
A Hybrid Multi-strategy Recommender System
Using Linked Open Data

Petar Ristoski1(B), Eneldo Loza Menćıa2, and Heiko Paulheim1

1 Research Group Data and Web Science, University of Mannheim,
Mannheim, Germany

{petar.ristoski,heiko}@informatik.uni-mannheim.de
2 Knowledge Engineering Group, Technische Universität Darmstadt,

Darmstadt, Germany
eneldo@ke.tu-darmstadt.de

Abstract. In this paper, we discuss the development of a hybrid multi-
strategy book recommendation system using Linked Open Data. Our
approach builds on training individual base recommenders and using
global popularity scores as generic recommenders. The results of the
individual recommenders are combined using stacking regression and
rank aggregation. We show that this approach delivers very good results
in different recommendation settings and also allows for incorporating
diversity of recommendations.

Keywords: Linked Open Data ·Hybrid recommender systems · Stacking

1 Overall Approach

We propose a hybrid, multi-strategy approach that combines the results of
different base recommenders and generic recommenders into a final recommenda-
tion. A base recommender is an individual collaborative or content based recom-
mender system, whereas a generic recommender makes a recommendation solely
on some global popularity score, which is the same for all users. The approach
has been evaluated on the three tasks of the LOD-enabled Recommender Systems
Challenge 2014 from the domain of book recommendations.1 For base recom-
menders, we use two collaborative filtering strategies (item and user based), as
well as different content-based strategies exploiting various feature sets created
from DBpedia2.

Generic Recommenders. We use different generic recommenders in our app-
roach. First, the RDF Book Mashup dataset3 provides the average score assigned
1 75,559 numeric ratings on 6,166 books (from 0–5, Task 1) and 72,372 binary rat-

ings on 6733 books (Tasks 2 and 3), resp., from 6,181 users for training, and eval-
uation on 65,560 and 67,990 unknown ratings, resp. See http://challenges.2014.
eswc-conferences.org/index.php/RecSys for details.

2 http://dbpedia.org
3 http://wifo5-03.informatik.uni-mannheim.de/bizer/bookmashup/

c© Springer International Publishing Switzerland 2014
V. Presutti et al. (Eds.): SemWebEval 2014, CCIS 475, pp. 150–156, 2014.
DOI: 10.1007/978-3-319-12024-9 19

http://challenges.2014.eswc-conferences.org/index.php/RecSys
http://challenges.2014.eswc-conferences.org/index.php/RecSys
http://dbpedia.org
http://wifo5-03.informatik.uni-mannheim.de/bizer/bookmashup/

A Multi-strategy Recommender System Using Linked Open Data 151

to a book on Amazon. Furthermore, DBpedia provides the number of ingoing
links to the Wikipedia article corresponding to a DBpedia instance, and the num-
ber of links to other datasets (e.g., other language editions of DBpedia), which
we also use as global popularity measures. Finally, SubjectiveEye3D delivers a
subjective importance score computed from Wikipedia usage information.4

Features for Content-Based Recommendation. The features for content-
based recommendation were extracted from DBpedia using the RapidMiner
Linked Open Data extension [8]. We use the following feature sets for describing
a book:

– All direct types, i.e., rdf:type, of a book5

– All categories of a book
– All categories of a book including broader categories6

– All categories of a book’s author(s)
– All categories of a book’s author(s) and of all other books by the book’s authors
– All genres of a book and of all other books by the book’s authors
– All authors that influenced or were influenced by the book’s authors
– A bag of words created from the abstract of the book in DBpedia. That bag of

words is preprocessed by tokenization, stemming, removing tokens with less
than three characters, and removing all tokens less frequent than 3 % or more
frequent than 80 %.

Furthermore, we created a combined book’s feature set, comprising direct types,
qualified relations, genres and categories of the book itself, its previous and
subsequent work and the author’s notable work, the language and publisher,
and the bag of words from the abstract. Table 1 depicts the number of features
in each set.

