
Anomaly Detection in Streaming Time Series

Based on Bounding Boxes

Heider Sanchez� and Benjamin Bustos

Department of Computer Science, University of Chile, Santiago, Chile
{hesanche,bebustos}@dcc.uchile.cl

Abstract. Anomaly detection in time series has been studied extensively
by the scientific community utilizing a wide range of applications. One spe-
cific technique that obtains very good results is “HOT SAX”, because it
only requires a parameter the length of the subsequence, and it does not
need a training model for detecting anomalies. However, its disadvantage
is that it requires the use of a normalized Euclidean distance, which in
turn requires setting a parameter ε to avoid detecting meaningless pat-
terns (noise in the signal). Setting an appropriate ε requires an analysis of
the domain of the values from the time series, which implies normalizing
all subsequences before performing the detection.We propose an approach
for anomaly detection based on bounding boxes, which does not require
normalizing the subsequences, thus it does not need to set ε. Thereby,
the proposed technique can be used directly for online detection, without
any a priori knowledge and using the non-normalized Euclidean distance.
Moreover, we show that our algorithm computes less CPU runtime in find-
ing the anomaly than HOT SAX in normalized scenarios.

Keywords: Time Series, anomaly detection, indexing, streaming.

1 Introduction

Anomaly detection in time series has been studied extensively by the scientific
community, who has contributed a wide variety of approaches for different types
of applications [8]. In data mining, research is generally focused on searching for
unusual patterns or outliers in a collection of time series using classification or
clustering [21,10,9]. Most of the state-of-the-art techniques for anomaly detec-
tion in time series use a time series sample of “normal” behavior as a training
model. However, data mining on subsequences from a streaming time series is
a more complicated task because of particular challenges that need to be ad-
dressed. The main challenge of the subsequences is their level of overlapping:
contiguous subsequences are similar to each other. This may produce a mean-
ingless clustering result [23]. Moreover, the definition of “anomaly” is ambiguous
and may be mistaken for irregularities that occur along a streaming time series,
for example variations in amplitude scale and the presence of local noise.

� Work supported by a research grant from CONICYT-Chile.

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 201–213, 2014.
DOI: 10.1007/978-3-319-11988-5_19 c© Springer International Publishing Switzerland 2014

202 H. Sanchez and B. Bustos

Keogh et al. [18] introduced a new anomaly concept, the “Time Series Dis-
cord”, for finding the most unusual time series subsequence which does not need a
training model. While similarity searching by content finds the object most simi-
lar to a query, the discord discovery process finds the time series subsequence that
is least similar to all other subsequences. Moreover, Keogh proposed a generic
heuristic for efficient discord discovery and a solution algorithm, the so-called
HOT SAX, that is based on Symbolic Aggregate approXimation (SAX). Later,
a series of related works were proposed to improve the performance of the basic
heuristic [5,6,20]. All of these solutions use the normalized Euclidean distance
(L2-norm), that is, each subsequence is normalized by a standard normalization
procedure (Z-distribution) to obtain a symbolic sequence.

The problem with using normalized subsequences is the presence of local noise,
which can result in a missed detection. This issue is easily solved by applying
a parameter ε [22]. Given a subsequence C = {c1, . . . , cm}, let σ and μ be
the standard deviation and the mean of C, respectively. Then, if σ < ε one
sets ∀i, ci = μ. The problem with this approach is that one needs setting the
parameter ε, which is context-dependent. On the other hand, the Euclidean
distance over non-normalized subsequences (L2-raw) does not need to set ε and
is more robust to local noise. Additionally, in real-time streaming, the future
values of the time series are unknown. Therefore, obtaining an optimal ε is a
complicated task. Moreover, there are anomalies related to amplitude changes
and local oscillations (e.g., El Niño-Southern Oscillation Events [26]). These
types of anomalies are at risk of not being detected in a normalized scenario.
In these cases, using L2-raw is an effective option. Moreover, scalability is an
important factor for many real time systems that generate large time series
(e.g., seismic signals [12], electrocardiograms [19,11] and network traffic [2]).

This paper makes two contributions in streaming time series anomaly detec-
tion. First, we propose an algorithm for efficient time series discord discovery
which supports both L2-norm and L2-raw distances. Second, we introduce a
new automatic learning online algorithm to detect local discords in streaming
time series. Our model is based on the previous works of Keogh et al. [16] and
Vlachos et al. [27]. Specifically, they proposed the RTree-Index for time series
using Bounding Boxes and the Dynamic Time Warping (DTW) distance. We
propose modifying this structure to work directly with L2-raw and the anomaly
detection algorithm. We experimentally show that our technique is faster than
HOT SAX in normalized subsequences.

