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Abstract. In this paper we present the Distal Spatial Approximation
Tree (DiSAT ), an algorithmic improvement of SAT. Our improvement
increases the discarding power of the SAT by selecting distal nodes in-
stead of the proximal nodes proposed in the original paper. Our approach
is parameter free and it was the most competitive in an extensive bench-
marking, from two to forty times faster than the SAT, and faster than
the List of Clusters (LC) which is considered the state of the art for main
memory, linear sized indexes in the model of distance computations.

In summary, we obtained an index more resistant to the curse of
dimensionality, establishing a new benchmark in performance, faster to
build than the LC and with a small memory footprint. Our strategies can
be used in any version of the SAT, either in main or secondary memory.

1 Introduction

Proximity searching consists in finding objects from a collection near a given
query. The literature is vast and there are many specializations of the prob-
lem. We will fix our attention in exact queries under metric distances. A met-
ric database is a finite subset S ⊆ U. Distances are computed with a function
d : U×U → R, such that for any x, y, z ∈ U, d(x, y) > 0, d(x, y) = 0 ⇐⇒ x = y,
d(x, y) = d(y, x) (symmetry), and obeying the triangle inequality: d(x, z) +
d(z, y) ≥ d(x, y). For a query q ∈ U and r ∈ R

+, (q, r)d = {x ∈ S | d(q, x) ≤ r}
denote a range query. kNNd(q) denote the K-nearest neighbors of q, say R ⊆ S
such that |R| = k and ∀u ∈ R, v ∈ S − R, d(q, u) ≤ d(q, v). If the database S
is large and/or the distance function is expensive to compute, than a sequential
scan to answer queries does not scale and an index should be used.

Complexity Model. The problem at hand has been elusive for the analysis. A
cost model allowing worst case guarantees for known indexing techniques is still
pending in the literature. The folklore among specialists sustains that metric ax-
ioms are too weak to produce even a usable notion of complexity for the problem.
However, it is well documented the existence of instances of metric databases
hard to index, all data algorithms will end up reviewing the entire database
even for selective queries. This is known as the curse of dimensionality even if
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a proper notion of dimensionality is elusive [1]. Complementarily, more progress
have been done in the approximate setup, where probabilistic guarantees have
been provided for the accuracy, when the memory, the speed and a notion of
dimensionality are bounded, as in [2] and references therein. In view of the above
discouraging panorama, our algorithmic improvement proposal for indexing will
be tested experimentally. In this regard, only a few tricks are known and used for
indexing. In a way those tricks are derived from the triangle inequality. Survey-
ing all of them is beyond the scope of this paper. Much more details are found
in surveys and books on the topic, such as [3–5].

Pivot tables are well known, generic approaches to indexing. Another alter-
native is to partition the space in compact zones, usually in a recursive manner,
storing a representative object (a “center”) ci for each zone plus a few extra data
that permits quickly discarding the zone at query time. The general idea is to
have coherent clusters of objects. During search, entire zones can be discarded
depending on the distance from their cluster center ci to the query q. Two cri-
teria can be used to delimit a zone. Representative techniques are: Geometric
Near-neighbor Access Tree (GNAT ) [6], List of Clusters (LC ) [7] , the Spatial
Approximation Tree (SAT and DSAT) [8, 9].

Some data structures combine both ideas by dividing the space into compact
partitions, and at the same time storing distances to pivots. The D–index [10,11]
divides the space into separable partitions of data blocks and combines this with
pivot-based strategies to decrease I/O costs and distance evaluations performed
during searches. It supports disk storage and it is dynamic. Adapting the D–
index to particular applications requires a non-trivial parameterization process.
Another example in this group is obtained by adding pivots to some clustering-
based data structure, as the PM–tree [12] does on top of the M–tree [13].

