
High Dimensional Search Using

Polyhedral Query

Richard Connor, Stewart MacKenzie-Leigh, and Robert Moss

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, G1 1XH, United Kingdom

{richard.connor,s.mackenzie-leigh,robert.moss}@strath.ac.uk

Abstract. It is well known that, as the dimensionality of a metric space
increases, metric search techniques become less effective and the cost of
indexing mechanisms becomes greater than the saving they give. This is
due to the so-called curse of dimensionality.

One effect of increasing dimensionality is that the ratio of unit hyper-
sphere to unit hypercube volume decreases rapidly, making the solution
to a similarity query (the query ball, or hypersphere) ever more difficult
to identify by using metric invariants such as triangle inequality.

In this paper we take a different approach, by identifying points within
a query polyhedron rather than a ball. We show how this can be achieved
by constructing a surrogate metric space, such that a query ball in the
surrogate space corresponds to a polyhedron in the original space. If
the polyhedron contains the ball, the overall cost of the query is likely
to be increased in high dimensions; however, we show that shrinking
the polyhedron can capture a surprisingly high proportion of the points
within the ball, whilst at the same time giving a more efficient, and more
scalable, search.

We show results which confirm our underlying hypothesis. In some
cases we can retrieve significant volumes of query results from spaces
which are otherwise intractable.

1 Introduction

In this paper, we show a novel conceptualisation of an approximate indexing
technique based on the geometry of high-dimensional metric spaces. This is based
on the following observations:

1. the relationship between the shared volume of a hypersphere and a hypercube
centred around the same point in high-dimensional space; especially that, as
the side length of a containing hypercube is reduced, much of the hypersphere
may still be contained

2. that points within an approximate hyper-polyhedron centred around an ar-
bitrary query point can be defined, relying upon triangle inequality, by a set
of inequalities based on distances from a fixed set of reference points1

1 Corresponding to existing multiple-pivot indexing mechanisms.

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 176–188, 2014.
DOI: 10.1007/978-3-319-11988-5_16 c© Springer International Publishing Switzerland 2014

High Dimensional Search Using Polyhedral Query 177

3. that a finite metric space can be re-indexed, using the Chebyshev distance
over pre-calculated distances to the reference points, to allow the efficient
extraction of points within a hyper-polyhedron centred around a query

The re-indexed (surrogate) space can often be queried more efficiently than
the original: it may have smaller data points, a faster metric, and lower intrinsic
dimensionality. However when queried at the same threshold, the result will be
a much larger proper superset of the query in the original space, and the cost of
filtering against the original space is likely to outweigh any efficiency gain.

However, observation (1) means that, as the surrogate query threshold is
reduced, a corresponding increase in efficiency may be achieved without a cor-
responding significant loss in correct results. This makes the mechanism as pro-
posed useful in the context of high-dimensional metric spaces, where known
indexing techniques are completely ineffective. In this context, it may give a
tractable and scalable approach to at least achieving some kind of imperfect
search, and we show results from searching against GIST image characterisa-
tions [13] which we have been unable to otherwise achieve.

2 Dimensionality: Curse and Counter-Curse

In the domain of metric search, we are very familiar with the so-called curse
of dimensionality [7]. The observable effect is that, as the dimensionality of a
metric space increases, then for arbitrarily selected distances within the space
standard deviation decreases and there are ever fewer very small values.

One explanation of this is that, as the dimensionality increases, the ratio of
the volume of the unit hypersphere to the unit hypercube decreases rapidly.
Points within the space fill a hypercube, while the solution to a threshold query
fills a hypersphere (the query ball) centred around the query point.

It is instructive to observe the magnitude of this effect. The volume of a

hypersphere with radius r in 2k dimensional space2 is πk

k! r
2k which starts to

decrease rapidly after 6 dimensions. The ratio of this volume to the volume

of a containing hypercube is given by πk

22kk!
which clearly becomes very small,

very quickly, as k increases. At 6 dimensions the ratio is 0.08; at 10 it is 0.002
and it drops to 2 × 10−8 at 20. This sharp drop-off fits well with the generally
known rule-of-thumb that metric indexing mechanisms become ineffective at an
intrinsic dimensionality [7] of more than around 6-10.

