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Abstract. Recent years have seen an explosion in the volume of historical doc-
uments placed online. The individuality of fonts combined with the degradation 
suffered by century old manuscripts means that Optical Character Recognition 
Systems do not work well here. As human transcription is prohibitively expen-
sive, recent efforts focused on human/computer cooperative transcription: a 
human annotates a small fraction of a text to provide labeled data for recogni-
tion algorithms. Such a system naturally begs the question of how much data 
must the human label? In this work we show that we can do well even if the 
human labels only a single instance from each class. We achieve this good  
result using two novel observations: we can leverage off a recently introduced 
parameter-free distance measure, improving it by taking into account the “com-
plexity” of the glyphs being compared; we can estimate this complexity using 
synthetic but plausible instances made from the single training instance. We 
demonstrate the utility of our observations on diverse historical manuscripts. 

Keywords: Classification, Semi-Supervised Learning, Historical Manuscript, 
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1 Introduction 

The classification of individual glyphs is typically the first step in historical document 
processing. The variety of texts (hundreds of languages, tens of thousands of 
handwriting styles/handmade fonts), combined with the degradation often suffered by 
century old manuscripts, precludes the adoption of a “one-size-fits-all” off-the-shelf 
Optical Character Recognition (OCR) Systems.  

Most Semi-Supervised Learning (SSL) techniques make explicit assumptions 
which are violated or only partly true in our domain of interest [3]. In particular, the 
smoothness assumption can be violated in a special way that does not seem to be well 
appreciated. Recall that it requires that “(objects) which are close to each other are 
more likely to share a label” [3]. However, this assumption can be violated in an un-
expected way: “complex” objects tend to be closer to other objects that are “simple,” 
at least under some distance measures such as the recently introduced CK-1 distance 
[2]. In Fig. 1 we show a clustering that hints at this [5, 11]. This “complexity bias” 
violates the notion that objects that are close to each other are more likely to share a 
label, at least for some classes.  
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Fig. 1. (left) A clustering of examples from [5] suggests that the distance measure has difficulty 
clustering objects with different complexities, such as the simple ‘i’ and more complex ‘t’. 
(right) If we compensate for these differences in complexity we can do much better. 

Given enough training data we can learn the amount of “complexity bias” for each 
class and compensate for it. However, this opens up a “chicken-and-egg” paradox, as 
we are using SSL to mitigate the lack of training data. As we shall show, we solve this 
problem by creating additional synthetic examples with a simple random distortion 
model. As hinted at in Fig. 2, we can easily produce plausible variations of hand-press 
or handwritten letters. 

 

Fig. 2. (left) Six examples of a handwritten letter. (right) We can take a single letter (red / hig-
hlighted example) and produce natural looking variations of it with a simple distortion model. 

The rest of the paper is organized as follows. In Section 2 we discuss related work 
and background for our research. In Section 3 we introduce our proposed method. 
Section 4 presents experimental evaluations. Finally, Section 5 offers conclusions and 
a discussion of avenues for future research. 

2 Related Work and Background 

While there is a plethora of classification algorithms available, the simple Nearest 
Neighbor (NN) algorithm is known to be surprisingly competitive in many domains. 
This is because the algorithm can use any distance measure, including ones that can 
“carve out” decision boundaries that are not within the representation power of deci-
sion trees, etc. In this work we propose to leverage off a recently introduced distance 
measure called the CK-1 distance [2]. The CK-1 distance differs from other methods 
(Gabor filters, Fourier transforms, Markov random fields, wavelets, etc.) in two im-
portant ways. First, it considers shape and texture simultaneously. Second, it is com-
pletely parameter-free, freeing us from the need to obtain data to learn parameter 
settings, and greatly reducing the probability of overfitting (with no parameters to fit, 
one cannot overfit). The CK-1 is a compression based distance measure. The distance 
ranges between zero and “soft” one. If two objects are very similar to each other the 
distance is close to zero, whereas for very dissimilar objects the distance is close to 

