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Preface

This volume contains the papers presented at the seventh International Confer-
ence on Similarity Search and Applications (SISAP 2014), held at Los Cabos,
Mexico, during October 29–31, 2014.

The International Conference on Similarity Search and Applications (SISAP)
is an annual forum for researchers and application developers in the area of sim-
ilarity data management. It focuses on technological problems shared by many
application domains, such as data mining, information retrieval, computer vi-
sion, pattern recognition, computational biology, geography, biometrics, machine
learning, and many others that need similarity searching as a necessary support-
ing service.

Traditionally, SISAP conferences have put emphasis on distance-based search-
ing, but in general the conference concerns both the effectiveness and efficiency
aspects of any similarity search approach, welcoming contributions that range
from theoretical aspects to innovative developments for which similarity search
plays the central role.

The call for papers welcomed research papers (full or short papers) present-
ing previously unpublished research contributions, as well as case studies and
application papers (short papers) describing existing applications of similarity
search in real scenarios.

We received 45 complete submissions. The Program Committee (PC) com-
prised 53 researchers from 18 different countries. Each submission was assigned
to at least three PC members. Reviews were discussed by the chairs and PC
members when the reviews diverged and no consensus had been reached. The
final selection of papers was made by the PC chairs based on the reviews received
for each submission. Finally, the conference program includes 21 full papers and
6 short papers, which results in a 46.66% acceptance ratio.

The conference program and the proceedings are organized into five parts.
The first part comprises papers proposing improvements to different methods
and techniques for similarity search. A second part is devoted to papers dealing
with efficient indexing solutions for similarity search and their application in real
settings. The third part focuses on particular metrics and their effectiveness.
The fourth part of the conference program includes papers dealing with new
scenarios or presenting new approaches to similarity search. Finally, the last
part comprises those papers devoted to solutions for similarity search in specific
application domains, such as in streaming time series, image and audio retrieval
and analysis, systems with CPU- and GPU-based processing, astroinformatics,
computational neuroscience, and in particular types of recommender systems
and search engines.

The conference program also includes two invited talks from outstanding
scholars in the field. The first one, “Scalable Retrieval and Analysis of Simu-
lation and Observation Data Sets” by Prof. K. Selçuk Candan, introduces and
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presents solutions to computational challenges that arise from the need to pro-
cess, index, search, and analyze, in a scalable manner, large volumes of temporal
data resulting from data-intensive simulations. The second one, “Visual Analyt-
ics for Interactive Subspace Similarity Search” by Prof. Daniel Keim, presents
novel techniques that combine automated and visual methods to improve sub-
space search in high-dimensional data.

As in previous editions, the proceedings are published by Springer-Verlag in
the Lecture Notes in Computer Science series. A selection of the best papers
presented at the conference were recommended for publication in the journal
Information Systems. The selection of best papers was made by the PC, based on
the reviews received by each paper, and on the discussion during the conference.

SISAP conferences are organized by the SISAP initiative (www. sisap.org),
which aims to become a forum to exchange real-world, challenging, and innova-
tive examples of applications, new indexing techniques, common test-beds and
benchmarks, source code, and up-to-date literature through its web page, serving
the similarity search community.

We would like to thank all the authors who submitted papers to SISAP 2014.
We would also like to thank all members of the PC and the external reviewers,
for the enormous amount of work they have done. We would like to acknowledge
the generous collaboration and financial support from Centro de Investigación
Cient́ıfica y de Educación Superior de Ensenada, B.C. (CICESE); the host in-
stitution, and from the Consejo Nacional de Ciencia y Tecnoloǵıa (CONACyT);
the Mexican public research agency. We want to express our gratitude to the PC
members for their effort and contribution to the conference. All the submission,
reviewing, and proceedings generation processes were carried out through the
EasyChair platform.

October 2014 Agma Juci Machado Traina
Caetano Traina Jr.

