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Preface

This volume contains papers presented at the 11th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2014), held in Tokyo, Japan,
October 29–31. This conference followed MDAI 2004 (Barcelona, Catalonia),
MDAI 2005 (Tsukuba, Japan), MDAI 2006 (Tarragona, Catalonia), MDAI 2007
(Kitakyushu, Japan), MDAI 2008 (Sabadell, Catalonia), MDAI 2009 (Awaji
Island, Japan), MDAI 2010 (Perpinyà, France), MDAI 2011 (Changsha, China),
MDAI 2012 (Girona, Catalonia), and MDAI 2013 (Barcelona, Catalonia) with
proceedings also published in the LNAI series (Vols. 3131, 3558, 3885, 4617,
5285, 5861, 6408, 6820, 7647, 8234).

The aim of this conference was to provide a forum for researchers to discuss
theory and tools for modeling decisions, as well as applications that encompass
decision making processes and information fusion techniques.

The organizers received 38 papers from 16 different countries, from Europe,
Asia, and America, 19 of which are published in this volume. Each submission
received at least two reviews from the Program Committee and a few external
reviewers. We would like to express our gratitude to them for their work. The
plenary talks presented at the conference are also included in this volume.

The conference was supported by the Japan Society for Fuzzy Theory and In-
telligent Informatics (SOFT), the Catalan Association for Artificial Intelligence
(ACIA), the European Society for Fuzzy Logic and Technology (EUSFLAT), the
UNESCO Chair in Data Privacy, the Spanish MINECO (TIN2011-15580-E), and
the Spanish MEC (ARES - CONSOLIDER INGENIO 2010 CSD2007-00004).

July 2014 Vicenç Torra
Yasuo Narukawa
Yasunori Endo
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Recursive Capacitary Kernel

Hiroyuki Ozaki

Faculty of Economics, Keio University

Abstract. We define a capacitary kernel as a function which maps a
current state to a capacity (a non-additive measure) which governs the
next period’s uncertainty. We then use a capacitary kernel to define the
time-consistent recursive objective function for a dynamic optimization
problem. We impose and discuss assumptions on the capacitary kernel for
this objective function to be well-defined. We also provide some decision-
theoretic foundation of this objective function. Furthermore, we develop
a dynamic programming technique to solve this optimization problem
by exploiting the recursive structure of the objective function defined by
the recursive capacitary kernel.



Framework of Entertainment Computing

and Its Applications

Junichi Hoshino

University of Tsukuba, Entertainment Computing Lab

jhoshino@esys.tsukuba.ac.jp

Entertainment Computing is one of the promising application domains of MDAI
(modeling decisions for artificial intelligence) field. In this talk, I’m going to
overview the collaborative creation process of entertainment using rich examples
including media art, physical exercise game, learning game, multi-agent Game
AI, and social information exchange on hobby.

We also show the examples of the entertainment systems using behavioral
and cognitive user modeling:

1) The Fighting Game Character Using Imitation Learning
One of the limitations of computer-based opponents in action games is that

the AI character is constructed in advance, and players quickly become bored
with their prepared tactics. We built an online coliseum in which a non-player
character (NPC) incrementally learns action sequences and combinations of ac-
tions, allowing the NPCs to adopt different fighting strategies after fighting with
different players. Individual fighting styles can be generated from a unique fight-
ing history. We developed a new action learning engine that automatically ana-
lyzes the actions of a human player and extracts the effective fighting sequences.
Action control trees are generated automatically and incrementally added to the
NPC’s action profile.

2) A Wellness Entertainment System using a Trampoline Interface
We describe the wellness entertainment system using a trampoline interface.

In this system, we use a mini trampoline as the input device. The system en-
ables the user to move and jump freely in VR space by exaggerated movement
corresponding to walking or jumping on the mini trampoline. Improvements in
exercise motivation and support for continuous exercise are achieved in our sys-
tem, since it is possible to enjoy strolling through a virtual space, which is usually
difficult to experience, by exercising on the mini trampoline without injury to
the user’s joints.

3) Disaster Experience Game in a Real World
We describe a disaster experience game system which could instruct about

general knowledge and regionally specific disaster risk in a joyful way. The system
does not give advice in a unilateral way; instead it helps the user, with an
accurate awareness of the real world and then shows the risk information e.g.,
prevention plans and evacuation maps. Additionally, introducing game elements,
the user plays with some level of interaction. Using this system, we created a
game application for an earthquake. An assessment experiment of the game was
clearly beneficial to not only understand risk perception but support it; it also
has the motivation of a muster drill.



Framework of Entertainment Computing XIII

4) Communication System for Supporting Information Gathering and Social
Interaction in a Niche Market

We describe a communication system by which niche people can obtain cross-
cutting information and communicate with other people based on each person-
ality. The system graphically displays the degree and direction of other people’s
hobbies who are interested in the keyword niche people input, and relation be-
tween the knowledge e.g. movies, music, animation, history, geography using
nodes. So, we can search friends who have similar interest and direction in hob-
bies. From a demonstration experiment, we obtained good results that the system
could help niche people to gain and exchange useful information.



Uncertain Information Representation for

Decision-Making: Emerging Approaches

Ronald R. Yager

Machine Intelligence Institute,
Iona College

New Rochelle, NY 10801

Yager@Panix.Com

Information used in decision making generally comes from multiple sources and
is expressed in various modalities. In many cases the information available has
some significant associated uncertainty. In order to address this problem there
is a need to provide various methods for the representation of different types of
uncertain information. Here we shall discuss some recently emerging approaches
for attaining this representational capability. One approach we shall discuss is
the use of Z-valuations which are based on the use of Z-numbers. These objects
allow us to represent information that combines both possibilistic and probabilis-
tic uncertainty. We shall also look at a new approach for modeling fuzzy sets with
imprecise membership grades called Pythagorean fuzzy sets. One important issue
that arises when using these non-standard representations in decision-making is
the comparison of alternative satisfactions, that is we must compare mathemat-
ical objects that are not naturally ordered. We consider this important problem.
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Electronic Road Pricing System for Low

Emission Zones to Preserve Driver Privacy

Roger Jard́ı-Cedó1, Macià Mut-Puigserver2, M. Magdalena Payeras-Capellà2,
Jordi Castellà-Roca1, and Alexandre Viejo1

1 Dpt. d’Enginyeria Informàtica i Matemàtiques, UNESCO Chair in Data Privacy,
Universitat Rovira i Virgili, Av. Päısos Catalans 26, E-43007 Tarragona, Spain

{roger.jardi,jordi.castella,alexandre.viejo}@urv.cat
2 Dpt. de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Ctra.

de Valldemossa, km 7,5. E-07122 Palma de Mallorca, Spain
{macia.mut,mpayeras}@uib.es

Abstract. At present, great cities try to prevent from high levels of
pollution and traffic jam by restricting the access of vehicles to centric
zones. They are also known as Low-Emission Zones (LEZ). Some of the
most important issues of LEZs are the risk of losing privacy of the citizen
who drives through the LEZ and a significant error percentage on de-
tection of fraudulent drivers. In this article, an Electronic Road Pricing
(ERP) system designed specifically for cities with Low-Emission Zones
is proposed. The aim of this system is to detect fraud and to preserve
driver privacy. In this case, revocable anonymity makes only fraudulent
drivers lose their privacy.

Keywords: electronic road pricing, data privacy, security, low emission
zone.

1 Introduction

Cities such as Paris, Barcelona or Rome have circulation problems, with traffic
jams and pollution problems due to the huge vehicle concentration in certain
areas. The air quality guidelines presented by OMS in 2005, give guidance on
”the way to reduce air pollution effects on health”. Based on these recommen-
dations, different European directives, such as 2008/50/CE, limit the level of
certain environmental pollutants. In order to fulfill this legislation, the different
administrations are implanting, among other measures, HOV lanes [3], vari-
able speed or vehicle circulation restrictions in central areas. This last measure,
known as Low-Emission Zone (LEZ ) and adopted in many cities like Singa-
pore, Tokyio or Beijing[10,11,5], makes vehicles pay so as to circulate according
to certain conditions, such as weight or emissions.

Since some decades ago, Electronic Toll Collection (ETC) has been used in
highways, tunnels or bridges in order to expedite toll payments as well as to re-
duce traffic jams. Likewise, thanks to new technologies such as the GPS and
wireless communication, vehicular location-based services (VLBS) have been

V. Torra et al. (Eds.): MDAI 2014, LNAI 8825, pp. 1–13, 2014.
c© Springer International Publishing Switzerland 2014



2 R. Jard́ı-Cedó et al.

developed with the purpose of providing information to drivers in relation to
their geographic location and improving transportation efficiency. Those ETC
systems, considered VLBS, are known as Electronic Road Pricing (ERP).
They present some improvements such as a more flexible calculus of the fees ac-
cording to the distance driven, route or time. Moreover, these systems, applied
in urban areas, allow managing traffic in central areas through the control of the
flow and the density of vehicles, thus reducing traffic jams. This can be achieved
by modifying the price of the fees dynamically (the rise on the price of those
dense areas suggests drivers to avoid them). However, as it is later shown, these
systems have certain privacy problems.

1.1 State of the Art

In recent years, various ERP systems have been proposed in the literature
[9,4,1,8,6,7]. All of them require the use of an On-Board Unit (OBU), with
GPS and a system of wireless communication, with the aim of getting and send-
ing the Service Provider, SP (see definition in Section 2), information related
to the vehicle location and fees to pay. Pricing varies depending on the vehicle
path. In [9] and [4], OBU sends information of the path followed to an external
server, property of SP, which prices according to its path in every billing period.
In [1,8,6,7], fees are calculated locally in each OBU and are sent to SP server
in every pricing period. In this case, the information disclosure related to the
vehicle location is minimal. In order to achieve it, cryptographic proofs are used
to demonstrate that OBU has been honest in the fee calculus and aggregation.

Fraud control is an important aim by ERP systems. Drivers, in order to save
money, could act maliciously (i.e. by disconnecting or modifying OBU data).
Consequently, mechanisms based on checkpoints, Chps (see definition in Section
2), are implemented with the aim to test their honesty. Chps, randomly located
in the road and equipped with cameras, register the number plates of all the
vehicles that cross them. These pictures are evidences that place a vehicle at a
given moment and place, and are used to verify that a vehicle path has not been
altered. In order to achieve this, SP and driver interact in the billing period.
Fraud detection has a certain probability and depends on the number of Chps.
Further, the fact of drivers ignoring the number and its location is a basic issue.

The privacy level of drivers and detection of fraud are a compromise. When
a high detection level is requested, privacy is affected, that is, SP be capable of
rebuilding a vehicle path more precisely as long as the number of Chps is greater.
Besides, if Chps are randomly moved every so often, and vehicle paths follow
a routine (i.e. going to work), precision could be even greater though privacy
would be affected.

1.2 Contributions and Structure of the Document

This paper proposes an ERP system for LEZ s with the aim of improving fraud
control and honest drivers’ privacy through revocable anonymity. Unlike other
systems, Chps, equipped with cameras, only register fraudulent vehicles, thus
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keeping honest drivers’ privacy. Moreover, the OBU of the vehicle does not
register its location, plus reconciliation between driver and system in the billing
period is not required, and fraud control is non-probabilistic.

The system is presented in Section 2. The protocol is introduced in Section
3. Security is evaluated in Section 4 and conclusions are presented in Section 5.

2 System Model

The proposal considers the following actors.

– Driver D: The person who drives a vehicle in a LEZ.
– Vehicle V: The means of transport registered by a unique D (the owner of

it) but it may be driven by several Ds. V has an identifier (the vehicle plate)
that connects it to the owner.

– Secure element SE : A tamper-proof security module installed in each V by
the traffic competent authority. It performs all sensitive operations to ensure
the security requirements.

– On-board unit OBU: This device is installed in each V. It has more computa-
tional power and storage capacity than SE. The device connects SE with the
user and it performs the less sensitive protocol operations. It has a location
capabilities (GPS).

– Service Provider SP: It offers an ERP service for urban areas thanks to a
concession contract with the local public administration (i.e. City Council).
This entity, apart from having the right to offer this service, is responsible
for managing the system.

– Checkpoint Chp: SP installs in the restricted zone the checkpoints. The Chp
aims to control the access of vehicles that enter or leave the zone.

– Vehicle certification authority VCA: It provides keys and certificates to V s.
– Punisher authority PA: The trusted entity that knows the identity of the V

owner. PA will reveal the identity of the V ’s owner in case of fraud.

2.1 Requirements

The system requirements related with fraud, privacy, authenticity and technol-
ogy, are described below in order to establish the foundations of the system.

Anti-Fraud Requirements. When a V enters or exits a LEZ through a Chp,
both obtain proof-of-entrance γi or proof-of-leaving γo. This γi contains
information to prove that a specific V enters the LEZ through a specific Chp
at a specific hour. This proof is considered valid when it cannot be modified
once generated without detection (integrity), when its issuers can prove that it
is their generation (authenticity), and also when they cannot deny its authoring
(non-repudiation). Each proof is linked to a V and a Chp. The link between a
proof and a V guarantees that the token cannot be used by another V’, neither
in a voluntary nor in an involuntary way. This avoids the duplicity of a proof
when a fraudulent V tries to use the same proof at the same time. SP assures
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that all the Ds pay correctly. If this is not the case, SP identifies the offending
Ds and generates evidences to prove it. The fraud is done by a D when she
drives in a LEZ without a γi, with an invalid γi, with a valid γi but associated
with another V, or if she doesn’t pay correctly in the exit. A SP cannot falsely
accuse an honest D of fraud (an honest D should not be defenseless). A false
accusation takes place when a SP unjustly claims that a V does not have a γi,has
an invalid proof, has a valid proof belonging to another V, or if she doesn’t pay
correctly in the exit.

Authenticity Requirements. At the entrance and at the exit of a LEZ, V s
and Chps exchange information. When the communication is established, both
parts, V and Chp must prove its identity to the other part. This way, each one
can be sure that the protocol is executed with the right entity. If this is not the
case, this action must be reported.

Privacy Requirements. The fraud control executed by SP can endanger the
privacy of the Ds. In this case, the curiosity of SP can cause an excessive mon-
itoring of the system or even can trace the itinerary of a specific V. With the
aim of avoiding this excessive control over the V s by SP, the system must (i)
assure the privacy (the identity of D or V cannot be linked to any itinerary); (ii)
avoid the traceability (SP mustn’t know the itinerary of a V ); and (iii) provide
revocable anonymity to D (if a D commits fraud, SP needs her identity in order
to punish her and for this reason, the identity is revealed).

Functional Requirements. The communication technology used to commu-
nicate V s and Chps needs to let Chp communicate with the nearest V. This
communication is possible by combining low and medium distance communi-
cation technologies, such as Wimax, ZigBee IEEE 802.15.4 or Bluetooth IEEE
802.15.1, using directional antennae or triangulation. The communication and
the computation required by the protocol must be quick enough to allow com-
munication when the V s are moving. Whatever interaction with the D should
be easy and agile. The electronic payment system required in the system should
be anonymous and untraceable. Moreover, it should be quick enough to allow
the transaction when the V exits the LEZ.

3 Protocol Description

Before starting the system, the system entities are initialized (3.1: Setup and
3.2: Certification). Moreover, SP prices the LEZ (3.3: Price generation), per
time unit and emission category, sending each Chp a list of prices signed by the
competent entity. SP repeats these operations every time prices are updated.

SE generates different credentials for V every time it enters a LEZ (3.4:
Certificate generation) in order to be able to correctly authenticate with Chps
that manage the ins and outs of users from the LEZ.

When a vehicle V enters a LEZ (3.5: Check-in), it communicates with a
Chp and they authenticate mutually. When the authentication with V fails, and
only in this situation, Chp takes a picture of the V number plate as evidence
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of the infringement with which a proof-of-entrance incidence ζi is generated. ζi
is sent to PA in order to verify the existence of fraud and so proceed with the
corresponding sanction. When the authentication is correct, V gets an proof-of-
entrance γi, which specifies the entry time.

When a V exits the LEZ (3.6: Check-out), it communicates with a Chp and
they authenticate mutually. When the authentication with V is correct,Chp in-
forms V about the exit time and the destination account for payment. With this
information, V computes the amount payable for length of stay and its emission
category, and makes a transaction through an electronic payment system. The
transaction reference is sent to Chp as a proof of payment. Finally, V receives
an proof-of-leaving γo as a receipt. When the authentication fails, Chp takes a
picture of V as an proof-of-leaving evidences ζo, which is sent to PA.

The payment verification is done through SP (3.7: Payment verification) a
posteriori. For each pair of γi and γo associated to a same V, SP checks whether
the value of the transaction coincides with the pricing, depending on the length
of stay and its emission category. If the value is not correct, a proof-of-payment
incidence ζp with these registers is created and sent to PA.

When PA receives a ζ (3.8: Sanction), it is corroborated. In case of fraud,
PA reveals the identity of the V owner (anonymity is revoked), and evidences
to refute the accusation by SP are requested. According to these, PA decides
whether to sanction the owner.

3.1 Setup

The setup process works as follows:

1. PA obtains from competent authorities (i.e. Police):
– An asymmetric key pair (PkPA, SkPA), its public key certificate certPA,

and a certificate repository of the authorities
2. SP and VCA obtain from competent authorities (i.e. city council and a

transit authority, respectively):
– An asymmetric key pair (PkSP , SkSP ) and (PkV CA, SkV CA), its public

key certificate certSP and certV CA, and a certificate repository of the
authorities

The certificate chain length of VCA is 1, and 0 in the case of SP. The certSP

validity period can correspond to the concession lifetime of the service, with-
out exceeding it.

3. VCA:
i. Defines a set of vehicles V = {v1, v2, ..., vnV }, where nV = |V | is the

number of vehicles
ii. Defines a collection of sets K = {C1, C2, ..., CnK} partition of V, where

nK = |K|, with |Ci| = nC , ∀i
iii. Generates and associates a certification entity V CACi to each element

of the subset K (C1, ..., CnK ):
iii.i. An asymmetric key pair (PkV CACi

, SkV CACi
), ∀i ∈ {1, ..., nK}

iii.ii. A CA certificate certV CACi
, ∀i ∈ {1, ..., nK}, which has an expi-

ration time cexp and a certificate chain length of 0
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4. Each Chp applies the following steps:

i. Obtain a certificate repository of the authorities and entities

ii. Generate an asymmetric key pair (PkChp, SkChp)
iii. Securely obtain a public key certificate certChp from SP containing an

extension certChp.loc with its location coordinates

3.2 Certification

It is assumed that the SE of each V has been previously initialized with a cer-
tificate repository of the certification authorities, identifying information of the
vehicle Vid and its technical specifications (number plate, chassis number, owner,
brand, model, engine power, or level of emissions of CO2 and other pollutant
gases). The certification process of a V is done by VCA, before purchasing a
vehicle and/or passing the regular technical tests of vehicles:

1. Register V in an element of the subset K (in a Ci)
2. Download the certification entity V CACi associated to Ci (consisting of

PkV CACi
, SkV CACi

and certV CACi
), through a secure channel in the SE

3.3 Price Generation

Whenever SP wants to modify the fees of a LEZ, it performs the next operations:

1. Set the prices per unit of time and emission category (i.e. European Emission
Standards) and generate a timestamp ts

2. Compose information-of-prices θ = (prices, ts)
3. Sign θ (SignSP (θ) = θ̄) and send θ∗=(θ, θ̄) to each Chp

3.4 Certificate Generation

This phase is performed every time a V is about to enter a LEZ. Thanks to the
certification entity V CACi installed in the SE of the V in the previous phase,
this SE is able to perform the following operations in order to generate new
public key certificates:

1. Compute an asymmetric key pair (PkVq , SkVq )
2. Generate a public key certificate certVq with the following features:

– An extension certVq .idS containing the probabilistic encryption (i.e. by
usingOAEPpadding [2], standardized later in PKCS#1v2 andRFC 2437)
of the vehicle identifier Vid with the public key of PA: EncPkV CA(Vid)

– An extension certVq .em containing the pollutant emission category (i.e.
European Emission Standards) of the V

3.5 Check-in

When a Chp placed in the entrance of a LEZ detects a V, the protocol is applied:
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1. Chp has to:
i. Generate a nonceNA and compose information-of-entrance ψ = (NA, θ

∗)
ii. Sign ψ: SignChp(ψ) = ψ̄, and send ψ, ψ̄ and its certChp to V

2. SE of the V, with the help of the OBU, has to:
i. Verify the certificate certChp and the signature ψ̄: V erifChp(NA, θ

∗, ψ̄)
ii. Verify the signature θ̄: V erifSP (prices, ts, θ̄) and the location coordi-

nates certChp.loc of Chp
iii. Generate a nonce NB and compute the fingerprint fingChp of certChp

(it is computed as the hash function of the certificate and it is used as
identifier)

iv. Compose message ωVq = (θ∗, NA, NB, f ingChp)
v. Sign ωVq : SignVq(ωVq ) = ω̄Vq , and send NB, ¯ωVq and its certVq to Chp

3. Chp has to:
i. Generate a timestamp ts′, and verify the certificate certVq and the

signature ω̄Vq : V erifVq (θ
∗, NA, NB, fingChp, ¯ωVq )

ii. If one of the verifications fails, Chp performs the following operations:
ii.i Generate an incidence number of entrance ini

ii.ii Take a photograph ph of V and extract the plate number plt
ii.iii Compose proof-of-entrance incidence ζi= (ino, plt, ph, ts

′, θ∗, NA,
NB, fingChp, ω̄Vq , certVq )

ii.iv Sign ζi: SignChp(ζi) = ζ̄i, and send ζi
∗=(ζi, ζ̄i) to SP

iii. If the verifications performed in 3i) are correct, Chp has to:
iii.i Compute the fingVq of certVq and compose proof-of-entrance

γi=(θ∗, NA, NB, fingChp, ¯ωVq , fingVq , ts
′)

iii.ii Sign γi: SignChp(γi) = γ̄i and send ts′ and γ̄i to the V
4. If the verifications performed in 3i) are correct, SE of the V, with the help

of the OBU, has to:
i. Verify the signature γ̄i: V erifChp(θ

∗, NA, NB, fingChp, ω̄Vq , f ingVq , ts
′,

γ̄i)
ii. Verify the freshness of ts′:|ts′-current time| < δ, where δ is a fixed time
iii. Store γ∗

i = (γi, γ̄i)

3.6 Check-Out

When a Chp placed in the exit of a LEZ detects a V, the next protocol is applied:
1. Chp has to:

i. Generate a timestamp ts′′ and a nonce NC , and compose information-
of-payment ρ = (ts′′, NC , acc), where acc identifies the target account,
of the electronic payment system assumed, of SP

ii. Sign ρ: SignChp(ρ) = ρ̄, and send ρ, ρ̄ and its certChp to V
2. SE of the V, with the help of the OBU, has to:

i. Verify the certificate certChp, the signature ρ̄: V erifChp(ts
′′, NC , acc,

ρ̄), the location coordinates certChp.loc of Chp and the freshness of
ts′′:|ts′′−current time| < δ, where δ is a fixed time

ii. Recover ts′ of the last γi and compute the length of stay τ a LEZ:
(ts′′-ts′)=τ
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iii. Recover the prices included in θ∗ of γi, and compute the amount of
money required to pay according to τ , its pollutant emissions and the
prices

iv. Make a digital transfer of the amount of money to the target account
acc and obtain a transfer reference trans

v. Generate a nonce ND and compute the fingerprint fingChp of certChp

vi. Compose message ωVq = (ts′′, NC , ND, f ingChp,trans)
vii. Sign ωVq : SignVq(ωVq ) = ω̄Vq , and send ND, trans, ω̄Vq and its certVq to

Chp
3. Chp has to:

i. Verify the certificate certVq and the signature ω̄Vq : V erifVq (ts
′′, NC ,

ND, fingChp, trans, ω̄Vq )
ii. If one of the verifications fails, Chp performs the following operations:

ii.i Generate an incidence number of leaving ino

ii.ii Take a photograph ph of the V and extract the number plate plt
ii.iii Compose proof-of-leaving incidence ζo=(ino, plt, ph, ts

′′, NC , ND,
fingChp, trans, ω̄Vq , certVq )

ii.iv Sign ζo: SignChp(ζo) = ζ̄o, and send ζo
∗=(ζo, ζ̄o) to SP

iii. If the verifications performed in 3i) are correct Chp has to:
iii.i Compute the fingVq of certVq , and compose proof-of-leaving γo =

(ts′′, NC , ND, fingChp, trans, ω̄Vq , fingVq)
iii.ii Sign γo, SignChp(γo)=γ̄o, and send it to the V

4. If the verifications performed in 3i) are correct, SE of the V, with the help
of the OBU, has to:
i. Verify the signature γ̄o: V erifChp(ts

′′, NC , ND, fingChp, trans, ω̄Vq ,
fingVq , γ̄o), and store γ∗

o = (γo, γ̄o)

3.7 Payment Verification

Each Chp sends SP the different proofs γi, γo and ζs (ζi and ζo), generated in the
phases 3.5 and 3.6 of the protocol, periodically. SP then forwards the incidences
ζi and ζo to PA. Moreover, SP performs the next operations every so often (in
batch) for each set of proofs γi and γo associated with the same fingVq :

1. Extract ts′, ts′′, and certVq .em from γi and γo
2. Extract prices from θ∗, included in γi
3. Extract the reference trans from γo
4. Compute the length of stay τ a LEZ: (ts′′-ts′)=τ
5. Compute the amount′ of money required to pay according to τ , certVq .em

and the prices
6. Verify whether the transfer trans was successful and recover the amount of

money paid
7. Verify whether amount = amount′

8. Verify that trans has not been repeated in another γo. (i.e. with the help of
a time filter according to the γo’s ts and finding duplicates)

9. If one of the verifications fails then,
i. Generate an incidence number of verification inv
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ii. Compose proof-of-verification incidence ζp including γi and γo of Vq:
ζp=(inv, γi, γo). In the case of a reused trans, add γ′

o which proves the
double spending ζp = (inv, γi, γo, γ

′
o)

iii. Sign ζp (SignSP (ζp) = ζ̄p) and send ζp
∗=(ζp, ζ̄p) to PA

3.8 Sanction

PA performs the following operations according to the origin of the received ζs:

1. In the case of ζi or ζo:
i. Verify the signatures and extract the number plate plt from the photo-

graph ph, included in ζ
2. In the case of ζp:

i. Verify all the signatures included in ζp and verify that the signatory of
γi and γo is the same

ii. Verify the right payment by repeating the steps 1-7 from 3.7
iii. In case of a double spending incidence, verify that the trans of γo and

γ′
o are equals

iv. If the incidence is confirmed, recover the identifier Vid of Vq by opening
the extension certVq.idS of the certificate certVq, included in the proof
γi or γo (in case of double spending, this is done for the last V to leave
the LEZ ): DecPA(certVq .idS) = Vid

3. Contact the owner of the V from plt or Vid, inform her about the sanctioning
procedure and require her evidence to the contrary to refute the accusation

4. If the owner of the V presents evidence to the contrary, these are verified. If
this evidence is not valid, it fines the owner according to the type of infraction

4 Security and Requirements Analysis

The security and system requirements of the protocol are studied in this sec-
tion, i.e. the entrance proofs are valid, the system preserves users’ privacy, and
dishonest users are identified. The discussion is organised in three propositions,
and each proposition can have several claims to support its fulfilment.

Proposition 1. The proposed system preserves authenticity, non-repudiation
and integrity for the entrance and exit proofs.

Claim. 1 The creation of fraudulent entrance and exit proofs is computationally
unfeasible nowadays.

Entrance proofs have the following form γi = (θ∗, NA, NB, fingChp, ω̄Vq ,
fingVq , ts′). The checkpoint signs the entrance proofs γi: SignChp(γi) = γ̄i
and sends the pair ts′ and γ̄i to the vehicle. In the same way, the exit proof
γo = (ts′′, NC , ND, fingChp, trans, ω̄Vq , fingVq) is signed by the checkpoint,
SignChp(γo)=γ̄o, and sent to the vehicle. For these reasons, the generation of
entrance and exit proofs is nowadays computationally unfeasible, without the
knowledge of the secret key used by Chp in the signature.
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Claim. 2 The Chps, issuers of the entrance and exit proofs, can not deny the
emission of these proofs.

Entrance proofs are generated and signed by their issuer (the Chps) and,
considering the signature scheme secure, this operation can be only performed
by these issuers. Thus, the issuer’s identity is linked to the proofs and, for the
properties of the electronic signature scheme, it can not deny its authorship.

Claim. 3 The content of the entrance and exit proofs can not be modified by
the vehicles.

If we suppose that the signature scheme is secure and that the hash summary
function is collision-resistant, if the content of the entrance or exit proofs was
modified, the verification of the signature would be incorrect because Signe(m) =
ESke(h(m)) = m̄. In order to pass the verification, the signature would be regen-
erated from the new entrance or exit ticket. This operation is computationally
unfeasible without the knowledge of the checkpoint secret key.

Result 1 According to the presented proofs in Claims 1, 2 and 3, it can be
assured that the protocol satisfies the needed security requirements (authenticity,
integrity and non-repudiation) for the proofs to be considered valid.

Proposition 2. The toll system presented here preserves the privacy of its users
and protects their anonymity, avoiding the traceability of their actions.

Claim. 4 The system guarantees the anonymity of honest users.

The information that the user transmits to enter the system is ωVq = (NA,
NB, fingcertChp

) and its signature. The Chp will verify the signature using the
certificate certVq accompanying the user message. This certificate (generated
by the SE of the V before entering the LEZ ) identifies the vehicle, but the
identification information is protected with an asymmetric encryption, using
the public key of PA. Thus, Chp can verify the signature but it is not able to
identify the vehicle. Then, Chp generates and transmits to the user γ̄i. With
this evidence, the vehicle may enter the LEZ. The information related to the
user identification inside γ̄i is the same included in ωVq . This means that the V
enters the LEZ without being identified.

When V leaves the LEZ (We assume that the payment system allows the
anonymity of the user. The payment system is beyond the scope of this pa-
per.), the user must send the following information: ωVq = ( ts, NC , ND,
fingcertChp

,trans) to the exit Chp. Assuming that the payment is anonymous, no
one can identify the user through trans. Moreover, it is not possible to identify
the user through the signature on ωVq by the reasons explained in the previous
paragraph. Consequently, the entrance inside a LEZ and the exit from a LEZ
of honest users are anonymous.

Claim. 5 The toll collection protocol does not allow to trace or to link the actions
of the vehicles.
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It is not possible to associate the various entries and exits from a LEZ of
the same vehicle if we use the information generated by the execution of the
protocol. This happens because the protocol described in 3.4 is executed each
time the V approaches a LEZ. This means that the SE generates a new certVq

for the vehicle in each new entrance process. This certificate is the only element
that could identify the V. However, considering that the use of the certificate is
unique for each entrance/leaving process, nobody can relate the identity of V of
this entrance/leaving process with any other entrance/leaving process.

The information that could be repeated in other entrance/leaving process
of the same V is the certVq.idS field. But, as it is specified in the protocol,
certVq.idS is computed with a probabilistic encryption, using for example the
OAEP padding system, which means that the result of each new encryption
credentials is different.

Result 2 The toll system presented here preserves the privacy in accordance
with claims 4 and 5: users can use the system anonymously and each new usage
can not be related to any other with respect to the identity of the vehicles.

Proposition 3. The toll system has anti-fraud requirements concerning the cor-
rectness and verifiability of the evidences generated in the protocol.

Claim. 6 The system can identify dishonest users thanks to the anonymity re-
vocation property of the protocol.

If users do not properly perform the authentication at the entrance/leaving
process of the system, then they can lose the anonymity because the Chp takes
a picture of the V capturing the number plate. This information is sent to PA to
act as it is specified in the Sanction protocol. In the execution of this protocol,
PA has the ability to identify the user through the number plate.

If users have not made the proper payment, then SP verifies in the Payment
Verification Protocol that the amount paid corresponds to the tax determined
for τ and emissions of V. If the verification fails, this information is sent to PA
to issue a traffic fine for the user. PA verifies the incidence and identifies the user
by opening the field certVq.idS of the certificate with its private key. Obtaining
Vid allows the identification and the punishment of the dishonest user.

Claim. 7 The protocol execution generates evidences for an honest user (they
are saved in the OBU ) to prove or disprove the allegations of fraud.

When a user is accused of not performing the authentication correctly, a pdi
that records the incidence is generated. The user can be accused of using an
improper certificate certVq or sending an incorrect signature ω̄Vq . In both cases,
PA contacts her during the Sanction process, so she can provide evidences to
rebut the charges.

An honest user can retrieve a valid certVq , from her OBU, which matches her
vehicle (identified by the number plate) or a signature ω̄Vq that was successfully
computed by the SE with the help of the OBU during the entrance/leaving
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process of the LEZ. The system requirements state that the OBU of a vehicle
has to have enough storage capacity to store evidences to rebut the allegations
of possible fraud.

In case of a payment incidence, the user has to demonstrate that the payment
has been made according to the data stored in ρ̄ and γ̄o (both items signed by
the Chp). Therefore, an honest user will be able to retrieve this information from
her OBU and send it to PA to refute the accusation.

Result 3 The toll collection scheme keeps fraud under control and it can identify
dishonest users. These users receive the appropriate traffic fine. The protocol also
allows honest users to get evidences of their correct performance. The evidences
are used to rebut any traffic fine due to some kind of malfunction of the system’s
actors.

5 Conclusions and Further Works

This paper has presented an ERP system for urban areas, which provides a
robust fraud control system with a high level of privacy. The entrance/leaving
process of the LEZ is controlled so that the legitimate tax is computed while the
anonymity of the user is preserved. However, if a user commits fraud, she will
then be identified by the picture of the number plate taken by the checkpoint in
conjunction with the anonymity revocation system of the protocol.

As future work, we consider the extension of the protocol to take more than
one LEZ into account. We also have the intention of implementing the scheme
in order to assess its practical application.
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Abstract. There has been an increasing interest in automated negotiation and
particularly negotiations that involve interdependent issues, known to yield com-
plex nonlinear utility spaces. However, none of the proposed models was able to
tackle the scaling problem as it commonly arises in realistic consensus making
situations. In this paper we address this point by proposing a compact represen-
tation that minimizes the search complexity in this type of utility spaces. Our
representation allows a modular decomposition of the issues and the constraints
by mapping the utility space into an issue-constraint hyper-graph with the under-
lying interdependencies. Exploring the utility space reduces then to a message
passing mechanism along the hyper-edges by means of utility propagation. We
experimentally evaluate the model using parameterized random nonlinear utility
spaces, showing that our mechanism can handle a large family of complex utility
spaces by finding the optimal contracts, outperforming previous sampling-based
approaches.

Keywords: Utility and decision theory, Optimization methods in AI and deci-
sion modeling, Multi-agent systems, Multi-issue Negotiation, Interdependence,
Nonlinear Utility, Constraint-based utility spaces, Complexity, Hyper-Graph,
Max-Sum, Utility Propagation.

1 Introduction

Automated negotiation is an efficient mechanism to reach agreements among heteroge-
nous and distributed decision makers. In fact, its applications range from coordination
and cooperation [1, 2] to task allocation [3, 4], surplus division [5], and decentral-
ized information services [6]. In practical, most of the realistic negotiation problems
are characterized by interdependent issues, which yields complex and nonlinear utility
spaces [7]. As the search space and the complexity of the problem grow, finding optimal
contracts becomes intractable for one single agent. Similarly, reaching an agreement be-
tween a group of agents becomes harder.

We propose to tackle the complexity of the utility spaces used in multi-issue ne-
gotiation by rethinking the way they are represented. We claim that adopting the ad-
equate representation gives a solid ground to tackle the scaling problem. We address
this problem by adopting a representation that allows a modular decomposition of the
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issues-constraints given the idea that constraint-based utility spaces are nonlinear with
respect to issues, but linear with respect to the constraints. This allows us to map the
utility space into an issue-constraint hyper-graph with the underlying interdependen-
cies. Exploring the utility space reduces then to a message passing mechanism along
the hyper-edges by means of utility propagation.

Adopting a graphical representation while reasoning about utilities is not new in both
the multi-attribute utility and the multi-issue negotiation literatures. Indeed, the idea
of utility graphs could potentially help decomposing highly nonlinear utility functions
into sub-utilities of clusters of inter-related items, as in [8, 9]. Similarly, [10] used utility
graphs for preferences elicitation and negotiation over binary-valued issues. [11] adopts
a weighted undirected graph representation of the constraint-based utility space. How-
ever, restricting the graph and the message passing process to constraints’ nodes does
not allow the representation to be descriptive enough to exploit any potential hierarchi-
cal structure of the utility space through a quantitative evaluation of the interdependen-
cies between both issues and constraints. In [12], issues’ interdependency are captured
by means of similar undirected weighted graphs where a node represents an issue. This
representation is restricted to binary interdependencies while real negotiation scenarios
involve “bundles” of interdependent issues under one or more specific constraints. In
our approach, we do not restrict the interdependency to lower-order constraints but we
allow p−ary interdependencies to be defined as an hyper-edge connecting p issues. The
advantage of our representation is its scalability in the sense that the problem becomes
harder for a large number of issues and constraints. But if we can decompose the utility
space into independent components, we can exploit it more efficiently using a message
passing mechanism.

Another motivation behind the hyper-graph representation is that it allows a lay-
ered, hierarchical view of any given negotiation problem. Given such architecture, it
is possible to recursively negotiate over the different layers of the problem according
to a top-down approach. Even the idea of issue could be abstracted to include an en-
capsulation of sub-issues, located in sub-utility spaces and represented by cliques in
the hyper-graph. Consequently, search processes can help identify optimal contracts for
improvement at each level. It is within this perspective that we are proposing our model.
The main novelty our work is the efficiency of the new representation when optimiz-
ing nonlinear utilities. To the best of our knowledge, our work makes the first attempt to
tackle the complexity of such utility spaces using an efficient search heuristic that works
and outperforms the previously used sampling-based meta-heuristics. Particularly, the
novelty is that we exploit the problem structure (as hyper-graph) as well as randomiza-
tion. Such performance is required when facing the scaling issues, inherent to complex
negotiation. We experimentally evaluated our model using parametrized and random
nonlinear utility spaces, showing that it can handle large and complex spaces by finding
the optimal contracts while outperforming previous sampling approaches.

The paper is organized as following. In the next section, we propose the basics of our
new nonlinear utility space representation. In section 3, we describe the optimal con-
tracts search mechanisms. In section 4, we provide the experimental results. In section
5, we conclude and outline the future work.
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2 Nonlinear Utility Spaces

2.1 Formulation

We start from the formulation of nonlinear multi-issue negotiation of [13]. That is,
N agents are negotiating over n issues ik∈[1,n] ∈ I, with I = {ik}nk=1, forming an
n−dimensional utility space. The issue k, namely ik, takes its values from a set Ik
where Ik ⊂ Z. A contract c is a vector of issue values c ∈ I with I = ×n

k=1Ik.
An agent’s utility function is defined in terms of constraints, making the utility space

a constraint-based utility space. That is, a constraint cj∈[1,m] is a region of the total
n−dimensional utility space. We say that the constraint cj has value w(cj , c) for con-
tract c if constraint cj is satisfied by contract c. That is, when the contract point c falls
within the hyper-volume defined by the constraint of cj , namely hyp(cj). The utility of
an agent for a contract c is thus defined as in (1).

u(c) =
∑

cj∈[1,m], c∈hyp(cj)

w(cj , c) (1)

In the following, we distinguish three types of constraints: Cubic constraints, Bell con-
straints and Plane constraints, shown in Figure 1. The constraint-based utility formalism
is a practical way to reason about preferences subject to restrictions. More details about
constraint-based utility spaces and their usage is to be found in [11, 14, 15].

Fig. 1. Cubic, Bell and Plane Constraints

Having a large number of constraints produces a “bumpy” nonlinear utility space
with high points whenever many constraints are satisfied and lower points where few
or no constraints are satisfied. Figure 2 shows an example of nonlinear utility space for
issues i1 and i2 taking values in I1 = I2 = [0, 100], with m = 500 constraints and
where a constraint involves at least 2 issues.

2.2 Our New Representation

The agent’s utility function (1) is nonlinear in the sense that the utility does not have a
linear expression against the contract [13]. This is true to the extent that the linearity is
evaluated with regard to the contract c. However, from the same expression (1) we can
say that the utility is in fact linear, but in terms of the constraints cj∈[1,m]. The utility
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Fig. 2. 2−dimensional nonlinear utility space

space is therefore decomposable according to the cj constraints. This yields a modular
representation of the interactions between the issues and how they locally relate to each
other. In fact, hyp(cj) reflects the idea that the underlying contracts are governed by
the bounds defined by cj once the contracts are projected according to their issues’
components.

In this case, the interdependence is not between issues but between constraints. For
instance, two constraints c1 and c2 can have in common one issue ik taking values
respectively from an interval Ik,c1 if it is in c1, and values in Ik,c2 if it is in c2, with
Ik,c1 �= Ik,c2 . Finding the value that maximizes the utility of ik while satisfying both
constraints becomes harder due to fact that changing the value of ik in c1 changes its
instance in c2 in a cyclic manner. This gets worse with an increasing number of issues,
their domains’ sizes, and the non-monotonicity of the constraints. Next, we propose to
transform (1) into a modular, graphical representation. Since one constraint can involve
one or more multiple issues, we adopt a hyper-graph representation.

2.3 From Utility Space to Utility Hypergraph

We assign to each constraint cj∈[1,m], a factor Φj , with Φ = {Φj}mj=1. We define the
hyper-graph G as G = (I, Φ). Nodes in I define the issues and the hyper-edges in Φ
are the factors (constraints). To each factor Φj we assign a neighbors’ set N (Φj) ⊂ I
containing the issues connected to Φj (involved in cj), with |N (Φj)| = ϕj . In case
ϕj = 2 ∀j ∈ [1,m], the problem collapses to a constraints satisfaction problem in a
standard graph.

To each factor Φj corresponds a ϕj−dimensional matrix, MΦj , where the jth di-
mension is the discrete interval [ak, bk] = Ik, the domain of issue ik. This matrix con-
tains all the values that could be taken by the issues in N (Φj). Each factor Φj has a
function Φj defined as a sub-utility function of the issues in N (Φj), as in (2).

Φj : N (Φj)
ϕj → R (2)

Φj(i1, . . . , ik, . . . , iϕj) �→ w(cj , c)
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As we are dealing with discrete issues, Φj is defined by the matrix MΦj . That is,
Φj(i1, . . . ik, . . . , iϕj) is simply the (1, ..., k, ..., ϕj)

th entry in MΦj corresponding as
well to the value w(cj , c) mentioned in (1). It is possible to extend the discrete case to
the continuous one by allowing continuous issue-values and definingΦj as a continuous
function.

To provide an example of our representation, let us consider a 10−dimensional utility
space and propose to represent it in a graphical way. That is, as a hyper-graph defined
as G10 = (I, Φ) with I = {ik}9k=1, Φ = {Φj}7j=1 and shown in Figure 3.

i0

i6

i7

i3

i4

i8

i1

i2

i5

i9

Φ1 φ1

Φ6

φ6

Φ2

φ2

Φ3

φ3

Φ5

φ5

Φ7φ7

Φ4

φ4

I0,1 = [0, 4]

I6,1 = [5, 9]

I2,2 = [0, 9]

I7,1 = [0, 8]

I1,1 = [5, 9]

I2,1 = [2, 3]

I1,6 = [3, 6] I3,6 = [1, 4]

I8,2 = [2, 5]

I4,5 = [7, 9]

I4,2 = [9]

I4,3 = [2, 7]

I1,3 = [3, 4] I5,5 = [4, 7]

I5,7 = [1, 3]

I9,4 = [1, 3]

Fig. 3. Issues-Constraints Hypergraph

Each issue ik has a set Ik =
⋃

ν∈N (k) Ik,ν where Ik,ν is an edge connecting ik to its
neighbor ν ⊂ N (k) ∈ Φ. For example, I1 =

⋃
ν∈{Φ1,Φ3,Φ6} I1,ν = {[5, 9], [3, 4], [3, 6]}.

Constraints can have different types in the sense that each type reflects a particu-
lar geometric shape. For example, constraints Φ1,2,3,4 could be cubic, Φ5,6 could be
defined as planes and Φ7 defined as a bell. Any combination is in fact possible, and
depends only on the problem in hand and how it is being specified. Each constraint is
assigned a sub-utility representation used to compute the utility of a contract if it sat-
isfies the corresponding constraint by being located in the underlying hyper-volume.
For example, the general utility function Φj , defined in (2), could correspond to the
functional definition of each constraints, as shown in (3).

Φj =

⎧⎨⎩Plane : βj +
∑ϕj

k=1 αj,k × vk(ik) (βj , αj,k) ∈ Z2

Cube : vj
Bell : Vj

(3)

A plane constraint will be defined using its ϕj−dimensional equation, while a cubic
constraint will be assigned the value vj in case the contract is in the cube. The compu-
tation of the utility Vj of a bell shaped constraint is performed as in (4) (see Figure 1).
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Herein, δ is the Euclidean distance from the center s of the bell constraint to a contract
point c. Distances are normalized in [−1, 1].

Vj =

⎧⎨⎩βj (1− 2δ2) if δ < 0.5 βj ∈ Z
2 βj (1 − δ)2 if δ < 1 βj ∈ Z
0 else

(4)

It is possible to extend the current constraints’ to involve Cone constraints [16] or any
other type of geometrical shapes.

3 Optimal Contracts

The exploration of the utility hyper-graph is inspired from the sum-product message
passing algorithm for belief propagation [17]. However, the multiplicative algebra is
changed into an additive algebra to support the utility accumulation necessary for the
assessment of the contracts. The messages circulating in the hyper-graph are nothing
other than the contracts we are attempting to optimize through utility maximization.
Next, we develop the message passing (MP) mechanism operating on the issues and the
constraints.

3.1 Message Passing

We consider the issues set I and a contract point c = (i1, . . . , ik, . . . , in) ∈ I. We want
to find a contract c∗ that maximizes the utility function defined in (1). Assuming that Φj

is the local sub-utility of constraint Φj , we distinguish two types of messages: messages
sent from issues to constraints, and messages sent from constraints to issues.

From Issue ik to Constraint Φj : In (5), each message μik→Φj coming from ik to Φj

is the sum of the constraints’ messages to ik coming from constraints other than Φj .

μik→Φj (ik) =
∑

Φj′∈N (ik)\Φj

μΦj′→ik(ik) (5)

From Constraint Φj to Issue ik : Each constraint message (6) is the sum of the mes-
sages coming from issues other than ik, plus the constraint value Φj(i1, . . . , ik, . . . , in),
summed over all the possible values of the issues (connected to the constraint Φ) other
than the issue ik.

μΦj→ik (ik) = max
i1

. . . max
ik′ �=k

. . .max
in

[
Φj(i1, . . . , ik, . . . , in) +

∑
ik′∈N (Φj)\ik

μik′→Φj (ik)

]
(6)

The MP mechanism starts from the leaves of the hyper-graph, i.e., the issues. At t = 0,
the content of the initial messages is defined according to (7), with φ′

j(ik) being the
partial evaluation of ik in the factor Φj .

μik→Φj (ik) = 0 (7)

μΦj→ik(ik) = φ′
j(ik)
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The partial evaluation φ′
j(ik) of issue ik in the factor Φj is the utility of ik using Φj

regardless of any other issue involved in Φj . For instance, for cubic and bell constraints,
the evaluation is simply vj(ik) and Vj(ik) ∀k as described in (3). If Φj is a plane
constraint, the partial evaluation of ik will be αj,k × vk(ik). In this manner, the factor
Φj will get all the evaluations (αj,k × vk(ik)) from its surrounding issues in order to
yield the total utility (3) as a sum of the partial evaluations plus the plane constant βj .

Finally, the optimal contract c∗ is found by collecting the optimal issues as in (8).

c∗ =

(
argmax

i1

∑
Φj∈N (i1)

μΦj→i1(i1), . . . , argmax
in

∑
Φj∈N (in)

μΦj→in(in)

)
(8)

In a negotiation setting, it is more common that the agent requires a collection, or
bundle, of the optimal contracts rather than one single optimum. In order to find such
collection, we should endow (8) with a caching mechanism allowing each node in the
hyper-graph to store the messages that have been sent to it from the other nodes. That is,
the cached messages will contain the summed-up utility values of the underlying node’s
instance. This is performed every time the operation max is called in (6) so that we can
store the settings of the adjacent utility (and contract) that led to the maximum. Once
ordered, such data structure allows us to generate an ordered bundle for the bidding
process. In the next section, we algorithmically provide the MP mechanism.

3.2 Utility Propagation Algorithm

Main Algorithm. Algorithm 1, operates on the hyper-graph nodes by triggering the
MP process. Despite the fact that we have 2 types of nodes (issues and constraints), it is
possible to treat them abstractly using MsgPass. The resulting bundle is a collection
of optimal contracts with utility greater or equal to the agent’s reservation value rv.

Algorithm: Utility Propagation

Input: G = (I, Φ), rv,mode, ρ
Output: Optimal contracts (bundle)

1 begin
2 for i = 1 → (ρ × |I ∪ Φ|) do
3 if mode is Synchronous then
4 foreach νsrc ∈ I ∪ Φ do
5 foreach νdest ∈ νsrc.Neighbors() do
6 νsrc.MsgPass(νdest)

7 bundle ← ∅
8 foreach i ∈ I do
9 bundle[i] ← ∅

10 ι ← ∪j∈i.instances()[j.min, j.max]

11 μ∗ ← k∗ ← −∞
12 μ ← i.getmax()
13 foreach k = 1 → |μ| do
14 if μ∗ < μ[k] then
15 μ∗ ← μ[k], k∗ ← k
16 if μ∗ ≥ rv then
17 bundle[i] ← bundle[i] ∪ ι[k∗]

18 return bundle

Algorithm 1. Main Algorithm
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Issue to Constraint. The issue’s message to a factor (or constraint) is the element-wise
sum of all the incoming messages from other factors.

Constraint to Issue. The factor’s message to a targeted issue is done by recursively
enumerating over all variables that the factor references (6), except the targeted issue.
This needs to be performed for each value of the target variable in order to compute the
message. If all issues are assigned, the values of the factor and of all other incoming
messages are determined, so that their sum term is compared to the prior maximum.
Resulting messages, stored in bundle, contain the values that maximize the factors’ lo-
cal sub-utility functions. We note that it is possible to avoid the systematic enumeration
by adding a local randomization to the issue that the factor is referencing.

Optimal Contracts Collection. The optimal contracts will be the concatenation of the
single optimal issue-values. That is, for each issue we will collect the coming messages
from the surrounding factors and sum the overlapping utility values in order to obtain
the values that maximize the sum of the utilities (8).

4 Experiments

4.1 Settings

Before evaluating the utility propagation algorithm, we identify the criteria that could
affect the complexity of the utility space and thus the probability of finding optimal

Algorithm: ParamRandHGen

Input: n,m, p
Output: G(I, Φ)

1 begin
2 [βmin, βmax] ← [1, 100] // constants
3 [αmin, αmax] ← [0, 1] // slopes
4 [bmin, bmax] ← [0, 9] // bounds
5 Φ ← [∅] × m // init constraints set
6 for k = 1 → m do
7 Φ[k].θ ← rand({cube, plane, bell})
8 if Φ[k].θ = plane then
9 α ← [0] × n

10 α[j] ← rand([αmin, αmax]) ∀i ∈ [1, n]
11 Φ[k].α ← α

12 if Φ[k].θ ∈ {bell, cube} then
13 // refer to (3) or (4)

14 Φ[k].β ← rand([βmin, βmax])
15 μ ← rand([1, n]) , I ← ∅
16 while |I| = μ do
17 ι ← rand([1, p])
18 if ι /∈ I then
19 I ← I ∪ ι

20 for j = 1 → μ do
21 I[j].a ← rand([bmin, bmax]) I[j].b ← rand([I[j].a+ ε, bmax])

22 Φ[k].I ← I

23 return Φ

Algorithm 2. Utility Hypergraph Generation
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(a) Utility

(b) Durations ΔSA and ΔSynchMP for m ∈ {10, 20, 30}

Fig. 4. SynchMP vs. SA for the profile (10, [10, 20, 30], 5)

contract(s). Other than n and m, we distinguish p, defined as the maximal number of
issues involved in a constraint. p can be unary (p = 1), binary (p = 2), ternary (p = 3),
or p-ary in the general case.

The parametrized generation of a utility space (or utility hyper-graph) should meet
the consistency condition p ≤ n ≤ m × p, with n,m, p ∈ N+, to avoid problems like
attempting to have an 8−ary constraints in a 5−dimensional utility space.

4.2 Discussion

After the generation of the hyper-graph using Algorithm 2, the message-passing rou-
tines will be evaluated and analyzed microscopically from the agent perspective.

We will compare the MP mechanism in terms of utility and duration to the Simulated
Annealing (SA) approach in [13] for optimal contract finding. The SA optimizer will be
randomly sampling from the regions that correspond to an overlap of constraints. For
instance, generating a random contract satisfying cj is performed backwardly through



Modeling Complex Nonlinear Utility Spaces Using Utility Hyper-Graphs 23

(a) Utility

(b) Durations ΔSA and ΔASynchMP for m ∈ [20, 100]

Fig. 5. AsynchMP vs. SA for the profile (40, [20, . . . 100], 5)

random generation of values from Ij,k ∀ik ∈ N (Φj). Our comparison criteria is based
on the utility/duration performed on a set of profiles of the form (n,m, p), with 100 trials
for each profile.

Figure 4 illustrates the performance of SynchMP for (10, [10, 20, 30], 5).
The deterministic aspect of the synchronous message passing algorithm (SynchMP)

makes it very slow (ΔSA << ΔSynchMP ) compared to its SA counterpart which ex-
ploits the randomization, allowing it to perform “jumps” in the search space. To avoid
the enumeration over the local nodes of G, it is possible to add randomization to the
way nodes are selected. To introduce an asynchronous mode, AsynchMP, we add an-
other condition after the synchronous mode condition in Algorithm 1, as follows:

if mode is Asynchronous then

νsrc, νdest ← rand2([1, |V |]), νdest �= νsrc

νsrc.MsgPass(νdest)
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For (40, [20, . . .100], 5), Figure 5 shows the resulting difference in the performance of
AsynchMP compared to SA.

5 Conclusion

A new and modular representation for nonlinear utility spaces is proposed by decom-
posing the constraints and issues into an utility hyper-graph. The exploration and search
for optimal contracts is performed based on a message passing mechanism in the hyper-
graph. Results show that the proposed mechanism outperforms the sampling-based op-
timizers.

As future work, we intend to exploit the structure of the hyper-graphs for hierarchical
negotiation. Additionally, we think about studying the interdependence and correlation
of the issues based on the structure of the utility hyper-graph.
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Abstract. In this paper we continue investigations connected with dis-
tributivity of implication operations over decomposable (t-representable)
operations. Our main goal is to show the general method of solving
the following distributivity equation I(x,U1(y, z)) = U2(I(x, y), I(x, z)),
when U1, U2 are decomposable uninorms (in interval-valued fuzzy sets
theory) generated from two conjunctive representable uninorms. As a
byproduct result we show all solutions of some functional equation re-
lated to this case.

Keywords: Aggregation operators, Uninorms, Interval-valued fuzzy sets,
Distributivity equations, Functional equations.

1 Introduction

The distributivity of (classical) fuzzy implications over different fuzzy logical
connectives, like t-norms, t-conorms or uninorms has been studied in the recent
past by many authors (see chronologically [1], [31], [14], [28], [29], [13], [2], [3],
and [9]). Distributivity equations have a very important role to play in efficient
inferencing in approximate reasoning, especially in fuzzy control systems. Given
an input “x̃ is A′”, the role of an inference mechanism is to obtain a fuzzy
output B′ that satisfies some desirable properties. The most important inference
schemas are fuzzy relational inference and similarity based reasoning. In the first
case, the inferred output B′ is obtained either as

(i) sup−T composition, where T is a t-norm, as in the compositional rule of
inference (CRI) of Zadeh (see [33]), or

(ii) inf −I composition, where I is a fuzzy implication, as in the Bandler-Kohout
subproduct (BKS) (see [15]),

of A′ and given rules. Since all the rules of an inference engine are exercised dur-
ing every inference cycle, the number of rules directly affects the computational
duration of the overall application.

V. Torra et al. (Eds.): MDAI 2014, LNAI 8825, pp. 26–37, 2014.
c© Springer International Publishing Switzerland 2014
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To reduce the complexity of fuzzy “IF-THEN” rules, Combs and Andrews [17]
proposed an equivalent transformation of the CRI to mitigate the computational
cost. In fact, they demanded the following classical tautology

(p ∧ q)→ r = (p→ r) ∨ (q → r),

written in fuzzy logic language, i.e., using t-norms, t-conorms and fuzzy impli-
cations. Subsequently, there were many discussions (see [16], [20], [27]), most of
them pointed out the need for a theoretical investigation required for employ-
ing such equations. Later, the similar method but for similarity based reasoning
was presented by Jayaram [26]. For an overview of the most important of these
methods see [12, Chapter 8].

