
A Dynamic Pivoting Algorithm Based on Spatial

Approximation Indexes

Diego Arroyuelo

Department of Informatics, Universidad Técnica Federico Santa Maŕıa
Yahoo! Labs Santiago, Chile
darroyue@inf.utfsm.cl

Abstract. Metric indexes aim at reducing the amount of distance evalu-
ations carried out when searching a metric space. Spatial approximation
trees (sa-trees for short), in particular, are efficient data structures, which
have shown to be competitive in metric spaces of medium to high diffi-
culty, or queries with low selectivity. Sa-trees can be also made dynamic,
and can use the available space to improve the query performance adding
pivot information. In this paper we extend previous work on dynamic sa-
trees with pivots, and show how the pivot information can be used to
a full extent to improve the search performance. The result is a tech-
nique that allows one to traverse a dynamic sa-tree without necessarily
comparing all traversed nodes against the query object. As a result, the
novel algorithm makes a much better use of the available space, yielding
a saving of distance computations of about 10% to 70%, compared with
previous sa-tree schemes that use pivot information.

1 Introduction

The classical way of searching a database has been that of finding those database
records whose search attribute (or key) has a given value. However, this is not
suitable when searching non-traditional databases, such as multimedia databases
(e.g., image, video, or audio), multidimensional vector spaces (which has appli-
cations in GIS), and digital libraries, among others. In such cases, one would
want to find the database objects that are “similar” to a given query object.

The similarity search problem is usually modeled as proximity searches in
metric spaces. In the metric space model [2], there is a universe U of objects,
and a positive real-valued distance function d : U× U → �

+ defined among
them. The distance between two objects models their similarity: the smaller the
distance is, the more similar the objects are. We assume that the distance satisfy
the three axioms that make the set a metric space:

Strict positiveness: ∀x, y ∈ U, d(x, y) = 0 ⇔ x = y;
Symmetry: ∀x, y ∈ U, d(x, y) = d(y, x); and
Triangle inequality: ∀x, y, z ∈ U, d(x, z) � d(x, y) + d(y, z).

The triangle inequality property is used to save comparisons in a proximity
query. The distance function is usually expensive to compute, hence we define
the search complexity as the number of distance evaluations performed.

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 70–81, 2014.
DOI: 10.1007/978-3-319-11988-5_7 c© Springer International Publishing Switzerland 2014

A Dynamic Pivoting Algorithm Based on Spatial Approximation Indexes 71

We are given (in advance to queries) a database S ⊆ U of size |S| = n.
Proximity-search algorithms are allowed to build an index of the database, avoid-
ing exhaustive searches at query time [2]. Building an index is usually an ex-
pensive process. However, this cost is amortized after enough queries have been
issued. At query time, given a query object q ∈ U, we must retrieve all similar
elements found in S. There are two typical queries of this kind:

Range Queries: retrieve all elements in S within distance r to q. That is, the
set {x ∈ S, d(x, q) � r}.

Nearest-Neighbor Queries: retrieve the k closest elements to q in S. That
is, a set A ⊆ S such that |A| = k and ∀x ∈ A, y ∈ (S−A), d(x, q) � d(y, q).

In this paper we focus on range queries only.
Algorithms to search in general metric spaces can be divided into two large

areas [2]: pivoting algorithms, and compact partitions algorithms. Pivoting al-
gorithms are better suited for low dimensional (or easy) metric spaces, whereas
compact partitions algorithms deal better with high dimensional (or hard) metric
spaces. Although pivoting algorithms can use the available memory to improve
the query performance, they need to use more memory to beat the latter as
dimension grows. On the other hand, indexes based on compact partitions use
a fixed amount of memory and cannot be improved by giving them more space.

Since a time ago, there are also data structures that combine both approaches,
as for instance the memory-adaptive dynamic spatial approximation trees from
[1]. These are basically dynamic spatial approximation trees (dsa-trees) [3], on
which pivot information is added. Hence, they are able to trade memory space
for a better query performance. However, pivots on dsa-trees are not used to
prune the search nor to discard traversed elements. They are used just to save
(in some cases) distance evaluations when the stopping criterion of dsa-trees
determines that a given branch of the tree must be pruned. Every traversed
node is inevitably compared against the query, even though it is not contained
within the query radius. This obviously increases the query cost. Our research
question is: What are the consequences for the spatial approximation approach,
if we use pivot information to avoid comparing traversed elements?

