
Content-Based Recommender Systems +
DBpedia Knowledge = Semantics-Aware

Recommender Systems

Pierpaolo Basile(B), Cataldo Musto, Marco de Gemmis, Pasquale Lops,
Fedelucio Narducci, and Giovanni Semeraro

Department of Computer Science, University of Bari Aldo Moro,
Via E. Orabona 4, 70125 Bari, Italy

{pierpaolo.basile,cataldo.musto,marco.degemmis,pasquale.lops,
fedelucio.narducci,giovanni.semeraro}@uniba.it

Abstract. This paper provides an overviewof theworkdone in theESWC
Linked Open Data-enabled Recommender Systems challenge, in which we
proposed an ensemble of algorithms based on popularity, Vector Space
Model, Random Forests, Logistic Regression, and PageRank, running on
a diverse set of semantic features. We ranked 1st in the top-N recommen-
dation task, and 3rd in the tasks of rating prediction and diversity.

1 Introduction and Description of the Challenge

Over the last years, more and more semantic data are published following the
Linked Data principles. These datasets, interlinked with each other, form a global
graph, called Linked Open Data (LOD) cloud. In the context of recommender
systems, this data might be useful to interlink information about users, items,
and their relations. The challenge is to investigate whether and how this large
amount of linked knowledge may help to mitigate the cold-start and the data
sparsity problems. This was the primary goal of the LOD-enabled Recommender
Systems challenge, aiming to show how LOD can boost the creation of a new
breed of knowledge-enabled and content-based recommender systems. The con-
test consisted of 3 tasks: Task 1: Rating Prediction in Cold-start Situations, i.e.
when users have a few past ratings, and when items have been rated by a few
users; Task 2: Top-N Recommendation from Binary User Feedback, i.e. gener-
ating ranked lists of items for which only binary ratings are available; Task 3:
Diversity, i.e. evaluation of both accuracy of the recommendation list, and diver-
sity of items in the list (in terms of Intra-List Diversity - ILD). Given the domain
of books, diversity is measured with respect to the properties: http://dbpedia.
org/ontology/author and http://purl.org/dc/terms/subject.

The dataset used is DBbook, which contains user data and preferences
retrieved from the Web in the book domain. Each book is mapped to the corre-
sponding DBpedia URI. The mapping contains 8,170 DBpedia URIs, which can
be used to extract features from datasets in the LOD cloud. The training set

c© Springer International Publishing Switzerland 2014
V. Presutti et al. (Eds.): SemWebEval 2014, CCIS 475, pp. 163–169, 2014.
DOI: 10.1007/978-3-319-12024-9 21

http://dbpedia.org/ontology/author
http://dbpedia.org/ontology/author
http://purl.org/dc/terms/subject

164 P. Basile et al.

for Task 1 contains 75,559 ratings (scale 0–5) provided by 6,181 users on 6,166
items which have been rated by at least one user. The training set for Task 2 and
Task 3 contains 72,372 binary ratings provided by 6,181 users on 6,733 items.

2 Description of the UNIBA Approach

2.1 Methods

The methodology adopted by UNIBA is based on a blend of the following meth-
ods/algorithms to face the three different tasks of the challenge:

(1) Popularity: item-based popularity recommender, where the popularity of
an item is computed as the ratio between the number of positive ratings and
the total number of ratings (positive and negative) it received by all users.

(2) enhanced Vector Space Model (eVSM) with negation: content-based
recommender based on an incremental dimensionality reduction technique
called Random Indexing. Details about the approach are in [4], in which a
negation operator [6] is adopted to represent negative preferences, besides
positive ones.

(3) PageRank with Priors: widely used method to obtain an authority score
for a node based on the network connectivity, in which a non-uniform per-
sonalization vector may be used for assigning different weights to different
nodes [3].

(4) Random Forests (RF) [1]: ensemble learning method used for classifica-
tion or regression, which combines different tree predictors constructed using
different samples of the training data and random subsets of the data fea-
tures.

