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Abstract. This paper presents an additional tool the authors have de-
veloped to continue merging the fields of computational neuroscience
with medical based neurodiagnostic clinical research, particularly those
associated with machine learning in Big Electroencephalogram (EEG)
Data. The authors introduce a means to identify various types of epilep-
tic pathologic oscillations using a parameter based on the Shannon en-
tropy of the probability distribution of the amplitudes within EEG sig-
nals. Multiple entropy and entropy-like measures have been explored
to aid in epileptic seizure classification including Kolmogorov-Sinai en-
tropy, spectral entropy, Renyi entropy, approximate entropy, and equal
frequency discretization. Here we propose a more computational efficient
measure which calculates a discrete probability distribution directly from
the recorded amplitudes of an EEG recording over a specified window
and uses an entropy-like calculation to reduce dimensionality.

1 Introduction

In previous work the authors have studied the subjective nature of what consti-
tutes a pathological oscillation [15], and the huge dimensionality of the human
brain, which has approximately 100 billion neurons each having about 1,000 con-
nections (synapses)[16]. Moreover, neurological pathological activity may mani-
fest itself differently from animal to animal or individual to individual [17] [7].
In a healthy human brain there is a precise interaction of neural activities, but
when one develops a neurological illness (pathology) this synchronization breaks
down. These abnormal synchronization processes are found in the pathological
oscillations associated with several neuropsychiatric disorders including epilepsy,
acute brain injury, Alzheimer’s, autism post-neurosurgery Intensive Care Units
(ICU) seizures, stroke, schizophrenia, dementia and basal ganglia disorders such
as Parkinson’s disease. In this paper we present a novel tool using Shannon’s
entropy function to help convert Big EEG Data into a machine learning state
that will improve the efficiency of detecting seizure associated with epilepsy.
Kannathal[6] grouped entropy estimators into two classes: spectral and embed-
ded. Spectral estimators include spectral entropy[5] such as those obtained from
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Fourier Transform and Renyi entropy[6] which differs from the spectral entropies
in the weighting of the lower frequencies. Embedded entropies include state space
reconstructions[1], Kolmogorov-Sinai entropy[6], approximate entropy[10], and
sample entropy[12]. Orhan [8] used an entropy-like method ’Equal Frequency
Distribution’ where the amplitudes of the EEG signal where discretized into ’N ’
bins of equal size and then applied Shannon’s entropy function to the resulting
discrete probability distribution. He then calculated the EFD over a range of
differing ’N ’ values to create a set of entropy-like values that could be used for
epileptic seizure classification. Accordingly, we present a more efficient embed-
ded entropy derived from the amplitude of EEG recordings in the classification
of epileptic seizure events.

We examine a simple entropy measure in three experiments using three dis-
tinct EEG data sets. First, the amplitude entropy measure is explained. The
following sections apply the method to the three data sets. In the first data
set, the measure is used to classify epileptic and non-epileptic EEG segments
prepared by Andrzejak.[2] The second applies the measure to two tonic-clonic,
grand mal, seizure events in a pair of EEG traces made available by Quiroga.[11]
In the third, the measure is applied to the 800 hours of EEG data prepared by
Shoeb[14] and made available through PhysioNet.[4] In 1948 Shannon [13] de-
fined entropy in informational theory as H = −∑

pilog(pi) .We have used this
definition to measure the entropy in the amplitude of EEG recordings after dis-
cretizing data through the straight forward conversion of the amplitude signal
from floating point values to integers. The entropy measure in a given EEG seg-
ment is calculated after creating a probability distribution for a particular EEG
amplitude by summing the frequency of each amplitude within the segment and
dividing by the total number of amplitude measurements within the segment. In
the following, Y ∗ is the sum of the raw frequency count for each distinct ampli-
tude yi within a particular given EEG segment Y ∗ =

∑
yi where by definition,

Y ∗ sums to number of data points within a given segment. Traditionally, the
sum is normalized by dividing each amplitude frequency by the total sum of
data points which results in a discrete probability distribution from which an
entropy can be calculated as in (1) pi =

yi

Y ∗ .

Experiment 1: Entropy Measure of the Distribution of Amplitude in Fixed
Segments with Data Set 1: Andrzejak / Bonn. This canonical data set was pre-
pared by Andrzejak et.al. and made publicly available.[3] It has been used in
multiple seizure studies including Kannathal, Orhan, and Acharya. Data sam-
ples are collected at 173.6Hz and are divided into 5 labeled sets of 100 files each.
The time series have an effective spectral bandwith of 0.5 Hz to 85 Hz. Each file
consists of 4097 data points representing a continuous 23.6 second interval. Sets
A and B are extracranial with set A comprised of recordings with eyes open and
B of records with the eyes closed. Sets C, D, and E are intracranial recordings
made of epileptic patients following surgical hemispheric division. Set C comes
from the non-epileptic hemisphere while sets D and E are from the epileptic
hemisphere. Set D consists of recordings free from seizure while set E consists
of recordings with seizure. To study the entropy within each set the authors
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calculated the amplitude entropy of each 23.6 second segment in each 100 seg-
ment set. In the next step we aggregate the entropies in each set and test for
normality using SciPy’s normaltest which is based on D’Agostino and Pearson’s
test that combines skew and kurtosis to produce an omnibus test of normality.
Low p-values reject hypothesis that the set is normal. Note that the aggregate
of entropy of the segments within each set in general is not distributed normally
about the mean, although the ’extra-cranial eyes open’ and the ’intra-cranial
seizure’ both have values suggesting normal distributions. For future work the
authors will study whether this could be due to artifact noise in the first case
and an actual stochastic element in the latter. The statistical parameters of all
4 sets are illustrated in Table 3.

