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Abstract. Clustering is a method of data analysis. Rough k-means
(RKM) by Lingras et al. is one of rough clustering algorithms[3]. The
method does not have a clear indicator to determine the most appro-
priate result because it is not based on objective function. Therefore
we proposed a rough clustering algorithm based on optimization of an
objective function [7]. This paper will propose a new rough clustering
algorithm based on optimization of an objective function with fuzzy-set
representation to obtain better lower approximation, and estimate the
effectiveness through some numerical examples.
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1 Introduction

Data have become large-scale and complex in recent years. We cannot get use-
ful information without computers. The importance of data analysis techniques
has been increasing accordingly and various data analysis methods have been
proposed. Clustering is one of the major techniques in pattern recognition. Clus-
tering is a technique automatically classifying data into some clusters. Many re-
searchers have been interested in clustering as a significant data analysis method.

Types of clustering are divided broadly into hierarchical and non-hierarchical
clustering. The standard techniques of non-hierarchical clustering are called
objective-based clustering. The objective-based clustering is constructed to min-
imize a given objective function. Therefore, the objective function plays many
important role in objective-based clustering.

From the viewpoint of the membership of an object to each cluster, called
membership grade, types of clustering are divided into crisp and fuzzy. The
value of membership grade is 0 or 1 in crisp clustering. The value is included
into the unit interval [0,1] in fuzzy clustering. Fuzzy clustering allows an object
to belong more than one cluster at the same time. That is why fuzzy clustering
can be regarded as more flexible than crisp clustering. On the other hand, it
is pointed out that the fuzzy degree of membership may be too descriptive for
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interpreting clustering results. In such cases, rough set representation is a more
useful and powerful tool[1][2].

Recently, clustering based on rough set theory has attracted some attention[3].
Rough clustering represents a cluster by using two layers, upper and lower ap-
proximations. We can regard rough clustering as three-value clustering, that is,
into the cluster, out of the cluster and unknown. The lower approximation means
that an object surely belongs to the set and the upper one means that an object
possibly belongs to the set. Clustering based on rough-set representation could
provide a solution that is less restrictive than conventional clustering and less
descriptive than fuzzy clustering, and therefore clustering based on rough set
representation has attracted increasing interest of researchers[4][5][6].

However, traditional rough clustering does not have an objective function.
For that reason the problem is pointed out that we cannot evaluate the result
quantitatively. In order to solve this problem, a rough clustering algorithm based
on optimization of an objective function was proposed[7]. But the algorithm has
a problem that an object cannot belong to more than two upper approximations.

This paper proposes new rough clustering algorithms based on optimization of
an objective function with fuzzy-set representation and estimate the effectiveness
through some numerical examples.

2 Conventional Rough Clusterings

2.1 Rough Sets

Let U be the universe and R ⊆ U ×U be an equivalence relation on U . R is also
called equivalence relation. The pair X = (U,R) is called approximation space.
If x, y ∈ U and (x, y) ∈ R, we say that x and y are indistinguishable in X .

Equivalence class of the relation R is called elementary set in X . The family
of all elementary sets is denoted by U/R. The empty set is also elementary in
every X .

Since it is impossible to distinguish each element in an equivalence class, we
may not be able to get a precise representation for an arbitrary subset A ⊆ U .
Instead, any A can be represented by its lower and upper bounds. The upper
bound A is the least composed set in X containing A, called the best upper
approximation or, in short, upper approximation. The lower bound A is the
greatest composed set in X containing A, called the best lower approximation
or, briefly, lower approximation. The set Bnd(A) = A−A is called the boundary
of A in X .

The pair (A,A) is the representation of an ordinary set A in the approximation
space X , or simply a rough set of A. The elements in the lower approximation
of A definitely belong to A, while elements in the upper bound of A may or may
not belong to A.

2.2 Rough k-Means

In this section, we explain rough k-means (RKM) by Lingras. From the above
section of rough sets, we can define the following conditions for clustering.
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(C1) An objet x can be part of at most one lower approximation.
(C2) If x ∈ A =⇒ x ∈ A
(C3) An object x is not part of any lower approximation if and only if x belongs

to two or more boundaries.

