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Abstract. Many applications — such as content-based image retrieval, subspace
clustering, and feature selection — may benefit from efficient subspace similarity
search. Given a query object, the goal of subspace similarity search is to retrieve
the most similar objects from the database, where the similarity distance is de-
fined over an arbitrary subset of dimensions (or features) — that is, an arbitrary
axis-aligned projective subspace. Though much effort has been spent on simi-
larity search in fixed subspaces, relatively little attention has been given to the
problem of similarity search when the dimensions are specified at query time. In
this paper, we propose several new methods for the subspace similarity search
problem. Extensive experiments are provided showing very competitive perfor-
mance relative to state-of-the-art solutions.

1 Introduction

Similarity search is of great importance to applications in many different areas, such as
data mining, multimedia databases, information retrieval, statistics and pattern recogni-
tion. Specifically, a similarity query retrieves from the database those objects that most
closely resemble a supplied query object, based on some measure of pairwise similar-
ity (typically in the form of a distance function). Due to its importance, much effort
has been spent on the efficient support of similarity search. However, most existing ap-
proaches consider search only with respect to a fixed feature space. In this paper, we
focus on the subspace similarity search problem, in which the calculation of similarity
values is restricted to a subset of dimensions specified along with the query object.

As with similarity search on fixed spaces, subspace similarity search may also have
an impact in application areas where the feature set under consideration changes from
operation to operation. Such changes could be due to a modification of query prefer-
ences (as in content-based image retrieval), or to the determination of the local structure
at different locations within data (as in subspace clustering), or to a systematic explo-
ration of feature subspaces (as in feature selection). In content-based image retrieval,
images are often represented by feature vectors extracted based on color, shape, and
texture descriptors. In an exploration of the data set, a query involving one combination
of features (such as color) may be followed by a query on a different combination (such
as shape). In subspace clustering [1], the formation of an individual cluster is gener-
ally assessed with respect to a subset of features that most closely describe the concept
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associated with the cluster. Since verification of a cluster requires the identification of
a feature subset together with an object subset, the effectiveness of the overall clus-
tering process may depend on the efficient processing of subspace similarity queries.
Wrapper methods for feature selection [2] require an evaluation process, such as k-
nearest neighbor (k-NN) classification, for the identification of effective combinations
of features. Exploration of feature subspaces can be extremely time-consuming when
the neighborhoods are determined using exhaustive search, due to the exponential num-
ber of potential combinations involved. To accelerate the process, the efficient support
of subspace similarity search is needed.

Almost all existing similarity search indices require that the similarity measure and
associated vector space both be specified before any preprocessing occurs. Traditional
methods for fixed spaces (as surveyed in [3]) cannot be effectively applied for the sub-
space search problem: the subspaces to be searched are typically not known until query
time, but even if they were known in advance, constructing an index for every possi-
ble query subspace would be prohibitively expensive. Of all the methods for similarity
search appearing in the research literature, only very few have been specifically formu-
lated for the subspace search problem; a survey of these methods will be presented in
Sect. 2.1. In general, existing solutions for subspace similarity search suffer greatly in
terms of the computational cost.

Of the two main types of similarity queries (k-NN queries and range queries), k-NN
queries are often more important, due to the difficulty faced by the user in deciding
range thresholds. This is especially the case for the search in subspaces, since the range
values of interest will typically depend on the number of features associated with the
subspace. In this paper, we focus only on k-NN queries.

We now formally define the subspace search problem for k-NN queries. Given an
object domain U , let S ⊆ U denote a set of database objects represented as feature
vectors in R

D . The set of features will be denoted simply as F = {1, 2, · · · , D}, with
feature i ∈ F corresponding to the i-th coordinate in the vector representation. Let
d : RD ×R

D → R be a distance function defined for the vector space. Given an object
vector u = (u1, . . . , u|F |) ∈ S, its projection with respect to a feature subset F ′ ⊆ F
is the vector u′ = (u′

1, . . . , u
′
|F |) such that for all i ∈ F , u′

i = ui whenever i ∈ F ′,
and u′

i = 0 otherwise. The feature set F ′ thus indicates a unique axis-aligned projective
subspace to which distance calculations can be restricted.