(5) Logistic Regression (LR): supervised learning method for classification
which builds a linear model based on a transformed target variable.

2.2 Data Model

The above mentioned methods used a combination of the following features:

(1) Keywords: we processed the book descriptions extracted from Wikipedia.
Stopwords were removed, and keywords were stemmed. For books not existing
in Wikipedia, we processed the DBpedia abstracts.

(2) Tagmeconcepts:Tagme [2] implements an anchor disambiguation algorithm
toproduce aWikipedia-based representation of text fragments,where themost
relevant concepts occurring in the text are mapped to the Wikipedia articles
(i.e. DBpedia nodes) they refer to. Tagme performs a sort of feature selec-
tion by filtering out the noise in text fragments, and its main advantage is the
ability to annotate very short texts. As an example, the resulting representa-
tion obtained for the book The Great and Secret Show is: Dead letter office,
Nebraska, New Mexico, Quiddity, Ephemeris, Narcissistic personality disor-
der, Nuncio, California, Rape. Interestingly, the technique is able to associate
several concepts which are somehow related to the book, and which could be
useful to provide accurate and diverse recommendations, as well.

Content-Based Recommender Systems 165

(3) DBpedia properties: for each book, we selected the following 10 most fre-
quent properties inDBpedia (http://dbpedia.org/ prefix removed for brevity):
(1) ontology/wikiPageWikiLink, providing the link from a Wikipedia page
to another Wikipedia page. This property allows to take into account other
Wikipedia pages which are somehow related; (2) http://purl.org/dc/terms/
subject, providing the topic of a book; (3) property/genre, providing the
genre of a book; (4) property/publisher, providing the publisher of a book;
(5) ontology/author, providing the author of a book; (6) property/followed
By, providing the book followed by a specific book; (7) property/precededBy,
providing the book preceded by a specific book; (8) property/series, provid-
ing the series of a book; (9) property/dewey, providing the Dewey Decimal
library Classification code; and (10) ontology/nonFictionSubject provid-
ing the subject of a non-fiction book (e.g.: history, biography, cookbook, ...).
PageRank with Priors is performed (for each single user) using graphs with
different sets of nodes. Initially, only users, items and links represented by the
positive feedback are included; next, we enriched the graph with the 10 prop-
erties extracted from DBpedia. Then, we ran a second level expansion stage of
the graph to retrieve the following additional resources: (1) internal wiki links
of the new added nodes; (2) more generic categories according to the hierar-
chy in DBpedia; (3) resources of the same category; (4) resources of the same
genre; (5) genres pertaining to the author of the book; (6) resources written
by the author; and (7) genres of the series the book belongs to.

The graph is pruned by removing nodes which are neither users nor books hav-
ing a total number of inlinks and outlinks less than 5, and eventually consisted of
340,000 nodes and about 6 millions links.

3 Experimental Evaluation

3.1 Task 1: Rating Prediction in Cold-Start Situations

We ranked 3rd in Task 1 using a linear combination of the following algorithms,
by obtaining a RMSE equal to 0.8742:

Random Forests, using 2,500 trees, and Tagme concepts as features, along with
DBpedia properties described in Sect. 2.2. We adopted the implementation pro-
vided by the Weka library (www.cs.waikato.ac.nz/ml/weka/).

Logistic Regression, using the following features: number of positive, negative
and total feedbacks provided by the users (items), ratio between positive (nega-
tive) and total number of feedbacks provided by the users (items), stems extracted
by the item descriptions, DBpedia properties (Sect. 2.2), and Tagme concepts. As
regards the last three sets of features, their value is the number of occurrences
of that feature. Each example, represented using more than 220,000 features, is
labelled with the rating provided by that specific user for that specific item. All
the features were normalized in the [0,1] interval. We adopted the implementation
provided by Liblinear1. RF and LR ranked items according to the class probability.
1 http://www.csie.ntu.edu.tw/∼cjlin/liblinear/

http://dbpedia.org/
http://purl.org/dc/terms/subject
http://purl.org/dc/terms/subject
www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/

166 P. Basile et al.

Combination of baseline predictors, i.e. user/item average rating.
Since 520 out of 6,181 users did not have positive ratings in the training set, we

assigned as positive feedback the 5 most popular items (5 is the average number of
users’ positive ratings in the dataset). Results for Task 1 are reported in Table 1.
The weights used in the linear combination (0.2 to RF, 0.2 to the baseline predic-
tors and 0.6 to LR) are selected to maximize performance on testing data, without
the use of a validation set.