2 Background and Related Work

2.1 Time Series

Definition 1. Streaming Time Series. A sequence of observations T = {t(i)/i =
1 · · ·∞} taken at various time moments, evenly spaced and chronologically sorted.

Definition 2. Sliding Window. Given a time series T of length n, we use a
overlapping sliding window of length m � n to extract all possible subsequences

Anomaly Detection in Streaming Time Series Based on Bounding Boxes 203

Cp, p ∈ {1, . . . , (n −m+ 1)}, from T . This window generates overlapping sub-
sequences of contiguous position.

Definition 3. Normalized Subsequence. Given a subsequence C = {c1, . . . , cm},
its normalized version is defined as C′ = C−μ

σ , where μ and σ are the mean and
standard deviation of C.

The main indexing techniques of subsequences use a reduced representation of
the time series to avoid the High-Dimensionality problem. They provide a lower
bounding function of the true distance between two time series. Examples are
the RTree for Dynamic Time Warping (DTW) [16], iSAX for L2-norm [25] and
the TS-Tree that uses the best of both techniques [4].

2.2 Discord Discovery and State-of-the-Art Solutions

Anomaly definition in a time series is ambiguous and is strongly related to the
application context and data properties. In streaming time series, one usually
associates an anomaly with a subsequence that produces a qualitatively signifi-
cant change in the data. Furthermore, most anomaly detection approaches work
on the basis of a normal behavior model of a time series. However, in many real
contexts, obtaining this a priori knowledge is a difficult task. Keogh et al. [19]
introduced a new definition to avoid creating workable definitions for “the most
unusual subsequence”, which does not require a training model.

Definition 4. Non-self match. Given a time series T , containing a subsequence
Cp of length m and a matching subsequence Cq, we say that Cq is a non-self
match to Cp if |p− q| ≥ m, where p and q are their respective starting positions
in T .

Definition 5. Time Series Discord. Given a time series T , the subsequence C
of length m is said to be the discord of T if C has the largest distance to its
nearest non-self match.

This problem can be easily solved by a brute force search using a nested loop.
The outer loop takes each subsequence as a possible candidate, and the inner loop
is used to search the candidate’s nearest non-self match. The candidate that has
the greatest such value is the discord. The computational complexity is O(N2),
where N is the number of subsequences. To improve this complexity, Keogh
et al. [19] proposed a generic algorithm for efficient detection. This algorithm
requires two heuristics that generate two ordered lists of subsequences; one for
the outer loop and the other one for the inner loop. The heuristic Outer is
useful for quickly finding the best candidate, and the heuristic Inner is useful
for quickly finding the best nearest non-self match. We break out of the inner
loop if the distance is less than the best-so-far discord distance.

The main related methods for discord discovery are based on SAX represen-
tation, which is a discretization technique for time series introduced by Lin et
al. [24] and it is used in many application domains for different purposes.

204 H. Sanchez and B. Bustos

Definition 6. Breakpoints. “Breakpoints are a sorted list of numbers β = {β1,
. . . , βα−1} such that the area under a N(0, 1) Gaussian curve from βi to βi+1 =
1/α (β0 and βα area defined as −∞ and +∞, respectively).” [24]

Definition 7. SAX Representation. Given a normalized subsequence C = {c1,
. . . , cm}, first, we obtain the reduced dimension with Piecewise Aggregate Ap-
proximation (PAA [15]): the time series is divided into D equal sized segments,
the mean value of each segment is calculated and a vector of these values becomes
the reduced representation P = {p1, . . . , pD}. Afterwards, P is transformed into
a symbolic sequence W = {w1, . . . , wD}, where pi is mapped to symbol wi of an
alphabet of size α. It uses the predetermined breakpoints to define the symbols.