Definition 1 (Subspace k-NN Query). Given a query object q ∈ U , a query subspace
F ′ ⊆ F , and a query neighborhood size k, a subspace k-NN query 〈q, F ′, k〉 returns
the k objects of S most similar to q, for the distance function dF ′(q, u) � d(q′, u′),
where q′ and u′ are the projections of q and u with respect to F ′.

As an example of a subspace distance function, for any given p ∈ [1,∞), the Lp

distance between two objects q, u ∈ U restricted to the axis-aligned projective subspace
F ′ is defined as

dF ′(q, u) =
(∑

i∈F ′ |qi − ui|p
) 1

p

.

In this paper, we present algorithms for subspace similarity search following the
multi-step search strategy [4,5], utilizing 1-dimensional distances as lower bounds to
efficiently prune the search space. The main contributions of this paper are:
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– algorithms specifically tailored for subspace similarity search, both exact and ap-
proximate;

– a guide to the practical choice of an important algorithm parameter, based on a
theoretical analysis of sample properties;

– an experimental evaluation across data sets of a variety of types and sizes, showing
the efficiency and competitiveness of our algorithms.

The remainder of this paper is organized as follows. Sect. 2 discusses related work
on subspace search and multi-step search algorithms. Our proposed algorithms are pre-
sented in Sect. 3. In Sect. 4, through experiments on several real-world datasets, we
contrast the performance of our methods with those of existing methods. The discus-
sion is concluded in Sect. 5.

2 Related Work
2.1 Subspace Similarity Search

Relatively few similarity search methods exist that are specifically designed for sub-
space search. In [6], the Partial VA-file (PVA) was proposed, which adapts the vector
approximation file (VA-file) [7] to support subspace queries. The VA-file, designed for
fixed-space similarity search, stores a compressed approximation of the data as a single
file; at query time, the compressed approximation is scanned in its entirety, and uses
the information for pruning the search within the original dataset. PVA, on the other
hand, stores an approximation of data on each dimension separately, and processes the
search using only those 1-dimensional VA-files that correspond to dimensions involved
in the query. In [8], the Dimension-Merge Index (DMI) was developed, which com-
bines multiple 1-dimensional index structures to answer subspace queries. DMI builds
an index for each dimension separately (of any desired type), and utilizes those indexes
with respect to the query dimensions to perform the search. The final query result is ob-
tained by aggregation across neighborhoods associated with each of the query dimen-
sions. In [9], the Projected R-Tree (PT) was proposed as a redefinition of the classical
search structure R-tree [10] for subspace similarity search. Instead of integrating results
of queries on 1-dimensional indices, PT utilizes a single index built on the full feature
space (an R-tree) to answer queries with respect to subspaces. A best-first search heuris-
tic is employed, subject to the restriction that only the query dimensions are considered
for distance computations. PVA, DMI and PT all produce exact query results; however,
as we shall see in Sect. 4, all tend to suffer greatly in terms of their computational cost.

Another approach to the subspace search problem was proposed in [11], for range
queries. Here, the search space is reduced through the application of the triangle in-
equality on several pivot points. Since k-NN queries are not directly supported by this
algorithm, for the experimental comparison in Sect. 4, we restrict our attention to PVA,
DMI and PT.

2.2 Multi-step Search Algorithms

Our proposed solutions for the subspace search problem make use of multi-step search
algorithms. Multi-step search was originally proposed for the adaptive similarity search
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problem, which aims to find the most similar objects to a query object from the database
with respect to an adaptive similarity measure — one that can be determined by the
user at query time. Multi-step search computes a query result using a fixed ‘lower-
bounding’ distance function that is adapted to answer the same query with respect to a
user-supplied ‘target’ distance function. The function dl is a lower-bounding distance
for the target distance dt if dl(u, v) ≤ dt(u, v) for any two objects u, v drawn from a
domain for which both dl and dt are defined.

The first multi-step k-NN search algorithm was proposed by Korn et al. [12]. Later,
Seidl and Kriegel [4] proposed a more efficient multi-step algorithm. The algorithm
scans the neighborhood list of the query object with respect to dl to retrieve candidates
for the query result, and stops when the candidate k-NN distance (target distance) is
no larger than the lower-bounding distance currently maintained by the scan. The algo-
rithm is optimal in that it produces the minimum number of candidates needed in order
to guarantee a correct query result, given only a list of candidates ordered according
to dl. However, despite this performance guarantee, the algorithm may still be expen-
sive in practice. Using the Seidl-Kriegel algorithm as a starting point, Houle et al. [5]
designed an approximate multi-step algorithm, MAET+, with an early termination con-
dition. MAET+ utilizes tests of a measure of the intrinsic dimensionality of the data, the
generalized expansion dimension (GED) [13,5], to guide early termination decisions. In
the remainder of this paper, we will refer to the Seidl-Kriegel algorithm as SK.