2.1 Shrinking the Search Hypercube

Imagine that, for a threshold search, all points within the containing hypercube
could be efficiently discovered. Even if this were true, it would be of little practi-
cal value in high dimensions, as in an evenly-distributed space almost all of the
points contained would not be within the solution to the search.

2 Even dimensions are used as the formula is slightly simpler, an equivalent formula
exists for odd dimensions.

178 R. Connor, S. MacKenzie-Leigh, and R. Moss

However, if for example all points within a hypercube of the same volume
and centre as the query hypersphere could be discovered, these points will have
a significant overlap with those in the query ball. As the number of dimensions
increases, the overlap becomes proportionally smaller, but not rapidly.

The side length of this cube actually decreases as the dimensionality increases.
Therefore, for example, in 10 dimensions a set of points which will coincide
significantly with a query ball of radius t can be found by extracting points
within a hypercube with a half-side length of just over 1

2 t, and around half of
the space contained in this hypercube will also be in the hypersphere.

There is one further effect of which we can take advantage. As the half-side
length increases up to the sphere radius, the contained volume of the sphere in-
creases rapidly after a threshold of around the equivalent volume. It very slowly
approaches full containment as the half-side length approaches the query radius,
but includes almost all of the points within the sphere at a much smaller value
than this. With higher dimensions, this effect is greater and starts at a lower
threshold. Figure 1 shows the volume overlap in 10 dimensions, the graphs cor-
responding to recall and precision in an evenly distributed Euclidean space as
the half-side length increases from 0 to 1. It can be seen that there is an overlap
where both recall and precision are usefully far from zero: for example, if we
could efficiently retrieve a hypercube with a half-side of little more than 0.6 of
a query radius, we would retrieve over 80% of the true results, while of all the
results retrieved, around 20% of them would be correct. In 10-dimensional space,
this may well be a reasonable compromise if there is an associated reduction in
query cost.

Fig. 1. With half-side ranging from 0 to 1, graphs show percentage of volumes: (a) of
unit hypersphere in hypercube, and (b) of hypercube in unit hypersphere

These observations are used as follows. A surrogate metric space will be con-
structed such that a query ball in the surrogate space corresponds to a hyper-
polyhedron within the original space. The hyper-polyhedron is expected to have
similar volume-ratio properties as those determined for hypercubes. The sur-
rogate space then allows points within an approximate hyper-polyhedron to be
discovered using standard metric indexing techniques. Search at the same thresh-
old corresponds to the minimum containing polyhedron, and will typically give

High Dimensional Search Using Polyhedral Query 179

a huge proportion of false positive results. However, efficiency gains from drop-
ping the search threshold should maintain a high proportion of the true results
because of the effect shown above.

Fig. 2. Hypothesis: percentage of correct results with threshold reduction

In essence, we would hope to see a pattern as shown in Figure 2. As the query
threshold is reduced, the query cost decreases approximately linearly in both
original and surrogate spaces. In the original space, the amount of data returned
will drop off very rapidly, due to the decrease in the hypersphere volume; however
in the surrogate space, it will drop off at first very slowly, due to the effects just
outlined. This should allow a high proportion of the correct results in return for
a substantial reduction in query cost.

It is worth noting that, although the above discussion implicitly assumes
a Euclidean space, the same patterns occur in other spaces as well, and the
technique proposed works correctly over any metric space.

3 Defining Approximate Hyper-Polyhedra

There remains the issue of finding a scalable mechanism which will identify the
points within the reduced hypercube. For a Euclidean space, this could be done
by setting up an independent search structure for each dimension and finding the
intersection of all points within the appropriate range on all dimensions; with
unlimited parallel hardware this could be extremely efficient. However, our pri-
mary interests include performing search over high-dimensional, non-Euclidean
metric spaces.