HOT SAX: It is the first algorithm for efficient discord discovery introduced
by Keogh et al. [19]. HOT SAX uses an augmented trie to embed all the SAX
words, where leaf nodes contain a linked list index of all word occurrences that
map there. The second structure is an array of SAX words of all extracted
subsequences, counting the frequency of each word occurrence in the array. After
building these data structures, HOT SAX uses the following heuristics: (a) Outer
loop heuristic: It first visits the subsequences associated with the SAX words that
have the smallest word count, and then it visits the rest of the subsequences in
random order; (b) Inner loop heuristic: For each candidate in outer loop, it first
searches its nearest non-self match in the leaf node of tree that has the same
SAX word, and then it visits the rest of the subsequences in random order.

HOTiSAX: It extends HOT SAX for working with the iSAX index [6]. iSAX is an
optimized structure for SAX binary representation [25], which provides different
levels of resolution for the same SAX word changing the symbolic alphabet by
binary numbers. The bits are used for building the iSAX index, which allows
an efficient hierarchical access to data. The array of SAX words is refined to
work effectively with the iSAX representation. Afterwards, the same heuristics
of HOT SAX are used for discord discovery. Moreover, it incorporates auxiliary
functions to exclude trivial matches.

3 Bounding Boxes for Discord Discovery

A minimum bounding box is a term used in geometry for enclosing a set of D-
dimensional points [13]. This concept was used by Vlachos et al. [27] for bounding
two-multidimensional time series by a sequence of Minimum Bounding Rectan-
gles (MBRs). All the MBRs are indexing in a RTree in order to allow the efficient
searching. Similarly, Keogh et al. [16] applied bounding boxes over the PAA of
time series. The goal of this work was to generate reduced dimension vectors
for the time series being indexed with a RTree and the DTW distance. Further-
more, in both works the authors provided a lower bounding function of the true
distance for exact searching. In another related project, Chan et al. [7] proposed
the use of a sequence of minimal bounding boxes to contain all of the training
time series for detecting anomalies in trajectories.

Anomaly Detection in Streaming Time Series Based on Bounding Boxes 205

̂U = {ûi/i = 1 : D}
̂L = {̂l1/i = 1 : D}

ûi = max
{

c{m
D

(i−1)+1}, . . . , c{m
D

·i}
}

̂li = min
{

c{textbf m
D

(i−1)+1}, . . . , c{m
D

·i}
}

Fig. 1. Bounding of the subsequence Cp (top) and our indexing model for discord
discovery (bottom)

In this paper, we use both the modeling of MBRs and the PAA representation
for discord discovery in time series. To obtain efficient results on a streaming
context, we use the Euclidean distance, due to its linear complexity.

3.1 List of MBRs

Figure 1 shows our indexing model of time series subsequences. We build a List
of MBRs = {R1, . . . , RN}, where each Ri envelops a set of similar time series
subsequences. Below, we describe the insertion process phases:

1. Given a time series T , we extract a subsequence Cp = {c1, . . . , cm} using a

sliding window. Next, we generate the minimum bounding boxes (̂U, ̂L) of
Cp (Figure 1.top). This function requires a reduced dimension D to split the

subsequence Cp in D equal length segments, then, ûi and ̂li is the maximum
and minimum value of the ith segment respectively.

2. We search a MBRs Rj that produces the least expansion to Cp. That is,

volume(Rj ∪ (̂U, ̂L)) < volume(Ri,∀i�=j ∪ (̂U, ̂L)). We then stretch Rj to
envelop the minimum bounding boxes ofCp. Finally, the position p is inserted
into an integer number array, which is associated with Rj .

206 H. Sanchez and B. Bustos

3. If Rj is full, we apply a splitting algorithm. We use a size threshold thmax

to control the maximum number of elements in a MBRs.

We evaluate three classic splitting algorithms: Guttman’s quadratic and linear
algorithms [14], and an optimized linear algorithm [3]. For the quadratic algo-
rithm, we considered two criteria of distribution; balanced (qua 0.50) and non-
balanced (qua 0.25). Figure 2 shows the number of created MBRs and the CPU
runtime in indexing and searching of the most unusual subsequence. We observe
that the optimized linear algorithm generates the fewest MBRs, and therefore
gets the least memory space. However, the balanced quadratic algorithm achieves
the best runtime because it performs a better grouping of subsequences allowing
fast discrimination in searching time. Therefore, we use the quadratic algorithm
in our indexing model.

Number of MBRs Runtime in seconds

linear linear_op qua_0.25 qua_0.50

1000

1050

1100

linear linear_op qua_0.25 qua_0.50
1.0

1.1

1.2

1.3

1.4

Fig. 2. Testing four splitting algorithms over a set of time series of length 16k. We show
the total number of created MBRs (left) and the CPU runtime (right) for discord128.