In this paper we extend previous work [1] on dsa-trees with pivots, and show
how the pivot information can be used to a full extent to improve the search per-
formance. Basically, we adapt the search approach [1] such that pivots are used
to avoid distance evaluation on traversed nodes. The resulting algorithms allows
one to traverse a dynamic sa-tree without necessarily comparing all traversed
nodes against the query. Avoiding such distance evaluations does not necessarily
represents an improvement of query performance: we have less information for
the spatial approximation, hence probably more tree branches would be visited.
Ours is a compromise which probably traverses more tree branches, yet using
pivots to avoid distance evaluations. We will show experimental results indicat-
ing that our approach uses the available memory more efficiently than previous
work [1]: our search algorithm makes a better use of the available space, yielding
a saving of distance computations of about 10% to 70%.

72 D. Arroyuelo

2 Preliminary Concepts on Metric Space Indexing

Indexing metric spaces is key for achieving efficient search performance in simi-
larity search applications. We review in this section the most important indexing
approaches needed to understand our work.

2.1 Pivoting Algorithms

Pivoting algorithms choose a set P = {p1, . . . , pk} of pivots from the database S.
They precompute and store all distances d(a, p1), . . . , d(a, pk) for all a ∈ S. Given
a query q ∈ U, pivoting algorithms compute the distances d(q, p1), . . . , d(q, pk)
against the pivots. By using the information stored for every database object
and the distances between the pivots and the query, we define:

Definition 1. Given a query element q ∈ U, the pivot distance between a ∈ S
and q gets defined as:

D(a, q) = max
pi∈P

|d(a, pi)− d(q, pi)|.

It can be proven that D(a, q) � d(a, q) for any a ∈ S, q ∈ U. The pivot
distance D is an estimation of the actual distance d, which is used to save
distance evaluations: each a such that D(a, q) > r can be discarded because we
deduce d(a, q) > r. All the elements that cannot be discarded in this way are
directly compared against q.

Pivoting schemes perform better as more pivots are used, this way beating
any other index. They are, however, better suited to “easy” metric spaces [2]. In
hard spaces they need too many pivots to beat other algorithms.

2.2 Dynamic Spatial Approximation Trees

We briefly outline in this subsection how dynamic spatial approximation trees
(dsa-trees) work, as we build on this data structure. See [3] for further details
and proofs of correctness of the algorithms.

Insertion Algorithm. The dsa-tree is built incrementally, via insertions. The tree
has a maximum arity A. Each tree node a stores a timestamp of its insertion
time, time(a), its covering radius, R(a), and its set of children N(a) (the so-
called neighbors of a). To insert a new element x, its point of insertion is sought
starting at the tree root and moving to the neighbor closest to x, updating R(a)
in the way. We finally insert x as a new (leaf) child of a if (1) x is closer to a
than to any b ∈ N(a), and (2) the arity of a, |N(a)|, is not already maximal. In
other case, we insert x in the subtree of the closest element b ∈ N(a). Neighbors
are stored left to right in increasing timestamp order. Note that the parent is
always older than its children.

A Dynamic Pivoting Algorithm Based on Spatial Approximation Indexes 73

Range Search Algorithm. The idea is to replicate the insertion process of the
elements to be retrieved. Given a query q and a radius r, we act as if we wanted
to insert q but keep in mind that relevant elements may be at distance up to r
from q, so in each decision for simulating the insertion of q we permit a tolerance
of ±r. So it may be that relevant elements were inserted in different children of
the current node, and backtracking is necessary.

Note that, at the time an element x was inserted, a node a may not have been
chosen as its parent because its arity was already maximal. So, at query time,
we must choose the minimum distance to x only among N(a). Note also that,
when x was inserted, elements with higher timestamp were not yet present in the
tree, so x could choose its closest neighbor only among older elements. Hence,
we consider the neighbors {b1, . . . , bk} of a from oldest to newest, disregarding
a, and perform the minimization as we traverse the list. That is, we enter into
subtree bi if d(q, bi) � min {d(q, b1), . . . , d(q, bi−1)} + 2r.