One handwritten example of  the 
letter ‘n’ from a historical text, 

and five synthetic examples 
generated from it

Six handwritten examples 
of the letter ‘n’ from an 
historical text
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one or slightly greater. Due to its simplicity and effectiveness we use CK-1 distance 
measure in this work; however, it is not a necessary condition for the utility of our 
ideas. CK-1 has proven its efficiency in historical documents processing domain [8], 
but in a bit different sense. While Hu et al. apply this distance measure to initial let-
ters mining (intrinsically textures); we expand it to all glyphs (intrinsically shapes). 
However, there are two problems we must solve in order to use CK-1. The first is data 
scarcity. All classification algorithms benefit from more data; however, our explicit 
problem statement allows us to have as few as one exemplar per class. The second 
problem, which was hinted at in Fig. 1, is less well appreciated in the literature. At 
least some distance measures may overestimate the distance between “complex,” but 
nevertheless similar, objects. For example, in our domain, letters such as T  and U  
are complex, at least relative to the more prosaic versions, A and B. In this case the 
difference in complexity is related to particular typeface/handwriting. However, even 
within a single typeface, there are differences in complexity, ranging from the simple 
single-stroke letters such as I and O, to more complex multi-stroke letters such as W 
and E. The observation that differing complexities cause problems for nearest neigh-
bor classification has been forcefully shown for time series classification [1]. Moreo-
ver, as we shall show below it is also the case for classifying glyphs with the CK-1 
distance measure. Note that we are not making any claims with regard to other shape 
distance measures1. 

Synthetic data generation techniques are widely used to supplement datasets that 
do not have a sufficient number of instances for a given task [6]. If each exemplar can 
be described by a feature vector, then the problem of synthetic data generation can 
often be solved by a technique as simple as adding random Gaussian noise to copies 
of the original vectors, or by averaging randomly chosen vectors from the same class 
(i.e., SMOTE and its variants [4]). The problem becomes more complicated if we are 
dealing with objects that cannot be easily represented by feature vectors. In a recent 
work Yang et al. proposed a method of data densification in image domains [14]. 
Their insight is that they can forgo creating synthetic exemplars, and simply create 
synthetic points in the distance space. Such points make the estimation of the data 
manifold more accurate, and can thus improve retrieval accuracy.  

While this work is closest in spirit to ours, we do need to create actual synthetic 
images in order to learn the potential biases of our distance measure, and correct 
them. To produce synthetic exemplars we apply transformations similar to those pro-
posed by Ha et al. [7]. This model captures majority of variations in writing and pro-
duces plausible results shown in Fig. 2. 

Wang et al. [13] introduced the Adjusted k-Nearest Neighbors Rule, considering 
“influence region for each training example.” They constructed this region as a sphere 
centered on the example “that is as large as possible without enclosing a training 
example of a different class”. After this they rescale the distances to each training 
sample as distance divided by the radius of the influence region. This approach is 
similar to ours, because it takes into account the “density” of training items in the 

                                                           
1 Although preliminary work suggests that other distance measures also have difficulties in 

datasets with classes of varying complexity. 
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distance space. However, this approach requires parameters to be adjusted and opti-
mized for each particular problem, something we are anxious to avoid. 

We will provide necessary definitions before describing our algorithm.  

Definition 1: A labeled example ei of a class Ei is a human annotated glyph. Similar-
ly, an unlabeled example is any example of the same glyphs not labeled by human. 

After selecting ei we can generate synthetic data based on ei by a distortion model:  
Definition 2: A distortion model M is the method to modify labeled glyphs to gener-
ate synthetic data {Si,j} = M(ei), where j denotes index of synthetic exemplars in a 
particular class i (1 ≤ j ≤ const). 

Note: our distortion model M is only one of many methods that can generate syn-
thetic data. Further discussion of synthetic data generation techniques is beyond the 
scope of this paper; we refer the reader to [4] and [7], and therein.  