The time required to insert a subsequence in the list has an order of O(N),
where N is the total number of created MBRs. The space required for maintain-
ing the index in memory also depends on N . For each Rj = (H,L), we used two
arrays of size D and another array of integer numbers for saving the subsequence
positions; e.g., for a time series of length 16,000 we require 16.7KB for the index
(N=1070) and 62KB for the arrays of positions.

We also build a Tree of MBRs (RTree variant) for maintaining the set of
MBRs. It provides us hierarchical access to the data in order to accelerate the
searching of similar objects regarding a query object. The RTree is generally
used for managing large collections of data in secondary memory.

3.2 Discord Discovery Heuristics

After building the index, we reorder all subsequences for searching the best
candidate using the following heuristics:

Outer Loop Heuristic: First, the algorithm visits all subsequences bounded in
Rj , such that Rj contains the minimum number of subsequences. Then, the algo-
rithm visits the rest of the subsequences in random order. This heuristic ensures
that the subsequences that are most isolated will be visited at the beginning of
the search as potential candidates. We then use an inner loop to search the best
non-self match of each selected candidate Cq. To break the inner loop as early

Anomaly Detection in Streaming Time Series Based on Bounding Boxes 207

as possible, we need to find a subsequence that has a distance to Cq lower than
the best-so-far discord distance.

Inner Loop Heuristic: First, the algorithm visits all subsequences bounded in
Rj , such that MINDIST (C̄q, Rj) < MINDIST (C̄q, Ri,∀i�=j). Then, the algo-
rithm visits the rest of the subsequences in random order. This heuristic allows
us to first visit all the subsequences Cp most similar to Cq, increasing the prob-
ability of early termination of the loop. MINDIST function is calculated by
Equation 1 and illustrated in Figure 3 using C̄q as PAA representation of Cq.

MINDIST (C̄q, R) =

√

√

√

√

√

∑D
i=1

m
D

⎧

⎨

⎩

(c̄i − hi)
2 c̄i > hi

(c̄i − li)
2 c̄i < li
0 else,

where:

c̄i =
D
m

∑
m
D i

j=m
D (i−1)+1 cj .

(1)

3.3 Online Anomaly Detection

We can use discord discovery for detecting anomalous subsequences in stream-
ing time series. A simple idea is to use normal behavior data to build a static
training model. Discord discovery is then used for online detection of new inputs.
This approach is very efficient, because the model retains its size, although the
streaming is increased. However, it does not evolve to new states of the system.
Any input that generates a new behavior is always considered anomalous.

We propose a scalable method for detecting local anomalies, where online
learning is required for adapting the index model with the behavior of the input
data. Our method is based on the inner loop heuristic (Algorithm 1). It requires
a detection starting point in the stream, which is used to determine a “base
history”. Then, we apply discord discovery up to this point to obtain a threshold
distance (line 1). This threshold is used to reduce the number of calls to Dist
in the inner loop. Our method is fed back with each data input (line 6) in order
to avoid detecting recurrent anomalies. That is, if a subsequence is detected as
anomalous, the next similar subsequences will not be detected as anomalous.
Finally, we alert when an value input generates an anomalous subsequence.

PAA C̄q = {c̄1, · · · , c̄D} MBRs R = (H,L) MINDIST (C̄q, R)

Fig. 3. An illustration of the MINDIST function. The lengths of the red arrow lines,
squared, scaled by m/D, summed and square rooted, are returned as the minimum
distance between Cq and any sequence bounded in R [16].

208 H. Sanchez and B. Bustos

Algorithm 1 . Online Anomaly Detection

Require: (Streaming T , Window length m, Starting Point sp)
1: threshold dist = TheMostDiscord(T [1 : sp])
2: while Input == True do
3: T [i] = AcquireV alue()
4: Cq = T [(i−m+ 1) : i] � extract the subsequence
5: insert(Cq) � feedback
6: l inner = All Cp from T ordered by heuristic Inner
7: nearest neighbor dist = ∞
8: for Cp ∈ l inner do
9: if |p− q| ≥ m then � non-self match?
10: if Dist(Cp, Cq) < nearest neighbor dist then
11: nearest neighbor dist = Dist(Cp, Cq)
12: end if
13: if Dist(Cp, Cq) < threshold dist then
14: Break � Break out of loop
15: end if
16: end if
17: end for
18: if nearest neighbor dist > threshold dist then
19: Alarm(“Anomaly Detected”)
20: end if
21: end while

The starting point can be automatically computed in real time. This is pos-
sible because the distance to the best non-self match usually reduces its value
when increasing the stream length (see Figure 6.bottom). The idea is to find
the stabilization point and set it as the starting point. A simple way to achieve
this is by counting the distances outside the range of the deviation standard
[μ− σ : μ+ σ] and applying a stop proportion.