Cluster centers are updated by

vi =

⎧
⎪⎪⎨

⎪⎪⎩

ω ×
∑

xk∈Ai
xk

|Ai|
+ ω ×

∑
xk∈Bnd(Ai)

xk

|Bnd(Ai)| , (Ai �= ∅ ∧ Bnd(Ai) �= ∅)
∑

xk∈Ai
xk

|Ai|
. (otherwise)

The coefficients ω and ω are weights of lower approximations and boundaries,
respectively. ω and ω satisfy as follows:

ω > 0, ω > 0, ω + ω = 1, 1 ≤ k ≤ n, 1 ≤ i ≤ c.

Lower approximations and boundaries are calculated as follows:

dki = ‖xk − vi‖2, dkm = min
1≤i≤c

dki

T = {i | dki − dkm ≤ threshold} (i �= m)

T �= ∅ ⇒ xk ∈ Am and xk ∈ Ai (∀i ∈ T )

T = ∅ ⇒ xk ∈ Am .

Algorithm 1. RKM

RKM0 Give initial cluster centers.
RKM1 Calculate lower approximations and boundaries.
RKM2 Calculate cluster centers.
RKM3 If the stop criterion satisfies, finish. Otherwise back to RKM1.

2.3 Rough c-Means

RKM has the following problems.

– Since RKM does not have objective function, there is no guidance to estimate
the validity of the obtained results.

– There is no guidance to determine the threshold.

Rough c-means (RCM) which is based on optimization of an objective function
was proposed to solve the above problems by Endo et al[7].

The objective function of RCM is defined as follows:

JRCM =
c∑

i=1

n∑

k=1

n∑

l=1

(νkiuli(ωdki + ωdli) + (νkiνli + ukiuli)Dkl) .
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νki represents a membership grade of xk to a lower approximation of cluster of
i. uli represents a membership grade of xl to a boundary of cluster of i. Here,
dsi = ‖xs − vi‖2 and Dkl = ‖xk − xl‖2.

The constraints are as follows:

ω + ω = 1, νki ∈ {0, 1}, uki ∈ {0, 1},
c∑

i=1

νki ∈ {0, 1},
c∑

i=1

uki �= 1,

c∑

i=1

νki = 1 ⇐⇒
c∑

i=1

uki = 0.

Those constraints obviously satisfy the above conditions C1, C2 and C3.
Actually, those constraints are rewritten as:

c∑

i=1

νki = 0 ⇐⇒
c∑

i=1

uki = 2.

The cluster center vi is calculated as follows:

vi = ω ×
∑

xk∈Ai
xk

|Ai|
+ ω ×

∑
xk∈Bnd(Ai)

xk

|Bnd(Ai)| .

The optimal solutions to N and U are updated as follows:

νki =

{
1, (Jν

k < Ju
k ∧ i = pk)

0, (otherwise)

uki =

{
1, (Jν

k > Ju
k ∧ (i = pk ∨ i = qk))

0. (otherwise)

Here pk, qk, J
ν
k and Ju

k are calculated as follows:

pk = arg min
i

dki, qk = arg min
i�=pk

dki,

Jν
k =

n∑

l=1,l �=k

νkpk
(ulpk

(ωdkpk
+ ωdlpk

) + 2νlpk
Dkl),

Ju
k =

∑

i=pk,qk

n∑

l=1,l �=k

uki(νli(ωdli + ωdki) + 2uliDkl).

Algorithm 2. RCM

RCM0 Give initial cluster centers.
RCM1 Calculate lower approximations and boundaries.
RCM2 Update cluster centers.
RCM3 Calculate min

V
JRCM and update V .

RCM4 If the stop criterion satisfies, finish. Otherwise back to RCM1.
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3 Proposed Method 1 — RCM-FU

We propose RCM-FU (RCM with fuzzy upper approximation) which is con-
structed by introducing fuzzy-set representation into membership of boundary.

3.1 Objective Function

The objective function of RCM-FU is defined as follows:

JRCM-FU =

n∑

k=1

n∑

l=1

c∑

i=1

(um
kiνli(ωdli + ωdki) + (νkiνli + um

kiu
m
li )Dkl).

The constraints are as follows:

ω + ω = 1, νki ∈ {0, 1}, uli ∈ [0, 1],

c∑

i=1

νki ∈ {0, 1},
c∑

i=1

νki = 1 ⇐⇒
c∑

i=1

uki = 0,

c∑

i=1

νki = 0 ⇐⇒
c∑

i=0

uki = 1.

