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Abstract. Permutation based approaches represent data objects as or-
dered lists of predefined reference objects. Similarity queries are executed
by searching for data objects whose permutation representation is similar
to the query one. Various permutation-based indexes have been recently
proposed. They typically allow high efficiency with acceptable effective-
ness. Moreover, various parameters can be set in order to find an optimal
trade-off between quality of results and costs.

In this paper we studied the permutation space without referring to
any particular index structure focusing on both theoretical and experi-
mental aspects. We used both synthetic and real-word datasets for our
experiments. The results of this work are relevant in both developing and
setting parameters of permutation-based similarity searching approaches.

Keywords: permutation-based indexing, similarity search, content based
image retrieval.

1 Introduction

Representing dataset objects as lists of preselected pivots ordered by their close-
ness to each object is a recent approach that have been proved to be very useful
in many recent approximate similarity search techniques [3,8,14,20]. These ap-
proaches share the intuition that similarity between objects can be approximated
by comparing their representation in terms of permutations. The quality of the
obtained results have proved that whenever the permutations of two objects are
similar then the two objects are likely to be similar also with respect to the
original distance function.

In this paper, we studied the permutation space withouth relying on any spe-
cific indexing structure with the goal of making theoretical and experimental
observations that can be of help in both setting parameters of existing permu-
tation based approaches and developing new one.

2 Related Work

Predicting the closeness between objects on the basis of ranked lists of a set
of pivots was originally and independently proposed in [8] and [4]. In [8] data
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objects and queries are represented as appropriate permutations of a set of
reference objects, called permutants, and their similarity is approximated by
comparing their representations in term of permutations. As distance between
permutations, Spearman rho, Kendall Tau and Spearman Footrule were tested.
Spearman rho revealed better performance.

The MI-File approach [4,3] uses an inverted file to store relationships between
permutations. Spearman Footrule Distance is used to estimate the similarity
between the query and the database objects. To reduce the storage, each object
is encoded using the only nearest reference points and further approximations
and optimizations are adopted to improve both efficiency and effectiveness.

The Permutation Prefix Index (PP-Index), was proposed in [13,14]. PP-Index
associates each indexed object with a short prefix of predefined length of the
full permutation. The prefixes are indexed by a prefix tree kept in main memory
and all the relevant information relative to the indexed objects are serialized
sequentially in a data storage kept on disk. PP-index uses the permutations
prefixes in order to quickly retrieve a candidate set of objects that are likely
to be at close distance to the query. The result set is then obtained using the
original distance function by a sequential scan of the candidate set.

In [20], the concept of Locality-sensitive Hashing (LSH) was extend to a gen-
eral metric space by using a permutation approach. In [19], a quantized represen-
tation of the permutation lists with its related data structure was proposed and a
specific data structed, namely the Metric Permutation Table, was also defined. In
[22] authors presented the neighboord approximation (NAPP) techinique whose
main idea is to represent each object by the set of its nearest pivots and approxi-
mate the similarity between objects on the basis of the number of shared pivots.
Three strategies for parallelization of permutation-based indexes using inverted
files were presented in [18]. Posting lists decomposition, reference points decom-
position, and multiple independent inverted files were studied and compared.

In [2], various pivot selection techniques were tested on three permutation-
based indexing approaches (i.e., [8,3,14]). The results revealed that each indexing
approach has its own best selection strategies but also that the random selection
of pivots, even if never the best, results in good performance.

In [17,1] a Surrogate Text Representation (STR) derivated from the MI-File
has been proposed. The conversion of the permutations in a textual form allows
using off-the-shelf text search engines for similarity search.