Besides DBpedia, we made an effort to retrieve additional features from two
additional LOD sources: British Library Bibliography and DBTropes7. Using the
RapidMiner LOD extension, we were able to link more than 90 % of the books
to BLB entities, but only 15 % to DBTropes entities. However, the generated
features from BLB were redundant with the features retrieved from DBpedia,
and the coverage of DBTropes was too low to derive meaningful features. Hence,
we did not pursue those sources further.

Recommender Strategies. For implementing the collaborative and content-
based recommendation systems, we used the RapidMiner Recommendation
Extension [5], which uses k-NN classification. We use k = 80 and cosine similar-
ity for the base recommenders. The rationale of using cosine similarity is that,
4 https://github.com/paulhoule/telepath/wiki/SubjectiveEye3D
5 This includes types in the YAGO ontology, which can be quite specific (e.g., Amer-
ican Thriller Novels).

6 The reason for not including broader categories by default is that the category graph
is not a cycle-free tree, with some subsumptions being rather questionable.

7 http://bnb.data.bl.uk/ and http://skipforward.opendfki.de/wiki/DBTropes

https://github.com/paulhoule/telepath/wiki/SubjectiveEye3D
http://bnb.data.bl.uk/
http://skipforward.opendfki.de/wiki/DBTropes

152 P. Ristoski et al.

unlike, e.g., Euclidean distance, only common features influence the similarity,
but not common absence of features (e.g., two books not being American Thriller
Novels).

Furthermore,we train an additional recommender on the joint feature set, using
Random Decision Trees (RDTs) [11].8 RDTs generate k1 decision trees with max-
imal depth k2 and random attribute tests at the inner nodes. Each tree collects a
distribution over the target variables at each of its leaf nodes by seeing the train-
ing data. E.g. for multilabel data, RDT’s leaves collect the label distribution so
that each RDT predicts for each test instance a distribution over the labels. These
predictions are subsequently averaged over all trees in order to produce one single
prediction. The predictions of several of such trees are then combined into a final
prediction. RDTs provide a good tradeoff between scalability for large example
sets and prediction accuracy (often outperforming SVMs).

For applying RDTs to the collaborative filtering data, we transformed the
problem into a multilabel task: For each user we generated n different labels
indicating each of the possible user ratings, i.e. n = 5 for task 1 and n = 2 for
task 2. During training RDTs learn – for each known book/user combination –
the mapping between the feature set of each book and the generated labels.
Given an unknown book/user combination x, y, we are now able to estimate a
distribution P (i| x, y) over the different ratings i. The final predicted rating r is
obtained by weighting the ratings r =

∑5
i=0 i·P (i| x, y) (task 1) or by computing

the probability difference P (1| x, y) − P (0| x, y) (task 2).
RDTs do not suffer from high dimensionality and sparseness as much as k-

NN does, thus we have built k1 = 10 trees with depth k2 = 10 on the combined
book’s properties feature set, instead of individual RDTs on each feature set.9

2 Predicting Ratings and Top K Lists

For predicting ratings (task 1 in the challenge), we use all the recommendation
algorithms discussed above for training a regression model in the range of [0; 5].
The results for the base and generic recommenders are shown in Fig. 1.

In order to create a more sophisticated combination of those recommenders,
we trained a stacking model as described in [10]: We trained the base recom-
menders in 10 rounds in a cross validation like setting, collected their predictions,
and learned a stacking model on the predictions. The results in Table 1 show that
the stacked prediction outperforms the base and generic recommenders, with
the RDT based stacking (with k1 = 500 and k2 = 20) slightly ahead of linear

8 We used the implementation available at http://www.dice4dm.com/.
9 In general, it holds that the higher k1 and k2 the better, since this increases the

number of covered feature dimensions and the diversity of the ensemble. However,
comparably small values of k1 and k2, around 10 or 20 and maximally 100, are
sufficient according to experiments by Zhang et al. [11] and Kong and Yu [4]. In
our experiments, we tried to find a good balance between computational costs and
predictive quality, and we report the combination which we used for our final rec-
ommendations.

