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Abstract. In this paper, we study iSMS-EMOA, a recently proposed
approach that improves the well-known S metric selection Evolution-
ary Multi-Objective Algorithm (SMS-EMOA). These two indicator-based
multi-objective evolutionary algorithms rely on hypervolume contribu-
tions to select individuals. Here, we propose to define a probability of
using a randomly selected individual within the iSMS-EMOA’s selec-
tion scheme. In order to calibrate the value of such probability, we use
the EVOCA tuner. Our preliminary results indicate that we are able to
save up to 33% of computations of the contribution to hypervolume
with respect to the original iSMS-EMOA, without any significant qual-
ity degradation in the solutions obtained. In fact, in some cases, the
approach proposed here was even able to improve the quality of the
solutions obtained by the original iSMS-EMOA.

Keywords: Multi-objective evolutionary algorithms · Tuning · Hyper-
volume contribution

1 Introduction

Many optimization problems involve the simultaneous optimization of several
objectives. They are known as multi-objective optimization problems (MOPs) and
in them, the notion of optimality refers to the best possible trade-offs among
the objectives. Consequently, there is no single optimal solution but a set of
solutions (the so-called Pareto optimal set whose image is called the Pareto
front). The use of Multi-Objective Evolutionary Algorithms (MOEAs) to solve
MOPs has become increasingly popular. In recent years, MOEAs based on the
hypervolume indicator (IH) have become relatively popular. This is due to two
main reasons: first, the use of Pareto-based selection has several limitations1.
And, second, IH has interesting mathematical properties. For example, it is
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1 Thenumber of non-dominated solutions grows exponentially aswe increase the number
of objective functions, and this rapidly dilutes the selection pressure of a MOEA [4].
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the only unary indicator which is known to be “Pareto compliant” [10]. IH
was originally proposed by Zitzler and Thiele in [9], and it is defined as the
size of the space covered by the Pareto optimal solutions. IH rewards conver-
gence towards the Pareto front as well as the maximum spread of the solutions
obtained. Fleischer proved in [5] that, given a finite search space and a reference
point, maximizing the hypervolume indicator is equivalent to finding the Pareto
optimal set. However, IH has one important disadvantage: its high computa-
tional cost. The “S metric selection Evolutionary Multi-Objective Algorithm
(SMS-EMOA)” [3] is currently, the most popular MOEA based on IH and it
works as follows: it creates only one individual by iteration. After that, it applies
Pareto ranking. If the last front has more than one individual, SMS-EMOA
deletes the individual with the worst contribution to IH . SMS-EMOA is imprac-
tical when we want to solve MOPs with many objectives because if all individuals
are non-dominated, it needs to compute the contribution to IH of all individuals
and we know that this task is computational expensive (the calculation of the
minimal contribution to IH is an NP-hard [1] problem). Recently, in [7] authors
proposed a selection scheme based on IH and its locality property giving rise
to an improved version of SMS-EMOA called iSMS-EMOA. With this scheme,
the new individual only competes with two other individuals of the population:
its nearest neighbor and a randomly selected individual. This scheme allows a
significant reduction in the running time. However, in [7], it was noted that the
use of the randomly selected individual is not necessary in all iterations and it
was left as future work to identify the cases in which it is required. In this paper,
we propose to define a probability of use of the randomly selected individual
which is automatically adjusted using the EVOCA tuner [8] with the two fol-
lowing aims: to maximize IH and to minimize the running time (reducing the
number of computations of the contribution to IH). This is clearly a MOP, but
with a clear order of preference: we aim to reduce the number of computations
of the contribution to IH without affecting the quality of the solutions. Thus, we
decided to solve it using the ε-constraint method. Let A be the approximation of
the Pareto optimal set obtained by the iSMS-EMOA algorithm and prsi be the
probability of use of the randomly selected individual. First, we calibrate prsi,
maximizing IH(A). After that, we calibrate prsi, minimizing the running time
required by the iSMS-EMOA algorithm in order to obtain A, having as a con-
straint: IH(A) > maxIH − ε, where maxIH is the maximum hypervolume found
in the previous step and ε is a tolerance. We will show how this scheme produces
savings of up to 33% of computations of the contribution to IH (with respect to
the original iSMS-EMOA) without losing quality in the solutions obtained. In
fact, we will see how, in some cases, we can even improve the quality of A with
respect to IH when using our proposed approach.