Table 1. Results for Task 1.

RF LR Baseline predictors Linear combination

RMSE 0.9285 0.8915 0.8945 0.8742

3.2 Task 2: Top-N Recommendation from Binary User Feedback

We ranked 1st in Task 2 by blending together the following five different algo-
rithms, using the Borda count aggregation method:

eVSM: we implemented a content-based recommender as described in [4]. The
best result was obtained using Tagme concepts as features, 500 as the context vec-
tors dimension, and the negation operator for negative users’ preferences.

Popularity: simple baseline as described in Sect. 2.1, which recommends items
by ranking them according to their popularity (in decreasing order).

Random Forests: we used 5,000 trees and the same features as in Task 1.

PageRank with Priors: a different configuration of weights is assigned to the
nodes. Generally, the prior probability assigned to each node is evenly distributed
(1
N , where N is the number of nodes). We assigned a higher weight to some nodes

according to the user profile. More specifically, 80% of the weight is evenly distrib-
uted among books liked by the users (0 assigned to books disliked by the users), and
20% of the weight is evenly distributed among the remaining nodes. The damping
factor of PageRank was set to 0.85. Both weights and damping factor are chosen
after a tuning step on a subset of the training data. The PageRank computed for
each node is used to rank the items in the test set. We adopted the implementation
of PageRank provided by the Jung library2.

LogisticRegression: the configuration is as in Task 1. The only difference is that
each example is labelled with the binary feedback provided by that specific user
for that specific item.

Similarly to Task 1, RF and LR ranked items according to the probability of the
class, and the 5 most popular items are used for users with no positive ratings in
the training set. Table 2 reports the performance of the single methods, eventually
aggregated using the linear combination and Borda count. As regards the linear
2 jung.sourceforge.net

http://jung.sourceforge.net

Content-Based Recommender Systems 167

Table 2. Results for Task 2.

eVSM Popularity RF PageRank LR Linear Comb. Borda

Pr@5 0.6195 0.6431 0.6260 0.6433 0.6445 0.6568 0.6586

Re@5 0.4688 0.4875 0.4751 0.4871 0.4888 0.5009 0.5048

F1@5 0.5337 0.5546 0.5402 0.5544 0.5560 0.5684 0.5715

combination, we assigned 0.1 to eVSM, 0.2 to the popularity baseline and to LR,
and finally 0.25 to RF and Page Rank. As for Task 1, the weights were set after a
rough tuning.

In Borda count, each item in a ranked list produced by each single method is
awarded with a score given according to its position in that list. The lower the item
position in the list, the smaller the score. The final score of each item is obtained by
summing all the single scores, and this allows to produce the aggregated ranking
(in decreasing score value). The single scores in the sum were weighed in order to
boost some single methods (weights are reported in parenthesis). As for Task 1,
weights are chosen to maximize performance on testing data.