2 The Spatial Approximation Tree

Since our approach is an improvement of all the versions of SAT we will include
a detailed discussion of this data structure. The Spatial Approximation Tree
(SAT) [8] is a data structure aiming at approaching the query spatially, that is,
start at the root and get iteratively closer to the query navigating the tree. The
SAT is build as follows. An element a is selected as the root, and it is connected
to a set of neighbors N(a), defined as a subset of elements x ∈ U such that x
is closer to a than to any other element in N(a). The other elements (not in
N(a)∪{a}) are assigned to their closest element in N(a). Each element in N(a)
is recursively the root of a new subtree containing the elements assigned to it.
For each node a the covering radius is stored, that is, the maximum distance
R(a) between a and any element in the subtree rooted at a. Fig. 1 shows an
example SAT and the search path for a query.



60 E. Chávez et al.

u13

u4

u2

u12
u3

u7

u15

u6

u8

u9
u14

u11

u1
q

u5

u10

Fig. 1. Example of a SAT and the traversal towards a query q, starting at u11. From [5].

BuildTree(Node a, Set of nodes S)
1. N(a) ← ∅ /* neighbors of a */
2. R(a) ← 0 /* covering radius */
3. For v ∈ S in increasing distance to a Do

4. R(a) ← max(R(a), d(v, a))
5. If ∀b ∈ N(a), d(v, a) < d(v, b) Then

6. N(a) ← N(a) ∪ {v}
7. For b ∈ N(a) Do S(b) ← ∅
8. For v ∈ S −N(a) Do

9. c ← argminb∈N(a)d(v, b)

10. S(c) ← S(c) ∪ {v}
11. For b ∈ N(a) Do BuildTree(b,S(b))

Algorithm 1. Algorithm to build a SAT for S ∪ {a} with root a

Algorithm 1 depicts the construction process.
It is first invoked as BuildTree(a,S− {a}) where a is a random element of

S selected as its root.
Note the construction process do not enforce a balanced data structure. While

it is a disadvantage in exact searching, it seems that unbalancing does speed up
searching in metric data structures [7]. In fact, the most competitive indexing
algorithm in high dimensions, is precisely the List of Clusters (LC ) which can
be seen as an extremely unbalanced tree. The LC is considered the state of the
art for indexing. We will see in the experimental part that our data structure
outperforms the LC both in construction and searching time in all but a few
cases, establishing a new benchmark.

One key aspect of SAT is that a greedy search will find all the objects
previously inserted. For a query (q, r)d, in each node a it is determined the
closest element c of q among a ∪ N(a), then we use the same greedy search
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RangeSearch(Node a, Query q, Radius r,
Distance dmin)

1. If d(a, q) ≤ R(a) + r Then

2. If d(a, q) ≤ r Then Report a
3. dmin ← min {d(c, q), c ∈ N(a)} ∪ {dmin}
4. For b ∈ N(a) Do

5. If d(b, q) ≤ dmin + 2r Then

6. RangeSearch(b,q,r,dmin)

Algorithm 2. The algorithm to search for (q, r)d in a SAT with root a

entering all the nodes b ∈ N(a) such that d(q, b) ≤ d(q, c) + 2r because any
element x ∈ (q, r)d, can differ from q by at most r at any distance evaluation, so
it could have been inserted inside any of those b nodes. In the process, we report
all the nodes x founded close enough to q.

Algorithm 2 RangeSearch(a,q,r,d(a, q)) describes the process. Here a is the
tree root, r the range of the search and q the query object.

2.1 Dynamic Spatial Approximation Trees

If the objects to be indexed are not known beforehand, the SAT cannot be built
with Algorithm 1. Instead of examining all possible objects to decide which of
them fulfill the near condition, the neighbors are selected in a first-come-first-
serve basis. There are several strategies to maintain an arbitrary arity in the
tree, and to support also deletions as described in [9]. The arity was thought to
play the lead role in the efficiency of searching, in this paper we have found a
different factor accounting for the efficiency.