The remainder of this paper is organized as follows: Section 2 states the
problem of our interest and provides some basic definitions. The original iSMS-
EMOA is described in Section 3. Our proposal is discussed in Section 4 and it
is validated in Section 5. Finally, we provide our conclusions and some possible
paths for future work in Section 6.
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2 Basic Definitions and Problem Statement

We are interested in the general MOP, which is defined as follows: Find x ∗ =
[x∗

1, x
∗
2, . . . , x

∗
n]T which optimizes

f(x ) = [f1(x ), f2(x ), . . . , fk(x )]T (1)

such that x ∗ ∈ Ω, where Ω ⊂ R
n defines the feasible region of the problem.

Assuming minimization problems, we have the following definitions.

Definition 1. We say that a vector x = [x1, . . . , xn]T dominates vector y =
[y1, . . . , yn]T , denoted by x ≺ y, if and only if fi(x) ≤ fi(y) for all i ∈ {1, ..., k}
and there exists an i ∈ {1, . . . , k} such that fi(x) < fi(y).

Definition 2. For a given MOP, f(x), the Pareto optimal set is defined as:
P∗ = {x ∈ Ω|¬∃y ∈ Ω : y ≺ x}.
Definition 3. Let f(x) be a given MOP and P∗ the Pareto optimal set. Then,
the Pareto Front is defined as: PF∗ = {f(x) | x ∈ P∗}.
Definition 4. If Λ denotes the Lebesgue measure, the hypervolume indicator
(IH) is defined as:

IH(A,yref ) = Λ

⎛
⎝ ⋃

y∈A
{y′ | y < y′ < yref}

⎞
⎠ (2)

where yref ∈ R
k denotes a reference point that should be dominated by all the

Pareto optimal points.

Definition 5. The contribution to IH of a solution x is defined as:

CH(x,A) = IH(A,yref ) − IH(A \ x,yref ) (3)

where x ∈ A. Then, the contribution of x is the space that is only covered by x.

3 iSMS-EMOA

The Improved S Metric Selection Evolutionary Multi-Objective Algorithm (iSMS-
EMOA) [7] works as follows: First, it creates an initial population. After that,
only one individual is created at each iteration using the operators of the NSGA-
II (crossover and mutation). Let xnew be the new individual and A be the current
population. We calculate the Euclidean distance of xnew to each solution in A and,
we choose the nearest solution xnear. These two solutions (xnew and xnear) com-
pete to survive. The core idea is to move a solution within its neighborhood with
the aim of improving its contribution to IH (locality property). It is important to
consider the case in which xnew is located in an unexplored region. In this case, it
is not a good idea to remove xnew or xnear. To address this problem, the authors
proposed to choose (randomly) another solution, x rand, such that x rand ∈ A and
x rand �= xnear. This is considering that the probability of choosing a solution in a
crowded region is high and the probability of choosing a solution in an unexplored
region is low. Then, x rand, xnew and xnear will compete to survive.
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4 Our Proposed Approach

We propose here to use a probability which enables us to decide when to incor-
porate the randomly selected individual into iSMS-EMOA. The new algorithm is
called “improved S metric selection Evolutionary Multi-Objective Algorithm II
(iSMS-EMOA II)”, see Algorithm 1. The only difference between iSMS-EMOA
and iSMS-EMOA II is that now, we flip a coin to decide if we use the randomly
selected individual at each iteration, see Algorithm 1, line 6. Setting the value of
prsi is not trivial: large values will lead to a waste of computational effort for cal-
culating hypervolume contribution of solutions that won’t be eliminated. On the
other side, small values of prsi can decrease the diversification ability of the algo-
rithm, reducing its capacity to generate solutions in specific zones of Pareto front.