http://www.dice4dm.com/

A Multi-strategy Recommender System Using Linked Open Data 153

Table 1. Performances of the base and generic recommenders, the number of features
used for each base recommender, and the performance of the combined recommenders

Recommender #Features Task 1 Task 2

RMSE LR β F-Score

Item-based collaborative filtering – 0.8843 +0.269 0.5621

User-based collaborative filtering – 0.9475 +0.145 0.5483

Book’s direct types 534 0.8895 -0.230 0.5583

Author’s categories 2,270 0.9183 +0.098 0.5576

Book’s (and author’s other books’) genres 582 0.9198 +0.082 0.5567

Combined book’s properties 4,372 0.9421 +0.0196 0.5557

Author and influenced/influencedBy authors 1,878 0.9294 +0.122 0.5534

Books’ categories and broader categories 1,987 0.939 +0.012 0.5509

Abstract bag of words 227 0.8893 +0.124 0.5609

RDT recommender on combined book’s properties 4,372 0.9223 +0.128 0.5119

Amazon rating – 1.037 +0.155 0.5442

Ingoing Wikipedia links – 3.9629 +0.001 0.5377

SubjectiveEye3D score – 3.7088 +0.001 0.5369

Links to other datasets – 3.3211 +0.001 0.5321

Average of all individual recommenders 14 0.8824 – –

Stacking with linear regression 14 0.8636 – 0.4645

Stacking with RDT 14 0.8632 – 0.4966

Borda rank aggregation 14 – – 0.5715

regression, and both stacking approaches outperforming the baseline approach
of averaging all recommenders’ ratings.

To further analyze the contribution of each feature, we also report the β para-
meters found by linear regression. It can be observed that apart from the direct
types, all base and generic recommenders contribute to the linear regression.
A possible reason for that anomaly is that direct types and categories are rather
redundant. Furthermore, we can see the benefit of using stacking approaches
as the three generic recommenders with high RMSE are filtered out by the LR
model.

For creating top k lists from binary ratings (task 2 in the challenge), we again
trained regression models like for rating prediction, using a range of [0; 1]. The
top k lists were then obtained by ranking by the predicted rating. As shown
in Table 1, the base recommenders worked quite well, but the combination with
linear regression delivered non-satisfying results. The reason is that the out-
come of the base recommenders is not scaled equally for each user, but strongly
depends on the user’s total number of positive and negative ratings. This made
it impossible to learn a suitable regression function.

154 P. Ristoski et al.

(a) F-measure, ILD and their harmonic
mean (y-axis) for different values of m

(b) ILD (y-axis) plotted against F-
measure (x-axis)

Fig. 1. Trade-off between F-measure and diversity

However, we observed that despite being incompatible in scale, the base and
generic recommenders delivered good rankings for each user. Thus, we performed
an aggregation of the rankings produced by the different recommenders, using
Borda’s rank aggregation algorithm, which outperforms all the individual rec-
ommenders, as well as the stacking regression.

3 Creating Diverse Predictions

The final task in the challenge was to address diversity of predictions, i.e., trade
off the accuracy of predictions, measured in F1 score, and their diversity, mea-
sured in intra-list diversity (ILD), both on a top k list. To address that trade-off,
we followed a greedy top down approach which creates a ranking as for top
k lists. First, we select the top m items from that list. Then, we process the
list from position m + 1 on, adding each book that does not share author and
categories with any of the books already on the list, until the list has k items.

The results are depicted in Fig. 1 for k = 20, selecting items from a list of the
top 100 predictions. It can be observed that the F1 score gradually rises when
using higher values of m, while the ILD drops. Although the harmonic mean
is optimal for using simply the top 20 predictions (given the different orders of
magnitude of F1 and ILD), we decided to submit the solution with m = 4 to
the challenge.10

4 Related Work

The area of recommender systems has been extensively studied in the literature,
resulting in a variety of techniques for performing recommendation, including
content-based, collaborative, and hybrid techniques. However, only a handful of
approaches exploit Linked Open Data to provide recommendations. Among the
10 The reason is that the challenge uses the average rank w.r.t. F1 and ILD as a scoring

function, which makes the selection of an optimal parameter strongly depend on the
other participants’ solutions. It turned out that m = 4 optimized our scoring.