3 Algorithm

We now present our solutions to the subspace similarity search problem. Let us first
introduce some additional notation. For any object q ∈ U and any subspace F ′ ⊆ F , let
NF ′(q, k) denote the set of k-nearest neighbors of q within database S with respect to
subspace distance dF ′ . Ties are broken arbitrarily but consistently. Let δF ′(q, k) denote
the k-th smallest subspace distance (with respect to F ′) from q to the objects in S.

The strategy underlying our methods involves the application of multi-step search,
using a lower-bounding distance function to filter a candidate set from the database, and
using the target distance function to refine the candidate set to obtain the final query re-
sult. The main concern here is the determination at query time of a lower-bounding
distance function suitable for the indicated subspace. Due to the exponential number
of possible subspaces, it is impossible to explicitly preprocess the data for every sub-
space. Instead, as potential lower-bounding distance functions, we consider only the
1-dimensional distance d{i} associated with each feature i ∈ F . Assuming that the
lower-bounding property holds between d{i} and subspace distance dF ′ for all i ∈ F ′

(which is the case for many practical distance measures, including the Euclidean dis-
tance), there are |F ′| lower-bounding distance functions that can be used in the search.
However, practical performance may vary considerably according to the choice of d{i}.
In order to minimize the risk of choosing a poorly-performing lower-bounding dis-
tance, we select the distance function corresponding to the most discriminative query
dimension. This is done by ranking the dimensions based on data variance, a simple yet
effective ranking technique. Two ranking strategies are proposed in this paper: Single
Ranking (SR) and Multiple Ranking (MR).
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Algorithm SK SR (query q, subspace F ′, target neighborhood size k)

// Preprocessing step: obtain a single ranking of all dimensions.
1: for each dimension i ∈ F do
2: µi ← 1

|S|
∑

u∈S ui.

3: Vari ← 1
|S|

∑
u∈S (ui − µi)

2.
4: end for
5: Rank all dimensions i ∈ F in decreasing order of Vari. Let �(F ) denote this ranking.

// Query processing step: perform a multi-step search.
6: Among all the dimensions in subspace F ′, select the dimension i∗ with the highest ranking

according to �(F ).
7: Call SK(q, k) to produce the query result, with d{i∗} as the lower-bounding distance func-

tion, and dF ′ as the target distance function.

Fig. 1. The description of algorithm SK SR

3.1 Single Ranking Strategy

The first of our proposed algorithms — SK SR, described in Fig. 1 — employs a single
overall ranking of dimensions based on variance. There are two main phases: a prepro-
cessing phase and a query processing phase. In the preprocessing phase, the algorithm
generates a single ranking of the dimensions, in terms of the variances of the data val-
ues computed separately for each of the dimensional coordinates — the larger the data
variance for a given dimension, the higher the ranking of that dimension. In the query
processing phase, as the lower-bounding distance function used in multi-step search,
the algorithm chooses the dimension of highest rank from among the query dimen-
sions. When Algorithm SK is used for performing the multi-step search (in Line 7), the
query result is guaranteed to be correct. As an alternative, we may also utilize the ap-
proximate multi-step algorithm MAET+; this variant of subspace similarity search will
be referred to as MAET+ SR. Specifically, we make a call to MAET+(q, k, t), where
t > 0 is a parameter governing an early termination criterion. Larger choices of t can
be expected to yield query results with higher accuracies at the possible expense of
computational cost. In [5], a sampling method was designed for choosing t so that a
desired proportion of potential queries can be correctly answered with high probability.
For more details, we refer the reader to [5].

Note that like DMI, our search strategy requires the construction of a separate index
for each of the dimensions. However, unlike DMI, our algorithms access only a single
index per query, namely the most discriminative query dimension in terms of variance.

3.2 Multiple Ranking Strategy

The single ranking strategy has the advantage of being straightforward to apply. How-
ever, its effectiveness may be limited whenever the variance of a particular dimension
differs greatly when restricted to the vicinity of differing query objects. For this rea-
son, we have also designed a multiple ranking strategy that takes the query object into
account when generating a ranking of dimensions.