Instead of calculating the actual hypercube, we form an approximation of a
hyper-polyhedron by use of reference points within the space. Figure 3 shows a
simple example. Reference points p1 and p2 have been selected. For a query q,
with threshold t, the property of triangle inequality means that for any ui in the
space, if |d(q, p1) − d(ui, p1)| > t or |d(q, p2) − d(ui, p2)| > t, then ui cannot be
in the result set.

180 R. Connor, S. MacKenzie-Leigh, and R. Moss

q

p1 p2

Fig. 3. An Approximate Hyper-Polyhedron in 2 dimensions

Generalising to a metric space (S, d), and a set of reference points R, then
an approximate hyper-polyhedron constructed for a query q with threshold t is
defined as:

Poly(q) = {u ← S where ∀p ∈ R, |d(q, p)− d(u, p)| < t′}

where t′ ≤ t, and is chosen according to the tradeoffs highlighted above.
This statement of inclusion essentially corresponds to the pivoting exclusion

principle used in various multiple-pivot mechanisms, and is discussed further in
Section 5. However we now show how to turn the pivot-based exclusion into a
metric search in its own right. The value of doing this is that, as the value of t′

is reduced, the scalability of the search increases.

4 Re-Indexing for Hyper-Polyhedral Search

If we use the denotation uj to mean d(u, pj), then the inclusion criterion for
Poly(q) can be rewritten as maxj(|qj−uj|) ≤ t′, as for any pj ∈ R, |qj−uj|) > t′

means that u does not lie within the polyhedron around the query point.

p1

p2 p3

p4

u1

u2

u3

u4

q

Fig. 4. Euclidean space: data ui, reference points pi and query q

High Dimensional Search Using Polyhedral Query 181

This condition is captured by applying the Chebyshev distance (L∞) to the
ordered sets of values constructed from the distances of u and q to each reference
point in turn. As Chebyshev is itself a proper metric, this means that elements
of Poly(q) can be found by using metric search over a metric space constructed
from the original by pre-calculating these distances, and using Chebyshev as the
distance metric.

Table 1. The left-hand column shows the Euclidean distances (d) from the query
point in the original space (Figure 4). The right-hand column shows the corresponding
Chebyshev distance (L∞) in the surrogate space.

Original Space Surrogate Space

Point d(q, u) d(p1, u) d(p2, u) d(p3, u) d(p4, u) L∞(q′, u′)
q 0 3.68 1.52 2.67 4.28 0

u1 0.57 3.16 1.41 3.14 4.24 0.52
u2 1.84 3.91 3.35 1.80 2.69 1.83
u3 3.26 3.98 4.72 2.81 1.22 3.20
u4 3.37 2.10 4.43 4.34 1.90 2.91

Figure 4 demonstrates this by example, for data drawn in 2D Euclidean space.
There are four reference points (pi), four data points (ui) and a single query
point (q). Table 1 gives the corresponding distance values used to populate the
surrogate space. It can be seen that, in all cases, the Chebyshev distance over
the surrogate set gives a smaller value than the original distance, this property
deriving from the triangle inequality property of the original space.

4.1 Formal Definition

Consider a metric space (X , d) over which a threshold search is required: that is,
for some finite subset S = {u0, u1, . . . , un} of X , those objects within the close
proximity of some q ∈ X require to be found. Note that X is not necessarily a
Cartesian space, but d must be a proper metric.

Let R be an ordered set of m arbitrarily chosen points in X , where rj denotes
the jth element of R. R can be thought of as a set of reference points within
the space.

A surrogate set TR of S is a set in m-dimensional Cartesian space where, for
each ui ∈ S, there exists a corresponding vi ∈ TR such that vji = d(ui, rj), where

vji denotes the value of the jth dimension of vi.
The surrogate set TR will be used to perform queries without reference to

either the actual values of S, or the metric d. For a query q, a surrogate query
qR will be constructed, such that qjR = d(q, rj).