Robson Leonardo Ferreira Cordeiro
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Scalable Retrieval and Analysis of Simulation

and Observation Data Sets�

K. Selçuk Candan

Professor of Computer Science and Engineering

Arizona State University

Abstract. Data- and model-driven computer simulations for under- stand-
ing spatio-temporal dynamics of emerging phenomena are increasingly
critical in various application domains, from predicting geo-temporal
evolution of epidemics to helping reduce energy footprints of buildings
leading to more sustainable building systems and architectural designs.
These simulations track 10s or 100s of inter-dependent parameters, span-
ning multiple information layers and spatio-temporal frames, affected
by complex dynamic processes operating at different resolutions. Con-
sequently, the key characteristics of data sets and models relevant to
these data-intensive simulations often include the following: (a) volu-
minous, (b) multi-variate, (c) multi-resolution, (d) spatio-temporal, and
(e) inter-dependent. While very powerful and highly modular and flexi-
ble simulation software exists, because of the volume and complexity of
the simulation data, the varying spatial and temporal scales at which the
key transmission processes operate and relevant observations are made,
today experts lack the means to adequately and systematically interpret
observations, understand the underlying processes, and re-use of existing
simulation results in new settings. In this talk, I will introduce computa-
tional challenges that arise from the need to process, index, search, and
analyze, in a scalable manner, large volumes of temporal data resulting
from data-intensive simulations and present some solutions.

Keywords: Time series, simulations, feature extration, analysis,
indexing

* This work is partially funded by NSF grants #1339835 (“E-SDMS: Energy Sim-
ulation Data Management System Software”), #1318788 (“Data Management for
Real-Time Data Driven Epidemic Spread Simulations”), #116394 (“RanKloud: Data
Partitioning and Resource Allocation Strategies for Scalable Multimedia and Social
Media Analysis”), #1016921 (“One Size Does Not Fit All: Empowering the User with
User-Driven Integration”), and #1430144 (“Fraud Detection via Visual Analytics: An
Infrastructure to Support Complex Financial Patterns (CFP)-based Real-Time Ser-
vices Delivery”). This work is also supported in part by the NSF I/UCRC Center
for Embedded Systems established through the NSF grant #0856090 in partnership
with Johnson Controls Inc.
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Visual Analytics for Interactive Subspace

Similarity Search

Daniel Keim

Head of the Information Visualization and Data Analysis Research Group,

University of Konstanz, Germany

Abstract. In most similarity search applications, the data under con-
sideration resides in high-dimensional data spaces, which often consist of
combined features measuring different properties. In order to determine
useful similarity measures, appropriate feature combinations (subspaces)
of the data have to be taken into consideration, since they may show com-
plementary, conjoint, or contradicting relations between the data items
[3]. Which subspace is best in a given application context is difficult to
determine by fully automatic methods, and therefore it is important to
include the human in the process and combine the creativity and general
knowledge of the human with the fast searching and analysis capabili-
ties of the computer. Visual Analytics – the combination of automated
and visual methods – can help to interactively determine the most rele-
vant subspaces and define appropriate subspace similarity measures [4].
Subspace search algorithms guided by interestingness measures can be
used to compute candidate sets of subspaces, which are then visualized
to enable the user to compare and relate subspaces with respect to the
involved dimensions and clusters of objects [1]. The approach helps the
understanding of high-dimensional data from different perspectives and
allows a flexible definition of subspace similarity measures [2].

Keywords: Visual Analytics, Interactive Similarity Search, Subspace
Similarity, Interestingness Measures
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Efficient Algorithms for Similarity Search
in Axis-Aligned Subspaces

Michael E. Houle1, Xiguo Ma2, Vincent Oria2, and Jichao Sun2

1 National Institute of Informatics, Tokyo 101-8430, Japan
meh@nii.ac.jp

2 New Jersey Institute of Technology, Newark NJ 07102, USA
{xm23,oria,js87}@njit.edu

Abstract. Many applications — such as content-based image retrieval, subspace
clustering, and feature selection — may benefit from efficient subspace similarity
search. Given a query object, the goal of subspace similarity search is to retrieve
the most similar objects from the database, where the similarity distance is de-
fined over an arbitrary subset of dimensions (or features) — that is, an arbitrary
axis-aligned projective subspace. Though much effort has been spent on simi-
larity search in fixed subspaces, relatively little attention has been given to the
problem of similarity search when the dimensions are specified at query time. In
this paper, we propose several new methods for the subspace similarity search
problem. Extensive experiments are provided showing very competitive perfor-
mance relative to state-of-the-art solutions.