3.2 Derivation of the Optimal Solution and Algorithm

A cluster center vi is calculated as follows:

vi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑
xk∈Ai

xk

|Ai|
, (Bnd(Ai) = ∅)

∑n
k=1 u

m
kixk

∑n
k=1 u

m
ki

, (Ai = ∅)

ω ×
∑

xk∈Ai
xk

|Ai|
+ ω ×

∑n
k=1 u

m
ikxk

∑n
k=1 u

m
ik

. (otherwise)

The optimal solutions to N and U are updated as follows:
In case that xk belongs to the lower approximation of a cluster, the cluster is

Cpk
(pk = arg min

i
dki) and

uki = 0, (∀i)

νki =

{
1, (i = pk)

0. (otherwise)

Therefore, we calculate uki that minimizes Jν
k as follows:

Jν
k =

n∑

l=1

(um
lpk

(ωdkpk
+ ωdlpk

) + 2νlpk
Dkl).
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In case that xk belongs to boundaries of some clusters, νki = 0. Thus, the
objective function is represented by

Ju
k =

n∑

l=1

c∑

i=1

(um
kiνli(ωdli + ωdki) + 2um

kiu
m
li Dkl).

We calculate the optimal solutions by Lagrange multiplier as follows:

uki =

(
1∑

n
l=1(νli(ωdli+ωdki)+4um

li Dkl)

) 1
m−1

∑c
j=1

(
1∑n

l=1(νlj(ωdlj+ωdkj)+4um
ljDkl)

) 1
m−1

.

In comparison with the above two cases, we obtain the optimal solutions on νki
and uki as follows:

νki =

{
1, (Jν

k < Ju
k ∧ i = pk)

0, (otherwise)

uki =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, (Jν
k < Ju

k ∧ i = pk)
(

1∑n
l=1(νli(ωdli+ωdki)+4um

li Dkl)

) 1
m−1

∑c
j=1

(
1∑

n
l=1(νlj(ωdlj+ωdkj)+4um

ljDkl)

) 1
m−1

.

(otherwise)

Algorithm 3. RCM-FU

RCM-FU0 Give initial cluster centers.
RCM-FU1 Calculate lower approximations and boundaries.
RCM-FU2 Calculate cluster centers.
ERCM-FU3 Calculate min

V
JRCM-FU and update V .

ERCM-FU4 If the stop criterion satisfies, finish. Otherwise back to RCM-
FU1.

4 Proposed Method 2 — Entropy RCM-FU

We propose Entropy RCM-FU(ERCM-FU) by introducing an entropy regular-
izer into RCM.

4.1 Objective Function

The objective function of ERCM-FU is defined as follows:

JERCM-FU =

n∑

k=1

n∑

l=1

c∑

i=1

(ukiνli(ωdli + ωdki) + (νkiνli + ukiuli)Dkl)

+ λ
n∑

k=1

c∑

i=1

uki log uki.
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The constraints are the same as ones of RCM-FU.

4.2 Derivation of the Optimal Solution and Algorithm

The cluster center vi is calculated as follows:

vi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑
xk∈Ai

xk

|Ai|
, (Bnd(Ai) = ∅)

∑n
k=1 u

m
kixk

∑n
k=1 u

m
ki

, (Ai = ∅)

ω ×
∑

xk∈Ai
xk

|Ai|
+ ω ×

∑n
k=1 u

m
ikxk

∑n
k=1 u

m
ik

. (otherwise)

The optimal solutions to N and U are updated as follows:
In case that xk belongs to the lower approximation of a cluster, the cluster is

Cpk
(pk = arg min

i
dki) and

uki = 0, (∀i)

νki =

{
1, (i = pk)

0. (otherwise)

Therefore, we calculate uki that minimizes Jν
k as follows:

Jν
k =

n∑

l=1

(uli∗(ωdki∗ + ωdli∗) + 2νli∗Dkl + λuli∗ log uli∗).

In case that xk belongs to boundaries of some clusters, νki = 0. Thus, the
objective function is represented by

Ju
k =

n∑

l=1

c∑

i=1

(ukiνli(ωdli + ωdki) + 2ukiuliDkl + λuki log uki).

