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Abstract. We present a novel index for approximate searching in metric
spaces based on random bisectors and binary fingerprints. The aim is
to deal with scenarios where the main memory available is small. The
method was tested on synthetic and real-world metric spaces. Our results
show that our scheme outperforms the standard permutant-based index
in scenarios where memory is scarce.
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1 Introduction

Similarity search is an extension of exact searching, motivated by data types that
cannot be queried by exact matching. This problem consists in finding elements
within a given dataset that are similar to a given query according to a similarity
criterion. There is a wide range of applications where the exact comparison is
of little use. For instance, consider the case when a person is asked to scan its
fingerprint so as to retrieve medical records. The system will obtain a different
version of the fingerprint depending on the amount of pressure the person places
on the sensor. In these situations, the only way of retrieving relevant objects —
that is, objects that are similar to the query— is by tolerating small variations
between objects. Other applications include multimedia databases containing
images, audio, video, documents, and so on [4].

Proximity queries can be formalized using the metric space model [4,8,10,11].
Essentially, this model considers a pair (X, d), where X is a universe of objects
and d : XxX — RTU{0} is a nonnegative distance function defined among them.
Objects in X do not necessarily have coordinates (think, for instance, in strings).
On the other hand, the function d provides a dissimilarity criterion to compare
objects from X. In general, the smaller the distance between two objects, the
more “similar” they are. The function d satisfies the metric properties, namely:
positiveness d(x,y) > 0, symmetry d(x,y) = d(y, z), reflexivity d(z,z) = 0, and
triangle inequality d(z,z) < d(x,y) + d(y, z), for every x,y,z € X.

The standard scenario of proximity searching considers a finite database of
interest U C X, of size n. Later, when a new query object ¢ € X\ U arrives, its
proximity query consists in retrieving relevant objects from U.
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There are two basic queries, namely, range and k-nearest neighbor ones. The
range query (q,r) retrieves all the elements in U within distance r to ¢q. The k-
nearest neighbor query NNy (q) retrieves the k elements in U that are closest to
q. Both queries can be trivially answered by exhaustively scanning the database,
requiring n distance evaluations. However, as the distance function is assumed
to be expensive to compute (e.g., when comparing two fingerprints), frequently
the complexity of the search is defined in terms of the total number of distance
evaluations performed, instead of using other indicators such as CPU or 1/O
time. Thus, the ultimate goal is to build an offline index that, hopefully, will
accelerate the process of solving online queries.

In this paper, we show a novel metric space index based on random bisectors
and binary fingerprints to approximately solve the similarity search problem.
An advantage of our index is that only requires a marginal amount of space.
As we detail in the experimental section, when solving the NN;(g) in the hard
metric space of uniformly distributed vectors in R'?® under Euclidean distance,
our method is able to retrieve 98% of the true answer by analyzing only 10%
of the dataset, and this is achieved by using only 288 bits per element in the
index. In the same experimental setup, our index overcomes the state-of-the-art
Permutation Based Index (PBI) [3], as the later only retrieves 77% of the answer.

2 Related Work

In this section we briefly explain the compact-partition based algorithms and
the PBI. Then, we describe two concepts that are central for the present study,
namely, the Hamming distance and locality-sensitive hashing.

Compact-Partition Based Indices. These methods split the space into zones
as compact as possible. For each partition, they store a representative object and
extra information that permits the exclusion of that partition at query time.

This family of methods can be divided into the Voronoi partition and covering
radius schemes. A Voronoi Partition method selects a subset of representative
objects, called centers, denoted as {ci,...,cn}, associating the remainder of
the objects according to their proximity to its closest center. At query time,
the distances (d(g,c1),...,d(q,cm)) are evaluated and the closest center ¢ is
identified. Those regions satisfying the inequality d(q,¢;) > d(g,c) 4+ 2r can be
safely discarded because they never intersects the query ball. On the other hand,
the covering radius, cr(c;), corresponds to the distance between its center and
the farthest element in its respective zone. So, at query time, when d(q, ¢;) —r >
cr(c;), then the zone i can be safely discarded.