For calibrating prsi, we used the EVOCA [8] tuner. This is an evolutionary
algorithm that works with a population of parameter calibrations. The population
size is computed considering the number of parameters and their domain sizes.
The key idea is to include all the values allowed for each parameter, in an inde-
pendent way, on the first population. EVOCA uses two transformation operators.
First, it adopts a crossover operator (wheel-crossover) that constructs one cali-
bration from the whole population. The child calibration generated replaces the
worst calibration on the current population. Second, it adopts a mutation opera-
tor which is a hill climbing first improvement procedure that takes a copy of the
child generated by the crossover operator and tries to improve it by modifying one
of its parameter values. In case of a numerical parameter, it will try to randomly
take a new value from the parameter interval, regarding it as a continuous range.
The calibration generated by applying mutation replaces the second worst cali-
bration on the current population, when a better individual is found. Algorithm 2
shows the EVOCA structure. We have considered two scenarios to calibrate prsi:
first, we maximize the hypervolume of the approximation of the Pareto optimal
set obtained by iSMS-EMOA II for a given MOP. And, second, we minimize the
number of computations of the contribution to IH required by iSMS-EMOA II
to obtain the approximation of the Pareto optimal set of that MOP, avoiding to
affect the value of the hypervolume obtained before.

4.1 Scenario 1: Maximizing the Hypervolume Indicator

In this part, we calibrate the probability prsi, solving the following problem:

max IH(A) (4)

where A is the approximation of the Pareto optimal set obtained by iSMS-EMOA
II for a given MOP.

Setting EVOCA for iSMS-EMOA II in Scenario 1. For applying EVOCA
in this scenario, we need to define the following criteria:
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Algorithm 1. iSMS-EMOA II
Input : MOP to be solved.
Output: The approximation of the Pareto optimal set (A).

1 Generate a random initial population (A);
2 while Stopping criterion is not met do
3 Select randomly two individuals from A (x 1 and x 2);
4 Obtain an offspring (xnew) from x 1 and x 2, applying the operators of

NSGA-II (crossover and mutation);
5 near ← Index of the nearest neighbor to xnew in A;
6 if random(0, 1) < prsi then
7 rand ← Integer random number between 1 and |A| (such that

near �= rand);
8 Calculate the contribution to IH of xnew, xnear and x rand;
9 if CH(xnew,A) is better than CH(xnear,A) or CH(xrand,A) then

10 if CH(xnear,A) < CH(xrand,A) then
11 Replace xnear with xnew;
12 else
13 Replace x rand with xnew;
14 end

15 end

16 else
17 Compute the contribution to IH of xnew and xnear;
18 if CH(xnew,A) > CH(xnear,A) then
19 Replace xnear with xnew;
20 end

21 end

22 end
23 return A;

Algorithm 2. EVOCA
Input : Definition of parameters for target algorithm M
Output: Set of best performing parameter calibrations for M

1 Generate initial population (P);
2 while Stopping criterion is not met do
3 child ← wheel-crossover(P );
4 Evaluate child using R random seeds ;
5 Replace worst calibration in P by child ;
6 mutated child ← mutation(child) ;
7 Evaluate mutated child using R random seeds;
8 if mutated child is better than child then
9 Replace the second worst calibration in P by mutated child;

10 end

11 end
12 return P;
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– When do we consider a parameter calibration to be better than another one?
In this case, EVOCA takes into account one criterion to evaluate each param-
eter calibration for iSMS-EMOA II. One calibration c′ is considered better
than another c, in the case in which the use of c′ in iSMS-EMOA II provides
a higher hypervolume than the use of c.