1 Introduction

Similarity search is of great importance to applications in many different areas, such as
data mining, multimedia databases, information retrieval, statistics and pattern recogni-
tion. Specifically, a similarity query retrieves from the database those objects that most
closely resemble a supplied query object, based on some measure of pairwise similar-
ity (typically in the form of a distance function). Due to its importance, much effort
has been spent on the efficient support of similarity search. However, most existing ap-
proaches consider search only with respect to a fixed feature space. In this paper, we
focus on the subspace similarity search problem, in which the calculation of similarity
values is restricted to a subset of dimensions specified along with the query object.

As with similarity search on fixed spaces, subspace similarity search may also have
an impact in application areas where the feature set under consideration changes from
operation to operation. Such changes could be due to a modification of query prefer-
ences (as in content-based image retrieval), or to the determination of the local structure
at different locations within data (as in subspace clustering), or to a systematic explo-
ration of feature subspaces (as in feature selection). In content-based image retrieval,
images are often represented by feature vectors extracted based on color, shape, and
texture descriptors. In an exploration of the data set, a query involving one combination
of features (such as color) may be followed by a query on a different combination (such
as shape). In subspace clustering [1], the formation of an individual cluster is gener-
ally assessed with respect to a subset of features that most closely describe the concept

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 1–12, 2014.
DOI: 10.1007/978-3-319-11988-5_1 c© Springer International Publishing Switzerland 2014
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associated with the cluster. Since verification of a cluster requires the identification of
a feature subset together with an object subset, the effectiveness of the overall clus-
tering process may depend on the efficient processing of subspace similarity queries.
Wrapper methods for feature selection [2] require an evaluation process, such as k-
nearest neighbor (k-NN) classification, for the identification of effective combinations
of features. Exploration of feature subspaces can be extremely time-consuming when
the neighborhoods are determined using exhaustive search, due to the exponential num-
ber of potential combinations involved. To accelerate the process, the efficient support
of subspace similarity search is needed.

Almost all existing similarity search indices require that the similarity measure and
associated vector space both be specified before any preprocessing occurs. Traditional
methods for fixed spaces (as surveyed in [3]) cannot be effectively applied for the sub-
space search problem: the subspaces to be searched are typically not known until query
time, but even if they were known in advance, constructing an index for every possi-
ble query subspace would be prohibitively expensive. Of all the methods for similarity
search appearing in the research literature, only very few have been specifically formu-
lated for the subspace search problem; a survey of these methods will be presented in
Sect. 2.1. In general, existing solutions for subspace similarity search suffer greatly in
terms of the computational cost.

Of the two main types of similarity queries (k-NN queries and range queries), k-NN
queries are often more important, due to the difficulty faced by the user in deciding
range thresholds. This is especially the case for the search in subspaces, since the range
values of interest will typically depend on the number of features associated with the
subspace. In this paper, we focus only on k-NN queries.

We now formally define the subspace search problem for k-NN queries. Given an
object domain U , let S ⊆ U denote a set of database objects represented as feature
vectors in R

D . The set of features will be denoted simply as F = {1, 2, · · · , D}, with
feature i ∈ F corresponding to the i-th coordinate in the vector representation. Let
d : RD ×R

D → R be a distance function defined for the vector space. Given an object
vector u = (u1, . . . , u|F |) ∈ S, its projection with respect to a feature subset F ′ ⊆ F
is the vector u′ = (u′

1, . . . , u
′
|F |) such that for all i ∈ F , u′

i = ui whenever i ∈ F ′,
and u′

i = 0 otherwise. The feature set F ′ thus indicates a unique axis-aligned projective
subspace to which distance calculations can be restricted.

Definition 1 (Subspace k-NN Query). Given a query object q ∈ U , a query subspace
F ′ ⊆ F , and a query neighborhood size k, a subspace k-NN query 〈q, F ′, k〉 returns
the k objects of S most similar to q, for the distance function dF ′(q, u) � d(q′, u′),
where q′ and u′ are the projections of q and u with respect to F ′.

As an example of a subspace distance function, for any given p ∈ [1,∞), the Lp

distance between two objects q, u ∈ U restricted to the axis-aligned projective subspace
F ′ is defined as

dF ′(q, u) =
(∑

i∈F ′ |qi − ui|p
) 1

p

.