182 R. Connor, S. MacKenzie-Leigh, and R. Moss

The Chebyshev (L∞) distance metric is defined as

L∞(x, y) = lim
n→∞

n

√∑
j

(|xj − yj|)n

which can be conveniently calculated as

L∞(x, y) = max
j

(|xj − yj|)

Being an element of the family of Lebesque metrics with n ≥ 0, this is a proper
metric. Therefore (TR, L∞) is also a metric space.

4.2 Properties

1. L∞(qR, vi) ≤ d(q, ui)
That is, if Qt(q,S, d) denotes the set of values returned by a threshold query
for metric d over S for the point q and the threshold t, then Qt(q,S, d) ⊆
Qt(qR, TR, L∞). The proof of this derives from the triangle inequality prop-
erty of d.

2. The conditional probability of ui ∈ Qt(q,S, d), vi ∈ Qt′(qR, TR, L∞) reduces
at first, very slowly, from 1 as t′ reduces from t downwards, while the cost
of evaluating the query reduces more rapidly.

The following tradeoffs exist, according to a given search scenario:

1. Querying L∞(qR, vi) at the same threshold value t will always give a superset
of the required results, which for a precise search will then have to be tested
back in the original space before being returned as results of the threshold
query. The relative sizes of the true and false results returned by a query
at the same threshold depend upon the size, and individual points chosen,
for the set R; however, this aspect of query performance is likely to be in
contention with choosing R to give the best search performance.

2. Conversely, although L∞(qT , vi) ≤ d(q, ui) is the only guarantee, it may
be the case that, for some given ε, there is an acceptable probability that
L∞(qT , vi) < d(q, ui) − ε. If so, then a smaller threshold value can be used
to produce an approximate result set. In many dimensions, it is extremely
unlikely that a distance very close to the threshold will be reached in the
surrogate space, as this can happen only with very close alignment of three
points in the original space, which is increasingly less likely as the number
of dimensions increases, although more likely as the size of R increases.

The same core mechanism can thus be used either as an accurate, or an
approximate, threshold search, depending on the context of the requirements.

High Dimensional Search Using Polyhedral Query 183

4.3 Choosing Reference Points

In common with other methods which use reference points, the choice of points
appears to be critical to the performance of the mechanism. However, we are at
an early stage of investigation in this respect.

We have tried various strategies for various spaces, and the only general de-
duction is that a random choice of points is relatively safe, as often the use of
apparently appealing strategies only makes things worse.

For Euclidean space, it seems that the best strategy may be to choose artificial
points in the “corners” of the space rather than points within the existing data.
Thus in unitary space we use the origin, and then the points (0, 1, 0, 0, . . .),
(0, 1, 1, 0, . . .), (0, 1, 1, 1, . . .) etc. We have not yet found equivalent series of
points for other metrics, which are harder to reason about in terms of their
multidimensional geometry, although we suspect they exist.

In terms of the number of reference points, we have seen some surprising
results which show that many less points than might be expected can be used.
This seems to depend very much upon the distribution of points within the
space, and may be beyond theoretical analysis in an uneven distribution. There
is however a clear law of diminishing returns: if each dimension in the surrogate
space gives approximately a constant probability of excluding that point from the
result set, and assuming this probability is reasonably large, then small numbers
of reference points will be much more efficient than large numbers as better use
of memory is made in the surrogate space. The tradeoff is that larger numbers
of reference points will always give a smaller number of false positive returns,
but the magnitude of this effect will depend heavily on how well the reference
points can be chosen.

5 Related Work

There are already a large number of approximate methods suitable for use in
higher-dimensional spaces, classified in [14], many of which use reference points.

Permutation indexing [2,4] is essentially another surrogate space mechanism.
In common with our mechanism, a set of reference points is chosen and the
distance to each is pre-calculated for all points in the data set. However these
distances themselves are then abstracted into only their order from each point.
Searching by these orders should be strongly correlated with a metric search,
especially for nearest-neighbour searches. Many strategies have been suggested,
with the best scaling being produced by using a relatively large number of ref-
erence points and then testing against only a much reduced view of these, al-
lowing the resulting sparse space to be searched using inverted index techniques
e.g. [1,12]. Our observation is that these techniques require more reference points,
and give rather larger numbers of false positive results, than our technique, al-
though the use of inverted indices can give impressive performance.