Recently, in [4], [5], [6] (for the full article see [10]), [8] and [11] we have
discussed the following distributivity equations

I(x, T1(y, z)) = T2(I(x, y), I(x, z)),
I(S(x, y), z) = T (I(x, z), I(y, z)),

for t-representable (decomposable) t-norms and t-conorms (in interval-valued
fuzzy sets theory) generated from continuous Archimedean operations. In fact,
in these articles, we have obtained the solutions for each of the following func-
tional equations, respectively:

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2), (A)

g(min(u1 + v1, a),min(u2 + v2, a)) = g(u1, u2) + g(v1, v2), (B)

h(min(u1 + v1, a),min(u2 + v2, a)) = min(h(u1, u2) + h(v1, v2), b), (C)

k(u1 + v1, u2 + v2) = min(k(u1, u2) + k(v1, v2), b), (D)

where a, b > 0 are fixed real numbers, f : L∞ → [0,∞], g : La → [0,∞], h : La →
[0, b], k : L∞ → [0, b] are unknown functions and

L∞ = {(u1, u2) ∈ [0,∞]2 | u1 ≥ u2},
La = {(u1, u2) ∈ [0, a]2 | u1 ≥ u2}.

More precisely, the solutions of Eq. (A) are presented in [4, Proposition 3.2], the
solutions of Eq. (B) are presented in [5, Proposition 4.2], the solutions of Eq. (C)
are presented in [10, Proposition 5.2] and the solutions of Eq. (D) are presented
in [8, Proposition 3.2].

In this paper we continue these investigations, but for the following functional
equation

I(x,U1(y, z)) = U2(I(x, y), I(x, z)), (D-UU)

when U1, U2 are decomposable uninorms on LI generated from two conjunctive
representable uninorms and I is an unknown function. In fact, from mathemat-
ical point of view, we discuss the solutions of the following functional equation
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f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2), for all (u1, u2), (v1, v2) ∈ L∞, where
L∞ = {(x1, x2) ∈ [−∞,∞]2 | x1 ≤ x2}, with the assumption (−∞) +∞ =
∞+ (−∞) = −∞ in both sets of domain and codomain of a function f .

Please note that solutions for this Eq. (D-UU) for classical representable uni-
norms, have been presented in [3] (see also [7]). Moreover, solutions of distribu-
tivity equations for different classes of classical implications have been obtained
by Ruiz-Aguilera and Torrens in [28] and [29].

2 Interval-Valued Fuzzy Sets

One possible extension of fuzzy sets theory is interval-valued fuzzy sets theory
introduced, independently, by Sambuc [30] and Gorza�lczany [25], in which to
each element of the universe a closed subinterval of the unit interval is assigned
– it can be used as an approximation of the unknown membership degree. Let
us define

LI = {(x1, x2) ∈ [0, 1]2 | x1 ≤ x2},
(x1, x2) ≤LI (y1, y2)⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2.

In the sequel, if x ∈ LI , then we denote it by x = [x1, x2]. In fact, LI = (LI ,≤LI )
is a complete lattice with units 0LI = [0, 0] and 1LI = [1, 1].

Definition 2.1. An interval-valued fuzzy set on X is a mapping A : X → LI .

3 Implications and Uninorms

We assume that the reader is familiar with the classical results concerning basic
fuzzy logic connectives, but we briefly mention some of the results employed in
the rest of the work.

One possible definition of an implication on LI is based on the well-accepted
notation introduced by Fodor and Roubens [23] (see also [12] and [19]).

Definition 3.1. Let L = (L,≤L) be a complete lattice. A function I : L2 → L is
called a fuzzy implication on L if it is decreasing with respect to the first variable,
increasing with respect to the second variable and fulfills the following conditions:

I(0L, 0L) = I(1L, 1L) = I(0L, 1L) = 1L, I(1L, 0L) = 0L. (1)

Uninorms (on the unit interval) were introduced by Yager and Rybalov in
1996 (see [32]) as a generalization of triangular norms and conorms. For the
recent overview of this family of operations see [22].

Definition 3.2. Let L = (L,≤L) be a complete lattice. An associative, commu-
tative and increasing operation U : L2 → L is called a uninorm on L, if there
exists e ∈ L such that U(e, x) = U(x, e) = x, for all x ∈ L.
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Remark 3.3. (i) The neutral element e corresponding to a uninorm U is unique.
Moreover, if e = 0L, then U is a t-conorm and if e = 1L, then U is a t-norm.

(ii) For a uninorm U on any L we get U(0L, 0L) = 0L and U(1L, 1L) = 1L.
(iii) For a uninorm U on ([0, 1],≤) we get U(0, 1) ∈ {0, 1}.
(iv) For a uninorm U on LI with the neutral element e ∈ LI \ {0LI , 1LI}

we get U(0LI , 1LI ) ∈ {0LI , 1LI} or U(0LI , 1LI )‖e, i.e., U(0LI , 1LI ) is not
comparable with e (cf. [18] and [21]).

(v) In general, for any lattice L, if U(0L, 1L) = 0L, then it is called conjunctive
and if U(0L, 1L) = 1L, then it is called disjunctive.

In the literature one can find several classes of uninorms (see [24]). Uninorms
that can be represented as in Theorem 3.4 are called representable uninorms.

Theorem 3.4 ([24, Theorem 3]). For a function U : [0, 1]2 → [0, 1] the fol-
lowing statements are equivalent:

(i) U is a strictly increasing and continuous on ]0, 1[2 uninorm with the neutral
element e ∈]0, 1[ such that U is self-dual, except in points (0, 1) and (1, 0),
with respect to a strong negation N with the fixed point e, i.e.,

U(x, y) = N(U(N(x), N(y))), x, y ∈ [0, 1]2 \ {(0, 1), (1, 0)}.

(ii) U has a continuous additive generator, i.e., there exists a continuous and
strictly increasing function h : [0, 1] → [−∞,∞], such that h(0) = −∞,
h(e) = 0 for e ∈]0, 1[ and h(1) = ∞, which is uniquely determined up to
a positive multiplicative constant, such that for all x, y ∈ [0, 1] either

U(x, y) =

{
0 if (x, y) ∈ {(0, 1), (1, 0)},
h−1(h(x) + h(y)), otherwise,

when U is conjunctive, or

U(x, y) =

{
1 if (x, y) ∈ {(0, 1), (1, 0)},
h−1(h(x) + h(y)), otherwise,

when U is disjunctive.

Remark 3.5 (cf. [3]). If a representable uninorm U is conjunctive, then U(x, y) =
h−1(h(x) + h(y)) holds for all x, y ∈ [0, 1] with the assumption

(−∞) +∞ =∞+ (−∞) = −∞. (A-)

If a representable uninorm U is disjunctive, then U(x, y) = h−1(h(x) + h(y))
holds for all x, y ∈ [0, 1] with the assumption

(−∞) +∞ =∞+ (−∞) =∞. (A+)

Now we shall consider the following special class of uninorms on LI .
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Definition 3.6 (see [18] and [21]). A uninorm U on LI is called decomposable
(or t-representable) if there exist uninorms U1, U2 on ([0, 1],≤) such that

U([x1, x2], [y1, y2]) = [U1(x1, y1), U2(x2, y2)], [x1, x2], [y1, y2] ∈ LI ,

and U1 ≤ U2. In this case we will write U = (U1, U2).

It should be noted that not all uninorms on LI are decomposable (see [21]).

Lemma 3.7 ([21, Lemma 8]). If U on LI is a decomposable uninorm, then
U(0LI , 1LI ) = 0LI or U(0LI , 1LI ) = 1LI or U(0LI , 1LI ) = [0, 1].

Therefore it is not possible that for decomposable uninorm U = (U1, U2) on
LI we have that U1 is disjunctive and U2 is conjunctive.

Lemma 3.8 (cf. [21, Theorems 5 and 6]). If U = (U1, U2) on LI is a
decomposable uninorm with the neutral element e = [e1, e2], then e1 = e2 is the
neutral element of U1 and U2.

Lemma 3.9. Let a function I : (LI)2 → LI satisfy (1) and Eq. (D-UU) with
some uninorms U1, U2. Then U1 is conjunctive if and only if U2 is conjunctive.

Proof. Firstly, substituting x = y = 1LI and z = 0LI into (D-UU), we get

I(1LI ,U1(1LI , 0LI )) = U2(I(1LI , 1LI ), I(1LI , 0LI )). (2)

If U1 is conjunctive, then U1(1LI , 0LI ) = 0LI and by (1) we get I(1LI , 0LI ) =
U2(1LI , 0LI ), thus 0LI = U2(1LI , 0LI ), i.e., U2 is also a conjunctive uninorm.

Instead, if U1 is disjunctive, then U1(1LI , 0LI ) = 1LI and we get from (2)
and (1) that 1 = U2(1LI , 0LI ), i.e., U2 is also a disjunctive uninorm. ��

The above results allow us to investigate Eq. (D-UU) for decomposable uni-
norms which are generated from the same conjunctive representable uninorms.
We deal with this idea in the next section for distributivity equation.

4 General Method for Solving Distributivity Eq. (D-UU)
for Decomposable Uninorms

In this section we show how we can obtain all solutions, in particular fuzzy
implications, of our main distributive equation Eq. (D-UU)

I(x,U1(y, z)) = U2(I(x, y), I(x, z)), x, y, z ∈ LI ,

where I is an unknown function and uninorms U1 and U2 on LI are decomposable
and generated from (classical) uninorms U1, U2 and U3, U4, respectively. Assume
that the projection mappings on LI are defined as the following:

pr1([x1, x2]) = x1, pr2([x1, x2]) = x2, for [x1, x2] ∈ LI .
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At this situation our distributive equation (D-UU) has the following form

I([x1, x2],[U1(y1, z1), U2(y2, z2)])

=[U3(pr1(I([x1, x2], [y1, y2])), pr1(I([x1, x2], [z1, z2]))),

U4(pr2(I([x1, x2], [y1, y2])), pr2(I([x1, x2], [z1, z2])))],

for all [x1, x2], [y1, y2], [z1, z2] ∈ LI . As a consequence we obtain the following
two equations

pr1(I([x1, x2], [U1(y1, z1), U2(y2, z2)]))

= U3(pr1(I([x1, x2], [y1, y2])), pr1(I([x1, x2], [z1, z2]))),

pr2(I([x1, x2], [U1(y1, z1), U2(y2, z2)]))

= U4(pr2(I([x1, x2], [y1, y2])), pr2(I([x1, x2], [z1, z2]))),

which are satisfied for all [x1, x2], [y1, y2], [z1, z2] ∈ LI . Now, let us fix arbitrarily
[x1, x2] ∈ LI and define two functions g1[x1,x2]

, g2[x1,x2]
: LI → LI by

g1[x1,x2]
(·) := pr1 ◦ I([x1, x2], ·), g2[x1,x2]

(·) := pr2 ◦ I([x1, x2], ·),

where ◦ denotes the standard composition of functions. Thus we have shown
that if U1 and U2 on LI are decomposable, then

g1[x1,x2]
([U1(y1, z1), U2(y2, z2)]) = U3(g

1
[x1,x2]

([y1, y2]), g
1
[x1,x2]

([z1, z2])),

g2[x1,x2]
([U1(y1, z1), U2(y2, z2)]) = U4(g

2
[x1,x2]

([y1, y2]), g
2
[x1,x2]

([z1, z2])).

Let us assume that U1 = U2 and U3 = U4 are conjunctive representable uni-
norms generated from generators h1 and h3, respectively. Furthermore, let us
assume (A-) in the spaces of h1 and h3 codomains. Using the representation the-
orem of representable, conjunctive uninorms, i.e., Theorem 3.4 and Remark 3.5,
we can transform our problem to the following equation (for a simplicity we deal
only with g1 now):

g1[x1,x2]
([h−1

1 (h1(y1) + h1(z1)), h
−1
1 (h1(y2) + h1(z2))])

= h−1
3 (h3(g

1
[x1,x2]

([y1, y2])) + h3(g
1
[x1,x2]

([z1, z2]))).

Let us put h1(y1) = u1, h1(y2) = u2, h1(z1) = v1 and h1(z2) = v2. Of course
u1, u2, v1, v2 ∈ [−∞,∞] (with the assumption (A-) on that space). Moreover
[y1, y2], [z1, z2] ∈ LI , thus y1 ≤ y2 and z1 ≤ z2. The generator h1 is strictly
increasing, so u1 ≤ u2 and v1 ≤ v2. If we put

f[x1,x2](u1, u2) := h3 ◦ g1[x1,x2]
([h−1

1 (u1), h
−1
1 (u2)]), u1, u2 ∈ [−∞,∞], u1 ≤ u2,

then we get the following functional equation

f[x1,x2](u1 + v1, u2 + v2) = f[x1,x2](u1, u2) + f[x1,x2](v1, v2), (3)
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where (u1, u2), (v1, v2) ∈ L∞ and f[x1,x2] : L
∞ → [−∞,∞] is an unknown func-

tion. In the same way, we can repeat all the above calculations, but for the
function g2, to obtain the following functional equation

f [x1,x2](u1 + v1, u2 + v2) = f [x1,x2](u1, u2) + f [x1,x2](v1, v2), (4)

where f [x1,x2] : L∞ → [−∞,∞] is an unknown function given by

f [x1,x2](u1, u2) := h3 ◦ g2[x1,x2]
([h−1

1 (u1), h
−1
1 (u2)]), u1, u2 ∈ [−∞,∞], u1 ≤ u2.

Observe that (3) and (4) are exactly the same functional equation. In the next
section we present main mathematical result which shows what are the solutions
of the above equation.

5 Some New Results Pertaining to Functional Equations

Recently, in [3] we have solved the additive Cauchy functional equation:

f(x+ y) = f(x) + f(y), x, y ∈ [−∞,∞],

for an unknown function f : [−∞,∞] → [−∞,∞]. It should be noted that the
main problem in this context was with the adequate definition of the additions
∞+ (−∞) and (−∞) +∞. Using [3, Proposition 4.1] we are able to prove the
following main mathematical result. Since we are limited in number of pages we
omit the proof.

Proposition 5.1. Let L∞ = {(u1, u2) ∈ [−∞,∞]2 | u1 ≤ u2}. For a function
f : L∞ → [−∞,∞] the following statements are equivalent:

(i) f satisfies the functional equation

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2) (F)

for all (u1, u2), (v1, v2) ∈ L∞, with the assumption (A-), i.e., (−∞) +∞ =
∞+ (−∞) = −∞ in both sets of domain and codomain.

(ii) Either f = −∞, or f = 0, or f =∞ or

f(u, v) =

{
−∞, u = −∞,

0, u > −∞,
or f(u, v) =

{
−∞, v = −∞,

0, v > −∞,

or

f(u, v) =

{
−∞, u ∈ {−∞,∞},
0, u ∈ R,

or f(u, v) =

{
∞, u = −∞,

0, u > −∞,

or

f(u, v) =

{
∞, v = −∞,

0, v > −∞,
or f(u, v) =

{
∞, u ∈ {−∞,∞},
0, u ∈ R,
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or

f(u, v) =

{
−∞, u = −∞,

∞, u > −∞,
or f(u, v) =

{
−∞, v = −∞,

∞, v > −∞,

or

f(u, v) =

{
−∞, u ∈ {−∞,∞},
∞, u ∈ R,

or f(u, v) =

{
−∞, v ∈ {−∞,∞},
∞, v ∈ R,

or

f(u, v) =

{
−∞, u = −∞ or v =∞,

∞, u, v ∈ R,
or f(u, v) =

⎧⎪⎨⎪⎩
−∞, u = −∞,

0, u ∈ R,

∞, u =∞,

or

f(u, v) =

⎧⎪⎨⎪⎩
−∞, v = −∞,

0, u ∈ R,

∞, (u = −∞ and v > −∞) or u =∞,

or

f(u, v) =

⎧⎪⎨⎪⎩
−∞, v = −∞,

0, u > −∞,

∞, u = −∞ and v > −∞,

or there exists a unique additive function c : R→ R such that

f(u, v) =

{
−∞, u ∈ {−∞,∞},
c(u), u ∈ R,

or f(u, v) =

{
−∞, v ∈ {−∞,∞},
c(v), v ∈ R,

or

f(u, v) =

{
∞, u ∈ {−∞,∞},
c(u), u ∈ R,

or f(u, v) =

{
∞, v ∈ {−∞,∞},
c(v), v ∈ R,

or

f(u, v) =

{
−∞, u = −∞ or v =∞,

c(v), u, v ∈ R,

or

f(u, v) =

{
∞, u = −∞ or v =∞,

c(v), u, v ∈ R,

or

f(u, v) =

⎧⎪⎨⎪⎩
−∞, u = −∞,

c(u), u ∈ R,

∞, u =∞,

or f(u, v) =

⎧⎪⎨⎪⎩
−∞, v = −∞,

c(v), v ∈ R,

∞, v =∞,
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or

f(u, v) =

⎧⎪⎨⎪⎩
−∞, u = −∞,

c(v), u, v ∈ R,

∞, u > −∞ and v =∞,

or

f(u, v) =

⎧⎪⎨⎪⎩
−∞, v = −∞,

c(u), u ∈ R,

∞, (u = −∞ and v > −∞) or u =∞,

or

f(u, v) =

⎧⎪⎨⎪⎩
−∞, v = −∞,

c(v), u, v ∈ R,

∞, (u = −∞ and v > −∞) or (u > −∞ and v =∞),

or

f(u, v) =

⎧⎪⎨⎪⎩
−∞, u ∈ {−∞,∞},
c(v), u, v ∈ R,

∞, u ∈ R and v =∞,

or

f(u, v) =

⎧⎪⎨⎪⎩
−∞, v ∈ {−∞,∞},
c(v), u, v ∈ R,

∞, u = −∞ and v ∈ R,

or there exist unique additive functions c1, c2 : R→ R such that

f(u, v) =

{
−∞, u = −∞ or v =∞,

c1(u− v) + c2(v), u, v ∈ R,

or

f(u, v) =

{
∞, u = −∞ or v =∞,

c1(u− v) + c2(v), u, v ∈ R,

or

f(u, v) =

⎧⎪⎨⎪⎩
−∞, u = −∞,

c1(u− v) + c2(v), u, v ∈ R,

∞, u > −∞ and v =∞,

or

f(u, v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∞, v = −∞,

c1(u− v) + c2(v), u, v ∈ R,

∞, (u = −∞ and v > −∞)

or (u > −∞ and v =∞),
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or

f(u, v) =

⎧⎪⎨⎪⎩
−∞, u ∈ {−∞,∞},
c1(u− v) + c2(v), u, v ∈ R,

∞, u ∈ R and v =∞,

or

f(u, v) =

⎧⎪⎨⎪⎩
−∞, v ∈ {−∞,∞},
c1(u − v) + c2(v), u, v ∈ R,

∞, u = −∞ and v ∈ R,

for all (u, v) ∈ L∞.

6 Some Remarks on Solutions of Eq. (D-UU)

Now, using main result from previous section i.e., Proposition 5.1, we are able
to solve equations (3) and (4), i.e., we can obtain the description of the two
projections of the vertical section I([x1, x2], ·), for fixed [x1, x2] ∈ L∞, of the
solutions of our main distributive equation (D-UU). As we noted earlier, Eq. (F)
is the other version of equations (3) and (4). Since we are limited in number of
pages we show one such solution for the first projection. Let us fix arbitrarily
[x1, x2] ∈ L∞. If f[x1,x2] = −∞, then

h3 ◦ g1[x1,x2]
([h−1

1 (u), h−1
1 (v)]) = −∞,

for all u, v ∈ [−∞,∞], u ≤ v, thus g1[x1,x2]
([h−1

1 (u), h−1
1 (v)]) = 0, which means

that for all [y1, y2] ∈ LI we have g1[x1,x2]
([y1, y2]) = 0., i.e.,

pr1 ◦ I([x1, x2], [y1, y2]) = 0.

Since in Proposition 5.1 we have 36 possible solutions (separately for g1[x1,x2]

and g2[x1,x2]
), we should have 1296 different solutions of Eq. (D-UU) (for a fixed

[x1, x2] ∈ L∞). Of course not every combination of these solutions give a cor-
rect value in the space LI . For instance if pr1 ◦ I([x1, x2], [y1, y2]) = 0 and
pr2 ◦ I([x1, x2], [y1, y2]) = 1, for every [x1, x2], then our (constant) solution
is correct: I([x1, x2], [y1, y2]) = [0, 1]. But if pr1 ◦ I([x1, x2], [y1, y2]) = e2 and

pr2 ◦I([x1, x2], [y1, y2]) =

{
0, y1 ∈ {0, 1},
e2, y1 ∈ (0, 1),

for every [x1, x2], then our solution

is incorrect, since I([x1, x2], [y1, y2]) = [e2, 0] for y1 ∈ {0, 1} and any y2.

Remark 6.1. We should also notice that not all correct solutions may form ver-
tical section of I, when I is a fuzzy implication. For instance if we had

pr1 ◦ I([x1, x2], [y1, y2]) =

{
1, y2 = 0,

e2, y2 > 0,
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for some fixed [x1, x2], then the function I is not increasing with respect to the
second variable, thus it is not a fuzzy implication in the sense of Definition 3.1.
Actually, if we had g(·) = pr1 ◦ I([x1, x2], ·) or g(·) = pr2 ◦ I([x1, x2], ·) for some
[x1, x2], then we may consider this function as a projection of vertical section of
a fuzzy implication if and only if g([1, 1]) = 1 and g is increasing. In fact, only 8
functions among 36 solutions of the equation (3) may satisfy those conditions.
We have checked relations between those 8 solutions and as a conclusion we get
that we have only 35 combinations of them, which may serve as a vertical section
of a fuzzy implication I. In our future work we will consider these problems in
details.

Moreover, in our next investigations we will concentrate on the situation when
U1, U2 are decomposable uninorms generated from two disjunctive representable
uninorms. The case when classical U1 �= U2 also lies in the area of our interest.
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10. Baczyński, M.: Distributivity of implication operations over t-representable t-
norms in interval-valued fuzzy set theory: the case of nilpotent t-norms. Inform.
Sci. 257, 388–399 (2014)



On the Distributivity Equation I(x,U1(y, z)) = U2(I(x, y),I(x, z)) 37
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Abstract. This paper discusses aggregation of dynamic risks in financial
management. The total risks in dynamic systems are usually estimated
from risks at each time. This paper discusses what kind of aggregation
methods are possible for dynamic risks. Coherent risk measures and their
possible aggregation methods are investigated. This paper presents ag-
gregation of dynamic coherent risks by use of generalized deviations. A
few examples are also given.

1 Introduction

In the classical economic theory, the variance and the standard deviation have
been used as risk indexes. Recently quantile-based risk criteria are employed
widely in financial management. The concept of risk is different in its application
fields. In engineering risks are considered in the both upper and lower areas from
a true value since the risk is usually represented as the errors of the data to the
true value. On the other hand in economics the concept of risk is given in a
different way from the risk in engineering. The risk in economics is discussed
only in an area of low rewards since the risk is connected deeply to losses and
bankruptcy in financial management.

In this paper, we focus on the estimation of dynamic risks in financial manage-
ment. The total estimation of dynamic risks are important for the stability of finan-
cial systems. The total risks in dynamic systems are usually estimated from risks at
each time.Themost popularmethods for the total risks are theweighted arithmetic
mean and themaximumof the risks over all periods. Themethodwith the weighted
arithmetic mean is sometimes insensitive to find the serious risks in dangerous sit-
uations ([10]). On the other hand regarding the method with the maximum it may
happen to lose the chance to find out the other potential risks regarding the dy-
namic system since we observe only the largest risk through all periods. We can
give ad hoc methods to construct a total risk from risks at each time. However is
the total risk consistent as a risk measure? We need to investigate whether the to-
tal risk inherits propertires as a risk mesure from risks at each time. From the view
point of aggregation operators ([1] and [9, Section 4.1]), this paper discusses what
kind of aggregation methods are possible for dynamic risks.
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In Section 2 we investigate coherent risks and their possible direct aggregation
methods. In Section 3 we discuss generalized deviations and their aggregation
methods. In Section 4 we present aggregated dynamic coherent risks by use of
generalized deviations. A few examples are also given.

2 Coherent Risk Measures

In recent financial management, the risk indexes derived from percentiles are
used widely to estimate risks regarding losses and bankruptcy. Let (Ω,P ) be a
probability space, where P is a non-atomic probability measure. Let X be a set
of integrable real random variables on Ω. The expectation of a random variable
X(∈ X ) is written by E(X) :=

∫
Ω X dP .

Example 2.1 (Risk indexes defined by percentiles, Jorion [4], Tasche [7]).

(i) Value-at-risk (VaR): Let X(∈ X ) be a real random variable on Ω for which
there exist a non-empty open interval I and a strictly increasing and onto
continuous distribution function x(∈ I) �→ FX(x) := P (X < x). Then, the
value-at-risk (VaR) at a risk-level probability p is given by the p-percentile
of the distribution function FX as follows:

VaRp(X) :=

⎧⎨⎩ inf I if p = 0
sup{x ∈ I | FX(x) ≤ p} if 0 < p < 1
sup I if p = 1.

(2.1)

(ii) Average value-at-risk (AVaR): Take X in the same way as (i). The average
value-at-risk (AVaR) at a risk-level probability p is given by

AVaRp(X) :=

⎧⎨⎩ inf I if p = 0
1

p

∫ p

0

VaRq(X) dq if 0 < p ≤ 1.
(2.2)

Let R be the set of all real numbers. Rockafellar and Uryasev [5] and Artzner
et al. [2,3] introduce the following concept regarding risk measures.

Definition 2.1. A map R : X �→ R is called a (coherent) risk measure on X if
it satisfies the following conditions (R.a) – (R.e):

(R.a) R(X) ≤ R(Y ) for X,Y ∈ X satisfying X ≥ Y . (monotonicity)

(R.b) R(X + θ) = R(X)− θ for X ∈ X and real numbers θ.

(R.c) R(λX) = λR(X) for X ∈ X and nonnegative real numbers λ. (positive
homogeneity)

(R.d) R(X + Y ) ≤ R(X) +R(Y ) for X,Y ∈ X . (sub-additivity)

(R.e) limk→∞ R(Xk) = R(X) for {Xk} ⊂ X andX ∈ X such that limk→∞ Xk =
X almost surely. (continuity)
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The property (R.b) in Definition 2.1 is called translation invariance in finan-
cial management. We can easily check the following lemma for Example 2.1.

Lemma 2.1. An index R = −VaR given by the value-at-risk satisfies the con-
ditions of Definition 2.1 except for the sub-additivity (R.d). However an index
R = −AVaRp given by the average value-at-risk is a risk measure in the sense
of Definition 2.1.

Let T be a positive integer. Now we introduce risk measures for a stochastic
sequence, where a random event at time t(= 1, 2, · · · , T ) is denoted by a real
random variable Xt(∈ X ). In this paper, we represent the stochastic sequence
simply as a random vector X = (X1, X2, · · · , XT ). We discuss aggregation of
risk measures R1(X1), R2(X2), · · · , RT (XT ) for a stochastic sequence of random
variables X1, X2, · · · , XT . Denote a vector space of random variables in X by
the product space X T . For random variables X = (X1, X2, · · · , XT ) ∈ X T and
Y = (Y1, Y2, · · · , YT ) ∈ X T , a partial order X ≥ Y implies Xt ≥ Yt for all
t = 1, 2, · · · , T . We introduce the following definition from Definition 2.1.

Definition 2.2. A map R : X T �→ R is called a (coherent) risk measure on X T

if it satisfies the following conditions (R.a) – (R.e):

(R.a) R(X) ≤ R(Y ) for X,Y ∈ X T satisfying X ≥ Y . (monotonicity)
(R.b) R(X+θ) = R(X)−θ forX ∈ X T and real vectors θ = (θ, θ, · · · , θ) ∈ RT .

(translation invariance)
(R.c) R(λX) = λR(X) for X ∈ X T and nonnegative real numbers λ. (positive

homogeneity)
(R.d) R(X + Y ) ≤ R(X) +R(Y ) for X,Y ∈ X T . (sub-additivity)
(R.e) limk→∞ R(Xk) = R(X) for {Xk} ⊂ X T and X ∈ X T such that

limk→∞ Xk = X almost surely. (continuity)

We note that R(0) = 0 and R(θ) = −θ for real vectors 0 = (0, 0, · · · , 0) ∈
RT and θ = (θ, θ, · · · , θ) ∈ RT . The risk criterion R of a random variable
X = (X1, X2, · · · , XT ) ∈ X T is given by aggregation of risk indexes R1(X1),
R2(X2), · · · , RT (XT ). Let a set of weighting vectors WT := {(w1, w2, · · · , wT ) |
wt ≥ 0 (t = 1, 2, · · · , T ) and

∑T
t=1 wt = 1}. The following proposition can be

checked easily.

Proposition 2.1. Let Rt be a risk measure on X at time t = 1, 2, · · · , T . The
following (i) – (iii) hold.

(i) The weighted average: Let a weighting vector (w1, w2, · · · , wT ) ∈ WT . Define
a map R : X T �→ R by

R(X) :=

T∑
t=1

wtRt(Xt) (2.3)

for X = (X1, X2, · · · , XT ) ∈ X T . Then R is a risk measure on X T .
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(ii) The order weighted average (Torra [8]): Let (w1, w2, · · · , wT ) ∈ WT be a
weighting vector satisfying w1 ≥ w2 ≥ · · · ≥ wT ≥ 0. Define a map R :
X T �→ R by

R(X) :=

T∑
t=1

wtR(t)(X(t)) (2.4)

for X = (X1, X2, · · · , XT ) ∈ X T , where R(t)(X(t)) is the t-th largest risk
values in {R1(X1), R2(X2), · · · , RT (XT )}. Then R is a risk measure on X T .

(iii) The maximum: Define a map R : X T �→ R by

R(X) := max{R1(X1), R2(X2), · · · , RT (XT )} (2.5)

for X = (X1, X2, · · · , XT ) ∈ X T . Then R is a risk measure on X T .

When we construct aggregation R directly from of risk indexes R1(X1),
R2(X2), · · · , RT (XT ), it is difficult to find other methods except for the methods
(i) − (iii) in Proposition 2.1 from the view point of aggregation operators ([1]
and [9, Section 4.1]).

Example 2.2 (Average value-at-risks). By Proposition 2.1, the following (2.6)
– (2.8) are risk measures induced from Example 2.1:

R(X) =

T∑
t=1

wt(−AVaRpt(Xt)) = −
T∑

t=1

wtAVaRpt(Xt), (2.6)

R(X) =

T∑
t=1

wt(−AVaRp(t)
(X(t))) = −

T∑
t=1

wtAVaRp(t)
(X(t)), (2.7)

R(X) = max{−AVaRp1(X1),−AVaRp2(X2), · · · ,−AVaRpT (XT )} (2.8)

for random variables X = (X1, X2, · · · , XT ) ∈ X T , where pt (0 < pt < 1) is a
given risk-level probability at time t = 1, 2, · · · , T and −AVaRp(t)

(X(t)) is the
t-th largest risk values in {−AVaRp1(X1),−AVaRp2(X2), · · · ,−AVaRpT (XT )}.

Let n be a positive integer. When we aggregate n risk indexes for a random
variable X , we can use the following corollary derived from Proposition 2.1.

Corollary 2.1. Let Ri be a risk measure on X for item i = 1, 2, · · · , n. The
following (i) – (iii) hold.

(i) The weighted average: Let a weighting vector (w1, w2, · · · , wn) ∈ Wn. Define
a map R : X �→ R by

R(X) :=

n∑
i=1

wiRi(X) (2.9)

for X ∈ X . Then R is a risk measure on X .
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(ii) The order weighted average: Let (w1, w2, · · · , wn) ∈ Wn be a weighting vec-
tor satisfying w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. Define a map R : X �→ R by

R(X) :=

n∑
i=1

wiR(i)(X) (2.10)

for X ∈ X , where R(i)(X) is the i-th largest risk values in {R1(X), R2(X),
· · · , Rn(X)}. Then R is a risk measure on X .

(iii) The maximum: Define a map R : X �→ R by

R(X) := max{R1(X), R2(X), · · · , Rn(X)} (2.11)

for X ∈ X . Then R is a risk measure on X .

In the next section we discuss relations between risk measures and deviations
to introduce other kinds of aggregation of risk measures.

3 Deviation Measures

Risk measure is related to deviation measures ([6]). In this section we introduce
deviation measures to investigate indirect approaches which are different from
direct methods in the previous section. Denote L2(Ω) and L1(Ω) the space of
square integrable real random variables on Ω and the space of integrable real
random variables on Ω respectively. We use a notation a− := max{−a, 0} for
real numbers a.

Example 3.1 (Classical deviations). The following criteria are classical devia-
tions in financial management, engineering and so on.

(i) Let the space X = L2(Ω). The standard deviation of a random variable
X(∈ X ) is defined by σ(X) := E((X − E(X))2)1/2.

(ii) Let the space X = L1(Ω). The absolute deviation of a random variable
X(∈ X ) is defined by W (X) := E(|X − E(X)|).

(iii) Let the space X = L2(Ω). The lower standard semi-deviation of a random
variable X(∈ X ) is defined by σ−(X) := E(((X − E(X))−)

2)1/2.
(iv) Let the space X = L1(Ω). The lower absolute semi-deviation of a random

variable X(∈ X ) is defined by W−(X) := E((X − E(X))−).

Recently Rockafellar et al. [6] has studied the following concept regarding
deviations.

Definition 3.1. Let X be a set of real random variables on Ω. A map D : X �→
[0,∞) is called a deviation measure on X if it satisfies the following conditions
(D.a) – (D.e):

(D.a) D(X) ≥ 0 and D(θ) = 0 for X ∈ X and real numbers θ. (positivity)
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(D.b) D(X+θ) = D(X) for X ∈ X and real number θ. (translation invariance)
(D.c) D(λX) = λD(X) for X ∈ X and nonnegative real numbers λ. (positive

homogeneity)
(D.d) D(X + Y ) ≤ D(X) +D(Y ) for X,Y ∈ X . (sub-additivity)
(D.e) limk→∞ D(Xk) = D(X) for {Xk} ⊂ X andX ∈ X such that limk→∞ Xk =

X almost surely. (continuity)

Hence, we have the following lemma for Example 3.1.

Lemma 3.1. The standard deviation σ, the absolute deviation W , the lower
standard semi-deviation σ− and the lower absolute semi-deviation W− are devi-
ation measures in the sense of Definition 3.1.

Proof. We have |a+ b| ≤ |a|+ |b| and (a+ b)− ≤ a− + b− for a, b ∈ R. We can
easily check this lemma with these inequalities and Schwartz’s inequality. ��

For a deviation measure D, we put

N(X) :=
D(X) +D(−X)

2
(3.1)

for X ∈ X . Then N is a semi-norm on X , i.e, it satisfies the following conditions
(N.a) – (N.c):

(N.a) N(X) ≥ 0 and N(0) = 0 for X ∈ X . (positivity)
(N.b) N(λX) = |λ|N(X) for X ∈ X and real numbers λ. (homogeneity)
(N.c) N(X + Y ) ≤ N(X) +N(Y ) for X,Y ∈ X . (sub-additivity)

We find from (3.1) that we can aggregate deviation measures in a similar way
to norms on the space X . Let D(X ) denote the family of all deviation measures
on X . Then the following proposition shows D(X ) becomes a convex cone, and it
indicates a hint to construct a deviation criterionD of a random variableX from
deviations D1(X) and D2(X) estimated by two viewpoints D1(·) and D2(·).

Proposition 3.1

(i) Let D ∈ D(X ) and a nonnegative real number λ. Then λD ∈ D(X ).
(ii) Let D1, D2 ∈ D(X ). Then D1 +D2 ∈ D(X ).

The sum, the scalar multiplication and the shift on the vector space X T are
defined as follows: We put X + Y = (X1 + Y1, X2 + Y2, · · · , XT + YT ), λX =
(λX1, λX2, · · · , λXT ) and X + θ = (X1 + θ,X2 + θ, · · · , XT + θ) for X =
(X1, X2, · · · , XT ) ∈ X T ,Y = (Y1, Y2, · · · , YT ) ∈ X T and real numbers λ and
real vectors θ = (θ, θ, · · · , θ) ∈ RT . We introduce the following definition for
random vectors from Definition 3.1.

Definition 3.2. A map D : X T �→ R is called a deviation measure on X T if it
satisfies the following conditions (D.a) – (D.e):
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(D.a) D(X) ≥ 0 and D(θ) = 0 for X ∈ X T and real vectors θ = (θ, θ, · · · , θ) ∈
RT . (positivity)

(D.b) D(X + θ) = D(X) for X ∈ X T and real vectors θ = (θ, θ, · · · , θ) ∈ RT .
(translation invariance)

(D.c) D(λX) = λD(X) forX ∈ X T and nonnegative real numbers λ. (positive
homogeneity)

(D.d) D(X + Y ) ≤D(X) +D(Y ) for X,Y ∈ X T . (sub-additivity)

(D.e) limk→∞ D(Xk) = D(X) for {Xk} ⊂ X T and X ∈ X T such that limk→∞
Xk = X almost surely. (continuity)

The following proposition shows methods to construct a deviation D on
X T from deviations D1(X1), D2(X2), · · · , DT (XT ) for a random vector X =
(X1, X2, · · · , XT ) ∈ X T .

Theorem 3.1. Let Dt be a deviation measure on X at time t = 1, 2, · · · , T . Let
d be a real number satisfying 1 ≤ d <∞. The following (i) – (iii) hold.

(i) The generalized weighted average: Let a weighting vector (w1, w2, · · · , wT ) ∈
WT . Define a map D : X T �→ [0,∞) by

D(X) :=

(
T∑

t=1

wtDt(Xt)
d

)1/d

(3.2)

for X = (X1, X2, · · · , XT ) ∈ X T . Then D is a deviation measure on X T .

(ii) The generalized order weighted average: Let (w1, w2, · · · , wT ) ∈ WT be a
weighting vector satisfying w1 ≥ w2 ≥ · · · ≥ wT ≥ 0. Define a map D :
X T �→ [0,∞) by

D(X) :=

(
T∑

t=1

wtD(t)(X(t))
d

)1/d

(3.3)

for X = (X1, X2, · · · , XT ) ∈ X T , where D(t)(X(t)) is the t-th largest de-
viation values in {D1(X1), D2(X2), · · · , DT (XT )}. Then D is a deviation
measure on X T .

(iii) The maximum: Define a map D : X T �→ [0,∞) by

D(X) := max{D1(X1), D2(X2), · · · , DT (XT )} (3.4)

for X = (X1, X2, · · · , XT ) ∈ X T . Then D is a deviation measure on X T .

Proof. (i) We can check this proposition easily with Minkowski’s inequality.
(ii) Let (t) denote indexes for the t-th largest deviation values in {D1(X1 +
Y1), D2(X2 + Y2), · · · , DT (XT + YT )}. By Minkowski’s inequality, we get
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D(X + Y ) ≤
(

T∑
t=1

wt

(
D(t)(X(t)) +D(t)(Y(t))

)d)1/d

≤
(

T∑
t=1

wtD(t)(X(t))
d

)1/d

+

(
T∑

t=1

wtD(t)(Y(t))
d

)1/d

≤ D(X) +D(Y ).

We can easily check the other conditions. ��

Let n be a positive integer. When we aggregate n deviation indexes for a
random variable X , we can use the following corollary derived from Proposition
3.1.

Corollary 3.1. Let Di be a deviation measure on X for item i = 1, 2, · · · , n.
Let d be a real number satisfying 1 ≤ d <∞. The following (i) – (iii) hold.

(i) The generalized weighted average: Let a weighting vector (w1, w2, · · · , wn) ∈
Wn. Define a map D : X �→ [0,∞) by

D(X) :=

(
n∑

i=1

wiDi(X)d

)1/d

(3.5)

for X ∈ X . Then D is a deviation measure on X .
(ii) The generalized order weighted average: Let (w1, w2, · · · , wn) ∈ Wn be a

weighting vector satisfying w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. Define a map D : X �→
[0,∞) by

D(X) :=

(
n∑

i=1

wiD(i)(X)d

)1/d

(3.6)

for X ∈ X , where D(i)(X) is the i-th largest deviation values in {D1(X),
D2(X), · · · , Dn(X)}. Then D is a deviation measure on X .

(iii) The maximum: Define a map D : X �→ [0,∞) by

D(X) := max{D1(X), D2(X), · · · , Dn(X)} (3.7)

for X ∈ X . Then D is a deviation measure on X .

4 Construction of Risk Measures by Use of Deviation
Measures

In this section we construct coherent risk measures for random vectors by use
of deviation measures. Now we introduce the following definition for random
vectors.

Definition 4.1. A map E : X T �→ R is called an expectation measure on X T if
it satisfies the following conditions (E.a) – (E.d):



46 Y. Yoshida

(E.a) E(θ) = θ for real vectors θ = (θ, θ, · · · , θ) ∈ RT .
(E.b) E(λX) = λE(X) for X ∈ X T and real numbers λ. (homogeneity)
(E.c) E(X + Y ) = E(X) +E(Y ) for X,Y ∈ X T . (additivity)
(E.d) limk→∞ E(Xk) = E(X) for {Xk} ⊂ X T and X ∈ X T such that limk→∞

Xk = X almost surely. (continuity)

The following lemma shows the relation between deviation measures D on X
and risk measures R on X .

Lemma 4.1

(i) Let D be a deviation measure on X . Suppose

D(X) ≤ E(X)− ess inf
ω

X(ω) for X ∈ X . (4.1)

Define
R(X) := D(X)− E(X)

for X ∈ X . Then R is a risk measure on X .
(ii) Let R be a risk measure on X . Suppose

R(X) + E(X) ≥ 0 for X ∈ X . (4.2)

Define
D(X) := R(X) + E(X)

for X ∈ X . Then D is a deviation measure on X .

Proof. (i) From (D.b) − (D.d), we can easily check (R.b) − (R.d). (R.a) Let
X,Y ∈ X satisfying X ≥ Y . Let Z := X−Y ≥ 0. Then from the assumption, we
have D(Z) ≤ D(Z) + ess infω Z(ω) ≤ E(Z). Then R(Z) ≤ 0. Then from (R.d)
we obtain R(X) = R(Y + Z) ≤ R(Y ) +R(Z) ≤ R(Y ). Thus we also get (R.a).

(ii) From (R.b) − (R.d), we can easily check (D.b) − (D.d). (D.a) Let X ∈ X .
From the assumption we haveD(X) = R(X)+E(X) ≥ 0. Let θ be a real number.
From (R.c) we have R(0) = 0 and from (R.b) we also have R(θ) = R(0 + θ) =
R(0) − θ = −θ. Therefore we obtain D(θ) = R(θ) + E(θ) = −θ + θ = 0. Thus
this lemma holds. ��

Remark. The lower standard semi-deviation σ− and the lower absolute semi-
deviation W− satisfy the condition (4.1) in Lemma 4.1(i). On the other hand,
−AVaRp is a risk measure which satisfies the condition (4.2) in Lemma 4.1(i) if
limx↓inf I xFX(x) = 0.

Extending Lemma 4.1, the following lemma shows the relation between devi-
ation measures D on X T and risk measures R on X T .
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Lemma 4.2

(i) Let D be a deviation measure on X T . Suppose

D(X) ≤ E(X)− ess inf
ω

min
1≤t≤T

Xt(ω) for X ∈ X T . (4.3)

Define
R(X) := D(X)−E(X)

for X ∈ X T . Then R is a risk measure on X T .
(ii) Let R be a risk measure on X T . Suppose

R(X) +E(X) ≥ 0 for X ∈ X T . (4.4)

Define
D(X) := R(X) +E(X)

for X ∈ X T . Then D be a deviation measure on X T .

Proof. The proof is in the same way as Lemma 4.1. ��

From this lemma, we can derive indirect construction methods for risk mea-
sures for stochastic sequences.

Theorem 4.1. Let a weighting vector (v1, v2, · · · , vT ) ∈ WT and let an expec-
tation measure

E(X) =
T∑

t=1

vtE(Xt)

for X = (X1, X2, · · · , XT ) ∈ X T , Assume Rt(Xt) + E(X) ≥ 0 for X =
(X1, X2, · · · , XT ) ∈ X T and t = 1, 2, · · · , T . Let d be a real number satisfy-
ing 1 ≤ d <∞. The following (i) and (ii) hold.

(i) The weighted average: Let a weighting vector (w1, w2, · · · , wT ) ∈ WT . Define
a map R : X T �→ R by

R(X) :=

(
T∑

t=1

wt(Rt(Xt) +E(X))d

)1/d

−E(X) (4.5)

for X = (X1, X2, · · · , XT ) ∈ X T . Then R is a risk measure on X T .
(ii) The order weighted average: Let (w1, w2, · · · , wT ) ∈ WT be a weighting

vector satisfying w1 ≥ w2 ≥ · · · ≥ wT ≥ 0. Define a map R : X T �→ R by

R(X) :=

(
T∑

t=1

wt(R(t)(X(t)) +E(X))d

)1/d

−E(X) (4.6)

for X = (X1, X2, · · · , XT ) ∈ X T , where R(t)(X(t)) + E(X(t)) is the t-th
largest risk values in {R1(X1) + E(X1), R2(X2) + E(X2), · · · , RT (XT ) +
E(XT )}. Then R is a risk measure on X T .
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Proof. (i) First we have Rt(Xt)+E(X) ≥ 0 for X = (X1, X2, · · · , XT ) ∈ X T .
Let

D(X) =

(
T∑

t=1

wt(Rt(Xt) +E(X))d

)1/d

(4.7)

for X = (X1, X2, · · · , XT ) ∈ X T . We can easily check D satisfies (D.a) – (D.c)
in Definition 3.2 since Rt(θ) = −θ, E(θ) = θ and Rt(Xt + θ) = Rt(Xt) − θ
for X ∈ X T and real vectors θ = (θ, θ, · · · , θ) ∈ RT . Then by Minkowski’s
inequality we obtain that D is a deviation measure on X T .

Next we fix any random vector X = (X1, X2, · · · , XT ) ∈ X T . Put a constant
c = ess infω mint Xt(ω). Then we have Xt − c ≥ 0 for t = 1, 2, · · · , T . Since
Rt is a risk measure, from (R.a) – (R.c) in Definition 2.1 we get Rt(Xt) + c =
Rt(Xt − c) ≤ Rt(0) = 0 for t = 1, 2, · · · , T . Thus it holds that Rt(Xt) ≤ −c for
t = 1, 2, · · · , T and Xt ∈ X . Hence we have

D(X)−E(X) =

(
T∑

t=1

wt(Rt(Xt) +E(X))d

)1/d

−E(X)

≤
(

T∑
t=1

wt(−c+E(X))d

)1/d

−E(X)

= −c = − ess inf
ω

min
t

Xt(ω).

Thus by Lemma 4.1(i) we obtain that R = D−E is a risk measure on X T . We
can check (ii) in the same way. ��

Let n be a positive integer. When we have n risk indexes for a random variable
X , we can apply Theorem 4.1 to aggregation of these risk indexes.

Corollary 4.1. Let Ri be a risk measure on X satisfying Ri(·) + E(·) ≥ 0 on
X for item i = 1, 2, · · · , n. Let d be a real number satisfying 1 ≤ d < ∞. The
following (i) and (ii) hold.

(i) The weighted average: Let a weighting vector (w1, w2, · · · , wn) ∈ Wn. Define
a map R : X �→ R by

R(X) :=

(
n∑

i=1

wi(Ri(X) + E(X))d

)1/d

− E(X) (4.8)

for X ∈ X . Then R is a risk measure on X .
(ii) The order weighted average: Let (w1, w2, · · · , wn) ∈ Wn be a weighting vec-

tor satisfying w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. Define a map R : X �→ R by

R(X) :=

(
n∑

i=1

wi(R(i)(X) + E(X))d

)1/d

− E(X) (4.9)

for X ∈ X , where R(i)(X) is the i-th largest risk values in {R1(X), R2(X),
· · · , Rn(X)}. Then R is a risk measure on X .
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We obtain the following example since AVaRp(·) ≤ E(·) holds on X for prob-
abilities p (0 < p < 1).

Example 4.1 (Dynamic average value-at-risks). Let d be a real number sat-
isfying 1 ≤ d < ∞. Let pt (0 < pt < 1) is a risk-level probability at time
t = 1, 2, · · · , T . The following (i) and (ii) hold.

(i) The weighted average: Let a weighting vector (w1, w2, · · · , wT ) ∈ X . Define
a map R : X T �→ R by

R(X) :=

(
T∑

t=1

wt(−AVaRpt(Xt) +E(X))d

)1/d

−E(X) (4.10)

for X = (X1, X2, · · · , XT ) ∈ X T . Then R is a risk measure on X T .
(ii) The order weighted average: Let (w1, w2, · · · , wT ) ∈ X be a weighting vector

satisfying w1 ≥ w2 ≥ · · · ≥ wT ≥ 0. Define a map R : X T �→ R by

R(X) :=

(
T∑

t=1

wt(−AVaRp(t)
(X(t)) +E(X))d

)1/d

−E(X) (4.11)

for X = (X1, X2, · · · , XT ) ∈ X T , where −AVaRpt(Xt) + E(Xt) is the t-th
largest risk values in {−AVaRp1(X1) +E(X1),−AVaRp2(X2) + E(X2), · · · ,
−AVaRpT (XT ) + E(XT )}. Then R is a risk measure on X T .
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Abstract. We investigate the relationship between consensus measures
used in different settings depending on how voters or experts express their
preferences. We propose some new models for single-preference voting,
which we derive from the evenness concept in ecology, and show that
some of these can be placed within the framework of existing consensus
measures using the discrete distance. Finally, we suggest some general-
izations of the single-preference consensus measures allowing the incor-
poration of more general notions of distance.

Keywords: Consensus measures, decision making, preferences, evenness
measures, specifity, distances.

1 Introduction

The idea of consensus is relevant to various decision domains, including voting,
group decision making and multi-criteria evaluation. It is closely tied to notions
such as ‘majority’ and ‘agreement’ and can be used to provide an authoritative
stamp on decisions or persuade individuals to alter their preferences during a
mediation process.

In popular usage, the term consensus is sometimes implied to mean only the
unanimous agreement amongst individuals, however the notion of soft consensus
[7, 9], i.e. with the degree of consensus ranging from 0 to 1, has been applied in
decision processes where the level of agreement between individuals needs to be
quantified.

Each of the scenarios in Fig. 1 involve multiple decision makers expressing
their preferences over 4 alternatives or candidates, {A,B,C,D}. They can be
seen to comprise a spectrum in terms of the precision and detail required from
the decision makers (from most to least detail).

For the evaluation of alternatives on a numerical or completely ordered scale,
consensus measures such as those developed in [2,3,8,28] can be used to give an
idea of how much the voters agree with respect to each candidate after providing
their scores, either by looking at pairwise differences or the difference between

� Corresponding author.
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Fig. 1. Various situations with multiple alternatives/candidates and experts/voters
where consensus evaluations may be useful

each input and an average score. We can see in this example that the consensus
regarding A’s scores would be higher than that around C.

Consensus for ranked alternatives was investigated in [5] and some of these
methods have been generalized to the case of weak orders in [12–15]. Such con-
sensus measures here focus on differences between the ranks allocated to each of
the candidates/alternatives or the agreement in terms of pairwise comparisons.
The consensus between the first two voters is clearly higher than between the
first and fourth.

Since complete rankings are sometimes difficult to elicit from experts or de-
cision makers, a popular approach in group decision making has been to obtain
pairwise preferences from decision makers as part of the consensual process.
Consensus measures over these preference relations have been developed by a
number of authors (e.g. in [1, 7, 18, 31]), which, as with the evaluation of al-
ternatives, also look at pairwise differences between experts and the differences
between each expert and the overall opinion.

Finally, we can consider the very simple case of single-preference voting. We
have noted recently in [4] that the indices used to evaluate the concept of even-
ness in ecology, which operate on proportional input vectors, share some prop-
erties with consensus measures. These evenness indices capture the differences
in species populations and usually reach a minimum when a single species dom-
inates. Here we propose that the negation or reciprocal of these models (a single
species dominating being analogous to a dominating opinion or unilateral prefer-
ence) could be appropriate for evaluating consensus where the inputs represent
voting proportions.

The article will be set out as follows. In Section 2, we give an overview of
consensus measures and note that models used in different settings can be con-
sidered as special cases of a general framework, differing in terms of the distance
defined between decision makers’ preferences. In Section 3, we propose a number
of consensus measures for the case of single-preference voting, then in Section 4
we show how they fit into the general consensus framework and how they could
be extended. We provide some summarizing comments in the Conclusion.
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2 Consensus Measures Background

Consensus measures are used to give some idea of the level of agreement or
overall similarity for a set of inputs, whether they be numerical evaluations
or preference relations. If all inputs are the same, then we should achieve a
perfect level of consensus, and as more and more of the inputs differ, the level
of consensus is reduced. We consider a set of m decision-makers or voters V =
{v1, v2, . . . , vm} expressing their preferences over n candidates or alternatives
U = {u1, u2, . . . , un}. Preferences f(vi, uj) ∈ P can be expressed as: evaluations
xij ∈ [0, 1], indicating an overall score awarded by voter i to candidate j; rankings
rij ∈ {1, 2, . . . , n}, showing that voter i ranked candidate j as the (rij)-th best
candidate; pairwise preferences aijk ∈ {0, 1} indicating whether or not voter i
prefers candidate j to candidate k; and single votes si ∈ {1, 2, . . . , n} showing
which candidate is preferred by voter i.

For each situation, there are various existing generalizations and extensions.
For example, evaluations can be expressed as intervals [32], rankings can be
expressed as weak (rather than complete) orders [15], and pairwise preferences
can be expressed as either additive or multiplicative fuzzy degrees of preferences
[18]. For the moment we will contain our investigations to the simplified cases,
although we note that many of the consensus measures have been developed
with these generalized frameworks in mind.

Table 1 lists some of the properties relating to consensus measures. In [5,13],
C1 − C3 were considered as the minimum requirements for consensus1 while
further properties have been studied in [2, 14, 28].

Existing consensus measures can often be considered as special cases of the
following general models (see [3, 8, 26, 28]).

C〈M,f〉(PV×U ) = 1−

m

M
i,j=1,i=j

d(f(vi, U), f(vj , U))

maxV ×U �
(1)

C〈M1,M2,d〉(PV×U ) = 1−

m

M1
i=1

d

⎛⎝f(vi, U),
m

M2
j=1

f(vj , U)

⎞⎠
maxV×U �

(2)

where M,M1,M2 are averaging aggregation functions, d is a dissimilarity or
distance function34, and maxV ×U � is a scaling factor, either used to normalize
d to [0, 1] or to ensure that a level of zero consensus is possible for all m.

1 These were considered to be essential for sets of ordered preferences. For sets of
real inputs given over the unit interval, we have proposed the basic requirements of
unanimity (C(t, t, . . . , t) = 1) and that minimum consensus be reached for C(0, 1) =
C(1, 0) = 0 when there are two inputs [2].

3 We note that consensus can also be framed in terms of the inverse notion of similarity,
however similarities, in turn, are often based on distances (see [10,14]).

4 In [3] we also considered consensus measures in the framework of multi-distances [20]
with C = 1−D where D is a scaled multiple-argument distance function.
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Table 1. Properties for consensus measures C : P → [0, 1] where P is the set of voters
and their preferences pertaining to a set of alternatives V × U

C1 Unanimity It holds that C(PV ×U ) = 1, if and only if f(vi, uj) = f(vk, uj)
for all j;

C2 Anonymity It holds that C(PV ×U ) = C(PVσ×U ) where Vσ represents any
permutation of the voters {vσ(1), vσ(2), . . . , vσ(m)};

C3 Neutrality It holds that C(PV ×U ) = C(PV ×Uσ ) where Uσ represents any
permutation of the alternatives {uσ(1), uσ(2), . . . , uσ(n)};

C4 Maximum The consensus value reaches a minimum when the voters can be
dissension partitioned into two equally sized groups |V1| = |V2| with

preferences in V1 being as far as possible from V2;

C5 Reciprocity The consensus value is the same if we reverse the preference
ordering (or take the negation2 of each evaluation) for each voter;

C6 Replication Duplicating the set of voters or inputs does not alter the level of
invariance consensus;

C7 Monotonicity When there exists a subset of unanimous voters Vmaj comprising
with respect half of the population, any movement of the remaining voters
to the ‘closer’ to the preferences expressed in Vmaj should not decrease
majority the level of consensus.

In the first case, we aggregate the differences between each pair of voters vi, vj
in terms of their preferences over the set of alternatives in U , while in the second
case we look at the differences between each voter and an overall opinion (given
by M2).

For numerical inputs, standard choices for d include absolute difference
d(x, y) = |x − y| or squared difference d(x, y) = (x − y)2. The overall distance
between the evaluations of two decision makers can then be found either by
summing these differences over each alternative or using a distance defined for
multiple dimensions such as the Euclidean distance.

A common way to assess differences between voters who provide a complete
(or weak) ranking of alternatives is to codify their preferences into a vector
of ranks rij and then calculate distances between the vectors [15]. Common
choices include the Euclidean distance, Manhattan distance or cosine difference.
Spearman’s rank correlation is also one such measure that takes into account
the differences in the ranks for each alternative [5].

For pairwise preferences, a natural way to measure differences between vot-
ers is to count the number of pairs on which they disagree. This amounts to
what is referred to as Kendall’s τ [5] (where the orderings are complete) or the
Kemeny distance (for weak orders where there are ties). Garćıa-Lapresta and
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Pérez-Román have also suggested a weighted version of the Kemeny distance
that accounts for the position of the ranks on which the voters disagree5 [13,17].

We now consider the use of models based on evenness indices in ecology for
single-preference voting.

3 Consensus for Single-Preference Voting

The problem of measuring evenness and the associated notion of diversity has
been studied in ecology for over 60 years [24]. Many of these indices have their
origins in the concept of equitability developed in economics [11,27] and the cal-
culation of entropy from information science [23]. A number of desired properties
relating to these indices have been investigated (e.g. in [25, 29]). While many of
these relate to continuity, independence or boundary conditions, of particular in-
terest to us is the requirement that “Evenness should decrease when abundance
is transferred from a less abundant species to a more abundant one.” [29]. This
is a particularly pertinent property to consensus, essentially extending condition
C7.