In this paper, we present algorithms for subspace similarity search following the
multi-step search strategy [4,5], utilizing 1-dimensional distances as lower bounds to
efficiently prune the search space. The main contributions of this paper are:
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– algorithms specifically tailored for subspace similarity search, both exact and ap-
proximate;

– a guide to the practical choice of an important algorithm parameter, based on a
theoretical analysis of sample properties;

– an experimental evaluation across data sets of a variety of types and sizes, showing
the efficiency and competitiveness of our algorithms.

The remainder of this paper is organized as follows. Sect. 2 discusses related work
on subspace search and multi-step search algorithms. Our proposed algorithms are pre-
sented in Sect. 3. In Sect. 4, through experiments on several real-world datasets, we
contrast the performance of our methods with those of existing methods. The discus-
sion is concluded in Sect. 5.

2 Related Work
2.1 Subspace Similarity Search

Relatively few similarity search methods exist that are specifically designed for sub-
space search. In [6], the Partial VA-file (PVA) was proposed, which adapts the vector
approximation file (VA-file) [7] to support subspace queries. The VA-file, designed for
fixed-space similarity search, stores a compressed approximation of the data as a single
file; at query time, the compressed approximation is scanned in its entirety, and uses
the information for pruning the search within the original dataset. PVA, on the other
hand, stores an approximation of data on each dimension separately, and processes the
search using only those 1-dimensional VA-files that correspond to dimensions involved
in the query. In [8], the Dimension-Merge Index (DMI) was developed, which com-
bines multiple 1-dimensional index structures to answer subspace queries. DMI builds
an index for each dimension separately (of any desired type), and utilizes those indexes
with respect to the query dimensions to perform the search. The final query result is ob-
tained by aggregation across neighborhoods associated with each of the query dimen-
sions. In [9], the Projected R-Tree (PT) was proposed as a redefinition of the classical
search structure R-tree [10] for subspace similarity search. Instead of integrating results
of queries on 1-dimensional indices, PT utilizes a single index built on the full feature
space (an R-tree) to answer queries with respect to subspaces. A best-first search heuris-
tic is employed, subject to the restriction that only the query dimensions are considered
for distance computations. PVA, DMI and PT all produce exact query results; however,
as we shall see in Sect. 4, all tend to suffer greatly in terms of their computational cost.

Another approach to the subspace search problem was proposed in [11], for range
queries. Here, the search space is reduced through the application of the triangle in-
equality on several pivot points. Since k-NN queries are not directly supported by this
algorithm, for the experimental comparison in Sect. 4, we restrict our attention to PVA,
DMI and PT.

2.2 Multi-step Search Algorithms

Our proposed solutions for the subspace search problem make use of multi-step search
algorithms. Multi-step search was originally proposed for the adaptive similarity search
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problem, which aims to find the most similar objects to a query object from the database
with respect to an adaptive similarity measure — one that can be determined by the
user at query time. Multi-step search computes a query result using a fixed ‘lower-
bounding’ distance function that is adapted to answer the same query with respect to a
user-supplied ‘target’ distance function. The function dl is a lower-bounding distance
for the target distance dt if dl(u, v) ≤ dt(u, v) for any two objects u, v drawn from a
domain for which both dl and dt are defined.

The first multi-step k-NN search algorithm was proposed by Korn et al. [12]. Later,
Seidl and Kriegel [4] proposed a more efficient multi-step algorithm. The algorithm
scans the neighborhood list of the query object with respect to dl to retrieve candidates
for the query result, and stops when the candidate k-NN distance (target distance) is
no larger than the lower-bounding distance currently maintained by the scan. The algo-
rithm is optimal in that it produces the minimum number of candidates needed in order
to guarantee a correct query result, given only a list of candidates ordered according
to dl. However, despite this performance guarantee, the algorithm may still be expen-
sive in practice. Using the Seidl-Kriegel algorithm as a starting point, Houle et al. [5]
designed an approximate multi-step algorithm, MAET+, with an early termination con-
dition. MAET+ utilizes tests of a measure of the intrinsic dimensionality of the data, the
generalized expansion dimension (GED) [13,5], to guide early termination decisions. In
the remainder of this paper, we will refer to the Seidl-Kriegel algorithm as SK.

