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Abstract. In information retrieval and classification, the relevance of
the obtained result and the efficiency of the computational process are
strongly influenced by the distance measure used for data comparison.
Conventional distance measures, including Hamming distance (HD) and
Levenshtein distance (LD), count merely the number of mismatches (or
modifications). Given a query, samples mapped at the same distance
have the same number of mismatches, but the distribution of the mis-
matches might be different, either disperse or blocked, so that other
measures must be cascaded for further differentiation of the samples.
Here we present a new type of distances, called transition-sensitive dis-
tances, which count, in addition to the number of mismatches, the cost
of transitions between positionally adjacent match-mismatch pairs, as
part of the distance. The cost of transitions that reflects the dispersion
of mismatches can be integrated into conventional distance measures.
We introduce transition-sensitive variants of LD and HD, referred to as
TLD and THD. It is shown that while TLD and THD hold properties of
the metric similarly as LD and HD, they function as more strict distance
measures in similarity search applications than LD and HD, respectively.

Keywords: Transition-sensitive Distance, Transition-sensitive Leven-
shtein Distance, Transition-sensitive Hamming Distance, distance mea-
sure, metric, string matching, pattern matching, dynamic programming.

1 Introduction

Recently, a variety of information has been accumulated to a growing scale.
Highly demanded is a simple and efficient method to retrieve relevant infor-
mation of interest out of the accumulated source. In the core of information
retrieval systems is data comparison or pattern matching. Numerous methods
and strategies have been developed for comparison of various kinds of symbolic
data, including text, voice, music, image, and video [1–7]. The relevance of the
retrieved result and the efficiency of the computational process are both strongly
influenced by the distance measure used for comparison.

When two patterns of equal size in arbitrary dimensions, such as multi-
dimensional bitmap image data, to be compared, Hamming distance (HD) [8]
has been widely used, which is defined as the minimum number of substitutions
required to transform one pattern into the other. For comparison of two strings,
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whose lengths may be different, Levenshtein (or edit) distance (LD) [9] has been
used instead, which is defined as the minimum number of insertions, deletions,
and substitutions required to transform one string to the other.

Given a query string ’form’, for example, two strings, ’forms’ and ’forum’, are
mapped by LD at the same distance, 1, both for one insertion: the last charac-
ter ’s’ of ’forms’ and the fourth character ’u’ of ’forum’. Mismatches, including
deletions, insertions, and substitutions, break up one string into fragments, each
composed of all matching (or mismatched) characters. The former ’forms’ is split
into two fragments of lengths 4 and 1, such as form-s, while the latter ’forum’
is broken into three fragments of lengths 3, 1 and 1, such as for-u-m. Thus the
LD measure gives the same distance as long as the number of mismatches is
the same no matter whether the mismatches are blocked or distributed, whether
they are on the edge or in the middle.

In many different applications, such as linguistic analysis, it is often presumed
that strings with mismatches at the head or tail may be related objects, while
those with mismatches found in the middle or distributed throughout could
be independent objects. In the previous example, ’forms’ (form-s) is a variant of
’form’, while ’forum’ (for-u-m) is an independent word. Simple methods for segre-
gating variants from others are highly demanded for natural language processing
systems as in [10].

To further differentiate those two strings (or arrays) which are mapped at
the same LD (or HD), other measures need to be cascaded as additional steps.
To capture the locations of mismatches, the N -gram method that is to conduct
pattern matching locally in a window of length N sliding along each string has
been used as in [11, 12]. To assess the degree of fragmentation of mismatches,
Shannon entropy, which is defined: H = −Σpi · log pi with the occupancy pi of
a fragment of length i, has been used as in [13–15].

In this paper, we present a new type of distances, called transition-sensitive
distances, that reflect not only the sum but also the distribution of mismatches
between the subjects of comparison.

2 Transition-Sensitive Distances

2.1 Transition-Sensitivity

Suppose that the subjects of comparison are arrays of arbitrary number of di-
mensions and size. Each array is composed of symbolic elements that are either
atomic or composite. Atomic elements are quantitatively comparable symbols.
Composite elements are those consisting of two or more atomic elements.