Our multiple ranking strategy for subspace similarity search, SK MR, is described
in Fig. 2. In the preprocessing step, the algorithm first samples m reference points from
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Algorithm SK MR (query q, subspace F ′, target neighborhood size k, sample size m, variance
neighborhood size K)

// Preprocessing step: create multiple rankings of dimensions.
1: Create a reference set R ⊆ S by sampling m points from the database, uniformly at random

and without replacement.
2: for each reference point v ∈ R do
3: for each dimension i ∈ F do
4: µv,i ← 1

|K|
∑

u∈N{i}(v,K)
ui.

5: Varv,i ← 1
|K|

∑
u∈N{i}(v,K)

(ui − µv,i)
2.

6: end for
7: Rank all dimensions i ∈ F in decreasing order of Varv,i. Let �v(F ) denote this ranking.
8: end for

// Query processing step: perform a multi-step search.
9: Linearly scan R to find v∗, the nearest reference point to q with respect to dF ′ .

10: Select the query dimension i∗ ∈ F ′ with the highest ranking according to �v∗(F ).
11: Call SK(q, k) to produce the query result, with d{i∗} being the lower-bounding distance

function and dF ′ being the target distance function.

Fig. 2. The description of algorithm SK MR

the database. Then, with respect to each reference point v, the algorithm determines
a ranking (from highest to lowest) of all dimensions based on the variance of the co-
ordinate values for the dimension in question, this time computed over a neighbor set
of v (instead of over the entire dataset S). In the query processing step, the algorithm
first finds the nearest reference point v∗ of q in the query subspace (using sequential
search within the reference set), and then uses the ranking of dimensions precomputed
for v∗ in the processing of query q. Again, we may replace SK with MAET+ to derive
an approximation variant, MAET+ MR.

Two parameter choices must be considered when applying the multiple ranking strat-
egy: the number of reference points m, and the size K of the neighborhoods within
which data variance is computed. As will be shown in Sect. 4, the choice of K does
not greatly affect the performance, provided that it is small relative to the dataset size
|S|. On the other hand, the number of reference points m must be chosen with more
care. If m is too large, the identification of the most discriminative query dimension
may become unaffordable. If m is too small, the dimension i∗ selected for multi-step
search may not be very discriminative for the query. We next discuss how to choose a
reasonable value for m.

Determining the Reference Set Size. For the multiple ranking strategy to be effec-
tive, for any given query point q, its nearest reference point v∗ should be among the
nearest neighbors of q within S (all with respect to the query subspace). Otherwise, the
ranking of dimensions based at v∗ may fail to approximate the ranking based at q. For-
tunately, the following technical lemma shows that with even a relatively small number
of reference points, v∗ can lie in the local neighborhood of q with high probability.

Lemma 1 (Houle et al. [5]). Let A be a set of positive integers, and let A′ ⊆ A be
a subset sampled uniformly at random without replacement. Given a threshold τ , let a
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and a′ refer to the number of elements in A and A′, respectively, that are no greater
than τ . Take η and η′ to refer to the proportion of those elements within A and A′,
respectively. For any real number φ ≥ 0, we have Pr[|η − η′| ≥ φ] ≤ 2e−2φ2|A′|.

Proof. Since A′ is generated by uniform selection from A, random variable a′ follows
the hypergeometric distribution with expectation E[a′] = a|A′|/|A|. In [14], Chvátal
showed that random variable a′ satisfies both Pr[E[a′] ≥ a′ + φ|A′|] ≤ e−2φ2|A′| and
Pr[E[a′] ≤ a′ − φ|A′|] ≤ e−2φ2|A′|. Both inequalities can be combined to yield the
following error bound:

Pr[|η − η′| ≥ φ] = Pr

[∣∣∣∣
a

|A| −
a′

|A′|
∣∣∣∣ ≥ φ

]
= Pr

[∣∣∣∣
E[a′]
|A′| − a′

|A′|
∣∣∣∣ ≥ φ

]