We use timestamps to reduce the work inside older neighbors. Say that
d(q, bi) > d(q, bi+j)+2r. We have to enter subtree bi anyway because bi is older.
However, only the elements with timestamp smaller than time(bi+j) should be
considered when searching inside bi; younger elements have seen bi+j and they
cannot be interesting for the search if they are inside bi. As parent nodes are
older than their descendants, as soon as we find a node inside subtree bi with
timestamp larger than time(bi+j) we can stop the search in that branch.

Algorithm 1 performs range searching on a dsa-tree. Note that, except in
the first invocation, d(a, q) (lines 1 and 2) is already known from the invoking
process, so it must no be recomputed in a real implementation.

Algorithm 1. dsat Search(Node a, Query q, Radius r, Timestamp t).

1: if time(a) < t ∧ d(a, q) � R(a) + r then
2: if d(a, q) � r then
3: report a
4: end if
5: dmin ← +∞
6: for bi ∈ N(a) in increasing timestamp order do
7: if d(bi, q) � dmin + 2r then
8: k ← min {j > i, d(bi, q) > d(bj , q) + 2r}
9: dsat Search(bi, q, r, time(bk))
10: end if
11: dmin ← min {dmin, d(bi, q)}
12: end for
13: end if

2.3 DSA-Trees with Pivots

Previous work [1] showed how to use the available memory to improve the search
performance of dsa-trees. We associate a set of pivots to every tree node. At
insertion time, in order to decide that a new element x must be added as a

74 D. Arroyuelo

children (or neighbor) of an already existing node a, note that x has been already
compared against the set A(x) of ancestors of x, and also against the siblings
of the ancestors. Some of these distances are used as pivot information, without
introducing extra distance computations. See the original work [1], which shows
how these pivots are computed at insertion time. From now on, we assume that
each node x of a dsa-tree has a set P(x) of pivots. The resulting data structure
is called hybrid dsa-tree (h-dsat for short).

Range Search Algorithm. dsa-tree Algorithm 1 is modified to use the set P(x)
stored at each tree node x. Recall that, given a set of pivots, D(a, q) is a lower
bound for d(a, q). Consider again Algorithm 1. If at line 1 it holds that D(a, q) >
R(a) + r, then surely d(a, q) > R(a) + r, and hence we can stop the search at
node a without actually evaluating d(a, q). This leads to the following definition.

Definition 2. An element a in S is said to be covering radius feasible (cr-
feasible for short) for query q if D(a, q) � R(a) + r. The set of cr-feasible
neighbors of a node a is a subset of N(a), and will be denoted by cr-F (a).

Also, we use D along with the hyperplane criterion to save distance computa-
tions at search time: for any cr-feasible element bi such that D(bi, q) > dmin+2r,
it holds that d(bi, q) > dmin+2r. Hence, we can stop the search in the cr-feasible
node bi without evaluating d(bi, q) (at line 5 of Algorithm 1).

Definition 3. Let cr-F (a) be the set {b1, . . . , bk}, in increasing order of times-
tamp. An element bi ∈ cr-F (a) is said to be hyperplane feasible (h-feasible for
short) for query q if D(bi, q) � dmin+2r, where dmin is minimized using only the
distances d(b1, q), . . . , d(bi−1, q) that have been computed in the current query.

Definition 4. The feasible neighbors of node a, denoted F (a), are the cr-feasible
plus the h-feasible neighbors b ∈ N(a). The other neighbors of a are said to be
infeasibles.

Note that only feasible neighbors of a node a must be taken into account when
processing a query. The remaining subtrees can be discarded completely using D

rather than d. However, it does not immediately follow that we obtain for sure
an improvement in search performance. The reason is that infeasible nodes still
serve to reduce dmin in Algorithm 1, which in turn may save us entering into
younger siblings. Hence, by saving computations against infeasible nodes, we may
have to enter into new siblings later. This is an intrinsic price of our method. At
search time, D(a, q) can be computed without additional evaluations of d for any
a in the data structure. A query stack is used to maintain the distances between
the query object and the pivots as we backtrack the tree (see [1] for details).
Algorithm 2 shows the first basic approach for range search on a h-dsat.

However, in order to use timestamp information as much as possible in line
8, we run into the risk of comparing infeasible elements against q. this reduces
the benefits of pivots in the data structure. Some improvements to this weakness
were presented [1], being the best one as follows.