The difference between two corresponding elements is referred to as the ele-
ment dissimilarity. Depending on the comparison method used, whether discrete
or fuzzy, the element dissimilarity may be a discrete binary integer (0 for match
and 1 for mismatch) or a real number in the range [0,1] in fuzzy indicating a
degree of mismatch.

The difference between two element dissimilarities at adjacent positions, which
is referred to as the transition, is represented as a real number in the range
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[-1, 1], where negative numbers, positive numbers, and zero represent ascents,
descents and none, respectively. The positional adjacency is defined by the spatial
properties of the arrays. Transition-sensitivity is the property that the distance
is variable depending on the transitions in the element dissimilarities. In the fol-
lowing, we extend two conventional metrics, Levenshtein distance and Hamming
distance, to be transition-sensitive.

2.2 Transition-Sensitive Levenshtein Distance

Transition-sensitiveLevenshtein distance (TLD) is a distance between two strings,
which is formulated in the dynamic programmingmanner similarly as Levenshtein
distance (LD) is.

Definition 1 (Transition-sensitive Levenshtein Distance, TLD). Given
a string X of length m and a string Y of length n, the transition-sensitive Levenshtein
distance (TLD) between the two strings is:

TLD(X,Y ) = D[m,n]

where

1. D[i, j] (0 ≤ i ≤ m, 0 ≤ j ≤ n) is a string distance defined as:

D[i, 0] = i, (0 ≤ i ≤ m); D[0, j] = j, (0 ≤ j ≤ n);

D[i, j] = min

⎧
⎨

⎩

D[i − 1, j] + 1 + t(d[i− 1, j], d[i, j], A,B) (deletion)
D[i, j − 1] + 1 + t(d[i, j − 1], d[i, j], A,B) (insertion)
D[i − 1, j − 1] + d[i, j] + t(d[i− 1, j − 1], d[i, j], A,B) (substitution)

⎫
⎬

⎭
,

(0 ≤ i ≤ m, 0 ≤ j ≤ n).

2. d[i, j] (0 ≤ i ≤ m, 0 ≤ j ≤ n) is an element dissimilarity defined as:

d[0, 0] = −1; d[i, 0] = 1, (1 ≤ i ≤ m); d[0, j] = 1, (1 ≤ j ≤ n);

d[i, j] = c(Xi, Yj), (1 ≤ i ≤ m, 1 ≤ j ≤ n);

Xi and Yj are the i-th element of X and the j-th element of Y , respectively.

3. c(x, y) is a function that returns a real number within the range [0, 1] representing
the dissimilarity (or normalized distance) between two elements, x and y as follows:

0 ≤ c(x, y) = |x− y| ≤ 1

Note that 0 indicates a complete match and 1 a complete mismatch.
The element dissimilarity may be either taken as it is or further binarized with a
given threshold γ, called the dissimilarity threshold, as:

c(x, y) =

{
0 if |x− y| ≤ γ (match)
1 otherwise (mismatch)
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4. t(d1, d2, A,B) is a function that returns a non-negative real number representing
the cost for a transition from one element dissimilarity d1 to the other d2 as follows:

t(d1, d2, A,B) =

⎧⎨
⎩

A · (d2− d1) if 0 ≤ d1 < d2 (ascent)
B · (d1− d2) if 0 ≤ d2 < d1 (descent)
0 otherwise (no transition)

A and B are the cost coefficient for the ascent or descent, respectively, under the
following constraint:

0 ≤ A+B ≤ 1.

��
Proposition 1. Given two strings x and y and transition cost coefficients A
and B, TLD(x, y) satisfies the following conditions:

1. TLD(x, y) ≥ 0 (non-negativity)
2. || x | − | y ||≤ TLD(x, y) ≤ max(| x |, | y |) (lower and upper bounds)
3. TLD(x, y) = 0 if and only if x = y and | x |=| y | (identity)
4. TLD(x, y) = TLD(x, y) (symmetry)
5. Given another string z, TLD(x, z) ≤ TLD(x, y) + TLD(y, z) (triangle in-

equality)

where | x | denotes the length of string x.

