-art MKL algorithms such as SimpleMKL [11],
Minimum Ball MKL (MBMKL) [4], Radius MKL (RMKL)[3], non-Sparse MKL
(�p MKL)[5] with p = 4/3, 2, 4, Discriminative MKL (MK-FDA) [14], Union
Weight MKL (UWMKL), and Single Best SVMs (Single) in terms of classifica-
tion accuracy. All comparisons have been conducted on protein fold prediction1,
Oxford Flower172, Protein Subcellular Localization3, and Caltech1014. When
the whole kernel matrix is available, the training set, validation set and test set
is partitioned according to 2 : 1 : 1. For Caltech101, since the training kernel and
test kernel are available separately, we randomly partition the original training
kernel matrix into new training and validation kernels according to 3 : 2 while
keeping the original test kernels unchanged.

The codes for SimpleMKL, �p-MKL, and MK-FDA are respectively down-
loaded from the authors’ websites5,6,7. We implement the MBMKL and RMKL
based on SimpleMKL toolbox by ourself according to their papers. All source
codes, kernel matrix and partitions used in our experiments can be download
from the author’s website8. The optimal regularization parameter C for all MKL
algorithms is chosen from [10−2, 10−1, · · · , 104] while the regularization param-
eter λ for MK-FDA [14] is chosen from [10−5, 10−1, · · · , 101] on validation set.
For the comparison of classification performance, both the classification accu-
racy (ACC) and maximum a posterior (mAP) criteria are adopted. To conduct

1 http://mkl.ucsd.edu/dataset/protein-fold-prediction
2 http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html
3 http://mkl.ucsd.edu/dataset/protein-subcellular-localization
4 http://mkl.ucsd.edu/dataset/ucsd-mit-caltech-101-mkl-dataset
5 http://asi.insa-rouen.fr/enseignants/~arakoto/
6 http://doc.ml.tu-berlin.de/nonsparse_mkl/
7 http://www.public.asu.edu/~jye02/Software/index.html
8 https://sites.google.com/site/xinwangliunudt/home?previewAsViewer=1

http://mkl.ucsd.edu/dataset/protein-fold-prediction
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html
http://mkl.ucsd.edu/dataset/protein-subcellular-localization
http://mkl.ucsd.edu/dataset/ucsd-mit-caltech-101-mkl-dataset
http://asi.insa-rouen.fr/enseignants/~arakoto/
http://doc.ml.tu-berlin.de/nonsparse_mkl/
http://www.public.asu.edu/~jye02/Software/index.html
https://sites.google.com/site/xinwangliunudt/home?previewAsViewer=1
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Table 1. Performance comparison with statistical test on Protein Fold Prediction data
set. Boldface means no statistical difference from the best one (p-Val ≥ 0.05). The two
rows of each data set represent mean accuracy (mAP) and standard derivation error.

Proposed SimpleMKL MBMKL RMKL �p-MKL [5] MK-FDA
UWMKL Single

TrK TrSt Radius [11] [4] [3] p = 4/3 p = 2 p = 4 [14]

ACC

65.6 68.4 66.9 65.2 66.3 58.1 66.3 63.9 62.5 59.6 60.4 60.2

±3.6 ±2.7 ±2.2 ±3.3 ±4.9 ±3.6 ±3.1 ±4.0 ±3.6 ±2.8 ±3.4 ±2.6

mAP

70.1 72.6 72.5 69.7 70.9 59.3 69.1 66.0 64.0 71.5 62.9 66.8

±3.0 ±3.0 ±2.0 ±2.0 ±5.0 ±4.1 ±3.2 ±3.6 ±4.2 ±2.7 ±4.2 ±1.9

a rigorous comparison, the paired Student’s t-test is performed. The p-value of
the t-test represents the probability that two sets of compared results come from
distributions with an equal mean. A p-value of 0.05 is considered statistically
significant. We repeat the experiments for five times on Caltech101 since there
are only five partitions available, while this procedure is repeated ten times on
the other data sets. The mean results, standard derivation, and the p-value are
reported. The highest accuracy and those whose difference from the highest ac-
curacy are not statistically significant are shown in bold for each data set. All
the following experiments are conducted on a high performance cluster server,
where each computational node is with 2.3GHz CPU and 16GB memory.