3 Permutation-Based Representation

Given a a domain D, a distance function d : D × D → R and a fixed set of
objects P = {p1 . . . pn} ⊂ D that we call pivots, we define a permutation-based
representation Πo (briefly permutation) of an object o ∈ D as the list of pivots
identifiers ordered by their closeness to o, with the pivots being a fixed set of
objects.
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Formally, thepermutation-based representationΠo = (Πo(1), Πo(2), ..., Πo(n))
lists the pivot identifiers in an order such that ∀j ∈ {1, 2, . . . , n−1}, d(o, pΠo(j)) ≤
d(o, pΠo(j+1)), where pΠo(j) indicates the pivot at position j in the permutation as-
sociated with object o.

Denoting the position of a pivot pi, in the permutation of an object o ∈ D, as
Π−1

o (i) so that Πo(Π
−1
o (i)) = i, we obtain an equivalent representation Π−1

o :

Π−1
o = (Π−1

o (1), Π−1
o (2), ..., Π−1

o (n))

This representation is very useful for essentially two reasons: first, Π−1
o ∈ R

n

allowing representing permutation in the Cartesian coordinate system; second,
the Euclidean distance between two objects x, y represented as Π−1

x and Π−1
y is

equivalent to the Spearman rho distance between Πx and Πy (see Section 3.1).

3.1 Comparing Permutations

The idea of approximating the distance d(x, y) between any two objects x, y ∈
D by comparing their permutation-based representation Πx, Πy was originally
proposed in [8]. As distance between permutations, Spearman rho, Kendall Tau
and Spearman Footrule were tested. Spearman rho revealed better performance.
Given two permutations Πx and Πy, Spearman rho is defined as:

Sρ(Πx, Πy) =

√ ∑
1≤i≤n

(Π−1
x (i)−Π−1

y (i))2

Following the intuition that the most relevant information of the permutation
Πo is in the very first, i.e. nearest, pivots, Spearman rho distance with location
parameter Sρ,l defined in [15], intended for the comparison of top-l lists, has
been also proposed.

Sρ,l differs from Sρ for the use of an inverted truncated permutation Π̃−1
o that

assumes that pivots further than pΠo(l) from o being at position l+1. Formally,

Π̃−1
o (i) = Π−1

o (i) if Π−1
o (i) ≤ l and Π̃−1

o (i) = l+ 1 otherwise.
It is worth to note that only the first l elements of the permutation Πo are

needed, in order to compare any two objects with the Sρ,l.

4 Theoretical Observations

As mentioned in Section 3, the permutation-space representation Π−1
o belongs

to R
n. Moreover, the Spearman rho distance between two permutations Πx and

Πy results in a Euclidean distance between Π−1
x and Π−1

y . In the following we
consider the Π−1

o representation in a Cartesian coordinate system.
If we consider the case n = 3, the set of all possible permutation-based

representation (i.e., the set of all permutations on 3 elements) is formed by
{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. It is easy to see that all this
points lie on the plane x + y + z = 6 and represent the vertices of a regular
hexagon as depicted in Figure 1.
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Fig. 2. Permutahedron with 4! = 24 ver-
tices

Consider now the n = 4 case: the vectors of all possible Π−1
o lie in a three-

dimensional subspace of R4 and are the vertices of a truncated octahedron (see
Figure 2).

In general, the n! points x obtained by permuting the coordinates of the vector
(1, 2, . . . , n), form the vertices of a (n− 1)-dimensional polytope embedded in a
n-dimensional space, referred to as permutahedron (also spelled permutohedron)
[23,16]. In fact, given that both the sum of vector values xi (i.e., Π−1

o (i)) and
their squared values are fixed, all the vertices lie on both the hyperplane

x1 + x2 + · · ·+ xn =
n(n+ 1)

2

the n−sphere

x2
1 + x2

2 + · · ·+ x2
n =

n(n+ 1)(2n+ 1)

6
.