Proof.

1. TLD(x, y) is defined with addition, multiplication and minimum operators
on non-negative numbers, thereby resulting in a non-negative number.

2. If x and y do not match in any elements, the element dissimilarity ma-
trix is filled up with 1s, yielding the maximum value of TLD(x, y) through
the shortest path of the matrix, which is equal to the larger one of the
string lengths. For x and y of different lengths, the case where the shorter
string fully matches either the beginning or ending part of the longer string
yields the minimum value of TLD(x, y), || x | − | y || +min(A,B), where
min(A,B) = 0 if A = B = 0.

3. if and only if x and y are of the same length and fully match, the element
dissimilarity matrix is filled up with 0s, yielding TLD(x, y) = 0.

4. In computing TLD(x, y) and TLD(y, x), element dissimilarities and transi-
tion costs are similarly maintained, except that their coordinates are trans-
posed. Since the computation algorithm is uniform for each axis of the
coordinates, the same distance is yielded.

5. It is trivial for special cases involving identity, including x = y = z, x = y �=
z, x �= y = z, and x = z �= y. In other cases, there is at least one mismatch
in all three paths: x → y, y → z and x → z. If element dissimilarities and
accompanied transitions on the path x → y and those on the path y → z
do not positionally overlap in y, TLD(x, z) = TLD(x, y) + TLD(y, z) can
hold. Otherwise, TLD(x, z) ≤ TLD(x, y)+TLD(y, z) holds, since positional
overlaps on the sequential path x → y → z may be reduced on the direct
path x → z, such as double substitutions to a single substitution or zero for
the reversion. ��
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(a) (b)

Fig. 1. Levenshtein distance (LD) and Transition-sensitive Levenshtein distance
(TLD). (a) Comparison of strings, ’form’ and ’Forums’, with LD and TLD in discrete
and fuzzy matching modes. Gray rectangles indicate element dissimilarities (or mis-
matches), each of which is either 0 or 1 in the discrete mode or a real number in the
range [0,1] in the fuzzy mode. such as c(Uppercase, Lowercase)=0.4. Striped triangles
indicate ascending or descending transitions, whose cost coefficients,A=0.4 and B=0.5,
are assumed. (b) TLD for different patterns of mismatches and various cost coefficients.
Note that TLD with A=0 and B=0 is equivalent to LD.

Figure 1(a) illustrates comparison of two strings, ’form’ and ’Forums’, using
four different distance measures: Discrete LD, Fuzzy LD, Discrete TLD and
Fuzzy TLD. While LD counts merely mismatches, TLD counts not only mis-
matches but also their transition costs. ’Discrete’ or ’Fuzzy’ implies whether the
mismatch is represented with a binary or real number, respectively. The value
of TLD varies depending on the distribution of mismatches and also on the cost
coefficients for ascending and descending transitions, as shown in Figure 1(b).
In the first five cases (S1-S5), there are five mismatches in common between
the compared strings. However, the mismatches are distributed differently, as
blocked in S1-S3 and distributed in S4-S5, so that they are given different TLDs
(see the second or later columns). In the last string S6, all elements mismatched,
so that LD and TLD are both 10. S4 and S5 contain only 50% mismatches, but
the mismatches are evenly distributed, resulting in the highest transition cost.
When the cost coefficients are set high, the TLDs of S4 and S5 get close or equal
to the maximum 10 of S6 that contains 100% mismatches.

2.3 Transition-Sensitive Hamming Distance

Transition-sensitive Hamming distance (THD) is a distance between two ma-
trices of equal size in arbitrary dimensions. Unlike LD and TLD, insertions
and deletions are not allowed in HD and THD. For n-dimensional matrices,
Transition-sensitive Hamming distances are formulated below.