In a long stream, it is important to update the threshold with the actual
context to improve the detection of local anomalies. For this, we recommend pe-
riodically removing the past information and again, computing the new threshold
with the rebuilt index. This is a scalability improvement to apply at runtime.

4 Experimental Evaluation

In this section, we evaluate the performance of our approach for discord discov-
ery in different datasets. An Intel Core i7 3.4GHz with 8GB RAM is used for
conducting all our experiments. All algorithms are implemented in C++. We
define thmax = 25 as the maximum size of elements in a MBRs, which was ex-
perimentally selected from the set {5, 10, 15, · · · , 120}. Although better efficiency
is obtained when we vary the value of thmax according the time series length.
The value of this parameter does not alter the effectiveness.

Anomaly Detection in Streaming Time Series Based on Bounding Boxes 209

4
5

6
7

8
9

length of time series

lo
g

(

of
 c

al
l t

o
D

is
t)

 List_MBRs
Tree_MBRs
Brute_op

2k 4k 8k 16k 32k

Fig. 4. The number of calls to the distance function (Dist) by brute force and our
approach for discord128 using L2-raw

4.1 Offline Discord Discovery

To evaluate the efficiency of our approach on static time series, we use the
datasets ECG, EEG, ERP, Koski, Random Walk and Packet from “The UCR
Time Series Data Mining Archive” [17]. We also use the “Time Series for Weather
Data” from the National Oceanic and Atmospheric Administration in the USA [1].
For each dataset, we randomly extract time series of lengths 1k, 2k, 4k, 8k, 16k
and 32k. The metrics used for comparison are the number of computed distances
and the CPU runtime. The goal is to find the most unusual subsequence using
the fewest distance computations and the minimum time of execution.

First, we compare our approach (List of MBRs and Tree of MBRs) with the
brute force search over non-normalized subsequences using the L2-raw distance.
We optimize the brute force search applying symmetry and triangle inequality
properties. Figure 4 shows the performance of our approach in terms of the num-
ber of computed distances. We get the median of the results obtained for all the
datasets for each time series length. From these results we note that our method
clearly outperforms the brute force search, ≈ 2.5 orders of magnitude faster on
all collections with time series of length 32k. This difference is correlative with
the CPU runtime, where our approach was 150 times faster than the brute force.

Second, we compare our approach with the SAX techniques over normalized
subsequences using the L2-norm distance. For SAX representation, the authors
recommended using the following parameter setting: size of alphabet a = 3
and word length depending on data [19]. However, iSAX binary representation
requires a ∈ 2Z (multiple of 2), we therefore set a = 4 [6]. Also, we set the
reduced dimension based on the window length D = 	log2(m)
.

In Figure 5, we note our algorithms have less performance than the SAX
techniques in terms of computed distances. However, our algorithms outperform
HOT SAX in CPU runtime. This is explained by the low number of created

Table 1. The number of calls to MINDIST for discord128

List of MBRs Tree of MBRs HOT SAX HOTiSAX

226,259 482,256 1,950,445 314,407

210 H. Sanchez and B. Bustos

3.
5

4.
5

5.
5

6.
5

length of time series

lo
g

(

of
 c

al
l t

o
D

is
t)

 List_MBRs
Tree_MBRs
HOT_SAX
HOT_iSAX

2k 4k 8k 16k 32k

0.
0

0.
2

0.
4

0.
6

length of time series

lo
g(

 r
un

tim
e

in
 s

ec
on

ds
) List_MBRs

Tree_MBRs
HOT_SAX
HOT_iSAX

2k 4k 8k 16k 32k

Fig. 5. The number of calls to the distance (left) and the CPU runtime (right) by SAX
techniques and our algorithms for discord128 using L2-norm and ε = 0.05

MBRs versus the number of created buckets by HOT SAX, resulting in the lower
memory usage. Our approach uses a balanced splitting algorithm to maximize
the number of elements in the MBRs. Thus, we obtain more closed groups and a
better effect of the MINDIST function. Table 1 shows the number of computed
MINDIST for each technique in a set of real time series.