3 Algorithm

We now present our solutions to the subspace similarity search problem. Let us first
introduce some additional notation. For any object q ∈ U and any subspace F ′ ⊆ F , let
NF ′(q, k) denote the set of k-nearest neighbors of q within database S with respect to
subspace distance dF ′ . Ties are broken arbitrarily but consistently. Let δF ′(q, k) denote
the k-th smallest subspace distance (with respect to F ′) from q to the objects in S.

The strategy underlying our methods involves the application of multi-step search,
using a lower-bounding distance function to filter a candidate set from the database, and
using the target distance function to refine the candidate set to obtain the final query re-
sult. The main concern here is the determination at query time of a lower-bounding
distance function suitable for the indicated subspace. Due to the exponential number
of possible subspaces, it is impossible to explicitly preprocess the data for every sub-
space. Instead, as potential lower-bounding distance functions, we consider only the
1-dimensional distance d{i} associated with each feature i ∈ F . Assuming that the
lower-bounding property holds between d{i} and subspace distance dF ′ for all i ∈ F ′

(which is the case for many practical distance measures, including the Euclidean dis-
tance), there are |F ′| lower-bounding distance functions that can be used in the search.
However, practical performance may vary considerably according to the choice of d{i}.
In order to minimize the risk of choosing a poorly-performing lower-bounding dis-
tance, we select the distance function corresponding to the most discriminative query
dimension. This is done by ranking the dimensions based on data variance, a simple yet
effective ranking technique. Two ranking strategies are proposed in this paper: Single
Ranking (SR) and Multiple Ranking (MR).
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Algorithm SK SR (query q, subspace F ′, target neighborhood size k)

// Preprocessing step: obtain a single ranking of all dimensions.
1: for each dimension i ∈ F do
2: µi ← 1

|S|
∑

u∈S ui.

3: Vari ← 1
|S|

∑
u∈S (ui − µi)

2.
4: end for
5: Rank all dimensions i ∈ F in decreasing order of Vari. Let �(F ) denote this ranking.

// Query processing step: perform a multi-step search.
6: Among all the dimensions in subspace F ′, select the dimension i∗ with the highest ranking

according to �(F ).
7: Call SK(q, k) to produce the query result, with d{i∗} as the lower-bounding distance func-

tion, and dF ′ as the target distance function.

Fig. 1. The description of algorithm SK SR

3.1 Single Ranking Strategy

The first of our proposed algorithms — SK SR, described in Fig. 1 — employs a single
overall ranking of dimensions based on variance. There are two main phases: a prepro-
cessing phase and a query processing phase. In the preprocessing phase, the algorithm
generates a single ranking of the dimensions, in terms of the variances of the data val-
ues computed separately for each of the dimensional coordinates — the larger the data
variance for a given dimension, the higher the ranking of that dimension. In the query
processing phase, as the lower-bounding distance function used in multi-step search,
the algorithm chooses the dimension of highest rank from among the query dimen-
sions. When Algorithm SK is used for performing the multi-step search (in Line 7), the
query result is guaranteed to be correct. As an alternative, we may also utilize the ap-
proximate multi-step algorithm MAET+; this variant of subspace similarity search will
be referred to as MAET+ SR. Specifically, we make a call to MAET+(q, k, t), where
t > 0 is a parameter governing an early termination criterion. Larger choices of t can
be expected to yield query results with higher accuracies at the possible expense of
computational cost. In [5], a sampling method was designed for choosing t so that a
desired proportion of potential queries can be correctly answered with high probability.
For more details, we refer the reader to [5].

Note that like DMI, our search strategy requires the construction of a separate index
for each of the dimensions. However, unlike DMI, our algorithms access only a single
index per query, namely the most discriminative query dimension in terms of variance.

3.2 Multiple Ranking Strategy

The single ranking strategy has the advantage of being straightforward to apply. How-
ever, its effectiveness may be limited whenever the variance of a particular dimension
differs greatly when restricted to the vicinity of differing query objects. For this rea-
son, we have also designed a multiple ranking strategy that takes the query object into
account when generating a ranking of dimensions.