To classify an unknown item we have to consider distance (similarity measure) be-
tween this item and labeled items from the training set. Our approach exploits the 
correction of distance calculated by some known algorithm.  

Definition 3: The corrected distance between the query image q and any object Si,j in 
the training dataset of the ith class is a distance under some distance measure (i.e., CK-
1) divided by some correction factor . 

3 Proposed Method 

As the dendrogram shown in Fig. 1 (left) suggests, classification using the CK-1 dis-
tance measure sometimes does not correspond to the ground truth. We have observed 
that in cases where both shapes are “complex” (i.e., consisting of several “strokes” 
such as ‘f’ or ‘x’) the distance between them is greater than in cases where the shapes 
are “simple” (i.e., containing a single stroke such as ‘l’ or ‘o’). Fig. 3 presents a visual 
intuition of this phenomenon. In terms of absolute distances the unknown object lies 
slightly closer to the nearest ‘o’. Intuitively however, we may feel it is likely to be-
long to the ‘ft’ class because this class is sparse and the mean distance between two 
instances of this cluster is relatively larger than in ‘o’ class. 

 

Fig. 3. While the unknown “?” object is slightly closer to the nearest o than to the nearest ft, we 
intuitively feel it is more likely to belong to the latter class (exemplars are from [10]) 

The classic nearest neighbor algorithm does not take into account the density of 
each cluster. In order to mitigate this shortcoming, we must correct for density, that 
can be characterized as the mean of intraclass distances. Our approach is inspired by 

d1 < d2

d2d1

?
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the inverse-square law which is widely applied in physics. Let us consider an analogy 
to Newton’s law of universal gravitation which follows an inverse-square law.  

  (1) 

In (1) F is the force between two objects which masses are m and M, r is the dis-
tance between centers of mass of these objects and G is the gravitational constant. 
Analogously, in case of the classification problem we can consider the distance be-
tween the unknown object and the nearest neighbors of each class as r (denoted as ri 
for each class i) and the mean of distance inside each class as M (for each class i de-
noted Mi). Since we simply need to compare the resulting values of F given by dis-
tance measuring between the unknown object and the nearest neighbor in each class, 
we are not interested in the values of G and m because they are the same in all cases. 
Thus, we need to compare these ratios: Mi/  and Mj/ . Each ratio shows the “force” 
of attraction of the unknown object by each existing class. Therefore, the unknown 
object should be considered belonging to the class with the greatest “force.” Recall 
that the nearest neighbor classifier assigns unknown objects the class label of a known 
object with the least distance value. Therefore, we can simply look for the least value 
between: ri/  and rj/  Thus, we can consider division by square root of the 
mean as the appropriate correction factor for the distance. 

We initially imagined that creating synthetic data would be a major challenge. 
However, we found that simply applying tiny amounts of the affine transformations 
homothety, rotation and shear mapping, produced new images that are both visually 
very convincing (cf. Fig. 2) and closely modeled the true distributions of real data. 

We present two different algorithms: supervised learning (SL) and semi-supervised 
learning (SSL). SL algorithm classifies items using only exemplars from the training 
set without addition of newly-classified items from the testing set to the training set. 
In contrast the SSL algorithm adds newly-classified instances to the training set and, 
therefore, performs next item classification using both training (generated) data and 
newly labeled instances from the testing set. For both algorithms we generate synthet-
ic data randomly extracting one example from each class, and then distort this  
example applying the distortion model. After the training set is created we calculate 
distances between exemplars in one class with each other and find the mean of these 
distances to use it as our measure of class density (i.e. correction factor). 

4 Experimental Evaluation 

Table 1 shows the accuracy improvement of glyphs classification using distance cor-
rection over pure nearest neighbor approach. As we can see, our method demonstrated 
better performance than pure nearest neighbor approach.  