Finally, the Tree of MBRs does not get a wide lead over the List of MBRs.
The first reason is that we do not need to save all subsequences in secondary
memory as it was sufficient with the referential positions in main memory. The
second due to the additional cost of splitting the internal nodes. Moreover, the
Tree of MBRs produces more calls to MINDIST than the List of MBRs in the
search task. In practice, the discord discovery process is just applied in limited
ranges of time in order not to lose local significance of the anomaly.

4.2 Online Anomaly Detection

In real-time streaming, we do not know the future values of the time series.
Therefore, it is not clear how one could obtain an appropriate value for ε in
normalized subsequences. For this reason, in this experiment we use L2-raw to
evaluate our online anomaly detection algorithm. We cannot use SAX techniques
because it is not compatible with L2-raw.

Fig. 6. Online anomaly detection on a space shuttle time series (m = 128)

Anomaly Detection in Streaming Time Series Based on Bounding Boxes 211

In Figure 6, we evaluate our algorithm in a real case. The top graph shows
the streaming time series and the detected anomalous subsection (red region).
The bottom graphs represent the nearest non-self neighbor distance of each
input subsequence where the dotted vertical line is the detection starting point
that was automatically set. Also, we show the threshold distance (blue line),
which is used to avoid unnecessary matches. We observe that our algorithm is
successful at detecting the points that cause an anomalous subsequence at the
right moment.

Figure 7 shows the number of computed distances over a set of real time series.
We note a wide advantage of our indexing model vs. the brute force on all time
series. In practice, our approach seems to compute far fewer distances than the
quadratic brute force search algorithm. Moreover, we show the benefits of using
our anomaly detection algorithm with regard to the similarity search.

Fig. 7. The number of calls to the distance by both the nearest non-self neighbor search
and the anomaly detection algorithm

5 Conclusions and Future Work

We proposed new algorithms for efficient discord discovery. We used bounding
boxes for designing two indexing models List of MBRs and Tree of MBRs, which
support L2-norm and L2-raw. Our approach outperforms HOT SAX in terms of
the CPU runtime. In addition, we introduced a new algorithm for online anomaly
detection, which does not require a training model and automatically fixes a
detection starting point. We experimentally showed that this online detection
algorithm is faster than the brute search force approach.

Using the discord discovery algorithm over a set of real time series [19], we
obtain 79% correct detection using L2-raw. While it misses some anomalies, its
advantage is that it avoids the exploration step of the data to set ε in smoothing
noisy subsequences. We emphasize that L2-raw may be used as a baseline for
automatic detection techniques for discord discovery, especially for quasi-periodic
streaming time series.

Since we do not apply any discretization technique, we can easily extend our
approach to multivariate time series, which is our next goal. Finally, we plan to
optimize our online algorithm, focusing on scalability for larger amounts of data.

212 H. Sanchez and B. Bustos

Acknowledgments. We would like to thank Prof. Eamonn Keogh for kindly
providing us with many of the datasets used at the experimental evaluation.

References

1. Web Page for Time Series for Weather Data of National Oceanic and Atmospheric
Administration in USA, http://www.esrl.noaa.gov/psd/boulder/

2. Ahmed, T., Coates, M., Lakhina, A.: Multivariate online anomaly detection using
kernel recursive least squares. In: IEEE INFOCOM, pp. 625–633 (2007)

3. Ang, C.-H., Tan, T.: New linear node splitting algorithm for r-trees. In: Scholl,
M.O., Voisard, A. (eds.) SSD 1997. LNCS, vol. 1262, pp. 337–349. Springer, Hei-
delberg (1997)

4. Assent, I., Krieger, R., Afschari, F., Seidl, T.: The TS-tree: Efficient time series
search and retrieval. In: Proc. 11th Intl. Conf. on Extending Database Technology:
Advances in Database Technology, pp. 252–263. ACM (2008)

5. Bu, Y., Wing Leung, O.T., Chee Fu, A.W., Keogh, E.J., Pei, J., Meshkin, S.:
WAT: Finding top-k discords in time series database. In: SIAM Intl. Conf. on
Data Mining, pp. 449–454 (2007)