4.2 Experiments on Protein Fold Predication Dataset

As a MKL benchmark data set, Protein Fold Prediction data set has been widely
used to evaluate the performance of MKL algorithms [2]. It has 12 different
heterogenous data sources, including Amino Acid Composition, Predicted Sec-
ondary Structure, Hydrophobicity, Van Der Waals Volume, Polarity, Polarizabil-
ity, PseAA Pseudo-Amino-Acid Composition at interval 1, 4, 14 and 30, Smith-
Waterman scores with the BLOSUM 62 scoring matrix, and Smith-Waterman
scores with the PAM 50 scoring matrix. According to [2], 12 base kernels are
generated by applying the second order polynomial kernel and inner product
(cosine) kernel to the first ten feature sets and the last two feature sets, respec-
tively.

The experimental result on Protein Fold Predication dataset is given in
Table 1. From this table, we observe that:

– Radius-incorporated MKL algorithms including TrSt-MKL, Radius-MKL
and MBMKL [4] significantly outperform other margin based MKL algo-
rithms in terms of both classification accuracy and mAP. In terms of classi-
fication accuracy, the proposed TrSt-MKL achieves 2.5% improvement over
�4/3-MKL, which is the best margin based MKL algorithm. This amount is
enlarged to 2.9% when comparing TrSt-MKL with the best margin based
MKL algorithm in terms of mAP.

– Different radius-incorporated approaches lead to different classification per-
formance. Compared with TrK-MKL, the other proposed TrSt-MKL and
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Table 2. Performance comparison with statistical test on Protein Subcellular Local-
ization data set

Proposed SimpleMKL MBMKL RMKL �p-MKL [5] MK-FDA
UWMKL Single

TrK TrSt Radius [11] [4] [3] p = 4/3 p = 2 p = 4 [14]

ACC

psortNeg

91.1 91.1 90.6 90.7 90.4 90.8 90.4 89.4 87.6 87.2 87.2 84.0

±1.2 ±1.6 ±1.5 ±1.2 ±1.7 ±1.5 ±1.4 ±1.7 ±2.5 ±1.8 ±2.5 ±1.6

psortPos

86.8 86.6 86.3 86.5 85.8 86.7 87.1 86.2 85.3 84.7 83.5 82.0

±2.8 ±3.3 ±2.9 ±2.6 ±2.8 ±2.7 ±2.8 ±3.9 ±2.5 ±3.1 ±3.2 ±3.5

plant

91.5 92.0 90.5 92.1 91.5 92.0 91.8 91.1 89.8 83.8 88.1 78.6

±1.5 ±1.8 ±1.7 ±1.5 ±1.4 ±2.1 ±2.0 ±1.9 ±2.2 ±3.0 ±2.5 ±2.2

mAP

psortNeg

94.8 95.0 94.9 94.9 94.9 95.1 94.3 93.1 91.4 95.0 90.0 89.6

±0.7 ±0.9 ±0.7 ±0.8 ±0.9 ±0.8 ±0.9 ±1.0 ±1.1 ±0.7 ±1.3 ±1.6

psortPos

93.6 93.3 92.9 93.5 93.1 93.7 93.0 92.0 90.2 93.6 89.7 87.4

±2.3 ±2.5 ±2.5 ±2.2 ±2.4 ±2.3 ±2.5 ±3.0 ±2.9 ±2.3 ±3.4 ±3.2

plant

95.1 95.2 94.5 95.4 95.0 95.0 94.9 93.8 92.8 95.3 91.2 80.6

±1.6 ±1.5 ±1.7 ±1.4 ±1.6 ±1.9 ±1.6 ±1.6 ±1.5 ±1.5 ±1.5 ±1.4

Radius-MKL achieve better classification performance. This result implies
that TrSt and Radius normalization is superior to the widely used TrK
normalization.