It has been shown that DSAT outperforms the static version for certain arity
combinations. In [9] the authors proposed a couple of practical rules based on
experiments: a) Low arities are good for low intrinsic dimensions or small search
radii, and b) Large arities can be used for high intrinsic dimensions. From an
algorithmic perspective this is an odd behavior, because a static data structure
may have all the information of the data instance, while a dynamic data struc-
ture have limited knowledge about the data. In this paper we have found the
underlying reason of this behavior. We describe our findings below.

3 The Distal Spatial Approximation Tree

From the definition of the SAT in algorithm 1, the starting set for neighbors of
the root a, N(a) is empty. This implies we can select any database element as
the first neighbor. Once this element is fixed the database is split in two halves
by the hyperplane defined by proximity to a and the recently selected neighbor.
Any one of the elements in the a side can be selected as the second neighbor.
While the zone of the root (those database elements closer to the root than the
previous neighbors) is not empty, it is possible to continue with the subsequent
neighbor selection.
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BuildTree(Node a, Set of nodes S)
1. N(a) ← ∅ /* neighbors of a */
2. R(a) ← 0 /* covering radius */
3. Fix an order π in the set S
4. For v ∈ S according to order π Do

5. R(a) ← max(R(a), d(v, a))
6. If ∀b ∈ N(a), d(v, a) < d(v, b) Then

7. N(a) ← N(a) ∪ {v}
8. For b ∈ N(a) Do S(b) ← ∅
9. For v ∈ S −N(a) Do

10. c ← argminb∈N(a)d(v, b)

11. S(c) ← S(c) ∪ {v}
12. For b ∈ N(a) Do BuildTree(b,S(b))

Algorithm 3. Algorithm to build a SAT+ for S ∪ {a} with root a

Sorting the elements in increasing order of distance to the root is just one of the
n! possible permutations of the database elements. Each database permutation
can be used as an order for the SAT construction. Each insertion order will
produce a correct version of the SAT, and the same searching algorithm can
be used. It is very likely that the performance at search time will be different
for each permutation, one natural question is: What is the best permutation
for a given database? Instead of blindly trying every permutation we try to
optimize the discarding rules of the SAT. A subtree is avoided using two rules,
hyperplanes and covering radius. The key aspect in the hyperplane discarding
rule is the separation between the two defining points, because the query ball
is more likely to fall completely in either side of the hyperplane and all the
objects in the opposite side can be discarded. A good hyperplane separation
in the upper levels of the tree also implies small covering radius in the lower
levels of the tree. We exploit this two observations using several heuristics in our
DiSAT data structure. Interestingly enough, the original policy for SAT works
exactly in the opposite direction of this improvement strategy. Even a random
selection of the insertion order outperform the original SAT ; this explains the
dynamic version being better than the static version.

3.1 The SAT+ Strategy

Algorithm 3 gives a formal description of the construction of our data structure.
The difference is in selecting the insertion order π in line 3. We tried farthest-
to-nearest order from the root . Searching is done with the standard procedure
described in Algorithm2.

A random permutation, or equivalently a random order, for the construction
of the SAT is similar to inserting elements online in the DSAT. The difference
will be to have a natural number of neighbors instead of an arbitrary arity
to be tuned up. We call this the SATRand in the experiments. We tested this
construction mainly to explain the behavior of the DSAT.
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When working with hyperplanes to perform data separation it is advisable to
use object pairs far from each other as documented in [5] for the GNAT andGHT
data structures. Using the above observations, we can ensure a good separation
of the implicit hyperplanes by selecting the first neighbor as the farthest element
to the root. Clearly it is advisable to do this recursively, at every node of the
tree. Please note that this heuristic is the exact opposite of the original ordering
in the construction of the SAT.

3.2 The SATGlob Strategy

Sorting elements by distance at every level can be time consuming. We tried a
fixed insertion order π by sorting elements for distance to the tree root, farthest
first. This fixed order π is used in all the following levels. Therefore, SATGlob

and SAT+ are similar only at the first level of the tree, on the following levels
the order π already determined is used without performing any new sort. This
also serves to probe for the recursive need to select good hyperplanes at each
tree level.