– A parameter precision level for the initial population: Here, the initial preci-
sion must be defined for parameter prsi. It is important to remark that EVOCA
is able to increase this precision during the calibration process using the muta-
tion operator, which selects values from an interval. Thus, this precision is only
considered to generate the initial EVOCA’s population.

– Which is the result of the calibration? The best calibration that belongs to
the final EVOCA’s population is the one with the best hypervolume value.

4.2 Scenario 2: Minimizing the Number of Calculations of the
Contribution to IH

In this part, we are interested in minimizing the number of calculations of the
contribution to IH required by iSMS-EMOA II without losing too much quality
in the solutions. For this, we calibrate prsi, solving the following problem:

min(Time required to obtain A) such that IH(A) > maxIH − ε (5)

where A is the approximation of the Pareto optimal set obtained by iSMS-EMOA
II for a given MOP; maxIH is the maximum hypervolume obtained when we solve
eq. (4) and ε is a tolerance.

Setting EVOCA for iSMS-EMOA II in Scenario 2. For applying EVOCA
in this scenario, we need to define the following criteria:

– When do we consider a parameter calibration to be better than another one?
In this case, EVOCA takes into account two criteria to evaluate each param-
eter calibration for iSMS-EMOA II. One calibration c′ is considered to be
better than another one c, using two objectives: when the use of c′ allows iSMS-
EMOA II to achieve both, that the hypervolume value is higher than the tol-
erance level ε and that a lower running time than when using c is achieved.

– A parameter precision level for the initial population: Here, the initial preci-
sion must be defined for parameter prsi.

– Which is the result of the calibration? The best calibration that belongs to
the final EVOCA’s population is the one with the best hypervolume value.

We note that the tolerance value is used to define a minimum quality of
the calibrations, in terms of hypervolume respect to the quality obtained with
the iSMS-EMOA II when solving eq. 4. For our experiments, we considered a
tolerance of 1%.
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5 Experimental Results

To measure the performance of iSMS-EMOA II, we compare it with respect to the
original iSMS-EMOA2. For our experiments, we used four problems with 3, 4 and
5 objective functions taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ) test
suite [2]. We used k = 5 for DTLZ1 and k = 10 for the remaining test problems.
Also, we used two problems with 3, 4 and 5 objective functions, taken from the
WFG toolkit [6], with k factor = 2 and l factor = 10. We chose these prob-
lems because each of them has a Pareto front with distinct features; and also,
they are scalables with respect to the number of objective functions. For each test
problem, we performed 30 independent runs. For both algorithms, we adopted
the parameters suggested by the authors of NSGA-II: pc = 0.9 (crossover prob-
ability), pm = 1/n (mutation probability), where n is the number of decision
variables. Both for the crossover and mutation operators, we adopted ηc = 15
and ηm = 20, respectively. We performed a maximum of 50,000 fitness func-
tion evaluations (we used a population size of 100 individuals and we iterated for
500 generations). We adopted only IH to validate our results because it rewards
both convergence towards the Pareto front as well as the maximum spread of the
solutions obtained. Also, iSMS-EMOA and iSMS-EMOA II, have as their aim to
maximize the hypervolume and, therefore, it makes sense to use this indicator to
assess their performance. To calculate IH , we used the following reference points:
yref = [y1, · · · , yM ] such that yi = 0.7 for DTLZ1, yi = 1.1 for DTLZ2 and
DTLZ5, yM = 6.1 and yi�=M = 1.1 for DTLZ7. In the case of the WFG test
problems, we generated the reference point using the highest value found for each
objective function taking into account all the outputs of both algorithms.