A Dynamic Pivoting Algorithm Based on Spatial Approximation Indexes 75

Algorithm 2. h-dsat Search(Node a, Query q, Radius r,Timestamp t)

1: if time(a) < t ∧ d(a, q) � R(a) + r then
2: if d(a, q) � r then
3: report a
4: end if
5: dmin ← +∞
6: cr -F (a) ← {b ∈ N(a),D(b, q) � R(b) + r}
7: for bi ∈ N(a) in increasing timestamp order do
8: if bi ∈ cr -F (a) ∧D(bi, q) � dmin + 2r then
9: if d(bi, q) � dmin + 2r then
10: k ← min {j > i, d(bi, q) > d(bj , q) + 2r}
11: h-dsat Search(bi, q, r, time(bk))
12: end if
13: end if
14: if d(bi, q) has already been computed then
15: dmin ← min {dmin, d(bi, q)}
16: end if
17: end for
18: end if

Using Timestamps of Feasible Neighbors. The use of timestamps is not essential
for the correctness of the algorithms. Any larger value would work, although the
optimal choice is to use the smallest correct timestamp. Another alternative is
to compute a safe approximation to the correct timestamp, but ensuring that no
infeasible elements are ever compared against q. Note that every feasible neighbor
of a node will be compared against q inevitably. If for bi ∈ F (a) it holds that
d(bi, q) � dmin+2r, then we compute the oldest timestamp t among the reduced
set {bi+j ∈ F (a), d(bi, q) > d(bi+j , q) + 2r}, and stop the search inside bi at
nodes whose timestamp is newer than t. This ensures that only feasible elements
are compared against q, and under that condition it uses as much timestamping
information as possible. This alternative is called h-dsatF.

3 Reducing the Cost of Traversing an h-dsat

h-dsats [1] use the available memory space to improve the search performance of
dsa-trees. However, their search algorithms use pivots only to check the spatial
approximation stopping criteria (that is, the covering-radius and hyperplane
feasibility, see line 8 of Algorithm 2). This means that all traversed nodes are
inevitably compared against q, even though for some element x in the search path
it holds that D(x, q) > r. The question is, therefore, whether we can improve
the search cost if we avoid comparing elements in the search path of a dsa-tree.
However, and as we will see, saving distances in this way is not for free. When the
distance among the query and a traversed node is not computed, many search
criteria would need to be relaxed, as we will see. Hence, it is not clear whether
we will obtain an improvement or not.

76 D. Arroyuelo

To answer this question, we define a new search alternative for h-dsat that
avoids computing d(x, q) whenever D(x, q) > r holds. Assume that, at search
time, we reach the node a of the tree. For each bi ∈ N(a) in increasing order of
timestamp, we perform the following steps:

Step 1: If D(bi, q) > R(bi) + r or D(bi, q) > dmin + 2r, prune the search at bi
since it is infeasible; otherwise, go to the next step.

Step 2: If D(bi, q) > r, bi is not within the query radius. Therefore, we search
inside the subtree of bi without evaluating d(bi, q). Thus, all the descendants of
bi cannot use it as a pivot in the current query. We mark this fact by pushing
an invalid distance into the query stack [1]. As d(bi, q) has not been computed,
we cannot check whether d(bi, q) > d(bi+j , q) + 2r holds. Therefore we cannot
search for the timestamp of a younger sibling of bi to search inside the subtree
of bi (step 10 of Algorithm 2). In order to use timestamp information even in
this case, if we reach bi searching for elements with timestamp older than t, then
we also use t to search inside the subtree of bi. This is a correct (although not
optimal) timestamp to search inside bi.

Step 3: On the other hand, ifD(bi, q) � r, we compute d(bi, q), and we report bi if
it lies within the search radius. Also, we try to prune the search using the covering
radius and hyperplane criterions: if d(bi, q) > R(bi) + r or d(bi, q) > dmin + 2r,
the search can be pruned at bi. If the search cannot be prunned at bi, we compute
the oldest timestamp t among the set {bi+j ∈ F (a),D(bi+j , q) � r ∧ d(bi, q) >
d(bi+j , q)+2r}, and stop the search inside bi at nodes whose timestamp is newer
than t.

We call h-dsatP this search alternative, which is formalized in Algorithm 3.
Notice that we have added an extra parameter dist, which is the value d(a, q)
in case a has not been discarded using pivots, otherwise dist = 0 holds (see line
10). Let us take a look also at the condition in line 1: every time D(a, q) > r
holds, it also holds that dist = 0, hence condition dist � R(a)+r is true in these
cases. Thus, only the timestamp condition time(a) < t can be used to prune the
search when D(a, q) > r holds.