Re-indexing a space according to a proxy based on reference points was, to
our knowledge, first suggested by Figueroa and Frediksson [10] in which a per-
mutation space is re-indexed to give an improved metric performance.

184 R. Connor, S. MacKenzie-Leigh, and R. Moss

As noted, our core semantics is identical to a set of multiple exclusions based
on triangle inequality, and therefore relates closely to the pivoting exclusion
principle used in various multiple-pivot mechanisms which use pre-computed
distances, notably LAESA [15] and Extreme Pivots [16].

Our mechanism has much in common with Extreme Pivots, and in fact was
derived from attempts to use this over GIST data. Perhaps because of the high
dimensionality, or uneven distribution, we failed to find useful pivot groups as
described in [16], and in the course of running experiments to find the best
combination of pivots and pivot groups, we discovered that the best size of pivot
group we could find was in fact 1. The results returned by our surrogate search
are the same as those returned by a degenerate case of Extreme Pivots, using each
reference point as one pivot group of a single value. However this allows the same
search to be conducted in the surrogate space, rather than performing a serial
scan of the data as is more generally required. The comparison of cost between
our mechanism and Extreme Pivots is therefore only the increased efficiency
of performing an indexed search over the space, versus a potentially greater
number of false positive exclusions from using larger pivot groups. We believe
our mechanism will therefore work better with larger, higher dimensional data.
However, the observations based on the efficiency/recall tradeoffs via threshold
reduction should apply equally to both mechanisms.

Since originally proposing this mechanism, we have discovered that exactly the
same tradeoffs between efficiency and recall when reducing the search threshold
within a mulitple-pivot space have been observed by Chávez and Nararro in [5].
Their explanation of the gains is based on the probability distribution function
of distances within the original space, and is fully compatible with our observa-
tions on hyperspheres and hypercubes; the relationship seems worthy of further
investigation. They do not propose reindexing the space using Chebyshev, which
we believe gives much greater efficiency gains as the search threshold decreases.

In common with the motivation for the List of Clusters [6], the use of memory
is critical in real index performance. This can be seen to be the reason for much
of the performance gain we can achieve. As our indexing mechanism works over
the surrogate space of the hyper-polyhedron, we can substantially reduce the
query threshold without significantly reducing the number of results.

6 Results

For all experiments reported here, we have used the Euclidean “corners” strategy
for Euclidean spaces, and randomly selected reference points for other metrics.
We have results against three different types of data set: generated Cartesian
spaces of various dimensions3; the SISAP colors data set, and a data set of
GIST characterisations of images. This last set is the real target of the described
mechanism: with 420 Cartesian dimensions, it is essentially intractable for metric
indexing techniques.

3 Not included due to space constraints, please contact the authors if interested.

High Dimensional Search Using Polyhedral Query 185

In each case, we compare our technique using a balanced Vantage Point Tree
(VPT) in both the original and surrogate spaces. This is just to give a point
of reference against which two searches, the original and the surrogate, can be
compared. It is quite likely that, for any given original or surrogate search, there
are better indexing techniques available.

6.1 SISAP colors

The SISAP colors data was used with Euclidean, Cosine and SED [8, 9] dis-
tances, each of which has very different cost implications for both metric cost
and scalability. 256 random points were removed from the 112,682 data points
to use as queries. For each metric a query threshold sufficient to return around
1k results, i.e. mean of 4 per query, was used.

In each case, the surrogate space was searched and the results from these
queries were then post-processed by comparing the original metric over the orig-
inal data. These, and all other calculations, were performed on a non-optimised
system, written in Java, and executed on a laptop computer, and so only the
relative timings are important; each timed test was repeated until the standard
error of the mean was less than 1%.