Our multiple ranking strategy for subspace similarity search, SK MR, is described
in Fig. 2. In the preprocessing step, the algorithm first samples m reference points from
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Algorithm SK MR (query q, subspace F ′, target neighborhood size k, sample size m, variance
neighborhood size K)

// Preprocessing step: create multiple rankings of dimensions.
1: Create a reference set R ⊆ S by sampling m points from the database, uniformly at random

and without replacement.
2: for each reference point v ∈ R do
3: for each dimension i ∈ F do
4: µv,i ← 1

|K|
∑

u∈N{i}(v,K)
ui.

5: Varv,i ← 1
|K|

∑
u∈N{i}(v,K)

(ui − µv,i)
2.

6: end for
7: Rank all dimensions i ∈ F in decreasing order of Varv,i. Let �v(F ) denote this ranking.
8: end for

// Query processing step: perform a multi-step search.
9: Linearly scan R to find v∗, the nearest reference point to q with respect to dF ′ .

10: Select the query dimension i∗ ∈ F ′ with the highest ranking according to �v∗(F ).
11: Call SK(q, k) to produce the query result, with d{i∗} being the lower-bounding distance

function and dF ′ being the target distance function.

Fig. 2. The description of algorithm SK MR

the database. Then, with respect to each reference point v, the algorithm determines
a ranking (from highest to lowest) of all dimensions based on the variance of the co-
ordinate values for the dimension in question, this time computed over a neighbor set
of v (instead of over the entire dataset S). In the query processing step, the algorithm
first finds the nearest reference point v∗ of q in the query subspace (using sequential
search within the reference set), and then uses the ranking of dimensions precomputed
for v∗ in the processing of query q. Again, we may replace SK with MAET+ to derive
an approximation variant, MAET+ MR.

Two parameter choices must be considered when applying the multiple ranking strat-
egy: the number of reference points m, and the size K of the neighborhoods within
which data variance is computed. As will be shown in Sect. 4, the choice of K does
not greatly affect the performance, provided that it is small relative to the dataset size
|S|. On the other hand, the number of reference points m must be chosen with more
care. If m is too large, the identification of the most discriminative query dimension
may become unaffordable. If m is too small, the dimension i∗ selected for multi-step
search may not be very discriminative for the query. We next discuss how to choose a
reasonable value for m.

Determining the Reference Set Size. For the multiple ranking strategy to be effec-
tive, for any given query point q, its nearest reference point v∗ should be among the
nearest neighbors of q within S (all with respect to the query subspace). Otherwise, the
ranking of dimensions based at v∗ may fail to approximate the ranking based at q. For-
tunately, the following technical lemma shows that with even a relatively small number
of reference points, v∗ can lie in the local neighborhood of q with high probability.

Lemma 1 (Houle et al. [5]). Let A be a set of positive integers, and let A′ ⊆ A be
a subset sampled uniformly at random without replacement. Given a threshold τ , let a
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and a′ refer to the number of elements in A and A′, respectively, that are no greater
than τ . Take η and η′ to refer to the proportion of those elements within A and A′,
respectively. For any real number φ ≥ 0, we have Pr[|η − η′| ≥ φ] ≤ 2e−2φ2|A′|.

Proof. Since A′ is generated by uniform selection from A, random variable a′ follows
the hypergeometric distribution with expectation E[a′] = a|A′|/|A|. In [14], Chvátal
showed that random variable a′ satisfies both Pr[E[a′] ≥ a′ + φ|A′|] ≤ e−2φ2|A′| and
Pr[E[a′] ≤ a′ − φ|A′|] ≤ e−2φ2|A′|. Both inequalities can be combined to yield the
following error bound:

Pr[|η − η′| ≥ φ] = Pr

[∣∣∣∣
a

|A| −
a′

|A′|

∣∣∣∣ ≥ φ

]
= Pr

[∣∣∣∣
E[a′]
|A′| − a′

|A′|

∣∣∣∣ ≥ φ

]