In [4] we noted that evenness indices obtained from a calculation of species
dominance do not satisfy the maximum dissension property C4 because they
reach their minimum when a single species dominates - rather than for cases of
maximum variability between populations. For example, E1 in Table 2 is based

on Simpson’s dominance index,
n∑

j=1

p2j . This very notion of dominance however

can be seen to correspond with that of consensus in the case of simple voting
where each pj represents the proportion of voters voting for the j-th candidate;
reaching a maximum when one of the pj = 1 and a minimum when all pj are
equal.

We therefore propose a number of single-preference consensus measures in
Table 2 alongside their associated evenness indices. The equations for CE2 and
CMcI are also based on Simpson’s dominance index, however with alternative
scaling operations regulating the behavior between the maximum and minimum
consensus levels. The evenness indices used for CO and CHeip are of a similar
form, however they calculate dominance in a different way.

We draw special attention to Csp, derived from an evenness measure presented
in [22] based on Yager’s specificity [33]. Specificity captures the extent to which
a possibility distribution contains a single element. The p(j) notation denotes
a reordering of the pj such that p(1) ≥ p(2) ≥ . . . ≥ p(n) and the wj are non-

increasing weights such that w2 > 0 and
n∑

j=2

wj ≤ 1. For the consensus to increase

when smaller populations are redistributed to larger populations, however, the

5 It is interesting to note that whereas Garćıa-Lapresta and Pérez-Román apply the
Kemeny distance (based on pairwise comparisons) to complete orders, Herrera-
Viedma et al. have applied order-based distances to the evaluation of heterogeneous
pairwise preferences [18].
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Table 2. Consensus measures derived from evenness indices using 1−E(p1, p2, . . . , pn)
with different choices for E

Consensus Measure Evenness Calculation Reference

CE1 =

(
n

n∑
j=1

p2j

)
−1

n−1
E1 =

1−
n∑

j=1
p2j

1−1/n
[19]

CE2 =

(
n

n∑
j=1

p2j

)
−1(

(n−1)
n∑

j=1
p2j

) E2 = 1

n
n∑

j=1
p2j

[30]

CO =
n

(
1−

n∑
j=1

min(pj ,1/n)

)
n−1

EO =

n∑
j=1

min(pj ,1/n)− 1
n

1− 1
n

[6]

CHeip =

(
n

n∏
j=1

p
pj
j

)
−1

(n−1)
n∏

j=1
p
pj
j

EHeip =

1
n∏

j=1
p
pj
j

−1

n−1
[16]

CMcI =

√
n

n∑
j=1

p2
j
−1

√
n−1

EMcI =

(
n∑

j=1
pj

)
−
√

n∑
j=1

p2
j

(
n∑

j=1
pj

)
−

⎛⎝ n∑
j=1

pj

⎞⎠
√

n

[21]

Csp = p(1) −
n∑

j=2

wip(j) Esp = 1−
(
p(1) −

n∑
j=2

wip(j)

)
[22,33]

weights should be non-decreasing. We also enforce that
n∑

j=2

wj = 1 to ensure

that minimum consensus is reached when all pj are equal.
As well as exhibiting the redistribution-based behavior analogous to property

C7 for the context of simple voting6, all of the consensus measures in Table 2
satisfy the basic requirements C1 − C3 given in Table 1. They also reach the
minimum consensus value of 0 when preferences for the candidates are equally
distributed, which is consistent with the maximum dissension property C4. Al-
though reciprocity (C5) does not apply here since we can’t take the negation or
reverse ordering, the use of proportions ensures replication invariance (C6) will
automatically hold.

Tables 3-4 show some example input sets with the resulting consensus eval-
uations. In Table 3, we consider just the case of two candidates and 10 voters,
while for Table 4 we show evaluations for a varying number of candidates and
the proportion of voters supporting each.

6 Shannon’s information entropy Ent(p) =
n∑

i=1

pj log(pj) also exhibits this behavior,

summing the terms pj log(pj) rather than pjpj . EHeip effectively calculates domi-
nance using exp(Ent(p)).
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Table 3. Consensus evaluations using measures based on evenness for 10 voters and 2
candidates

Candidates Consensus measures

A B CE1 CE2 CO CHeip CMcI Csp

5 5 0 0 0 0 0 0
Voters 6 4 0.04 0.077 0.2 0.04 0.048 0.2
for each 7 3 0.16 0.276 0.4 0.158 0.186 0.4
candidate 8 2 0.36 0.529 0.6 0.351 0.401 0.6

9 1 0.64 0.78 0.8 0.616 0.677 0.8
10 0 1 1 1 1 1 1

The values in Table 3 give some idea of how the measures graduate between
minimum consensus and maximum consensus as the majority steadily increases.
While CO and Csp are linear, the remaining measures are affected more by
redistributions of voters when the disparity between supporters of A and B is
already high than when it is low.

Table 4. Consensus evaluations for varying number of candidates and proportional
support

Candidates Consensus measures
n A B C D E CE1 CE2 CO CHeip CMcI Csp

3 0.4 0.32 0.28 0.011 0.033 0.1 0.016 0.015 0.107
3 0.5 0.4 0.1 0.13 0.310 0.35 0.216 0.167 0.3
3 0.5 0.25 0.25 0.063 0.167 0.25 0.086 0.083 0.25
4 0.4 0.4 0.1 0.1 0.12 0.353 0.4 0.234 0.166 0.245
4 0.6 0.2 0.1 0.1 0.227 0.540 0.467 0.343 0.296 0.482
5 0.4 0.3 0.1 0.1 0.1 0.1 0.357 0.375 0.217 0.148 0.276
5 0.6 0.3 0.05 0.03 0.02 0.317 0.699 0.625 0.570 0.410 0.539
5 0.8 0.1 0.05 0.03 0.02 0.567 0.868 0.75 0.725 0.654 0.763

For the examples shown in Table 4, we note that while property C7 holds for
fixed n, sometimes the evaluations for varying n are not necessarily consistent,
e.g. from the input set (0.4,0.4,0.1,0.1), if the voters for D change their preference
to candidate A, this should increase the level of consensus - however because
of the different scaling that happens depending on the number of candidates,
this is not the case except for Csp and CMcI . This problem can be avoided if
the distances are not scaled, however the sacrifice will be that the property of
maximum dissension (C4) will not hold.

In the following we suggest that these alternative models for measuring con-
sensus could also be extended to other domains.
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4 Extending Single-Preference Consensus Models to
Other Settings

As well as being conceptually appealing from the viewpoint of redistributing
voters toward a majority candidate, Simpson’s dominance index can also be
interpreted in light of Eq. (1). We model the difference between two voters’ pref-
erences using the discrete distance, i.e. d0(x, y) = 0 if x = y and 1 otherwise.
Using d0, the proportion of pairs (including self-identical pairs) that will have
coinciding preferences and hence zero distance will be precisely Simpson’s dom-
inance index, so subtracting this from 1 (with appropriate scaling) will result in
Eq. (1) being equivalent to CE1 .

Indeed, the results obtained for CE1 in Table 1 are equivalent to those which
would be obtained for equivalent scenarios in the different decision making set-
tings using Eq. (1), i.e. the distance between the preferences A > B and B > A
is 1, and for evaluations on a numerical scale we can consider p1 and p2 to reflect
the proportion of 0s and 1s respectively.

On the other hand, CO and Csp coincide with consensus measures of the
form in Eq. (2). Assuming that the candidate with the majority is the overall
selection, these values represent the relative proportion7 of voters that agree
with this decision.

We therefore can look to extend these models to settings with differing notions
of distance. For instance, CE1 can be expressed,

CE1 = 1−
n

n∑
i,j=1,i=j

d0(ui, uj)pipj

n− 1
.

By changing the distance d0, we recover other special cases of Eq. (1), simply
replacing the count of pairs which differ by d(ui, uj) with the relative proportions.

It might also be interesting to adapt the equations from Table 1 which are
obtained from pairs in a similar fashion. For example, in CHeip we can replace

the terms p
pj

j with

(
n∑

i=1

(1− d(ui, uj))pi

)pj

, i.e., for each of the pj indices, we

include not only the population that supports j but also all those ‘close’ to
supporting j. We can take similar approaches for CO and CE2 . We recover the
original cases whenever d is the discrete distance.

5 Conclusion

We have presented a number of consensus measures based on indices studied in
ecology for measuring consensus in a single-preference scenario and shown that
some of these can be considered within a more general consensus framework,
establishing their relationship to measures used in other decision making settings.

7 I.e. after scaling by the minimum proportion possible.
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We suggested some ways for these measures to be extended to more general
consensus domains.

As well as being useful for single-preference settings or where there is no struc-
ture to the decision makers’ alternatives and preferences, these consensus mea-
sures are also useful for providing an auxiliary consensus measurement. While
Herrera et al. distinguish between consensus over alternatives or consensus with
the overall decision (e.g. see [8]), and while order-based consensus measures of-
ten look at differences between rankings, the equations in Table 2 can be used
to indicate the overall consensus with respect to a particular position. For in-
stance, in the second setting of Fig. 1, it may be useful to know that there is
high agreement when ranking A in first place, although the decision makers are
varied with respect to the other positions.
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Abstract. Multirobot systems have made tremendous progress in exploration
and surveillance. In that kind of problem, agents are not required to perform a
given task but should gather as much information as possible. However, informa-
tion gathering tasks usually remain passive. In this paper, we present a multirobot
model for active information gathering. In this model, robots explore, assess the
relevance, update their beliefs and communicate the appropriate information to
relevant robots. To do so, we propose a distributed decision process where a robot
maintains a belief matrix representing its beliefs and beliefs about the beliefs of
the other robots. This decision process uses entropy and Kullback-Leibler in a
reward function to access the relevance of their beliefs and the divergence with
each other. This model allows the derivation of a policy for gathering information
to make the entropy low and a communication policy to reduce the divergence.
An experimental scenario has been developed for an indoor information gathering
mission.

1 Introduction

Robotic systems are increasingly used in surveillance and exploration applications. In
the future robots may assist humans and eventually replace them in dangerous areas. In
these particular research fields the main goal of the system is not to reach a given goal
but to gather information. The system needs to create a complete and accurate view of
the situation. This built view may be used afterwards by some agents - human or arti-
ficial - to make some decisions and perform some actions. Therefore the information
gathering system must be able to identify lacking information and take the necessary
steps to collect it. However it is obviously not productive that all the robots in the sys-
tem try to collect all possible information, just as it is not possible for the robots to
communicate all the information they have all the time. They should select pieces of
information to collect or to communicate depending on what they already know and
what other agents already know. Developing methods to allow robots to decide how
to act and what to communicate is a decision problem under uncertainty. Partially Ob-
servable Markov Decision Processes (POMDPs) are traditionally used to deal with this
kind of problem, more particularly Decentralized POMDPs (DEC-POMDPs) that are
an extension of POMDPs for multiagent systems. However the classic POMDP frame-
work is not designed to have information gathering as a target : information gathering

V. Torra et al. (Eds.): MDAI 2014, LNAI 8825, pp. 60–71, 2014.
c© Springer International Publishing Switzerland 2014
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is usually a means of reaching another goal. Some extensions have been developed for
mono-agent systems but the plunge to multi-agent systems has not been taken. We sug-
gest in this paper a formal definition of the relevance of a piece of information as well
as a new model dedicated to multiagent information gathering that is able to explore
actively its environment and communicate relevant information.

Section 2 presents some background knowledge and other studies that are relevant to
our problem. Section 3 presents the proposed model to do active sensing with a multi-
robot system. It defines a agent-oriented relevance degree and describes the Partially
Observable Markov Decision Process used in the system. Finally, section 4 presents an
implementation of the model on a simple indoor sensing problem.

2 Background and Related Work

Relevance

Agents situated in an environment perceive a huge amount of data and they need to
process those data to extract higher-level features. However the interest of a feature for
an agent depends on several parameters such as the situation, the problem to be dealt
etc. Since it is counterproductive to communicate neither to perform an action to collect
non interesting information, agents need to quantify the importance of a piece of infor-
mation according to the current situation. This degree of importance is the relevance
of information. Borlund [1] defined two types of relevance : system-oriented relevance
and agent-oriented relevance. System-oriented relevance analyzes relevance regarding
a request. The better the match between information and the request, the greater the de-
gree of relevance. System-oriented relevance is used and studied in several Information
Retrieval Systems [2]. Agent-oriented relevance defines a link between information and
an agents needs. Information is relevant if it matches a specific need, if it is informative
and useful for an agent which receives it. However the need may not be explicit. Floridi
[3] suggested a base of epistemic relevance and Roussel and Cholvy [4] deepened this
study in the case of BDI agents and multimodal logic. However those studies are based
on propositional logic and are not applicable for reasoning with uncertain knowledge.
Therefore we need to define a relevance theory that may be used in uncertain reasoning.

Active Information Gathering

Using relevance, a robot is able to decide if a piece of information is interesting or not.
Therefore it is able to perform active information gathering. Active information gath-
ering defines the fact that an agent will act voluntarily to gather information and not
just perceive passively its environment. In this context the agent has to make decisions
in an environment that it cannot perceive completely. One of the best and commonly
used models to deal with that kind of problem is Partially Observable Markov Decision
Process. Some studies have already been carried out to perform active perception us-
ing POMDPs. Ponzoni et al. [5] suggested a mixed criterion for active perception as a
mission to recognize some vehicles. The criterion is based on an entropy function and a
classical reward function to mix active perception and more classical goals of POMDPs.
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Meanwhile Araya-Lopez et al. [6] suggested a more general approach to use any reward
function based on belief state in POMDPs. These two approaches proved the feasibil-
ity of such a system where information gathering is the goal. However they are both
mono-agent and are not applicable to a multiagent system. To our knowledge there is
no model of multiagent system for active information gathering.It is obvious that in-
formation gathering would be more efficient if it is done by several agents instead of
a single one. However, it is important that agents are able to coordinate themselves to
make the gathering efficient.

Multiagent Active Information Gathering

The problem of multiagent active information gathering relates to multiagent decision
under uncertainty: a set of agents have to control together a decision process to collect
information. However, no agent is able to control the whole process. Different equiv-
alent frameworks extending POMDPs have been developed to deal with multiagent
decision problems under uncertainty [7].

Solving a multiagent POMDP is a problem NEXP-complete [8]. Even if algorithms
and heuristics have been suggested to overcome this complexity [14], those frameworks
are usually not applicable to real problems. To overcome this issue, Spaan et al. [15]
suggested a system based on POMDP to enable a Network Robot System to classify
particular features by acting to get the best information possible. In this study, the au-
thors decided to model the active information gathering thanks to classifying actions in
order to avoid using a reward function based on entropy, which would increase the com-
plexity of planning. However Araya-Lopez et al. [6] proved that it is possible to reuse
techniques from the standard POMDP literature with a reward function based on belief
states as would be reward function using entropy. On top of that, in the system suggested
by Spaan et al., all the agents have to make the classification steps and build a complete
view of the environment. However, in usual active information gathering problems, it
is not useful that each agent of the system has this complete view as long as the system
view is complete. Therefore, agents need to communicate with each others in order to
avoid repetitive exploration. Communication in multiagent POMDP framework is usu-
ally assumed to be free and instantaneous. However such assumption is not possible in
real problems. Communication is an action that has a cost and must be decided. Roth
et al. [9] presented an algorithm to take into account the communication cost in multi-
agent POMDPs. In this paper, the communication is considered only during execution
and should improve the performance of the system : if it is useful for the system, an
agent communicates all its history of observations. There is no decision concerning the
observations to communicate. Information gathering is once again a means to reach a
goal and not the goal in itself.

3 The Model

3.1 Definition of an Agent-Based Relevance

Let’s assume an agent ai situated in an environment E . The environment is modeled as
a set of features of interest. Each feature is described using a random variable Xk which



Distributed Decision-Theoretic Active Perception 63

can take values in its domain DOM(Xk). The agent ai has some beliefs BE
i concerning

the features of interest modeled as probability distributions over the Xk ∈ E .

BE
i,t = {bki,t∀Xk ∈ E}

with bki,t being the probability distribution of agent ai over the variable Xk at time t.
Let’s assume an agent receives observations concerning the features of interest. When
receiving a new observation, agent ai updates its beliefs as follows : BE

i,t+1 =

update(BE
i,t, ok) [10]

First of all we considered that observations received are true. As a matter of fact,
an observation cannot be relevant if it is a false observation [3]. We discuss about as-
sumption and the way it is used in the decision process in section 3.2. Considering this
assumption, an observation ok is relevant for an agent ai if it matches the following
criteria:

1. agent ai is interested in the subject of the observation ok, that is to say Xk

2. the observation ok is new for agent ai
3. if the observation ok is not new, it should render agent’s ai beliefs more accurate

The first point is dealt with the way we represent agent’s beliefs : if agent ai is
interested in Xk then Xk is in agent’s ai beliefs. We assume that an observation ok is
new for agent ai if beliefs BE

i,t+1 and BE
i,t are distant from each other. The dissimilarity

between two probability distributions is measured by the Kullback-Leibler ratio.

Definition 1. An observation ok is new for agent ai at time t if and only if

DKL(BE
i,t||BE

i,t+1) > ε (1)

ε is a fixed threshold and DKL(BE
i,t||BE

i,t+1) is the Kullback-Leibler ratio and defined
by

DKL(BE
i,t||BE

i,t+1) =
∑
Xk∈E

n∑
k=1

bki,t(xk) log
bki,t(xk)

bki,t+1(xk)
(2)

where bki,t(xk) is the belief of agent ai that the random variable Xk takes value xk.

To model the accuracy of a belief BE
i,t, we use an entropy measure.

Definition 2. Belief BE
i,t+1 is more precise than belief BE

i,t if and only if

H(BE
i,t+1) < H(BE

i,t) (3)

with H(BE
i,t) = −

∑
Xk∈E

∑n
k=1 bi,t(xk)log(bi,t(xk)).

Given the previous definitions we may define the degree of relevance as shown below
:

Definition 3. The degree of relevance of an observation ok concerning a random vari-
able Xk for an agent ai, noted reli(ok), is given by

reli(ok) = αDKL(BE
i,t||BE

i,t+1) + β(H(BE
i,t)−H(BE

i,t+1)) + δ (4)

with BE
i,t+1 = update(BE

i,t, ok), α and β being weights and δ being a translation factor
to ensure the relevance is positive.
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3.2 Decision Process for Multiagent Active Information Gathering

Let a multiagent system be defined as a tuple
< E ,AG,B,D > with E being the environment as defined previously, AG being the
set of agents, B being the set of all agent’s beliefs on the environment and D being the
set of all agent’s decision functions D = {Di, ∀i ∈ AG}. Each Di is represented as a
Factored Partially Observable Markov Decision Process (FPOMDP)[11].

Set of Actions. We consider two type of actions : look for the value of a particular
random variable (Explore-type actions) and communicate an observation to an agent
(Communicate-type actions):
A = {Exp(Xk), ∀Xk ∈ E}∪

{Comm(o, ag), ∀o ∈ O, ∀ag ∈ AG}

The size of the action set is :

|A| = |AExplore|+ |ACommunicate| (5)

|A| = |E|+ |O| × |AG| (6)

Set of Observations. In a Partially Observable Markov Decision Process, an agent
doesn’t know exactly the current state of the system. It only receives observations when
performing actions, which are only indications about the current state. So the agent may
estimate the current state from the history of observations it received. When perform-
ing an Explore-type action, the agent receives an observation concerning the random
variable it is trying to sense. This OExplore set of observations depends on the prob-
lem considered. When performing a Communicate-type action the agent receives an
observation stating that the message has been properly sent or not. Therefore two ob-
servations are possible for any Communicate-type action:

OCommunicate = {okMsg, nokMsg}

Maintaining a Belief State. The agent doesn’t know the exact current state of the
system. It only has observations about it. Therefore it should maintain some beliefs
concerning this current state. In the context of multiagent information gathering, an
agent should not only have beliefs about the state of the environment but also about the
other agents. As a matter of fact, to avoid agents exploring the same areas and to enable
them to choose the most relevant observation to communicate, they should model the
knowledge of other agents in their own belief state. Thus we defined an extended belief
state as following :

Definition 4. Let an extended belief state of an agent ai at time t be defined as follow-
ing:

Bi,t = BE
i,t ∪ B

j,E
i,t (7)

with BE
i,t = {bi,ki,t , ∀Xk ∈ E} being the beliefs of agent ai concerning the environment

E and Bj,E
i,t = {bj,ki,t , ∀Xk ∈ E} being the beliefs of agent ai concerning the beliefs of

agent aj concerning the environment.
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Let’s note that Bj,E
i,t is an approximation of BE

j,t. We may use a matrix representation.
Rows represent the different random variables describing the environment and columns
represent agent’s i beliefs on each agent’s beliefs, including itself :

Bi,t =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b1,1i,t . . . bj,1i,t . . . bi,1i,t . . . b
|AG|,1
i,t

...
...

...
...

b1,ki,t . . . bj,ki,t . . . bi,ki,t . . . b
|AG|,k
i,t

...
...

...
...

b
1,|E|
i,t . . . b

j,|E|
i,t . . . b

i,|E|
i,t . . . b

|AG|,|E|
i,t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(8)

To keep an accurate representation of the current state of the system an agent has to
update its beliefs regularly. An update will occur in three cases :

1. the agent receives a new observation from its sensors after an Explore action. It
updates its own beliefs concerning the environment : BE

i,t+1.
2. the agent receives a new observation from agent aj . It updates its own beliefsBE

i,t+1

as well as its beliefs concerning agent aj : Bj,E
i,t+1.

3. the agent sends an observation to agent aj . It updates its beliefs concerning agent
aj : Bj,E

i,t+1.

In all cases the update Bx,E
i,t+1 = update(Bx,E

i,t , ok),ok being the observation received, is
made as usual in Partially Observable Markov Decision Processes :

Bi,t+1(s
′) =

ω(ok, s
′, a)
∑

s∈S p(s′|s, a)Bi,t(s)∑
s∈S
∑

s′′∈S ω(ok, s′′, a)p(s′′|s, a)bi,ki,t
(9)

In the matrix representation, the columns that may be updated are:

Bi,t+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b1,1i,t . . . bj,1
i,t+1 . . . bi,1

i,t+1 . . . b
|AG|,1
i,t

...
...

...
...

b1,ki,t . . . bj,k
i,t+1 . . . bi,k

i,t+1 . . . b
|AG|,k
i,t

...
...

...
...

b
1,|E|
i,t . . . bj,|E|

i,t+1 . . . bi,|E|
i,t+1 . . . b

|AG|,|E|
i,t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Reward Function. The best action to perform at a given time is set by a policy, com-
puted considering a relevance based reward function. This reward function defines the
reward an agent may receive by performing action a in state s. However in an informa-
tion gathering context we are not interested in reaching some special state of the system
but gathering and communicating relevant observations. Therefore the reward function
is defined on the belief states of the agent and not on the real states of the system. An
agent is rewarded if it collects observations that are relevant for itself and if it commu-
nicates observations that are relevant for other agents. As mentioned in section 3.1, an
observation must be true to be relevant. Since agents only have beliefs concerning the
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world, they cannot ensure that an observation is true. However they should not exchange
observations that reinforce their existing beliefs, regardless of their veracity. Therefore
we need to find a compromise between the agents belief concerning the observation and
the relevance of this observation. To do so we weight the relevance of a given obser-
vation by the agents belief concerning its truth. This belief is given by the probability
of receiving the observation in the state s considered multiplied by the agent’s belief
that the state s is the current state. On top of that, agents should ensure that they have
homogeneous beliefs. As a matter of fact, agents having different beliefs means that
one agent at least is wrong. Therefore the reward function for communication includes
a term to ensure that the different between agent’s own beliefs and its beliefs on beliefs
of other agents are low. The reward function is thus defined as follows:

R(Bi,t, Exp(Xk)) =∑
s∈S
∑

op∈O Bi,t(s)ω(op, s, a)reli(op)− CExp(Xk)
(10)

R(Bi,t, Comm(op, aj)) =∑
s∈S Bi,t(s)ω(op, s, a)relj(op)

+γ(DKL(BE
i,t||B

j,E
i,t )−DKL(BE

i,t+1||B
j,E
i,t+1))

−CComm(op,aj)

(11)

with CExplore(Xk) and CCommunicate(ok,aj) being the costs of taking the Explore
or Communicate action and Bi,t(s) being the belief of agent ai that state s is the
current state. This cost may represent battery loss, bandwith used etc.

Resolution. To solve the POMDP presented above, we can rely on classic MDP algo-
rithms. As a matter of fact, actions are epistemic and so don’t modify the real state of
the system. Therefore it is possible to transform our POMDP into a Belief MDP defined
as a tuple < Δ,A, τ > where :

– Δ is the new state space. It correspond directly to the belief state space in the initial
POMDP. Δ = Bi

– A is the same state of actions as previously defined
– τ is the new transition function defined as following

Theorem 1. The transition function τ of the Belief MDP is defined as following :

τ(Bi,t, a,Bi,t+1) =

{∑
s∈S
∑

ok∈Ut
ω(ok, s, a)Bi,t(s) if Ut �= ∅

0 otherwise

where Ut = {ok ∈ O, such as, Bi,t+1 = update(Bi,t, ok)} is the set of all observations
enabling the transition from state Bi,t to state Bi,t+1 , ω(ok, st, a) is the observation
function of the POMDP and Bi,t(st) is the belief of agent ai that the current state is st.
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Proof. If there is no observation such as Bi,t+1 = update(Bi,t, ok), it is not possible to
transfer from belief state Bi,t to belief state Bi,t+1. Therefore, τ(Bi,t, a,Bi,t+1) = 0. If
there exists at least one observation ok such as Bi,t+1 = update(Bi,t, ok) we have the
following equations :

τ(Bi,t, a,Bi,t+1) = P (Bi,t+1|Bi,t, a)
=
∑

ok∈Ut
P (ok|Bi,t, a)

=
∑

s∈S
∑

ok∈Ut
P (ok|s, a)Bi,t(s)

=
∑

s∈S
∑

ok∈Ut
ω(ok, s, a)Bi,t(s)

The value function corresponding to this Belief MDP is defined as following:

V (Bi,t) = R(Bi,t) + max
a∈A

∫
B′

i,t

τ(Bi,t, a,B′
i,t)V (B′

i,t) (12)

Using discretization techniques (by discretizing the probability distributions) we may
transform equation 12 in :

V (Bi,t) = R(Bi,t) + max
a∈A

∑
B′

i,t∈Samples

τ(Bi,t, a,B′
i,t)V (B′

i,t) (13)

Then, any technique from the literature may be used to solve this belief-MDP [12]
[13].

4 Experiments

Simulated Robots. The suggested model was implemented on a simple scenario. Two
robots have to explore an environment made of 4 different zones connected to each
other. For each zone, two observations are possible : emptyRoom and notEmptyRoom.
The optimal policy was computed using different ratios to make the compromise be-
tween the Kullback-Leibler ratio and the entropy measure, as well as different proba-
bilities of obtaining a false observation. The system was run 50 times with each set of
parameters. To evaluate the policy, we measured the average number of messages sent
by the robots, the average time needed to get a stable belief state and the number of false
belief states at the end of exploration. We compared those measures with a multirobot
system without communication and with a system in which agents communicate each
observation they received immediately. The results are presented on figures 1a, 1b and
1c.

The linear part of the first two graphs represents the average time to reach a stable
belief state, measured in number of iterations, an iteration being made up of the exe-
cution of an action, the reception of the associated observation and the reception of a
communication message from another agent, if any. The bar part represents the average
number of final states that were partially or totally incorrect. We notice that the num-
ber of false end states is reduced with partial 1a and complete 1c communication. In
the worst case, that is to say a probability of 70% of receiving a correct observation
after doing an explore action, the system with partial communication reduces the aver-
age number of false end states by 28%, and the system with complete communication
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(a) Evaluation of the computed policy with relevant communication

(b) Evaluation of the policy without communication

(c) Evaluation of the fully-communicative policy

Fig. 1. Evalutation of the three policies. The X-Axis represents the different ratios Kullback-
Leibler / Entropy. The three different thresholds correspond to the probability to obtain a correct
observation while doing an explore action
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reduces it by 8%. In the average case, that is to say a probability of 80% of receiv-
ing a correct observation, the average number of false end states is reduced by 72%
with our system and by 19% with a complete communication. We can conclude that
choosing a relevant observation to communicate enable the system to be more robust to
false observations coming from sensors. On top of that, Figure 2a shows that the aver-
age number of messages sent remains almost constant and, unsurprisingly, much lower
than the system with complete communication (Figure 2b).

(a) System with partial communication

(b) Average number of messages sent

Those experiments seem to validate the hypothesis that choosing relevant informa-
tion to communicate may improve system performances while reducing the number of
communications.

Real Robots. We implemented the model on two μ-troopers in a simple scenario where
two rooms must be explored. In the figure 2a, robot 1 decided to explore the room 1 and
robot 2 decided to explore the room 2. Since beliefs of robot 2 about the environment
are very accurate and it believes that robot 1 has incorrect beliefs, robot 2 decides to
communicate the observation 0 to robot 1. Robot 1 receives this observation and updates
its beliefs accordingly. This figure presents a case where an agent has approximated
beliefs concerning the beliefs of the other agents. However this approximation does not
prevent the robots to complete the mission and to reach a stable belief state, as presented
on Figure 2b.
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(a) Sharing the exploration (b) End of exploration

Fig. 2. Exploration with μ-troopers

5 Conclusion and Prospects

We have introduced a new model of agent-based relevance as well as a decision process
to make active information gathering with a multiagent system. Each agent computes
the relevance of an observation regarding itself or another agent to decide whether it
should explore a particular zone or communicate this observation. The relevance of an
observation is a compromise between the novelty, modeled by Kullback-Leibler ratio,
and the certainty of an observation, modeled by Entropy measure. Therefore it may be
tuned depending on the environment considered. In static environment, as presented
in the experiments, the certainty of an observation is more important than its novelty.
However, in a highly dynamic environment, the novelty of an information may be the
most important. The system has been implemented and tested on real robots. Results
show that this approach is more efficient than a fully-communicating system.

The decision process we described focuses on relevance and reasoning on belief
states to make active information gathering. In the system presented in this paper, an
agent is able to communicate any observation from the observations set if it is relevant.
Therefore, an agent may communicate an observation it has never directly received.
Future works would maintain a history of observations received and allow an agent to
communicate only observations it has previously received. Moreover, the beliefs about
the beliefs of other agents are updated only when there is an explicit communication.
We plan to work on a less naive method : since the same policy is used by all agents,
we may update those beliefs more often by assuming the action taken by other agents.
Finally, future works would consider the integration of the system presented in non-
epistemic POMDPs.
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Abstract. A visual consensus feedback mechanism for group decision
making (GDM) problems with complementary linguistic preference rela-
tions is presented. Linguistic preferences are modelled using triangular
fuzzy membership functions, and the concepts of similarity degree (SD)
between two experts as well as the proximity degree (PD) between an
expert and the rest of experts in the group are defined and used to
measure the consensus level (CL). A feedback mechanism is proposed to
identify experts, alternatives and corresponding preference values that
contribute less to consensus. The novelty of this feedback mechanism
is that it provides experts with visual representations of their consen-
sus status to easily ‘see’ their consensus position within the group as
well as to identify the alternatives and preference values that should be
reconsidered for changing in the subsequent consensus round. The feed-
back mechanism also includes individualised recommendations to those
identified experts on changing their identified preference values and vi-
sual graphical simulation of future consensus status if the recommended
values were to be implemented.

Keywords: Group decisions making, Consensus, linguistic preferences,
Visual feedback mechanism.

1 Introduction

Subjectivity, imprecision and vagueness in the articulation of opinions pervade
real world decision applications, and individuals usually find difficult to evaluate
their preference using exact numbers. In these cases, individuals might feel more
comfortable using words by means of linguistic labels or terms to articulate their
preferences [1, 2].
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Let L = {l0, . . . , ls} be a set of linguistic labels (s ≥ 2), with semantics
underlying a ranking relation that can be precisely captured with a linear order:
l0 < l1 < · · · < ls. Assuming that the number of labels is odd and the central
label (ls/2) stands for the indifference state when comparing two alternatives, the
remaining labels are usually located symmetrically around that central assess-
ment, which guarantees that a kind of complementary or reciprocity property
holds as in the case of numerical preferences [3]. Thus, if the linguistic assess-
ment associated to the pair of alternatives (xi, xj) is rij = lh ∈ L, then the
linguistic assessment corresponding to the pair of alternatives (xj , xi) would be
rji = ls−h. Therefore, the operator defined as N(lh) = lg with (g + h) = s is a
negator operator because N (N(lh)) = N(lg) = lh [4].

The main two representation formats of linguistic information are [2]: the
cardinal, which is based on the use of fuzzy sets characterised with membership
functions and that are mathematically processed using Zadeh’s extension princi-
ple [1]; and the ordinal, which is based on the use of the symbolic computational
model [2]. Although the latter representation is able to capture some of the lin-
guistic information to model, it is in fact processed using mathematical tools that
are not appropriate for ordinal information but for information provided using
a difference or ratio scale. Evidence of this is that the ordinal linguistic model is
mathematically equivalent to the cardinal approach with fuzzy sets represented
using a representative element of the corresponding membership functions, an
example of which is the centroid [4]. Therefore, the uncertainty nature of the
information is lost in the ordinal linguistic computational model. Furthermore,
the linguistic cardinal approach is richer than the ordinal linguistic approach,
not only because it has the latter one as a particular case but also because it
provides a more flexible tool for GDM with LPRs because different types of
fuzzy sets are possible to be used depending on the type and intensity of the
imprecision and vagueness contained in the linguistic information to model.

In particular, convex normal fuzzy subsets of the real line, also known as
fuzzy numbers, are commonly used to represent linguistic terms [5–7]. By doing
this, each linguistic assessment is represented using a fuzzy number that is char-
acterised by a membership function, with base variable the unit interval [0, 1],
describing its semantic meaning. The membership function maps each value in
[0, 1] to a degree of performance representing its compatibility with the linguis-
tic assessment [1]. This paper focuses on the use of triangular fuzzy numbers to
model linguistic information, which leads to the so-called triangular fuzzy com-
plementary preference relations (TFCPRs) [8] because they extend both numeric
preference relations and interval-valued preference relations.

GDM problems generally involve situations of conflict among its experts, and
therefore it is preferable that the set of experts reach consensus before applying
a selection process to derive the decision solution. There are two basic consensus
models inGDM: the static consensusmodels [9] and the interactive consensusmod-
els [10]. The former does not implement any type of feedback mechanism to advice
experts on how to change their preferences in order to achieve a higher consen-
sus level while the latter does. Existing interactive consensus models methodology
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relies on the imposition to decision makers (DM) of changes in their opinion when
consensus is below a threshold value. However, in practice, it is up to the decision
maker to implement or not the recommendations given to him/her [11]. A more
reasonable and suitable policy should rest on this premise and, consequently, it
would allow the DM to revisit his/her evaluations using appropriate and mean-
ingful consensus information representation. Therefore, the aim of this paper is to
propose a visual consensus feedback mechanism for GDM to provide experts with
visual representations of their consensus status to easily ‘see’ their consensus po-
sition within the group as well as to identify the alternatives and preference values
that he/she should reconsider for changing in the subsequent consensus round.The
feedback mechanism also includes individualised recommendations to those iden-
tified experts on changing their identified preference values as well as visual graph-
ical simulation of future consensus status if the recommended values were to be
implemented. To achieve this, we first define a TFCPRs similarity degree (SD) to
measure, in the unit interval, how close two individual experts are. The proximity
of an expert with respect to the whole group of experts is also measured, resulting
in individual proximity degree (PD). Consensus level (CL) is defined as a linear
combination of SD with PD, and all will be defined at the three different levels of a
preference relation [12–14]: the pairs of alternatives, the alternatives and the whole
set of alternatives.

The rest of paper is set out as follows: Section 2 focuses on the development
of similarity and proximity degrees for TFCPRs. In Section 3, the level of con-
sensus for TFCPRs is proposed, and a visual information feedback mechanism
to increase the level of consensus is investigated. Finally, conclusions are drawn
in Section 4.

2 Similarity and Proximity Degrees of Triangular Fuzzy
Complementary Preference Relations

A fuzzy subset Ã of R is called a triangular fuzzy number (TFN) when its
membership function μÃ(x) : R→ [0, 1] is [15]:

μÃ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x < a
x−a
b−a , a < x ≤ b
c−x
c−b , b ≤ x < c

0, x > c

A TFN is shortly represented as Ã = (a, b, c), with a and c known as the lower
and upper bounds, respectively, while b is known as its modal value.

A preference relation on a set of alternatives X = {x1, x2, . . . , xn} with el-

ements being TFNs, P̃ = (p̃ij)n×n and p̃ij = (aij , bij , cij), is called a triangu-
lar fuzzy complementary preference relation (TFCPR) if the following property
holds [15]:

aij + cji = bij + bji = cij + aji = 1, ∀i, j = 1, 2, . . . n, (1)
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2.1 Similarity Degrees

Given two TFNs, Ã1 = (a1, b1, c1) and Ã2 = (a2, b2, c2), their similarity d(Ã1, Ã2)
can be defined as follows [16, 12]:

s(Ã1, Ã2) = 1− |a1 − a2|+ |b1 − b2|+ |c1 − c2|
3

.

In the following, the similarity degree between two experts using TFCPRs is
introduced:

Definition 1. Let P h = (phik) and P l = (plik) be two TFCPRs on a set of alter-
natives X provided by two experts eh and el, respectively. Then, the similarity
degree between experts eh and el on the pair of alternatives (xi, xk), SD

hl
ik , is :

SDhl
ik = SD(phik, p

l
ik) = 1− d(phik, p

l
ik). (2)

Notice that SDhl
ik = 1 implies |ahik − alik| = |bhik − blik| = |chik − clik| = 0 and

therefore phik = plik. Therefore, we have the following interpretation: the higher
the value of SDhl

ik , the more similar phik and plik are.

Definition 2. The similarity degree between experts eh and el on the alternative

xi is: SD
hl
i = SD(phi , p

l
i) =

∑n
k=1 SD(phik,p

l
ik)

n
.

As above, when SDhl
i = 1 experts eh and el provide the same linguistic valuations

for pairs of alternatives involving xi. Thus, the higher the value of SDhl
i , the

more similar the experts’ preferences are on the alternative xi.

Definition 3. The similarity degree between experts eh and el on the whole set

of alternatives X is: SDhl = SD(P h, P l) =

∑n
i=1

∑n
k=1 SD(phik,p

l
ik)

n2
.

Clearly, SDhl = 1 means that experts eh and el provide identical TFCPRs, and
we can interpret this similarity degree as follows: the higher the value SDhl, the
closer experts eh and el are in their preferences on the set of alternatives.

The similarity degrees of an expert with the rest of the group of experts at
the three different levels of a relation are defined as:

Level 1. Similarity degree on the pair of alternatives (xi, xk) of expert eh to

the rest of experts in the group is SPAh
ik =

∑m
l=1, l =h SD

hl
ik

m− 1
.

Level 2. Similarity degree on the alternative xi of expert eh to the rest of ex-

perts in the group is SAh
i =

∑n
k=1 SPAh

ik

n
.

Level 3. Similarity degree on the preference relation of expert eh to the rest of

experts in the group is SDh =

∑n
i=1 SA

h
i

n
.
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Finally, each expert in the GDM problem can be associated a relative (nor-
malised) importance degree based on the similarity degrees at level 3 computed
above, which we obviously refer to as the relative similarity degree of an expert :

RSDh = SDh∑m
l=1 SDl . These relative importance degrees could be different to par-

ticular importance weights the experts in the group are assigned before they
provide their linguistic information on the set of alternatives. Our methodology
is to implement both importance degrees in the computation of consensus to
reflect the actual position of experts in the group as a collective [17, 18]. This
will be developed in the following subsection. Next we provide a simple GDM
example to illustrate the computation of the similarity degrees at the three levels
of a relation and the final relative similarity degrees of the experts in the group.

Example 1. Suppose four experts {e1, e2, e3, e4} with associated importance de-
grees ID = (0.2, 0.1, 0.4, 0.3)T , are asked to provide their preference on a set of
four alternatives {x1, x2, x3, x4}, being their linguistic preferences modelled via
the following TFCPRs:

P1 =

⎛⎜⎜⎝
− (0.3, 0.4, 0.5) (0.4, 0.5, 0.6) (0.5, 0.6, 0.7)

(0.5, 0.6, 0.7) − (0.4, 0.5, 0.6) (0.3, 0.4, 0.5)
(0.4, 0.5, 0.6) (0.4, 0.5, 0.6) − (0.5, 0.6, 0.7)
(0.3, 0.4, 0.5) (0.5, 0.6, 0.7) (0.3, 0.4, 0.5) −

⎞⎟⎟⎠

P2 =

⎛⎜⎜⎝
− (0.4, 0.5, 0.6) (0.2, 0.3, 0.4) (0.3, 0.4, 0.5)

(0.4, 0.5, 0.6) − (0.5, 0.6, 0.7) (0.5, 0.6, 0.7)
(0.6, 0.7, 0.8) (0.3, 0.4, 0.5) − (0.1, 0.2, 0.3)
(0.5, 0.6, 0.7) (0.3, 0.4, 0.5) (0.7, 0.8, 0.9) −

⎞⎟⎟⎠

P3 =

⎛⎜⎜⎝
− (0.5, 0.6, 0.7) (0.4, 0.5, 0.6) (0.6, 0.7, 0.8)

(0.3, 0.4, 0.5) − (0.5, 0.6, 0.7) (0.2, 0.3, 0.4)
(0.4, 0.5, 0.6) (0.3, 0.4, 0.5) − (0.4, 0.5, 0.6)
(0.2, 0.3, 0.4) (0.6, 0.7, 0.8) (0.4, 0.5, 0.6) −

⎞⎟⎟⎠

P4 =

⎛⎜⎜⎝
− (0.4, 0.5, 0.6) (0.5, 0.6, 0.7) (0.5, 0.6, 0.7)

(0.4, 0.5, 0.6) − (0.6, 0.7, 0.8) (0.2, 0.3, 0.4)
(0.3, 0.4, 0.5) (0.2, 0.3, 0.4) − (0.3, 0.4, 0.5)
(0.3, 0.4, 0.5) (0.6, 0.7, 0.8) (0.5, 0.6, 0.7) −

⎞⎟⎟⎠
I) The similarity degree on pairs of alternatives for each expert are:

SPA1 =

⎛⎜⎜⎝
1.000 0.867 0.900 0.900
0.867 1.000 0.867 0.867
0.900 0.867 1.000 0.767
0.900 0.867 0.767 1.000

⎞⎟⎟⎠ ; SPA2 =

⎛⎜⎜⎝
1.000 0.933 0.767 0.767
0.933 1.000 0.933 0.733
0.767 0.933 1.000 0.700
0.767 0.733 0.700 1.000

⎞⎟⎟⎠

SPA3 =

⎛⎜⎜⎝
1.000 0.867 0.900 0.833
0.867 1.000 0.933 0.867
0.900 0.933 1.000 0.833
0.833 0.867 0.833 1.000

⎞⎟⎟⎠ ; SPA4 =

⎛⎜⎜⎝
1.000 0.933 0.833 0.900
0.933 1.000 0.867 0.867
0.833 0.867 1.000 0.833
0.900 0.867 0.833 1.000

⎞⎟⎟⎠
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II) The similarity degrees on alternatives for each expert are:

SA1 =
(
0.917, 0.900, 0.883, 0.883

)
; SA2 =

(
0.867, 0.900, 0.850, 0.800

)
SA3 =

(
0.900, 0.917, 0.917, 0.883

)
; SA4 =

(
0.917, 0.917, 0.883, 0.900

)
III) The similarity degrees on the set of alternatives for each expert are:

SD1 = 0.896 ; SD2 = 0.854 ; SD3 = 0.904 ; SD4 = 0.904.

IV) The relative group similarity degrees for each expert are:

RSD1 = 0.252 ; RSD2 = 0.240 ; RSD3 = 0.254 ; RSD4 = 0.254.

2.2 Proximity Degrees

The proximity degrees measure the similarity between individual experts’ opin-
ions and the collective opinion for the group of experts. The aggregation of
individual opinions will be weighted using a weight vector whose elements are
a linear combination of the importance degree of individuals before the deci-
sion making process and the relative similarity degrees computed based on the
information they provided as per the previous subsection. This is elaborated
next:

(1) Experts weighting vector: W = η · ID + (1 − η) · RSD. If η > 0.5,
then the group/moderator values higher the a priori importance degrees of
the experts than their a posteriori relative similarity degrees. Obviously, for
homogeneous GDM problems the value η = 0 applies.

(2) The collective TFCPR, P = (pik)n×n, is computed as follows:

pik = w1 ⊗ p1ik ⊕ w2 ⊗ p2ik ⊕ · · · ⊕ wm ⊗ pmik (3)

Example 2 (Example 1 Continuation). Assuming a value of η = 0.5 we have the
following weighting vector

W = 0.5 ∗ ID + 0.5 ∗RSD = (0.22, 0.17, 0.33, 0.28)T

and the collective TFCPR is

P =

⎛⎜⎜⎝
− (0.41, 0.51, 0.61) (0.39, 0.49, 0.59) (0.50, 0.60, 0.70)

(0.39, 0.49, 0.59) − (0.51, 0.61, 0.71) (0.27, 0.37, 0.47)
(0.41, 0.51, 0.61) (0.29, 0.39, 0.49) − (0.34, 0.44, 0.54)
(0.30, 0.40, 0.50) (0.53, 0.63, 0.73) (0.46, 0.56, 0.66) −

⎞⎟⎟⎠
Once the collective TFCPR is obtained, we compute the proximity degrees

for each expert at the three different levels of a relation:

Level 1. Proximity degree on pair of alternatives (xi, xk) of expert eh to the
group is PPAh

ik = SD(phik, pik).
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Level 2. Proximity degree on alternatives xi of expert eh to the group is PAh
i =∑n

k=1 PPAh
ik

n
.

Level 3. Proximity degree on the preference relation of expert eh to the group

is PDh =

∑n
i=1 PAh

i

n
.

Example 3 (Example 1 Continuation). Proximity degrees computation.

I) The proximity degree on pairs of alternatives for each expert are:

PPA1 =

⎛⎜⎜⎝
1.000 0.889 0.994 0.999
0.889 1.000 0.894 0.973
0.994 0.894 1.000 0.843
0.999 0.973 0.843 1.000

⎞⎟⎟⎠ ; PPA2 =

⎛⎜⎜⎝
1.000 0.989 0.806 0.801
0.989 1.000 0.994 0.773
0.806 0.994 1.000 0.757
0.801 0.773 0.757 1.000

⎞⎟⎟⎠

PPA3 =

⎛⎜⎜⎝
1.000 0.911 0.994 0.899
0.911 1.000 0.994 0.927
0.994 0.994 1.000 0.943
0.899 0.927 0.943 1.000

⎞⎟⎟⎠ ; PPA4 =

⎛⎜⎜⎝
1.000 0.989 0.894 0.999
0.989 1.000 0.906 0.927
0.894 0.906 1.000 0.957
0.999 0.927 0.957 1.000

⎞⎟⎟⎠
II) The proximity degrees on alternatives for each expert are:

PA1 =
(
0.971, 0.939, 0.933, 0.954

)
; PA2 =

(
0.899, 0.939, 0.889, 0.833

)
PA3 =

(
0.951, 0.958, 0.983, 0.942

)
; PA4 =

(
0.971, 0.956, 0.940, 0.971

)
III) The proximity degrees on the relation for each expert are:

PD1 = 0.949 ; PD2 = 0.890 ; PD3 = 0.958 ; PD4 = 0.959.

3 Consensus Model with Visual Information Feedback
Mechanism for GDM with TFCPRs

Both similarity degree (SD) and proximity degree (PD) convey the concept of
closeness of opinions between experts in a group: the first one between pairs of
individual experts and the second one between an individual expert and the rest
of experts in the group. Thus, both degrees could/should be used in measuring
the level of consensus within a group of experts regarding the set of feasible
alternatives in GDM. The simplest of the combinations is the linear one, and
it is here used to propose the following definitions of the consensus level (CL)
associated to each expert of the group at the three different levels of a relation:

Level 1. Consensus level on the pair of alternatives (CLPA) (xi, xk) of expert
eh is CLPAh

ik = ψ · SPAh
ik + (1 − ψ) · PPAh

ik.
Level 2. Consensus level on the alternatives(CLA) xi of expert eh is CLAh

i =
ψ · SAh

i + (1 − ψ) · PAh
i .

Level 3. Consensus level on the relation (CL) of expert eh is CLh = ψ ·SDh+
(1− ψ) · PDh.
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The parameter ψ ∈ [0, 1] controls the weight of both similarity and proximity
criteria. Unless there are specific reasons to prefer one index to the other one, the
value to assume for the weighting parameter ψ should be 0.5, as it is assumed
in the example below.

Example 4 (Example 1 Continuation). Consensus levels computation. Setting
ψ at 0.5, the following consensus levels on the relation are obtained:

CL1 = 0.922, CL2 = 0.872, CL3 = 0.932, CL4 = 0.932

The only expert with a consensus level below the threshold value is e2 and
therefore he/she will receive feedback advice on how to change his/her prefer-
ences to achieve a higher consensus level.

In practice, it is rare to achieve full and unanimous agreement of all the experts
regarding all the feasible alternatives. As a consequence, the consensus threshold
value (γ) to achieve is usually set to a value lower than 1. At the same time, the
decision output should be acceptable for at least half of the experts, which means
that the parameter γ should be set to a value no lower than 0.5. If the consensus
level is not acceptable, that is, if it is lower than the specified threshold value,
the experts are normally invited to discuss their opinions further in an effort to
make them closer. To help experts in their discussion, in the following section a
detailed description of a visual feedback methodology is provided.

3.1 Visual Information Feedback Mechanism

The visual information feedback mechanism consists of three stages: firstly, the
identification of the triangular fuzzy preference values that should be subject to
modification; secondly, the generation of advice on the direction–value of the
required change; and, thirdly, the automatic feedback process simulation to show
what would happen if experts are to accept the recommended preference values.
These three stages are described in detail below:

(1) Identification of the Triangular Fuzzy Preference Values: The set of trian-
gular fuzzy preference values that contribute less to reach an acceptable
consensus level is identified and presented to the experts using visual graphs
as illustrated in Fig. 1. Once consensus levels are computed, at the relation
level, all experts will receive a visual representation of their consensus status
in relation to the threshold value, which can be used to easily identify the
experts furthest form the group. Following with Ex. 4, and using a thresh-
old value γ = 0.9, Fig. 1(a) clearly identifies expert e2 as the only expert
contributing less to group consensus. If necessary, individual visual repre-
sentations of consensus levels of alternatives and pair of alternatives are also
provided to each expert to help them identify those alternatives and their
associated preference values at the level of pairs of alternatives that con-
tribute less to consensus and, consequently, potential to be reconsidered for
changing in the next round of consensus. It is obvious from Ex. 4 that this is
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(a) Consensus levels on the
relation: CLh

(b) Consensus levels on
the alternatives for e2:
CLA2

i

(c) Consensus levels on the
pairs of alternatives for A1

and e2: CLPA2
1j

Fig. 1. Visual representation of consensus levels in relation to the consensus threshold
value

necessary to be done for expert e2, whom would receive visual representation
at these levels as illustrated in Fig. 1(b) and Fig. 1(c), respectively.
Mathematically, these steps are modelled as follows:

Step 1. The set of experts with consensus levels below the threshold value
γ is identified: ECH = {h |CLh < γ}.

Step 2. For experts identified in step 1, those alternatives with a consensus
level below γ are identified: ACH = {(h, i) | h ∈ ECH ∧ CLAh

i < γ}.
Step 3. Finally, the triangular fuzzy preference values for the experts and

alternatives identified in steps 1 and 2 that need to be changed are
identified: PACH = {(h, i, k) | (h, i) ∈ ACH ∧CLPAh

ik < γ}.

Example 5 (Example 1 Continuation). The sets of 3-tuple identified as con-
tributing less to consensus are:

PACH = {(2, 1, 3), (2, 1, 4), (2, 2, 4), (2, 3, 1), (2, 3, 4), (2, 4, 1), (2, 4, 2), (2, 4, 3)}

(2) Generation of Advice: The feedback mechanism also generates personalised
recommendations rules, which will not only tell the experts which prefer-
ence values they should change, but also provide them with the consensus
advice to revisit their evaluation in the light of this extra information. For
all (h, i, k) ∈ PACH , the following rule is feed backed to the corresponding
experts:
“To increase your consensus level (CL), your preference value phik should be

closer to p
h
ik = ψ · phik + (1− ψ) · pik, ” where phik = (

∑m
l=1, l =h p

l
ik)/(m− 1)

and pik the collective preference value. The reciprocity property that the
TFCPRs verify implies that when the pair of alternatives (i, k) is identified
for change, the pair (k, i) has to be changed accordingly as well.
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Example 6 ( (Example 1 continuation)). The recommendations for expert
e2 are:

– Preference value p213 should be closer to (0.4,0.5,0.6).
– Preference value p231 should be closer to (0.4,0.5,0.6).
– Preference value p214 should be closer to (0.5,0.6,0.7).
– Preference value p241 should be closer to (0.3,0.4,0.5).
– Preference value p224 should be closer to (0.4,0.5,0.6).
– Preference value p242 should be closer to (0.4,0.5,0.6).
– Preference value p234 should be closer to (0.4,0.5,0.6).
– Preference value p243 should be closer to (0.4,0.5,0.6).

(3) Automatic Feedback Process Simulation: A what-if scenario analysis could
be run to generate a visual graphical simulation of future consensus status
if the recommended values were to be implemented, as shown in Fig. 2(a),
Fig. 2(b) and Fig. 2(c). This will provide the decision makers with a clear
picture of their actual position within the group, which they can then use
to decide upon their actual position or subsequent action. If the advice is
implemented, then the consensus level increases as example 7 shows. Not im-
plementing these advices can lead to the consensus level to remain fixed or to
increase at a very low rate, which would make the group consensus threshold
value difficult to achieve. To avoid these situation, a maximum number of
iterations maxIter can be incorporated in the visual information feedback
mechanism following a similar approach of consensus models proposed in
[19].

(a) CLPA2
1j before and af-

ter e2 implements recom-
mended values

(b) CLA2
i before and af-

ter e2 implements recom-
mended values

(c) CLh before and af-
ter e2 implements recom-
mended values

Fig. 2. Simulation of consensus before and after recommended values are implemented
by expert e2

Example 7 (Finishing Example 1). After expert e2 revisits his/her evaluation
and implements the recommended TFNs, a new round of the consensus process
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is carried out, leading to the following new consensus levels:

CL1 = 0.956, CL2 = 0.976, CL3 = 0.961, CL4 = 0.957.

Because all experts are over the minimum consensus threshold value γ = 0.9,
the consensual collective TFCPR is computed from which the final solution of
consensus will be selected.

4 Conclusion

In this paper, a novel visual information feedback mechanism for GDM problems
with TFCPRs has been presented. To achieve this, the concepts of similarity de-
gree (SD) between two experts as well as the proximity degree (PD) between an
expert and the rest of experts in the group are developed for TFCPRs. These
degrees are used to compute both the aggregation weighting vector as well as
the consensus level of the group of experts. The visual information feedback
mechanism is investigated to identify experts, alternatives and corresponding
preference values that contribute less to consensus. Recommendations to help
experts the direction of the change required to increase their consensus are pro-
duced and an automatic visual feedback process simulation to show the ex-
perts what would happen if they were to follow recommendations by pictures is
developed.
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Abstract. We show a complete axiomatization of a logic of attribute
implications describing dependencies between attributes of objects which
are observed in consecutive points in time. The attribute implications we
consider are if-then formulas expressing presence of attributes of objects
relatively in time. The semantics of the attribute implications is defined
based on presence/absence of attributes of objects in consecutive points
of time. The presented results extend the classic results on Armstrong-
style completeness of the logic of attribute implications by using the
time points as additional component. The ordinary results can be seen
as special case of our results when only a single time point is considered.

Keywords: attribute implication, axiomatization, formal context, tem-
poral semantics.

1 Introduction and Related Work

In this paper, we outline a complete axiomatic system for reasoning with par-
ticular if-then formulas describing dependencies in object/attribute data which
are subject to change in consecutive points in time. The rules we investigate are
related to attribute implications studied in formal concept analysis [11,22]. The
principal difference between the attribute implications as they appear in formal
concept analysis and the rules we consider in this paper is an additional compo-
nent allowing to express the presence or absence of object attributes relatively
in time. This may be viewed as though the objects can change their attributes
in time and we are interested in describing dependencies that are preserved in
all the time points. This paper is our initial study of this type of dependencies
in which we outline the dependencies, their semantics, and show an Armstrong-
style axiomatization of their semantic entailment.