Definition 2 (Transition-Sensitive Hamming Distance, THD). Given
two matrices X and Y of equal size m1m2 . . .mn in n dimensions, n-dimensional
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Hamming distance (HDn), n-dimensional transition cost (TCn), and Transition-
sensitive n-dimensional Hamming distance (THDn) between the two matrices are
respectively defined as:

HDn(X,Y ) =

m1∑

i1=1

. . .

mn∑

in=1

d[i1, . . . , in]

TCn(X,Y ) =

m1∑

i1=1

. . .

mn∑

in=1

n∑

h=1

t(d[i1, . . . , ih−1, . . . in], d[i1, . . . , ih, . . . , in], Ah, Bh)

THDn(X,Y ) = HDn(X,Y ) + TCn(X,Y )

where

1. d[i1, . . . , in] (1 ≤ h ≤ n, 0 ≤ ih ≤ mk) is an element dissimilarity defined as:

d[0, . . . , 0] = −1;

d[i1, . . . , ih = 0, . . . , in] = 1, (1 ≤ h ≤ n);

d[i1, . . . , in] = c(Xi1,...,in , Yi1,...,in), (1 ≤ h ≤ n, 1 ≤ ih ≤ mh);

Xi1,...,in and Yi1,...,in are the elements of X and Y at the corresponding po-
sition, i1, . . . , in, respectively.

2. c(x, y) and t(d1, d2, A,B) are functions previously defined. ��
Proposition 2. Given two matrices x and y of the same dimension N and size
Li and transition cost coefficients Ai and Bi for each dimension (1 ≤ i ≤ N),
THD(x, y) satisfies the following conditions:

1. THD(x, y) ≥ 0 (non-negativity)
2. 0 ≤ THD(x, y) ≤ L (lower and upper bounds)
3. THD(x, y) = 0 if and only if x = y (identity)
4. THD(x, y) = THD(x, y) (symmetry)
5. Given another matrix z of the same dimension and size as x and y,

THD(x, z) ≤ THD(x, y) + THD(y, z)(triangle inequality)

where L =
∏n

i=1 Li.

Proof. Similarly proved as in Proposition 1. ��
Figures 2(a) and 2(b) illustrate THD used for comparison of two-dimensional

(2D) and three-dimensional (3D) data, respectively. In individual figures, pattern
a shows a complete match and pattern f a complete mismatch. In pattens b and
c, there is one mismatch in common, but the mismatch in pattern c is in the
center, costing more for the transitions than in pattern b where the mismatch
is in the corner. In patterns d and e of Figure 2(a), there are five mismatches
in common, but the mismatches in pattern e are more distributed, costing more
for the transitions than the rather blocked mismatches in pattern d.
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(a) (b)
Fig. 2. Transition-sensitive Hamming Distance (THD). (a) THD for 2D data (THD2).
Transitions are counted along two different axes, i and j. (b) THD for 3D data (THD3).
Transitions are counted along three different axes, i, j, and k.

3 Applications

3.1 Application of TLD: Approximate Name Search

Given two strings, it is simple to compare the whole strings in the flat form, that
is, in the manner of whole-string matching. When strings are physically large or
contain semantic components, however, it is desirable to reflect the structures of
the strings in the comparison. In the case of natural language texts, for example,
statements can be split into coarse-grain elements (e.g., words) and further into
fine-grain elements (e.g., characters). TLD is applicable to the comparison at
such different grain levels.

Fig. 3. Hierarchical application of TLD. Strings, ’patent application form’ and ’Patent
Education Forums’, are split into words (Level 2), where a single space is used as the
separator. The word distance D (at the left bottom) obtained from word comparison
(Level 1) is normalized to the dissimilarity d2 (at the left top) to be used for phrase
comparison (Level 2), i.e., for words u and v, d2(u, v) = D(u, v)/max(| u |, | v |). The
phrase distance D2 (at the right bottom) is similarly normalized to the dissimilarity d3.
Note that the transition cost coefficients, A=A2=0.4 and B=B2=0.5, and the element
dissimilarity, c(Uppercase, Lowercase)=0.4, are assumed.
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Figure 3 introduces a hierarchical method of string comparison, referred to
as the word-wise matching. After strings, ’patent application form’ and ’Parent
Education Forums’, are individually split into words, TLD is similarly applied
to both word comparison (Level 1) and phrase comparison (Level 2). The word
distance D obtained from word comparison is normalized to the dissimilarity
d2 to be used for phrase comparison. After conducting phrase comparison simi-
larly as word comparison, the obtained phrase distance D2 is normalized to the
dissimilarity d3.