That is they lie on the intersection between an hyperplane and a sphere both in
R

n, i.e., on a n− 1 sphere residing in n-dimensional space.
The permutahedron is a very interesting convex polytope. It is centrally sym-

metric and its vertices can be identified with the permutation of n objects in
such a way that two vertices are connected by an edge if and only if the cor-
responding permutations differ by an adjacent transposition. It is rather easy
to see that the squared Euclidean distance between any two vertices is an even
integer, moreover, for n > 4, the squared distances constitute every even integer
up through the maximum possible value, that is 1

3 (n
3 − n) [21,23].
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As observed in [21], standing on any vertex of a permutahedron and looking
around at neighbouring vertices, the view of the surrounding space is the same:
there would be n−1 adjacent vertices evenly distributed around the observation
vertex, which Euclidean distance is

√
2. Furthermore, the number of vertices and

their relative positions within a generic ε-ball neighbourhood is independent of
the observation vertex.

The permutahedron precisely illustrate how the permutation-based represen-
tation are positioned in the space were the Euclidean distance is equivalent to the
Spearman rho. It is worth to mention that the Spearman Footrule, sometimes
used in permutation based-indexing, results in a L1 (also Manattan) distance
in the same space. However, it does not help very much in understanding the
distance distribution.

In order to understand the Spearman rho distance distribution it is useful
to use its not-squared root variant (S2

ρ) because of its interesting distribution
properties. In [11] it was shown that S2

ρ distance has:

– mean: 1
6 (n

3 − n)
– variance: 1

36n
2(n− 1)(n+ 1)2

– maximum value: 1
3 (n

3 − n)

Unfortunately, S2
ρ is not a metric. However, due to the monotony of the square

root function, there are not changes in the order of the results of a k-NN search
with respect to the ones that can be obtained with Sρ. Moreover, normalized
by its means and variance, S2

ρ has a limiting normal distribution [12]. Chávez’s
intrinsic dimensionality [10] of the permutation space with squared Spearman
rho distance is 1

2 (n− 1).

5 Performance Evaluation of the Permutation Space

For our experiments we did not use any specific index approach. In fact, we
performed sequential scan of permutation-based representation archives in order
to retrieve most similar objects with respect to the query by using the Spearman
rho distance function.

5.1 Datasets and Groundtruth

Random Float Vectors. As synthetic dataset we considered random gener-
ated vectors of floats of various dimensionalities d between 2 and 10. For each
dimension we randomly generated float between 0 and 1. As distance measure
for comparing any two vectors we used the Euclidean distance.

CoPhIR. As real-word dataset we used CoPhIR dataset [7], which is the largest
multimedia metadata collection available for research purposes. It consists of 106
millions images crawled from Flickr. We run experiments by using as distance
function d a linear combination of the five distance functions for the five MPEG-7
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descriptors that have been extracted from each image. We adopted the weights
proposed in [5]. As the ground truth, we have randomly selected 100 objects
from the dataset as test queries and we have sequentially scanned the CoPhIR
to compute the exact results. The queries were removed from the dataset itself.

5.2 Pivots Selection

For the CoPhIR dataset we randomly selected 10,000 pivots from the whole
106M objects collection. We then created subsets of this first selection. In the
following we report experiments obtained on a subset of the entire CoPhIR
collection. Thus it happens that some pivots are also in the dataset while some
are not.

Pivots for the random float vectors were randomly generated without selecting
between the objects in the dataset.

Variuos pivots selection strategies have been proposed for permutation-based
indexing [2]. Experimental results have shown that while each specific index
strategies have its own best selection approach, the random selection is always
a good choice.