The Permutation Based Index. Let P C U be a subset of permutants. Each
element u € U computes the distance towards all the permutants py, ..., pp| € P.
The PBI does not store distances. Instead, for each u € U, it stores a se-
quence of permutant identifiers IT, = iy,12,...,ip|, called the permutation of
u. Each permutation IT, stores the identifiers in increasing order of distance, so
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d(u,P;;) < d(u,P;;,,). Permutants at the same distance take an arbitrary but
consistent order. Thus, a simple implementation needs n|P| space. Observe that
it is possible to compact several permutant identifiers in a single machine word.
The crux of the PBI is that two equal objects are associated to the same
permutation, while similar objects are, hopefully, related to similar permuta-
tions. In this sense, when II, is similar to II, one expects that u is close to g.
The similarity between the permutations can be measured by Kendall Tau K,
Spearman Footrule Sg, or Spearman Rho S, metric [5], among others. As these
three distances have similar retrieval performance [3|, for simplicity we use Sp,
defined as Sp(Iu, Iq) =3, 1 p| \IT,; ' (iy) — II; *(i5)], where IT;7' (i) denotes
the position of permutant p;; in the permutation II,. For example, if we have
two permutations IT,, = (42153) and I, = (32154), then Sp(I1,, IT,) = 8.
Finally, at query time, we compute /1, and compare it with all the permuta-
tions stored in the PBI. Next, U is traversed in increasing permutation dissimi-
larity. If we limit the number of distance computations, we obtain a probabilistic
search algorithm that is able to find the right answer with some probability.

Hamming Distance. Given two binary sequences of equal length, the Ham-
ming distance is the number of positions at which the corresponding symbols
differ [7].

Locality-Sensitive Hashing. The Locality-Sensitive Hashing (LSH) is a fam-
ily of techniques that map the input data into a set of buckets using several
hash functions. The overall goal is that, with high probability, similar objects
are mapped to the same bucket, and simultaneously, different objects are as-
signed to different buckets. This concept differs from the usual approach of hash
functions, instead of avoiding collisions between similar objects, LSH encourages
them.

The key point of LSH is to define the hash function family. The authors of
[1] survey several alternatives for the vector space. One of those alternatives is
related to our bisector approach. That idea is to pick random unit-length vectors
u € RP and then define hy,(v) = sign(u - v). Using many random vectors, it is
possible to build a binary sequence for each object. This hash function family
was devised to approximate the cosine distance between two vectors in RP.

As far as we know, there is only one application of LSH to metric spaces.
In [9], the authors use LSH to avoid the sequential scanning of the PBIL

3 Random Bisectors and Binary Fingerprints

In this section, we detail our proposed index for approximated similarity search-
ing in metric spaces and the corresponding algorithms for solving similarity
queries. The index uses the concepts of virtual random bisectors and binary fin-
gerprints (RBBF) to build the data structure. We use virtual bisectors, since in
general metric spaces, objects do not necessarily possess Cartesian coordinates.

Our index, called the Random Bisectors and Binary Fingerprints 1 (RBBF1),
represents the objects using binary fingerprints. RBBF1 can be classified as a
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Fig.1. Randomly generated data points used to show the behavior of our index. In

(a), we see the objects partitioned using two virtual bisector hyperplanes Hi and Ha.
In (b), we see the fingerprint associated to each object.

new LSH approach for metric space searching, where each bisector hyperplane
is a member in the hash function family.

For lack of space, in the following we only sketch the algorithms. A longer
explanation, including pseudo-codes can be found in [2] (in Spanish).

Construction. RBBF1 only stores the binary fingerprint F}; for each object
u; € U. One of the main advantages of this philosophy is that it demands
very little memory. To compute the fingerprint of an object, we need to simulate
several bisectors. In this context, a bisector is understood as a virtual hyperplane
which is orthogonal to the imaginary segment connecting the two endpoints and
which intersects the midpoint of the segment.