3.3 The SATOut Strategy

So far we have selected a random element as the tree root. Since we are aiming
at maximizing the hyperplane separation, it makes a lot of sense to select the
fathest pair as the root and the first neighbor respectively. This way there will
be a lot of room for farthest pair selection in the lower levels of the tree.

The “farthest pair problem” is well known. We want objects x, y ∈ S, such
that d(x, y) ≥ d(z, v), ∀z, v ∈ S. This can be doing by comparing all against
all the elements of the database, this is prohibitively expensive since it involves
O(n2) operations. A randomized version is very effective and uses only O(n)
operations. The idea is to select a random starting point u0, locate its farthest
neighbor u1 and repeat to find u2, etc. A few iterations will get a good approx-
imation of the farthest pair.

4 Experimental Results

For our first experiment we selected three widely used benchmark databases,
all from the SISAP Metric Library www.sisap.org, NASA images, Strings and
Color Histograms. We use euclidean distance for NASA images and Color His-
tograms, and edit distance for Strings. In all cases, we built the indexes with
90% of the points and used the other 10% (randomly chosen) as queries. All re-
sults are averaged over 10 index constructions using different permutations of the
datasets. We have considered range queries retrieving on average 0.01%, 0.1%
and 1% of the dataset. Given the existence of range-optimal algorithms for k-
nearest neighbor searching it is enough to consider only range searches in the ex-
perimental part. The source code SAT and DSAT is available in www.sisap.org,
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we submitted the code for DiSAT. The arity parameter of the DSAT was selected
using the recommendation in [9]1 .

Fig. 2 (Subfigs. 2(a)) contains the results of construction costs obtained in the
experiments for the three metric spaces. We show the comparison of the con-
struction costs for the original SAT, for the DSAT, and for the new SATRand,
SAT+, SATGlob, and SATOut built using the new construction criterions. As it
can be seen, the SAT+ gets the worst construction costs. It can be explained
because the arity in this case is the largest, and as it was shown in [9] construc-
tion cost grows with the tree arity. Moreover, despite of SATOut uses the same
neighbor selection policy as SAT+, SATOut achieves better construction costs
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Fig. 2. Comparison of construction and search costs

1 The best arity for the NASA images and for Color histograms is of 4, and arity 32
for the Strings.
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because the maximum arity tree is significantly lower than SAT+ because we
selected the root more properly. Fig. 2 (Subfigs. 2(b)) depicts that the new
SAT+, SATGlob and SATOut significantly improve searching costs with respect
to other ones, and they are very similar between them. However, SATOut achieves
the lowest search costs.

We postulate that in the new indexes the neighbors of the root represent a
more accurate sample of the different zones in the metric space and produce
better hyperplane separation in two senses, the inter-sibling separation and the
root-node separation. These two conditions also imply small covering radii. This
in turn produces a more compact partition of the space, improving the search
cost.

5 Comparison with Other Indexes

Among all the exact indexes AESA [14] stands as the lower bound in distance
computations; however, it uses a quadratic amount of space. In this version of
the paper we will only compare with linear size indexes. We have performed an
exhaustive comparison with other approaches and confirmed the DiSAT as a
competitive, standing as a new efficiency benchmark. Due to space restrictions,
in this version of the paper we only compare with the List of Clusters (em LC),
as this data structure currently holds the benchmark for exact searching. In [8,9]
SAT and DSAT were compared with several competitive indexes, so transitively
we show that DiSAT is a very efficient index because is a better option than
SAT and DSAT.

5.1 List of Clusters

The List of Clusters (LC ) [7], with a proper parameter selection stands as the
most competitive exact index when counting distance computations as the com-
plexity measure. As we have improved the original SAT, with our SAT+ and
SATOut, we want to test how competitive is our approach against the state of
the art. One drawback of the LC is the construction cost, another is the manually
selected cluster size.