3.3 Task 3: Diversity

We ranked 3rd in the Task 3 by using the PageRank with Priors algorithm, run-
ning on the graph described in Sect. 2.2. We assigned a higher weight to some
nodes according to the user profile, and to a heuristic of diversity. More specif-
ically, 80% of the weight is evenly distributed among books liked by the users
(0 for books disliked by the users), 10% of the weight is evenly distributed between
all the nodes which are not books, and 10% of the weight is proportionally distrib-
uted among the remaining books (not rated as positive or negative) according to
a diversity score computed for each item. The diversity score of each item itj with
respect to the profile ui of the user i is computed in order to take into account both
the similarity of, and the novelty between the user profile and the item. Let Ui the
set of DBpedia properties of items liked by the user i, and Ij the set of DBpedia
properties of itj . The similarity is computed as the Jaccard index between Ui and
Ij , while the novelty is the ratio between the cardinality of Ij\Ui (i.e. the set of
features of Ij different from those of items liked by the user), and the cardinality
of Ij . If the item has features not overlapping with those occurring in the user pro-
file, the similarity is equal to 0, and the novelty is equal to 1. The diversity score
is an average between similarity and novelty. Weighing more those items with a
higher diversity score allows to impose a bias to the PageRank towards items dif-
ferent from the user profile. The final score computed by the PageRank for each
node is used to rank the nodes. Then, the top-20 (book) nodes are selected, as
requested by the task. The results obtained by our algorithm are: F@20 = 0.0481
(Pr@20 = 0.0319, Re@20 = 0.0977), and ILD@20 = 0.4717.

168 P. Basile et al.

4 Discussion

An important outcome of our participation to the challenge is that it was not pos-
sible to face all the different tasks using just a single method. We ran hundreds of
experiments using different algorithms and features. Results are not reported in
the paper due to space limitation, but allow to draw important conclusions. Very
simple algorithms based on Vector Space Model and probabilistic models (BM25
and Divergence from Randomness) have performance comparable to more com-
plex algorithms, when fed with semantic features coming from the LOD cloud.
The usefulness of the semantic features is also evident when using recommenda-
tion algorithms based on classifiers, such as RF or LR, in which the best results
were obtained using features based on DBpedia properties and Tagme concepts.
The use of LOD also helps to diversify the results, due to the wealth of relations
taken into account in the recommendation process. To sum up, there is an empiri-
cal evidence of the potential of the LOD to define advanced semantic recommender
systems, even though it is necessary to investigate innovative ways to leverage this
huge amount of knowledge. When compared to (few) previous attempts to use
LOD to build recommender systems, the novelty of our methods relies on 1) the
use of entity linking approaches, such as Tagme, which represents an innovative
way to access DBpedia knowledge, and on 2) the use of domain-specific DBpedia
properties/paths to build the graph model. As to the former aspect, the typical
way to define an entry point to DBpedia is to identify the URIs corresponding to
items (books for example) and extract the corresponding properties. This com-
plex process of mapping may hinder the use of DBpedia; indeed, the organizers of
the challenge explicitly provided a mapping of books to DBpedia URIs. The use
of entity linking algorithms represents a novel way to access the DBpedia knowl-
edge through the analysis of the item descriptions, without exploiting any explicit
mapping of items to URIs. As regards the exploitation of domain-specific proper-
ties/paths in DBpedia, this could allow to fully exploit the semantics of DBpedia
relations, differently from previous approaches based just on link-based measures
built on DBpedia [5].

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
2. Ferragina, P., Scaiella, U.: Fast and accurate annotation of short texts with wikipedia

pages. IEEE Softw. 29(1), 70–75 (2012)
3. Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm for

web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)
4. Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Random indexing and negative

user preferences for enhancing content-based recommender systems. In: Huemer, C.,
Setzer, T. (eds.) EC-Web 2011. LNBIP, vol. 85, pp. 270–281. Springer, Heidelberg
(2011)

Content-Based Recommender Systems 169

5. Passant, A.: dbrec — music recommendations using DBpedia. In: Patel-Schneider,
P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.)
ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010)

6. Widdows, D.: Orthogonal negation in vector spaces for modelling word-meanings and
document retrieval. In: Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, pp. 136–143 (2003)

	Content-Based Recommender Systems + DBpedia Knowledge = Semantics-Aware Recommender Systems
	1 Introduction and Description of the Challenge
	2 Description of the UNIBA Approach
	2.1 Methods
	2.2 Data Model

	3 Experimental Evaluation
	3.1 Task 1: Rating Prediction in Cold-Start Situations
	3.2 Task 2: Top-N Recommendation from Binary User Feedback
	3.3 Task 3: Diversity

	4 Discussion
	References