If we were considering the vector space, each bisector hyperplane can be ac-
tually computed. However, in general metric spaces, objects do not necessarily
have coordinates. Instead, what is available is the dissimilarity function d. Hence,
when randomly picking two objects h;1, hio € U, we can implicitly separate the
space into two regions (by closeness to h;; or h;2) in an analogous manner as
the above-mentioned bisector. Therefore, the method computes the distance be-
tween each object u € U to the objects h;; and h;3. The index then determines
which of two object is the closest, identifying the corresponding region with a
bit.

Fig. la illustrates the RBBF1. It shows a scatter plot with 12 random objects
and two random bisectors. The first bisector, Hy, is induced by the objects
h11 = w1 and hi2 = uiz. The first component of the fingerprint refers to Hi,
and is set to one for those elements closer to u; and set to zero when they are
closer to u12. Analogously, the second bisector, Hs, is generated from the objects
ho1 = ug and hoo = ug. Fig. 1b shows resultant fingerprints for each object.

As we manage several hyperplanes, we store all the location information
in a binary matrix F' as follows. For all the objects v; € U, and for all the
A hyperplanes, if d(uj, ha) < d(uj, hi2) then Fj; < 1, otherwise, Fj; < 0.
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The j-th row of the matrix F' is called the fingerprint for instance j, and contains
A bits, one for each bisector, respectively. Naturally, the construction cost of
RBBF1 is O(n\) both in evaluations of the distance function and CPU time.

Solving Similarity Queries with RBBF1. We use the RBBF1 index to
speed up both k-nearest neighbor and range search queries, as explained below.

Our assumption is that two objects that are equivalent (i.e., with distance
equal to zero) possess the same binary fingerprint, and that similar objects
should be associated to fingerprints that differ in few bits. More in detail, if
the fingerprint Fj is similar to the F,,, we expect that the object u is close to
q. Note that two neighboring regions in the Voronoi diagram differ in just one
bit in their respective fingerprints. We decided to follow the intuitive idea of
traversing the dataset following the order induced by the increasing Hamming
distance between the query fingerprint £, and the fingerprint of every object in
U.

RBBF1 does not allow the exclusion of objects at query time, which in our
opinion is not an inconvenient, because in high-dimensional metric spaces almost
all the exact algorithms resort to sequential scanning. Fortunately, as the order
induced by the Hamming distance is so promissory, we can stop the searching
after reviewing a fraction an of the objects in the dataset, as a workload, and
obtain a really good answer. Naturally, the bigger the workload, the fewer rel-
evant elements are lost by the technique. This desirable property is verified in
Section 4 with strings and vectors.

The search mechanism starts by computing the fingerprint F, of the query
object q. Next, the method ranks all the elements within U by increasing Ham-
ming distance with respect to Fj, so as to compute the promissory review order.
Subsequently, we use the workload to compare the best ranked objects with the
query using the real distance of the metric space.

When solving range queries, the method reports any object in the workload
within a distance r with respect to the query object g. On the other hand, in the
case of k-nearest neighbors, the k closets objects in the workload are reported.

4 Experimental Evaluation

We tested our method on strings using the edit distance, and also uniformly
distributed vectors in R”, for dimensions D = 32, 64, and 128 using Euclidean
distance. The experiments were run on an Intel i5 of 2.6 GHz (two physical and
four virtual cores), with 2GB of RAM, local drive and MS Windows 8.1 Profes-
sional of 64 bits, using JDK version 1.7.0 _45. In the construction experiment,
we only measure the CPU as RBBF1 needs 2n\ distance evaluations to build
the index. The results shown correspond to averages after 10 constructions.