5.3 Parameters

In this section we summarize the parameters that have to be set for each specific
experiment.

d - Float Vectors Dimensionality. This parameter is only necessary to in-
dicate which random float vector dataset was used for the specific experiment.
Experiments are reported for d = 2, 4, 6, 8.

m - Dataset Size. For both the synthetic and the CoPhIR dataset we recur-
sively selected a subset of the collection. We performed experiments up to 1M
and 10M objects for the random float vectors and CoPhIR datasets respectively.

n - Number of Pivots. The max number of pivots we used was 10,000. The
smallest set of pivots have been obtained recursively selecting a subset of the
larger collection.

l - Permutation Length. Various values of l for the Spearman rho with
location parameter (see Section 3.1) where tested. Please note that l = n results
in the standard Spearman rho distance.

a - Amplification Factor. When a k-NN search is performed, a candidate
set of results of size k′ = a ∗ k is retrieved considering the similarity of the
permutations based on Sρ. This set is then reordered considering the original
distance d : D ×D → R.
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Fig. 3. Variances (eigenvalues) λ1 ≥ λ2 ≥ · · · ≥ λn, for various number of pivots
n, corresponding to each principal component of the permutation obtained from the
random float vectors of dimensionality 4 (a), 8 (b)

5.4 Evaluation Measure

Permutation-based indexing approaches, typically re-rank a set of approximate
results using the original distance. In this work we did the same. Thus, if the
k-NN results list R̃k returned by a search technique has an intersection with the
ground truth Rk, the objects in the intersection are ranked consistently in both
lists. The most appropriate measure to use is then the recall : |R̃k ∩ Rk|/k. In
the experiments we fixed the number of results k to 10.

5.5 Principal Component Analysis

While PCA can not be performed on a generic domain D that can have a non
metric distance and/or being a non vector space, once the permutation-based
representation has been obtained it is always possible to run PCA on the Π−1

o .
We did this for both the random float vectors and CoPhIR dataset.

In Figure 3, we show the eigenvalues of each principal component of the per-
mutations obtained for various number of pivots n. The dimensionality of the
float vectors was 4 for (a) and 8 for (b). Please note, that both axes have log-
arithmic scale. With 1,000 pivots it is clear in both cases what the original
dimensionality of the vector space was. In fact, there is a large drop in the eigen-
values passing from the 4th and 5th eigenvectors in (a), and from 8th and 9th in
(b). The results also show that with more pivots we obtain a permutation-based
representation that better fix the original data complexity.

We did the same for the CoPhIR dataset reporting the results in Figure 4.
It is interesting to see that, in the logarithmic scale, the eigenvalues linearly
decrease. However, CoPhIR did not reveal any specific dimensionality.
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In [6], it was shown that the combined distance function that we are also using
in our experiments, results on the CoPhIR dataset in a near normal distribution
with an intrinsic dimensionality, measured following the approach presented in
[9], of about 13. Unfortunately, the same information can’t be induced from
Figure 4. Some non-linearity can be seen around 6 and 9, but performing PCA
on the CoPhIR doesn’t allow to understand the intrinsic dimensionality of the
dataset as well as it allowed to understand the real dimensionality of the random
generated float vectors.

5.6 Recall

In this section we relate the various parameters presented in 5.3 to the recall
obtained on k-NN searching for k = 10. As mentioned before, results were ob-
tained sequentially scanning archives of permutations by using the Spearman rho
with and without location parameter l. Please note that l = n, i.e. for location
parameter l equal to the number of pivots, the Spearman rho with an without
location parameter are equivalent.

In Figure 5, we report the recall obtained on the random float vector datasets
of 2 (a), 4 (b), 6 (c), 8 (d) dimensionalities, varying the location parameter l and
for various number n of pivots. In these experiments we fixed the amplification
factor a = 1. The most interesting result is that for small dimensionalities (2 and
4) there is a maximum recall that can be obtained varying l. In other words, l = n
it is not always the best solution, but there is an optimal l that appears not to vary
for n > l. It also interesting to see that this optimal l varies significantly with the
dimensionality of the original vector space. For 8 dimension vectors we are not
even able to see this effect in the results. Probably, in this case the optimal l is
well above 10,000 which is the max number of pivots we tried. Another important
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Fig. 5. Recall varying l for various number of pivots obtained on 100,000 random float
vectors of dimensionality 2 (a), 4 (b), 6 (c), 8 (d)

observation is that the differences between the recall obtained by the various set
of pivots tend to be smaller for higher d.