We calculate the optimal solutions by Lagrange multiplier as follows:

uki = exp(λ−1(

n∑

l=1

(−νli(ωdli + ωdki)− 4uliDkl)− λ

− λ log

c∑

j=1

(exp(λ−1(−
n∑

l=1

(νlj(ωdlj + ωdkj)− 4uljDkl)− λ))))

In comparison with the above two cases, we obtain the optimal solutions to νki
and uki as follows:
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νki =

{
1, (Jν

k < Ju
k ∧ i = pk)

0, (otherwise)

uki =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, (Jν
k < Ju

k ∧ i = pk)

exp(λ−1(
∑n

l=1(−νli(ωdli + ωdki)− 4uliDkl)− λ

−λ log
∑c

j=1(exp(λ
−1(−∑n

l=1(νlj(ωdlj + ωdkj)− 4uljDkl)− λ))))).

(otherwise)

The Algorithm of ERCM-FU is as same as the one of RCM-FU.

5 Numerical Examples

In this section, we use two artificial datasets (Fig. 1 and Fig. 4) and one real
dataset to compare the proposed methods with the conventional ones. We exam-
ine the effectiveness of proposed methods (RCM-FU and ERCM-FU).RKM has
no evaluation criteria so that we cannot evaluate the outputs of RKM. There-
fore, we consider an objective function based on the objective function of HCM
as the evaluation criterion as follows:

J = ω ×
c∑

i=1

∑

xk∈Ai

dki + ω ×
c∑

i=1

∑

xk∈Bnd(Ai)

dki.

Table 1. Algorithms used for comparison

Algorithm Parameters

RCM-FU proposed method: ω = 0.55, m = 2.0
ERCM-FU proposed method: ω = 0.35, λ = 0.7
RCM ω = 0.55
RKM ω = 0.55, threshold=0.01
HCM –
FCM[8] fuzzy parameter : 2.0

5.1 Artificial Dataset

We show result of artificial dataset in Fig. 1. The membership of each objects
to boundaries in Table 2. The membership of boundary is fuzzy.



130 K. Onishi, N. Kinoshita, and Y. Endo

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

’input.txt’

Fig. 1. Original data
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Fig. 2. Artificial data(RCM-FU, ω = 0.55)

Table 2. The membership of each objects to upper approximations (RCM-FU)

(x,y) class1 class2 class3 class4 class5
(0.4,0.6) 0.258989 0.327004 0.237458 0.078667 0.097882
(0.4,0.5) 0.310618 0.150450 0.304497 0.136976 0.097460
(0.4,0.4) 0.254435 0.090088 0.241740 0.315333 0.098405
(0.5,0.6) 0.155314 0.405250 0.241697 0.064693 0.133046
(0.5,0.4) 0.156579 0.075916 0.248490 0.386302 0.132713
(0.6,0.6) 0.123476 0.296644 0.213485 0.073845 0.292549
(0.6,0.5) 0.121365 0.135507 0.255305 0.120102 0.367722
(0.6,0.4) 0.127512 0.087803 0.222790 0.277909 0.283987

We show the result by ERCM-FU in Fig. 3.
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Fig. 3. Artificial data (ERCM-FU, ω =
0.35, λ = 0.7)
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Fig. 4. Original data

The membership of each objects to boundaries in Table 3. The membership
of boundary is fuzzy.
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Table 3. The membership of each objects to boundaries(ERCM-FU)

(x,y) class1 class2 class3 class4 class5
(0.4,0.6) 0.169420 0.625175 0.202058 0.000057 0.000067
(0.4,0.5) 0.631929 0.129328 0.216806 0.019321 0.000191
(0.4,0.4) 0.174968 0.006356 0.064091 0.754525 0.000059
(0.5,0.6) 0.004080 0.657372 0.329219 0.000075 0.006546
(0.5,0.4) 0.003527 0.005084 0.080845 0.905825 0.004677
(0.6,0.6) 0.000020 0.427396 0.384281 0.000026 0.188276
(0.6,0.5) 0.000072 0.082251 0.392387 0.010462 0.514828
(0.6,0.4) 0.000029 0.005078 0.146973 0.620485 0.223996

We show the results of crescents data by proposed methods and RCM in
Fig 5, 6 and 7.
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Fig. 5. Crescents data(RCM, ω = 0.55)
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Fig. 6. Crescents data(RCM-FU, ω = 0.55)

From the above results, we can find as follows:

– Some objects are classified into incorrect lower approximation by RCM and
ERCM-FU.