(a) (b)

(c) (d)

Fig. 4. Approximate String Search. Total 4688 records of biological terms in a database
were compared against the query string, ’ribosomal RNA processing’, using two different
matching methods (whole-string and word-wise) in combination with two different dis-
tance measures (LD and TLD). (a) Composition of individual records in the database.
(b) Frequency of individual words constituting the database. (c) Frequency versus com-
position of individual words. (d) Relative similarity of individual records to the query,
evaluated through four different measures, where the transition cost coefficients, A=0.4
and B=0.5, and the element dissimilarity, c(Uppercae, Lowercase)=0.4, are assumed.

Using two different matching methods (whole string and word-wise) in com-
bination with two different distance measures (LD and TLD), we conducted ap-
proximate name search on a database containing 4688 different biological terms,
including gene and protein names. The content of the database is statistically
characterized as shown in Figures 4(a) - 4(c). Individual string records were
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composed of 5-82 (mean 31) characters and of 1-13 (mean 3) words as shown
in Figure 4(a). Total 5115 different words were contained in the database. As
shown in Figure 4(b), the frequency of words made a power-law distribution,
obeying Zipf’s law [16] that is empirically known to hold for natural language
texts rather than for artificial language texts. Frequently appearing words were
general terms of 3-13 characters, such as ’protein’, ’subunit and ’domain’ ranked in
the top, as shown in Figure 4(c). A string, ’ribosomal RNA processing’, composed
of 24 characters containing three words, was used as the query. While the query
string had a complete match with only one record, individual words frequently
appeared in the database, such that ’ribosomal’ occurred in 129 records, ’RNA’
in 117 records and ’processing’ in 33 records.

After comparing individual string records against the query string, the dis-
similarity obtained for each string record i was converted to the similarity
and normalized against the maximum of similarity to the relative similarity:
Si = 1−d∗i; si = Si/max(S). The relative similarity was ranked and normalized
against the total number of records (N) to the relative rank: ri = rank(Si)/N .
Functions of the relative similarity to the normalized rank, evaluated through
the four different measures, are plotted in Figure 4(d). The inner the function
curve lies, less records will chosen above the given threshold, so that the more
strict the evaluation is meant to be. For each matching method, the curve of
TLD was found inner than that of LD. For each distance measure, the curve of
the word-wise matching was found inner than that of the whole-string matching.
Given 0.4 relative similarity as the threshold, for example, only one record was
fished by the word-wise matching with TLD, while 4, 3 and 10 records were
found by the whole string matching with TLD, the word-wise matching with LD
and the whole string matching with LD, respectively. Thus, the combination of
the word-wise matching and TLD is suggested to be the most strict evaluation
measure that would retrieve the least number of records as those above the given
threshold of similarity.

3.2 Application of THD: Image Clustering

THD is applicable to comparison of multi-dimensional data, such as images
and volumes, similarly as HD is. To see how differently THD and HD may
behave, we conducted pair-wise comparison on 20 different images shown in
Figure 5(a), using each of the two distance measures. Individual images are
150x150 black&white pixels in resolution and statistically characterized with
their darkness (the ratio of black pixels to the entire image) and normalized
standard deviation (the standard deviation of the distances of black pixels from
their center, normalized against the maximum of standard deviation), as shown
in Figure 5(b).