A Multi-strategy Recommender System Using Linked Open Data 155

earliest such efforts is dbrec [7], which is using DBpedia as a knowledge base to
build a music content-based recommender system. Heitmann et al. [3] propose an
open recommender system which utilize Linked Data to mitigate the new-user,
new-item and sparsity problems of collaborative recommender systems.

More recent approaches [1,2,6,9] have shown that using data from the LOD
cloud can improve the performances for both content-based and collaborative
recommender systems, in various domains.

5 Conclusion and Outlook

In this paper, we have layed out a hybrid multi-strategy approach for linked data
enabled recommender systems. We have shown that combining the predictions
of different base recommenders is a feasible strategy, and that generic (i.e., non
user specific) recommenders can be a useful ingredient.

In particular, our approach allows for the addition of new feature groups
without interaction effects, and for the combination of different recommender
strategies. By exploiting stacking regression, an optimal combination of different
recommenders can be found automatically, however, for ranking-based problems,
rank aggregation turned out to be the more promising strategy.

Acknowledgements. The work presented in this paper has been partly funded by the
German Research Foundation (DFG) under grant number PA 2373/1-1 (Mine@LOD).

References

1. Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D.: Exploiting the web of data in
model-based recommender systems. In: Proceedings of the Sixth ACM Conference
on Recommender Systems, RecSys ’12, pp. 253–256, ACM. New York (2012)

2. Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data
to support content-based recommender systems. In: Proceedings of the 8th Inter-
national Conference on Semantic Systems, I-SEMANTICS ’12, pp. 1–8. ACM, New
York (2012)

3. Heitmann, B., Hayes, C.: Using linked data to build open, collaborative recom-
mender systems. In: AAAI Spring Symposium: Linked Data Meets Artificial Intel-
ligence (2010)

4. Kong, X., Yu, P.S.: An ensemble-based approach to fast classification of multi-label
data streams. In: CollaborateCom, pp. 95–104 (2011)

5. Mihelčić, M., Antulov-Fantulin, N., Bošnjak, M., Šmuc, T.: Extending rapidminer
with recommender systems algorithms. In: RapidMiner Community Meeting and
Conference (RCOMM 2012) (2012)

6. Ostuni, V.C., Di Noia, T., Mirizzi, R., Di Sciascio, E.: Top-n recommendations
from implicit feedback leveraging linked open data. In: IIR, pp. 20–27 (2014)

7. Passant, A.: dbrec — music recommendations using DBpedia. In: Patel-Schneider,
P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B.
(eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg
(2010)

156 P. Ristoski et al.

8. Paulheim, H., Ristoski, P., Mitichkin, E., Christian, B.: Data mining with back-
ground knowledge from the web. In: RapidMiner World (2014)

9. Schmachtenberg, M., Strufe, T., Paulheim, H.: Enhancing a location-based rec-
ommendation system by enrichment with structured data from the web. In: Web
Intelligence, Mining and Semantics (2014)

10. Ting, K.M., Witten, I.H.: Issues in stacked generalization. J. Artif. Intell. Res.
10(1), 271–289 (1999)

11. Zhang, X., Yuan, Q., Zhao, S., Fan, W., Zheng, W., Wang, Z.: Multi-label classi-
fication without the multi-label cost. In: Proceedings of the 2010 SDM (2010)

	A Hybrid Multi-strategy Recommender System Using Linked Open Data
	1 Overall Approach
	2 Predicting Ratings and Top K Lists
	3 Creating Diverse Predictions
	4 Related Work
	5 Conclusion and Outlook
	References