For Euclidean queries, only 5 reference points were used, this giving the best
overall performance. This is many fewer than we would have expected, but as
more points are used, only marginally better precision is achieved and the search
cost is substantially increased. It is worth noting that each data point is therefore
represented in less than one-twentieth of the memory required for query against
the original 112-dimensional vectors. For Cosine and SED, the relatively high
costs of the distance metrics themselves imply using larger number of reference
points, to reduce the number of post-processing distances calculated.

Table 2 shows some key measurements for each metric. The figures given
are: the cost of a sequential search; the cost using a standard balanced VPT,
and the surrogate costs for retrieving 90%, 70% and 50% of the query results
by reducing the query threshold. In all cases, achieving this through reducing
the search threshold in the original space makes a negligible difference to cost.
All costs are given in absolute time measured, to highlight the tradeoffs in the
different metrics. The pattern of cost and recall as the surrogate threshold is
decreased is shown in Figure 5.

The relative saving is quite complex, depending on a number of factors. For
SED, the surrogate method is cheaper even to fetch 100% of the query results, as
the number of results returned by the surrogate metric is less than the number of
SED calculations performed in indexing via the VPT, and the cost of the metric
makes this the dominant factor.

Depending on the context of the search, these speedups could already be quite
useful. In all cases, however, the metrics over this space are already relatively
tractable, with VPT indexing being substantially faster than sequential query;
this is not the intended domain of our surrogate mechanism, and we turn our
attention to a higher-dimensional space where this is not the case.

186 R. Connor, S. MacKenzie-Leigh, and R. Moss

Table 2. Times (ms per 256 queries) for queries over the colors dataset

Original Space Surrogate Space

Metric Sequential VPT-indexed 90% recall 70% recall 50% recall

Euclidean 1059 148 88 46 19
Cosine 9617 45 52 33 20
SED 79033 2849 1196 558 250

Fig. 5. Colors: three metrics, each showing cost reducing faster than recall. Time mea-
sured corresponds closely to memory use, which is optimised by choosing an appropriate
number of reference points.

6.2 MirFlickr/GIST

The data used here comprises the GIST [13] characterisations of first 10k images
taken from the Mir-Flickr collection [11]. A balanced VPT was built using the
data, and then each value was queried against it at a threshold which returned
10k results (excluding the query itself), i.e. a mean of one per query. As would
be expected with data of this complexity, the VPT gave little or no cost saving
over sequential search for any metric.

Figure 6 shows the result of using polyhedral search for Euclidean and Cosine
distances. The surrogate space was constructed, and a VPT used to query at
different thresholds between the original, and one-tenth of the original, threshold.
All values shown are relative to the cost of the original search.

Values shown are, from top to bottom in the graphs: recall, i.e. how many of
the correct results are returned; tree distances, the relative number of distance
calculations performed during the tree search; the actual measured time for the
queries to complete; and the memory use. These last two figures include both the
surrogate tree search, and the post-processing of the results using the original
metric and data.

Notably for both searches even searching at the containment threshold is
cheaper than the original metric search. This is because the cost is dominated
by the memory cost of the original distance metric searching over the original
points, each of which require 50-100 times more memory than the surrogate
points. Even at the full threshold, a smaller number of results is obtained than
the number of calculations performed during a tree search using the original
metric and data.

High Dimensional Search Using Polyhedral Query 187

For Euclidean search, the cost of retrieving 99.7% of the true results is just
under half of the original, whereas 75% can be retrieved for just over one-fifth
of the cost. The lack of a good strategy for choosing reference points means that
more surrogate distance calculations are required for Cosine search, however this
is more than compensated for by higher recall at lower relative thresholds, and
the measured cost of retrieving 99.7% of the correct results is just over one-
quarter of the cost of the original search, and 70% of correct results can be
obtained for one-twentieth of the cost.

Fig. 6. Euclidean and Cosine distance over MirFlickr/GIST

7 Conclusions and Further Work

We have presented a novel strategy for approximate search in intractable, high-
dimensional metric spaces. The essence of the mechanism is to re-cast the original
space, via a set of reference points, into another metric space which can be use-
fully searched at lower thresholds. This allows, at least in some cases, a relatively
predicable proportion of the correct results to be obtained for an acceptably low
cost.