For the 20 different images, total 190 pair-wise distances were computed with
HD or THD as the distance measure, and normalized to dissimilarities to pro-
duce a distance matrix. The 190 pair-wise dissimilarities (d) were converted to
similarities (s = 1 − d) and plotted against their ranks in Figure 5(c). The
curve for THD lies inner and more sharply declines than the one for HD does,
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(a)

(b) (c) (d) (e)

Fig. 5. Image Clustering. (a) 20 images (A-T) used in the study. (b) Darkness and
normalized standard deviation of individual images. (c) Similarities (s = 1− d) of 190
different pairs of images, where HD (gray circles) and THD (black squares) were used
for computation of dissimilarities (d). (d-e) Dendrograms obtained through hierarchical
complete-linkage clustering conducted on the distance matrix of the images, using (d)
HD or (e) THD as the distance measure. Note that the transition cost coefficients,
A=0.5 and B=0.5 were used in the computation of THD.

suggesting that less candidates would be retrieved with THD than with HD,
given a certain similarity as the threshold.

Merely the values of similarities decreased with THD? To see if there is any
change in the relationship of proximity among the images, we conducted hierar-
chical complete-linkage clustering [17] on individual distance matrices produced
with HD and THD. Figures 5(d) and 5(e) show the resulting dendrograms for
HD and THD, respectively. Images D, L, R and T, which are clearly separated
from the rest in Figure 5(b), are segregated from the rest similarly in both den-
drograms. The difference is in the rest. While image P is grouped together with
images A, B, C and Q in one clade and the rest forms another clade in the
dendrogram with HD (Figure 5(d)), image P is segregated from images A, B, C
and Q and the whole rest are placed in one clade in the dendrogram with THD
(Figure 5(e)). Other than image P, the relationship of proximity is maintained
in both HD and THD. Thus, the cost of transitions introduced in THD seem-
ingly made the overall evaluation of similarity more strict and contributed to
the differentiation of a rather dense clade.

4 Concluding Remarks

In this paper, we presented a new type of distances, called transition-sensitive
distances, which count, in addition to the number of mismatches between the



Transition-Sensitive Distances 149

compared data, the cost of transitions between positionally adjacent match-
mismatch pairs, as part of the distance. By integrating the cost of transitions,
conventional distance measures can be extended to be transition-sensitive.

We introduced transition-sensitive variants of LD and HD, referred to as TLD
and THD. Compared with LD (or HD), each unit operation of TLD (or THD)
needs one additional step of computation for the cost of transitions, but the
computational order remains the same. TLD for strings of length m and n is of
the order of O(mn). 1D (or 2D) THD for strings of length n (or objects of size
m× n) is of the order of O(n) (or O(mn)). Also, one additional matrix to store
element dissimilarities is required for TLD and 2D THD, but it is possible to re-
cycle a matrix of two rows in the actual implementation since only adjacent rows
are used in the computation. We showed that while TLD and THD hold prop-
erties of the metric as well as LD and HD, they function as more strict distance
measures in similarity search applications than LD and HD, respectively.

Properties of the cost of transitions are similar to those of entropy that has
been widely used as a measure of randomness (or the amount of information)
in various applications, including encoding [18], music analysis [19], linguistic
analysis [20], and bioinformatics [21]. The more disperse the mismatches are,
the higher the cost of transitions will be. If the transition cost coefficients are
set to occupy one mismatch, the cost of transitions is highest when the matches
and a mismatches are alternated. When the ratio of mismatches is either smaller
or larger than 0.5, the chance of getting transitions is less. Unlike entropy that
is defined uniformly throughout the data space, the cost of transitions is de-
fined with two separate coefficients, one for ascends and the other for descends.
The separation of cost coefficients makes it possible to express the locational
allowance on mismatches, i.e., whether mismatches are more acceptable in the
leading or tailing part. Behaviors of transition-sensitive distances depending on
various cost coefficients remain to be elucidated in the future work.

In summary, the essence of transition-sensitive distances is that the cost of
transitions is embedded as part of a distance, rather than regarded as an orthog-
onal measure that should be independently applied. At the cost of precision as
a measure due to the dimensionality reduction, gained is computational simplic-
ity that is required for a large scale of data mining, classification and machine
learning. Transition-sensitive distances enable one to segregate data based on the
number and dispersion of mismatches in a single pass of computation, so that
they are useful for screening large datasets or information streams to retrieve
and classify those objects that are highly similar to some part of the target.
As more information accumulates and flows, more needs for transition-sensitive
distances will rise in various fields of similarity search and applications.
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