Notice that our algorithm can be regarded as a pivoting scheme that uses the
spatial approximation approach to prune the search space. This has the addi-
tional advantage of reducing the overhead incurred when computing D (which
uses to be high for pure pivoting algorithms [2]).

When an element bi is not compared against the query q (lines 9 and 10), the
descendants of bi cannot use it as a pivot. As a result, the value of D for these
descendants can become underestimated, which is obviously a drawback. How-
ever, this gives the data structure the potential to adapt itself to the difficulty
of the metric space and “decide” the number of pivots used for each element.

A Dynamic Pivoting Algorithm Based on Spatial Approximation Indexes 77

Algorithm 3. h-dsatP Search(Node a, Query q, Radius r,Timestamp t,
distance dist)

// dist is d(a, q) in case it has been computed, 0 otherwise.

1: if time(a) < t ∧ dist � R(a) + r then
2: if D(a, q) � r ∧ dist � r then
3: report a
4: end if
5: dmin ← +∞
6: cr -F (a) ← {b ∈ N(a),D(b, q) � R(b) + r}
7: for bi ∈ N(a) in increasing timestamp order do
8: if bi ∈ cr -F (a) ∧D(bi, q) � dmin + 2r then
9: if D(bi, q) > r then
10: h-dsatP Search(bi, q, r, t, 0)
11: else
12: if d(bi, q) � dmin + 2r then
13: k ← min {j > i, bj ∈ F (a) ∧D(bj , q) � r ∧ d(bi, q) > d(bj , q) + 2r}
14: h-dsatP Search(bi, q, r, time(bk), d(bi, q))
15: end if
16: end if
17: end if
18: if d(bi, q) has been already computed then
19: dmin ← min {dmin, d(bi, q)}
20: end if
21: end for
22: end if

If for an element bj ∈ F (a) it holds that D(bj , q) > r, hence bj cannot be used
to minimize dmin when searching inside the subtree of an element bi ∈ F (a)
younger than bj : the condition d(bi, q) > d(bj , q)+2r implies computing d(bj , q).
Since we know that d(bj , q) > r, we will prefer not to use bj to minimize dmin,
saving the distance computation. This is a relaxation to the original spatial
approximation approach. Line 13 of Algorithm 3 shows this formally. Also,
every time d(bi, q) is computed (Step 3 above), we take full advantage of this
evaluation by using the pruning criterion of the original dsa-trees, we use d(bi, q)
to minimize dmin, and later, the descendants of bi can use it as a pivot.

h-dsatP might traverse more nodes of the data structure than the original
h-dsats, because if D(bi, q) � R(bi) + r, D(bi, q) � dmin +2r, and D(bi, q) > r,
then we have not computed d(bi, q) and the search must continue in the subtree
of bi. However, it might be that d(bi, q) > R(bi) + r or d(bi, q) > dmin + 2r, and
the search would have stopped at bi. That is, the cost of traversing a node is,
in some cases, less expensive, but we may traverse more nodes than the original
h-dsats. The experiments of the next section will show that, despite the possible
drawbacks we have remarked, in general it pays off to use D to exchange more
traversed nodes for a smaller total cost.

78 D. Arroyuelo

4 Experimental Results

For the experiments of this paper we have considered range queries on four
widely different metric spaces.

NASA images : a set of 40,700 feature vectors of dimension 20, generated from
images downloaded from NASA 1. The Euclidean distance is used. This is
an easy space (sparse histogram of distances). For this space we use radii
0.605740, 0.780000 and 1.009000, which retrieve on average 0.01%, 0.1%, and
1% of the database respectively.

Words : a dictionary of 69,069 English words 2. We use the edit or Levenshtein
distance, that is, the minimum number of character insertions, deletions and
replacements needed to make two strings equal. This distance is useful in
text retrieval to cope with spelling, typing and optical character recognition
(OCR) errors. The space turns out to be of low to medium difficulty. As the
distance is discrete, we use radii 1 to 4, which retrieve on average 0.00003%,
0.00037%, 0.00326% and 0.01757% of the dataset, respectively

Color histograms : a set of 112,682 color histograms (112 dimensional vectors)
from an image database 3. Any cuadratic form can be used as a distance,
so we chose Euclidean distance as the simplest meaningful alternative. The
resulting space is of medium difficulty. For this space we use radii 0.051768,
0.082514 and 0.131163, which retrieve on average 0.01%, 0.1%, and 1% of
the database respectively.