= Pr[|E[a′]− a′| ≥ φ|A′|] ≤ 2e−2φ2|A′|. 
�

To apply this lemma to the analysis of the choice of reference set size, let A =
{1, 2, 3, . . . , |S|} represent the ranks of all the objects in S with respect to a query
object q, and let A′ ⊆ A store the ranks of all the reference points (|A′| = m). Also, let
τ be the rank of the reference point v∗, which implies that η′ = 1/|A′|. A small value
of η would therefore indicate that v∗ is in the local neighborhood of q, as desired. From
Lemma 1, we know that the probability of η deviating from η′ = 1/|A′| by more than
φ ≥ 0 is at most 2e−2φ2|A′|. That is, the probability of η being significantly larger than
1/|A′| vanishes quickly as the sample size |A′| grows. In practice, even small sample
sizes allow us to obtain reasonably small values of η with high probability. For example,
if |A′| = 5, 000 and φ = 0.02, the lemma indicates that the probability of η ≥ 0.0202
is at most 0.037, or equivalently, the probability of η < 0.0202 is at least 0.963.

4 Experimental Results

In this section, we present the results of our experimentation. We compared our algo-
rithms with the state-of-the-art approaches PVA, PT and DMI.

4.1 Experimental Framework

Data Sets. Five publicly-available data sets were considered for the experimentation,
so as to compare across a variety of set sizes, dimensions and data types.

– The Amsterdam Library of Object Images (ALOI) [15] consists of 110, 250 images
of 1000 small objects taken from different viewpoints and illumination directions.
The images are represented by 641-dimensional feature vectors based on color and
texture histograms (for a detailed description of the image features, see [16]).

– The MNIST data set [17] consists of 70, 000 images of handwritten digits from 500
different writers, with each image represented by 784 gray-scale texture values.

– The Cortina data set [18] consists of 1, 088, 864 images gathered from the World
Wide Web. Each image is represented by a 74-dimensional feature vector based on
homogeneous texture, dominant color and edge histograms.
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– The Forest Cover Type set (FCT) [19] consists of 581, 012 data points, with each
representing a 30× 30 square meter area of forest. Each point is represented by 54
attributes, associated with elevation, aspect, slope and other geographical charac-
teristics.

– The ANN SIFT data set [20] consists of 107 SIFT descriptors [21] of 128 dimen-
sions. The SIFT descriptors were extracted from approximately106 general images.

Methodology. For each test, 1000 queries were generated at random, each consisting
of an object q selected from the database, and a query subspace F ′. Unless stated other-
wise, the number of query dimensions was |F ′| = 8, and the target neighborhood size
was k = 10. Two quantities were measured for the evaluation: query result accuracy
and execution time. The results were reported as averages over the 1000 queries per-
formed. The execution time is shown as a proportion of the time needed for a sequential
search of the entire dataset. For each query, the accuracy of its k-NN result is defined
as the proportion of the result falling within the true k-NN (subspace) distance to q:

| {v ∈ Y | dF ′(q, v) ≤ δF ′(q, k)} |
k

,

where Y denotes the k-NN query result of q in subspace F ′ (|Y | = k). The Euclidean
distance was used for all experiments.

4.2 Effects of Varying m and K on the Multiple Ranking Strategy

For the first set of experiments, for all of the datasets under consideration, we tested
the effects on the multiple ranking strategy due to variation of the sample size m and
variance neighborhood size K . When varying the sample size m, the variance neigh-
borhood size K was chosen to be approximately 1% of the dataset size: specifically,
the choices were K = 103 for ALOI and MNIST, K = 104 for Cortina and FCT, and
K = 105 for ANN SIFT. When varying K , the sample size m was fixed at 500 for all
datasets tested. Since we observed similar trends in the results for all datasets, due to
space limitations, in this version of the paper, we show the results of varying m and K
only for the ALOI dataset.

The results for varying m are shown in Fig. 3(a). Here, we see that m = 500 is
a sufficiently-large sample size for multiple ranking strategy to be effective, which is
better than indicated by the theoretical analysis. From Lemma 1, we know that if m =
500, then for any dataset with any number of data points, the probability of η < 0.062 is
at least 0.945 (φ = 0.06). Recall that the effectiveness of the multiple ranking strategy
is expected to increase as η diminishes. Our experimental findings show that the value
of η in practice is typically much smaller than what the analysis indicates. In order to
reduce the computational cost of the experimentation, we therefore set m = 500 for all
remaining experiments.