4.3 Experiment on Protein Subcellular Localization Dataset

We apply the above MKL algorithms into the protein subcellular localization
which places an important role in protein function prediction and protein inter-
actions. Three protein subcellular localization data sets including plant, PsortPos
and PsortNeg have been widely used as MKL benchmark data sets [15,5], where
69 base kernels: two kernels on phytogenetic trees, three kernels from BLAST
E-values, and 64 sequence motif kernels are constructed.

The experimental results are given in Table 2, from which we observe that

– Though the difference among the compared MKL algorithms is marginal,
the proposed TrSt-MKL and RMKL [3] achieve the best performance on
all three data sets in terms of both classification accuracy and mAP, which
validate the necessity of radius incorporation.

– Among the proposed radius-incorporation approaches, the TrSt-MKL ob-
tains the best performance, which coincides with the practical consideration
in [15,5], where the multiplicative normalization is employed. In essence,
our proposed radius-incorporated MKL framework provide an explanation
for the effectiveness of multiplicative normalization from the perspective of
minimizing the radius-margin bound.

4.4 Experiments on Oxford Flower17 Dataset

We compare the abovementionedMKL algorithms onOxfordFlower17,which has
been widely used as aMKL benchmark data set [8]. There are seven heterogeneous
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Table 3. Performance comparison with statistical test on Oxford Flower17 data set

Proposed SimpleMKL MBMKL RMKL �p-MKL [5] MK-FDA
UWMKL Single

TrK TrSt Radius [11] [4] [3] p = 4/3 p = 2 p = 4 [14]

ACC

84.7 86.3 85.9 83.2 86.3 84.3 84.6 84.7 84.8 82.4 84.8 70.4

±2.2 ±1.6 ±1.9 ±1.4 ±2.0 ±2.1 ±2.0 ±1.8 ±1.7 ±2.1 ±1.7 ±3.8

mAP

90.0 91.5 91.3 88.9 91.5 90.1 90.0 90.0 90.0 90.1 90.0 75.3

±0.9 ±0.9 ±0.9 ±1.0 ±1.0 ±1.0 ±1.0 ±1.0 ±1.0 ±1.0 ±1.1 ±2.9

data channels available for this data set. For each data channel, four types of ker-
nels are applied: Gaussian kernel (i.e., k(xi,xj) = exp (−‖xi − xj‖2/σ)), Lapla-
cian kernel (i.e., k(xi,xj) = exp (−‖xi − xj‖/√σ)), inverse square distance ker-
nel (i.e., k(xi,xj) = 1

‖xi−xj‖2/σ+1 ), and inverse distance kernel (i.e., k(xi,xj) =
1

‖xi−xj‖/√σ+1
), where σ is the kernel parameter. They represent different ways to

utilize the dissimilar matrix provided in [8,9]. In our experiments, 3 kernel parame-
ters 2tσ0 (t ∈ {−1, 0, 1}) are employed for each type of kernel, where σ0 is set to be
the averaged pairwise distance. In this way, we generate 84 (7× 4× 3) base kernels
(12 base kernels for each data source), and use them for all the MKL algorithms
compared in our experiment.

The results on Oxford Flower17 is given in Table 3, from which we observe that
the radius incorporated MKL algorithms including TrSt-MKL, Base Radius-
MKL and MBMKL [4] significantly outperform other margin based MKL algo-
rithms. Specifically, both TrSt-MKL and MBMKL achieve 1.5% achievement
over �4-MKL, which achieves the best results among the margin based MKL
algorithms. Similar results can also be observed in terms of mAP.