Documents: a set of 1,265 documents under the Cosine similarity, heavily used
in Information Retrieval. In this model the space has one coordinate per
term and documents are seen as vectors in this high-dimensional space. The
distance we use is the angle (arccos of inner product) among the vectors.
The documents are the files of the trec-3 collection 4. This is a space of
medium to high difficulty, and the distance is expensive to compute. For this
space we use radii 0.140000, 0.150000 and 0.195000, retrieving on average 1,
2, and 16 documents respectively.

For all these metric spaces, we build the indexes 10 times using 90% of the
database elements, leaving the remaining 10% (randomly chosen) as queries. We
test with arities 4, 8, 16 and 32 in the tree [3]. Due to lack if space, we show
results only for the arity that produced the best results in each case.

We will suffix “1” the versions of h-dsat that use the ancestors as pivots, and
will use “2” for the versions that use the ancestors and their older siblings as
pivots [1]. Hence, the alternative proposed in this paper will have two instances,
h-dsatP1 and h-dsatP2. We will compare against the best alternative in pre-
vious work [1]: h-dsatF (the resulting instances are h-dsatF1 and h-dsatF2).

1 http://www.sisap.org/library/metricSpaces/dbs/vectors/nasa.tar
2 http://www.sisap.org/library/metricSpaces/dbs/strings/dictionaries.tar
3 http://www.sisap.org/library/metricSpaces/dbs/vectors/colors.tar
4 http://trec.nist.gov

A Dynamic Pivoting Algorithm Based on Spatial Approximation Indexes 79

Figure 1 shows the experimental query cost for search variants of h-dsat using
just ancestors as pivots. In all metric spaces we tested, h-dsatP1 performs better
with arity 4. This is because the pivot information is more heavily used in this
alternative, hence having small arity makes the three higher, hence each element
has a bigger amount of pivots. h-dsatF1, on the other hand, uses the spatial
approximation idea as much as it can. Hence, it performs better using arity 16
(except for the space of documents, where h-dsatF1 has the best performance
using arity 32).

In the experiments, h-dsatP1 outperforms h-dsatF1, in many cases consid-
erably. In the space of NASA images, we obtain about 15% (large radius) to 30%
(small radius) less distance evaluations at query time. For color histograms, the
improvements are from 28% to 40%. For the dictionary of English words, from
11% to 35%. Finally, for documents from 10% to 11%. The best improvements
are obtained for small radii —since the problem is easier in these cases, on which
pivots are more effective— and easier metric spaces —e.g., color histograms.

 8

 10

 12

 14

 16

 18

 20

 0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for variants of H-DSat, NASA images

HDsatF1 A=16
HDsatP1 A=4

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for variants of H-DSat, color histograms

HDsatF1 A=16
HDsatP1 A=4

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Search Radius

Query cost for variants of H-DSat, space of English words

HDsatF1 A=16
HDsatP1 A=4

 21

 22

 23

 24

 25

 26

 27

 28

 29

1 2 16

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Documents retrieved

Query cost for variants of H-DSat, documents

HDsatF1 A=32
HDsatP1 A=4

Fig. 1. Experimental query cost for different search alteratives of h-dsat1

Figure 2 shows the experimental query cost for variants of h-dsat2. As it
can be seen, h-dsatF2 and h-dsatP2 perform better with arity 32 (except
in the space of documents, where h-dsatP2 performs better using arity 16).
As before, h-dsatP2 outperforms h-dsatF2, obtaining better improvements
compared with the former alternatives. In the space of NASA images, we obtain

80 D. Arroyuelo

about 14% (large radius) to 37% (small radius) less distance computations, for
color histograms 35% to 68%, for English dictionary 20% to 77%, and for the
document database 13% to 17%.

 6

 8

 10

 12

 14

 16

 18

 0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for variants of H-DSat, NASA images

HDsatF2 A=32
HDsatP2 A=32

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for variants of H-DSat, color histograms

HDsatF2 A=32
HDsatP2 A=32

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Search Radius

Query cost for variants of H-DSat, space of English words

HDsatF2 A=32
HDsatP2 A=32

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

1 2 16

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Documents retrieved

Query cost for variants of H-DSat, documents

HDsatF2 A=32
HDsatP2 A=16

Fig. 2. Experimental query cost for different search alternatives of h-dsat2

An important result that must be also considered is that comparing the results
in Figures 1 and 2, we can conclude that hdsatP1 outperforms hdsatF2 in all
cases, even though the former uses less pivots per node than the latter [1]. This
reinforces the fact that our algorithm makes a better use of pivots, compared to
the algorithms proposed in [1].