= Pr[|E[a′]− a′| ≥ φ|A′|] ≤ 2e−2φ2|A′|. 
�

To apply this lemma to the analysis of the choice of reference set size, let A =
{1, 2, 3, . . . , |S|} represent the ranks of all the objects in S with respect to a query
object q, and let A′ ⊆ A store the ranks of all the reference points (|A′| = m). Also, let
τ be the rank of the reference point v∗, which implies that η′ = 1/|A′|. A small value
of η would therefore indicate that v∗ is in the local neighborhood of q, as desired. From
Lemma 1, we know that the probability of η deviating from η′ = 1/|A′| by more than
φ ≥ 0 is at most 2e−2φ2|A′|. That is, the probability of η being significantly larger than
1/|A′| vanishes quickly as the sample size |A′| grows. In practice, even small sample
sizes allow us to obtain reasonably small values of η with high probability. For example,
if |A′| = 5, 000 and φ = 0.02, the lemma indicates that the probability of η ≥ 0.0202
is at most 0.037, or equivalently, the probability of η < 0.0202 is at least 0.963.

4 Experimental Results

In this section, we present the results of our experimentation. We compared our algo-
rithms with the state-of-the-art approaches PVA, PT and DMI.

4.1 Experimental Framework

Data Sets. Five publicly-available data sets were considered for the experimentation,
so as to compare across a variety of set sizes, dimensions and data types.

– The Amsterdam Library of Object Images (ALOI) [15] consists of 110, 250 images
of 1000 small objects taken from different viewpoints and illumination directions.
The images are represented by 641-dimensional feature vectors based on color and
texture histograms (for a detailed description of the image features, see [16]).

– The MNIST data set [17] consists of 70, 000 images of handwritten digits from 500
different writers, with each image represented by 784 gray-scale texture values.

– The Cortina data set [18] consists of 1, 088, 864 images gathered from the World
Wide Web. Each image is represented by a 74-dimensional feature vector based on
homogeneous texture, dominant color and edge histograms.
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– The Forest Cover Type set (FCT) [19] consists of 581, 012 data points, with each
representing a 30× 30 square meter area of forest. Each point is represented by 54
attributes, associated with elevation, aspect, slope and other geographical charac-
teristics.

– The ANN SIFT data set [20] consists of 107 SIFT descriptors [21] of 128 dimen-
sions. The SIFT descriptors were extracted from approximately106 general images.

Methodology. For each test, 1000 queries were generated at random, each consisting
of an object q selected from the database, and a query subspace F ′. Unless stated other-
wise, the number of query dimensions was |F ′| = 8, and the target neighborhood size
was k = 10. Two quantities were measured for the evaluation: query result accuracy
and execution time. The results were reported as averages over the 1000 queries per-
formed. The execution time is shown as a proportion of the time needed for a sequential
search of the entire dataset. For each query, the accuracy of its k-NN result is defined
as the proportion of the result falling within the true k-NN (subspace) distance to q:

| {v ∈ Y | dF ′(q, v) ≤ δF ′(q, k)} |
k

,

where Y denotes the k-NN query result of q in subspace F ′ (|Y | = k). The Euclidean
distance was used for all experiments.

4.2 Effects of Varying m and K on the Multiple Ranking Strategy

For the first set of experiments, for all of the datasets under consideration, we tested
the effects on the multiple ranking strategy due to variation of the sample size m and
variance neighborhood size K . When varying the sample size m, the variance neigh-
borhood size K was chosen to be approximately 1% of the dataset size: specifically,
the choices were K = 103 for ALOI and MNIST, K = 104 for Cortina and FCT, and
K = 105 for ANN SIFT. When varying K , the sample size m was fixed at 500 for all
datasets tested. Since we observed similar trends in the results for all datasets, due to
space limitations, in this version of the paper, we show the results of varying m and K
only for the ALOI dataset.

The results for varying m are shown in Fig. 3(a). Here, we see that m = 500 is
a sufficiently-large sample size for multiple ranking strategy to be effective, which is
better than indicated by the theoretical analysis. From Lemma 1, we know that if m =
500, then for any dataset with any number of data points, the probability of η < 0.062 is
at least 0.945 (φ = 0.06). Recall that the effectiveness of the multiple ranking strategy
is expected to increase as η diminishes. Our experimental findings show that the value
of η in practice is typically much smaller than what the analysis indicates. In order to
reduce the computational cost of the experimentation, we therefore set m = 500 for all
remaining experiments.