In formal concept analysis (FCA), attribute implications play an important
role since sets of attribute implications can be seen as alternative descriptions
of concept lattices. Recall that the basic input data in formal concept analysis
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a b c d

1 × × ×
2 × ×
3 × × ×
4 × ×
5 × × ×

〈{}, {a, b, c, d}〉

〈{3}, {a, b, c}〉〈{1}, {a, b, d}〉

〈{1, 3, 4}, {a, b}〉

〈{5}, {b, c, d}〉

〈{3, 5}, {b, c}〉〈{1, 5}, {b, d}〉

〈{1, 3, 4, 5}, {b}〉

〈{2, 5}, {c, d}〉

〈{2, 3, 5}, {c}〉〈{1, 2, 5}, {d}〉

〈{1, 2, 3, 4, 5}, {}〉

Fig. 1. Formal context with objects 1, . . . , 5, attributes a, . . . , d, and its concept lattice

is a binary relation I ⊆ X × Y between a set X of objects and a set Y of at-
tributes (features) called a formal context. Formal contexts are often viewed as
two dimensional tables with rows corresponding to objects, columns correspond-
ing to attributes, and with crosses and blanks in the table, indicating whether
the objects have/do not have the attributes. The primary output of FCA is a
set of particular biclusters in the input data called formal concepts in I. Formal
concepts [22] can be viewed as pairs 〈A,B〉 consisting of a subset A ⊆ X of
objects (called an extent) and a subset B ⊆ Y of attributes (called an intent)
such that B is the set of all attributes common to all the objects from A and,
conversely, A is the set of all objects having all the attributes from B. In a table
corresponding to I, formal concepts can be identified with maximal rectangles
consisting of crosses. By the Basic Theorem of FCA [11], all formal concepts
in I, when ordered by the set inclusion of their extents, form a structure called
a concept lattice (which is a complete lattice). An example of a formal context
with objects X = {1, 2, 3, 4, 5}, attributes Y = {a, b, c, d}, and the corresponding
concept lattice can be found in Fig. 1.

An attribute implication over Y (the set of attributes of a given formal con-
text) is an expression A ⇒ B such that A,B ⊆ Y . The intended meaning of
A ⇒ B is to express a dependency “if an object has all the attributes in A,
then it has all the attributes in B”. Thus, in the narrow sense, A ⇒ B can be
seen as a (propositional) formula in the form of an implication between conjunc-
tions of attributes in Y (which are considered as propositional variables). For
A,B,M ⊆ Y , we call A ⇒ B satisfied by M whenever A ⊆ M implies B ⊆ M
and denote the fact by M |= A ⇒ B. Clearly, if Mx is considered to be the set
of attributes of the object x ∈ X in I, i.e., Mx = {y ∈ Y | 〈x, y〉 ∈ I}, then
Mx |= A⇒ B indeed formalizes the intended meaning of A⇒ B being satisfied
by the attributes of the object x: “If x has all the attributes in A, then x has all
the attributes in B.”

One particular interest of FCA is to describe, in a concise way, the set of
all attribute implications which are satisfied by all (or nearly all) objects in a
given formal context (with X and Y being finite for computational reasons).
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t = 1 t = 2 t = 3

. . . ,

a b c d

1 ×
2 × × ×
3 × × ×
4 × ×
5 ×

,

a b c d

1 × × ×
2 × ×
3 × × × ×
4 × ×
5 ×

,

a b c d

1 × ×
2 × ×
3 × × ×
4 × × ×
5

, . . .

Fig. 2. Series of formal contexts observed in consecutive points in time

The major approaches [11,13] focus on finding non-redundant sets of attribute
implications which entail exactly all attribute implications which are satisfied in
a formal context. Therefore, the approaches rely on the notion of an entailment
of attribute implications. As in other logical systems, we may consider two basic
types of entailment—the semantic one based on models and the syntactic one
based on provability. A set M ⊆ Y is called a model of a set Σ of attribute
implications if each A ⇒ B ∈ Σ is satisfied by M . Furthermore, A ⇒ B is
semantically entailed by Σ, written Σ |= A ⇒ B, if A ⇒ B is satisfied by all
models of Σ. The semantic entailment of attribute implications has complete
axiomatizations, i.e., for a suitably defined notion of provability, we have Σ |=
A ⇒ B iff A ⇒ B is provable by Σ, denoted Σ � A ⇒ B. The best known
axiomatic system is based on the inference system of Armstrong [2] but there
are other systems which recently received interest [4].

For a given formal context I ⊆ X × Y , one may be interested in finding a set
Σ of attribute implications such that Σ proves A⇒ B iff A⇒ B is satisfied by
all objects in I. Such a Σ is called complete in I. In addition, Σ is called non-
redundant if no proper subset of Σ does the job. A particular example of non-
redundant complete sets are the so-called Guigues-Duquenne bases [13] which
are in addition minimal in the number of formulas they contain. In addition to
the fact that a complete set conveys information about the attribute implications
which are satisfied in a formal context, it can be seen as an alternative description
of the concept lattice since its models are exactly intents of all formal concepts
of the formal context. In case of the example from Figure 1, a minimal complete
set consists of a single implication {a} ⇒ {b}.

In this paper, we extend the considerations by assuming that the input data
consists of a series of formal contexts which result by observing attributes of
objects in consecutive points in time, see Figure 2 for an illustration. In this
setting, it may be desirable to consider attribute implications which describe
if-then dependencies between attributes relatively in time. We argue that such
rules are often used in human reasoning, e.g., consider a rule “If x was unavailable
yesterday and x is on sale today, then x will be demanded tomorrow.” In this
example, yesterday, today, and tomorrow refer to points in time relatively to the
current point considered, x is an object, and “being on sale”, “being unavailable”,
and “being demanded” are attributes from Y . By generalizing this example, we
may consider rules of the form
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yi11 , . . . , yimm

}
⇒
{
zj11 , . . . , zjnn

}
, (1)

where y1, . . . , ym, z1, . . . , zn are attributes from Y which have the same role as
in the case of the classic attribute implications and i1, . . . , im, j1, . . . , jn are in-
tegers expressing points in time relatively to the current point. That is, 0 can be
considered as the present point (today), −1 is the predecessor of 0 (yesterday),
1 is the successor of 0 (tomorrow), etc. Given a series of contexts, one may be
interested in rules like (1) which are satisfied in all points of time or in all points
in a predefined period of time. Such rules, when discovered from data, may be
used for prediction based on the hypothesis that the rules may still hold in a
“near future,” i.e., beyond the time point of the last context observed. In case
of the example with contexts in Figure 2, the implication {a0} ⇒ {b1} saying
that if the attribute a is present in the current time point then b is present in
the next time point is satisfied by the three consecutive contexts in the figure.
On the other hand, neither of them satisfies the ordinary attribute implication
{a} ⇒ {b}.

In this paper, we propose a formalization of the rules of the form (1), propose
the notion of semantic entailment which corresponds to the intuitive meaning we
have just described, and focus on its axiomatization. We show that analogously
as for the classic attribute implications, there is an Armstrong-like system of
inference rules which is complete with respect to the considered semantic entail-
ment. In the rest of this section, we make notes on related works.

Related Works The input data we consider in this paper can be viewed as par-
ticular example of temporal relational data [5] or triadic contexts [17] where
the conditions correspond to time points. Note that in the triadic FCA, there
has been approaches to attribute implications [12] which are, however, concep-
tually and technically different from the approach in our paper. In the context
of association rule mining [1,23], analogous formulas have been proposed and
studied as inter-transactional association rules, see [8,15,16,19,21], and applied
in various problem domains [7,14]. The approaches focus on algorithms for min-
ing dependencies from data with respect to additional parameters such that the
confidence and support. Thus, the formulas we propose to study in this paper
may be in the same relationship to the inter-transactional association rules as the
attribute implications are related to the ordinary association rules. In a broader
sense, our approach generalizes if-then rules which appear in other disciplines
where reasoning with conjunctive if-then rules plays a role like the relational
databases (and functional dependencies [6,20]) or logic programming (and par-
ticular definite programs [18]). Functional dependencies with a type of temporal
interpretation which differs from ours are presented in [3].

2 Formulas and Semantic Entailment

In this section, we present a formalization of the formulas, their interpretation,
and semantic entailment. Let us assume that Y is a non-empty and finite set of
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symbols called attributes. Furthermore, we use integers in order to denote time
points. Our motivation is that the input data consists of several formal contexts
which are observed in consecutive discrete time points and thus denoting the
time point by integers is sufficient. We put

TY =
{
yi | y ∈ Y and i ∈ Z

}
(2)

and interpret each yi ∈ TY as “attribute y observed in time i” (technically, TY
can be seen as the Cartesian product Y ×Z). Under this notation, we may now
formalize rules like (1) as follows:

Definition 1. An attribute implication over Y annotated by time points in Z is
a formula of the form A⇒ B, where A,B are finite subsets of TY .

As we have outlined in the introduction, the purpose of the time points en-
coded by integers in antecedents and consequents of the considered formulas is
to express points in time relatively to a current time point. Hence, the intended
meaning of (1) abbreviated by A⇒ B is the following: “For all time points t, if
an object has all the attributes from A considering t as the current time point,
then it must have all the attributes from B considering t as the current time
point”. In what follows, we formalize the interpretation of A⇒ B in this sense.

Since we wish to define formulas being true in all time points (we are interested
in formulas preserved over time), we need to shift relative times expressed in
antecedents and consequents in formulas with respect to a changing time point.
For that purpose, for each M ⊆ TY and i ∈ Z, we may introduce a subset M + j
of TY by

M + j =
{
yi+j | yi ∈M

}
(3)

and call it a time shift of M by j (shortly, a j-shift of M). Obviously, we may
consider more complex expression like M + j+ i meaning (M + i)+ j and denote
M + (−i) by M − i.

Definition 2. A formula A⇒ B is true in M ⊆ TY whenever, for each i ∈ Z,

if A+ i ⊆M , then B + i ⊆M (4)

and we denote the fact by M |= A⇒ B.

Remark 1. (a) The value of i in the definition may be understood as a sliding
time point. Moreover, A+ i and B + i represent sets of attributes annotated by
absolute time points considering i as the current time point. Note that using (3),
the condition (4) can be equivalently restated as “A ⊆M−i implies B ⊆M−i,”
i.e., instead of shifting the antecedents and consequents of the formula, we may
shift the set M .

(b) Observe that A ⇒ B is trivially true in M whenever B ⊆ A because in
that case (4) trivially holds for any i. By definition, A ⇒ B is not true in M ,
written M �|= A⇒ B iff there is i such A+ i ⊆M and B + i � M . In words, in
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the time point i, M has all the attributes of A but does not have an attribute
in B, i.e., the time point i serves as a counterexample.

(c) The classic attribute implications [11] can be seen as particular cases of
the formulas considered here in case the only time point which appears in the
formulas and M is 0. Indeed, in such a case, M |= A ⇒ B iff A ⊆ M implies
B ⊆M , i.e., iff A⇒ B is true in M in the classic sense.

(d) Let us comment on our initial motivation of evaluating the formulas in
a series of contexts as in Figure 2. The set M in which we evaluate A ⇒ B
can be seen as encoding attributes of a single object changing in time, i.e.,
for contexts Ii ⊆ X × Y (i ∈ Z), we may put Mx = {yi | 〈x, y〉 ∈ Ii}. Then,
Mx |= A⇒ B is interpreted as the fact that “for all time points t, if the object
x has all the attributes from A (in time t), then it has all the attributes from B
(in time t)” which agrees with the desired meaning outlined in the introduction.
Hence, A ⇒ B being true in all the contexts (i.e., in a context changing over
time) can be introduced as Mx |= A⇒ B for all x ∈ X .

We consider the following notions of a theory and a model:

Definition 3. Let Σ be a set of formulas (called a theory). A subset M ⊆ TY is
called a model of Σ if M |= A⇒ B for all A⇒ B ∈ Σ. The system of all models
of Σ is denoted by Mod(Σ), i.e.,

Mod(Σ) =
{
M ⊆ TY |M |= A⇒ B for all A⇒ B ∈ Σ

}
. (5)

In general, Mod(Σ) is infinite and there may be theories that do not have
any finite model. For instance, consider a theory containing {} ⇒ {y0}. This is
in contrast to the classic attribute implications in FCA where for finite Y , one
always has a finite system of finite models. Interestingly, the systems of models
in our case are exactly the systems of models which are closed under time shifts.

We call S ⊆ 2TY closed under time shifts if M + i ∈ S whenever M ∈ S. We
now have the following characterization of the systems of models as exactly the
algebraic closure systems closed under time shifts:

Theorem 1. Let Σ be theory. Then, Mod(Σ) is an algebraic closure system
which is closed under time shifts. If S ⊆ 2TY is an algebraic closure system
which is closed under time shifts then there is Σ such that S = Mod(Σ).

Proof (sketch). The fact that Mod(Σ) is an algebraic closure system can be
checked as in the ordinary case. Suppose that M ∈Mod(Σ) and take A⇒ B ∈ Σ
and j ∈ Z. If A + i ⊆ M + j, then A + (i − j) ⊆ M and thus B + (i − j) ⊆
M because M ∈ Mod(Σ) and A ⇒ B ∈ Σ. Therefore, B + i ⊆ M + j, i.e.,
M + j ∈ Mod(Σ). For the second claim, take Σ = {M ⇒ N |M ⊆ TY , N ⊆
CS(M), and M,N are finite} where CS is the algebraic closure operator induced
by S and observe that M = CS(M) iff M is a model of Σ. ��

According to the following observation, for each Σ, we may consider the in-
duced closure operator [· · ·]Σ of a semantic closure, i.e.,

[M ]Σ =
⋂
{N ∈ Mod(Σ) |M ⊆ N}. (6)
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In general, [M ]Σ is infinite. We now turn our attention to the semantic entailment
and its basic properties.

Definition 4. Let Σ be a theory. Formula A⇒ B is semantically entailed by Σ
if M |= A⇒ B for each M ∈ Mod(Σ).

The following lemma justifies the description of time points in attribute impli-
cations as relative time points. Namely, it states that each A⇒ B semantically
entails all formulas resulting by shifting the antecedent and consequent of A⇒ B
by a constant factor.

Lemma 1. {A⇒ B} |= {A+ i⇒ B + i}.

Proof. Take M ∈Mod({A⇒ B}) and let (A+ i)+ j ⊆M . Then, A+ i ⊆M − j
and by Theorem 1, we get M − j ∈Mod({A⇒ B}) which yields B+ i ⊆M − j
and thus (B + i) + j ⊆M , proving M |= A+ i⇒ B + i ��

Analogously as for the classic attribute implications, the semantic entailment
of A ⇒ B by a theory Σ can be checked by means of the least model of Σ
generated by A:

Theorem 2. For any Σ and A⇒ B, the following conditions are equivalent:

(i) Σ |= A⇒ B,

(ii) [A]Σ |= A⇒ B,

(iii) B ⊆ [A]Σ.

Proof (sketch). Clearly, (i) implies (ii) since [A]Σ ∈ Mod(Σ); (ii) implies (iii)
because A+0 ⊆ [A]Σ. Assume that (iii) holds and take M ∈Mod(Σ) and i ∈ Z
such that A+i ⊆M . Then, A ⊆M−i and thus B ⊆ [A]Σ ⊆ [M−i]Σ ⊆ [M ]Σ−i
from which it follows that B + i ⊆ [M ]Σ = M , proving (i). ��

Remark 2. Let us note that subsets M ⊆ TY we use to evaluate our formulas
can be seen as particular Kripke models [9,10] of a propositional language which
contains the attributes from Y as propositional variables. Namely, for M ⊆ TY ,
we may considerKM = 〈W, e, r〉, where the set of worldsW = Z, the accessibility
relation r ⊆ W ×W is defined by 〈w,w + 1〉 ∈ r for all w ∈ Z, and e(w, y) = 1
if yw ∈ M and e(w, y) = 0 otherwise. The formulas introduced in our paper
use time points (worlds in sense of the Kripke model KM ) as annotations in
their antecedents and consequents. Another approach is to introduce modalities
G (meaning “in the world after the current one”) and H (meaning “in the world
before the current one”) and represent each formula of the form (1) by(

�i1y1 � · · ·��imym
)
⇒
(
�j1z1 � · · ·��jnzn

)
, (7)

where � stands for conjunction and

�iy =

⎧⎨⎩
y, if i = 0,
G�i−1y, if i > 0,
H�i+1y, if i < 0.

(8)
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Under this notation, (1) is true in M in our sense iff the corresponding (7) is true
in KM in all worlds w ∈W provided that the value of Gϕ in K and w is defined
as the value of ϕ in K and w′ such that 〈w,w′〉 ∈ r (and analogously for H).
Thus, up to a different formalization, the interpretation of attribute implications
annotated by time points can be seen as the interpretation of particular modal
formulas in propositional Kripke models.

Let us conclude this section by making notes on the relationship of our formu-
las to important structures and operators which appear in the formal concept
analysis [22]. As we have mentioned in the introduction, a series of contexts
Ij ⊆ X × Y (j ∈ Z) can be seen as a triadic context [17], i.e., a structure
T = 〈X,Y,Z, I〉 such that I ⊆ X × Y × Z. Namely, we may put 〈x, y, j〉 ∈ I iff
〈x, y〉 ∈ Ij . Attribute implications annotated by time points can be interpreted
in such triadic contexts:

Definition 5. A formula A ⇒ B is true in a triadic context T = 〈X,Y,Z, I〉,
written T |= A ⇒ B, if for each x ∈ X and Mx = {yi | 〈x, y, i〉 ∈ I}, we have
that Mx |= A⇒ B.

A classic result on attribute implications says that an attribute implication is
true in a context if and only if it is true in all its intents. In addition, A⇒ B is
true in a context if B is included in the intent generated by A. In our case, we
may establish an analogous characterization.

Given T = 〈X,Y,Z, I〉, we may define operators ↑ and ↓ assigning subsets of
TY to subsets of TX and vice versa as follows: For any A ⊆ TX (defined as in
(2) with Y replaced by X) and B ⊆ TY , we put

A↑ = {yj ∈ TY | 〈x, y, i+ j〉 ∈ I for all xi ∈ A}, (9)

B↓ = {xi ∈ TX | 〈x, y, i+ j〉 ∈ I for all yj ∈ B}. (10)

The pair of operators ↑ : 2TX → 2TY and ↓ : 2TY → 2TX defined by (9) and (10)
forms an antitone Galois connection and thus the composed operator ↓↑ : 2TY →
2TY is a closure operator.

Theorem 3. For any triadic context T = 〈X,Y,Z, I〉 and formula A⇒ B, the
following conditions are equivalent:

(i) T |= A⇒ B,

(ii) A↓ ⊆ B↓,

(iii) B ⊆ A↓↑.

Proof (sketch). In order to see (i), prove that xi ∈ A↓ iff, for each yj ∈ A, we
have 〈x, y, i + j〉 ∈ I which is according to Definition 5 iff yi+j ∈ Mx for all
yj ∈ A. The latter observation is true iff A+ i ⊆Mx. An analogous observation
can be made for B. Hence, (i) is equivalent to (ii). The equivalence of (ii) and
(iii) follows by properties of antitone Galois connections. ��



92 J. Triska and V. Vychodil

The following corollary of the previous assertion gives analogy to the classic
result on validity of attribute implications in contexts as implications satisfied
by all concept intents:

Corollary 1. For any triadic context T = 〈X,Y,Z, I〉 and formula A ⇒ B,
T |= A⇒ B iff M↓↑ |= A⇒ B for each M ⊆ TY .

Proof (sketch). The if-part follows by Theorem 3 (iii) for M = A. Conversely, if
A + i ⊆ M↓↑, then M↓ ⊆ (A + i)↓ = A↓ − i ⊆ B↓ − i by Theorem 3 (ii). Thus,
B + i ⊆ B↓↑ + i = (B↓ − i)↑ ⊆M↓↑, proving M↓↑ |= A⇒ B. ��

3 Axiomatization

In this section, we present a deduction system for our formulas and the notion
of syntactic entailment. The syntactic entailment of formulas is based on an
extension of the Armstrong axiomatic system [2] which is well known mainly in
database systems [20]. The extension we propose accommodates the fact that
time points in formulas are relative.

Each formula of the form A∪B ⇒ A (A,B are finite subsets of TY ) is consid-
ered as an axiom. Furthermore, we consider the following deduction rules :

(Cut) from A⇒ B and B∪C ⇒ D infer A∪C ⇒ D,

(Shf) from A⇒ B infer A+ i⇒ B + i,

where i ∈ Z. A proof of A ⇒ B from Σ is a sequence ϕ1, . . . , ϕn such that ϕn

equals A ⇒ B and for each ϕi we either have ϕi ∈ Σ, or ϕi is an axiom, or ϕi

is derived by (Cut) or (Shf) from ϕ1, . . . , ϕi−1.

Remark 3. Note that there are several equivalent systems which are called the
Armstrong systems [20]. In our presentation, the axioms can be seen as nullary
deduction rules and (Cut) is a binary deduction rule. Together, they form a
system which is equivalent to that from [2]. We call the additional rule (Shf)
the rule of “time shifts.” Also note that in the database literature, (Cut) is also
referred to as the rule of pseudo-transitivity [20].

We say that A ⇒ B is provable from Σ, denoted Σ � A ⇒ B if there is a
proof of A ⇒ B from Σ. Since we in fact extend the Armstrong system, we
immediately get the following properties:

(Add) {A⇒ B,A⇒ C} � A⇒ B∪C,

(Aug) {B ⇒ C} � A∪B ⇒ A∪C,

(Pro) {A⇒ B∪C} � A⇒ B,

(Tra) {A⇒ B,B ⇒ C} � A⇒ C.

Our inference system is sound in the usual sense:

Theorem 4. If Σ � A⇒ B then Σ |= A⇒ B.
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Proof. The proof goes by induction on the length of a proof, considering the
facts that each axiom is true in all models, (Cut) is a sound deduction rule [20],
and (Shf) is sound on account of Theorem 1. ��
Lemma 2. If Σ � A⇒ B, then there is M ∈ Mod(Σ) such that M �|= A⇒ B.

Proof (sketch). Consider Σ and for each non-negative integer n, put

A0
Σ = A,

An+1
Σ = An

Σ ∪
⋃{

F + i |E ⇒ F ∈ Σ and E + i ⊆ An
Σ

}
,

Aω
Σ =
⋃∞

n=0 A
n
Σ.

It suffices to show that one can take Aω
Σ for M . Take E ⇒ F ∈ Σ, i ∈ Z and let

E + i ⊆ Aω
Σ. Since E + i is finite, there must be n such that E + i ⊆ An

Σ and
thus F + i ⊆ An+1

Σ ⊆ Aω
Σ, proving that Aω

Σ ∈Mod(Σ). Next, prove that B ⊆ Aω
Σ

implies Σ � A ⇒ B. To see that, it suffices to check that for every n and every
finite D ⊆ An

Σ, we have Σ � A ⇒ D since then the claim readily follows for
B = D. Assume the claim holds for n and all finite D ⊆ An

Σ. Consider n+1 and
take a finite D ⊆ An+1

Σ . Now, consider a finite

D′ = {〈E ⇒ F, i〉 |E ⇒ F ∈ Σ and E + i ⊆ An
Σ}

such that D ⊆
⋃
{F + i | 〈E ⇒ F, i〉 ∈ D′} ∪ An

Σ. By induction hypothesis, for
each 〈E ⇒ F, i〉 ∈ D′, we have Σ � A ⇒ E + i and for E ⇒ F ∈ Σ, we have
Σ � E + i ⇒ F + i using (Shf). Thus, (Tra) gives Σ � A ⇒ F + i. Since D′

is finite, Σ � A ⇒ D follows by finitely many applications of (Add) and (Pro).
Therefore, our initial assumption Σ � A⇒ B yields B � Aω

Σ. Now, for i = 0, we
have that A+ i = A ⊆ Aω

Σ and B + i = B � Aω
Σ, i.e., A

ω
Σ �|= A⇒ B. ��

Theorem 5 (completeness). Σ � A⇒ B iff Σ |= A⇒ B.

Proof. Consequence of Theorem 4 and Lemma 2. ��
The set Aω

Σ introduced in the proof of Lemma 2 can be seen as a constructive
description of [A]Σ since both the sets coincide:

Corollary 2. For every A ⊆ TY , we have [A]Σ = Aω
Σ.

Proof. We get [A]Σ ⊆ Aω
Σ since [A]Σ is the least model of Σ containing A and

the converse inclusion follows by the monotony of the operator ω
Σ used in the

proof of Lemma 2 and the fact that ([A]Σ)
ω
Σ = [A]Σ. ��

Remark 4. Let us stress that the notions of semantic and syntactic entailment we
have considered in our paper are different from their classic counterparts. Indeed,
each attribute implication annotated by time points can also be seen as a classic
attribute implication per se because the setsA andB inA⇒ B are subsets of TY .
Therefore, in addition to the semantic entailment from Definition 4, we may
consider the ordinary one which disregards the special role of time points. The
same applies to the provability—the classic notion is obtained by omitting the
rule (Shf). For instance, Σ = {{x1} ⇒ {y2}, {y5} ⇒ {z2}} proves {x4} ⇒ {y5}
by (Shf) and thus {x4} ⇒ {z2} by (Tra). On the other hand, Σ does not prove
{x4} ⇒ {z2} without (Shf).
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4 Conclusion and Future Research

We have introduced attribute implications annotated by time points and their
semantics based on evaluating the implications in models using a sliding time
point. The formulas are considered true if they are preserved in all time points.
We have defined semantic entailment, showed closure properties of systems of
models and provide a characterization based on least models. Furthermore, we
have shown an axiomatization which extends the classic axiomatization by con-
sidering an additional rule of time shifts.

Our future research in the area will focus on the following issues:

– Relationship to other logical systems for rule-based reasoning;
– connections to concept lattices, Galois connections, and related structures;
– non-redundant descriptions of dependencies which hold in data;
– relationship to modal and temporal (tense) logics;
– generalization of the approach by extensions of Armstrong-like systems;
– generalization for similarity-based and graded rules;
– applications in prediction.
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Abstract. The online knapsack problem (OKP) is a generalized version of the
0-1 knapsack problem (0-1KP) to a setting in which the problem inputs are re-
vealed over time. Whereas the 0-1KP involves the maximization of the value of
the knapsack contents without exceeding its capacity, the OKP involves the fol-
lowing additional requirements: items are presented one at a time, their features
are only revealed at their arrival, and an immediate and irrevocable decision on the
current item is required before observing the next one. This problem is known to
be non-approximable in its general case. Accordingly, we study a relaxed variant
of the OKP in which items delay is allowed: we assume that the decision maker is
allowed to retain the observed items until a given deadline before deciding defini-
tively on them. The main objective in this problem is to load the best subset of
items that maximizes the expected value of the knapsack without exceeding its
capacity. We propose an online algorithm based on dynamic programming, that
builds-up the solution in several stages. Our approach incorporates a decision rule
that identifies the most desirable items at each stage, then places the fittest ones in
the knapsack. Our experimental study shows that the proposed algorithm is able
to approach the optimal solution by a small error margin.

Keywords: Knapsack problem, Online algorithms, Optimal stopping, Dynamic
programming.

1 Introduction

Decision making under dynamic environments is a challenging task as information on
the problem being optimized are time-dependent, not completely known a priori, or un-
certain. Typically, the problem inputs are revealed over time and/or get updated as the
optimization process proceeds. Besides, the solution to these problems is constructed
sequentially over time based only on the previously revealed data, and with partial or
imperfect knowledge about the future [1]. Such problems, termed as “online optimiza-
tion problems”, are receiving increasing interest due to the wide range of applications
it can be applied to. Real-world applications involving online scenarios include [2][3]:
ad allocation problems, selection of investment projects, and freight transportation.

In this work, we are particularly interested in an online resource allocation problem
that involves the sequential arrival of items for a limited resource. The so-called “online
knapsack problem” (OKP) is defined as follows. A decision maker (DM) observing a
sequence of items, arriving one by one, is required to fill his knapsack with the most
valuable ones. Each item differs by its weight and its reward, and both values remain

V. Torra et al. (Eds.): MDAI 2014, LNAI 8825, pp. 96–107, 2014.
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unknown until the item is received. The knapsack is of a limited capacity and the selec-
tion is made in an online fashion: the DM have to decide irrevocably whether to load the
current item or to discard it before observing the next one. Therefore, the OKP requires
an online approach that builds the decision concurrently with the arrival of new items.

This problem was firstly addressed in [4]. In that study, it was shown that there is no
algorithm able to approximate the optimal solution within a constant competitive ratio
(is the ratio of the payoff of an online algorithm to the payoff of an offline algorithm
that have a complete knowledge of items features), and to bypass this difficulty, the
authors considered the stochastic case. They proposed a linear time online algorithm
that approximates the optimum to within a factor of O(log3/2n), and defined a lower
bound of Ω(1) in the special case when a buffer storage to defer the decision about
some items is used. This factor was improved in [5] to O(logn). Iwama and Taketomi
[6] introduced the removable OKP where the DM is allowed to replace some of the
loaded items when he finds better ones. The same problem was equally investigated
in [7] while authorizing resource augmentation, and in [8] where items are permitted
to be fractionalized. A more recent work [9] addressed the OKP with removal cost
where items removed from the knapsack, due to capacity surplus, incur cancelation
charge. Auctions are also a potential application of the OKP [10]: a buyer with a limited
budget is looking to purchase bids from a given set. Each bid is the property of a single
bidder wishing to place his object in the knapsack. The bid value and weight correspond
respectively to the bidder valuation of having its item in the knapsack and the required
place in the knapsack, and the objective is to purchase the best subset of bids.

Babaioff et al. [11] showed that the OKP can be viewed as a weighted form of the
multiple-choice secretary problem: a special case of the optimal stopping problem where
a manager is receiving requests for vacant secretarial posts, and would like to select the
most competitive candidates. Knowing nothing about the future applicants, he is required
to decide irrevocably about the current candidate: to hire him immediately, or to send him
away. If each candidate is symbolized by an item and the number of available posts is
considered as the capacity of the knapsack, the problem would be equivalent to an OKP.
Conversely speaking, if all item’s weight are set to 1 and the knapsack capacity is fixed
to a predefined value x, the OKP is reduced to an -unweighted- multiple choice secretary
problem. This problem was solved via a 10e-competitive algorithm while assuming ar-
bitrary weights, and a e-competitive algorithm was proposed for the equal weights case.
Besides, several studies have considered stochastic OKPs. The dynamic and stochastic
knapsack problem was introduced in [2], and two special cases were examined later while
assuming equal [12] and random weights [13]. These studies showed that the optimal
policy for OKPs is a threshold type policy.

The common in the aforesaid works is that, in order to overcome the difficulty of such
problems, the authors relaxed the original problem (e.g. by allowing items removal,
through capacity augmentation) or considered their stochastic counterparts. Specifi-
cally, the removability assumption was the most appealing and the most used approach
to achieve a competitive ratio. Indeed, we think that the fact of loading items at their
arrival time and allowing their removal when better items are encountered is none other
than a special case of deferring the decision about these items to advanced stages of the
searching process. And by referring to real-world, we can think of many applications
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of OKPs that involve the maintain of -at least- some items until later stages, before
abandoning them. This is the case when one needs to a hire a secretary: as he seeks the
most qualified applicant, he asks the best interviewed ones to leave their contact details
so that they get a response, and make his selection once the candidate list is formed.
The problem of cargo loading is another potential application, where a logistic com-
pany takes care of loading items in a cargo before being sent to their final destination.
Because the available cargo cannot accommodate all items at once, the problem is to
select some of the online loading requests, while holding on the rest for future ship-
ments.Other examples of real-world applications in the resource allocation field could
include: web advertising, selling real- estate, and auctions [10]. From there comes the
need to address the OKP with items delay.

This study introduces a new version of the OKP in which the DM is allowed to delay
items. We define the delay of an item as being the defer of the decision about that item
until observing the next one(s). That is, an item i received at t will still available for the
selection in subsequent stages until it is loaded in the knapsack (at any stage g >= t) or
the delay deadline occurs. However, delayed items are penalized in terms of utility. We
note that the concept of delay has already been considered within the context of online
decision making, notably with the optimal stopping problem [14].

The OKP with delay is defined as the decision process aiming to maximize the ex-
pected reward of the knapsack contents. The DM, receiving items sequentially, is al-
lowed to select immediately the current item or to defer his decision about that item
to next stages. The selection and the delay of a given item depends on the previously
received items and on its expected utilities. When an item is delayed, its utility incurs
a penalty which means that this item loses some of its desirability over time. Two stop-
ping criteria are considered: the knapsack is full, or all the potential items have been
received. The main challenge of this problem is to determine which items to select and
in the opportune moment especially that items selection is irrevocable.

In order to solve this problem, we propose a dynamic programming approach man-
aged by a stopping rule. Our approach reduces the online problem to a number of static
knapsack sub-problems equal to the number of stages. The proposed algorithm operates
as follows. Every time that a new item appears, it is ranked among the foregoing ones
and on the basis of these ranks the dynamic equations are computed to identify a subset
of candidate items. The chosen items serve as inputs for a 0-1KP, the solution of which
are items to be inserted irrevocably in the knapsack. These steps are repeated until the
process ends. The collection of items contained into the knapsack constitutes the solu-
tion of the OKP. A comparative study is carried out to evaluate the performance of the
proposed approach with respect to the results of an offline algorithm, and in terms of
several performance measures. Our results indicate that the proposed approach is able
to approximate the optimal solution with a small gap.

The remainder of this paper is organized as follows. In section 2, we state the problem
and present our dynamic formulation. Section 3 describes the proposed approach and
draws its algorithm. The experimental evaluation of our algorithm and results analysis
are presented in section 4. The effect of using different utility functions is also discussed
in the same section. The last section contains our concluding remarks and possible
directions for future work.
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2 Problem Statement

We consider a knapsack with a limited capacity C and a sequence of n items arriving one
by one over time. Each item is characterized by a value and a weight, which become
known when the item is received. Each new stage (or a time step), exactly one item
is presented. The DM is allowed to delay items to subsequent stages (while incurring
a penalty), but once inserted in the knapsack, they can no longer be removed. Items
delayed at previous stages remain available until the stopping criteria is met, or the DM
selects them. Two stopping criteria are considered in this work: when the capacity of
the knapsack is exhausted, or all the potential items are already received. The DM aims
to select -progressively over time- the fittest of all items in order to maximize his profit
without exceeding the capacity of the knapsack.

2.1 Notations

For the better understanding of our problem formulation, we start by defining all the
notations that will be used in the rest of this paper.

Symbols Explanations
n the total number of potential items
C the knapsack weight capacity
i item’s number (refers to the ith received item)
j stage’s number (i.e. j items were so far revealed)
vi value (or reward) of item i
wi weight of item i
di density of item i, computed as its value per unit weight di =

vi
wi

c j the remaining capacity of the knapsack at j
r the relative rank of the current item (its rank among the so far observed items)
k the absolute rank (the rank of the current item among the whole sequence)
Ui(k, j) the utility function of item i at j
EUi∗( j,r) the expected utility of the item i
EUi

s( j,r) the expected utility when stopping i (when selecting it)
EUi

c( j) the expected utility when continuing (when delaying i)
P(k|r, j) the probability of having k given r at j
S the set of candidate items
xi if item i is selected xi = 1, otherwise xi = 0

2.2 Dynamic Formulation of the OKP

The OKP can be regarded as a decision process aiming to identify the best offers from
a sequence of offers arriving successively. Therefore, we use the dynamic equations of
the optimal stopping problem as a base for our dynamic formulation.

We are given n items, arriving over n discrete periods, and a knapsack of capacity C.
Each item has an associated value vi and a weight wi. The problem is to fill the knap-
sack by the fittest of all items in an online fashion, and without violating the capacity
constraint. Each new stage, the DM ranks the available items (the one received at the
current stage and the delayed ones). In this framework, it is essential to distinguish
between two types of rank: relative and absolute. The relative rank r of an item i is
attributed by the DM and indicates its desirability (measured in terms of density: the
greater is the density, the more desirable is the item) among the so far received items.
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However, the absolute rank of i is its rank among the n potential items. As no prior
information is available, the absolute rank (k) of an item can only be determined when
all the items are received. Therefore, the DM decides to select or to delay each avail-
able item based only on the relative ranks. Our decision strategy reposes on two steps:
identifying candidates and loading the best of them.

Identifying candidates. A first step consists in identifying the set of candidates by com-
puting items expected utilities. This is accommodated by the following formulation.

The DM’s utility is a measure of its desirability of the consequences to which can
lead his decision. In our case, Ui(k, j) denotes the DM’s utility of selecting item i whose
absolute rank is equal to k at the jth stage. The utility is a non-increasing function of the
absolute rank: Ui = f (k). As we are looking for the best subset of items to be packed
in the knapsack, we adopted a utility function which attributes decreasing values in
terms of the absolute rank. Therefore, our utility function is expressed in terms of the
absolute rank and the stage’s number: Ui = f (k, j). We consider, in this work, two
different utility functions in order to study the influence of each utility function on the
final decision. Their formulas are given by:

Ui
1(k, j) =

1
k

(1) Ui
2(k, j) =

n− k+ 1
n

(2)

where the inverse-rank utility Ui
1(k, j), is computed as the inverse number of the

absolute rank, while the regressive fraction utility Ui
2(k, j), is computed in terms of

the the total number of items. As to delayed items (reconsidered in subsequent stages,
j > i), their utilities are discounted to the utility of the next rank.

Because the decision about a given item i is between two alternatives (to select the
item or to delay it), it is reasonable to consider the expected utility of each alternative
as base to make the decision. To determine the expected utility in each case, we refer to
the optimal stopping context. Indeed, the OKP can be viewed as a constrained multiple
choice optimal stopping problem where a DM is required to select the best offers of the
sequence of offers arriving over time. The stopping rule in optimal stopping problems
consists in stopping the process when the DM believes that the current offer is the best
of the sequence. This is translated in the OKP by stopping at the items that are expected
to be the more desirable of the sequence, so to load them in the knapsack. However,
continuing to the next item means in our context to delay the current item.

We denote by EUi
s( j,r) the expected utility of selecting item i at j with a relative

rank r. The expected utility when continuing, denoted by EUi
c( j), is the expected utility

of delaying item i at j and continuing to the next stage.
The decision at any stage of the selection process depends on the values of these two

components, and the DM will react in accordance with the decision that maximizes his
expected utility. That is, if EUi

s( j,r) ≥ EUi
c( j), item i will be considered as a candidate

at j, otherwise it is delayed to next stages. Therefore, the expected utility of item i at j
can be stated as:

EUi∗( j,r) = max[EUi
s( j,r),EUi

c( j)] (3)

where the expected utility of selecting i is given by:
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EUi
s( j,r) =

n− j+r

∑
k=r

Ui(k, j)P(k|r, j) (4) with P(k|r, j) =

(k−1
r−1

)(n−k
j−r

)(n
j

) (5)

This expected utility of selecting an item is expressed in terms of the absolute rank
of that item. As absolute ranks become only known when all items are received, we
compute the probability of having the current item as the kth best item of the sequence
for each possible rank k ∈ {r, ...,n− j + r}. Subsequently, EUi

s( j,r) is given by sum-
ming up each of these probabilities weighted by its corresponding utility. However, the
expected utility when continuing with delaying item i at j, is computed as the average
sum of the expected utilities of item i until stage j+1, and this to measure the effect of
delaying i for the next stage. It can be written as:

EUi
c( j) =

1
j+ 1

j+1

∑
r=1

EUi( j+ 1,r) (6)

We note that Eq. (6) is only available when j < n, otherwise ( j = n) no item can be
delayed anymore and all the available items should be nominated for the final selection.

Thereby, the DM can identify which items to delay and the ones to be inserted in
the knapsack. However, if the the knapsack cannot carry all items considered for the
selection, then only the best ones will be inserted in the knapsack. We denote by S the
subset of items verifying the inequality EUi

s( j,r) ≥ EUi
c( j) at j, Hence, S is the subset

of candidates for selection.

Select the fittest items. If the set of candidate items cannot fit in the knapsack, the best
items in this set are chosen. To insure selecting the best of all items in S, we solve a
0-1KP having as inputs the set of items S and as a capacity constraint the remaining
capacity at j. The knapsack subproblem at stage j, KP j(S,c j), can be stated as:

Maximize Z(x) = ∑
i∈S

vixi Subject to ∑
i∈S

wixi ≤ c j (7)

The solution of KP j(S,c j) is the subset of items to be loaded in the knapsack at stage
j. Hence, at any stage j ( j ∈ [1,n]), the knapsack will contain items selected during the
previous j− 1 stages in addition to items selected at the current stage.

3 Online Algorithm for the OKP with Items Delay

This section deals with the description of our online algorithm. We present, in a first
part of this section, the proposed approach and we draw up its pseudocode. The second
subsection details the solution steps of a small size problem for demonstration purpose.

3.1 The Algorithm

The algorithm inputs are the total number of items n and the capacity C. Items are then
presented one per stage, and the next one is only revealed when the current stage is
achieved. Each new stage, the algorithm assigns relative ranks to the observed items
by density. Then, the expected utilities of available items are computed based on the
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attributed ranks and the stage index. The candidate set is then formed by items whose
expected utility when stopping is greater than their expected utility when continuing.
If the sum of the weights of items in the candidate set S is greater than the remaining
capacity of the knapsack, the fittest items of the candidate set are selected and placed
in the knapsack by solving a 0-1 knapsack subproblem. There, our algorithm makes
appeal to the offline algorithm proposed in [15] to get the optimal subset of items from
items in the candidate set. The selected items are inserted in the knapsack, while the
remaining ones are definitively rejected and will not be considered in the subsequent
stages. Afterwards, the capacity of the knapsack is updated and the algorithm moves to
the next stage. These steps are repeated until the capacity is exhausted or the last stage
is achieved. The pseudocode of our algorithm is given in Fig. 1.

j←1; i←1; /* j and i are, respectively, the stage’s index and item’s index */
while j ≤ n do

Receive item i
Rank the observed items from 1 to j /* Attribute relative ranks to available items */
for each i ∈ [1, j] do

Compute the expected utilities of item i
if (EUi

s ≥ EUi
c) then

S ∪ i /* Item i is selected as a candidate */
end if

end for

W ←
|S|

∑
s=1

ws /* Compute the weight sum of candidates in S */

if (c j ≤W ) then
Load all candidates in the knapsack

else
Solve KP j(S, c j)
Load the selected items in the knapsack
S← /0 /* All remaining items are rejected */

end if
Update(c j) /* Compute the remaining capacity in the knapsack */
if (c j = 0) then

Quit the procedure
else

j← j +1
end if

end while

Fig. 1. Pseudocode of the proposed dynamic approach for the OKP

3.2 Example

For the sake of thoroughness and full understanding of the proposed approach, we detail
the solution steps through an example of a small size. We consider a knapsack of capac-
ity with a capacity C = 904, and a set of items with the following values and weights:
vi = {94,506,992,416} and wi = {485,300,421,240}, where i ∈ {1,2,3,4,5}.

These values are provided to the algorithm as soon as the item in question becomes
available (i.e, at stage i, the features of item i becomes known). We note that, in this ex-
ample, we compute the expected utilities using the utility function Ui

2 (stated in eq. (2)).
In what follows, we analyze stage by stage the solution.
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Stage 1: the first item I1 appears. We compute its expected utilities (with a relative rank
equal to 1): EU1

s (1,1)=0.6 and EU1
c (1)=0.79. As the expected utility when continuing

of I1 is greater than its expected utility when stopping, the decision will be to delay I1

and to move to the next stage.

Stage 2: the second item I2 is received. Available items are I1 (delayed in stage 1) and
I2. By means of the density function, we can assign relative ranks to the available items:
d1=0.19 and d2=1.68. Hence, I2 is ranked first and its expected utilities are computed
with a relative rank 1: EU2

s (2,1) = 0.8 and EU2
c (2) = 0.78. As its expected utility when

stopping is greater than its expected utility when continuing, I2 is a candidate. However
I1 is not, because EU1

c (2) = 0.78 > EU1
s (2,2) = 0.4. Since the knapsack is empty and

I2 at this stage is the only candidate, we can load I2 without going through the solution
of KP2(S,904). Therefore, the knapsack contains at the end of the second stage item I2

and the remaining capacity in the knapsack is c2 = 904− 300= 604.

Stage 3: Available items are I1 and I3. The relative ranks are {r1,r2,r3}={3,2,1}, where
ri denotes the relative rank of item i. By computing the expected utilities, we found that
I3 is the unique candidate (EU3

s (3,1) = 0.9 > EU3
c (3) = 0.72). Hence, I3 is loaded in

the knapsack and the knapsack capacity is updated c3= 183.

Stage 4: Available items at stage 4 are I1 and I4. The relative ranks are {r1,r2,r3,r4} =
{4,3,1,2}, and I4 is a candidate. As the weight of item I4 is greater than the remaining
capacity in the knapsack, I4 is rejected and we continue to the next stage.

Stage 5: At the last stage, all potential items are already received. There is no need to
compute the expected utilities as all the available items are candidates for the selection.
Therefore, we solve the KP5(S,183) with S={I1, I5}. The remaining capacity cannot
carry any of the available items, so the processes is stopped.

Accordingly, the solution of this online problem is the subset of items: {I2, I3} and
the total value of the knapsack contents is Z=1498. Knowing that the optimal subset of
items obtained by an offline algorithm is {I3, I5} with a total reward of 1641, we can
induce that our algorithm closely approached the optimal solution.

4 Experimental Study

This section is concerned with the evaluation of the proposed algorithm. First, we
present the settings of our experimentations. Then, we describe the evaluation measures
being used in the experimental study. Finally, we report and discuss the computational
results for the performance of the proposed algorithm.

4.1 Experimentation Settings

Our algorithm is run on several instances ranging in size from 10 to 1000. To the best
of our knowledge, there is no benchmark tool to evaluate OKPs. Therefore, we use
the test instances generator of Pisinger [16] to generate the parameters of 0-1KPs. We
set the capacity value for each instance to 50% of the sum of all items weight. For
comparison purposes, we generate the optimal solution for the tested instances using
the exact algorithm proposed in [15].
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In our experimentations, we run each test instance over 30 random permutations of
features. We define a random permutation as a random ordering of the items arrival
times over the n stages. Results reported in this work are the average of 30 independent
runs. Moreover, and in order to analyze the effect of the utility function in the final
solution, we present results obtained by two different utility functions (eq. (1-2)).

4.2 Performance Measures

Performance measures are quantitative tools for assessing the efficiency of an algorithm
with regards to the achieved fitness value or a specific behavioral aspect. We define, in
this section, several performance measures used to evaluate the proposed algorithm.

Average Reward. It is a fitness-based measure that indicates how well the algorithm
optimizes the objective function. The average reward (AR) is average of the fitness
values obtained in each of the independent runs.

Fitness Ratio. The fitness ratio (FR) assesses the quality of the obtained solution with
regards to the optimal fitness value Z∗. It is computed by dividing the Average Reward
by the approximate algorithm by the optimal fitness. The greater is FR, the closer the
algorithm approach the optimal solution.

Fitness Error. Fitness defect is one of the most informative measures. It is computed
as the difference between the optimal solution and the fitness value achieved by our
algorithm. The smaller is the error, the better the algorithm performs.

First Loading Stage. Although we allow the DM to defer decision-making, it is crucial
to know when the DM starts to fill his knapsack. A particular interest should be given to
the first selection stage as it is the stage in which the DM decided that he has observed
enough items to proceed to the selection. Hence, we record the first loading stage (FLS)
index for each of the tested instances and report the average value.

Process Ending Stage. This measure aims to determine the stage in which the stopping
criteria is met. Indeed, the process ends when the capacity of the knapsack is exhausted
or when all items are observed. By tracking down the stopping criteria, the process
ending stage (PES) will help us to better understand the behavior of the online algorithm
and to know if the last stage is of importance to achieve good solutions. The PES is
computed by averaging the recorded indexes of final stages.

Ratio of Loads Before the Last Stage. Online algorithms are required to make deci-
sion sequentially over time. However, if the decision is delayed until observing the last
item, the problem will be reduced to a 0-1KP (with full knowledge about all items). Ac-
cordingly, an evaluation measure is required to assess whether the proposed algorithm
is performing in an online manner (with partial or imperfect knowledge) or not. We
propose a new measure that we call “ratio of loads before the last stage” (LBLS). This
measure is intuitive and easy to compute. It is given by dividing the number of items
contained in the knapsack at the penultimate stage by the total number of loaded items.
The LBLS measure can be viewed as a sanity check of the online aspect of the solution,
but it does not rely on the ability of the algorithm to produce good solutions.
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4.3 Experimental Results

We report, in Table 1, the experimental results obtained by the proposed algorithm
in terms of several performance measures. Besides, we draw the algorithm behavior
according to the FR and LBLS measures in respectively Fig.2a and Fig.2b.

Table 1. Experimental Results in terms of numerous performance measures

n
AR FR Error FLS PES LBLS (%) CPU

U1 U2 U1 U2 U1 U2 U1 U2 U1 U2 U1 U2

10 3646 3440 0.95 0.89 194 400 4 4 9 8 0.97 0.98 3.7e-4

50 19428 16099 0.85 0.76 1726 5057 17 14 47 40 0.99 0.99 8.2e-4

100 36248 30697 0.89 0.76 4142 9693 32 28 88 78 0.99 1 10e-3

200 70042 59636 0.88 0.75 9577 19984 64 54 179 148 0.99 0.99 12e-2

300 114644 102815 0.94 0.85 6649 18478 170 170 290 267 0.99 1 79e-2

400 152953 142743 0.95 0.89 6400 16610 279 279 378 364 1 1 4.1

500 192580 182062 0.96 0.91 7109 17628 384 384 482 429 0.99 1 7.1

600 232821 221073 0.98 0.93 3518 15266 488 488 578 558 1 1 18.4

700 271195 259510 0.98 0.94 4011 15696 591 591 678 633 1 1 36.7

800 310225 299511 0.98 0.95 3854 14568 693 693 780 725 1 1 92.9

900 349829 339368 0.99 0.96 3040 13501 795 795 881 826 1 1 117.6

1000 388655 376492 0.99 0.95 3649 15812 897 897 982 927 1 1 142.4

As it can be seen from the table, AR values obtained by the algorithm are very close
to the optimal values obtained by the offline algorithm. Additionally, the results of FR
measure are too close to 1. This indicates that the algorithm meets the objective of max-
imizing the overall profit. The results of the fitness error measure confirm the previous
interpretations and showed that the error margin is small. One further observation that
deserve to be pointed out, from these measures, relates to the utility functions being
used. It is apparent from the obtained values that the utility function can influence the
fitness value, since when using U1, the algorithm provides better results than with U2.
Also, Fig.2a shows that the curve of U1 is higher than the curve of U2 which leads to say
that the algorithm performs better when using U1. So as an illustration of the fitness-
related measures, we can say that our algorithm fulfilled a very good performance.

The rest of measures used in this paper are behavioral-based measures. We have con-
sidered the FLS to measure the latency between the initiation of the process and the first
selection. Indeed, FLS values showed that also this goal is respected and the algorithm
proceeds to the selection before all items are revealed. However, this measure indicates
that the two utility functions gave the same values in almost all cases. Hence, we can
say that the FLS does not relate to the value of the final solution since with the two
utility functions the algorithm starts the selection at the same stage. However, the PES
measure is more informative. The values of PES obtained when using U1 are always
greater than those of U2, which implies that by using U1 the process ends later to the
process using U2. This explains why the algorithm obtains higher fitness values when
using U1. Indeed, with U1 the algorithm is more prudent when making decisions and de-
fer the selection decision more than do it with U2. From the LBLS values and curve (see
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Fig. 2. A comparison of the results using U1 and U2 in terms of two performance measures

Fig.2b), we can induce that our algorithm is able to solve the problem effectively and
in an online manner. Almost 99% of the loads has been made before reaching the last
stage. This says that our approach is able to achieve near-optimal solutions without hav-
ing full knowledge about the problem data, and this regardless of the used function of
utility. Our last evaluation tool is the CPU time. With small and medium instances, the
consumed CPU time is reasonable. But it becomes prohibitively large as the problem
size grows up. This can be deemed as the weak point of our algorithm.

To sum up, we can say that our dynamic approach has proved to be efficient in solv-
ing the OKP. By comparing our results to those provided by offline algorithms, we
showed that we reached near-optimal solutions with small error margin. The compara-
tive analysis of the results provided by two different utility functions allowed us to see
when they influence the final solution and when they does not affect it at all. Indeed,
we can say that the utility function U2 is more convenient for DMs who desire to make
decisions in a close time horizon, while U1 is more suitable for DMs who prefer to
delay their decisions until a considerable number of items appears. In other words, U2

quantifies the attitude of flexible DMs who accept moderate near-term profit, however
U1 is for more demanding DMs.

5 Conclusion

This article deals with a special case of the OKP where the DM is allowed to delay items
until a predefined deadline is reached. However, delayed items incurs penalization in
terms of utility. We presented a dynamic approach to solve the problem by decompos-
ing the online problem to a series of static knapsack subproblems. Each stage, the DM
can identify his most desirable items among the available ones by computing their ex-
pected utilities, then selects the fittest ones while respecting the remaining capacity. Our
experimental investigation showed that we were able to reach a very good performance
using our online approach. Besides, the use of two different utility functions allowed us
to come up to near-optimal solutions while involving two different attitudes to risk.

Future work may focus on generalizing the OKP with delay to a more natural set-
ting where items availability is constrained and independent from the stopping criteria.
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A comparative study can also be conducted to determine the more appropriate utility
function to use in such problems.
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Abstract. In this study, we propose three modifications for a maximizing model
of spherical Bezdek-type fuzzy c-means clustering (msbFCM). First, we kernel-
ize msbFCM (K-msbFCM). The original msbFCM can only be applied to objects
on the first quadrant of the unit hypersphere, whereas its kernelized form can be
applied to a wider class of objects. The second modification is a spectral clus-
tering approach to K-msbFCM using a certain assumption. This approach solves
the local convergence problem in the original algorithm. The third modification
is to construct a model providing the exact solution of the spectral clustering
approach. Numerical examples demonstrate that the proposed methods can pro-
duce good results for clusters with nonlinear borders when an adequate parameter
value is selected.

Keywords: fuzzy c-means clustering, kernelization, spectral clustering approach.

1 Introduction

The hard c-means (HCM) clustering algorithm [1], also known as K-means, splits
objects into well-separated clusters by minimizing the sum of the squared distances
between the objects and cluster centers. This concept has been extended to fuzzy clus-
tering, where object membership is shared among all of the cluster centers, rather
than being restricted to a single cluster. To attain fuzzy clustering, Bezdek’s algo-
rithm replaces linear membership weights with a power function, and creates cluster
centers based on weighted means [2]. This produces what is commonly known as the
fuzzy c-means (FCM) algorithm. To distinguish this algorithm from the many variants
that have subsequently been proposed, we refer to this as Bezdek-type FCM (bFCM).
Another fuzzy approach used for cluster analysis is the regularization of the HCM ob-
jective function. Recognizing that HCM is singular, and that an appropriate cluster can-
not be obtained using the Lagrangian multiplier method, Miyamoto and Mukaidono
introduced a regularization term into the objective function via the negative entropy
of membership [3] with a positive parameter, thereby producing entropy-regularized
FCM (eFCM).

In HCM, bFCM, and eFCM, the squared Euclidean distance is assumed to mea-
sure the dissimilarity between an object and a cluster center. However, there are many
other (dis)similarity measures. In particular, spherical K-means [4] and its fuzzified
variants [5],[6] calculate the cosine correlation between an object and a cluster center,
and effectively employ this as the dissimilarity measure. These methods are referred to

V. Torra et al. (Eds.): MDAI 2014, LNAI 8825, pp. 108–121, 2014.
c© Springer International Publishing Switzerland 2014
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as spherical because the cosine correlation ignores the magnitude of the objects, thus
assuming that all objects lie on the unit hypersphere. The spherical clustering methods
that correspond to HCM, bFCM, and eFCM are denoted as sHCM, sbFCM, and seFCM
in the present study.

All of the aforementioned clustering methods are minimizing models, i.e., the al-
gorithms solve the corresponding minimization problems based on the dissimilarities
between objects and clusters. Maximization models can also be considered, i.e., max-
imization problems based on the similarities between objects and clusters. The max-
imizing models of sHCM and seFCM (msHCM and mseFCM) are equivalent to the
corresponding minimizing models (sHCM and seFCM), whereas a maximizing model
of sbFCM has not been well defined [7]. In a previous study, a maximizing model of
sbFCM (msbFCM) was proposed by the author [8].

To cluster objects with nonlinear borders, an algorithm [9] that uses a nonlinear trans-
formation from the original pattern space into a higher-dimensional feature space with
kernel functions [10] has been decribed. The explicit mapping is generally unknown
for kernel data analysis, but the inner products between pairs of objects in feature space
should be known. However, an explicit mapping has been introduced by Miyamoto, and
this enabled the appearance of kernelinzed clustering in a higher-dimensional space to
be described via kernel principal component analysis [11], [12]. With the exception
of msbFCM, the aforementioned spherical clustering methods are kernelized (e.g., [5],
[6]), and the kernelized algorithms produce good results for clusters with nonlinear
borders.

In this study, we propose three modifications to msbFCM. The first modification is
to kernelize msbFCM (K-msbFCM). The original msbFCM can only be applied to ob-
jects on the first quadrant of the unit hypersphere, whereas kernelized algorithms can
be applied to wider classes of objects, because the Gaussian kernel and its variants [13]
map the original data into the first quadrant of the unit hypersphere. The second modifi-
cation is a spectral clustering approach to K-msbFCM undera certain assumption. This
approach solves the local convergence problem of the original algorithm. The third
modification constructs a model that gives an exact solution to the spectral clustering
approach. The abbreviations and names of methods in this paper are summarized in
Table 1.

The rest of this paper is organized as follows. In section 2, the notation and msbFCM
that forms the basis of the proposed methods are introduced. Section 3 presents the basic
concepts and proposed methods, and section 4 provides some illustrative examples.
Section 5 contains our concluding remarks.