Finally, we obtained the following results regarding the number of traversed
nodes by our algorithm. In the space of NASA images, h-dsatP1 traverses from
about 23% (small radius) to 28% (large radius) of the tree nodes. This is 1.92 and
1.45 times the number of nodes traversed by h-dsatF1. For color histograms,
h-dsatP1 traverses from about 17% (small radius) to 28% (large radius) of
the tree nodes. This is 4.34 and 1.62 times the number of nodes traversed by
h-dsatF1, respectively. For the English dictionary, h-dsatP1 traverses from
about 44% (r = 1) to 77% (r = 4) of the tree nodes. This is 4.04 and 1.19
times the number of nodes traversed by h-dsatF1. For h-dsatP2, the results
are similar, yet smaller than those of h-dsatP1.

Note that, even though h-dsatP traverses more nodes of the data structure
than the original dsa-tree data structures, the total number of traversed nodes is

A Dynamic Pivoting Algorithm Based on Spatial Approximation Indexes 81

a relatively small fraction of the whole tree. This is important in cases where one
wants to reduce the overhead incurred by traversing the whole database. Tree-
based pivoting schemes are specifically good for this matter. However, given
a fixed amount of storage, they must encode the tree structure, hence using
space that the array-based indexes could use just for pivots (hence, storing a
bigger number of pivots, improving the overall search performance). Nowadays,
however, trees (even dynamic ones, as in our case) can be encoded using about
2 bits per node [4].

Our results clearly indicate a trend: for small radii and easier spaces (e.g.,
color histograms), we obtain the best improvements over h-dsatF (in number
of distance evaluations), yet the number of traversed nodes by h-dsatP is higher
than for h-dsatF. This is because in such cases our algorithm behaves like a
pivoting scheme in these cases. For large radii and more difficult spaces, on the
other hand, the improvements over h-dsatF are moderate (yet important), and
the number of traversed nodes is similar to h-dsatF. This is because in these
cases the data structure tends to behave as dsa-trees.

5 Conclusions

From our experimental results, we conclude that it is worth to relax some spatial
approximation criteria (hence probably traversing more dsa-tree nodes) provided
pivot information is used at every tree node as we propose. The search algorithm
we proposed in this paper makes a better use of the available memory space used
by pivots in dsa-trees. Compared with previous approaches [1] that use pivots on
dsa-trees, our range search algorithm carries out from 10% to 70% less distance
evaluations at query time. Our best improvements on previous results [1] were
obtained in cases of small radii and easier spaces.

Our experimental results seem to indicate that our algorithm is adaptive to
the difficulty of the search: on easier cases (i.e., easier metric spaces and small
query radii) the data structure tends to behave as a pivoting algorithm; on harder
cases (i.e., harder metric spaces and large radii), the data structure behaves like
a dsa-tree, which are known to be more resistant to hard spaces. This deserves
future research.

References

1. Arroyuelo, D., Muñoz, F., Navarro, G., Reyes, N.: Memory-adaptative dynamic
spatial approximation trees. In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L.
(eds.) SPIRE 2003. LNCS, vol. 2857, pp. 360–368. Springer, Heidelberg (2003)

2. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.: Searching in metric spaces.
ACM Computing Surveys 33(3), 273–321 (2001)

3. Navarro, G., Reyes, N.: Dynamic spatial approximation trees. ACM Journal of Ex-
perimental Algorithmics (JEA) 12:article 1.5, 68 pages (2008)

4. Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees. ACM
Transactions on Algorithms 10(3):article 16 (2014)

	A Dynamic Pivoting Algorithm Based on SpatialApproximation Indexes
	1 Introduction
	2 Preliminary Concepts on Metric Space Indexing
	2.1 Pivoting Algorithms
	2.2 Dynamic Spatial Approximation Trees
	2.3 DSA-Trees with Pivots

	3 Reducing the Cost of Traversing an
	4 Experimental Results
	5 Conclusions
	References