The same type of experiments were conducted on the CoPhIR dataset. In
Figure 6, we report the recall obtained for a = 1 (a) and a = 10 (b). As for the
random float vectors, it appears to be an optimal l that does not vary signifi-
cantly with n. While the amplification factor does significantly impact the overall
recall, the optimal l still remain almost the same. These results are consistent
with the ones obtained on the random float vectors for dimensionality of about
4. In terms of indexability with respect to the permutation-based approach,
CoPhIR appears to be as complex as random generated vectors of dimensional-
ity between 4 and 6. In fact, we shown in Figure 5 that for random float vectors
of 8 dimensions, the optimal l equals the number of pivots.
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In Figure 7, the recall obtained varying the number of pivots for various size of
CoPhIR subsets is reported. In this case we use a = 1. In Figure 7 (a), we show
the results obtained for l = n (i.e., the standard Spearman rho). In Figure 7 (b),
we report the recall obtained for the optimal l which depends on both n and
dataset size. Comparing these two figures it is evident that higher recall can be
obtained increasing the number of pivots only if the optimal location parameter
l is used. However, in our experiments, we had very near optimal results by
using l = 200 (as can be seen for 10M objects in Figure 6). The intuition is that
after a certain number of pivots, information regarding distant pivots is not only
useless but distracting. Pleas note that the experiments performed on the random
vectors indicate that the distant pivots are useful when the dimensionality of the
dataset is above 8 (up to 10,000 pivots). Thus, while the observations made on
the CoPhIR datasets are useful for understanding its characteristics and the
fact that it exists an optimal l for a specific dataset, l = 200 is a near optimal
solution only for the CoPhIR dataset and it probably reflects its complexity
which appears to be lower than the intrinsic dimensionality evaluated in [6]
following the [9] approach.

In Figure 8, we show the recall obtained varying the size of the CoPhIR
subset for various number of pivots, optimal l (different for each combination
of number of pivots n and dataset size) and a = 10. This graph is useful for
understanding the loss in recall when the dataset increase. The results show
that there is almost a linear dependency between the number of pivots needed
to achieve a given quality of results and the dataset size.

In Figure 9, we fixed both the number of pivots (10, 000) and the dataset size
(10M) reporting the recall varying a for various l. As obvious, the larger the
amplifier factor a the better the quality of the results. Please note that l and
a are the most relevant parameters in trading efficiency versus effectiveness in
permutation based indexes. In fact, the shorter the permutation Πo, the fewer
the information to be stored for each object. Moreover, the less the amplification
factor a, the smaller the number of objects to be retrieved for each search.

6 Conclusion

In this work we studied the permutation space focusing on both theoretical and
experimental aspects not relying on any specific index structure. We used both
synthetic and the CoPhIR dataset for the experiments varying various parame-
ters that are typically used for trading-off between efficiency and effectiveness.

We first made some observations on the permutation space generating random
permutations in order to understand its specific characteristic. We showed that
the points are vertices of a permuthaedron, that using a squared Spearman rho
results in Gaussian distance distribution.

The experiments conducted using random float vectors of various dimension-
ality shown that the complexity of the dataset affects the optimal value of l in
terms of recall and that the dimensionality of the original vector space can be
argued by performing PCA on the permutation space.
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Also in the case of the CoPhIR dataset we found that it exists an optimal l for
each specific number of pivots. Moreover, this optimal l is very stable and typi-
cally around 200. Thus, we believe that the optimal length of the permutations
is in relation with the intrinsic complexity of the dataset even if this complexity
can not be clearly seen performing PCA on the permutation space.

The experiments also revealed a linear dependency between the number of
pivots and dataset size. Other results were shown considering l and amplifier
factor a combination considering that they are the most useful parameters in
trading-off efficiency and effectiveness in permutation indexes.
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