2 Preliminaries

Let X = {xk ∈ Rp | k ∈ {1, · · · , N}} be a dataset of p-dimensional points, and
assume that every datum lies on the first quadrant of the unit hypersphere. The mem-
bership of xk that belongs to the i-th cluster is denoted by ui,k (i ∈ {1, · · · , C}, k ∈
{1, · · · , N}), and the set of ui,k is denoted by u, which is also known as the partition
matrix. The cluster center set is denoted by v = {vi | vi ∈ Rp, i ∈ {1, · · · , C}}.
The inner product between the k-th datum and the i-th cluster center is denoted by
si,k = xT

kvi.
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Table 1. Methods discussed in this paper

Abbreviation Methods

HCM hard c-means
bFCM Bezdek-type fuzzy c-means
eFCM entropy-regularized fuzzy c-means

sHCM spherical hard c-means
sbFCM spherical Bezdek-type fuzzy c-means
seFCM spherical entropy-regularized fuzzy c-means
msHCM maximizing model of spherical hard c-means, which is equiva-

lent to sHCM
mseFCM maximizing model of spherical entropy-regularized fuzzy c-

means, which is equivalent to seFCM
msbFCM maximizing model of spherical Bezdek-type fuzzy c-means, the

basis of the proposed method

K-msbFCM kernelized msbFCM, the proposed method

sK-msbFCM spectral clustering approach to K-msbFCM, the proposed
method

msK-msbFCM model giving the exact solution of sK-msbFCM, the proposed
method

msbFCM [8] aims to solve the optimization problem:

maximize
u,v

C∑
i=1

N∑
k=1

u
1
m

i,ksi,k, (1)

subject to
C∑
i=1

ui,k = 1, (2)

‖vi‖2 = 1 (3)
where m > 1 is a fuzzification parameter. The msbFCM algorithm is as follows:

Algorithm 1 (msbFCM [8])

STEP 1. Give the number of clusters C and the fuzzification parameter m, and set
the initial cluster centers as v.

STEP 2. Calculate s by
si,k = xT

kvi. (4)
STEP 3. Calculate u by

ui,k =
s

m
m−1

i,k∑C
j=1 s

m
m−1

j,k

. (5)

STEP 4. Calculate v by

vi =

∑N
k=1 u

1
m

i,kxk

‖
∑N

k=1 u
1
m

i,kxk‖2
. (6)

STEP 5. Check the stopping criterion for (u, v). If the criterion is not satisfied, go to
STEP 2. ��
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Note that msbFCM can only be applied to objects on the first quadrant of the unit hyper-
sphere, because the concavity of the objective function, a necessary condition for opti-
mality, is violated for the membership of objects outside this domain. This is in contrast
to conventional spherical clustering methods, which are valid for objects on the whole
unit hypersphere. However, this constraint does not greatly restrict the applicability of
msbFCM. Document clustering is an application for msbFCM, where each document
was described as a normalized term-frequency vector or term frequency-inverse doc-
ument frequency (tf-idf) weighted vector with positive elements [8]. Regardless, it is
desirable that msbFCM can be applied to a wider class of objects.

3 Proposed Method

3.1 Basic Concept

We first kernelize msbFCM (K-msbFCM). As stated in section 2, the original msbFCM
can only be applied to objects on the first quadrant of the unit hypersphere, whereas
its kernelized algorithm can be applied to wider classes of objects. Here, we consider
objects {xk}Nk=1 not on the first quadrant of the unit hypersphere. The elements of the
kernel matrix obtained from the Gaussian kernel are described as

Kk,� = exp(−σ2‖xk − x�‖22). (7)
Note that

Kk,k = 1 and Kk,� ∈ [0, 1], (8)
that is, the norm induced by the inner product of each feature vector is 1, and the inner
product of a pair of feature vectors ranges from zero to one. This implies that the fea-
ture vectors corresponding to the Gaussian kernel are on the first quadrant of the unit
hypersphere. Therefore, using an adequate kernel does not restrict the dataset that can
be applied to K-msbFCM.

Second, we derive a spectral clustering approach to K-msbFCM. We can obtain an
equivalent maximization problem for the cluster centers by substituting membership
update equation into the original problem. Next, assuming an extremely well-separated
situation, an eigenproblem is obtained from the optimization problem with the fuzzifi-
cation parameter m = 2, using the coefficients by which cluster centers are expressed
as linear combinations of objects. This implies that the globally optimal solution can be
obtained by solving that eigenproblem. Thus, no specific initial value setting is needed,
so we overcome the local convergence problem of the original algorithm. Because the
actual situation is not well-separated, some iterations are executed to update the mem-
bership values. Therefore, similar to spectral clustering, this algorithm consists of two
stages: (1)solving the eigenproblem, and (2)updating the optimal solutions.

In experiments using the spectral clustering approach of msbFCM, we found that
one iteration in the second stage was sufficient to produce good clustering results. This
implies that there is an algorithm for the clustering model that consists of only the first
stage and one iteration of the second stage in the spectral clustering approach of K-
msbFCM. This is the motivation for the third modification to msbFCM, which provides
an exact solution to the spectral clustering approach. For slightly generalized objective
function with additional parameter, when the fuzzification parameter value is set to
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2.0 and another parameter is set to 2.0, the derived algorithm consists of solving the
eigenproblem and one iteration to update the optimal solutions.

3.2 K-msbFCM

For a given set of objects X = {xk | k ∈ {1, . . . , N}}, K-msbFCM assumes that
the kernel matrix K ∈ RN×N is known. Let H be a higher-dimensional feature space,
Φ : X → H be a map from the data set X to the feature space H, and W = {Wi ∈ H |
i ∈ {1, · · · , C}} be a set of cluster centers in the feature space.

K-msbFCM solves the following optimization problem:

maximize
u,W

C∑
i=1

N∑
k=1

u
1
m

i,ksi,k (9)

subject to 〈Wi,Wi〉 = 1, (10)

and Eq. (2), where si,k = 〈Φ(xk),Wi〉. The Lagrangian L(u, v) is described as

L(u, v) =

C∑
i=1

N∑
k=1

u
1
m

i,ksi,k +

C∑
k=1

γk

(
1−

C∑
i=1

ui,k

)
+

C∑
i=1

νi
(
1− ‖Wi‖2H

)
(11)

with Lagrange multipliers (γ, ν). The necessary conditions for optimality can be written
as

∂L(u,W )

∂ui,k
= 0, (12)

∂L(u,W )

∂Wi
= 0, (13)

∂L(u,W )

∂γk
= 0, (14)

∂L(u,W )

∂νi
= 0. (15)

Optimal membership is given by Eq. (12) in the form

uj,k =

(
1

mγk

) m
m−1

s
m

m−1

j,k (16)

with Lagrange multiplier γk. Summing over the cluster index j ∈ {1, · · · , C} and
considering Eq. (14)⇔Eq. (2), we have

(
1

mγk

) m
m−1

C∑
j=1

s
m

m−1

j,k = 1⇔
(

1

mγk

) m
m−1

=
1∑C

j=1 s
m

m−1

j,k

. (17)
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By inserting Eq. (16) into this equation, we can eliminate γk, yielding

ui,k =
s

m
m−1

i,k∑C
j=1 s

m
m−1

j,k

. (18)

The optimal cluster center is obtained using Eq. (13) as

Wi =
1

2νi

N∑
k=1

u
1
m

i,kΦ(xk) (19)

with Lagrange multiplier νi. By considering the squared norm and taking Eq. (15)⇔
Eq. (10) into account, we have

1

(2νi)2

∥∥∥∥∥
N∑

k=1

u
1
m

i,kΦ(xk)

∥∥∥∥∥
2

H

= 1⇔ 1

2νi
=

1∥∥∥∑N
k=1 u

1
m

i,kΦ(xk)
∥∥∥
H

. (20)

Inserting Eq. (20) into Eq. (19), eliminating νi, we have

Wi =

∑N
k=1 u

1
m

i,kΦ(xk)∥∥∥∑N
k=1 u

1
m

i,kΦ(xk)
∥∥∥
H

. (21)

Generally, Φ cannot be given explicitly, so the K-msbFCM algorithm assumes that a
kernel function K : Rp × Rp → R is given. This function describes the inner product
value of pairs of the objects in the feature space as K(xk, xj) = 〈Φ(xk), Φ(xj)〉. How-
ever, it can be interpreted that Φ is given explicitly by allowing H = RN , Φ(xk) = ek,
where ek is the N -dimensional unit vector whose �-th element is the Kronecker delta
δk,�, and by introducing K ∈ RN×N such that

Kk,j = 〈Φ(xk), Φ(xj)〉. (22)

Using this kernel matrix K , si,k is described as

si,k =

〈
Φ(xk),

∑N
�=1 u

1
m

i,�Φ(x�)∥∥∥∑N
�=1 u

1
m

i,�Φ(x�)
∥∥∥
H

〉
=

∑N
�=1 u

1
m

i,�〈Φ(xk), Φ(x�)〉√〈∑N
�=1 u

1
m

i,�Φ(x�),
∑N

r=1 u
1
m

i,rΦ(xr)
〉

=

∑N
�=1 u

1
m

i,�Kk,�√∑
�=1

∑N
r=1 u

1
m

i,�u
1
m

i,r〈Φ(x�), Φ(xr)〉
=

∑N
�=1 u

1
m

i,�Kk,�√∑N
�=1

∑N
r=1 u

1
m

i,�u
1
m

i,rK�,r

. (23)

Therefore, the K-msbFCM algorithm consists of updating (u, s) as follows:
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Algorithm 2 (K-msbFCM)

STEP 1. Give the number of clusters C and the fuzzification parameter m, and set
the initial partition matrix as u.

STEP 2. Calculate s by Eq. (23).
STEP 3. Calculate u by Eq. (18).
STEP 4. Check the stopping criterion for (u, s). If the criterion is not satisfied, go to

Step. 2. ��

This algorithm can be applied to any kernel matrix, satisfying Eq. (8) such as the Gaus-
sian kernel and its variants (e.g., [13]).

3.3 Spectral Clustering Approach to K-msbFCM

In this subsection, a spectral clustering approach to K-msbFCM is proposed. First, we
obtain an equivalent objective function to Eq. (9) with m = 2 as

C∑
i=1

N∑
k=1

u
1/2
i,k si,k =

C∑
i=1

N∑
k=1

si,k

(
∑C

j=1 s
2
j,k)

1/2
si,k

=

C∑
i=1

N∑
k=1

s2i,k

(
∑C

j=1 s
2
j,k)

1/2

=

N∑
k=1

∑C
i=1 s

2
i,k

(
∑C

j=1 s
2
j,k)

1/2

=

N∑
k=1

(
C∑
i=1

s2i,k

) 1
2

(24)

by substituting the membership update equation (18) into the original problem (9). Next,
assuming the extremely well-separated situation where

〈Wi,Wj〉 =δi,j , (25)
Φ(xk) ∈{Wi}Ci=1, (26)

si,k is described as

s2i,k =〈Φ(xk),Wi〉2 =

{
1 (Φ(xk) = Wi),

0 (otherwise),
(27)

from which we have

C∑
i=1

s2i,k = 1, (28)
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and hence

(
C∑
i=1

s2i,k

) 1
2

=

C∑
i=1

s2i,k. (29)

Thus, the objective function (24) is described as

N∑
k=1

C∑
i=1

s2i,k. (30)

Furthermore, rewriting the cluster centerWi as a linear combination, similar to Eq. (21),
i.e.,

Wi =
N∑
�=1

ai,�Φ(x�) (31)

with coefficients ai,�, si,k can be written as

si,k =〈Φ(xk),Wi〉 =
N∑
�=1

ai,�〈Φ(xk), Φ(x�)〉 =
N∑
�=1

ai,�Kk,�. (32)

Therefore, the objective function (30) is given by

N∑
k=1

C∑
i=1

s2i,k =

N∑
k=1

C∑
i=1

(
N∑
�=1

ai,�Kk,�

)2

=

N∑
k=1

C∑
i=1

N∑
�=1

N∑
r=1

ai,�ai,rKk,�Kk,r

=trace(ATK2A), (33)

where the (�, i)-th element of A ∈ RN×C is ai,�. Additionally, Eqs. (25) and (31) imply
that

〈Wi,Wj〉 =
〈

N∑
�=1

ai,�Φ(x�),

N∑
r=1

aj,rΦ(xr)

〉
=

N∑
�=1

N∑
r=1

ai,�aj,r〈Φ(x�), Φ(xr)〉

=

N∑
�=1

N∑
r=1

ai,�aj,rK�,r = δi,j , (34)

that is,

ATKA = E, (35)
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where E is the N -dimensional unit matrix. Therefore, the optimization problem of K-
msbFCM under assumptions (25) and (26) is simply

maximize
A

trace(ATK2A) (36)

subject to ATKA = E. (37)

Using B = K
1
2A, the above problem can be described as

maximize
B

trace(BTKB)

subject to BTB = E, (38)

whose globally optimal solution can be obtained from the first C eigenvectors {bi}Ci=1

of K , written in descending order as B = (b1, . . . , bC), from which we have A =

K− 1
2B. Then, si,k is given by

si,k =

N∑
�=1

ai,�Kk,� = eTkKai = eTkKK− 1
2 bi = eTkK

1
2 bi =

√
λie

T
k bi =

√
λibi,k,

(39)

where λi is the eigenvalue corresponding to bi and ek is the k-th unit vector. With this
expression for si,k, the membership ui,k is described as

ui,k =
s2i,k∑C
j=1 s

2
j,k

=
λib

2
i,k∑C

j=1 λjb2j,k
. (40)

Because the actual situation is not well-separated, some iterations must be executed to
update the memberships according to Eqs. (18) and (23). The above analysis suggests
the following algorithm:

Algorithm 3 (Spectral Clustering Approach to K-msbFCM)

STEP 1. Give the number of clusters C, obtain the first C eigenpairs {(λi, bi)}Ci=1

of K in descending order, and set the initial partition according to Eq. (40).

STEP 2. Calculate s by Eq. (23).

STEP 3. Calculate u by Eq. (18).

STEP 4. Check the stopping criterion for (u, s). If the criterion is not satisfied, go to
Step. 2. ��

In this algorithm, a random initial value setting is not needed, solving the local con-
vergence problem of the original algorithm. Similar to spectral clustering techniques,
this algorithm consists of two stages: (1)solving the eigenproblem, and (2)updating the
optimal solutions.



Kernelized msbFCM Clustering 117

3.4 Modified K-msbFCM

We consider a slightly generalized objective function with additional parameter as,

maximize
u,W

N∑
k=1

(
C∑
i=1

u
1

m1

i,k si,k

)m2

(41)

subject to Eqs. (2) and (10), where m1 is the fuzzification parameter m of K-msbFCM,
and m2 is another introduced parameter. In the present study, we consider (m1,m2) =
(2, 2).

In this case, the Lagrangian for ui,k is

N∑
k=1

(
C∑
i=1

u
1
2

i,ksi,k

)2

+

N∑
k=1

γk

(
1−

C∑
i=1

ui,k

)
(42)

with Lagrangian multipliers {γk}Nk=1. This is concave for ui,k, and the necessary con-
ditions of optimality are

∂L(u)

∂ui,k
= 0, (43)

∂L(u)

∂γk
= 0. (44)

Optimal membership is obtained from Eq. (43) as

ui,k =

(
Jk
γk

)2

s2i,k (45)

where

Jk =
C∑
i=1

u
1
2

i,ksi,k. (46)

Summing over the cluster index j ∈ {1, · · · , C} and considering Eq. (44)⇔Eq. (2), we
have

(
Jk
γk

)2 C∑
j=1

s2j,k = 1⇔
(
Jk
γk

)2

=
1∑C

j=1 s
2
j,k

. (47)

By inserting Eq. (45) into this equation, we can eliminate γk to yield

ui,k =
s2i,k∑C
j=1 s

2
j,k

, (48)
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which is the same as the optimal membership expression of Eq. (18) in Algorithms 2 (K-
msbFCM) and 3 (sK-msbFCM). Substituting this equation into the original objective
function (41), we obtain an equivalent objective function

N∑
k=1

C∑
i=1

s2i,k (49)

leading the trace maximization problem in Eqs. (36) and (37) with the globally optimal
solution obtained by solving the corresponding eigenproblem. Unlike the discussion in
the previous subsection, without assuming the extremely well-separated situation (i.e.,
Eq. (25 holds, but Eq. (26) does not), the globally optimal membership can be obtained
from the optimization problem

maximize
u,W

N∑
k=1

(
C∑
i=1

u
1
2

i,ksi,k

)2

(50)

subject to Eqs. (2) and (25)
as the following algorithm:

Algorithm 4 (Modified sK-msbFCM (msK-msbFCM))

STEP 1. Give the number of clusters C, obtain the first C eigenpairs {(λi, bi)}Ci=1

of K in descending order, and set the partition according to Eq. (40). ��

4 Numerical Example

This section shows the validify of the proposed methods (Algorithm 2–4) using the
artificial datasets shown in Figs. 1(a) and 1(b), both of which consist of two nonlinearly
bordered clusters.

In all the algorithms, the Gaussian kernel

Kk,� = exp(−σ‖xk − x�‖22) (51)
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Fig. 1. Artificial Dataset #1 (left) and #2 (right)
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is used, where the parameter σ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for dataset #1 and σ ∈ {1.0×
10−4, 2.0× 10−4, 3.0× 10−4, 4.0× 10−4, 5.0× 10−4} for dataset #2. Algorithm 2 (K-
msbFCM) is applied to the two datasets with C = 2, m ∈ {10, 3, 2, 1.5, 1.1}, and 100
different initial settings. Algorithms 3 (sK-msbFCM) and 4 (msk=msbFCM) are also
applied to the same datasets with C = 2, m = 2, and no initial setting is needed.

We use normalized mutual information (NMI) [14] to evaluate the clustering results.
NMI takes a value from zero to one, and higher values are preferred. The frequency
ratio of NMI = 1 produced by all the algorithms is shown in Table 2 for dataset #1
and in Table 3 for dataset #2. The results for Algorithms 3 (sK-msbFCM) and 4 (msK-
msbFCM) are 0.00 or 1.00, because these algorithms are not affected by the initial
setting.

Table 2. Frequency ratio of NMI = 1 for dataset #1

σ
m 0.1 0.2 0.3 0.4 0.5

Algorithm 2 (K-msbFCM) 1.1 0.60 0.28 0.03 0.00 0.00
1.5 1.00 0.78 0.81 0.41 0.06
2.0 0.00 0.00 0.01 0.04 0.02
3.0 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00

Algorithm 3 (sK-msbFCM) 2.0 0.00 1.00 1.00 1.00 1.00

Algorithm 4 (msK-msbFCM) 2.0 0.00 1.00 1.00 1.00 1.00

Table 3. Frequency ratio of NMI = 1 for dataset #2

σ
m 1× 10−4 2× 10−4 3× 10−4 4× 10−4 5× 10−4

Algorithm 2 (K-msbFCM) 1.1 0.00 0.04 0.01 0.00 0.01
1.5 0.00 0.06 0.10 0.01 0.03
2.0 0.00 0.00 0.03 0.00 0.04
3.0 0.00 0.00 0.00 0.02 0.01
10 0.00 0.00 0.01 0.00 0.00

Algorithm 3 (sK-msbFCM) 2.0 0.00 0.00 1.00 1.00 1.00

Algorithm 4 (msK-msbFCM) 2.0 0.00 0.00 0.00 1.00 1.00

These tables show that Algorithm 2 (K-msbFCM) achieves NMI = 1 at least once
for several pairs (m,σ). However, only (m,σ) = (1.5, 0.1) does the frequency ratio
of NMI = 1 reach 1.00. This suggests that it is difficult to set both an adequate initial
partition matrix and adequate parameter values (m,σ). On the other hand, we can see
that Algorithm 3 (sK-msbFCM) achieves NMI = 1 for most values of σ, from which
we deduce that the initial setting in the first stage of Algorithm 3 (sK-msbFCM) is
effective. Because Algorithm 3 (sK-msbFCM) does not always achieve NMI = 1 (e.g.,
σ ≤ 0.1 for dataset #1 and σ ≤ 2 × 10−4 for dataset #2), it is not easy to set a value
for σ even for Algorithm 3. These tables also show that Algorithm 4 (msK-msbFCM)
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achieves NMI = 1 for many values of σ, though not as often as Algorithm 3 (sK-
msbFCM). Although we cannot say that the iterative refinement in the second stage of
Algorithm 3 (sK-msbFCM) is unnecessary, we find that Algorithm 4 (msK-msbFCM),
which does not employ such iteration, produces good clustering results in many cases.

5 Conclusions

This study proposed and implemented three modifications to msbFCM. Numerical ex-
amples demonstrated that the proposed methods produce good results for nonlinearly
bordered clusters with adequate parameter values. The limitation in Algorithm 2
(K-msbFCM) is its initialization technique, which inherits the property of msbFCM
originated from HCM. Algorithm 2 (K-msbFCM) follows randomly generated initial
starting points which often result in poor clustering results. The better clustering results
can be accomplished after several iterations. However, it is very complicated to decide
the computation limit for obtaining better results. On the other hand, the framework
of spectral clustering can free itself from initialization by incorporating the clustering
problem into an eigenproblem. Algorithms 3 (sK-msbFCM) and 4 (msK-msbFCM),
with the help of spectral clustering approach, overcome the restriction of local conver-
gence suffered by Algorithm 2 (K-msbFCM).

In future research, the proposed method will be compared with conventional meth-
ods using many large and complex real datasets and various kernel parameter selection
methods [15],[16]. The generalized objective function (41) with other parameter valuses
than (m1,m1) = (2, 2) will be also investigated. Next, the proposed method will be ex-
tended as follows. By introducing a variable to control the cluster sizes, the proposed
method will capture clusters of various sizes, similar to the extensions of HCM and
eFCM [7]. Using the technique proposed in this study, the linear membership weights
of msHCM can be replaced with a less-than-one power of membership, and this will
be applied to other methods, such as fuzzy nonmetric model [17], Windham’s AP algo-
rithm [18], possibilistic c-means [19], and co-clustering [20].
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Abstract. Clustering is a method of data analysis. Rough k-means
(RKM) by Lingras et al. is one of rough clustering algorithms[3]. The
method does not have a clear indicator to determine the most appro-
priate result because it is not based on objective function. Therefore
we proposed a rough clustering algorithm based on optimization of an
objective function [7]. This paper will propose a new rough clustering
algorithm based on optimization of an objective function with fuzzy-set
representation to obtain better lower approximation, and estimate the
effectiveness through some numerical examples.

Keywords: clustering, rough clustering, optimization, fuzzy set.

1 Introduction

Data have become large-scale and complex in recent years. We cannot get use-
ful information without computers. The importance of data analysis techniques
has been increasing accordingly and various data analysis methods have been
proposed. Clustering is one of the major techniques in pattern recognition. Clus-
tering is a technique automatically classifying data into some clusters. Many re-
searchers have been interested in clustering as a significant data analysis method.

Types of clustering are divided broadly into hierarchical and non-hierarchical
clustering. The standard techniques of non-hierarchical clustering are called
objective-based clustering. The objective-based clustering is constructed to min-
imize a given objective function. Therefore, the objective function plays many
important role in objective-based clustering.

From the viewpoint of the membership of an object to each cluster, called
membership grade, types of clustering are divided into crisp and fuzzy. The
value of membership grade is 0 or 1 in crisp clustering. The value is included
into the unit interval [0,1] in fuzzy clustering. Fuzzy clustering allows an object
to belong more than one cluster at the same time. That is why fuzzy clustering
can be regarded as more flexible than crisp clustering. On the other hand, it
is pointed out that the fuzzy degree of membership may be too descriptive for

V. Torra et al. (Eds.): MDAI 2014, LNAI 8825, pp. 122–134, 2014.
c© Springer International Publishing Switzerland 2014
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interpreting clustering results. In such cases, rough set representation is a more
useful and powerful tool[1][2].

Recently, clustering based on rough set theory has attracted some attention[3].
Rough clustering represents a cluster by using two layers, upper and lower ap-
proximations. We can regard rough clustering as three-value clustering, that is,
into the cluster, out of the cluster and unknown. The lower approximation means
that an object surely belongs to the set and the upper one means that an object
possibly belongs to the set. Clustering based on rough-set representation could
provide a solution that is less restrictive than conventional clustering and less
descriptive than fuzzy clustering, and therefore clustering based on rough set
representation has attracted increasing interest of researchers[4][5][6].

However, traditional rough clustering does not have an objective function.
For that reason the problem is pointed out that we cannot evaluate the result
quantitatively. In order to solve this problem, a rough clustering algorithm based
on optimization of an objective function was proposed[7]. But the algorithm has
a problem that an object cannot belong to more than two upper approximations.

This paper proposes new rough clustering algorithms based on optimization of
an objective function with fuzzy-set representation and estimate the effectiveness
through some numerical examples.

2 Conventional Rough Clusterings

2.1 Rough Sets

Let U be the universe and R ⊆ U ×U be an equivalence relation on U . R is also
called equivalence relation. The pair X = (U,R) is called approximation space.
If x, y ∈ U and (x, y) ∈ R, we say that x and y are indistinguishable in X .

Equivalence class of the relation R is called elementary set in X . The family
of all elementary sets is denoted by U/R. The empty set is also elementary in
every X .

Since it is impossible to distinguish each element in an equivalence class, we
may not be able to get a precise representation for an arbitrary subset A ⊆ U .
Instead, any A can be represented by its lower and upper bounds. The upper
bound A is the least composed set in X containing A, called the best upper
approximation or, in short, upper approximation. The lower bound A is the
greatest composed set in X containing A, called the best lower approximation
or, briefly, lower approximation. The set Bnd(A) = A−A is called the boundary
of A in X .

The pair (A,A) is the representation of an ordinary set A in the approximation
space X , or simply a rough set of A. The elements in the lower approximation
of A definitely belong to A, while elements in the upper bound of A may or may
not belong to A.

2.2 Rough k-Means

In this section, we explain rough k-means (RKM) by Lingras. From the above
section of rough sets, we can define the following conditions for clustering.
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(C1) An objet x can be part of at most one lower approximation.
(C2) If x ∈ A =⇒ x ∈ A
(C3) An object x is not part of any lower approximation if and only if x belongs

to two or more boundaries.

Cluster centers are updated by

vi =

⎧⎪⎪⎨⎪⎪⎩
ω ×
∑

xk∈Ai
xk

|Ai|
+ ω ×

∑
xk∈Bnd(Ai)

xk

|Bnd(Ai)|
, (Ai �= ∅ ∧ Bnd(Ai) �= ∅)∑

xk∈Ai
xk

|Ai|
. (otherwise)

The coefficients ω and ω are weights of lower approximations and boundaries,
respectively. ω and ω satisfy as follows:

ω > 0, ω > 0, ω + ω = 1, 1 ≤ k ≤ n, 1 ≤ i ≤ c.

Lower approximations and boundaries are calculated as follows:

dki = ‖xk − vi‖2, dkm = min
1≤i≤c

dki

T = {i | dki − dkm ≤ threshold} (i �= m)

T �= ∅ ⇒ xk ∈ Am and xk ∈ Ai (∀i ∈ T )

T = ∅ ⇒ xk ∈ Am .

Algorithm 1. RKM

RKM0 Give initial cluster centers.
RKM1 Calculate lower approximations and boundaries.
RKM2 Calculate cluster centers.
RKM3 If the stop criterion satisfies, finish. Otherwise back to RKM1.

2.3 Rough c-Means

RKM has the following problems.

– Since RKM does not have objective function, there is no guidance to estimate
the validity of the obtained results.

– There is no guidance to determine the threshold.

Rough c-means (RCM) which is based on optimization of an objective function
was proposed to solve the above problems by Endo et al[7].

The objective function of RCM is defined as follows:

JRCM =
c∑

i=1

n∑
k=1

n∑
l=1

(νkiuli(ωdki + ωdli) + (νkiνli + ukiuli)Dkl) .
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νki represents a membership grade of xk to a lower approximation of cluster of
i. uli represents a membership grade of xl to a boundary of cluster of i. Here,
dsi = ‖xs − vi‖2 and Dkl = ‖xk − xl‖2.

The constraints are as follows:

ω + ω = 1, νki ∈ {0, 1}, uki ∈ {0, 1},
c∑

i=1

νki ∈ {0, 1},
c∑

i=1

uki �= 1,

c∑
i=1

νki = 1⇐⇒
c∑

i=1

uki = 0.

Those constraints obviously satisfy the above conditions C1, C2 and C3.
Actually, those constraints are rewritten as:

c∑
i=1

νki = 0⇐⇒
c∑

i=1

uki = 2.

The cluster center vi is calculated as follows:

vi = ω ×
∑

xk∈Ai
xk

|Ai|
+ ω ×

∑
xk∈Bnd(Ai)

xk

|Bnd(Ai)|
.

The optimal solutions to N and U are updated as follows:

νki =

{
1, (Jν

k < Ju
k ∧ i = pk)

0, (otherwise)

uki =

{
1, (Jν

k > Ju
k ∧ (i = pk ∨ i = qk))

0. (otherwise)

Here pk, qk, J
ν
k and Ju

k are calculated as follows:

pk = arg min
i

dki, qk = arg min
i=pk

dki,

Jν
k =

n∑
l=1,l =k

νkpk
(ulpk

(ωdkpk
+ ωdlpk

) + 2νlpk
Dkl),

Ju
k =

∑
i=pk,qk

n∑
l=1,l =k

uki(νli(ωdli + ωdki) + 2uliDkl).

Algorithm 2. RCM

RCM0 Give initial cluster centers.
RCM1 Calculate lower approximations and boundaries.
RCM2 Update cluster centers.
RCM3 Calculate min

V
JRCM and update V .

RCM4 If the stop criterion satisfies, finish. Otherwise back to RCM1.
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3 Proposed Method 1 — RCM-FU

We propose RCM-FU (RCM with fuzzy upper approximation) which is con-
structed by introducing fuzzy-set representation into membership of boundary.

3.1 Objective Function

The objective function of RCM-FU is defined as follows:

JRCM-FU =

n∑
k=1

n∑
l=1

c∑
i=1

(um
kiνli(ωdli + ωdki) + (νkiνli + um

kiu
m
li )Dkl).

The constraints are as follows:

ω + ω = 1, νki ∈ {0, 1}, uli ∈ [0, 1],

c∑
i=1

νki ∈ {0, 1},

c∑
i=1

νki = 1⇐⇒
c∑

i=1

uki = 0,

c∑
i=1

νki = 0⇐⇒
c∑

i=0

uki = 1.

3.2 Derivation of the Optimal Solution and Algorithm

A cluster center vi is calculated as follows:

vi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
xk∈Ai

xk

|Ai|
, (Bnd(Ai) = ∅)∑n

k=1 u
m
kixk∑n

k=1 u
m
ki

, (Ai = ∅)

ω ×
∑

xk∈Ai
xk

|Ai|
+ ω ×

∑n
k=1 u

m
ikxk∑n

k=1 u
m
ik

. (otherwise)

The optimal solutions to N and U are updated as follows:
In case that xk belongs to the lower approximation of a cluster, the cluster is

Cpk
(pk = arg min

i
dki) and

uki = 0, (∀i)

νki =

{
1, (i = pk)

0. (otherwise)

Therefore, we calculate uki that minimizes Jν
k as follows:

Jν
k =

n∑
l=1

(um
lpk

(ωdkpk
+ ωdlpk

) + 2νlpk
Dkl).
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In case that xk belongs to boundaries of some clusters, νki = 0. Thus, the
objective function is represented by

Ju
k =

n∑
l=1

c∑
i=1

(um
kiνli(ωdli + ωdki) + 2um

kiu
m
li Dkl).

We calculate the optimal solutions by Lagrange multiplier as follows:

uki =

(
1∑

n
l=1(νli(ωdli+ωdki)+4um

li Dkl)

) 1
m−1

∑c
j=1

(
1∑n

l=1(νlj(ωdlj+ωdkj)+4um
ljDkl)

) 1
m−1

.

In comparison with the above two cases, we obtain the optimal solutions on νki
and uki as follows:

νki =

{
1, (Jν

k < Ju
k ∧ i = pk)

0, (otherwise)

uki =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, (Jν

k < Ju
k ∧ i = pk)(

1∑n
l=1(νli(ωdli+ωdki)+4um

li Dkl)

) 1
m−1

∑c
j=1

(
1∑

n
l=1(νlj(ωdlj+ωdkj)+4um

ljDkl)

) 1
m−1

.

(otherwise)

Algorithm 3. RCM-FU

RCM-FU0 Give initial cluster centers.
RCM-FU1 Calculate lower approximations and boundaries.
RCM-FU2 Calculate cluster centers.
ERCM-FU3 Calculate min

V
JRCM-FU and update V .

ERCM-FU4 If the stop criterion satisfies, finish. Otherwise back to RCM-
FU1.

4 Proposed Method 2 — Entropy RCM-FU

We propose Entropy RCM-FU(ERCM-FU) by introducing an entropy regular-
izer into RCM.

4.1 Objective Function

The objective function of ERCM-FU is defined as follows:

JERCM-FU =

n∑
k=1

n∑
l=1

c∑
i=1

(ukiνli(ωdli + ωdki) + (νkiνli + ukiuli)Dkl)

+ λ
n∑

k=1

c∑
i=1

uki log uki.
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The constraints are the same as ones of RCM-FU.

4.2 Derivation of the Optimal Solution and Algorithm

The cluster center vi is calculated as follows:

vi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
xk∈Ai

xk

|Ai|
, (Bnd(Ai) = ∅)∑n

k=1 u
m
kixk∑n

k=1 u
m
ki

, (Ai = ∅)

ω ×
∑

xk∈Ai
xk

|Ai|
+ ω ×

∑n
k=1 u

m
ikxk∑n

k=1 u
m
ik

. (otherwise)

The optimal solutions to N and U are updated as follows:
In case that xk belongs to the lower approximation of a cluster, the cluster is

Cpk
(pk = arg min

i
dki) and

uki = 0, (∀i)

νki =

{
1, (i = pk)

0. (otherwise)

Therefore, we calculate uki that minimizes Jν
k as follows:

Jν
k =

n∑
l=1

(uli∗(ωdki∗ + ωdli∗) + 2νli∗Dkl + λuli∗ log uli∗).

In case that xk belongs to boundaries of some clusters, νki = 0. Thus, the
objective function is represented by

Ju
k =

n∑
l=1

c∑
i=1

(ukiνli(ωdli + ωdki) + 2ukiuliDkl + λuki log uki).

We calculate the optimal solutions by Lagrange multiplier as follows:

uki = exp(λ−1(

n∑
l=1

(−νli(ωdli + ωdki)− 4uliDkl)− λ

− λ log

c∑
j=1

(exp(λ−1(−
n∑

l=1

(νlj(ωdlj + ωdkj)− 4uljDkl)− λ))))

In comparison with the above two cases, we obtain the optimal solutions to νki
and uki as follows:
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νki =

{
1, (Jν

k < Ju
k ∧ i = pk)

0, (otherwise)

uki =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, (Jν

k < Ju
k ∧ i = pk)

exp(λ−1(
∑n

l=1(−νli(ωdli + ωdki)− 4uliDkl)− λ

−λ log
∑c

j=1(exp(λ
−1(−

∑n
l=1(νlj(ωdlj + ωdkj)− 4uljDkl)− λ))))).

(otherwise)

The Algorithm of ERCM-FU is as same as the one of RCM-FU.

5 Numerical Examples

In this section, we use two artificial datasets (Fig. 1 and Fig. 4) and one real
dataset to compare the proposed methods with the conventional ones. We exam-
ine the effectiveness of proposed methods (RCM-FU and ERCM-FU).RKM has
no evaluation criteria so that we cannot evaluate the outputs of RKM. There-
fore, we consider an objective function based on the objective function of HCM
as the evaluation criterion as follows:

J = ω ×
c∑

i=1

∑
xk∈Ai

dki + ω ×
c∑

i=1

∑
xk∈Bnd(Ai)

dki.

Table 1. Algorithms used for comparison

Algorithm Parameters

RCM-FU proposed method: ω = 0.55, m = 2.0
ERCM-FU proposed method: ω = 0.35, λ = 0.7
RCM ω = 0.55
RKM ω = 0.55, threshold=0.01
HCM –
FCM[8] fuzzy parameter : 2.0

5.1 Artificial Dataset

We show result of artificial dataset in Fig. 1. The membership of each objects
to boundaries in Table 2. The membership of boundary is fuzzy.
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Fig. 1. Original data
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Fig. 2. Artificial data(RCM-FU, ω = 0.55)

Table 2. The membership of each objects to upper approximations (RCM-FU)

(x,y) class1 class2 class3 class4 class5
(0.4,0.6) 0.258989 0.327004 0.237458 0.078667 0.097882
(0.4,0.5) 0.310618 0.150450 0.304497 0.136976 0.097460
(0.4,0.4) 0.254435 0.090088 0.241740 0.315333 0.098405
(0.5,0.6) 0.155314 0.405250 0.241697 0.064693 0.133046
(0.5,0.4) 0.156579 0.075916 0.248490 0.386302 0.132713
(0.6,0.6) 0.123476 0.296644 0.213485 0.073845 0.292549
(0.6,0.5) 0.121365 0.135507 0.255305 0.120102 0.367722
(0.6,0.4) 0.127512 0.087803 0.222790 0.277909 0.283987

We show the result by ERCM-FU in Fig. 3.
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Fig. 3. Artificial data (ERCM-FU, ω =
0.35, λ = 0.7)
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Fig. 4. Original data

The membership of each objects to boundaries in Table 3. The membership
of boundary is fuzzy.
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Table 3. The membership of each objects to boundaries(ERCM-FU)

(x,y) class1 class2 class3 class4 class5
(0.4,0.6) 0.169420 0.625175 0.202058 0.000057 0.000067
(0.4,0.5) 0.631929 0.129328 0.216806 0.019321 0.000191
(0.4,0.4) 0.174968 0.006356 0.064091 0.754525 0.000059
(0.5,0.6) 0.004080 0.657372 0.329219 0.000075 0.006546
(0.5,0.4) 0.003527 0.005084 0.080845 0.905825 0.004677
(0.6,0.6) 0.000020 0.427396 0.384281 0.000026 0.188276
(0.6,0.5) 0.000072 0.082251 0.392387 0.010462 0.514828
(0.6,0.4) 0.000029 0.005078 0.146973 0.620485 0.223996

We show the results of crescents data by proposed methods and RCM in
Fig 5, 6 and 7.
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Fig. 5. Crescents data(RCM, ω = 0.55)
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Fig. 6. Crescents data(RCM-FU, ω = 0.55)

From the above results, we can find as follows:

– Some objects are classified into incorrect lower approximation by RCM and
ERCM-FU.

– There are more objects which are classified into correct lower approximation
by RCM-FU than RCM.

– There are more objects which we classified into boundary by RCM-FU than
RCM.

5.2 Comparison of Proposed Methods with Conventional Ones

We compare the proposed methods to conventional ones through Iris dataset
(150 objects, 4 dimensions, 3 clusters). We define the ratio of correct answers as
(the number of correct answers)/(the number of objects). We assign the objects
which were classified into boundaries to the cluster to which the membership is
maximum. Table 4 shows as follows:
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Table 4. The ratio of correct answers

Algorithm lower approximation boundary total
numbers correct ratio numbers correct ratio numbers of correct ratio

RCM-FU (m=1.5) 116 115 0.991 34 20 0.588 135 0.9
RCM-FU (m=2.0) 68 67 0.985 82 62 0.756 129 0.86

ERCM-FU (λ = 0.5) 145 137 0.944 5 5 1.0 142 0.947
ERCM-FU (λ = 2.0) 109 109 1.0 41 32 0.780 141 0.94

RCM (ω = 0.55) 139 128 0.921 11 5 0.455 133 0.887
RCM (ω = 0.75) 135 126 0.933 15 11 0.733 137 0.913

RKM (threshold=0.01) 150 134 0.893 0 0 — 134 0.893
RKM (threshold=3.0) 76 75 0.987 74 40 0.541 115 0.767

FCM 150 134 0.893 0 0 — 134 0.893

HCM 150 134 0.893 0 0 — 134 0.893

– There are more objects which are classified into correct lower approximations
by RCM-FU and ERCM-FU than RCM.

– More objects are classified into boundaries as the parameter m increases by
RCM-FU.

– All objects are classified into correct lower approximations when the param-
eter λ is suitable by ERCM-FU.

– Less objects are classified into lower approximation as the parameter λ in-
creases by ERCM-FU.

– No objects are classified into boundaries as the threshold=0.01 by RKM.
– We get the same results by HCM and FCM.

The optimal parameter for lower approximation is different from the optimal
one for the whole in both RCM-FU and ERCM-FU.

5.3 Consideration of Parameters

We consider the relation between parameters and the number of objects which
are classified into boundaries.

Fig. 8 shows the relation between w and the number of objects which are
classified into boundaries by RCM. Horizontal- and vertical-axes mean w and
the number of objects which are classified into boundaries, respectively. Fig. 8
shows that w is ineffective at the number of objects which are classified into
boundaries. This means that it is difficult to adjust the ratio of the number of
objects into boundaries to the number of all objects by the parameter w.

Fig. 9 shows the relation between m and the number of objects which are
classified into boundary by RCM-FU. Horizontal- and vertical-axes mean m and
the number of objects which are classified into boundaries, respectively. Fig. 9
shows that m is effective at the number of objects which are classified into
boundaries. This means that it is easy to adjust the ratio of the number of
objects into boundaries to the number of all objects by the parameter m.

Fig. 10 shows the relation between λ and the number of objects which are
classified into boundaries by RCM-FU. Horizontal- and vertical-axes mean λ
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and the number of objects which are classified into boundaries, respectively. We
fixed w = 0.35.

6 Conclusion

This paper proposed new rough clustering algorithms based on optimization of
objective functions. The proposed methods based on optimization of objective
functions with fuzzy-set representation can classify more objects into correct
lower approximations than conventional ones proposed by Endo et al [7], and we
can adjust the ratio of the number of objects into boundaries to the number of
all objects by parameters. The conventional rough clustering algorithm [7] has a
problem that an object cannot belong to more than two upper approximations.
We introduced fuzzy-set representation into membership of boundary to solve
such a problem. Thus, each object into boundaries has a membership grade
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in [0,1], and we can classify the object according to the value of the grade.
Consequently, we can classify all objects into clusters like FCM [8].
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Abstract. Semi-supervised learning is an important task in the field of
data mining. Pairwise constraints such as must-link and cannot-link are
used in order to improve clustering properties. This paper proposes a
new type of semi-supervised hard and fuzzy c-means clustering with as-
signment prototype term. The assignment prototype term is based on the
Windham’s assignment prototype algorithm which handles pairwise con-
straints between objects in the proposed method. First, an optimization
problem of the proposed method is formulated. Next, a new clustering
algorithm is constructed based on the above discussions. Moreover, the
effectiveness of the proposed method is shown through numerical exper-
iments.

Keywords: pairwise constraint, hard c-means, fuzzy c-means, assign-
ment prototype algorithm, semi-supervised learning.

1 Introduction

The aim of cluster analysis which is well known as clustering is to discover impor-
tant structures and features from massive and complex databases. Clustering is
one of the data analysis methods which divides a set of objects into some groups
called clusters. Objects classified in the same cluster are considered similar, while
the ones classified in a different cluster are considered dissimilar. Hard c-means
which is known as k-means [6,9] and fuzzy c-means clustering (FCM) is one of the
most well-known clustering methods [2]. Entropy based fuzzy c-means clustering
(eFCM) and other variants of FCM are also famous and important techniques in
the field of clustering [10,11]. Semi-supervised learning has been remarked and
studied in many research fields such as clustering, support vector machine and
so on [3]. Pairwise constraints, that is, must-link and cannot-link are frequently
used in order to improve clustering performance [14]. Semi-supervised clustering
which is also referred to as constrained clustering handles a prior knowledge as
pairwise constraints in the clustering framework [1].

V. Torra et al. (Eds.): MDAI 2014, LNAI 8825, pp. 135–144, 2014.
c© Springer International Publishing Switzerland 2014



136 Y. Hamasuna and Y. Endo

Semi-supervised clustering which are based on k-means [14], fuzzy c-means
clustering [5], kernel methods [8], and hierarchical clustering [7] have been widely
discussed and proposed. Pairwise constraints referred to must-link and cannot-
link are used as a prior knowledge about which data should be in the same
or a different cluster in semi-supervised clustering. These constraints are given
between objects and handled in clustering procedures. Significant techniques
such as a regularization, kernel method, and probabilistic model are used in order
to handle pairwise constraints in the clustering algorithms. It is widely known
that regularization technique is useful and effective for not only clustering but
also other data analysis methods.

Fuzzy non-metric model (FNM) [4,13] is one of the clustering methods in
which the membership degrees of each datum to each cluster is calculated di-
rectly from dissimilarities between data. Assignment prototype (AP) algorithm
[15] is proposed as a improved version of FNM in order to overcome the initial
value dependence of FNM. The cluster center which is referred to as represen-
tative of cluster and used in hard and fuzzy c-means is not considered in these
algorithms. FNM and AP can handle relational data such as a table of distance
between objects. The way of handling pairwise constraints as regularization term
by using assignment prototype algorithm is described from that sense. A new
semi-supervised hard and fuzzy c-means with assignment prototype based regu-
larization term is proposed in this paper.

The rest of this paper is organized as follows: In section 2, we introduce some
symbols and hard conventional clustering methods. In section 3, we propose a
new semi-supervised hard and fuzzy c−means with assignment prototype term.
In section 4, we show the effectiveness of proposed method. In section 5, we
conclude this paper.

2 Preparation

A set of objects to be clustered is given and denoted by X = {x1, . . . , xn} in
which xk (k = 1, . . . , n) is an object. In most cases, x1, . . . , xn are p-dimensional
vectors  p, that is, an object xk ∈  p. A cluster, its cluster center, and a set
of cluster center are denoted as Ci(i = 1, . . . , c), vi ∈  p, V = {vi, . . . , vc}. A
membership degrees of xk belonging to Ci and a partition matrix is also denoted
as uki and U = (uki)1≤k≤n, 1≤i≤c.

2.1 Hard and Entropy-Based Fuzzy c-Means

Hard c-means (HCM) [6,9] and entropy based fuzzy c-means (eFCM) [10,11] are
based on optimizing an objective function under the constraint for membership
degrees.
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We consider the following two objective functions Jh and Je.

Jh(U, V ) =
c∑

i=1

n∑
k=1

uki‖xk − vi‖2,

Je(U, V ) =

c∑
i=1

n∑
k=1

uki‖xk − vi‖2 + λu

c∑
i=1

n∑
k=1

uki log uki.

Here, λu > 0.0 is fuzzification parameter and ‖xk − vi‖2 means a dissimilarity
measure between an object xk and a cluster center vi. Jh is the objective function
of HCM and Je is the one of eFCM, respectively.

Constraints for membership degrees uki considered in HCM and eFCM are
described Uh and Uf as follow:

Uh =

{
(uki) : uki ∈ {0, 1},

c∑
i=1

uki = 1, ∀k

}
, (1)

Uf =

{
(uki) : uki ∈ [0, 1] ,

c∑
i=1

uki = 1, ∀k

}
. (2)

Clustering algorithms of HCM and eFCM are constructed based on alternating
optimization with uki and vi.

2.2 Assignment Prototype Algorithm

The objective function of assignment prototype algorithm which handles rela-
tional data is similar to and a bit different from the one of fuzzy non-metric model
[13]. Two variables, that is, membership degrees uki and prototype weight wti

are used in assignment prototype algorithm. wti stands for the prototype weight
of object t to cluster i. Windham considers the following objective function:

Jap(U,W ) =

c∑
i=1

n∑
k=1

n∑
t=1

(uki)
2
(wti)

2
rkt.

Here, rkt is a distance between objects and W = (wti)1≤t≤n, 1≤i≤c is prototype
weight matrix and satisfies the following constraint:

Wf =

{
(wti) : wti ∈ [0, 1] ,

n∑
t=1

wti = 1, ∀i

}
. (3)

Hard assignment prototype algorithm (HAP) and entropy based assignment
prototype one are also considered in the same manner as HCM and eFCM. The
objective functions of HAP and eFAP are as follows:
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Jhap(U,W ) =

c∑
i=1

n∑
k=1

ukiwtirkt, (4)

Jefap(U,W ) =

c∑
i=1

n∑
k=1

ukiwtirkt

+ λu

c∑
i=1

n∑
k=1

uki log uki + λw

c∑
i=1

n∑
t=1

wti logwti. (5)

Here, λu and λw are fuzzification parameters. Constraints for membership de-
grees uki are the same as (1) and (2). Also, constraint for prototype weight wti

for eFAP is the same as (3) and one for HAP is as follows:

Wh =

{
(wti) : wti ∈ {0, 1},

n∑
t=1

wti = 1, ∀i

}
. (6)

Clustering algorithms of HAP and eFAP are also constructed based on alter-
nating optimization with uki and wti.

2.3 Pairwise Constraint

Typical examples of pairwise constraints are must-link and cannot-link [14].
These constraints are considered as a prior knowledge about which data should
be in the same or a different cluster. A set ML = {(xk, xl)} ⊂ X ×X consists of
must-link pairs so that xk and xl should be in the same cluster, while another
set CL = {(xq, xr)} ⊂ X × X consists of cannot-link pairs so that xq and xr

should be in different clusters. ML and CL are assumed to be symmetric, that
is, if (xk, xl) ∈ ML then (xl, xk) ∈ ML, and if (xq, xr) ∈ CL then (xr, xq) ∈ CL.
Obviously, ML and CL are supposed to be disjoint.

In semi-supervised clustering, these pairwise constraints are considered as
hard or soft constraints. In hard constraints approach, pairwise constraints ML
and CL are always satisfied in clustering procedures and results, while they are
not always satisfied in soft constraints approach. Many semi-supervised cluster-
ing methods have been proposed and discussed in order to improve clustering
properties and features by using pairwise constraints in many forms [1,5,7,8,14].

3 Proposed Method

3.1 Semi-Supervised Hard c-Means with Hard Assignment
Prototype Term

The objective function of semi-supervised hard c-means with hard assignment
prototype term (HCM-HAP) is based on the HCM and HAP. We consider the
following objective function for HCM-HAP:

Jhhap(U, V,W ) =

c∑
i=1

n∑
k=1

uki‖xk − vi‖2 −
c∑

i=1

n∑
k=1

n∑
t=1

ukiwtiαkt +

c∑
i=1

n∑
k=1

n∑
t=1

ukiwtiβkt.
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Here, the costraints for uki and wti are the same as (1) and (6). αkt and βkt

means must-link and cannot-link described as follows:

αkt =

{
α ( (xk, xt) ∈ ML )
0 ( otherwise )

(
∵ α = γml max

p,q
‖xp − xq‖2

)
,

βkt =

{
β ( (xk, xt) ∈ CL )
0 ( otherwise )

(
∵ β = γcl max

p,q
‖xp − xq‖2

)
.

γml and γcl are parameters for adjusting the degree of pairwise constraints. The
larger the value of γml and γcl are, the stronger the effect of ML and CL is. In
the case with large γml and γcl, ML and CL are considered as hard constraints
that means pairwise constraints are always satisfied in the clustering procedures.
The optimal solution of vi is derived from partial derivative ∂J

∂vi
= 0. The ones of

uki and wti are derived from objective function and constraints by considering
linear programming problem as follows:

uki =

{
1
(
i = argminj

{
‖xk − vj‖2 −

∑n
t=1 wtjαkt +

∑n
t=1 wtjβkt

} )
0 ( otherwise )

. (7)

vi =

∑n
k=1 ukixk∑n
k=1 uki

. (8)

wti =

{
1 ( t = argminq {−

∑n
k=1 ukiαkq +

∑n
k=1 ukiβkq} )

0 ( otherwise )
. (9)

3.2 Semi-Supervised Entropy Based Fuzzy c-Means with Fuzzy
Assignment Prototype Term

The objective function of semi-supervised entropy based fuzzy c-means with
fuzzy assignment prototype term (eFCM-eFAP) is based on the eFCM and eFAP.
We consider following objective function for eFCM-eFAP:

Jeefap(U, V,W ) =
c∑

i=1

n∑
k=1

uki‖xk − vi‖2 −
c∑

i=1

n∑
k=1

n∑
k=1

ukiwtiαkt +
c∑

i=1

n∑
k=1

n∑
k=1

ukiwtiβkt

+ λu

c∑
i=1

n∑
k=1

uki log uki + λw

c∑
i=1

n∑
t=1

wti logwti

λu, λw, αkt, and βkt are the same as above discussions. Constraints for uki and
wti are also the same as (2) and (3). The optimal solution of vi is the same as
(8). The ones for uki and wti are derived from Lagrangian as follows:

uki =
exp
(
−λ−1

u dki
)∑c

l=1 exp
(
−λ−1

u dkl
) , (10)

wti =
exp
(
−λ−1

w gti
)∑n

q=1 exp
(
−λ−1

w gqi
) . (11)
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Here, dki and gti are as follows:

dki = ‖xk − vi‖2 −
n∑

t=1

wtiαkt +

n∑
t=1

wtiβkt,

gti = −
n∑

k=1

ukiαkt +

n∑
k=1

ukiβkt.

3.3 Algorithm Based on the Proposed Method

The clustering algorithm of HCM-HAP and eFCM-eFAP are constructed based
on above discussions. HCM-eFAP and eFCM-HAP are also considered as the
same procedure. Objective functions of HCM-eFAP Jhfap and eFCM-HAP Jehap
are as follows:

Jhefap(U, V,W ) =Jhhap + λw

c∑
i=1

n∑
t=1

wti logwti,

Jehap(U, V,W ) =Jhhap + λu

c∑
i=1

n∑
k=1

uki log uki.

The optimal solutions of Jhefap and Jehap are also derived from those objective
functions and constraints as the same procedures. The clustering algorithm of
proposed method is described as Algorithm 1. Eqs. A, B, and C used in each
algorithm follow Table 1.

Algorithm 1. Algorithm of the proposed method.

Step1 Set initial values and fuzzification parameters.
Step2 Calculate uki ∈ U by using Equation A.
Step3 Calculate vi ∈ V by using Equation B.
Step4 Calculate wti ∈ W by using Equation C.
Step5 If convergence criterion is satisfied, stop. Otherwise go back to Step2.

Table 1. The equations of uki, vi, and wti used in the algorithms

Algorithm Eq. A Eq. B Eq. C

HCM-HAP (7) (8) (9)
HCM-eFAP (7) (8) (11)
eFCM-HAP (10) (8) (9)
eFCM-eFAP (10) (8) (11)
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4 Numerical Experiments

We show the results of proposed methods with Iris data set published in UCI
machine learning repository (http://archive.ics.uci.edu/ml/). Iris data set
consists of 150 objects with 4 attributes and should be classified into three
clusters. Each attribute is standardized, that is, mean and standard derivation
are equal to 0 and 1, respectively. We show the effectiveness of proposed method
by evaluating the results of average and standard derivation of Rand Index (RI)
[12] and number of violated constraints out of 100 trials. Pairwise constraints
are generated by class information in benchmark data set. If class label of two
objects are the same, then must-link is generated between objects. Also, cannot-
link is generated between objects if class label of two objects are different. We
fix λu = 1.0 and λw = 100.0 and set γml, γcl = 0.50 or 1.00 in these experiments.

Tables 2, 3, 4, 5 are the results of RI by HCM-HAP, HCM-eFAP, eFCM-HAP,
and eFCM-eFAP, respectively. Tables 6, 7, 8, 9 are the results of number of
violated constraints by HCM-HAP, HCM-eFAP, eFCM-HAP, and eFCM-eFAP,
respectively. The value described in these tables denotes average ± standard
derivation of RI and the number of violated constraints out of 100 trials. Results
of RI by conventional HCM is 0.818 ± 0.044 and eFCM is 0.832 ± 0.000.

These results show the effectiveness and important properties of proposed
methods as follows:

– eFAP regularization term obtains better results than HAP term by compar-
ing with these results. HAP is strongly depended on initial value and data
sequence, that is, only one object takes the value of wti = 1. Many pairwise
constraints are ignored in clustering procedure because of this property.

– Must-link much more affective than cannot-link in the proposed method by
considering the parameter of γml and γcl and number of pairwise constraints.
Especially, HCM-eFAP and eFCM-eFAP takes better results with large value
of γml and large number of must-link.

– The larger the number of must-link is, the larger the standard derivation is
in the proposed method. These results show that the choice of objects which
are given pairwise constraints is important for clustering results from the
viewpoint of robustness of algorithm.