6. Buu, H.T.Q., Anh, D.T.: Time series discord discovery based on iSAX symbolic
representation. In: 2011 Third Intl. Conf. on Knowledge and Systems Engineering
(KSE), pp. 11–18 (2011)

7. Chan, P.K., Mahoney, M.V.: Modeling multiple time series for anomaly detection.
In: IEEE Intl. Conf. on Data Mining, pp. 90–97 (2005)

8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
put. Surv. 41, 1–58 (2009)

9. Chaovalit, P., Gangopadhyay, A., Karabatis, G., Chen, Z.: Discrete wavelet
transform-based time series analysis and mining. ACM Comput. Surv. 43, 1–37
(2011)

10. Chis, M., Banerjee, S., Hassanien, A.: Clustering time series data: An evolutionary
approach. In: Abraham, A., Hassanien, A.-E., de Carvalho, A.P.D.L.F., Snášel,
V. (eds.) Foundations of Computational, Intelligence Volume 6. SCI, vol. 206, pp.
193–207. Springer, Heidelberg (2009)

11. Chuah, M.C., Fu, F.: ECG anomaly detection via time series analysis. In: Thu-
lasiraman, P., He, X., Xu, T.L., Denko, M.K., Thulasiram, R.K., Yang, L.T. (eds.)
ISPA Workshops 2007. LNCS, vol. 4743, pp. 123–135. Springer, Heidelberg (2007)

12. Gabarda, S., Cristóbal, G.: Detection of events in seismic time series by time-
frequency methods. IET Signal Processing 4(4), 413–420 (2010)

13. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for
rapid interference detection. In: Proc. 23rd Annual Conference on Computer
Graphics and Interactive Techniques, pp. 171–180. ACM (1996)

14. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Intl.
Conf. on Management of Data, pp. 47–57 (1984)

15. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and Information
Systems 3(3), 263–286 (2001)

16. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping.
Knowl. Inf. Syst. 7(3), 358–386 (2005)

17. Keogh, E., Xi, X., Wei, L., Ratanamahatana, C.: The UCR Time Series Classifi-
cation/Clustering Homepage (2011)

http://www.esrl.noaa.gov/psd/boulder/

Anomaly Detection in Streaming Time Series Based on Bounding Boxes 213

18. Keogh, E.J., Lin, J., Fu, A.W.: HOT SAX: Efficiently finding the most unusual
time series subsequence. In: IEEE Intl. Conf. on Data Mining, pp. 226–233 (2005)

19. Keogh, E.J., Lin, J., Hee Lee, S., Herle, H.V.: Finding the most unusual time series
subsequence: algorithms and applications. Knowledge and Information Systems 11,
1–27 (2007)

20. Khanh, N.D.K., Anh, D.T.: Time series discord discovery using WAT algorithm
and iSAX representation. In: Proc. Third Symposium on Information and Com-
munication Technology, pp. 207–213. ACM (2012)

21. Liao, T.W.: Clustering of time series data: a survey. Pattern Recognition 38(11),
1857–1874 (2005)

22. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: Proc. 8th ACM SIGMODWorkshop
on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11 (2003)

23. Lin, J., Keogh, E., Truppel, W.: Clustering of streaming time series is meaningless.
In: Proc. 8th ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pp. 56–65. ACM (2003)

24. Lin, J., Keogh, E.J., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery 15, 107–144
(2007)

25. Shieh, J., Keogh, E.: iSAX: indexing and mining terabyte sized time series. In:
Proc. 14th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining,
pp. 623–631. ACM (2008)

26. Trenberth, K.E., Hoar, T.J.: The 1990-1995 El Niño-Southern oscillation event:
Longest on record. Geophysical Research Letters 23(1), 57–60 (1996)

27. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multi-
dimensional time-series with support for multiple distance measures. In: Proc.
Ninth ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pp.
216–225. ACM (2003)

	Anomaly Detection in Streaming Time SeriesBased on Bounding Boxes
	1 Introduction
	2 Background and Related Work
	2.1 Time Series
	2.2 Discord Discovery and State-of-the-Art Solutions

	3 Bounding Boxes for Discord Discovery
	3.1 List of MBRs
	3.2 Discord Discovery Heuristics
	3.3 Online Anomaly Detection

	4 Experimental Evaluation
	4.1 Offline Discord Discovery
	4.2 Online Anomaly Detection

	5 Conclusions and Future Work
	References