Table 1. Classification accuracy (in percent) for the datasets: 1 – Chinese, 2 – G114 Verard 
Grosromain, 3 – R118 Garamount Grosromain, 4 – Liber Floridus, 5 – Petroglyphs 

 Original accuracy, % Accuracy improvement, % 

1 2 3 4 5 1 2 3 4 5 

SL 96.6 81.6 95.8 91.6 81.8 1.3 4.3 1.3 2.5 16.4 

SSL 98.0 86.0 85.9 97.1 81.6 0.5 5.3 1.4 1.2 13.1 
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We have built a webpage [12] to more extensively document the experiments in 
this paper to ensure reproducibility. We tested our SL and SSL algorithms using a 
single, randomly chosen instance from each class. In every case, we averaged our 
results over 100 random runs. We evaluated our approach with both European, Chi-
nese handwritten historical documents and petroglyphs from 5 datasets [5, 9, 10, 15]. 

5 Conclusions and Future Work 

We have shown a method that allows classification of glyphs using only one exemplar 
of each class, by exploiting synthetic data and correcting distance calculations for the 
complexity of the glyph shapes. Experimental evaluation on diverse datasets demon-
strated significant improvements in accuracy. We have committed to keeping a web-
page with all the code and data we used online for at least five years, so others can 
check/reproduce and build upon our work [12].  

For future work we consider expanding our techniques to other areas of images 
recognition as well as exploiting different distance measures for comparison of im-
ages similarity. 

References 

1. Batista, G., Wang, X., Keogh, E.J.: A Complexity-Invariant Distance Measure for Time 
Series. In: Proc. of the SDM 2011, pp. 699–710 (2011) 

2. Campana, B., Keogh, E.: A Compression Based Distance Measure for Texture. In: Proc. of 
the SDM 2010, pp. 850–861 (2010) 

3. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. MIT Press, Cambridge 
(2006) 

4. Chawla, N., Bowyer, K., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling 
technique. J. Artif. Intell. Res. 16, 321–357 (2002) 

5. Derolez, A., Lamberti, S.: Audomari Canonici Liber Floridus, Codex Autographus Biblio-
thecae Universitatis Gandavensis, Ghent (1968) 

6. Eno, J.: Generating Synthetic Data to Match Data Mining Patterns. IEEE Internet Compu-
ting 12(3), 78–82 (2008) 

7. Ha, T., Bunke, H.: Off-line handwritten numeral recognition by perturbation method. IEEE 
Trans. on Pattern Analysis and Machine Intelligence 19(5), 535–539 (1997) 

8. Hu, B., Rakthanmanon, T., Campana, B., Mueen, A., Keogh, E.: Image Mining of Histori-
cal Manuscripts to Establish Provenance. In: Proc. of the SDM 2012, pp. 804–815 (2012) 

9. Indiana MAS Project, http://indianamas.disi.unige.it/ 
10. PaRADIIT Project, https://sites.google.com/site/paradiitproject/ 
11. Roy, P., Rayar, F., Ramel, J.Y.: An efficient coarse-to-fine indexing technique for fast text 

retrieval in historical documents. In: DAS 2012, pp. 150–154 (March 2012) 
12. Supporting web page, https://sites.google.com/site/singleexemplar/ 
13. Wang, J.-G., Neskovic, P., Cooper, L.N.: An adaptive nearest neighbor algorithm for clas-

sification. In: Proc. of ICMLC 2005, pp. 3069–3074 (2005) 
14. Yang, X., Bai, X., Köknar-Tezel, S., Latecki, L.J.: Densifying Distance Spaces for Shape 

and Image Retrieval. Journal of Mathematical Imaging and Vision, 1–17 (2012) 
15. Zhang, X., Nagy, G.: The CADAL calligraphic database. In: Proc. of the HIP 2011, pp. 

37–42 (2011) 


	Generating Synthetic Data to Allow Learning from a Single Exemplar per Class
	1 Introduction
	2 Related Work and Background
	3 Proposed Method
	4 Experimental Evaluation
	5 Conclusions and Future Work
	References