Table 2. Results of RI by HCM-HAP out of 100 trials

Number of γml, γcl = 0.50 γml, γcl = 1.00
pairwise constraints ML CL ML CL

100 0.802 ± 0.045 0.819 ± 0.038 0.802 ± 0.045 0.819 ± 0.038
300 0.806 ± 0.050 0.819 ± 0.032 0.806 ± 0.050 0.820 ± 0.030
500 0.814 ± 0.057 0.824 ± 0.017 0.814 ± 0.057 0.824 ± 0.017

http://archive.ics.uci.edu/ml/
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Table 3. Results of RI by HCM-eFAP out of 100 trials

Number of γml, γcl = 0.50 γml, γcl = 1.00
pairwise constraints ML CL ML CL

100 0.821 ± 0.041 0.825 ± 0.036 0.830 ± 0.041 0.825 ± 0.036
300 0.835 ± 0.048 0.827 ± 0.036 0.933 ± 0.057 0.834 ± 0.034
500 0.916 ± 0.049 0.834 ± 0.034 0.969 ± 0.073 0.858 ± 0.040

Table 4. Results of RI by eFCM-HAP out of 100 trials

Number of γml, γcl = 0.50 γml, γcl = 1.00
pairwise constraints ML CL ML CL

100 0.825 ± 0.020 0.832 ± 0.001 0.824 ± 0.020 0.832 ± 0.001
300 0.816 ± 0.038 0.832 ± 0.001 0.815 ± 0.038 0.832 ± 0.002
500 0.830 ± 0.043 0.831 ± 0.006 0.830 ± 0.043 0.829 ± 0.006

Table 5. Results of RI by eFCM-eFAP out of 100 trials

Number of γml, γcl = 0.50 γml, γcl = 1.00
pairwise constraints ML CL ML CL

100 0.835 ± 0.005 0.831 ± 0.003 0.847 ± 0.008 0.834 ± 0.004
300 0.859 ± 0.007 0.838 ± 0.004 0.955 ± 0.028 0.845 ± 0.010
500 0.933 ± 0.015 0.845 ± 0.004 0.988 ± 0.031 0.878 ± 0.021

Table 6. Results of number of violated constraints by HCM-HAP out of 100 trials

Number of γml, γcl = 0.50 γml, γcl = 1.00
pairwise constraints ML CL ML CL

100 27.32 ±6.75 14.72 ± 7.05 27.32 ± 6.75 14.72 ± 7.05
300 79.71 ± 20.73 43.75 ± 16.83 79.71 ± 20.73 43.20 ± 15.96
500 124.51 ± 35.94 67.55 ± 12.26 124.51 ± 35.94 67.62 ± 12.18

Table 7. Results of number of violated constraints by HCM-eFAP out of 100 trials

Number of γml, γcl = 0.50 γml, γcl = 1.00
pairwise constraints ML CL ML CL

100 23.12 ±4.77 13.92 ± 6.44 21.31 ± 4.67 13.82 ± 6.48
300 62.48 ± 9.67 42.66 ± 18.89 20.21 ± 16.85 40.24 ± 16.38
500 50.87 ± 20.32 67.86 ± 29.97 13.11 ± 33.39 56.69 ± 31.15

Table 8. Results of number of violated constraints by eFCM-HAP out of 100 trials

Number of γml, γcl = 0.50 γml, γcl = 1.00
pairwise constraints ML CL ML CL

100 28.00 ± 6.49 12.46 ± 3.34 28.16 ± 6.46 12.46 ± 3.34
300 80.49 ± 18.88 38.54 ± 5.89 80.92 ± 18.95 38.60 ± 5.88
500 120.90 ± 28.03 63.70 ± 7.36 120.90 ± 28.03 64.58 ± 7.50
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Table 9. Results of number of violated constraints by eFCM-eFAP out of 100 trials

Number of γml, γcl = 0.50 γml, γcl = 1.00
pairwise constraints ML CL ML CL

100 24.96 ± 4.22 12.47 ± 3.45 22.21 ± 4.63 12.15 ± 3.44
300 62.35 ± 8.19 36.74 ± 5.73 12.83 ± 7.96 33.91 ± 6.79
500 42.83 ± 11.82 57.38 ± 6.71 5.20 ± 12.72 41.32 ± 14.48

5 Conclusions

In this paper, we have proposed semi-supervised clustering with assignment pro-
totype term. We have shown the effectiveness of proposed method through nu-
merical experiments. We have also shown that entropy based fuzzy assignment
prototype term is suitable for regularization term which handle pairwise con-
straints.

In future works, we will consider the way to obtain better results with small
number of pairwise constraints. We can obtain better results in case of large
number of pairwise constraints is handled. It however takes much costs to collect
large number of pairwise constraints in real world problems. That is why we
have to consider the above problem. We will, moreover, verify the effectiveness
of proposed method with various kinds of benchmark data sets and real ones.
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Abstract. Recently, semi-supervised clustering has been focused, e.g.,
Refs. [2–5]. The semi-supervised clustering algorithms improve clustering re-
sults by incorporating prior information with the unlabeled data. This paper pro-
poses three new clustering algorithms with pairwise constraints by introducing
non-metric term to objective functions of the well-known clustering algorithms.
Moreover, its effectiveness is verified through some numerical examples.

1 Introduction

As computer technologies develop, huge number of data has existed around us. Such
increases in the number of data have focused attention on machine learning and data
mining. We can find useful knowledge from such data with data mining techniques and
clustering is one of most effective technique of such methods (Ref. [1] etc.).

Recently, semi-supervised clustering has occupied an important place in the fields
of machine learning and data mining. While only unlabeled data are used to generate
clusters in conventional clustering algorithms, semi-supervised clustering algorithms
incorporate prior information with the unlabeled data to improve clustering results
(Refs. [2–5] etc.).

Research of semi-supervised clustering approaches this problem from two view-
points: constraint-based and distance-based. In constraint-based, objective functions are
modified so as to satisfy constraints, and enforced constraints during the clustering pro-
cess. In distance-based, a distance function is trained on the supervised dataset to satisfy
constraints or labels and applied to the complete dataset.

In both approaches, the concept of constraint plays very important role. The most
common constraints in recent research of semi-supervised clustering are pairwise must-
link constraint and cannot-link constraint. The former means that the pairs of objects
that should belong to the same cluster, and the latter means that the pairs of objects that

V. Torra et al. (Eds.): MDAI 2014, LNAI 8825, pp. 145–157, 2014.
c© Springer International Publishing Switzerland 2014
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should belong to different clusters. The pairwise constraints occur naturally in many
fields.

In this paper, we consider terms of must-link constraint and cannot-link constraint
for prior information to use non-metric model (NMM) [6], and then unify the terms
objective functions of the well-known clustering algorithms: hard c-means (HCM) [7]
and two types of fuzzy c-means (FCM) [1, 8]. Therefore, these proposed clustering
algorithms are constraint-based. Moreover, we verify the algorithms through some nu-
merical examples.

2 Preparation

We will construct three new clustering algorithms based on the following well-known
methods: hard c-means (HCM), standard fuzzy c-means (sFCM), and entropy-based
fuzzy c-means (eFCM) in a later section. Thus, we mention these methods.

First, let each object and the set of all objects be xk = (x1
k , . . . , x

p
k )T ∈ �p (k =

1, . . . , n), and X = {x1, . . . , xn}, respectively. Ci, vi = (v1
i , . . . , v

p
i )T ∈ �p and V =

{v1, . . . , vc} mean the i-th cluster (i = 1, . . . , c), the cluster center of Ci, and the set of
all cluster centers, respectively. Moreover uki means the belongingness of xk to the i-th
clutter. U = (uki)k=1,...,n, i=1,...,c is called partition matrix.

2.1 Hard, Standard Fuzzy, and Entropy-Based Fuzzy c-means

The objective functions of HCM, sFCM, and eFCM are defined as follows:

JHCM(U,V) =
n∑

k=1

c∑

i=1

ukidki, (dki = ‖xk − vi‖2)

JsFCM(U,V) =
n∑

k=1

c∑

i=1

(uki)mdki,

JeFCM(U,V) =
n∑

k=1

c∑

i=1

uki(dki + λ log uki).

m ≥ 1 and λ > 0 mean fuzzification parameters. The constraintsUHCM for HCM, and
UFCM for sFCM and eFCM are as follows:

UHCM =

⎧⎪⎪⎨⎪⎪⎩(uki) | uki ∈ {0, 1},
c∑

i=1

uki = 1, ∀k

⎫⎪⎪⎬⎪⎪⎭ ,

UFCM =

⎧⎪⎪⎨⎪⎪⎩(uki) | uki ∈ [0, 1],
c∑

i=1

uki = 1, ∀k

⎫⎪⎪⎬⎪⎪⎭ .

All of HCM, sFCM, and eFCM algorithms give us clustering results by minimizing
JHCM, JsFCM, and JeFCM through iterative optimization, respectively.
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2.2 Non-Metric Model

We mention generalized Non-metric Model (NMM) proposed by Roubens [6]. NMM
classifies datasets by using distance between objects instead of one between cluster
centers and data.

The objective function of NMM is defined as follows:

JNMM(U) =
n∑

k=1

n∑

l=1

c∑

i=1

(uki)
m(uli)

mDkl. (Dkl = ‖xk − xl‖2)

m = 2 in Ref. [6]. In particular, when m = 1 and the constraint is UHCM, the optimal
solution to uki is derived as follows:

uki =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, (i = arg min j

n∑

l=1

ul jDkl)

0. (otherwise)

Similar to HCM and FCM, NMM algorithm are also constructed based on iterative
optimization.

2.3 Pairwise Constraint

Pairwise constraint is one of semi-supervised clustering method [2, 4] and pairwise re-
lations naturally occur in various fields and applications. Some information of relation-
ship between two objects is given in advance in the method. In this paper, we consider
two typical pairwise constraints: must-link constraint and cannot-link constraint.

Let ML be the following set:

ML = {(xk, xl) ∈ X × X | xk and xl should be assigned into one cluster, k � l.}.

The relation of pairs in ML is called must-link.
Let CL be the following set:

CL = {(xk, xl) ∈ X × X | xk and xl should be assigned into different clusters, k � l.}.

The relation of pairs in CL is called cannot-link.

3 Proposed Algorithms

We propose three new semi-supervised clustering algorithms: hard c-means with pair-
wise constraints by non-metric term (HCM-NM), standard fuzzy c-means with pairwise
constraints by non-metric term (sFCM-NM), and entropy-based fuzzy c-means with
pairwise constraints by non-metric term (eFCM-NM).
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3.1 Hard c-means with Pairwise Constraints by Non-metric Term

We define the objective function of the proposed algorithm as follows:

JHCM-NM(U,V) =
n∑

k=1

c∑

i=1

ukidki −
n∑

k=1

n∑

l=1

c∑

i=1

ukiuli(αkl − βkl).

The constraint isUHCM. The first, second, and third terms mean the objective function
of HCM, the non-metric term for must-link, and the non-metric term for cannot-link,
respectively. Here αkl and βkl are as follows:

αkl =

⎧⎪⎪⎨⎪⎪⎩
λMLDmax, ((xk, xl) ∈ ML) (Dmax = maxp,q Dpq)

0, (otherwise)

βkl =

⎧⎪⎪⎨⎪⎪⎩
λCLDmax, ((xk, xl) ∈ CL)

ελMLDmax. (otherwise)

λML, λCL, and ε (λCL > ελML > λML > 0) are parameters by which we can control
effectiveness of pairwise constraints. We can obtain optimal solutions which minimize
the objective function JHCM-NM by the method of Lagrange multiplier.

First, we derive the optimal solution to vi. It is sufficient to obtain vi when the partial
derivative of the objective function JHCM-NM with respect to vi is equal to zero because
the objective function JHCM-NM is convex for vi. The partial derivative of the objective
function JHCM-NM with respect to vi is as follows:

∂J
∂vi
=

n∑

k=1

(−2)uki(xk − vi).

Therefore, the optimal solution to vi is obtained as follows:

vi =

∑n
k=1 ukixk∑n

k=1 uki
.

Second, we derive the optimal solution to uki. When we put ζki = dki −
∑n

l=1 uliαkl +∑n
l=1 uliβkl, the objective function JHCM-NM can be rewritten as follows:

JHCM-NM(U,V) =
n∑

k=1

c∑

i=1

ukiζki.

Because ofUHCM, the optimal solution to uki is derived as follows:

uki =

⎧⎪⎪⎨⎪⎪⎩
1, (i = arg min j ζki)

0. (otherwise)

3.2 Standard Fuzzy c-means with Pairwise Constraints by Non-metric Term

We define the objective function of the proposed algorithm as follows:

JsFCM-NM(U,V) =
n∑

k=1

c∑

i=1

(uki)mdki −
n∑

k=1

n∑

l=1

c∑

i=1

(uki)m(uli)m(αkl − βkl). (1)
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The constraint isUFCM. The first, second, and the third terms mean the objective func-
tion of sFCM, the non-metric term for must-link, and the non-metric term for cannot-
link, respectively. We can obtain optimal solutions which minimize the objective func-
tion JeFCM-NM by the method of Lagrange multiplier.

First, we mention the optimal solution to vi. We obtain the same optimal solution to
vi as HCM-NM in the same way of HCM-NM.

Second, we derive the optimal solution to uki. When we put ηki = dki−
∑n

l=1(uli)mαkl+∑n
l=1(uli)mβkl, the objective function JsFCM-NM can be rewritten as follows:

JsFCM-NM(U,V) =
n∑

k=1

c∑

i=1

(uki)mηki.

Because ofUFCM, the optimal solution to uki is derived as follows:

uki =
(1/ηki)

1
m−1

∑c
j=1(1/ηk j)

1
m−1

.

3.3 Entropy-Based Fuzzy c-means with Pairwise Constraints by Non-metric
Term

We define the objective function of the proposed algorithm as follows:

JeFCM-NM(U,V) =
n∑

k=1

c∑

i=1

uki(dki + λ log uki) −
n∑

k=1

n∑

l=1

c∑

i=1

ukiuli(αkl − βkl).

The constraint is UFCM. The first and second terms mean the objective function of
eFCM. The third and forth terms mean the non-metric term for must-link, and the non-
metric term for cannot-link, respectively. We can obtain optimal solutions which mini-
mize the objective function JeFCM-NM by the method of Lagrange multiplier.

First, we derive the optimal solution to vi. We obtain the same optimal solution to vi

as HCM-NM in the same way of HCM-NM.
Second, we derive the optimal solution to vi. The objective function JeFCM-NM can be

rewritten as follows:

JeFCM-NM(U,V) =
n∑

k=1

c∑

i=1

uki(ζki + λ log uki).

Because ofUFCM, the optimal solution to uki is derived as follows:

uki =
exp(−λ−1ζki)∑c

j=1 exp(−λ−1ζk j)
.

3.4 Proposed Algorithms: HCM-NM and FCM-NM

We propose three new semi-supervised clustering algorithms HCM-NM and FCM-NM
(sFCM-NM and eFCM-NM) by using the optimal solutions obtained above in Algo-
rithm 1. These algorithms give clustering results through iterative optimization.
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Algorithm 1. HCM-NM and FCM-NM Algorithms
Step1. Give ML and CL. Set the initial values of U and V to U (0) V (0). Let the iteration count be

L = 0.
Step2. Calculate V (L+1) with fixing U (L) as follows:

v(L+1)
i =

∑n
k=1 u(L)

ki xk
∑n

k=1 u(L)
ki

.

Step3. Calculate U (L+1) with fixing V (L+1) as follows:
In case of HCM-NM:

u(L+1)
ki =

⎧⎪⎪⎨⎪⎪⎩
1, (i = arg min j ζ

(L+1)
ki )

0. (otherwise)

Here ζ(L+1)
ki = d(L+1)

k j −
∑n

l=1 u(L)
l j αkl +

∑n
l=1 u(L)

l j βkl.
In case of sFCM-NM:

u(L+1)
ki =

(1/η(L+1)
ki )

1
m−1

∑c
j=1(1/η(L+1)

k j )
1

m−1

.

Here η(L+1)
ki = d(L+1)

ki −
∑n

l=1(u(L)
li )mαkl +

∑n
l=1(u(L)

li )mβkl.
In case of eFCM-NM:

u(L+1)
ki =

exp(−λ−1ζ(L+1)
ki )

∑c
j=1 exp(−λ−1ζ(L+1)

k j )
.

Step4. If the convergence criterion is satisfied, the algorithm is finished. Otherwise, L = L + 1
and back to Step2.

End of Algorithm.

4 Numerical Examples

4.1 Datasets

We use two artificial datasets in Fig. 1 and Fig. 2. The former has 120 objects and it
consists of two clusters: upper and lower. The latter has 150 objects and it consists of
two clusters: outside and inside. The parameters are shown in Table 1 and we give 1000
types of initial values to each clustering algorithm. We verify clustering results by four

Table 1. Parameters

m λ λML λCL ε

2.0 2.0 1.0 2.0 1.1

typical validity indexes: normalized mutual information (NMI), Purity, Entropy, and
Rand index as follows:
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Fig. 1. Artificial Dataset 1
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Fig. 2. Artificial Dataset 2

NMI Let C and T be a set of generated clusters {Ci | i = 1, . . . , c} and a set of correct
clusters {Ti | i = 1, . . . , c}. The validity function vNMI of NMI is defined as follows:

vNMI(C,T ) =
H(C) + H(T ) − H(C,T )

max{H(C),H(T )} .

Here

H(C) =
c∑

i=1

−P(Ci) log P(Ci),

H(C,T ) =
c∑

i=1

c∑

j=1

−P(Ci, T j) log P(Ci, T j),

P(Ci) =
|Ci|

Total number of all objects
,

P(Ci, T j) = P(Ci)P(T j|Ci).

vNMI(C,T ) ∈ [0, 1] and vNMI(C,T ) = 1 if and only if Ci = Ti for any i.
Purity The validity function vPT of Purity is defined as follows:

vPT(C,T ) =
c∑

j=1

P(T j) max
i

P(Ci|T j).

vPT(C,T ) ∈ [0, 1] and vPT(C,T ) = 1 if and only if Ci = Ti for any i.
Entropy The validity function vET of Entropy is defined as follows:

vET(C,T ) = − 1
log c

c∑

j=1

P(T j)
c∑

i=1

P(Ci | T j) log P(Ci | T j).

vPT(C,T )∈ [0, 1] and the smaller the value of vPT , the better the clustering result is.
Rand index The validity function vRI of Rand index is defined as follows:

vRI(C,T ) =
1
|N|

⎛⎜⎜⎜⎜⎜⎜⎝
(
|N|
2

)
−

c∑

i=1

(
n2

i.

2

)
−

c∑

j=1

(
n2
. j

2

)
+ 2

c∑

i=1

c∑

j=1

(
n2

i j

2

)⎞⎟⎟⎟⎟⎟⎟⎠ .
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Here,
ni j = |Ci ∩ T j|,

N = {ni j | i = 1, . . . , c, j = 1, . . . , c},

ni. =

c∑

j=1

ni j, n. j =
c∑

i=1

ni j.

vRI(C,T ) ∈ [0, 1] and vRI(C,T ) = 1 if and only if Ci = Ti for any i.

4.2 Results of Artificial Dataset 1

We show clustering results. Table 2 Table 3, and Table 4 show the number of objects
which is truly classified into correct clusters, the ratio of the number to total number of
data, and values of validity indexes.

Table 2. Results for Artificial Dataset 1 by HCM-NM

(|CL|, |ML|) Correct Clustering NMI Purity Entropy Rand index
Number Ratio (%)

HCM 109 0.90 0.57 0.91 0.43 0.80
(0, 0) 100 0.83 0.35 0.83 0.65 0.72

(10, 0) 100 0.83 0.35 0.83 0.65 0.72
(20, 0) 120 1.00 1.00 1.00 0.00 1.00
(50, 0) 120 1.00 1.00 1.00 0.00 1.00
(0, 10) 120 1.00 1.00 1.00 0.00 1.00
(0, 20) 120 1.00 1.00 1.00 0.00 1.00
(0, 50) 120 1.00 1.00 1.00 0.00 1.00
(10, 10) 120 1.00 1.00 1.00 0.00 1.00
(20, 20) 120 1.00 1.00 1.00 0.00 1.00
(50, 50) 120 1.00 1.00 1.00 0.00 1.00

Table 3. Results for Artificial Dataset 1 by sFCM-NM

(|CL|, |ML|) Correct Clustering NMI Purity Entropy Rand index
Number Ratio (%)

sFCM 110 0.92 0.59 0.92 0.40 0.85
(0, 0) 78 0.65 0.07 0.65 0.93 0.54

(10, 0) 70 0.58 0.09 0.58 0.33 0.51
(20, 0) 80 0.67 0.19 0.67 0.46 0.55
(50, 0) 71 0.59 0.10 0.59 0.34 0.51
(0, 10) 110 0.92 0.65 0.92 0.33 0.85
(0, 20) 68 0.57 0.07 0.57 0.28 0.50
(0, 50) 107 0.89 0.59 0.89 0.38 0.81
(10, 10) 63 0.53 0.03 0.53 0.15 0.50
(20, 20) 94 0.78 0.37 0.78 0.49 0.66
(50, 50) 86 0.72 0.26 0.72 0.49 0.59
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Table 4. Results for Artificial Dataset 1 by eFCM-NM

(|CL|, |ML|) Correct Clustering NMI Purity Entropy Rand index
Number Ratio (%)

eFCM 120 1.00 1.00 1.00 0.00 1.00
(0, 0) 82 0.68 0.10 0.68 0.90 0.56

(10, 0) 67 0.56 0.01 0.56 0.99 0.50
(20, 0) 120 1.00 1.00 1.00 0.00 1.00
(50, 0) 120 1.00 1.00 1.00 0.00 1.00
(0, 10) 105 0.88 0.55 0.88 0.42 0.78
(0, 20) 120 1.00 1.00 1.00 0.00 1.00
(0, 50) 120 1.00 1.00 1.00 0.00 1.00
(10, 10) 118 0.98 0.89 0.98 0.11 0.97
(20, 20) 120 1.00 1.00 1.00 0.00 1.00
(50, 50) 120 1.00 1.00 1.00 0.00 1.00

Fig. 3, Fig. 4, and Fig. 5 show ratios of the number to total number of data.
The values of the ratios when |ML| = 0, 10, 20 and 50 are connect with a solid line. The
values of the ratios when |CL| = 0, 10, 20 and 50 are connect with a dashed line. The
values of the ratios when |ML| + |CL| = 0, 20, 40 and 100 (plotted at 0, 10, 20 and 50
on the horizontal axis) are connect with a dotted line.
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Fig. 4. Ratio for Artificial
Dataset 1 by sFCM-NM
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Fig. 5. Ratio for Artificial
Dataset 1 by eFCM-NM

We show the best result by each proposed algorithm in Fig. 6, Fig. 7, and Fig. 8.
Solid and dashed lines mean must-link and cannot-link relations, respectively.

4.3 Results of Artificial Dataset 2

We show clustering results. Table 5, Table 6, and Table 7 show the number of objects
which is truly classified into correct clusters, the ratio of the number to total number
of data, and values of validity indexes. In Table 6, we find the symbol “nan”. It means
“division by zero” and the reason is that two cluster centers are calculated as the same.

Fig. 9, Fig. 10, and Fig. 11 show ratios of the number to total number of data.
The values of the ratios when |ML| = 0, 10, 20 and 50 are connect with a solid line.
The values of the ratios when |CL| = 0, 10, 20 and 50 are connect with a dashed line.
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Fig. 6. Result for Artificial
Dataset 1 by HCM-NM
(|CL| = 10, |ML| = 10)
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Fig. 7. Result for Artificial
Dataset 1 by sFCM-NM
(|CL| = 0, |ML| = 10)
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Fig. 8. Result for Artificial
Dataset 1 by eFCM-NM
(|CL| = 20, |ML| = 20)

Table 5. Results for Artificial Dataset 2 by HCM-NM

(|CL|, |ML|) Correct Clustering NMI Purity Entropy Rand index
Number Ratio (%)

HCM 85 0.57 0.03 0.57 0.96 0.51
(0, 0) 81 0.54 0.01 0.54 0.99 0.50

(10, 0) 77 0.51 0.00 0.51 1.00 0.50
(20, 0) 91 0.61 0.04 0.61 0.96 0.52
(50, 0) 114 0.76 0.36 0.76 0.63 0.63
(0, 10) 91 0.61 0.04 0.61 0.96 0.52
(0, 20) 94 0.63 0.06 0.63 0.94 0.53
(0, 50) 125 0.83 0.46 0.83 0.54 0.72
(10, 10) 94 0.63 0.06 0.63 0.94 0.53
(20, 20) 105 0.70 0.14 0.70 0.86 0.58
(50, 50) 125 0.83 0.46 0.83 0.54 0.72

The values of the ratios when |ML| + |CL| = 0, 20, 40 and 100 (plotted at 0, 10, 20 and
50 on the horizontal axis) are connect with a dotted line.

We show the best result by each proposed algorithm in Fig. 12, Fig. 13, and Fig. 14.
Solid and dashed lines mean must-link and cannot-link relations, respectively.

4.4 Consideration

For Artificial Dataset 1, The best result is by HCM-NM in Table 2 and the result by
eFCM-NM is similar to HCM-NM in Table 4. Besides, the result by sFCM-NM does
not look good in any cases from in Fig. 4.

On the other hand, for Artificial Dataset 2, the best result is by eFCM-NM in Ta-
ble 14. Moreover, the results by eFCM-NM are better than the other algorithms from
clustering results in Table 5, Table 6 and Table 7, and the ratios of the number of objects
which is truly classified into correct clusters to total number of objects in Fig. 9, Fig. 10
and Fig. 11.

Thus, we think the most useful algorithm is eFCM-NM. However all the proposed
algorithms strongly depend on initial values. Therefore, the other algorithms may output
better results.
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Table 6. Results for Artificial Dataset 2 by sFCM-NM

(|CL|, |ML|) Correct Clustering NMI Purity Entropy Rand index
Number Ratio (%)

sFCM 83 0.55 0.017 0.55 0.97 0.50
(0, 0) 84 0.56 0.17 0.56 0.62 0.50
(10, 0) 100 0.67 nan 0.67 0.00 0.55
(20, 0) 100 0.67 nan 0.67 0.00 0.55
(50, 0) 100 0.67 nan 0.67 0.00 0.55
(0, 10) 100 0.67 nan 0.67 0.00 0.55
(0, 20) 100 0.67 nan 0.67 0.00 0.55
(0, 50) 100 0.67 nan 0.67 0.00 0.55

(10, 10) 84 0.56 0.00 0.56 0.84 0.50
(20, 20) 100 0.67 nan 0.67 0.00 0.55
(50, 50) 100 0.67 nan 0.67 0.00 0.55

Table 7. Results for Artificial Dataset 2 by eFCM-NM

(|CL|, |ML|) Correct Clustering NMI Purity Entropy Rand index
Number Ratio (%)

eFCM 79 0.53 0.00 0.53 0.99 0.50
(0, 0) 78 0.52 0.00 0.52 0.99 0.50

(10, 0) 93 0.62 0.08 0.62 0.91 0.53
(20, 0) 97 0.65 0.14 0.65 0.82 0.54
(50, 0) 116 0.77 0.38 0.77 0.62 0.65
(0, 10) 81 0.54 0.01 0.54 0.97 0.50
(0, 20) 95 0.63 0.07 0.63 0.92 0.53
(0, 50) 150 1.00 1.00 1.00 0.00 1.00
(10, 10) 90 0.60 0.09 0.60 0.86 0.52
(20, 20) 125 0.83 0.34 0.83 0.33 0.72
(50, 50) 125 0.83 0.46 0.83 0.54 0.72
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Fig. 9. Ratio for Artificial
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Fig. 10. Ratio for Artificial
Dataset 2 by sFCM-NM
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cial Dataset 2 eFCM-NM

sFCM-NM is a problem that all cluster centers are extremely closed and conse-
quently, the belongingness of all objects are about the same value. The reason is that
the values of the third term for the cannot-link relation in the objective function of
sFCM-NM (1) are positive for all pairs. In case of not only pairs which are included in
CL, but also pairs which are not included in CL, the closer to 1/c the belongingness of
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Fig. 12. Result for Artifi-
cial Dataset 2 by HCM-NM
(|CL| = 50, |ML| = 50)
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Fig. 13. Result for Artifi-
cial Dataset 2 by sFCM-NM
(|CL| = 10, |ML| = 10)
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Fig. 14. Result for Artifi-
cial Dataset 2 by eFCM-NM
(|CL| = 0, |ML| = 50)

the objects in the pairs is, the smaller the value of the third term of (1). Therefore, all
cluster centers are extremely closed to the centroid of all objects, and consequently, the
belongingness of all objects are about the same value.

5 Conclusion

In this paper, we considered terms of must-link constraint and cannot-link constraint
for prior information to use non-metric model, and then unified the terms objective
functions of the well-known clustering algorithms: hard c-means, standard fuzzy c-
means, and entropy-based fuzzy c-means. Moreover, we verified the algorithms through
some numerical examples. We think the most useful proposed algorithm is sFCM-CM.
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the University of Tsukuba, and Associate Professor Yuchi Kanzawa of Shibaura Insti-
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Abstract. Creating accurate and robust clustering models is utmost
important in pattern recognition. This paper introduces an elliptic shell
clustering model aiming at accurate detection of ellipsoids in the pres-
ence of outlier data. The proposed fuzzy-possibilistic product partition
c-elliptical shell algorithm (FP3CES) combines the probabilistic and pos-
sibilistic partitions in a qualitatively different way from previous, similar
algorithms. The novel mixture partition is able to suppress the influence
of extreme outlier data, which gives it net superiority in terms of robust-
ness and accuracy compared to previous algorithms, fact supported by
cluster validity indices.

Keywords: fuzzy c-elliptical shell clustering, probabilistic partition,
possibilistic partition, robust clustering.

1 Introduction

Robustness in clustering refers to the stability or reproducibility of the achieved
partition, and insensitivity to several kinds of noise including severely outlier
data. The fuzzy c-means (FCM) algorithm introduced by Bezdek [2] is a very
popular clustering model due to the fine partitions it makes and its easily com-
prehensible alternating optimization (AO) scheme. However, the probabilistic
constraints involved in FCM make it sensitive to outlier data. To combat this
problem, several solutions have been proposed, which found their way to relax
the probabilistic constraint.

An early solution was given by Davé [4], who introduced an extra, specially
treated noisy class to attract feature vectors situated far from all normal cluster
prototypes. This theory was later extended by Menard et al [14]. Alternately,
Krishnapuram and Keller proposed the possibilistic c-means algorithm (PCM)
[12], which distributes the partition matrix elements based on statistical rules.
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This approach seemed to have solved the sensitivity to outliers, but it cannot be
called a robust algorithm due to the coincident clusters it frequently produces [1].
Timm et al [19] set up a repulsive force between all couples of cluster prototypes
of PCM, the strength of which decrease with distance. Their method succeeded
in avoiding coincident clusters, but failed to accurately treat cases when two
clusters are really close to each other. Two versions of fuzzy-possibilistic parti-
tion mixtures were proposed by Pal et al [15,16], out of which the second one
(possibilistic fuzzy c-means - PFCM) appears to be a reliable clustering model.

In a recently published paper we introduced the novel fuzzy-possibilitistic
product partition c-means clustering model (FP3CM) [17], in which the degrees
of membership are given as the product of a probabilistic and a possibilistic fac-
tor. This new approach proved to eliminate all adverse effects of distant outliers,
while producing high quality partitions.

All algorithms discussed above work with point-type cluster prototypes that
are computed as weighted means of the input data. However, frequently emerge
situations when the shape of the clusters differ from the default. To cope with
such scenarios, several solutions have been proposed. Linear manifolds are usu-
ally modeled via adaptive fuzzy c-varieties [9], while spherical ones via the fuzzy
c-spherical shell (FCSS) algorithm model by Krishnapuram et al [11]. Elliptical
prototypes were introduced by the adaptive fuzzy c-shells algorithm, and the
fuzzy c-ellipsoidal shells clustering model [7]. Generalized versions of shell clus-
ters to the quadric case were given by Krishnapuram et al [10]. Further quadric
prototypes models include the fuzzy c-quadrics [6] and the fuzzy c-quadric shells
[13]. The norm-induced shell prototypes introduced by Bezdek et al [3] can be
adapted to detect ellipses, quadrics, and rectangles as well. Later, Höppner ex-
tended the palette of detectable shapes with his fuzzy c-rectangular shell models
[8]. Out of these shaped cluster models, only FCSS has explicit expressions to
compute the cluster prototypes in each iteration of the main AO loop. All oth-
ers use nonlinear implicit expressions that need to be solved in an iterative
way. The latter, besides being more complicated to implement, also represents
a higher computational load.

In an earlier paper [18] we introduced the so-called fuzzy-possibilistic prod-
uct partition c-spherical shell clustering model, which combines the robust and
accurate FP3CM algorithm [17] with the considerations of the fuzzy c-spherical
shell clustering approach [11], and investigated its capabilities in identifying
spheroidal shapes in two-, three-, and multidimensional environments. In this
paper we introduce the fuzzy-possibilistic product partition c-elliptical shell
(FP3CES) clustering algorithm, as the combination of the fuzzy-possibilistic
product partition with the elliptical shell clustering mechanism proposed by
Dave [5], and will investigate its capabilities in identifying ellipsoidal clusters in
noisy environment.

The rest of this paper is structured as follows. Section 2 summarizes the c-
means clustering framework applying either a pure probabilistic or possibilistic,
or a mixed partition. Section 3 introduces the novel FP3CES clustering model.
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Section 4 produces a numerical analysis and comparison of the proposed and
earlier methods. Conclusions are given in the last section.

2 Fuzzy c-Means Clustering Models with Probabilistic,
Possibilistic, and Mixed Partition

The generally formulated c-means clustering model partitions a set of n object
data xk ∈ Rz, k = 1 . . . n, into a previously defined number of c clusters, based
on the minimization of a quadratic objective function, formulated as:

Jc =

c∑
i=1

n∑
k=1

f(uik, tik)||xk − vi||2A +

c∑
i=1

ηi

n∑
k=1

g(uik, tik) , (1)

where vi represents the prototype or centroid value or representative element of
cluster i (i = 1 . . . c), dikA = ||xk − vi||A =

√
(xk − vi)TA(xk − vi) represents

the generalized distance between input vector xk and the cluster prototype vi,
and ηi are the penalty terms that control the variance of the clusters [12]. Fur-
ther on, f and g are two functions which depend on the employed algorithm,
whose definitions are described in Table 1, where uik is the probabilistic fuzzy
membership function showing the degree to which input vector xk belongs to
cluster i, tik is the degree of compatibility of vector xk with cluster i, m > 1 and
p > 1 are the fuzzy and possibilistic exponents, respectively. The probabilistic
partition consists of uik fuzzy membership values, which are constrained by:⎧⎨⎩0 ≤ uik ≤ 1 ∀i = 1 . . . c ∀k = 1 . . . n

c∑
i=1

uik = 1 ∀k = 1 . . . n
. (2)

The possibilistic partition consists of tik fuzzy membership values, which are
constrained by: ⎧⎨⎩0 ≤ tik ≤ 1 ∀i = 1 . . . c ∀k = 1 . . . n

0 <
c∑

i=1

tik < c ∀k = 1 . . . n
. (3)

The optimization of Jc is performed within the framework of grouped coor-
dinate minimization. In case of pure probabilistic (possibilistic) partition, this
consists of alternately applying the optimization of Jc over {uik} ({tik}) with
vi fixed, and the optimization of Jc over {vi} with uik (tik) fixed [2,12]. In case
of mixed partitions, each iteration of the optimization scheme consists of three
steps: (1) optimization of Jc over {tik} with {uik} and vi fixed, (2) optimiza-
tion of Jc over {uik} with {tik} and vi fixed, and (3) optimization of Jc over vi

with {uik} and {tik} fixed. PFCM allows the execution of the first two steps in
any order. During each cycle, the optimal partitions and cluster prototypes are
computed from the zero gradient conditions, and obtained as presented in the
bottom three rows of Table 1.

We need to remark that the original PFCM algorithm [16] used g(uik, tik) =
(1−tik)

p. We decided to use g(uik, tik) = b(1−tik)
p because this way the tradeoff

parameter b does not interfere with the penalty term values ηi.
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Table 1. Various c-means algorithms defined with fik and gik functions, and the
formulas of the alternating optimization framework

Algorithm FCM [2] PFCM [16] FP3CM [17]

exponent exponents m, p > 1 exponents m, p > 1
Parameters m > 1 ηi, i = 1 . . . c ηi, i = 1 . . . c

a, b for tradeoff

f(uik, tik) um
ik aum

ik + btpik um
ikt

p
ik

g(uik, tik) 0 b(1− tik)
p um

ik(1− tik)
p

t�ik not applicable

[
1 +

(
d2ik
ηi

) 1
p−1

]−1 [
1 +

(
d2ik
ηi

) 1
p−1

]−1

u�
ik

d
−2/(m−1)
ik

c∑
j=1

d
−2/(m−1)
jk

d
−2/(m−1)
ik

c∑
j=1

d
−2/(m−1)
jk

[d2ikt
p
ik

+ηi(1−tik)
p]−1/(m−1)

c∑
j=1

[d2
jk

t
p
jk

+ηj(1−tjk)p]−1/(m−1)

v�
i

n∑
k=1

um
ikxk

n∑
k=1

um
ik

n∑
k=1

[aum
ik+bt

p
ik

]xk

n∑
k=1

[aum
ik

+bt
p
ik

]

n∑
k=1

um
ikt

p
ik

xk

n∑
k=1

um
ik

t
p
ik

3 Methods

The fuzzy-possibilistic product partition proved to be a successful tool in c-
means clustering of noisy data [17] and in the detection of hyperspheres in noisy
environment [18]. In the following, we will extend the use of the product partition
to identify ellipsoidal shell clusters in the presence of outliers.

Ellipsoids in computational geometry are usually described by a center point,
one radius value in each dimension, and a rotation vector which defines the
orientation of the ellipsoid. Here we will define an ellipsoid as a collection of
points x that satisfy the equation:

(x− v)A(x− v)T = r2 ,

where v is the center of the ellipsoid, r is a variable that controls the size of the
ellipsoid (radii vary proportionally with r), and matrix A is a positive definite
matrix that describes the shape and orientation of the ellipsoid. Under such
circumstances, the distance of any data point xk (k = 1 . . . n) from cluster
prototype number i (i = 1 . . . c), defined by vi, ri, and Ai is computed as:

D2
ik = (dik − ri)

2 , (4)

where

dik = ||xk − vi||A =
√
(xk − vi)A(xk − vi)T . (5)

The objective function of the proposed elliptic shell clustering algorithm is:

JFP3CES =

c∑
i=1

n∑
k=1

um
ik[t

p
ikD

2
ik + (1− tik)

pηi] ,
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which will be optimized under the probabilistic and possibilistic constraints given
in Eqs. (2) and (3), and a further constraint det(Ai) = ρi fixed, which assures
that each possible ellipsoid has a unique description using its own vi, ri, and Ai

values.
Using the same notations and the ones given in Table 1, the objective functions

of counter candidate algorithms FCES and PFCES will be:

JFCES =

c∑
i=1

n∑
k=1

um
ikD

2
ik ,

JPFCES =

c∑
i=1

n∑
k=1

[(aum
ik + btpik)D

2
ik + b(1− tik)

pηi] .

In order to optimize any of the above objective functions, we need to find the
optimal cluster prototypes (vi, ri, Ai for any i = 1 . . . c) and optimal partition
(uik and tik where applicable, for any i = 1 . . . c and k = 1 . . . n). The optimum
is reached via grouped coordinate minimization by alternately optimizing the
partition with fixed cluster prototypes, and then optimizing the cluster proto-
types keeping the partition fixed. The alternating optimization is stopped when
the norm of variation of cluster prototypes during an iteration stays below a
predefined constant ε. The alternately applied optimization formulas are ob-
tained from zero crossing of the objective function’s partial derivatives, using
Lagrange multipliers where necessary. The optimization formulas thus obtained
are necessary conditions of finding the objective function’s optimum.

The optimization formulas are obtained as:

– Partition update formulas (for tik and u
ik, where applicable) are those in-

dicated in Table 1, using distances Dik defined in Eq. (4) instead of dik. In
the case of FP3CES algorithm, these formulas become:⎧⎪⎪⎪⎨⎪⎪⎪⎩

tik =

[
1 +
(

D2
ik

ηi

) 1
p−1

]−1

∀i = 1 . . . c

u
ik =

[D2
ikt

p
ik+ηi(1−tik)

p]−1/(m−1)

c∑
j=1

[D2
jkt

p
jk+ηj(1−tjk)p]−1/(m−1)

∀k = 1 . . . n
. (6)

– Cluster prototype centers v
i and radii ri (∀i = 1 . . . c) need to be extracted

via Newton’s method from implicit equations:⎧⎪⎪⎨⎪⎪⎩
n∑

k=1

f(uik, tik)
Dik

dik
(xk − vi) = 0

n∑
k=1

f(uik, tik)Dik = 0
. (7)

– Ellipse orientation matrices Ai (i = 1 . . . c) are obtained as:

A
i = z
√
ρi det(Si)S

−1
i , (8)
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Table 2. The alternating optimization algorithm of FP3CES clustering algorithm

1. Fix the number of clusters c, 2 ≤ c ≤ n/3.
2. Set fuzzy exponent m and possibilistic exponent p, both greater than 1.
3. Set possibilistic penalty terms ηi, i = 1 . . . c, as recommended by Krishnapuram

and Keller in [12].
4. Initialize partition using the partition update formula of the FP3CM algorithm, as

shown in Table 1.
5. Compute cluster centers vi and radii ri (i = 1 . . . c) using Newton’s method, with

Dik and dik defined in Eqs. (4) and (5), respectively.
6. Update Dik values dik (i = 1 . . . c, k = 1 . . . n) according to Eqs. (4) and (5),

respectively.
7. Update matrices Si (i = 1 . . . c) using Eq. (9), and then matrices Ai (i = 1 . . . c)

using Eq. (8).
8. Update partition using Eq. (6).
9. Repeat steps 5-8 until cluster prototypes converge.

10. The degree of membership of input vector xk with respect to elliptic cluster i is
given by m+p

√
um
ikt

p
ik.

11. Vector xk is an identified outlier, if
c∑

i=1

m+p
√

um
ikt

p
ik < ε, where ε is a predefined

small constant (e.g. ε = 0.01).

where

Si =
n∑

k=1

f(uik, tik)
Dik

dik
(xk − vi)(xk − vi)

T . (9)

and z is the number of dimensions.

The proposed elliptic shell clustering algorithm is summarized in Table 2.

4 Results and Discussion

In the following, we will perform some numerical tests to evaluate the robustness
and accuracy of the proposed algorithm. We will compare its performance with
counter candidates like the FCES [5], and the unpublished possibilistic-fuzzy
c-elliptical shell (PFCES) clustering we derived from the ultimate robust and
accurate PFCM [16]. Elliptic shell clustering based on pure possibilistic partition
is excluded from these tests due to its frequently coincident cluster prototypes.

It is necessary to remark that most shell clustering algorithms were published
without being tested in noisy environment. This study investigates the accuracy
of algorithms in the presence of noise, in order to emphasize the advantages of
the proposed method.

4.1 Three Ellipses and One Outlier

Let us consider three sets of ν = 18 data points each, uniformly distributed
in the proximity of three ellipses centered at v1 = (−5, 0)T , v2 = (0, 5)T , and
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Fig. 1. Identified ellipses in case of 3ν + 1 = 55 input vectors, c = 3 clusters, and
outlier position (a) δ = −2; (b) δ = 0; (c) δ = 3; (d) δ = 5; (e) δ = 10; (f) δ = 15.
Cluster prototypes were initialized as circles in the proximity of the ideal solution.
Ellipses of FCES are drawn with dotted lines, the result of PFCES with dashed lines,
while the identified ellipses of the proposed FP3CES are represented with continuous
lines. Dotted lined circles indicate the initial cluster prototypes.
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Fig. 2. Cluster validity indices ΔR, ΔC , and ΔD, plotted against the position δ of
the outlier data vector. The fuzzy-possibilistic product partition performs better than
others by orders of magnitudes.

v3 = (0,−5)T , respectively. All three ellipses have longer and shorter radii of
2 and 1 units, respectively. The ellipses are rotated with respect to each other
as shown in Fig. 1. The input data set also includes an outlier, situated at
x3ν+1 = (δ, 0)T , where δ will vary during the experiment. We will attempt to
find c = 3 two-dimensional elliptic shell clusters among these n = 3ν+1 vectors.
We have fed these input vectors to three algorithms: FCES, PFCES, and the
proposed FP3CES. Initial clusters prototypes were set as unit radius circles
centered at v1, v2, and v3. The question is, how these algorithms will identify
the three ellipses within the data set, as parameter δ varies.

Figure 1 exhibits the obtained ellipses for various positions δ of the outlier
data point. The ellipses identified by FCES are drawn with dotted lines, the
ones of PFCES with dashed lines, while the ellipses of the proposed method are
represented with continuous lines. This convention will persist throughout all
graphical representations in this paper. The probabilistic fuzzy partition of FCES
gives the outlier approximately 1/c = 0.333 probability to belong to all classes,
and that single outlier visibly distorts the found ellipses in case of every tested
outlier position. The possibilistic fuzzy partition gives lower fuzzy membership
values to the outlier with respect to all classes due to its possibilistic component
(tik), enabling the PFCES algorithm to better approximate the three ellipses.
PFCES visibly performs better than FCES, but the found ellipses are still far
from the ideal ones. On the other hand, the proposed algorithm finds the three
ellipses correctly in all visualized cases.
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In order to numerically evaluate the results, we need to introduce some cluster
validation indices (CVI):

– The defect of radii, denoted by ΔR, will characterize the differences of ellipse
radii from their ideal value:

ΔR =
1

c

c∑
i=1

(
ri1 − ri1

ri1

)2

+

(
ri2 − ri2

ri2

)2

,

where ri1 and ri2 stand for the longest and shortest radius, respectively, of
cluster prototype (ellipse) number i, and the corresponding overlined vari-
ables indicate the ideal values.

– The defect of centers, denoted by ΔC , will characterize the distance of found
ellipse centers from their ideal value:

ΔC =
1

c

c∑
i=1

||vi − vi||2 ,

where vi is the ideal center position of cluster prototype (ellipse) number i,
and the norm is computed as Euclidean distance.

– ΔD will characterize the distance of data points (excluding the outlier) from
the closest found ellipse:

ΔD =
1

cν

cν∑
k=1

min
i
{dist(xk,Ellipsei)|i = 1 . . . c}2 .

All three indices introduced above give low values for valid clusters. Zero
value of these indices is possible for the ideal solution only. These three CVI
values are represented in Fig. 2, for all three tested algorithms and variable
outlier coordinate δ. The curves for FCES and PFCES end at δ = 18 and
δ = 23, respectively, because the algorithms crash at these values of the outlier
coordinate. On the other hand, the algorithm using fuzzy-possibilistic product
partition leads to fine solution for much further outliers as well. CVI values
for FP3CES are lower by orders of magnitude, indicating the superiority of the
proposed algorithm in accuracy and robustness.

4.2 Twelve Ellipses Around the Clock and Five Outliers

Let us now define another numerical example with c = 12 ellipses to be identi-
fied, of random radius and orientation, each represented by ν = 18 data points
situated along the boundary, as shown in the middle panel of Fig. 3. The ellipse
centers are situated on a circle of 10-unit radius, thus the center of ellipse num-
ber i (i = 1 . . . c) is given by vi = (10 cos(2πi/c), 10 sin(2πi/c))T . Five further
data points (not too distant outliers) are added to the input data set, namely
{(0, 0)T , (0, 3)T , (0,−3)T , (3, 0)T , (−3, 0)T}. The resulting data set is clustered
to c = 12 elliptic shell clusters via FCES, PFCES and FP3CES algorithms. Ini-
tial cluster prototypes are set as unit radius circles placed at vi (i = 1 . . . c),
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Fig. 3. Magnified view of identified ellipses in case of 12ν +5 = 221 input vectors and
c = 12 elliptic shell clusters. Cluster prototypes were initialized as unit radius circles
centered in ideal position. Ellipses identified by FCES are drawn with dotted lines,
the result of PFCES with dashed lines, while the identified ellipses of the proposed
FP3CES are represented with continuous lines.

drawn in Fig. 3 with light and narrow dotted lines. The four outer panels of Fig.
3 exhibits the outcome of all three algorithms.

Again, we can easily notice the superiority of the proposed algorithm as it
identifies all ellipses with hardly visible mistakes, while the outliers bring con-
siderable obstacles for the counter candidate algorithms. In general, FCES pro-
duces stronger distortions than PFCES, but none of them can be called accurate
in the presence of outliers.
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All results so far were produced at the following parameter settings:

– FCES was performed using the most popular value of the fuzzy exponent
m = 2;

– PFCES was performed using a stronger possibilistic factor (as recommended
by its authors [16]) caused by fuzzy exponent set to m = 2.5 and possibilistic
exponent to p = 1.5. Trade-off parameters were set equal: a = b = 1; the
possibilistic penalty terms ηi were established by the rules set in [12].

– FP3CES was using the same settings as PFCES for m, p, and ηi.

Besides the better accuracy and robustness, another advantage of the fuzzy-
possibilistic product partition compared to the possibilistic-fuzzy partition [16],
is the lack of trade-off parameters between probabilistic and possibilistic terms,
making the proposed algorithm easier to tune.

The initialization of cluster prototypes is a key issue that strongly influences
the outcome of the clusters. As the cost function may have several local minima,
it is important to start the algorithm in the neighborhood of the global optimum.
Without proper initialization, none of the tested elliptic shell algorithms can
produce accurate results.

5 Conclusions

In this paper we derived a novel approach to c-elliptical shell clustering from
our previous fuzzy-possibilistic mixture clustering model, in order to combat the
sensitivity of existing c-shell clustering models to outlier data. We performed
several numerical evaluations on artificially created test data sets, to investigate
the behavior of the proposed FP3CES clustering model. In the presence of dis-
tant outliers, the proposed clustering model outperforms all existing c-means
approaches. Even if the outliers are not very distant, FP3CES identifies ellip-
tic boundaries with an improved accuracy, fact proved using numerical cluster
validity indices. Further works will focus on providing cluster prototype initial-
ization techniques to support the proposed accurate and robust shell clustering
algorithm.
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Abstract. Thin film transistor (TFT) lines on glass substrates of flat panel dis-
plays (FPD) often contain many electrical defects such as open circuits and 
short circuits that have to be inspected and detected in early manufacturing 
stages in order to repair and restore them. This paper proposes a multiobjective 
evolutionary optimized recurrent neural network for inspection of such electric-
al defects. The inspection is performed on digitized waveform data of voltage 
signals that are captured by a capacitor based non-contact sensor through scan-
ning over TFT lines on the surface of mother glass of FPD. Waveform data that 
were captured over TFT lines, which contain open or short circuits, show irre-
gular patterns and the proposed RNN is capable of classifying and detecting 
them. A multiobjective evolutionary optimization process is employed to de-
termine the parameters of the best suited topology of the RNN. This method is 
an extension to address the drawbacks in our previous work, which utilizes a 
feed-forward neural network. Experimental results show that this method is ca-
pable of detecting defects on more realistic and noisy data than both of the pre-
vious method and the conventional threshold based method. 

Keywords: Recurrent neural networks, Evolutionary optimization, Non-contact 
Defects Inspection, Open short detection. 

1 Introduction 

Amid growing demand for flat panel displays (FPD) in recent years, having a wide 
range of applications in almost every available consumer electronics such as TVs, 
computers, cameras, mobile phones, medical equipment, toys, etc., the manufacturers 
face a stiff competition for high throughput product lines and low cost manufacturing. 
The demand for larger sizes of mother glass (ex: Generation 10,11,12) as well as the 
demand for high density thin film transistor (TFT) pitch patterning of FPDs with  the 
emergence of ultra-high definition 4K and 8K TVs have also been increasing.  
With increasing pitch pattern density there is a tendency for having defects, such as 
inter -layer short circuits between TFT lines, to increase. Under these circumstances, 
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detection and repair of defects in early manufacturing stages have become significant-
ly important. As a result, the speed and the precision of defects detection have been 
major issues for the manufactures of FPDs and researchers alike. 

Currently there are several methods used by manufacturers for detection of defetcs 
on FPDs.  Automatic optical inspection (AOI) methods, which are based on still or 
video images, have been mainly used in the past for detection of defects during inter-
mediate processes of fabrication lines of FPDs [1-5].  Though the AOI methods are 
fast, totally non-contact and devoid of any damage to glass substrates as in pin probe 
methods, non-electrical defects such as particles on panel surface (micro dusts) and 
even slight color changes on TFT wirings can also be falsely detected as defects. 
Another major drawback in AOI method is that it is extremely difficult to distinguish 
non-electrical defects from certain electrical defects (open NG and short NG) that 
need to be repaired and restored.  

Another commonly used method is the pin probe method where electrode pins 
make direct contacts with selected points of the entire circuitry on panel surface and 
measure the current flown after applying a known voltage. Though this method has 
the advantage of detecting nothing but electrical defects, it also has disadvantages 
such as very low-speed of inspection, poor adjustability for changes of TFT circuit 
design and line pitch and the necessity of frequent replacing of pin probing fixtures, 
which is an expensive process.  

The non-contact FPD inspection method proposed by Hamori et al. [6-9] is the 
most promising technique to-date, which is totally non-contact, utilizing a capacitor 
based sensor that scans over the TFT lines of mother glass panels of FPDs. The detec-
tion of defects is based on analyzing peaks and troughs on a waveform of a voltage 
signal captured by a sensor using a threshold method after noise cleaning. However 
determining a proper threshold to correctly indentify such peaks and troughs on wave-
forms is still not easy as the measured voltage signal is mixed with various noises 
such as random noises, external vibrations and noises due to environmental effects 
such as fluctuations of machine temperature.  

In our previous work [10,11], using a feed-forward neural network (FNN),  we 
proposed an alternative detection method to the non-contact inspection method [6-9]. 
Since the problem is highly data driven and non-linear on a set of non-stationary 
waveform data, an intelligent approach, which can learn and adapt to varying patterns 
of data must be more appropriate. In that a 4 layered FNN to classify candidate points, 
which were selected from waveform data and presented to the network, as defective 
(NG) or non-defective (OK) was employed. There was no threshold selection ambigu-
ity involved in that method instead some local and neighborhood characteristics of 
candidate points were entered as inputs to the network and the network itself classi-
fied if they were defective or not based on prior learning. The system produced prom-
ising results and looked more feasible than the existing thresholding method. The 
drawbacks of this method include network’s inability to response correctly for more 
noisy data and irregular wave fluctuations.  

In this paper, as an alternative, we propose a recurrent neural network (RNN) 
based defect inspection method to address and overcome the above mentioned draw-
backs in our previous method based on an FNN. Still determining the best structure or 
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the topology of a RNN for a particular problem was a major obstacle since the trial 
and error approach can never be productive. In order to overcome this, a multi-
objective evolutionary optimization process [12,13] to optimize the topology of the 
RNN is adopted. Experimental results show that this method is superior to the pre-
vious FNN based method in the context of detecting defects on more noisy data. The 
three local features at candidate input points on waveforms, namely, signal to noise 
ratio (SNR), residual difference and change of wave length within a neighborhood are 
used as inputs to the network. 

2 Non-Contact FPD Inspection 

In the non-contact inspection method for FPD proposed by Hamori et al. [6-9] the 
capacitor based non-contact sensor utilizes two electrodes, a feeding electrode and a 
receiving electrode, that scan parallel to each other across TFT lines over the mother 
glass of FPD panel (Fig. 1 (a)). During scanning, a known voltage is applied to TFT 
lines on the panel surface through the feeding electrode and is received through the 
receiving electrode capturing the voltage signal through an AD converter, which is 
sent to the host computer as a digitized waveform for analysis.  

 

 

Fig. 1. (a) Non-contact FPD inspection system; (b) Typical pattern of a waveform captured by a 
non-contact sensor 

Fig. 1 (b) shows a typical waveform pattern of a captured voltage waveform 
through a non-contact sensor. The detection of defects on TFT lines will manifest 
themselves as peaks and toughs on the waveform, detection of which in effect pro-
duce the basis for detection of defects. Generally such waveforms are mixed with lot 
of random noises, external vibrations and other artifacts as shown in the figure. The 
large deviation at point a may be a random electrical noise, at point b may be a devia-
tion caused due to a real electrical defects and at points c may be a vibration caused 
by an external force. Due to practical reasons in real production environments the gap 
between the surfaces of the scanning electrodes and the flat panel are not uniformly 
even. This unevenness causes low frequency swinging or baseline fluctuations on the 
captured voltage waveform as shown in the above figure since the input is a small 
voltage signal. 
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2.1 Threshold Based Inspection Method and Its Drawbacks 

Since the original waveform data captured by a non-contact sensor are full of noises 
(Fig. 2a), a moving average filter is applied initially to reduce high frequency random 
noises (Fig. 2b). Then the low frequency swinging and baseline fluctuations of the 
waveform due to the unevenness of the gap between the panel surface and the sensor 
surface are neutralized by applying a derivative operator (Fig. 2c). The resulting 
waveform has undergone again a moving average operator to remove remaining spike 
noises. Finally magnitude values of the waveform are compared with a pre-
determined threshold value and the points that exceed the threshold level are consi-
dered as defect points (Fig. 2c). 

 

 

Fig. 2. Defects detection by thresholding method; (a) Original waveform; (b) After noise sup-
pression; (c) Thresholding on differential waveform 

However, as shown in Fig. 2c, determining a threshold line for discriminating de-
fects points on the waveform is difficult due to the fact that original data are full of 
noises and consist of varying levels of baseline fluctuations. In the context of these 
circumstances the operators always have to resort to looking at data manually and 
determining proper threshold levels. 

2.2 Feed-Forward Neural Network Based Method and Its Drawbacks 

In our previous work [10,11], we proposed an FNN to classify and detect defect 
points on waveform data. The structure of the FFN was a 4-layer feed-forward net-
work containing an input layer with two units, two hidden layers with 2 units and 3 
units and an output layer with one unit. The inputs to the network were signal to noise 
ratio (SNR), residual difference, and change of wave length at candidate points on the 
input waveform. There were 27 weights associated with each input of units, which 
were optimized by commonly used back propagation training. 