5.1 Results in Scenario 1

In Table 1(a), we can observe that if the randomly generated individual is always
selected (original iSMS-EMOA), we get better results in most cases. In fact, in
most problems, EVOCA calibrates prsi with high values, e.g., it sets prsi = 1.0 for
DTLZ1 with three objective functions and DTLZ1, DTLZ2, DTLZ5 and WFG1
with four objective functions. This means that in these problems EVOCA sug-
gests to use all the time the randomly selected individual, as in the original iSMS-
EMOA, to maximize IH . For this reason, in these problems, iSMS-EMOA II does
not save computations of the contribution to IH . However, an interesting aspect
is that in some problems this randomly selected individual is not necessary. In
such cases, iSMS-EMOA results can be improved by selecting the randomly gen-
erated individual with a low probability. For example, in DTLZ7 and WFG4 with
three objective functions, a probability prsi = 0.127 and prsi = 0.1, were cal-
ibrated respectively, which allowed us to save up to 30% of computations of the
contribution to IH . In the case of DTLZ7, we can note that iSMS-EMOA II signifi-
cantly outperformed iSMS-EMOA, because it obtained better results, and the null
2 iSMS-EMOA is compared to the original SMS-EMOA in [7], but such comparison was

omitted here due to space limitations.
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Table 1. We show average values over 30 independent runs. Values in parentheses corre-
spond to the standard deviations. P (H) shows the results of statistical analysis applied
to our experiments using Wilcoxons rank sum considering IH . P is the probability of
observing the given result (the null hypothesis is true). Small values of P cast doubt
on the validity of the null hypothesis. H = 1 indicates that the null hypothesis can be
rejected at the 5% level. Both iSMS-EMOA and iSMS-EMOA II were compiled using
the GNU C compiler and they were executed on a computer with a 2.66GHz processor
and 4GB in RAM. (a) shows the results for scenario 1 and in (b) shows the results for
scenario 2.

f prsi

DTLZ1(3) 1.0

DTLZ2(3) 0.7

DTLZ5(3) 0.8

DTLZ7(3) 0.127

DTLZ1(4) 1.0

DTLZ2(4) 1.0

DTLZ5(4) 1.0

DTLZ7(4) 0.3

DTLZ1(5) 0.8

DTLZ2(5) 0.8

DTLZ5(5) 0.8

DTLZ7(5) 0.4

WFG1(3) 0.8

WFG4(3) 0.1

WFG1(4) 1.0

WFG4(4) 0.7

WFG1(5) 0.8

WFG4(5) 0.529

isms-emoa
IH

isms-emoa-ii
IH

0.316985
(0.000066)

0.316998
(0.000046)

0.757890
(0.000100)

0.757863
(0.000075)

0.439350
(0.000017)

0.439342
(0.000020)

1.908824
(0.200002)

2.019564
(0.000926)

0.234451
(0.000018)

0.234446
(0.000019)

1.044211
(0.000159)

1.044281
(0.000159)

0.437073
(0.000308)

0.437056
(0.000318)

0.678273
(0.198672)

0.797852
(0.001903)

0.166731
(0.000011)

0.166733
(0.000008)

1.295672
(0.000166)

1.295508
(0.000201)

0.446086
(0.000612)

0.445896
(0.000756)

0.158271
(0.058981)

0.187287
(0.031902)

21.205641
(0.177134)

21.174222
(0.358121)

29.346993
(0.095911)

29.328283
(0.081647)

88.573606
(0.541177)

88.502834
(0.505897)

301.253225
(1.155539)

301.415556
(1.056422)

114.187823
(0.723549)

114.290414
(0.646247)

3465.333620
(17.840209)

3466.819998
(13.297479)

isms-emoa
Eval CH Savings time

isms-emoa-ii
Eval CH Savings time

150000 -0.00% ≈ 7s
(0.00)

150000 -0.00% ≈ 7s
(0.00)

150000 -0.00% ≈ 7s
(0.00)

135022 -9.99% ≈6s
(95.82)

150000 -0.00% ≈ 8s
(0.00)

140009 -6.66% ≈7s
(96.04)

150000 -0.00% ≈ 7s
(0.00)

106353 -29.10% ≈5s
(68.35)

150000 -0.00% ≈ 76s
(0.00)