Fig. 3(b) shows the results of varying K . As expected, the variance neighborhood
size K does not greatly affect the performance, provided that it is set to reasonably
small values relative to the dataset size. For all remaining experiments, we set K = 103

for ALOI and MNIST, K = 104 for Cortina and FCT, and K = 105 for ANN SIFT.
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Fig. 3. The effects of varying m and K for the multiple ranking strategy, with dataset ALOI
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4.3 Comparison of Single Ranking and Multiple Ranking

We next compared the performance of the single ranking and multiple ranking strate-
gies; the results are shown in Fig. 4. Unsurprisingly, multiple ranking outperformed sin-
gle ranking for all datasets tested. Due to space limitations, in all experiments involving
competing methods, we show a comparison of results only for multiple ranking.

4.4 Comparison with Other Methods

We conducted two sets of experiments for the comparison of our algorithms with com-
peting methods, varying each of two parameters in turn: the number of subspace dimen-
sions |F ′|, and the target neighborhood size k. Specifically, we varied |F ′| from 2 to 32
while fixing k = 10, and varied k from 5 to 40 while fixing |F ′| = 8.

The results of varying |F ′| are shown in Fig. 6. For all datasets and all choices of |F ′|,
our proposed methods generally outperform their competitors. Among all the methods
tested, PVA is the most expensive, perhaps due to its use of sequential scan.

PT utilizes an R-tree built on the full-dimensional space to answer queries in sub-
spaces; consequently, one would expect it to be less effective for subspaces in which
dF ′ differs greatly from dF . This can explain the improvement in the performance of
PT as the number of subspace dimensions increases. Nevertheless, due to the limits on
the performance of R-trees for spaces of even moderate dimensionality, PT will still
become prohibitively expensive as the number of subspace dimensions grows.

DMI processes queries by aggregating partial results across neighborhoods with re-
spect to every query dimension. The aggregation may become prohibitively expensive
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(d) FCT
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Fig. 6. The results of varying |F ′| on all tested datasets, with k = 10. The results are exact, except
for those of MAET+ MR. The average accuracies of MAET+ MR with t = 2 are approximately
92%, 90%, 88%, 97% and 90% for ALOI, MNIST, Cortina, FCT and ANN SIFT, respectively.

as the number of subspace dimensions increases. In contrast, our algorithms avoid ex-
pensive aggregation by restricting the processing to a single query dimension.

Relative to SK MR, we observe that for high subspace dimensionality, MAET+ MR
can achieve a significant improvement in running time while still achieving a high level
of accuracy. We note that as the value of |F ′| increases, the computational cost of all
tested methods must eventually tend to that of sequential search, as one would expect
due to the curse of dimensionality.

Fig. 7 shows the results of varying k. Again, our proposed methods generally outper-
form their competitors, with MAET+ MR achieving a slight improvement in running
time over SK MR, at the cost of a slight loss of accuracy. We also observe that the
behaviors of all tested methods are quite stable with respect to k.

Finally, Fig. 5 shows the preprocessing costs of all methods considered in our exper-
imentation. While the preprocessing costs of our methods is substantial, the costs are
justifiable in light of their improved performance at query time.
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(b) MNIST
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(c) Cortina
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(d) FCT

10-2

10-1

100

101

5 10 20 40

ru
nn

in
g 

tim
e 

(r
el

at
iv

e 
to

 s
eq

)

target neighborhood size k

PVA
PT

DMI
SK_MR

MAET+_MR (t=2)

(e) ANN SIFT

Fig. 7. The results of varying k on all tested datasets, with |F ′| = 8. The results are exact, except
for those of MAET+ MR. The average accuracies of MAET+ MR with t = 2 are approximately
88%, 96%, 89%, 98% and 92% for ALOI, MNIST, Cortina, FCT and ANN SIFT, respectively.

5 Conclusion

We have presented new solutions for the subspace similarity search problem based on
multi-step search, utilizing 1-dimensional lower-bounding distances for the efficient
pruning of the search space. Our extensive experimental study showed that our algo-
rithms are able to outperform their state-of-the-art competitors (PVA, PT and DMI)
for a relatively wide range of subspace dimensions. We have also shown how practical
choices of algorithm parameters can be guided by an analysis of sampling properties.

One possible direction for future research may include the investigation of multi-
dimensional lower-bounding distances for pruning in multi-step subspace search. Al-
though multi-dimensional distances could provide a tighter lower bound on the target
distance, they cover fewer combinations of query dimensions, and thus may be only of
limited practicality.
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