Though this method proved to be much more superior to the existing thresholding 
method in terms of rate of missed detections and rate of false detections, it still has its 
own drawbacks, such as difficulty of picking candidates to the network from noisy 
data environment and, therefore, the obvious difficulty of detection. Determining a 
proper topology of the FNN was also a difficult task as it was trial and error based. 
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3 Proposed Method Using an Evolutionary Optimized 
Recurrent Neural Network 

As described above, the existing criteria of using a threshold for determining defect 
points on waveforms in non-contact defect inspection method is lacking the appro-
priateness since the feature variations on and around defect points are largely local 
features while the deciding threshold is a global value. Also as described in section 
2.2, our previous method based an FNN has its own drawbacks such as difficulties in 
topology determination process and poor performance in noisy data environment.  

After careful observation of the variation of patterns of waveform data from vari-
ous environments with varying levels of noise levels, it was clear that a recurrent 
neural network would be the best approach to the problem. RNNs are fundamentally 
different from feed-forward architecture in the sense that they not only operate on an 
input space but also on an internal state space, a trace of which has already been 
processed by the network. In other words, an internal feedback can be processed to-
gether with external inputs in an RNN. One of the major reasons, why an RNN is 
brought into this problem, is because it is more resilient on noisy and imperfect  
inputs. 

3.1 Inputs to the Recurrent Neural Network 

Since a neural network can learn from experience, i.e. a neural network can be trained 
by feeding a known set of data, any feature around an input point on the input wave-
form that can be considered as influential to the output must be considered as an input 
to the network. By looking at neighborhood characteristics around defective points on 
waveforms and comparing with normal area, following three features have been iden-
tified as inputs (input vector x) to the network, namely Signal to Noise Ratio (SNR), 
Residual difference, and Change of wave length. All of these input parameters 
x(x1,x2,x3) are picked within a pre-determined length of neighborhoods of possible 
candidate points on the waveform, where candidate points are selected by a simple 
low level threshold in order to avoid missing any defect points though it may include 
false detections. 

 

 

 

 

Fig. 3. Picking input parameters from a neighborhood of a point; (a) Measurement of SNR and 
Residual difference; (b) Measurement of change of wave length on differential waveform  
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1. Signal to Noise Ratio (SNR) 

As shown in Fig. 3a level of the signal at a particular point shows a considerable 
deviation against the level of background noise, i.e. the SNR is noticeably high. 
SNR is considered as the first component (x1) of the input vector x and is taken 
as: 

 
σ
μ== SNRx1  (1) 

where μ is the mean value and σ is the standard deviation of the waveform within 

the selected neighborhood. 

2. Residual Difference 

Besides the sharp deviation at a defect point, the neighboring area consisting of 
a few wave lengths that can also be seen deviated towards the same direction as 
main deviated point (Fig. 3a). This particular feature of the waveform within the 
neighborhood is measured as the difference of average upper peak level with the 
regression line (h1) and the difference of average lower peak level with the re-
gression line (h2). In other words the residual difference of upper and lower 
peek levels in the neighborhood is taken as the second component (x2) of the in-
put vector x and is taken as: 

 212 hhx −=  (2) 

3. Change of Wave Length 

In the original waveform it shows a significant change of wave length at a de-
fect point (Fig. 3a) and is taken as the next input to the network. Though change 
of wave length appears in the normal waveform, it is easier to measure on the 
differentiated waveform as shown in Fig. 3b. The rate of change of wave length 
of a defect point from average wave length in the normal area is taken as the 
third component (x3) of the input vector x and is taken as: 

 
d

dD
x

−=3  (3) 

where D is the wave length at the input point and the d is the average wave length 
in the neighborhood (Fig. 3b) 

3.2 Multiobjective Topology Optimization of RNN 

Chosing an appropriate topology of an RNN was again a major hurdle as it was even 
difficult than the FNN method by using the trial and error approach. Therefore a ge-
netic algorithm based evolutionary optimization approach to determine the topology 
of the RNN is employed. It is clear that topologies generated by a genetic algorithm 
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may contain many superfluous [20,21] components such as single nodes or even 
whole clusters of nodes isolated from the network input. Such units, called passive 
nodes, do not process the signals applied to the network sensors and produce only 
constant responses that are caused by the relevant biases. A simplification procedure 
or a list of constraints can be used to remove passive nodes and links so that the in-
put/output mapping of the network remains unchanged.  

Among various methods of topology optimization in the literature [12-19], Delga-
do et al. [12] proposed a technique for simultaneous training and topology optimiza-
tion of RNNs using a multiobjective hybrid process based on SPEA2 and NSGA2 
[14]. Katagiri et al. [13] introduced some improvements to the Delgado et al. method 
by introducing an elite preservation strategy, a self-adaptive mutation probability and 
preservation of local optimal solutions and their efficiency have been verified with 
benchmark time series data. For this reason, multiobjective evolutionary optimization 
of training and topology of RNN [13] are adopted for optimizing an appropriate to-
pology of an RNN with the capability of addressing our problem. 

 
 
 

 
 
 
 
 
 
 

Fig. 4. Initial topology of the RNN 

The initial topology of the RNN to be optimized will be constructed with one input 
layer with n units, one hidden layer with m units and a single unit output layer. And a 
p number of consecutive previous input layers, called past input layers, are copied and 
kept and are considered as inputs to the hidden layer during each epoch. Similarly a q 
number of consecutive hidden layers, called feedback layers, are copied and kept and 
are considered as inputs to both the hidden layer itself and the output layer (Fig. 4). In 
the figure black arrow lines indicate the inputs to respective layers whereas dashed 
arrow lines indicate copying of layers to past input layers and feedback layers. 

3.3 Optimization Algorithm 

The multiobjective optimization algorithm is described in the following 8 steps. 

Step 1- Initialization of population:  Create a population of chromosomes of size N 
such that each chromosome contains an RNN with the topology as shown in Fig. 4. 
All of topology parameters in all RNNs of chromosomes are set randomly within their 
respective ranges. A set of training data is also assigned to the system initially. 
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Step 2 – Evaluation of Solutions:  Each RNN of chromosomes in the population is 
trained with back propagation through time (BPTT) algorithm using the given training 
data set. Since this is the most time consuming step, the patterns of error graphs of 
each RNN is checked frequently during training. If the error graph of any RNN goes 
out of shape from the expected convergence pattern, the training process of that par-
ticular RNN will be immediately terminated without continuing for the rest of the pre-
set number of iterations.  

Step 3 – Measurement of fitness:  A fitness value is assigned to each chromosome 
according to a pre-set marking scheme. The marking scheme assigns percentage of 
marks to each chromosome with the following criteria. 

a) Converged error value 
b) Convergence pattern of error graph of its RNN (the better the 

convergence the higher the marks it earns)  
c) Number of neurons in input layer (the fewer the better) 
d) Number of neurons in hidden layer (the fewer the better) 
e) Number of past input layers (the fewer the better) 
f) Number of feedback layers (the fewer the better) 

Step 4 – Checking for the pass mark limit: If the total fitness level of a 
chromosome exceeds the pass mark (a pre set value, i.e. 90%), the evolution process 
is terminated.  

Step 5 – Discarding week chromosomes:  If the fitness level of a chromosome is 
lower than a pre-set level, for example 20%, it is discarded from the populations for 
not to allow it to mutate or cross over with others members. 

Step 6 – Preservation:  If the fitness level of a chromosome is bigger than a pre-set 
level it is considered to be good enough to carry forward to the next generation 
without mutation or cross over, and the chromosome is flagged and kept. 

Step 7 – Mutation and Cross Over: Remaining chromosomes are allocated a 
mutation probability and a cross over probability based on a roulette wheel based 
selection procedure. Accordingly the chromosomes that mutates will select mutation 
points randomly and carries on, and similarly the cross over pairs selects their cross 
over points randomly and performs cross over. 

Step 8 – Cycle of evolution: Create new chromosomes for discarded chromosomes in 
step 5 and return to step 2. 

4 Experimental Results 

4.1 Optimization Results 

The evolutionary optimization process, mentioned in section 3.4, was performed with 
a population of size 40. We observed that the average fitness level of generations was 
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gradually increasing during the evolution and after about 100 generations we found a 
chromosome with a fitness level over 90%. 

The topology of the RNN of optimized chromosome was consisting of one input 
layer with 2 units and one hidden layer with 6 units. The number of past input layers 
were optimized to 3, and the number of previous hidden layers were optimized to 1 
(Fig. 5). The black arrows indicate the inputs to a certain layer from a certain layer 
whereas dotted arrows indicate the layer copying. 

 
 
 
 

 
 
 
 
 

Fig. 5. Optimized topology of the RNN 

With this RNN, if the output of the network is Y(t) for a given set of inputs X at 
any given time t, then Y(t) can be explicitly expressed as: 
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In equations (4) and (5), Hl(t), l=1,…6, are outputs from the hidden layer and Ii(t), 

i=1,2, are outputs from the input layer at time t. H
olw and F

omw  in (4) are weights 

associated with connections between lth unit of the hidden layer and the output unit 
and between mth unit of the feedback layer and the output layer respectively. Similar-

ly, IH
liw , FH

ljw and PH
lkrw in (5) are the weights associated with the connections be-

tween the ith unit in input layer and the lth unit in hidden layer, between the jth unit in 
feedback layer and the lth unit in hidden layer, and between kth unit in the rth past input 



 A Multiobjective Evolutionary Optimized Recurrent Neural Network 179 

layer and the lth unit in the hidden layer respectively. In equation (6), XI
isw is the 

weight associated with the connection between sth input and the ith unit in the input 
layer.  

4.2 Detection Results 

The above optimized RNN was used and Fig. 6 shows some detection results on 2 
different waveforms captured from 2 different machines in different locations. Both 
of those voltage waveforms consist of different levels of random noises, external vi-
brations and baseline fluctuations on them but were able to detect using our method 
correctly. 

The red circles in Fig.6 show real defect points while blue dotted lines are candi-
dates and red dotted lines are detected defect points by the RNN among candidates. 
The left side shows detection in FNN method while the right side shows detection in 
RNN method in both upper and lower graphs. It shows in both cases that there are 
some defects points that cannot be detected in FNN method but were possible in RNN 
method.  We have tested several sets of data and compared results with both thre-
sholding method and our previous FNN based method.  

 

Fig. 6. Detection results on two different waveforms 

Table 1. Comparison of Results 

 

Total defects 

Missed detection False detections 

Threshold 

method 

FNN 

method 

RNN 

method 

Threshold 

method 

FNN 

method 

RNN 

method 

Data set 1 48 14(29.1%) 6(12.5%) 3(6.25%) 13(27%) 8(16.6%) 5(10.4%) 

Data set 2 60 16(26.5%) 5(8.3%) 3(5.0%) 18(30.0%) 9(15.0%) 4(6.6%) 

Data set 2 50 11(22.0%) 4(8.0%) 2(4.0%) 14(28.0%) 8(16.0%) 3(6.0%) 

Total 158 41(25.9%) 8(5.0%) 8(5.0%) 45(28.4%) 25(15.8%) 12(7.5%) 
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5 Conclusion 

In this paper, we proposed a multiobjective evolutionary optimized recurrent neural 
network for detection of defects on TFT lines on flat panel displays. This method was 
able to address a major shortcoming of topology determination in our previously pro-
posed FNN based method. 

Further this method, being based on a more noise resilient recurrent neural net-
work, reacts to the problem much better than the feed-forward network based method 
and the threshold based method. 

By comparing the performance of our method with the existing threshold based 
method and the FNN based method following results were confirmed (Table 1). 

 The existing ratio of missed detection (20%～30%) in thresholding method 
and 10% in FNN method was able to decrease below 5%. This is because the 
evolutionary optimized RNN is more resilient to noise than an FNN. 

 The existing ratio of false detection (20%～30%) in thresholding method and 
16% in FNN method was able to decrease below 8%. This is also due to the 
usage of a trained recurrent neural network for the purpose. 

This proves that this method is more feasible and superior than our previous FNN 
based method and the existing thresholding method for non-contact defect detection. 
Furthermore by selecting a training data set using every possible scenario, the miss-
detection ratio and false detection ratio can be expected near zero. 
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Abstract. When combining classifiers, we aggregate the output of dif-
ferent machine learning methods, and base our decision on the aggre-
gated probability values instead of the individual ones. In the phoneme
classification task of speech recognition, small excerpts of speech need
to be identified as one of the pre-defined phonemes; but the probability
value assigned to each possible phoneme also hold valuable information.
This is why, when combining classifier output in this task, we must use
a combination scheme which can aggregate the output probability val-
ues of the basic classifiers in a robust way. We tested the representative
uninorms for this task, and were able to significantly outperform all the
basic classifiers tested.

Keywords: uninorms, aggregation function, additive generator func-
tion, speech recognition, classifier combination, phoneme classification.

1 Introduction

In Artificial Intelligence, perhaps the most intensively investigated area is that
of machine learning in general, and classification in particular. In it the goal is
to assign one of the pre-defined class labels to a given example. One of the many
areas where classification techniques are applied is that of speech recognition,
where small acoustic portions of speech have to be identified as phonemes. His-
torically, several methods were applied in this given task. First Gaussian Mixture
Models (GMMs [9]) were employed, especially due to their good probability es-
timation capabilities; but their low computational complexity also played a role
in their popularity. Later Artificial Neural Networks (ANNs [3]) were used, and
with the discovery of Deep Neural Networks (DNNs [12,20]) they have become
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the dominant method. In spite of this, other methods such as Support-Vector
Machines (SVM [19]) and AdaBoost [18] were also tested.

For a given task the accuracy of a classification method can usually be cha-
racterized by one numerical value. However, experiments show that the sets of
patterns misclassified by the different classifiers do not necessarily overlap, so
a good combination of the original classifiers may reinforce their strong points.
This may account for the interest in classifier combination in several areas of
Artificial Intelligence (e.g. [17,22,2]), and also in speech recognition [10].

Speech recognition and phoneme classification in particular, however, have
another requirement for classifier combination. Here, besides finding the correct
class label (phoneme), the estimated probability value of each possible class
label is also important, so a method is required that can aggregate the output
likelihood values of the basic classifiers into one likelihood value. It is logical to
look for operators like this in the field of fuzzy logic; yet fuzzy logic has quite a
big range of possible operators. It would also be logical to expect this operator
to output high values if most of its input values are high, and from mostly low
scores it should produce a score that is close to zero. Uninorms are a set of
operators that have these kind of properties, so next we will examine them.

2 Representable Uninorms

The aggregative operators were first introduced in [5] by selecting a set of mi-
nimal concepts that must be fulfilled by an evaluation-like operator. In 1982,
Dombi [5] defined the aggregative operator in the following way:

Definition 1. An aggregative operator is a function a : [0, 1]2 → [0, 1] with the
properties:

1. Continuous on [0, 1]2\{(0, 1), (1, 0)}
2. a(x, y) < a(x, y′) if y < y′, x �= 0, x �= 1

a(x, y) < a(x′, y) if x < x′, y �= 0, y �= 1
3. a(0, 0) = 0 and a(1, 1) = 1 (boundary conditions)
4. a(x, a(y, z)) = a(a(x, y), z) (associativity)
5. There exists a strong negation operator η such that a(x, y) = η(a(η(x), η(y)))

(self-DeMorgan identity) if {x, y} �= {0, 1} or {x, y} �= {1, 0}
6. a(1, 0) = a(0, 1) = 0 or a(1, 0) = a(0, 1) = 1

The definition of uninorms, originally given by Yager and Rybalov [21] in 1996,
is the following:

Definition 2. A uninorm U is a mapping U : [0, 1]2 → [0, 1] that has the fol-
lowing properties:

1. U(x, y) = U(y, x) (commutativity)
2. U(x1, y1) ≥ U(x2, y2) if x1 ≥ x2 and y1 ≥ y2 (monotonicity)
3. U(x, U(y, z)) = U(U(x, y), z) (associativity)
4. ∃ν∗ ∈ [0, 1] ∀x ∈ [0, 1] U(x, ν∗) = x (neutral element)
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Uninorms are a generalization of t-norms and t-conorms. By adjusting the value
of its neutral element ν∗, a uninorm is a t-norm if ν∗ = 1 and a t-conorm if
ν∗ = 0. The main difference between the definition of aggregative operators
and uninorms is that the self-DeMorgan identity requirement does not appear
in uninorms, and the neutral element property is not in the definition for the
aggregative operators. Fodor [11] showed that uninorms which are strict and
continuous on [0, 1]× [0, 1]\({0, 1}, {1, 0}) (also called representative uninorms)
are equivalent to aggregative operators, and they can be represented by the
additive generator function g as U(x, y) = g−1(g(x)+g(y)). Next, we will briefly
explain the application of representative uninorms in expert opinion aggregation,
following the work of Dombi [8].

Theorem 1. Let g be an additive generator of an aggregative operator (i.e. rep-
resentative uninorm) and consider ν∗ ∈ (0, 1); then aν∗ : [0, 1]2 → [0, 1] defined
by

aν∗(x, y) = g−1
(
g(x) + g(y)− g(ν∗)

)
(1)

is an aggregation operator (i.e. representative operator) with neutral element ν∗.
The extension to n arguments is given by the formula

aν∗(x) = g−1

(
g(ν∗) +

n∑
i=1

(
g(xi)− g(ν∗)

))
. (2)

With this, we can construct an aggregative operator from any given generator
function that has the desired neutral value. For example, for the Dombi operator
case we get

aν∗(x) =
1

1 + 1−ν∗
ν∗

n∏
i=1

(
1−xi

xi

ν∗
1−ν∗

) . (3)

By weighting each parameter with a wi factor (0 ≤ wi ≤ 1), we get the general
form in the additive case:

aν∗(w,x) = g−1

(
n∑

i=1

wig(xi) +
(
1−

n∑
i=1

wi

)
g(ν∗)

)
. (4)

In general, a weighted aggregative operator lacks associativity and commutativ-
ity and it is not a representable uninorm. Note that ν∗ can be treated as the
n+1th input, in which approach the n+1 weights sum up to one. Therefore, if
the original n weights sum up to one, we get the following, simplified form:

aν∗(w,x) = g−1

(
n∑

i=1

wig(xi)

)
. (5)

In the Dombi operator case, we get

aν∗(w,x) =
1

1 + 1−ν∗
ν∗

n∏
i=1

(
1−xi

xi

ν∗
1−ν∗

)wi
, (6)
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or

aν∗(w,x) =

ν∗(1− ν∗)

n∑
i=1

wi n∏
i=1

xwi

i

ν∗(1− ν∗)

n∑
i=1

wi n∏
i=1

xwi

i + (1 − ν∗)ν

n∏
i=1

wi

∗
n∏

i=1

(1− xi)
wi

. (7)

If
∑

wi = 1, then we get

aν∗(w,x) =

n∏
i=1

xwi

i

n∏
i=1

xwi

i +
n∏

i=1

(1 − xi)wi

. (8)

Using these formulas we can readily aggregate expert probability values [8]. That
is, given the probability vector x (the opinions of experts) as input and their
weight vector w, we can readily calculate the resulting likelihood aν∗(w,x).
Performing this for all options (classes), we get one likelihood score for each of
them, and we can base our decision on the values of this vector.

3 The Phoneme Classification Task

Speech recognition seeks to transcribe audio data; that is, given an audio record-
ing (utterance), we would like to find its correct textual representation. This is
not a pure classification task, as both the input and the output are of vari-
able length. To overcome this problem, the input utterance A is usually di-
vided into small, equal-sized parts (frames) typically 10ms in length; that is,
A = a1, a2, . . . , an. The ai frames can be classified into one of the previously de-
fined (and language-dependent) phonemes, using specific features extracted from
the frame and its near neighbourhood. For the phonetic labels ph1, ph2, . . . phm,
classification produces the likelihood values P (phi|aj) ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n,
where

m∑
i=1

P (phi|aj) = 1 (9)

holds for all 1 ≤ j ≤ n. In the next step, a search is performed based on these
posterior probability values, where the intention is to find the most probable
phoneme sequence. Assuming that the neighbouring frames are independent, we
basically look for a phoneme sequence such that the product of the appropriate
frame-level posterior probability values is maximal. (In the actual implementa-
tion there are a number of restrictions on the allowed phoneme sequences, which
were omitted for sake of clarity. We also did not discuss the incorporation of
other aspects like phonetic and language models.) The output of this process is
the optimal phoneme sequence, from which we remove duplicate neighbouring
phonemes.
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Although standard classification algorithms are used for the classification of
these small speech excerpts, it is not a pure classification task, as we are not only
interested in the resulting class label, but also the posterior probability values
contain valuable information. (For example, a few incorrectly classified frames
can be corrected if the probability value of the surrounding frames for the given
phoneme is sufficiently high.) Despite there being a clear connection between the
posterior scores and the class labels (e.g. we normally choose the class which has
the highest posterior score), it is common to have a classification method that
produces accurate class labels, but supplies only inaccurate posterior estimates
(e.g. AdaBoost.MH).

3.1 Aggregating Phoneme Classifiers

Classifier combination can be easily incorporated into this scheme as well: instead
of relying on the output of a single classification method, we will treat the
output of the aggregated probability value as the P (phi|aj) posterior scores. For
this, practically any aggregation method can be used. However, it should have
parameters that allow us to fine-tune its behaviour to best suit the problem,
but avoid having too many parameters, as it would make it next to impossible
to set them all properly. Furthermore, as we want to aggregate the likelihood
values from sources (i.e. classifiers) of different quality, it would also be nice if we
could weight the independent sources. All these points suggest that it would be
worth trying representable uninorms, which supply values in the [0, 1] interval as
results. The input classifiers can be weighted via the wi values; and, depending on
the g additive generator function used, they may have one or more parameters.

4 Experiments and Results

Having described the phoneme classification problem and representable uni-
norms, we will now turn to the testing part. First we describe the speech recogni-
tion environment, then describe the optimisation process, and finally we present
and analyse our test results.

4.1 The Speech Recognition Environment

We used the English TIMIT dataset commonly used for speech recognition ex-
periments [16], with its conventional splitting into training and (core) test sets.
We separated 176 utterances from the training set to form a separate develop-
ment set, and used the standard, 61-long set of phonemes. Phonetic accuracy
was measured by applying the edit distance-based accuracy metric, traditionally
employed in speech recognition.

We tested three kinds of classifiers, namelyArtificialNeuralNetworks (ANNs [3])
with our custom implementation; Support-VectorMachines (SVM [19]), using the
tool LibSVM [4]; and AdaBoost.MH, using the multiboost library [1]. The first
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Table 1. The accuracy scores got for the three different basic classifiers, and for their
combinations

Method Dev. set Test set

ANN 77.26% 73.99%
Basic methods SVM 75.03% 72.49%

AdaBoost 75.41% 73.01%

Product 78.54% 74.98%
Uninorms Dombi t-norm 78.45% 74.74%

Generalized Dombi t-norm 78.69% 75.19%

two methods produced well-balanced posterior scores by default, while we cali-
brated the output of AdaBoost first to have the same standard deviation as those
for the ANNs, then normalised them to sum up to one. The neural network had
2000 neurons in its hidden layer, and utilized the sigmoid activation function; we
used the RBF kernel in the SVM case; and AdaBoost was trained using 8-leaved
decision trees as base learners.

We tested two combination configurations. In the first one, we applied a model
of all three types of basic classifiers to find out how effectively we could combine
classifiers that were of different types. In the second set of tests we trained three
neural networks in the same way, and combined them; with this set of tests
we wanted to see how effectively three similar algorithms could be combined.
Although the neural networks were trained in the same way, they were not
identical due to their random weight initialisation.

4.2 Optimisation

We tested the additive generator functions of three triangular norms. First, as
the product operator is also a t-norm, we used its additive generator function,
− logx; then we experimented with the one-parametric version of the Dombi t-
norm [6], and with the Generalized Dombi Operator that has two parameters [7].
These triangular norm families were chosen based on previous experiences in
the field of speech recognition (e.g. [14,13,15]), where we found these norms to
be flexible, yet robust. Naturally, many other norms can be used for classifier
combination, but this time our aim was not a full-scale comparison of the possible
generator functions.

As there were only a few parameters, we did not use a heavyweight optimi-
sation method, but only generated random weights for each classifier and pa-
rameters for the generator functions (where necessary) instead. The weights of
the classifiers were normalised so as to add up to one; this process was repeated
10000 times, and the best parameter set was chosen.

As is typical in speech recognition, we trained our classifiers on the training
set, and evaluated them on the development set. We determined the parameters
of the representative uninorms on this development set, then we evaluated the
optimal parameter set on the test set to see how robust our achievement was.



188 G. Gosztolya and J. Dombi

Table 2. The accuracy scores got for the three neural networks, and for their combi-
nations

Method Dev. set Test set

ANN #1 77.26% 73.99%
Basic methods ANN #2 77.11% 74.16%

ANN #3 77.32% 74.32%

Product 78.54% 75.60%
Uninorms Dombi t-norm 78.42% 75.30%

Generalized Dombi t-norm 78.71% 76.04%

0 500 1000 1500 2000

Combined

AdaBoost

SVM

ANN

Time (ms)

Fig. 1. The input probability values (gray) and the optimal combined values for the
uninorm based on the generator of the product norm for the “sil” (silence) phoneme

4.3 Results

The results got for the different basic classifiers can be seen in Table 1. The ac-
curacy scores of the basic classifiers varied significantly both on the development
and on the test sets, but ANNs produced the best results. Nevertheless, their
combination using the representative uninorms outperformed the base classifiers
in each case. It may seem surprising that by using the additive generator func-
tion of the Dombi t-norm, our results did not surpass those of the product norm;
this can be explained, however, by the fact that we kept the value of the neutral
element ν∗ at its default value of 0.5, where this behaviour can be anticipated.
However, when using the additive generator function of the Generalized Dombi
Operator, we were able to significantly outperform even this score; and all these
improvements could also be carried over to the test set. (Note that the improve-
ment may not seem that much; but it is indeed significant by speech recognition
standards, especially when no language model at all was used.)

When we tried to combine the three, quite similar neural networks (see Ta-
ble 2), we got very similar results, except that the scores of the basic classifiers
varied less this time, especially on the development set. The combined values
outperformed the basic classifiers in every case, and although the one using the
additive generator of the product norm again performed slightly better than the
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ANN

SVM

AdaBoost ANN

SVM

AdaBoost ANN

SVM

AdaBoost

ANN #1

ANN #2

ANN #3 ANN #1

ANN #2

ANN #3 ANN #1

ANN #2

ANN #3

Product Dombi Gen. Dombi

Fig. 2. The accuracy scores got on the development set as a function of classifier
weights, for the three different (up) and the three neural network (down) classifier cases.
The distance between a point and a corner of the triangle is inversely proportional to
the appropriate weight; a darker colour means a higher accuracy score.

other one using the generator function of the Dombi t-norm, the Generalized
Dombi Operator again proved to be the best. Note that although this represen-
tative uninorm performed similarly on the development set in both cases (78.69%
and 78.71%, different basic classifiers and neural networks, respectively), the dif-
ference was much bigger on the test set (75.19% and 76.04%). Figure 2 is a plot
of the accuracy scores obtained as a function of the weight values. The images
belonging to the product norm are smoother, which is due to the additional pa-
rameter(s) of the additive generator functions. In the case of the three different
classifiers, to achieve high accuracy we should set the weight of the ANNs to a
quite large value, but well below 1.0. The exception is the Generalized Dombi
Operator case, where the optimal region has roughly equally high weights for
SVM and AdaBoost, and a much lower weight for ANNs. For the three neural
networks case, not surprisingly, the highest accuracy scores lie in regions where
the three weights are roughly equal. This tendency can be seen a bit in the Gen-
eralized Dombi Operator case, which probably means that it is more important
to properly set the two parameters of the generator function than the classifier
weights.

5 Conclusions

The phoneme recognition task of speech recognition is unusual for classifier com-
bination as here not only the correct class label (phoneme) has to be identified
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based on the output of the individual classifiers, but its likelihood score also has
be determined in a robust way. We chose to test representable uninorms in this
task because of their useful properties: they are able to output values in the [0, 1]
range, they can handle the weighting of the base classifiers, and – depending on
the generative function used – they can have additional parameters to control
their behaviour. We tested three types of additive generator functions, namely
the product, the Dombi and the Generalized Dombi Operators, and we were
able to outperform the base classifiers significantly in each case. We think that
even better accuracy scores can be attained by properly setting the value of the
neutral element ν∗, which we plan to investigate in the near future.
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Abstract. In the last years, with the increase of the available data from
social networks and the rise of big data technologies, social data has
emerged as one of the most profitable market for companies to increase
their benefits. Besides, social computation scientists see such data as
a vast ocean of information to study modern human societies. Nowa-
days, enterprises and researchers are developing their own mining tools
in house, or they are outsourcing their social media mining needs to spe-
cialised companies with its consequent economical cost. In this paper,
we present the first cloud computing service to facilitate the deployment
of social media analytics applications to allow data practitioners to use
social mining tools as a service. The main advantage of this service is the
possibility to run different queries at the same time and combine their
results in real time. Additionally, we also introduce twearch, a prototype
to develop twitter mining algorithms as services in the cloud.

Keywords: Social Mining, Green Computing, Cloud Computing, Big
Data Analytics, Twitter Mining, Stream Processing

1 Introduction

A growing proportion of human activities, such as social interactions, job rela-
tionships, entertainment, collaborative working, shopping, and in general, gath-
ering information, are now mediated by social networks and web services. Such
digitally mediated human behaviours can easily be recorded and analysed, fu-
elling the emergence of (1) computational social science, (2) new services such
as tuned search engines or social recommender systems, and (3) targeted online
marketing. Due to this, public and private sector actors expect to use big data
to aggregate all of this data, extract information (and knowledge) from it, and
identify value to citizens, clients and consumers [15,4,14].

According to one research study [9] from the University of Maryland’s Robert
H. Smith School of Business, this growing allows Facebook, twitter and other
social media sites to create between 182,000 and 235,000 jobs in US and has
added between $12.19 billion and $15.71 billion in wages and salaries. A similar
study funded by Facebook finds that in Europe, Facebook added a similar num-
ber of jobs (approximately 232,000). All these business opportunities have been

V. Torra et al. (Eds.): MDAI 2014, LNAI 8825, pp. 192–203, 2014.
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only possible thanks to the possibility to mine social media insights through
development APIs.

While many success stories proliferate, in the private sector, social media an-
alytics have found a killer application on the Market Research arena. Market
research analyses information about customers and target markets to study the
market size, market need and competition. The analysis of social media data
provides an unprecedented opportunity to understand how customers behave
and why, becoming a key component of business strategy. Platforms for social
media analytics are proliferating rapidly nowadays (Twitonomy [20], SumAll
[17], TwitSprout [21], etc.), with a recent trend towards specialising on mar-
ket research and brand strength analysis (Brandchats [1], Brandwatch [2], etc.).
However, most of these platforms are private initiatives and the ones that are
freely available present important hardware restrictions and, therefore, limita-
tions to perform complex queries.

In order to overcome these aforementioned limitations, the contributions of
this paper are: an elastic cloud computing service to facilitate the deployment
of social media analytics applications together a graphic framework to automat-
ically display some mining results. The proposed Platform as a Service (PaaS)
provides the bottom subsystems of the solution stack required by companies
(underlying source API access, storage and retrieval) and provisions the neces-
sary hosting capabilities in a scalable and elastic manner without duplicating
computer resources. With our architecture, one client can query different social
networks with different queries at the same time and display, in real time, the
aggregated mining results.

The rest of this paper is organised as follows. Firstly, in Section 2 a brief
overview of the related work is introduced. Secondly, a complete description of
the proposed architecture and software stack is depicted in Section 3. Later, in
Section 4 a real example for the twitter social network is shown. Finally, the
paper finishes with some conclusions and future work.

2 Related Work

The major part of social mining platforms covers the entire lifecycle of data
analysis, from data gathering to reporting and visualisation. In order to do so,
they spend a lot of effort on reinventing-the-wheel at the initial stages (data
gathering, storage and querying) shortening their resources for the analysis and
visualisation stages [11], in which reside their competitive advantage.

For instance in [22], authors propose one architecture to extract and cluster
all the tweets of a city. However, if two cities must be monitored, the architec-
ture must be completely duplicate, posing serious scalability problems. Other
platform is Datasift [5], where users pay for executing queries over a large set of
data sources, but without any option to execute part of the analysis in-house to
save money.

In [8], authors describes SONDY, a tool for analysis of trends and dynamics
in online social data using twitter. SONDY is written in java, therefore, it is
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Fig. 1. General Architecture

difficult to make it scale. Besides, it does not allow users to aggregate data
coming from several social networks. Finally, SocialSTROM [23] is a cloud-based
hub which facilitates the acquisition, storage and analysis of live data from social
media feeds (Twitter, Facebook, RSS sources and blogs), as SONDY, it is a java
application and it also present scalability limitations.

3 Framework Definition

In this section we detail the main components of our framework, their goals, the
selected software and how they interact.

The proposed social mining architecture is composed by 5 independent but
interacting elements, as shown in Figure 1, each of them described below. The
architecture receives as input the query parameters to be ”analysed”. Other
parameters are optional, such as the possible data post-processing techniques,
data enrichment methods, data sources crossings, etc. The architecture outputs
some graphical statistics, in parallel data is stored into a NoSQL database for
further analysis if needed.

The main components are:

– User Query Interface: the user query interface consist on a responsive
web application where the user can set the query and also obtain some
feedback about the execution, such as total number of retrieved elements,
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query parameters, execution time, server usage, etc. Apart from that, user
is also able to recover the queries executed in the past for further analysing.

– Processing Cluster: the cluster consists on several distributed nodes that
are in charge of retrieving the public information, as well as, to post-process
it if needed. For example, in the running example depicted in Section 4, it is
responsable to connect to the Twitter Streaming API, manage the persistent
HTTP connection, and filter out the results.

– Database Server: the database server is composed of several nodes where
data is distributed along different nodes, offering a flexible and scalable data
model.

– Indexation Server: indexation server creates a set of data indexes to in-
crease the performance of the database server. It maintains a reverse index
for each retrieved word. It automatically updates such indexes when a new
data element arrives.

– Output Interface: for the output interface, where the results of the query
are displayed, we use the graphic framework Kibana, which offers a respon-
sive and friendly display solution for our analytics.

3.1 Software Stack

In this section we introduce all the software components, from the virtualisa-
tion platform to the data visualisation tools that we have used to develop our
architecture.

First of all, to easily create and destroy virtual machines we execute Open
Nebula [13] in the cluster of the Computer Architecture Department of the
Technical University of Catalonia 1. Open Nebula is an open-source project de-
livering a simple and flexible solution to build and manage enterprise clouds and
virtualized data centers. Combining existing virtualization technologies with fea-
tures for multi-tenancy, automatic provision and elasticity, open Nebula aims to
provide a open, flexible, extensible, and comprehensive management layer to au-
tomate and orchestrate the operation of enterprise clouds. We have used Open
Nebula to deploy the required virtual machines for our architecture. Virtualisa-
tion makes our system elastic with regards the amount of data captured in any
moment.

For theDatabase server,we useCouchbase [3] as the distributed data repository.
Couchbase is an open-source, distributed, NoSQLdocument-driven database opti-
mised for interactive applications servingmany concurrentusers; creating, storing,
retrieving, aggregating, manipulating and presenting the data. Couchbase borns
from to the fusion of Membase and CouchOne projects in January 2012. The cur-
rent release offers features including JSON document store, indexing and querying,
incremental MapReduce and cross datacenter replication.

For the Indexation server, the natural decision is to use Elasticsearch [7],
the native indexation software for Couchbase. Elasticsearch is an open-source,
distributed, real-time search and analytic engine built specifically to run on

1 http://www.ac.upc.edu/serveis-tic/altas-prestaciones

http://www.ac.upc.edu/serveis-tic/altas-prestaciones
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NoSQL document-driven databases. Documents are stored as JSON, and all
the fields are automatically indexed an usable in a single query. Elasticsearch
principal features include: scalability, high availability, multi-tenancy, full text
search, conflict management between different versions, and a restful API using
JSON over HTTP. Elasticsearch permits us to create a large amount of queries
over a set of different data streams stored in Couchbase.

Finally, for the output interface, we use Kibana [10] because it is based on
javascript and bootstrap and it is fully compatible with any browser. Kibana
is an open-source, scalable, real-time visualisation tool natively integrated with
Elasticsearch. It main goal is to display the data stored with Elasticsearch in an
elegant graphical manner. Kibana key features include time-based comparisons,
easy creation of graphical data representations (plots, charts and maps), flexible,
editable and responsive web interface, and a powerful search syntax. In our
system, we have adapted our mining methods to display their results in this
visualisation framework.

4 Twearch: A Running Example

In this section, we describe a proof of concept application to show the feasibility
of our architecture. To do that, we have implemented a twitter listener and
some basic queries on the top of Kibana. Twearch offers a simple query interface
for twitter able to filter in real time the twitter data stream, by means of any
combination of keywords, locations, language, etc. Besides, Twearch also offers
to data miners, an output interface to create graphics using javascript.

4.1 Twitter Connection

Twitter, is an online social network born in March 2006 [6] that enables users
to send and read “tweets”, which are text messages limited to 140 characters,
also allows data programmers to access in real time to perform any kind of text-
mining technique, such as clustering, TF-IDF, etc. However, it is impossible
for a single computer to capture and process in real time the complete twitter
information flow. For example, in 2012, Twitter had 500 million users registered
posting over 350 million Tweets per day [12,16,18,19].

Twitter offers two different APIs for developers:

– REST API: used to retrieve past tweets based in different filters. There
are different resources depending on the data to be retrieved: Accounts,
friendships, geolocations, statuses, users, etc. Depending on the resource,
the number of queries per account is limited from 15 to 450 per rate limit
window (by March 2014, 15 minutes long). Each query response contains
100 tweets.

– Streaming API: used to retrieve tweets in real time. Not all the tweets are
sent, but only a 5%, so it’s mostly used for analysis purposes. There are 3
different resources, depending on the target: Public streams, User streams,
and Site streams. The stream API is limited to 1 data stream per account.
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Fig. 2. Input interface query

Since our framework is designed to manage stream data, we connected Twearch
to the Twitter streaming API.

4.2 Query System

As a running example for this paper, we want to retrieve all tweets containing
the word “Tokyo” during a week. The input interface, as it is shown in Figure 2,
asks Twitter to filter all incoming tweets and sends us only those containing
the string ”Tokyo”. Apart from keywords, using the twearch interface, one user
can filter the twitter stream using hashtags, mentions, languages and spatial
coordinates.

Note that, similar input interfaces can be created for others social networks,
such as foursquares, instagram o facebook. Doing this, it is easy to cross infor-
mation coming from different social networks to enrich data analytics without
too much effort and allowing the data miner to recicle the listeners for future
analytics.

The input interface sends the query to one node of the processing cluster. Once
the query is received in one of the nodes, it opens a permanent HTTP connection
with the Twitter Streaming API, and the data stream will begin to flow back
containing the requested tweets. Then, data stream will be processed, enriched,
stored into the Couchbase database and indexed by ElasticSearch server.

When the output interface (Kibana) is opened, each panel will send a prede-
fined query through the ElasticSearch API REST, using HTTP GET requests,
to ask for the concrete fields and filters needed for that panel, and then popu-
late the data graphically using different types of panel. Here, it is important to
highlight that more than one query (even from more than one social network)
can be sent to Kibana, therefore query results can be aggregated and recycled
each time a new query is executed.
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Fig. 3. Number of tweets and retweets per 30 minutes

As an example, we have created the Tweets/Retweets panel (Figure 3), where
there are 2 different queries inside the request: A count of all tweets from the
stream, and another count from all tweets from the stream whose ’retweeted’
field is true.

We have also implemented other two panels (Figures 4.(a) and( b)) both
related to the Tweet text: one counting the top 10 hashtags (a), and another for
user mentions (b). This information is obtained after processing the text field
of each tweet stored, and separating the strings depending whether they are
hashtags or user mentions. From these two panels we can easily extract some
knowledge, such as the high social impact of two teenagers groups; egirls and
nuest from Japan and Korea respectively.

Finally, in order to exploit a different type of the information stored in a
tweet, we have also the geo-positioned in a world map all the geo-located tweets.
To do that, we use the Open Street Maps library, as it is shown in Figure 5.

4.3 Query Refining

Additionally, it is possible to refine the results and focus them on a concrete time
period using the Kibana output interface. Data miners can filter the documents
by their timestamp and study in detail concrete time periods. For instance,
Figure 3 depicts some tweets and re-tweets peaks from 22:00 to 23:00 during
some days of March. If we focus on these tweets, as it is shown in Figure 6.(a),
it is possible to observe that the mentioned users changes (see Figure 6.(b)).
Concretely, the most mentioned user is lovelive instead of 2014egirls. Lovelive is
a very popular Japanese anime serial, and the first chapters of its second season
were broadcasted during these concretes time periods. So, we were able to detect
new trends easily using twearch.
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(a) (b)

Fig. 4. Counting query of the most common words, hashtags and mentioned users
among tweets

Fig. 5. Geopositioned Tweets in OpenStreetMaps

Finally, observing Figure 5, it is possible to see that most of the tweets are
located in Tokyo, zooming at the center of the city, we discover that a big cluster
of tweets is located at the Shibuya station, one of the most visited parts of the
city. Therefore, using this map it is possible to automatically detect huge twitter
users concentrations for a given query.
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(a) (b)

Fig. 6. Lovelive new season advertising

Fig. 7. Shibuya station tweet cluster
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Fig. 8. CPU consumption, average and maximum, of all the system components during
a 2 day streaming

Fig. 9. Memory consumption, average and maximum, of all the system components
during a 2 day streaming

4.4 Platform Performance

Apart from the social information extracted from Twitter, another topic of in-
terest is to analyse the performance of the system taking measurements of the
main hardware components during the information retrieval process.

To achieve that, the components of the architecture send reports, every 5
seconds, about the amount of CPU and Memory being consumed, Specifically:

– Processing node: It is the node of the processing cluster responsible to
host the input query interface and display the mining results. Besides, it is
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also responsible to send the streaming job start signal to the proper crawling
node.

– Crawling node: Node responsible to connect to Twitter, receive the stream-
ing data, refine the query and store the stream in the database.

– CouchBase + ElasticSearch: Node hosting the Couchbase database and
the ElasticSearch indexer.

Those results are stored in CouchBase and displayed in a Kibana histogram,
which shows results of the average consumption every 10 minutes during the
part of the streaming process (in our case, the last 2 days).

As we illustrate in Figure 8, on the one hand, the amount of CPU used by
the Processing and Crawling nodes is almost negligible, with a mean value less
than 2% of the CPU with some punctual peaks that are always less than 5%. On
the other hand, the Couchbase and ElasticSearch are CPU-consuming processes
that average a 15% of CPU consumption with peaks over the 25%

About the memory, as we can observe in Figure 9, all processes keep a constant
amount of consumed memory: Couchbase and Elasticsearch use around 550MB
of RAM memory, the crawling node is around 100MB, and finally the processing
node around 90MB.

The CPU performance results show that it is possible to consolidate several
queries into a single virtual machine, reducing the required number of virtual
machines needed to perform complex queries where lot of information has to
be retrieved. For the data management system (database and indexes) the real
bottleneck is the RAM memory (see Figure 9) not the CPU. To overcome this
drawback, more than one virtual machines (or physical servers) can be deployed
to exploit the scalability of Couchbase and Elasticsearch.

5 Conclusions

In this paper we have described all the components of an elastic and scalable
framework for social mining in a cloud infrastructure, in our case Open Nebula.
We have described the database management system, the query language and the
visualisation tool. Finally as a proof of concept, we have described how to collect
data from twitter and we have displayed some data analytics and performance
metrics for a given query using the proposed query system.

In the near future, we plan to add more functionalities to our platform as
for instance, natural language processing methods, automatic data enrichment
by means of data crossing. Finally, we would like to define a decision support
system to help designers of appliances to optimise resource allocation in a semi-
supervised way.
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Abstract. The problem of anonymization on graphs and the utility of
the released data are considered in this paper. Although there are some
anonymization methods for graphs, most of them cannot be applied on
medium or large networks due to their complexity. Nevertheless, random-
based methods are able to work with medium or large networks while
fulfilling the desired privacy level. In this paper, we devise a simple and
efficient algorithm for randomization on graphs. Our algorithm considers
the edge’s relevance, preserving the most important edges of the graph,
in order to improve the data utility and reduce the information loss on
anonymous data. We apply our algorithm to different real datasets and
demonstrate their efficiency and practical utility.

Keywords: Privacy, Randomization, Social networks, Graphs, Edge rel-
evance, Data utility.

1 Introduction

In recent years, an explosive increase of social and human interaction networks
has been made publicly available. Embedded within this data there is private
information about users who appear in it. Therefore, data owners must respect
the privacy of users before releasing datasets to third parties. In this scenario,
anonymization processes become an important concern. Among others, the study
of Ferri et al. [13] reveals that though some user groups are less concerned by
data owners sharing data about them, up to 90% of members in others groups
disagree with this principle. Backstrom et. al. [1] point out that the simple
technique of anonymizing graphs by removing the identities of the vertices before
publishing the actual graph does not always guarantee privacy. They show that
there exist adversaries that can infer the identity of the vertices by solving a set
of restricted graph isomorphism problems. Some approaches and methods have
been imported from anonymization on structured data, but the peculiarities of
graph-formatted data avoid these methods to work directly on it. In addition,
divide-and-conquer methods do not apply to anonymization of graph data due
to the fact that registers are not separable, since removing or adding vertices
and edges may affect other vertices and edges as well as the properties of the
graph [29].

V. Torra et al. (Eds.): MDAI 2014, LNAI 8825, pp. 204–216, 2014.
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1.1 Our Contributions

In this paper we present an algorithm for privacy-preserving based on random
edge modifications. It works with simple, undirected and unlabelled graphs. Be-
cause these graphs have no attributes or labels in the edges, information is only
in the structure of the graph itself and, due to this, the adversary can use in-
formation about the structure of the graph to attack the privacy. In this paper
we consider edge’s relevance to reduce the information loss produced by the
anonymization process. The latter leads us to a more useful data. We offer the
following results:

– We introduce a randomization algorithm based on edge’s relevance for simple
graphs.

– We demonstrate that edge’s relevance can be considered in order to modify
the graph structure, and it conducts the process to reduce the information
loss and increase the data utility.

– We conduct an empirical evaluation of our algorithm on several well-known
graphs, comparing our algorithm with other well-known random-based al-
gorithms, and demonstrating that ours achieves the best trade-off between
data utility and data privacy.

1.2 Notation

Let G = (V,E) be a simple, undirected and unlabelled graph, where V is the set
of vertices and E the set of edges in G. We define n = |V | to denote the number
of vertices and m = |E| to denote the number of edges. We use {i, j} to define
an undirected edge from vertex vi to vj . We denote the degree of vertex vi as
deg(vi), the set of 1-neighbourhood of vertex vi as Γ (vi) = {vj : {i, j} ∈ E},
and the maximum degree of the graph as Δ. Finally, we designate G = (V,E)

and G̃ = (Ṽ , Ẽ) to refer the original and the anonymous graphs, respectively.

1.3 Roadmap

This paper is organized as follows. In Section 2, we review the state of the
art of anonymization on graphs, focusing on random-based methods. Section 3
introduces our algorithm for randomization using edge neighbourhood centrality.
Then, in Section 4, we compare our algorithm to two well-known random-based
algorithms in terms of information loss and data utility, and discuss the results.
Next, we examine the re-identification and risk assessment in Section 5. Lastly,
in Section 6, we present the conclusions of this work.

2 Privacy-Preserving on Graphs

From a high level view, there are three general families of methods for achieving
graph data privacy. The first family encompasses “graph modification” meth-
ods. These methods first transform the data by edges or vertices modifications
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(adding and/or deleting) and then release them. The data is thus made avail-
able for unconstrained analysis. The second family encompasses “generalization”
or “clustering-based” approaches. These methods can be essentially regarded
as grouping vertices and edges into partitions called super-vertices and super-
edges. The details about individuals can be hidden properly, but the graph may
be shrunk considerably after anonymization, which may not be desirable for
analysing local structures. The generalized graph, which contains the link struc-
tures among partitions as well as the aggregate description of each partition,
can still be used to study macro-properties of the original graph. Among oth-
ers, [17,7,22,11,3] are interesting approaches to generalization concept. Finally,
the third family encompasses “privacy-aware computation” methods, which do
not release data, but only the output of an analysis computation. The released
output is such that it is very difficult to infer from it any information about
an individual input datum. For instance, differential privacy is a well-known
privacy-aware computation approach. Differential private methods refer to al-
gorithms which guarantee that individuals are protected under the definition of
differential privacy [12], which imposes a guarantee on the data release mecha-
nism rather than on the data itself. The goal is to provide statistical information
about the data while preserving the privacy of users. Interesting works, among
others, are [18,19].

Graph modification approaches anonymize a graph by modifying (adding
and/or deleting) edges or vertices in a graph. These modifications can be made
randomly or in order to fulfil some desired constraints. The first methods are
called randomization methods and are based on adding random noise in origi-
nal data. They have been well investigated for structured data. Naturally, edge
randomization can also be considered as an additive-noise perturbation. Notice
that the randomization approaches protect against re-identification in a prob-
abilistic manner. Alternative approaches consider graph modification methods
to meet some desired privacy constraints. The notion of k-anonymity [23,24] is
included in this group. The k-anonymity model indicates that an attacker can-
not distinguish between different k records although he manages to find a group
of quasi-identifiers. Therefore, the attacker cannot re-identify an individual with
a probability greater than 1

k . In general, the higher the k value, the greater
the anonymization and also the information loss. For instance, some interesting
works can be found in [21,8,10].

As we have stated before, in this paper we consider the randomization meth-
ods. Naturally, graph randomization techniques can be applied removing some
true edges and/or adding some false edges. Two natural edge-based graph per-
turbation strategies are: firstly, Rand Add/Del randomly adds one edge followed
by deleting another edge and repeats this process for k times. This strategy pre-
serves the total number of edges in the original graph. Secondly, Rand Switch
randomly switches a pair of existing edges {t, w} and {u, v} to {t, v} and {u,w},
where {t, v} and {u,w} do not exist in the original graph, and repeat it for k
times. This strategy preserves the degree of each vertex. Hay et al. [16] pro-
posed a method, called Random perturbation, to anonymize unlabelled graphs
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based on randomly removing p edges and then randomly adding p fake edges.
The set of vertices does not change and the number of edges is preserved in
the anonymous graph. Ying and Wu [26] studied how different randomization
methods (including Rand Add/Del and Rand Switch methods) affect the privacy
of the relationship between vertices. The authors also proposed two algorithms
specifically designed to preserve spectral characteristics of the original graph,
called Spctr Add/Del and Spctr Switch. Ying et al. [25] compared two well-
known strategies, Rand Add/Del and k-degree anonymous algorithm by Liu and
Terzi [21], in terms of identity and link disclosure. They also developed a vari-
ation of Rand Add/Del method, called Blockwise Random Add/Delete strategy
or simply Rand Add/Del-B, which divides the graph into blocks according to the
degree sequence and implements modifications (by adding and removing edges)
on the vertices at high risk of re-identification, not at random over the entire set
of vertices. More recently, Bonchi et al. [5,6] offered a new information-theoretic
perspective on the level of anonymity obtained by random methods. The au-
thors make an essential distinction between image and pre-image anonymity
and propose a more accurate quantification, based on entropy, of the anonymity
level that is provided by the perturbed graph. They stated that the anonymity
level quantified by means of entropy is always greater than or equal to the one
based on a-posteriori belief probabilities. In addition, the authors introduced a
new random-based method, called sparsification, which randomly removes edges,
without adding new ones.

A new interesting anonymization approach is presented by Boldi et al. [4] and
it is based on injecting uncertainty in social graphs and publishing the resulting
uncertain graphs. While existing approaches obfuscate graph data by adding
or removing edges entirely, they proposed to use a perturbation that adds or
removes edges partially. From a probabilistic perspective, adding a non-existing
edge {i, j} corresponds to changing its probability p({i, j}) from 0 to 1, while
removing an existing edge corresponds to changing its probability from 1 to 0. In
their method, instead of considering only binary edge probabilities, they allow
probabilities to take any value in range [0,1]. Therefore, each edge is associated
to an specific probability in the uncertain graph.

Other approaches consider the degree sequence of the vertices or other struc-
tural graph characteristics (for example, transitivity or average distance between
pairs of vertices) as important features which the anonymization process must
keep as equal as possible on anonymous graphs. For instance, Hanhijarvi et
al. [15] and Ying and Wu [27] described methods designed to preserve implicit
properties of social networks.

3 Randomization Using Edge Neighbourhood Centrality

In this section, we will present the Rand-NC 1 (short for Randomization us-
ing Edge Neighbourhood Centrality) algorithm, which is designed to achieve

1 Source code available at: http://deic.uab.cat/~jcasas/

http://deic.uab.cat/~jcasas/
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random-based privacy on undirected and unlabelled graphs. The algorithm per-
forms modifications to the original graph G = (V,E) only in edge set (E). Thus,
the vertex set (V ) remains the same during randomization process.

Our approach is a probabilistic random-based method which considers edge
relevance in order to achieve less information loss, and consequently better data
utility on anonymous graphs. Our probability distribution is computed according
to a relevance value assigned to each edge. This relevance value is computed by
a simple metric, called edge neighbourhood centrality [9], which evaluates the
1-neighbourhood information flow through an edge.

3.1 Edge Neighbourhood Centrality

Edge neighbourhood centrality (NC) [9] of an edge {i, j} is defined as the fraction
of vertices which are neighbours of vi or vj , but not of vi and vj simultaneously.
The edge neighbourhood centrality is computed as follows:

NC{i,j} =
|Γ (vi) ∪ Γ (vj)| − |Γ (vi) ∩ Γ (vj)|

2Δ
(1)

Notice that an edge with high score is a bridge-like for its neighbourhood
vertices, and all values of this measure are in range [0,1]. In [9] the authors
demonstrated that edge neighbourhood centrality identifies the most important
edges on a graph with low complexity, and therefore, this measure is able to
work on medium or large graphs. Note that this measure can be computed on
O(m) using the adjacency matrix representation of the graph.

3.2 Randomization Algorithm

Our randomization algorithm runs in a two-step approach: the first step removes
w < m (usually w << m, where m = |E|) edges from the original edge set
(E). The process starts by computing the edge neighbourhood centrality value
(NC-score) for each edge {i, j} ∈ E using Equation 1. Then, it calculates the
probability of each edge to be removed as follows:

p({i, j}) = 1

NC2
{i,j}

(2)

According to the power-law property of scale-free real networks [2], notice
that there are few edges with high NC values. Hence, we are interested on pre-
serving these edges, since they are bridge-like connectors and are critical for the
structure and the information flow on the graph. Consequently, the probability
of removing these edges during the anonymization process is low, in accordance
with Equation 2.

In the second step we addw fake edges {i, j} �∈ E. Let the set of all possible fake
edges be the complement of the original graph, which has the same vertex set but
whose edge set consists of the edges not present in G. Let G be a graph and let Gc

be its complement. We select a random set ofm = |E| edges using a uniform prob-
ability distribution from Gc = (V,Ec), and create a subset Es ⊆ Ec. Notice that
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(b) Complement graph Gc

Fig. 1. Empirical results of NC-score for each edge (edges are represented in x-axis)
and its probability computed by Equation 2 on Polbooks (see Section 4.1 for network’s
details)

usually |Ec| >> |E| because of the sparse property of real networks, and therefore
we only need to consider a subset of m elements. Next, we compute the NC-score
for each edge {i, j} ∈ Es by adding it to E and computing the score in G.

Note that this process considers the score of each edge independently, and
possible dependencies between NC-scores of different edges will not be consid-
ered. The NC-score for an edge {i, j} will be modified if for some vu ∈ V an edge
{i, u} or {u, j} is added or deleted, since this implies that the 1-neighbourhood
of the vertices vi or vj will be changed. Even so, we do not recompute the NC-
values after an edge is added or removed due to the computational complexity.
As we stated before, one of our goals is keep a low complexity to enable our
approach to work with medium or large graphs.

Finally, we randomly select w edges from Es, according to the probability
distribution computed by Equation 2, and then we add them to the edge set in
order to obtain the anonymous version of edge set (Ẽ), which fulfils |E| = |Ẽ|
and |E| − |E ∩ Ẽ| = w.

For instance, we can see empirical data about Polbooks (see Section 4.1 for
network’s details) in Figure 1. Firstly, the NC-score and its probability value on
G are shown in Figure 1a. As we can see, edges with high NC-score are assigned
to low probability values by Equation 2, and vice versa. Secondly, the same values
for the complement graph Gc are shown in Figure 1b. Note that |Ec| >> |E|. In
a similar way, edges with low NC-score present higher probability to be added
to G̃ during randomization process than the ones with high NC-score.

4 Experimental Results

In this section we will present the results of our randomization method and, in
addition, we will compare our method to two basic and relevant methods for
randomization on graphs. The selected methods are: Random Perturbation (in
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Table 1. Network’ properties. For each dataset we present the number of vertices (n),
number of edges (m), average degree (deg), average distance (dist) and diameter (D)

Dataset n m deg dist D

Zachary’s Karate Club 34 78 4.588 2.408 5

Polbooks 105 441 8.400 3.078 7

URV Email 1,133 5,451 9.622 3.606 8

short, RP) and Random Switch (RS). In subsequent sections, we will analyse
these methods and ours, and we will compare the empirical results on different
real networks. Our experimental framework considers 10 independent executions
of the randomization methods with a perturbation parameter p in range between
0% (original graph) and 25% of total number of edges, i.e, 0 ≤ p ≤ 25. The
parameters are the same for all methods and they achieve similar privacy levels,
since they apply the same concept to preserve the graph’s privacy. Therefore, the
evaluation of the results is interesting to compare the data utility and information
loss on anonymous datasets.