150000 -0.00% ≈ 76s
(0.00)

150000 -0.00% ≈ 80s
(0.00)

150000 -0.00% ≈ 80s
(0.00)

150000 -0.00% ≈ 70s
(0.00)

150000 -0.00% ≈ 70s
(0.00)

150000 -0.00% ≈ 49s
(0.00)

114974 -23.35% ≈39s
(86.30)

150000 -0.00% ≈ 1254s
(0.00)

139258 -7.16% ≈1110s
(1773.08)

150000 -0.00% ≈ 1413s
(0.00)

133891 -10.74% ≈1167s
(6474.89)

150000 -0.00% ≈ 1411s
(0.00)

139122 -7.25% ≈1258s
(3351.63)

150000 -0.00% ≈ 518s
(0.00)

120001 -20.00% ≈363s
(125.76)

150000 -0.00% ≈ 8s
(0.00)

140003 -6.66% ≈7s
(88.75)

150000 -0.00% ≈ 8s
(0.00)

104995 -30.00% ≈6s
(74.26)

150000 -0.00% ≈ 95s
(0.00)

150000 -0.00% ≈ 95s
(0.00)

150000 -0.00% ≈ 79s
(0.00)

135003 -10.00% ≈71s
(94.41)

150000 -0.00% ≈ 1411s
(0.00)

119253 -20.50% ≈1268s
(7811.77)

150000 -0.00% ≈ 1305s
(0.00)

126362 -15.76% ≈1164s
(431.92)

P (H)

0.450(0)

0.251(0)

0.062(0)

0.002(1)

0.314(0)

0.183(0)

0.801(0)

0.379(0)

0.378(0)

0.004(1)

0.355(0)

0.325(0)

0.773(0)

0.363(0)

0.652(0)

0.695(0)

0.970(0)

0.784(0)

(a)

f prsi

DTLZ1(3) 0.222

DTLZ2(3) 0.193

DTLZ5(3) 0.148

DTLZ7(3) 0.1

DTLZ1(4) 0.144

DTLZ2(4) 0.075

DTLZ5(4) 0.184

DTLZ7(4) 0.107

DTLZ1(5) 0.24

DTLZ2(5) 0.088

DTLZ5(5) 0.088

DTLZ7(5) 0.1

WFG1(3) 0.4

WFG4(3) 0.1

WFG1(4) 0.149

WFG4(4) 0

WFG1(5) 0.124

WFG4(5) 0.127

isms-emoa
IH

isms-emoa-ii
IH

0.316985
(0.000066)

0.296946
(0.053188)

0.757890
(0.000100)

0.757819
(0.000099)

0.439350
(0.000017)

0.439266
(0.000029)

1.908824
(0.200002)

2.019672
(0.000753)

0.234451
(0.000018)

0.229403
(0.015504)

1.044211
(0.000159)

1.043808
(0.000237)

0.437073
(0.000308)

0.436148
(0.000376)

0.678273
(0.198672)

0.797284
(0.002003)

0.166731
(0.000011)

0.166415
(0.000599)

1.295672
(0.000166)

1.294868
(0.000348)

0.446086
(0.000612)

0.441584
(0.001664)

0.158271
(0.058981)

0.188343
(0.025764)

21.205641
(0.177134)

20.718664
(0.794370)

29.346993
(0.095911)

29.332057
(0.085921)

88.573606
(0.541177)

87.677943
(1.065401)

301.253225
(1.155539)

300.667942
(1.016813)

114.187823
(0.723549)

114.272000
(0.955455)

3465.333620
(17.840209)

3457.761494
(14.631125)

isms-emoa
Eval CH Savings time

isms-emoa-ii
Eval CH Savings time

150000 -0.00% ≈ 7s
(0.00)

111095 -25.94% ≈6s
(85.53)

150000 -0.00% ≈ 7s
(0.00)

109632 -26.91% ≈6s
(99.38)