4.5 Experiments on Caltech101 Dataset

The Caltech101 MKL data set is a group of kernels derived from various visual
features computed on the Caltech-101 object recognition task, where 15 training
and 15 test examples are available for each object class. It is a MKL benchmark
data set and is used here to evaluate the performance of the above MKL al-
gorithms. Twenty-five image descriptors are extracted, including pixels, SIFT,
PHOW (Pyramid Histogram Of visual Words), PHOG (Pyramid Histogram Of
Gradients), Geometric Blur, the bio-inspired “Sparse Localized Features”, V1-
like features, and high-throughput bio-inspired features. This data set includes
the kernels computed with the above features for five random splits of training
and test sets.

We train and test the above 12 MKL algorithms on the pre-defined training
and test sets and the experimental results are given in Table 4. From which, we
again observe that our proposed TrSt-MKL gains 3.5% improvement in terms
of classification accuracy over �2-MKL, which achieves the best results among
the margin-based MKL algorithms. Besides, compared with the best margin
based MKL algorithm, a 3.7% improvement is achieved in terms of mAP by the
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Table 4. Performance comparison with statistical test on Caltech101 data set

Proposed SimpleMKL MBMKL RMKL �p-MKL [5] MK-FDA
UWMKL Single

TrK TrSt Radius [11] [4] [3] p = 4/3 p = 2 p = 4 [14]

ACC

64.0 68.5 67.4 63.7 68.3 64.8 65.0 65.2 65.1 60.4 65.0 60.7

±1.3 ±1.1 ±1.5 ±1.3 ±1.2 ±1.7 ±1.4 ±1.5 ±1.5 ±1.1 ±1.5 1.5

mAP

66.1 71.1 69.2 65.7 70.3 66.8 67.4 67.4 67.4 64.3 67.4 64.8

±0.7 ±0.8 ±0.9 ±0.8 ±0.6 ±0.9 ±1.0 ±1.1 ±1.1 ±0.6 ±1.1 ±1.2

proposed TrSt-MKL. All experimental results together demonstrate the effec-
tiveness of the radius-based MKL algorithms.

Based on the experimental results on Protein Fold Prediction, Protein Subcel-
lular Localization, Oxford Flower17, Caltech101 data sets, we have the following
remarks:

– It has been validated that the proposed TrSt-MKL is usually able to achieve
the best classification performance and least computational efficiency. By
taking both classification performance and computational efficiency into con-
sideration, it is clearly the best one. Actually, TrSt

n is an approximation of
the radius of MEB by assigning the treating each training sample equally,
which can usually achieve more stable and better performance. More detail
relationship between TrSt-MKL and the radius of MEB is referred to [12].

– The proposed TrSt-MKL usually achieves stable performance than TrK-
MKL and Radius-MKL. This implies that the multiple normalization on base
kernels should be used, other than the commonly used trace normalization
in existing MKL literature.

– Among the proposed three radius-incorporated MKL algorithms, only the
objective of Radius-MKL is an upper bound of generalization error. However,
it does not imply the best results can be obtained by this algorithm. Instead,
TrSt-MKL is usually achieving better results.

5 Conclusion

In this paper, we propose a radius-incorporated MKL framework in which the
margin between classes and the radius of minimum hyper-sphere enclosing all
training samples are both considered in the objective functions. We theoreti-
cally show the proposed framework can be equivalently rewritten as the existing
margin based MKL optimization problem, with only one difference being that
a weighted norm constraint is adopted to encode the radius information. This
finding connects the radius-incorporation issue and the base kernel normalization
issue, which is paid little attention in existing MKL literature. Our framework in-
deed provides an explanation for existing base kernel normalization approaches,
which is a pre-procession step in existing MKL literature, from minimizing gen-
eralization error bound perspective. Extensive experiments have been conducted
on several benchmark datasets. As experimentally demonstrated, our algorithm
gives the overall best classification performance among the compared algorithms.
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