Fig. 3 compares construction and search costs, Subfigs. 3(a) and Subfigs.
3(b) respectively, of the SAT+, SATOut, and LC. We test different values of
m (LC(m)), some of them are presented in this comparison. We select values
that allow us to show the behavior of LC at a similar construction cost and a
similar or even better search cost with respect to our indexes.

For the NASA images database, SAT+ and SATOut beat LC for all search
radii, even with a value of m = 25 for LC that implies approximately 5 times
our construction costs. Moreover, in this database we could not get any cluster
size that would enable LC to be superior to our indexes, , even if we disregard
construction costs. Nevertheless, LC outperforms our indexes with m = 100
in all radii considered for Strings database, but it needs 2.5 to 3 times our
construction costs. Moreover, in this database LC with similar construction costs
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Fig. 3. Comparison of construction and search costs against the LC, considering dif-
ferent cluster sizes

(with m = 200, 300) beats us, but for large radii. For Color histograms database,
again it can be seen that our our SAT+ and SATOut surpass LC for all radii
considered. However, for m = 50 LC achieves slightly higher search costs than
ours, but it needs to pay almost 6 times more than our cost of construction.

Please notice that as the size of the database grows, the increase in con-
struction cost per element is not significant. It is also apparent that SAT+ and
SATOut have a good tolerance to large radii without needing parameter tuning.
In the case of the LC a wrong parameter imply poor performance and/or large
construction cost.

Scalibility. We also experimented with a larger database to test the scalabil-
ity of our approach, and at the same time to compare with the LC. For this
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experiments, we use a 10 million images subset of the COPHIR database. For
the List of Clusters we use a cluster size of 2048. We build the indexes on increas-
ing sizes of the database in order to evaluate how is the behavior of all indexes
as the database size grows. We started in 100,000 objects, doubling the size of
the database up to 10 million objects. We reserved 200 objects, which would not
be indexed, to be used as queries. In all sizes we use the same threshold r of
200 for the range queries, with r = 200 we retrieve in average more than 100
objects. Please notice that the items retrieved decrease with the database size,
not retrieving any object in the sizes range of 100,000 to 400,000. Fig. 4 shows
the construction costs obtained, and Fig. 5 depicts the search costs for the three
indexes compared.
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Fig. 4. Comparison of construction costs for increasing subsets of COPHIR database
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Fig. 5. Comparison of search costs for increasing subsets of COPHIR database

As it can be noticed, our indexes outperform significantly the List of Clusters,
in both construction and search time. Although construction costs are higher in
lower sizes of the database on our indexes, our costs do not change too much as
the database size grows, while with the List of Clusters it grows very quickly.
During searches is even more remarkable that our indexes are better than the
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List of Clusters obtaining better search costs for all sizes considered. Therefore,
these experiments allow empirically to demonstrate that SAT+ and SATOut are
very scalable indexes.

6 Conclusions and Future Work

We have presented a new heuristic for constructing the SAT. The rule is coun-
terintuitive and consist in selecting distal instead of proximal nodes. With this
approach our proposed indexDiSAT stands as the new efficiency benchmark, sup-
ported by exhaustive experimentation. It improves the construction and searching
times w.r.t. LC and other data structures.

Distal node selection can be used in static, dynamic and secondary memory
versions of the SAT and produce more compact subtrees, inducing more locality
to the implicit partitions of the subtrees. This factor will impact IO operations
in secondary memory versions of DiSAT.

One possible consequence of a compact underlying partition, induced by a
small covering radius is the possibility of producing coherent clusters suitable
for statistics, mining, pattern recognition and machine learning purposes. One
aspect of the putative clustering procedure is to produce a stable clustering
(independent of the choice of the root, for example), or alternatively detecting
natural, parameter free clusters.
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