150000 -0.00% ≈ 8s
(0.00)

107403 -28.40% ≈5s
(96.41)

150000 -0.00% ≈ 7s
(0.00)

104981 -30.01% ≈5s
(49.98)

150000 -0.00% ≈ 76s
(0.00)

107183 -28.54% ≈37s
(97.41)

150000 -0.00% ≈ 80s
(0.00)

103732 -30.85% ≈51s
(53.76)

150000 -0.00% ≈ 70s
(0.00)

109197 -27.20% ≈51s
(79.72)

150000 -0.00% ≈ 49s
(0.00)

105345 -29.77% ≈35s
(75.00)

150000 -0.00% ≈ 1254s
(0.00)

112014 -25.32% ≈657s
(110.94)

150000 -0.00% ≈ 1413s
(0.00)

104408 -30.39% ≈947s
(66.34)

150000 -0.00% ≈ 1411s
(0.00)

104400 -30.40% ≈941s
(55.24)

150000 -0.00% ≈ 518s
(0.00)

104995 -30.00% ≈324s
(84.41)

150000 -0.00% ≈ 8s
(0.00)

120003 -20.00% ≈7s
(123.57)

150000 -0.00% ≈ 8s
(0.00)

109207 -27.20% ≈6s
(79.77)

150000 -0.00% ≈ 95s
(0.00)

107450 -28.37% ≈73s
(66.60)

150000 -0.00% ≈ 79s
(0.00)

99999 -33.33% ≈48s
(0.00)

150000 -0.00% ≈ 1411s
(0.00)

106165 -29.22% ≈935s
(156.71)

150000 -0.00% ≈ 1305s
(0.00)

106336 -29.11% ≈898s
(87.78)

P (H)

0.000(1)

0.011(1)

0.000(1)

0.000(1)

0.000(1)

0.000(1)

0.000(1)

0.830(0)

0.000(1)

0.000(1)

0.000(1)

0.059(0)

0.005(1)

0.684(0)

0.000(1)

0.013(1)

0.290(0)

0.185(0)

(b)
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hypothesis “medians are equal” in the statistical analysis (see column P (H)) can
be rejected. In the remaining problems, the “null hypothesis” cannot be rejected,
and then, both algorithms have a similar behavior. However, it is important to
note that iSMS-EMOA II saved computations of the contribution to IH in many
problems without losing quality in their solutions.

5.2 Results in Scenario 2

In Table 1(b), we can observe that iSMS-EMOA II was able to save from 20% to
33% of computations of the contribution to IH in all test problems and as the num-
ber of objective functions increases, a bigger impact in the running time can be
observed (e.g., in DTLZ1 with five objective functions iSMS-EMOA-II decreases
the running time in 9.9 minutes). Regarding the quality of the solutions, we can
note that in five test problems both algorithms have a similar behavior because
the null hypothesis “medians are equal” cannot be rejected. In one test problem,
iSMS-EMOA II outperformed the original iSMS-EMOA and it saved 30% of com-
putations of the contribution to IH . In twelve cases, the original iSMS-EMOA
outperformed iSMS-EMOA II. However, in this scenario the main objective is to
minimize the computations of the contribution to IH without losing more than an
epsilon (ε) of quality in the solutions regarding IH .

6 Conclusions and Future Work

We have proposed to define a probability of use for the randomly selected indi-
vidual adopted by iSMS-EMOA, with the aim of saving calculations of the con-
tribution to IH . To set this probability, we used the ε-constraint method and the
EVOCA tuner. Our preliminary results show that savings of up to 33% of compu-
tations of the contribution to IH can be obtained. From the point of view of the
tuner algorithm, it was able to successfully deal with two different objectives in
the process of selecting good performing calibrations. This indicates the suitability
of this tuner for calibrating an indicator-based multi-objective evolutionary algo-
rithm and motivates the incorporation of this approach on other MOEAs that use
indicator-based selection or decomposition schemes.
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