4.1 Tested Networks

Three different real networks are used in our experiments. Although all these
sets are unlabelled, we have selected these datasets because they have different
graph’s properties. Table 1 shows a summary of their main features. They are
the following ones:

– Zachary’s Karate Club [28] is a network widely used in the literature. The
graph shows the relationships among 34 members of a karate club.

– US politics book data (Polbooks) [20] is a network of books about US poli-
tics published around the 2004 presidential election and sold by the on-line
bookseller Amazon. Edges between books represent frequent co-purchasing
of books by the same buyers.

– URV email [14] is the email communication network at the University Rovira
i Virgili in Tarragona (Spain). Vertices are users and each edge represents
that at least one email has been sent.

4.2 Measures

In order to compare the algorithms, we use several structural and spectral mea-
sures. The first structural measure is diameter (D), which is defined as the
largest minimum distance between any two vertices in the graph. The second
one is harmonic mean of the shortest distance (h). It is an evaluation of connec-
tivity, similar to the average distance or average path length. Sub-graph centrality
(SC) is used to quantify the centrality of each vertex based on the sub-graphs.
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Transitivity (T ) is one type of clustering coefficient, which measures and char-
acterizes the presence of local loops near a vertex. It measures the percentage
of paths of length 2 which are also triangles. The above measures evaluate the
entire graph as a unique score. We compute the error on these graph metrics as
follows:

εm(G, G̃) = |m(G)−m(G̃p)| (3)

where m is one of the graph characteristic metrics, G is the original graph and
G̃p is the p-percent perturbed graph, where 0 ≤ p ≤ 25.

The core number sequence (Cor) is a sequence of length n, where the i-th
item indicates the core number of vertex vi. The core number of a vertex is the
highest order of a k-core containing the vertex. We compute the divergence on
core number sequence between two graphs using Equation 4.

Cor(G, G̃) =
1

n

n∑
i=1

Ci (4)

where Ci = 1 if core(vi) = core(ṽi) and 0 otherwise.
The following metrics evaluate specific structural properties for each vertex

of the graph: the first one is betweenness centrality (CB), which measures the
fraction of shortest paths that go through each vertex. This measure indicates
the centrality of a vertex based on the flow between other vertices in the graph. A
vertex with a high value indicates that this vertex is part of many shortest paths
in the graph, which will be a key vertex in the graph structure. The second one
is closeness centrality (CC) and is defined as the inverse of the average distance
to all accessible vertices. We compute the error on vertex metrics by:

εm(G, G̃) =

√
1

n
((g1 − g̃1)2 + . . .+ (gn − g̃n)2) (5)

where gi is the value of the metric m for the vertex vi of G and g̃i is the value
of the metric m for the vertex vi of G̃.

Moreover, two spectral measures which are closely related to many graph
characteristics [26] are used. The largest eigenvalue of the adjacency matrix A
(λ1) where λi are the eigenvalues of A and λ1 ≥ λ2 ≥ . . . ≥ λn. The eigenvalues
of A encode information about the cycles of a graph as well as its diameter. And
the second smallest eigenvalue of the Laplacian matrix L (μ2) where μi are the
eigenvalues of L and 0 = μ1 ≤ μ2 ≤ . . . ≤ μm ≤ m. The eigenvalues of L encode
information about the tree structure of G. μ2 is an important eigenvalue of the
Laplacian matrix and can be used to show how good the communities separate,
with smaller values corresponding to better community structures.

4.3 Empirical Results

Results are disclosed in Table 2. Each cell indicates the error value for the corre-
sponding measure and algorithm. The lower the value, the better the algorithm.
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Table 2. Results for Rand-NC (NC), Random Perturbation (RP) and Random Switch
(RS) algorithms. For each dataset and algorithm, we compare the results obtained on
D, h, SC, T , Cor, CB , CC , λ1 and μ2. Bold cells indicate the algorithm that achieves
the best result (i.e, lowest information loss) for each measure and dataset.

Karate D h SC T Cor CB CC λ1 μ2

NC 0.296 0.010 3.091 0.028 0.392 0.025 0.047 0.090 0.050

RP 0.331 0.012 6.812 0.031 0.349 0.030 0.053 0.280 0.058

RS 0.596 0.047 1.648 0.019 0.069 0.022 0.037 0.119 0.184

Polbooks D h SC(×102) T Cor CB CC λ1 μ2

NC 1.550 0.181 6.887 0.063 0.338 0.019 0.055 0.208 0.366

RP 1.719 0.201 12.555 0.075 0.340 0.020 0.061 0.583 0.580

RS 1.888 0.239 8.564 0.082 0.110 0.019 0.070 0.109 0.500

URV email D h SC(×105) T Cor CB CC λ1 μ2

NC 0.388 0.037 3.696 0.033 0.582 0.001 0.175 0.580 0.320

RP 0.508 0.042 6.776 0.038 0.578 0.001 0.147 1.873 0.317

RS 0.165 0.094 3.549 0.044 0.211 0.001 0.012 0.512 0.003

A bold cell indicates the best algorithm for each measure and graph, i.e, the
algorithm which achieves the lowest information loss. Although deviation is un-
desirable, it is inevitable due to the edge modification process.

The first tested network is Zachary’s Karate Club. As shown in Table 2,
our algorithm achieves the best results on D, h, λ1 and μ2. For instance, we can
deepen on behaviour of λ1 error in Figure 2a. The p = 0 value (x-axis) represents
the value of this metric on the original graph. Thus, values close to this point
indicate low noise on perturbed data. As we can see, Rand-NC remains closer to
the original value than the other algorithms. Random Switch achieves the best
results on SC and Cor. Furthermore, it also gets the best results on T , CB and
CC , but they are quite similar on all randomization methods, suggesting that all
of them introduce similar noise on these measures, as we can see in Figure 2b.

The second dataset, Polbooks, is a small collaboration network. The results of
the comparability are very encouraging. Rand-NC outperforms on all measures,
except on Cor and λ1, where Random Switch achieves lower error values. For
example, we can see the average error of the closeness centrality in Figure 2c,
which behaves in a similar way for the three tested algorithms. The Cor measure,
shown in Figure 2d, is based on the k-core decomposition and is closely related
to the degree of the vertices. Consequently, it is not surprising that Random
Switch gets the best results, since this method does not change the vertices’
degree, keeping the degree sequence equal to the original one.

Finally, the last dataset is URV email communication graph.The best results on
D, SC, Cor, CC , λ1 and μ2 are achieved by Random Switch method. Even so, our
algorithm gets good results on λ1 and SC, where its values are close to the ones by
Random Switch. Figure 2e presents the sub-graph centrality details. In addition,
Rand-NC achieves the best results on h and T , as shown in Figure 2f.
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Fig. 2. Examples of the error evolution computed on our experimental framework.
Perturbation parameter p varies along the horizontal axis from 0% (original graph) to
25%.
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Fig. 3. Candidate set size (CandH1) evaluation on our three tested networks. Pertur-
bation varies along the horizontal axis from 0% (original graph) to 25% and vertex
proportion is represented on vertical axis. The trend lines show the percentage of ver-
tices whose equivalent candidate set size falls into each of the following groups: [1]
(black), [2,4], [5,10], [11,20], [21, ∞] (white).

5 Re-identification and Risk Assessment

Assuming that the randomization method and the number of fake edges w are
public, the adversary must consider the set of possible worlds implied by G̃ and
w. Informally, the set of possible worlds consists of all graphs that could result in
G̃ under w perturbations. Using Ec to refer to all edges not present in E, the set
of possible worlds of G̃ under w perturbations, denoted by Ww(Ẽ) is computed
by:
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Ww(Ẽ) =

(
|E|
w

)(
|Ec|
w

)
(6)

Therefore, and according to Hay et al. [16], the candidate set of a target vertex

vi includes all vertices vj ∈ G̃ such that vj is a candidate is some possible world.
We compute the candidate set of the target vertex vi based on vertex refinement
queries of level 1 (H1) (see [16] for further details) as shown in Equation 7.

CandH1(vi) = {vj : deg−(vj) ≤ deg(vi) ≤ deg+(vj)} (7)

where deg−(vj) = round(deg(vj)(1 − w
m )) is the minimum expected degree of

vj and deg+ = round(deg(vj)(1 + w
m )) is the maximum expected degree after

uniformly random edge deletion/addition process.
Using this re-identification model based on vertex degree, we observe that

Random Switch method does not change the vertex degree on randomization
process. Consequently, this method does not improve the privacy under an ad-
versary’s knowledge based on the degree value of some target vertices. Contrary,
both Rand-NC and Random Perturbation methods modify the degree sequence
and hinder the re-identification process according to this adversary knowledge
model. Figure 3 shows the CandH1 evolution on Rand-NC and Random Per-
turbation methods. As we can see, candidate set sizes shrink while perturbation
increases in all datasets. The number of nodes at high risk of re-identification
(the black area) decreases quickly. Nevertheless, well-protected vertices present
different behaviour on our tested networks. For instance, Zachary’s karate club
(Figure 3a) does not achieve a significant increment during randomization pro-
cess by reason of it is a small graph with only 34 vertices and, therefore, a
candidate set size of [21,∞] is probably too strict. Finally, notice that the prob-
ability computed in Equation 7 corresponds to uniformly random process, which
is exactly Random Perturbation. A slightly difference occurs on Rand-NC, but
we omit the experimental results due to the space limit.

6 Conclusions

In this paper we have presented a new algorithm for randomization on graphs,
which is based on edge set modification according to edge’s relevance. Instead of
modifying one of the possible edges at random, this method considers the edge’s
relevance and preserves the most important edges in the graph. Our method
achieves a better trade-off between data utility and data privacy than other
methods. In particular, it outperforms Random Perturbation in terms of data
utility and Random Switch in terms of data privacy as empirical results have
shown.

We have presented some experimental results on real networks. Even though
our algorithm does not perform better than Random Switch in some specific
metrics and networks, the privacy level achieved by our method is clearly higher
than the one achieved by Random Switch. In addition, Rand-NC gets the best
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results on several metrics. Therefore, we have demonstrated that our algorithm
is better, in terms of data utility and privacy, than the two well-known Random
Perturbation and Random Switch algorithms.

Many interesting directions for future research have been uncovered by this
work. It would be very interesting to think on how the algorithm can work with
other graph’s type (directed or labelled graphs, for instance). It would be also
interesting to consider the data utility on graph mining processes, for example
on clustering-specific processes.
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Universitat Autònoma de Barcelona, Spain

guillermo.navarro@uab.cat
2 IIIA-CSIC Institut d’Investigació en Intelligència Artificial,
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Abstract. We propose the application of rank swapping to anonymize
data streams. We study the viability of our proposal in terms of in-
formation loss, showing some promising results. Our proposal, although
preliminary, provides a simple and parallelizable solution to anonymize
data stream.

1 Introduction

In this paper we study the application of rank swapping to data streams. The
purpose of the work is to be able to anonymize streams of data composed by
records. That is, records referring to individuals or entities which are generated
as streams. The proposed method applies a privacy preserving method to the
data as it is being generated. The output can be stored for future analysis or
even analyzed in (close to) real time, without risking the disclosure of sensitive
information from the data. This is specially convenient if the analysis of the data
is to be performed by a third party. Stream data mining and techniques have
become popular in recent times, not only to mine proper data streams but also
to mine huge quantities of data [7,23]. Some examples of specific stream-like
data, where anonymization is desirable are logs [13], time series and location
data [14,10], and sensor data [1].

Ensuring privacy in such data streams is not straightforward. Typical sta-
tistical disclosure control (SDC) or privacy-preserving data mining techniques
(PPDM) cannot usually be applied directly. Most current solutions for privacy
preserving techniques on data streams are based on the creation of anonymity
groups [8,3,4,9,16,22,24,26,27]. Their objective is to preserve k-anonymity [18,19]
in the anonymized data. Contrary to these works, we focus our current work on
a data swapping method. Rank swapping is a well known method for Statisti-
cal Disclosure Control, which randomly exchanges values from the original data
between records. The method was first described for numerical variables in [12],
although the idea of swapping data was first mentioned in [17]. Moreover, data
swapping techniques have been widely used by statistical agencies. For instance,
it was used in the UK Census from 2001 [15].
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We propose the application of rank swapping to anonymize data streams.
As we will see the use of rank swapping is simple and provides relatively good
results. Moreover we propose two different approaches to apply rank swapping
to data streams and compare the results. In Section 2 we introduce data streams
and some notation, and Section 3 describes the methods to apply rank swapping
to data streams. We evaluate our proposed methods in terms of information loss
in Section 4, and provide some discussion. Finally, Section 5 concludes the paper.

2 Data Streams

A data stream is usually seen as a continuous flow of data, which can be infi-
nite, and delivers a data item in a relatively timely fashion. In our case we are
interested in anonymizing microdata streams. A microdata file is the base of
most data privacy techniques and can be seen as a table of records, each record
corresponds to an individual (or entity) and each column is an attribute.

In a microdata file we normally distinguish between the following types of
attributes:

– Identifiers: attributes that uniquely identify and individual (e.g. social secu-
rity number, passport number, . . . ).

– Quasi-identifier: although a quasi-identifier alone cannot be used to identify
an individual, a group of them can (e.g. age, postal code, . . . ).

– Confidential attributes: attributes (usually quasi-identifiers) that are consid-
ered confidential (e.g. disease, gross salary, . . . ).

For the purpose of this paper, we consider a microdata stream as continuous
stream of tuples, where each tuple can be seen as a record in the traditional
microdata file. The data stream is denoted as S(t, a1, . . . , an) where t is the
position of the tuple in the stream, and a1, . . . , an are the attributes of the
tuple. For the sake of simplicity, we consider all attributes to be quasi-identifiers.
We assume that identifier attributes are removed or encrypted and confidential
attributes are treated as quasi-identifiers.

3 Rank Swapping for Data Streams

In this section we will present two different approaches for applying rank swap-
ping to data streams. These two approaches will be compared and evaluated
in Section 4. The first method is based on the application of rank swapping to
a simple sliding window on the data stream. As an improvement we propose a
second approach, which selects tuples from the sliding window in order to reduce
the information loss introduced by the rank swapping.

3.1 Rank Swapping

Several algorithms for rank swapping have been developed since its introduction.
We have adopted a simplified version described in [5,6]. Although the specific
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results might present some variations we believe that the application of other
rank swapping algorithms to our approaches will be straightforward.

We will denote this method as the simple rank swapping or RS. The idea
is that the values of an attribute Ai are ranked in ascending order; then each
ranked value of Ai is swapped with another ranked value randomly chosen within
a restricted range (e.g., the rank of two swapped values cannot differ by more
than p percent of the total number of records).

It is important to note that this approach assumes that there is an order
relation between attributes. We also assume the availability of a distance func-
tion. We will denote the distance function as d and the order relation as ≤, so
ai ≤ aj ≤ ak implies that d(ai, aj) ≤ d(ai, ak).

3.2 Stream Rank Swapping

Our first approach to deal with data streams is to use a sliding window to
perform the rank swapping. A window receives tuples from the stream and acts
as a simple buffer of fixed size w. When the window contains w tuples, rank
swapping is applied to the whole set of w tuples and the protected data is
released. The window is emptied and ready to receive more tuples from the
stream (see Figure 1).

Data Stream

} Rank
Swapping

W W' Publish

Fig. 1. Simple stream rank swapping

When the window is full, we have a set of tuples Wi = {Si, Si+1, . . . , Si+w},
where Si = {ti, ai1, . . . , ain} and aij is the value of the attribute j in the tuple
Si. This window can be seen as a microdata file where each tuple is a record
with the values for each quasi-identifier attribute, e.g. (ai1, . . . , ain) for record i.
When the window is full, the set Wi is protected with rank swapping and the
resulting set W ′

i is released. Now W ′
i contains the tuples with swapped values

for the attributes W ′
i = {S′

i, S
′
i+1, . . . , S

′
i+w}. The procedure is described in

Algorithm 1.
Note that the final release of data is composed of the sets W1,W2, . . .. Each

set can be periodically released as data is obtained from the stream.
The fact that we are periodically releasing subsets of protected data indepen-

dently does not impose a thread to privacy. This is opposed to using an approach
based on anonymity groups [3], where the intersection of anonymity groups could
lead to inference attacks.
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Algorithm 1. SRS

1: procedure SRS(S, p, w)
2: W = ∅
3: while S is non-empty do
4: while |W | < w do
5: Let t be the next tuple from S
6: W = W ∪ {t}
7: if |W | == w then
8: RS(W,p)

3.3 Stream Selective Rank Swapping

We can intuitively see that the previous method, which performs rank swapping
on the data stream in slices can result in an increase of information loss depend-
ing on the window size. One way to improve this method is to perform the rank
swapping not on the whole window but on a selected set of tuples, which could
reduce information loss.

The selected set of tuples such be the one preserving more information in the
swapping process. It is easy to see that a dense set of tuples will be better than a
sparse one. In this context we understand a dense set as a set with more number
of tuples in a smaller range. We will call this set a block.

A block B is a set of ordered tuples of length b. Each block is denoted as
Bi = (Si1 , . . . , Sib), such that Sir ≤ Sis if r ≤ s. All records of the block are
always taken from the current active window.

Given a window W , we select Bi such that d(Si1 , Sib) ≤ d(Sj1 , Sjb) for all
Bj �= Bi and Bi, Bj ∈ W (see Algorithm 3). The selected block Bi is then
anonymized with rank swapping (RS), and removed from the window. Once the
window is full again (with w records) we repeat the process. The procedure is
described in Algorithm 2.

Algorithm 2. SSRS

1: procedure SSRS(S, p, w, b)
2: W = ∅
3: while S is non-empty do
4: while |W | < w do
5: Let t be the next tuple from S
6: W = W ∪ {t}
7: B = SelectBlock(W, b)
8: RS(B,p)

The idea here, is to swap values that are closer and leave the other values,
which eventually will be swapped with closer ones.
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Algorithm 3. SelectBlock

1: procedure SelectBlock(W, b)
2: for all Bi = (Si1 , . . . , Sib) ∈ W do
3: Compute d(Bi) = d(Si1 , Sib)
4: Return Bj such that d(Sj1 , Sjb) ≤ d(Sk1 , Skb

) for all Bj = Bk

4 Evaluation

We have evaluated the previous methods to measure the information loss intro-
duced in each case. To be able to compare results with non-streaming versions
of rank swapping we have used a finite dataset, the Adult dataset from the UCI
repository [2], which contains 48842 records from the 1994 Census database. To
simplify the evaluation we have taken only one numerical attribute, the fnlwgt
(final sampling weight).

The methods are denoted as:

1. RS, rank swapping: as applied to the whole dataset.
2. SRS, stream rank swapping: as described in Section 3.2.
3. SSRS, stream selective rank swapping: as described in Section 3.3.

We have also parameterized the methods with the parameters:

– p: determines the interval to perform the swapping in the ranked data. Affects
RS, SRS, and SSRS.

– w: size of the window (or buffer) that stores tuples from the stream. Affects
the streaming versions SRS and SSRS.

– b: size of the block of tuples taken from the window for the SSRS method.

To measure the information loss we have used the well known IL1s mea-
sure [25,11] as implemented by the sdcMicro package for R [20].

IL1s measures the distance between the protected records and the original
ones. Formally, given the original data X and the protected one X ′:

IL1s(X,X ′) =
1

nM

M∑
i=1

V∑
j=0

|aij − a′ij |√
2Sj

(1)

where n is the number of attributes, M the number of records, aij denotes the
value of record i for attribute j, and a′ij the same for the protected version, and
Sj is the standard deviation of the j-th attribute in the original data.

All the measurements of IL1s are made on the whole dataset once protected.
This is so to be able to compare the proposed streaming versions of rank swap-
ping to the classical rank swapping.

Figure 2 shows the IL1s values for the different methods: RS, SRS, and SSRS.
In the case of SSRS we have considered three different values for the parameter
b (the block size), which depend on the window size w. The values are always
taken as 1/4, 1/2, and 3/4 of the window size w (all values floor rounded).
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It is important to note that even with the same window size, the SSRS per-
forms better. Moreover, SSRS with lower block sizes are usually better than the
SRS.

We can also compare the methods by choosing a block size from the SSRS
method equal to the window size of the SRS. Figure 3 shows the methods using
the same value for the window in SRS, and block for SSRS (note there are three
cases for 1/4, 1/2, 3/4 values of b). We compare the methods for different values
of p.

As expected, SSRS with lower values of b is the better choice of the streaming
versions. In this case the difference between SSRS and SRS is bigger, something
that was also expected.

4.1 Discussion

From the observations about the performance of our proposed methods, we can
foresee rank swapping as a very interesting approach for streaming data. We
have introduced two approaches to apply rank swapping to streaming data and
there are important advantages to be noted:

1. Good performance in terms of information loss. Moreover, for relatively big
values of the window size, the streaming methods are quite close to the
non-streaming rank swapping.

2. Highly parallelizable. Each computation of rank swapping (within the win-
dow or block of records) is completely independent, which allows a straight-
forward parallelization.

The methods proposed in the paper show that rank swapping is an interesting
approach for anonymizing stream data. Given its parallelization facility it is also
suitable for anonymizing huge datasets. In such cases, where performing a ranks
swapping is unfeasible (or impractical) the SRS and SSRS methods can provide
a fast and convenient way to process the datasets.

There are however some issues that need to be addressed, which we haven’t
introduced in this work. The purpose of this paper is to show the viability (in
terms of information loss) of rank swapping to deal with stream data, not to
provide a final or production ready method. For example, the SSRS as described
in Section 3.3 should include mechanisms to ensure that a record is processed
within a given time range. That is, given that records are selected from the
window, some outlier records could be delayed or even kept in the window forever
(in case of infinite streams). To solve this, records could be given an expiration
time when they enter the window. The record will be forced to be selected if it
has expired. A similar approach was used in [4] with a clustering based method
for anonymization.

Although we have used numerical attributes, our proposal are extensible to
categorical data forming a complete order or even partial orders [21].
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Fig. 2. Information loss in terms of window size
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5 Conclusions

We have introduced a rank swapping based method for the anonymization of
numerical data streams. The proposed methods are compared in terms of infor-
mation loss and provide a good starting point for considering rank swapping a
good candidate to be applied in streaming data. This is a preliminary work and
further research and development work is required to provide production level
algorithms and implementations.
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Abstract. In this paper, we review existing radius-incorporated Multi-
ple Kernel Learning (MKL) algorithms, trying to explore the similarities
and differences, and provide a deep understanding of them. Our analysis
and discussion uncover that traditional margin based MKL algorithms
also take an approximate radius into consideration implicitly by base
kernel normalization. We perform experiments to systematically com-
pare a number of recently developed MKL algorithms, including radius-
incorporated, margin based and discriminative variants, on four MKL
benchmark data sets including Protein Subcellular Localization, Pro-
tein Fold Prediction, Oxford Flower17 and Caltech101 in terms of both
the classification performance, measured by classification accuracy and
mean average precision. We see that overall, radius-incorporated MKL
algorithms achieve significant improvement over other counterparts in
terms of classification performance.

Keywords: Multiple Kernel Learning, Support Vector Machines, Ra-
dius Margin Bound, Minimum Enclosing Ball, Kernel Methods.

1 Introduction

Kernel methods have achieved great successes in machine learning community
and have been widely adopted. As well known, their performance heavily depends
on the choice of kernels. Many efforts have been devoted to address this issue by
designing data-dependent optimal kernel algorithms [10,1,4], so-called “learning
kernels from data”. Among these algorithms, Multiple Kernel Learning (MKL)
algorithms have been paid intensive attention since they are not only capable of
adaptively tuning an optimal kernel for a specific learning task, but also provide
an elegant framework to integrate multiple heterogenous source data.

The idea of MKL can be applied to both margin and class separability maxi-
mization criteria, leading to margin-based [1,5,4] and discriminative MKL algo-
rithms [14], respectively. In this paper, we mainly focus on margin based MKL
algorithms due to the popularity of margin maximization framework. There are
several research trends in existing margin based MKL algorithms. The first di-
rection focuses on designing computationally efficient MKL algorithms [1,11,13].
The second one aims to develop non-sparse and non-linear combination MKL al-
gorithms [13], which usually achieve superior performance compared with sparse
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counterparts. By arguing that the generalization error bound of SVMs is de-
pendent on both radius and margin, the last direction simultaneously takes the
margin and the radius of the minimum hyper-sphere which encloses all training
samples in the multi-kernel induced feature space into consideration [3,4,6,7].

Our work in this paper follows the last direction by proposing a radius-
incorporated MKL framework. Using this framework as a toolbox, we instantiate
three different radius-incorporatedMKL algorithms by approximating the radius
of Minimum Enclosing Ball (MEB) with the trace of each base kernel, the trace
of total scatter matrix, and the radiuses induced by each base kernel, respec-
tively. We further theoretically show that the above three radius-incorporated
MKL algorithms can be rewritten as the traditional MKL formulation with only
one difference being that different linearly weighted equality constraints on the
kernel combination coefficients are employed. Specifically, the trace of base ker-
nels, the trace of total scatter matrix of base kernels, and the base radiuses of
each base kernel are respectively applied to linearly weight the coefficients of
each base kernel in the above radius-incorporated MKL algorithms. Moreover,
we uncover the relationship between the radius-incorporated MKL algorithms
with kernel normalization which is still an open issue in existing MKL literature.
Though different kernel normalization manners have been used [5], there is still
lack of a principled way to explain why this normalization should be employed
and which normalization usually works well in real work applications. We answer
these questions by pointing out that different normalization manners in essence
correspond to different radius-incorporation manners, which further correspond
to different criteria in minimizing the generalization error of SVMs. From this
perspective, our proposed radius-incorporated framework builds a bridge be-
tween kernel normalization approaches and the generalization error criteria. The
contributions of this paper are highlighted as follows:

– We propose a radius-incorporated MKL framework which learns the base
kernel combination coefficients by simultaneously maximizing the margin be-
tween classes and minimizing the radius of MEB. Furthermore, three radius-
incorporated MKL algorithms instantiated from the framework are proposed
by calculating the radius of MEB with different approaches.

– We uncover the tight connection between kernel normalization and radius
incorporation, which provides a potential explanation for different kernel
normalization approaches in existing MKL algorithms.

– Wesystematically compare anumber of recentlydeveloped radius-incorporated
MKL algorithms in terms of classification accuracy, which paves a way for de-
signing excellent radius-incorporatedMKL algorithms.

Comprehensive experiments have been conducted on Protein Subcellular Local-
ization, Protein Fold Prediction, Oxford Flower17, Caltech101 and Alzheimer’s
Disease data sets to compare the proposed radius-incorporated MKL algorithms
with state-of-the-art MKL algorithms in terms of classification performance.
As the experimental results indicate, our proposed radius-incorporated MKL
algorithms achieve better or comparable performance compared to many
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state-of-the-art MKL algorithms, which validates the effectiveness of the pro-
posed radius-incorporated MKL framework.

2 Related Work

In this section, we first review some margin based MKL algorithms, and then fo-
cus on the MKL algorithms in [3,4,6,7] which optimizes both radius of MEB and
margin. Let {(xi, yi)}ni=1 be a given training set, where xi and yi ∈ {−1,+1} rep-
resent i-th training sample and its corresponding label, respectively. Let {φp}mp=1

be a group of feature mappings where φp induces a kernel function kp. One can
define Kp as the kernel matrix computed with kp on the training set {xi}ni=1.
In existing MKL literature, each sample xi is mapped onto m feature spaces by
φ(x;γ) � [

√
γ1φ1(x), · · · ,

√
γmφm(x)]�, where γp is the coefficient of the p-th

base kernel. Correspondingly, the induced kernel function can be expressed as a
linear combination of p base kernels, k(γ) =

∑m
p=1 γpkp andK(γ) =

∑m
p=1 γpKp.

The objective of MKL algorithms is to learn the base kernel coefficients γ
and the structural parameters (ω, b) jointly. To achieve this goal, most of MKL
algorithms [1,11,5] propose to minimize the following optimization problem,

min
γ,ω,b,ξ

1

2
‖ω‖2+C

∑n

i=1
ξi s.t. yi(ω

�φ(xi;γ) + b) ≥ 1− ξi, ξi ≥ 0, ∀i, ‖γ‖q = 1, γ � 0,

(1)

where ω is the normal of the separating hyperplane, b the bias term, ξ =
[ξ1, · · · , ξn]� is the vector of slack variables, and γ is the base kernel coeffi-
cients. Another important issue in Eq. (1) is that q > 1 will induce non-sparse
kernel coefficients (called non-sparse MKL) while q = 1 will lead to sparse kernel
combination (called sparse MKL).

Several recent research on MKL has gradually realized the importance of
radius of MEB in MKL and successfully incorporated this radius into the tra-
ditional MKL formulation, achieving better kernel learning performance [3,4,6].
The theoretical justification for the radius incorporation lies at that the gener-
alization error bound of SVMs is dependent on both the margin and the radius
of the MEB of training data [10]. Furthermore, as pointed out in [4], only max-
imizing the margin with respect to γ will cause scaling and initialization issues.
A larger margin could be arbitrarily achieved by scaling γ to τγ (τ > 1), and
this will affect the convergency of the optimization problem. Usually, a norm-
constraint is imposed on γ to address this issue. Nevertheless, identifying an
appropriate norm-constraint for a given kernel learning task remain an open
issue itself [5]. Moreover, even if a norm-constraint is imposed, a good kernel
could still be misjudged as a poor one by simply down-scaling the corresponding
kernel weight [4]. These issues can be removed or mitigated by the incorporation
of radius information. In the following, we review the radius-incorporated MKL
algorithms in literature.
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The pioneering work on radius-incorporated MKL in [3] proposes to minimize
the optimization problem in Eq (2).

min
γ,ω,b,ξ

1

2
R2(γ)‖ω‖2 + C

2

n∑
i=1

ξ2i s.t. yi(ω
�φ(xi;γ) + b) ≥ 1− ξi,∀i,

m∑
p=1

γp = 1, γ � 0,

(2)

where R2 is the squared radius of the MEB in the multi-kernel induced space
and can be calculated as

R2(γ) =
{
max

β
β�diag(K(γ))− β�K(γ)β s.t. β�1 = 1, 0 ≤ βi, ∀i

}
. (3)

Like the margin, R2 is also a function of γ. Instead of solving the optimization
problem in Eq. (2) directly, the authors turn to minimize the following upper
bounding convex optimization problem:

min
γ,ω,b,ξ

1

2
‖ω‖2 +

C

2
∑m

p=1 γpR
2
p

n∑

i=1

ξ2i s.t. yi(ω
�φ(xi;γ) + b) ≥ 1− ξi,∀i,

m∑

p=1

γp = 1, γ � 0,

(4)

where R2
p is the squared radius of the MEB in the p-th base kernel induced space

and can be calculated as

R2
p =

{
max

β
β�diag(Kp)− β�Kpβ s.t. β�1 = 1, 0 ≤ βi, ∀i

}
. (5)

The work in [3] focuses on how to approximate the optimization problem in
Eq. (3) with a convex one in Eq. (4), and does not address the scaling issue
mentioned above. Differently, the work in [4] directly solves the optimization in
Eq. (6) and carefully discusses how the scaling issue can be addressed.

min
γ,ω,b,ξ

1

2
R2(γ)‖ω‖2 + C

n∑
i=1

ξi s.t. yi(ω
�φ(xi;γ) + b) ≥ 1− ξi, ∀i, ξi ≥ 0, γ � 0.

(6)

In detail, a tri-level optimization problem is proposed in that work,

min
γ

Ĵ (γ) s.t. γp ≥ 0, ∀p. (7)

where

Ĵ (γ) =
{
max
α

α�1− 1

2R2(γ)

(
α ◦ y

)�
K(γ)

(
α ◦ y

)
s.t. α�y = 0, 0 ≤ αi ≤ C, ∀i

}
(8)

and R2(γ) is calculated by Eq. (3). To solve the optimization problem, a tri-
level optimization structure is developed accordingly. Specifically, in the first
step, R2 is computed by solving the Quadratic Programming (QP) in Eq. (3)
with a given γ. Then, the obtained R2 is taken into Eq. (8) to solve another

QP to calculate Ĵ (γ). The last step is to update the base kernel coefficients γ.
The above procedure is repeated until a stopping criterion is satisfied. Compared
with traditional MKL algorithms, an extra QP is introduced and solved at each
iteration. This can considerably increase the computation cost of SVMs based
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MKL, especially when the size of training set is large. Moreover, the performance
of MKL could be adversely affected by the notorious sensitivity of this radius to
outliers. In [6], instead of directly incorporating the radius of MEB, the authors
propose to incorporate its close relative, the trace of data scattering matrix, to
avoid the above problems. Specifically, their optimization problems is as follows
in Eq. (9),

min
γ,ω,b,ξ

1

2
tr (St(γ)) ‖ω‖2 + C

n∑
i=1

ξi s.t. yi(ω
�φ(xi;γ) + b) ≥ 1− ξi,∀i, ξi ≥ 0, γ � 0,

(9)

where

tr (St(γ)) = tr(K(γ))− 1

n
1�K(γ)1 (10)

with 1 is a column vector with all elements one. Though usually demonstrating
superior performance from the experimental perspective, it is criticized from the
theoretic perspective since it may not be a upper bound of generalization error
bound such as Radius Margin Bound [10].

In the following, we propose a radius-incorporated MKL framework where
different radius variants could be integrated. Then we theoretically show that
radius-margin based framework can be equivalently addressed by solving a tra-
ditional margin based MKL algorithms, with a difference being that a weighted
constraint on the base kernel coefficients encoding the radius information. Fur-
thermore, we formally, for the first time, uncover the connection between radius
incorporation and kernel normalization.

3 Radius-Incorporated MKL Framework

3.1 The Proposed Framework

The radius-incorporated MKL framework in this paper is presented as follows,

min
γ

J (γ), s.t. γp ≥ 0, ∀p. (11)

where

J (γ) =
{
min
ω,b

1

2
R2(γ)‖ω‖2 + C

n∑
i=1

ξi s.t. yi
(
ω�φ(xi;γ) + b

)
≥ 1− ξi, ξi ≥ 0,∀i

}
(12)

Proposition 1. J (τγ) = J (γ), where τ > 0 is any positive scalar. And the
SVM decision function using the combined kernel is not affected by τ .

Proof. The proof is elaborated in our earlier publication [7].

Proposition 1 indicates that our formulation in Eq. (11) is invariant when the
kernel combination weights are uniformly scaled up by a positive scalar τ . In this
case, the optimal value of ω will correspondingly be down scaled by 1/τ , leaving
the SVMs decision function unchanged. Based on Proposition 1, the following
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Theorem 1 demonstrates that our objective function can be rewritten as the
common form used by the existing margin based MKL algorithms, with only
one difference that a constraint is imposed on the kernel coefficients encoding
the radius information.

Theorem 1. The optimal solution of optimization problem in Eq. (11), denoted
as γ, can be written as γ = R2(γ)η, where η is the optimal solution of the
following optimization problem in Eq. (13),

min
η

J (η) s.t. R2(η) = 1, ηp ≥ 0, ∀p. (13)

where

J (η) =
{
min
ω,b

1

2
‖ω‖2 + C

n∑
i=1

ξi s.t. yi
(
ω�φ(xi;η) + b

)
≥ 1− ξi, ξi ≥ 0, ∀i

}
(14)

Proof. The proof is elaborated in our earlier publication [7].

Theorem 1 indicates our proposed radius-incorporated MKL framework in Eq.
(11) can be reformulated as a traditional margin based one, with only one differ-
ence being that an additional constraint on the kernel combination coefficients
encoding radius information, as shown in Eq. (13).

3.2 Radius-Incorporated MKL Variants

In the following, we instantiate the calculation of R2(γ) by three different ap-
proaches: Tr(K(γ)), Tr(St(γ)) and

∑m
p=1 γpR

2
p.

TrK-margin MKL By substituting R2(γ) in Eq. (13) with Tr(K(γ)), we ob-
tain the objective of TrK-margin MKL as follows in Eq. (15),

min
γ

min
ω,b

1

2
‖ω‖2 + C

n∑

i=1

ξi s.t. yi
(
ω�φ(xi;γ) + b

) ≥ 1− ξi, ξi ≥ 0, Tr(K(γ)) = 1, γp ≥ 0.

(15)

where Tr(K(γ)) =
∑m

p=1 γpTr(Kp).

TrSt-margin MKL By substituting R2(γ) with Tr(St(γ)), we obtain the ob-
jective of TrSt-margin MKL as follows,

min
γ

min
ω,b

1

2
‖ω‖2 + C

n∑

i=1

ξi s.t. yi
(
ω�φ(xi;γ) + b

) ≥ 1− ξi, ξi ≥ 0, Tr(St(γ)) = 1, γp ≥ 0.

(16)

where Tr(St(γ)) = Tr (K(γ))− 1
n1

�K(γ)1 =
∑m

p=1 γp
(
Tr (Kp)− 1

n1
�Kp1

)
.
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Base Radiuses-margin MKL By substituting R2(γ) with
∑m

p=1 γpR
2
p, we

obtain the objective of Base Radiuses margin (BR-margin) MKL as follows,

min
γ

min
ω,b

1

2
‖ω‖2 + C

n∑
i=1

ξi s.t. yi
(
ω�φ(xi;γ) + b

)
≥ 1− ξi,

m∑
p=1

γpR
2
p = 1, γp ≥ 0.

(17)

where R2
p (p = 1, · · · ,m) is calculated by Eq. (5).

3.3 Algorithm

We propose an efficient algorithm to solve our proposed radius-incorporated
MKL algorithms. We take the TrK-margin MKL algorithm as an example to
show how it can be efficiently solved while this derivation can be directly applied
to TrSt-margin MKL and Base Radiuses-margin MKL algorithms.

By defining ω̃p =
√
γpωp, (p = 1, · · · ,m), Eq. (15) can be rewritten as

min
γ

min
ω̃,b

1

2

m∑
p=1

‖ω̃p‖2

γp
+ C

n∑
i=1

ξi s.t. yi
( m∑
p=1

ω̃p
�

φp(xi) + b
) ≥ 1 − ξi, ξi ≥ 0, Tr(K(γ)) = 1, γp ≥ 0.

(18)
The Lagrange function of Eq. (23) with respect to γ is

L(γ; τ ) =
1

2

m∑
p=1

‖ω̃p‖2
γp

+ C
n∑

i=1

ξi + τ

(
m∑

p=1

γpTr(Kp)− 1

)
. (19)

By letting the derivative of Eq. (19) with respect to γp (p = 1, · · · ,m) be zero,
we obtain,

∂L(γ; τ )

∂γp
= −1

2

‖ω̃p‖2
γ2
p

+ τTr(Kp) = 0. (20)

From Eq. (20), the optimal kernel combination weights can be analytically cal-
culated as,

γp =
‖ω̃p‖√

Tr (Kp)
(∑m

p=1

√
Tr (Kp)‖ω̃p‖

) (21)

The overall algorithm for solving the TrK-margin MKL formulation is presented
in Algorithm 1.

Algorithm 1. Proposed Radius-incorporated MKL Framework

1: Initialize γ1
p.

2: i ← 1
3: repeat
4: Calculate ω̃p

i+1 (p = 1, · · · ,m) by a SVMs solver with γi
p.

5: Update γi+1 with ω̃p
i+1 (p = 1, · · · ,m) by Eq. (21).

6: i ← i+ 1
7: until Convergence
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It is worth noting that Algorithm 1 can be directly applied to solve the TrSt-
margin MKL and Base Radiuses-margin MKL algorithms with minor modifi-
cation. In detail, one can achieve this goal by only substituting Tr (Kp) in Eq.
(21) with

(
Tr (Kp)− 1

n1
�Kp1

)
in TrSt-margin MKL and R2

p in Base Radiuses-
margin MKL, respectively.

After we obtain the optimal ω̃p

, (p = 1, · · · ,m), b and γ by Algorithm 1,

we can directly write the SVMs decision function as

f(x) =
m∑

p=1

γ�
p (ω̃p

�)
�
φp(x) + b�, (22)

and it will be used for the prediction the labels of new samples.

3.4 Connections between Radius-Incorporation and Base Kernel
Normalization

As mentioned in [5], the base kernel normalization is important for MKL and
different normalization approaches will lead to fundamentally different results.
However, little systematical analysis on base kernel normalization has been done
in existing MKL literature. Moreover, there is also lack of a theoretical expla-
nation for existing base kernel normalization approaches. In the following, we
uncover that there is a tight relationship between radius-incorporated MKL al-
gorithms with kernel normalization approaches. This finding builds a bridge
between base kernel normalization and MKL optimization criteria.

There are two widely used base kernel normalization approaches: spherical
normalization [11] and multiplicative normalization [5], in existing MKL litera-
ture. In the following, we show the connections between spherical normalization
and TrK-margin MKL, and multiplicative normalization and TrSt-margin MKL,
respectively. In detail, by normalizing each base kernelKp (p = 1, · · · ,m) to have
unit trace as in [11], we obtain the following optimization problem,

min
γ

min
ω,b

1

2
‖ω‖2 +C

n∑
i=1

ξi s.t. yi
(
ω�φ(xi;γ) + b

)
≥ 1− ξi,

m∑
p=1

γp = 1, γp ≥ 0,

(23)

which is the exact objective function widely adopted by existing MKL algo-
rithms [11,13]. Therefore, we can clearly see that the current margin-based MKL
algorithms essentially implicitly incorporate the radius information via Tr(K).
Similar optimization problem can also be obtained by performing multiplicative
normalization on each base kernels.

With the proposed radius-incorporatedMKL framework as a tool,we can clearly
observe the tight relationship between radius incorporation variants and base ker-
nel normalization alternatives. Furthermore, this framework also establishes the
connection between kernel normalization approaches and radius-margin optimiza-
tion criteria, which potentially provides an explanation for kernel normalization
approaches from the perspective of minimizing generalization error theory.
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It is worth noting that there exists essential differences among the proposed
three radius-incorporatedMKL algorithms in terms of generalization error bound.
Neither TrK-margin nor TrSt-margin criteria are the upper bound of general-
ization error due to that Tr(K(γ)) and Tr(St(γ)) may not be an upper bound of
R2(γ), the squared radius of MEB. Differently, the base radiuses-margin crite-
rion is an upper bound of the generalization error since

∑m
p=1 γpR

2 is an upper

bound of R2(γ) [3]. With this observation, we can infer that the widely used
spherical normalization and multiplicative normalization in existing MKL liter-
ature do not strictly follow the generalization error bound. Though having such
a deficiency, TrSt-margin criterion can usually achieve superior performance,
which has been validated in our experiments.

4 Experimental Results

4.1 Experimental Setup

We conduct experiments to compare the proposed radius-incorporated MKL al-
gorithms with many stat-of-the-art MKL algorithms such as SimpleMKL [11],
Minimum Ball MKL (MBMKL) [4], Radius MKL (RMKL)[3], non-Sparse MKL
(�p MKL)[5] with p = 4/3, 2, 4, Discriminative MKL (MK-FDA) [14], Union
Weight MKL (UWMKL), and Single Best SVMs (Single) in terms of classifica-
tion accuracy. All comparisons have been conducted on protein fold prediction1,
Oxford Flower172, Protein Subcellular Localization3, and Caltech1014. When
the whole kernel matrix is available, the training set, validation set and test set
is partitioned according to 2 : 1 : 1. For Caltech101, since the training kernel and
test kernel are available separately, we randomly partition the original training
kernel matrix into new training and validation kernels according to 3 : 2 while
keeping the original test kernels unchanged.

The codes for SimpleMKL, �p-MKL, and MK-FDA are respectively down-
loaded from the authors’ websites5,6,7. We implement the MBMKL and RMKL
based on SimpleMKL toolbox by ourself according to their papers. All source
codes, kernel matrix and partitions used in our experiments can be download
from the author’s website8. The optimal regularization parameter C for all MKL
algorithms is chosen from [10−2, 10−1, · · · , 104] while the regularization param-
eter λ for MK-FDA [14] is chosen from [10−5, 10−1, · · · , 101] on validation set.
For the comparison of classification performance, both the classification accu-
racy (ACC) and maximum a posterior (mAP) criteria are adopted. To conduct

1 http://mkl.ucsd.edu/dataset/protein-fold-prediction
2 http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html
3 http://mkl.ucsd.edu/dataset/protein-subcellular-localization
4 http://mkl.ucsd.edu/dataset/ucsd-mit-caltech-101-mkl-dataset
5 http://asi.insa-rouen.fr/enseignants/~arakoto/
6 http://doc.ml.tu-berlin.de/nonsparse_mkl/
7 http://www.public.asu.edu/~jye02/Software/index.html
8 https://sites.google.com/site/xinwangliunudt/home?previewAsViewer=1

http://mkl.ucsd.edu/dataset/protein-fold-prediction
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html
http://mkl.ucsd.edu/dataset/protein-subcellular-localization
http://mkl.ucsd.edu/dataset/ucsd-mit-caltech-101-mkl-dataset
http://asi.insa-rouen.fr/enseignants/~arakoto/
http://doc.ml.tu-berlin.de/nonsparse_mkl/
http://www.public.asu.edu/~jye02/Software/index.html
https://sites.google.com/site/xinwangliunudt/home?previewAsViewer=1
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Table 1. Performance comparison with statistical test on Protein Fold Prediction data
set. Boldface means no statistical difference from the best one (p-Val ≥ 0.05). The two
rows of each data set represent mean accuracy (mAP) and standard derivation error.

Proposed SimpleMKL MBMKL RMKL �p-MKL [5] MK-FDA
UWMKL Single

TrK TrSt Radius [11] [4] [3] p = 4/3 p = 2 p = 4 [14]

ACC

65.6 68.4 66.9 65.2 66.3 58.1 66.3 63.9 62.5 59.6 60.4 60.2

±3.6 ±2.7 ±2.2 ±3.3 ±4.9 ±3.6 ±3.1 ±4.0 ±3.6 ±2.8 ±3.4 ±2.6

mAP

70.1 72.6 72.5 69.7 70.9 59.3 69.1 66.0 64.0 71.5 62.9 66.8

±3.0 ±3.0 ±2.0 ±2.0 ±5.0 ±4.1 ±3.2 ±3.6 ±4.2 ±2.7 ±4.2 ±1.9

a rigorous comparison, the paired Student’s t-test is performed. The p-value of
the t-test represents the probability that two sets of compared results come from
distributions with an equal mean. A p-value of 0.05 is considered statistically
significant. We repeat the experiments for five times on Caltech101 since there
are only five partitions available, while this procedure is repeated ten times on
the other data sets. The mean results, standard derivation, and the p-value are
reported. The highest accuracy and those whose difference from the highest ac-
curacy are not statistically significant are shown in bold for each data set. All
the following experiments are conducted on a high performance cluster server,
where each computational node is with 2.3GHz CPU and 16GB memory.

4.2 Experiments on Protein Fold Predication Dataset

As a MKL benchmark data set, Protein Fold Prediction data set has been widely
used to evaluate the performance of MKL algorithms [2]. It has 12 different
heterogenous data sources, including Amino Acid Composition, Predicted Sec-
ondary Structure, Hydrophobicity, Van Der Waals Volume, Polarity, Polarizabil-
ity, PseAA Pseudo-Amino-Acid Composition at interval 1, 4, 14 and 30, Smith-
Waterman scores with the BLOSUM 62 scoring matrix, and Smith-Waterman
scores with the PAM 50 scoring matrix. According to [2], 12 base kernels are
generated by applying the second order polynomial kernel and inner product
(cosine) kernel to the first ten feature sets and the last two feature sets, respec-
tively.

The experimental result on Protein Fold Predication dataset is given in
Table 1. From this table, we observe that:

– Radius-incorporated MKL algorithms including TrSt-MKL, Radius-MKL
and MBMKL [4] significantly outperform other margin based MKL algo-
rithms in terms of both classification accuracy and mAP. In terms of classi-
fication accuracy, the proposed TrSt-MKL achieves 2.5% improvement over
�4/3-MKL, which is the best margin based MKL algorithm. This amount is
enlarged to 2.9% when comparing TrSt-MKL with the best margin based
MKL algorithm in terms of mAP.

– Different radius-incorporated approaches lead to different classification per-
formance. Compared with TrK-MKL, the other proposed TrSt-MKL and
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Table 2. Performance comparison with statistical test on Protein Subcellular Local-
ization data set

Proposed SimpleMKL MBMKL RMKL �p-MKL [5] MK-FDA
UWMKL Single

TrK TrSt Radius [11] [4] [3] p = 4/3 p = 2 p = 4 [14]

ACC

psortNeg

91.1 91.1 90.6 90.7 90.4 90.8 90.4 89.4 87.6 87.2 87.2 84.0

±1.2 ±1.6 ±1.5 ±1.2 ±1.7 ±1.5 ±1.4 ±1.7 ±2.5 ±1.8 ±2.5 ±1.6

psortPos

86.8 86.6 86.3 86.5 85.8 86.7 87.1 86.2 85.3 84.7 83.5 82.0

±2.8 ±3.3 ±2.9 ±2.6 ±2.8 ±2.7 ±2.8 ±3.9 ±2.5 ±3.1 ±3.2 ±3.5

plant

91.5 92.0 90.5 92.1 91.5 92.0 91.8 91.1 89.8 83.8 88.1 78.6

±1.5 ±1.8 ±1.7 ±1.5 ±1.4 ±2.1 ±2.0 ±1.9 ±2.2 ±3.0 ±2.5 ±2.2

mAP

psortNeg

94.8 95.0 94.9 94.9 94.9 95.1 94.3 93.1 91.4 95.0 90.0 89.6

±0.7 ±0.9 ±0.7 ±0.8 ±0.9 ±0.8 ±0.9 ±1.0 ±1.1 ±0.7 ±1.3 ±1.6

psortPos

93.6 93.3 92.9 93.5 93.1 93.7 93.0 92.0 90.2 93.6 89.7 87.4

±2.3 ±2.5 ±2.5 ±2.2 ±2.4 ±2.3 ±2.5 ±3.0 ±2.9 ±2.3 ±3.4 ±3.2

plant

95.1 95.2 94.5 95.4 95.0 95.0 94.9 93.8 92.8 95.3 91.2 80.6

±1.6 ±1.5 ±1.7 ±1.4 ±1.6 ±1.9 ±1.6 ±1.6 ±1.5 ±1.5 ±1.5 ±1.4

Radius-MKL achieve better classification performance. This result implies
that TrSt and Radius normalization is superior to the widely used TrK
normalization.

4.3 Experiment on Protein Subcellular Localization Dataset

We apply the above MKL algorithms into the protein subcellular localization
which places an important role in protein function prediction and protein inter-
actions. Three protein subcellular localization data sets including plant, PsortPos
and PsortNeg have been widely used as MKL benchmark data sets [15,5], where
69 base kernels: two kernels on phytogenetic trees, three kernels from BLAST
E-values, and 64 sequence motif kernels are constructed.

The experimental results are given in Table 2, from which we observe that

– Though the difference among the compared MKL algorithms is marginal,
the proposed TrSt-MKL and RMKL [3] achieve the best performance on
all three data sets in terms of both classification accuracy and mAP, which
validate the necessity of radius incorporation.

– Among the proposed radius-incorporation approaches, the TrSt-MKL ob-
tains the best performance, which coincides with the practical consideration
in [15,5], where the multiplicative normalization is employed. In essence,
our proposed radius-incorporated MKL framework provide an explanation
for the effectiveness of multiplicative normalization from the perspective of
minimizing the radius-margin bound.

4.4 Experiments on Oxford Flower17 Dataset

We compare the abovementionedMKL algorithms onOxfordFlower17,which has
been widely used as aMKL benchmark data set [8]. There are seven heterogeneous
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Table 3. Performance comparison with statistical test on Oxford Flower17 data set

Proposed SimpleMKL MBMKL RMKL �p-MKL [5] MK-FDA
UWMKL Single

TrK TrSt Radius [11] [4] [3] p = 4/3 p = 2 p = 4 [14]

ACC

84.7 86.3 85.9 83.2 86.3 84.3 84.6 84.7 84.8 82.4 84.8 70.4

±2.2 ±1.6 ±1.9 ±1.4 ±2.0 ±2.1 ±2.0 ±1.8 ±1.7 ±2.1 ±1.7 ±3.8

mAP

90.0 91.5 91.3 88.9 91.5 90.1 90.0 90.0 90.0 90.1 90.0 75.3

±0.9 ±0.9 ±0.9 ±1.0 ±1.0 ±1.0 ±1.0 ±1.0 ±1.0 ±1.0 ±1.1 ±2.9

data channels available for this data set. For each data channel, four types of ker-
nels are applied: Gaussian kernel (i.e., k(xi,xj) = exp (−‖xi − xj‖2/σ)), Lapla-
cian kernel (i.e., k(xi,xj) = exp (−‖xi − xj‖/

√
σ)), inverse square distance ker-

nel (i.e., k(xi,xj) = 1
‖xi−xj‖2/σ+1 ), and inverse distance kernel (i.e., k(xi,xj) =

1
‖xi−xj‖/

√
σ+1

), where σ is the kernel parameter. They represent different ways to

utilize the dissimilar matrix provided in [8,9]. In our experiments, 3 kernel parame-
ters 2tσ0 (t ∈ {−1, 0, 1}) are employed for each type of kernel, where σ0 is set to be
the averaged pairwise distance. In this way, we generate 84 (7× 4× 3) base kernels
(12 base kernels for each data source), and use them for all the MKL algorithms
compared in our experiment.

The results on Oxford Flower17 is given in Table 3, from which we observe that
the radius incorporated MKL algorithms including TrSt-MKL, Base Radius-
MKL and MBMKL [4] significantly outperform other margin based MKL algo-
rithms. Specifically, both TrSt-MKL and MBMKL achieve 1.5% achievement
over �4-MKL, which achieves the best results among the margin based MKL
algorithms. Similar results can also be observed in terms of mAP.

4.5 Experiments on Caltech101 Dataset

The Caltech101 MKL data set is a group of kernels derived from various visual
features computed on the Caltech-101 object recognition task, where 15 training
and 15 test examples are available for each object class. It is a MKL benchmark
data set and is used here to evaluate the performance of the above MKL al-
gorithms. Twenty-five image descriptors are extracted, including pixels, SIFT,
PHOW (Pyramid Histogram Of visual Words), PHOG (Pyramid Histogram Of
Gradients), Geometric Blur, the bio-inspired “Sparse Localized Features”, V1-
like features, and high-throughput bio-inspired features. This data set includes
the kernels computed with the above features for five random splits of training
and test sets.

We train and test the above 12 MKL algorithms on the pre-defined training
and test sets and the experimental results are given in Table 4. From which, we
again observe that our proposed TrSt-MKL gains 3.5% improvement in terms
of classification accuracy over �2-MKL, which achieves the best results among
the margin-based MKL algorithms. Besides, compared with the best margin
based MKL algorithm, a 3.7% improvement is achieved in terms of mAP by the
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Table 4. Performance comparison with statistical test on Caltech101 data set

Proposed SimpleMKL MBMKL RMKL �p-MKL [5] MK-FDA
UWMKL Single

TrK TrSt Radius [11] [4] [3] p = 4/3 p = 2 p = 4 [14]

ACC

64.0 68.5 67.4 63.7 68.3 64.8 65.0 65.2 65.1 60.4 65.0 60.7

±1.3 ±1.1 ±1.5 ±1.3 ±1.2 ±1.7 ±1.4 ±1.5 ±1.5 ±1.1 ±1.5 1.5

mAP

66.1 71.1 69.2 65.7 70.3 66.8 67.4 67.4 67.4 64.3 67.4 64.8

±0.7 ±0.8 ±0.9 ±0.8 ±0.6 ±0.9 ±1.0 ±1.1 ±1.1 ±0.6 ±1.1 ±1.2

proposed TrSt-MKL. All experimental results together demonstrate the effec-
tiveness of the radius-based MKL algorithms.

Based on the experimental results on Protein Fold Prediction, Protein Subcel-
lular Localization, Oxford Flower17, Caltech101 data sets, we have the following
remarks:

– It has been validated that the proposed TrSt-MKL is usually able to achieve
the best classification performance and least computational efficiency. By
taking both classification performance and computational efficiency into con-
sideration, it is clearly the best one. Actually, TrSt

n is an approximation of
the radius of MEB by assigning the treating each training sample equally,
which can usually achieve more stable and better performance. More detail
relationship between TrSt-MKL and the radius of MEB is referred to [12].

– The proposed TrSt-MKL usually achieves stable performance than TrK-
MKL and Radius-MKL. This implies that the multiple normalization on base
kernels should be used, other than the commonly used trace normalization
in existing MKL literature.

– Among the proposed three radius-incorporated MKL algorithms, only the
objective of Radius-MKL is an upper bound of generalization error. However,
it does not imply the best results can be obtained by this algorithm. Instead,
TrSt-MKL is usually achieving better results.

5 Conclusion

In this paper, we propose a radius-incorporated MKL framework in which the
margin between classes and the radius of minimum hyper-sphere enclosing all
training samples are both considered in the objective functions. We theoreti-
cally show the proposed framework can be equivalently rewritten as the existing
margin based MKL optimization problem, with only one difference being that
a weighted norm constraint is adopted to encode the radius information. This
finding connects the radius-incorporation issue and the base kernel normalization
issue, which is paid little attention in existing MKL literature. Our framework in-
deed provides an explanation for existing base kernel normalization approaches,
which is a pre-procession step in existing MKL literature, from minimizing gen-
eralization error bound perspective. Extensive experiments have been conducted
on several benchmark datasets. As experimentally demonstrated, our algorithm
gives the overall best classification performance among the compared algorithms.
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Ayguadé, Eduard 192
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Dombi, József 182

Endo, Yasunori 122, 135, 145

Gosztolya, Gábor 182
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