We are at an early stage of investigation of this technique, however we have
already used it to obtain some real results that were previously unavailable to
us in complex domains such as image similarity.

One area of investigation which could greatly improve the performance of
the technique would be a better selection of reference points for non-Euclidean
spaces, which may be possible to achieve by analysis of the geometry of these
spaces as we believe we have achieved for Euclidean distance.

Finally, we have seen some interesting preliminary results from approximat-
ing nearest-neighbour (kNN) search in the surrogate space, for appropriately
increased values of k. This takes advantage of an observation that there may
be better correlation of the surrogate and original distances at lower threshold
values, but requires further investigation.

188 R. Connor, S. MacKenzie-Leigh, and R. Moss

References

1. Amato, G., Esuli, A., Falchi, F.: Pivot selection strategies for permutation-based
similarity search. In: Brisaboa, et al. (eds.) [3], pp. 91–102

2. Amato, G., Savino, P.: Approximate similarity search in metric spaces using in-
verted files. In: Proceedings of the 3rd International Conference on Scalable In-
formation Systems, InfoScale 2008, pp. 28:1–28:10. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), Brussels (2008)

3. Brisaboa, N., Pedreira, O., Zezula, P. (eds.): SISAP 2013. LNCS, vol. 8199.
Springer, Heidelberg (2013)

4. Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)

5. Chávez, E., Navarro, G.: Probabilistic proximity search: Fighting the curse of di-
mensionality in metric spaces. Inf. Process. Lett. 85(1), 39–46 (2003)

6. Chávez, E., Navarro, G.: A compact space decomposition for effective metric in-
dexing. Pattern Recognition Letters 26(9), 1363–1376 (2005)

7. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

8. Connor, R., Moss, R.: A multivariate correlation distance for vector spaces. In:
Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS, vol. 7404, pp. 209–225. Springer,
Heidelberg (2012)

9. Connor, R., Simeoni, F., Iakovos, M., Moss, R.: A bounded distance metric for
comparing tree structure. Inf. Syst. 36(4), 748–764 (2011)

10. Figueroa, K., Frediksson, K.: Speeding up permutation based indexing with in-
dexing. In: Second International Workshop on Similarity Search and Applications,
SISAP 2009, pp. 107–114 (August 2009)

11. Huiskes, M.J., Lew, M.S.: The mir flickr retrieval evaluation. In: MIR 2008: Pro-
ceedings of the 2008 ACM International Conference on Multimedia Information
Retrieval. ACM, New York (2008)

12. Mohamed, H., Marchand-Maillet, S.: Quantized ranking for permutation-based in-
dexing. In: Brisaboa, et al. (eds.) [3], pp. 103–114

13. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation
of the spatial envelope. Int. J. Comput. Vision 42(3), 145–175 (2001)

14. Patella, M., Ciaccia, P.: Approximate similarity search: A multi-faceted problem.
J. of Discrete Algorithms 7(1), 36–48 (2009)

15. Ruiz, E.V.: An algorithm for finding nearest neighbours in (approximately) con-
stant average time. Pattern Recognition Letters 4(3), 145–157 (1986)

16. Ruiz, G., Santoyo, F., Chávez, E., Figueroa, K., Tellez, E.S.: Extreme pivots for
faster metric indexes. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013.
LNCS, vol. 8199, pp. 115–126. Springer, Heidelberg (2013)

	High Dimensional Search UsingPolyhedral Query
	1 Introduction
	2 Dimensionality: Curse and Counter-Curse
	2.1 Shrinking the Search Hypercube

	3 Defining Approximate Hyper-Polyhedra
	4 Re-Indexing for Hyper-Polyhedral Search
	4.1 Formal Definition
	4.2 Properties
	4.3 Choosing Reference Points

	5 Related Work
	6 Results
	6.1 SISAP
	6.2 MirFlickr/GIST

	7 Conclusions and Further Work
	References