To test the search method, we measure the percentage of query retrieval vary-
ing A and the workload, and also the percentage of retrieval for a fixed workload
varying A. We compare our approach with the standard PBI in the compact ver-
sion, that is, we pack several permutant identifiers in the same machine word.
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The permutations are compared using the Spearman Footrule (see Section 2).
Additionally, we do not measure distance evaluations as they are limited by the
workload. The results include the average of 100 NN queries. A longer experi-
mental evaluation, including range query results is available in [2].

4.1 String under Edit Distance

We tested RBBF'1 using a dictionary called Dutch.dic, obtained from the Metric
Space Library [6], which contains an unsorted set of 229,328 words belonging to
the Dutch language.

Construction. RBBF1 pre-calculates the distances between each object of the
dataset to the set of A\ pair of objects, thus demanding O(nA) time, with a
correlation coefficient R? > 0.966.

Searching. Fig. 2a shows a summary of the best retrieval results for NN; and
NNy queries using the optimal value of A for this dataset. RBBF1 presents a
good retrieval performance. For instance, reviewing just a 5% of the dataset,
RBBF1 retrieves 96% of the true answers in NN; queries, and 82% in NNog
queries. This is achieved by requiring only a single integer per object. For space
constrains, we omit range query plots. However, we verify that the performance
is similar. For instance, a query (g, 1) retrieves 1.38 objects in average, and the
optimal value of A is also 24, retrieving a 91.3% of the true answers.

Because 8 identifiers can be packed using 32 bits, it is fair to compare RBBF1
with the standard PBI using 8 permutants. We observed that RBBF1 outper-
forms the PBI index with respect to retrieval ratio using the same space. We
allowed more permutants in the PBI until its performance matches the one ob-
tained by RBBF1 (these curves are omitted in the plot). This occurred when
PBI employed 14 permutants, necessitating 63% more memory than RBBF1.

4.2 Uniformly Distributed Vectors under Euclidean Distance

We also performed tests by generating 30,000 random vectors from a uniform
distribution in the range [0,1]”. We randomly selected 100 query items and
computed the respective percentage of retrieval. Our aim is to observe the per-
formance of RBBF1 in different dimensional spaces.

Searching. Figs. 2b, 2c and 2d summarize the best retrieval results for NNy
and NNag queries for D equals to 32, 64, and 128, respectively. RBBF1 and PBI
are compared using the same memory requirements (i.e., 8 permutants). We also
allow that the PBI uses more memory to match the performance of RBBF. This
occurs when the PBI uses 63% to 100% more memory than the RBBF.

We observe that for the case of R32, the RBBF1 index with a workload of
reviewing 10% of the dataset reaches to 82% and 74% of retrieval for NN; and
NNsq, respectively. Since RBBF1 consistently improves with the available space,
we run experiments using longer signatures.
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Fig. 2. Comparison of RBBF1 and PBI using NN) queries on strings and vectors.
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Fig. 3. NNy queries of uniformly distributed vectors in R, for D = {32, 128}, using
an increasing number of fingerprints. In (c) the equivalence between the number of

fingerprints and the cardinality of the permutant set.
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Table 3c shows the size of a permutant set that uses the same memory than
the allowed for the long signatures. Figure 3 shows NN}, retrieval for k = 1 and
20 reviewing 10% of the database (that is, with & = 0.1). We note that RBBF1
effectively uses the extra space in order to improve the retrieval, and also use
the space more efficiently than standard PBI.

5 Conclusions and Future Work

The paper presented a novel index for approximate searching that relies on
random bisectors and binary fingerprints. The method was tested on strings
and vectors, comparing the respective performances with the Permutant-Based
Index (PBI). The experimental results show that our index outperformed the
PBI scheme. We believe that this occurs because of the sorting mechanism, based
on neighboring regions between fingerprints. Remarkably, a marginal amount of
memory is required for storing the index. In fact, we use a single integer per
object for the experiments with strings and nine for the case of vectors.

Avenues to be explored include the pattern recognition applications of the
RBBF and the concept of maintaining a graph of neighborhood between signa-
tures that, hopefully, would improve the results.
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