Entropy Between Each Set and EEG Classification. A training set is
selected randomly from each of the sets A-E. An entropy Hj is calculated for
each segment in each of the training sets. Boundary points are defined as fol-
lows: Dmin = min(Dtrain), Dmax = max(Dtrain), Emin = min(Etrain) and
Emax = max(Etrain). The calculated boundary points are used to classify the
test segments into the nonseizure/seizure state set as follows: no seizure(W),
possible seizure (X), probable seizure(Y), seizure(Z).

W :={Hj |Hj∈[0,Emin]} (1)
X:={Hj |Hj∈(Emin,Emin+

Dmax−Emin
2 ]} (2)

Y :={Hj |Hj∈(Emin+
Dmax−Emin

2 ,Dmax]}
(3)

X:={Hj |Hj∈(Emin,Emin+
Dmax−Emin

2 ]} (4)

The 2-fold cross-validation was repeated 100000 times. We find that this clas-
sification which includes the two indeterminate states has high precision. For
the non-seizure class W, the precision is assessed as the number of non-seizures
segments classified as such divided by the total number of segments assigned to
the class. For the possible-, probable- and definite- seizure classes, the accuracy
is assessed as the number of seizures segments assigned to the class divided by
the total number of segments assigned to the class. The possible-seizure class is
the least accurate by design and indicates the most mixed classification of seizure
and non-seizure. As we move from class X to classes Y and Z, the confidence
in the seizure classification increases. Allowing for indeterminate states X and
Y, our confidence in the classification of the definite states W and Z increases.
The rough set classification provides a more sensitive tool than a binary classifi-
cation into seizure/non-seizure binary states with the seizure state composed of
X ∪ Y ∪ Z and the non-seizure state W .

Experiment 2: Evolution of Entropy in Time Seriesusing data Set 2: Quiroga
& Caltech. Two longer EEG traces with seizure states have been made publicly
available by Quiroga [11]. These files show tonic-clonic seizures of two subjects
recorded with a scalp rigth central (C4) electrode (linked earlobes reference).
They each contain a total of 3 minutes of data with an approximate 1 minute of
pre-seizure recording followed by a seizure and some post-seizure activity. Each
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Table 1. Classifica-
tion with rough sets
W,X,Y,Z

Set C/E D/E

W 98.1 97.9

X 86.3 70.1

Y 98.6 89.3

Z 99.9 97.8

Table 2. Classification with
binary W+X,Y+Z

Set C/E D/E

W 98.1 97.9

X ∪ Y ∪ Z 97.3 89.8

Table 3. Classification with
binary W+X,Y+Z

Set C/E D/E

W 98.1 97.9

X ∪ Y ∪ Z 97.3 89.8

signal was digitized at 409.6 Hz although after processing, the data set has an
effective frequency of 102.4 Hz with an effective bandwidth of 1-50 Hz. Using
windowed entropy the authors found that the longer EEG trace provides an
opportunity to observe the evolution of entropy over the time series. An entropy
measure of the amplitude distribution was calcuted as above for a frame of 23
seconds. This frame was moved 1 second and entropy recalculated over the length
of the time series. The first deriviative of the entropy was also calcuated and is
displayed in the bottom plot for each time series.

(a) (b)

Fig. 1. Evolution of Entropy on the Time Series: Original EEG comprising both
a pathological oscillation and artifact (a), Entropy Evolution on Caltech data series A
(b), Entropy Evolution on Caltech data series B

Experiment 3: Detection of Seizures in Extended Data Series using data from
Shoeb at Boston Children’s Hospital. This extracranial data was collected at
the Boston Children’s Hospital. The database is described in Shoeb 2004[14]
and made available on PhysioNet.[4][9] From the public source, 664 EDF files
totaling over 44 gigabytes of compressed data were downloaded. These files con-
tain over 800 hours of EEG data. Most files contain 23 EEG signals and they all
are sampled at 256 Hz. Meta data is included with seizure times labeled. The
recordings are grouped into 23 cases and are collected from 22 pediatric patients
with intractable seizures following withdrawal of anti-seziure medicine during
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assement for surgical intervention. Using the Windowed Entropy method. we
used tme evolving entropy series with non-overlapping 23 second windows are
depicted in the figures below. Three exemplary plots from the CHB01 set are
shown with a seizure free time series (a), a time series with a labeled seizure (b),
and a non-seizure series with high noise (c). In Figure 3, an arbitrary entropy
of classifier boundary of 8.2 is displayed. Additional study is being conducted to
further improve this entropy analysis as a pre-processor into machine learning
classifiers.

(a) (b) (c)

Fig. 2. Detection of Seizures in Real Data Series: Original EEG comprising both
a pathological oscillation and artifact (a), Entropy Evolution on PhysioNet a selected
data series CHB01 without seizure (b), with seizure. (c), with noise and no seizure.

2 Conclusions and Future Work

These experiments show that in terms of adding a classification rule based sys-
tem onto the original neuroClustering developed by the authors is a viable option
so long as it will also be in a form conducive to domain adaptation. Utilizing
perceptrons in the manner described in this paper to aid the neurosurgeons se-
lecting what kind of pathological oscillations they are interested in and what
they want the machine to deem as artifact, has shown to be a viable option that
certainly renders the need to continue honing and refining the perceptron based
method illustrated and defined in this paper and these experiments. For our
future work we will test various thresholds in the perceptron algorithms against
large sets of data and see where the strengths and weaknesses of timing and con-
fidence levels pan out. Overall the results of these experiments are encouraging
and are a source to drill down deeper into the methodologies presented in these
experiments.
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