– There are more objects which are classified into correct lower approximation
by RCM-FU than RCM.

– There are more objects which we classified into boundary by RCM-FU than
RCM.

5.2 Comparison of Proposed Methods with Conventional Ones

We compare the proposed methods to conventional ones through Iris dataset
(150 objects, 4 dimensions, 3 clusters). We define the ratio of correct answers as
(the number of correct answers)/(the number of objects). We assign the objects
which were classified into boundaries to the cluster to which the membership is
maximum. Table 4 shows as follows:
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Table 4. The ratio of correct answers

Algorithm lower approximation boundary total
numbers correct ratio numbers correct ratio numbers of correct ratio

RCM-FU (m=1.5) 116 115 0.991 34 20 0.588 135 0.9
RCM-FU (m=2.0) 68 67 0.985 82 62 0.756 129 0.86

ERCM-FU (λ = 0.5) 145 137 0.944 5 5 1.0 142 0.947
ERCM-FU (λ = 2.0) 109 109 1.0 41 32 0.780 141 0.94

RCM (ω = 0.55) 139 128 0.921 11 5 0.455 133 0.887
RCM (ω = 0.75) 135 126 0.933 15 11 0.733 137 0.913

RKM (threshold=0.01) 150 134 0.893 0 0 — 134 0.893
RKM (threshold=3.0) 76 75 0.987 74 40 0.541 115 0.767

FCM 150 134 0.893 0 0 — 134 0.893

HCM 150 134 0.893 0 0 — 134 0.893

– There are more objects which are classified into correct lower approximations
by RCM-FU and ERCM-FU than RCM.

– More objects are classified into boundaries as the parameter m increases by
RCM-FU.

– All objects are classified into correct lower approximations when the param-
eter λ is suitable by ERCM-FU.

– Less objects are classified into lower approximation as the parameter λ in-
creases by ERCM-FU.

– No objects are classified into boundaries as the threshold=0.01 by RKM.
– We get the same results by HCM and FCM.

The optimal parameter for lower approximation is different from the optimal
one for the whole in both RCM-FU and ERCM-FU.

5.3 Consideration of Parameters

We consider the relation between parameters and the number of objects which
are classified into boundaries.

Fig. 8 shows the relation between w and the number of objects which are
classified into boundaries by RCM. Horizontal- and vertical-axes mean w and
the number of objects which are classified into boundaries, respectively. Fig. 8
shows that w is ineffective at the number of objects which are classified into
boundaries. This means that it is difficult to adjust the ratio of the number of
objects into boundaries to the number of all objects by the parameter w.

Fig. 9 shows the relation between m and the number of objects which are
classified into boundary by RCM-FU. Horizontal- and vertical-axes mean m and
the number of objects which are classified into boundaries, respectively. Fig. 9
shows that m is effective at the number of objects which are classified into
boundaries. This means that it is easy to adjust the ratio of the number of
objects into boundaries to the number of all objects by the parameter m.

Fig. 10 shows the relation between λ and the number of objects which are
classified into boundaries by RCM-FU. Horizontal- and vertical-axes mean λ
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Fig. 7. Crescents data(ERCM-FU,
ω = 0.35, λ = 1.0)
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Fig. 8. The relation between w and the
number of objects which are classified
into boundaries by RCM
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Fig. 9. The relation betweenm and the
number of objects which are classified
into boundaries by RCM-FU
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Fig. 10. The relation between λ and
the number of objects which are classi-
fied into boundaries by ERCM-FU

and the number of objects which are classified into boundaries, respectively. We
fixed w = 0.35.

6 Conclusion

This paper proposed new rough clustering algorithms based on optimization of
objective functions. The proposed methods based on optimization of objective
functions with fuzzy-set representation can classify more objects into correct
lower approximations than conventional ones proposed by Endo et al [7], and we
can adjust the ratio of the number of objects into boundaries to the number of
all objects by parameters. The conventional rough clustering algorithm [7] has a
problem that an object cannot belong to more than two upper approximations.
We introduced fuzzy-set representation into membership of boundary to solve
such a problem. Thus, each object into boundaries has a membership grade
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in [0,1], and we can classify the object according to the value of the grade.
Consequently, we can classify all objects into clusters like FCM [8].
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