Fig. 3(b) shows the results of varying K . As expected, the variance neighborhood
size K does not greatly affect the performance, provided that it is set to reasonably
small values relative to the dataset size. For all remaining experiments, we set K = 103

for ALOI and MNIST, K = 104 for Cortina and FCT, and K = 105 for ANN SIFT.
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Fig. 3. The effects of varying m and K for the multiple ranking strategy, with dataset ALOI
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4.3 Comparison of Single Ranking and Multiple Ranking

We next compared the performance of the single ranking and multiple ranking strate-
gies; the results are shown in Fig. 4. Unsurprisingly, multiple ranking outperformed sin-
gle ranking for all datasets tested. Due to space limitations, in all experiments involving
competing methods, we show a comparison of results only for multiple ranking.

4.4 Comparison with Other Methods

We conducted two sets of experiments for the comparison of our algorithms with com-
peting methods, varying each of two parameters in turn: the number of subspace dimen-
sions |F ′|, and the target neighborhood size k. Specifically, we varied |F ′| from 2 to 32
while fixing k = 10, and varied k from 5 to 40 while fixing |F ′| = 8.

The results of varying |F ′| are shown in Fig. 6. For all datasets and all choices of |F ′|,
our proposed methods generally outperform their competitors. Among all the methods
tested, PVA is the most expensive, perhaps due to its use of sequential scan.

PT utilizes an R-tree built on the full-dimensional space to answer queries in sub-
spaces; consequently, one would expect it to be less effective for subspaces in which
dF ′ differs greatly from dF . This can explain the improvement in the performance of
PT as the number of subspace dimensions increases. Nevertheless, due to the limits on
the performance of R-trees for spaces of even moderate dimensionality, PT will still
become prohibitively expensive as the number of subspace dimensions grows.

DMI processes queries by aggregating partial results across neighborhoods with re-
spect to every query dimension. The aggregation may become prohibitively expensive
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(d) FCT
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Fig. 6. The results of varying |F ′| on all tested datasets, with k = 10. The results are exact, except
for those of MAET+ MR. The average accuracies of MAET+ MR with t = 2 are approximately
92%, 90%, 88%, 97% and 90% for ALOI, MNIST, Cortina, FCT and ANN SIFT, respectively.

as the number of subspace dimensions increases. In contrast, our algorithms avoid ex-
pensive aggregation by restricting the processing to a single query dimension.

Relative to SK MR, we observe that for high subspace dimensionality, MAET+ MR
can achieve a significant improvement in running time while still achieving a high level
of accuracy. We note that as the value of |F ′| increases, the computational cost of all
tested methods must eventually tend to that of sequential search, as one would expect
due to the curse of dimensionality.

Fig. 7 shows the results of varying k. Again, our proposed methods generally outper-
form their competitors, with MAET+ MR achieving a slight improvement in running
time over SK MR, at the cost of a slight loss of accuracy. We also observe that the
behaviors of all tested methods are quite stable with respect to k.

Finally, Fig. 5 shows the preprocessing costs of all methods considered in our exper-
imentation. While the preprocessing costs of our methods is substantial, the costs are
justifiable in light of their improved performance at query time.
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(b) MNIST
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(c) Cortina
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(d) FCT
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Fig. 7. The results of varying k on all tested datasets, with |F ′| = 8. The results are exact, except
for those of MAET+ MR. The average accuracies of MAET+ MR with t = 2 are approximately
88%, 96%, 89%, 98% and 92% for ALOI, MNIST, Cortina, FCT and ANN SIFT, respectively.

5 Conclusion

We have presented new solutions for the subspace similarity search problem based on
multi-step search, utilizing 1-dimensional lower-bounding distances for the efficient
pruning of the search space. Our extensive experimental study showed that our algo-
rithms are able to outperform their state-of-the-art competitors (PVA, PT and DMI)
for a relatively wide range of subspace dimensions. We have also shown how practical
choices of algorithm parameters can be guided by an analysis of sampling properties.

One possible direction for future research may include the investigation of multi-
dimensional lower-bounding distances for pruning in multi-step subspace search. Al-
though multi-dimensional distances could provide a tighter lower bound on the target
distance, they cover fewer combinations of query dimensions, and thus may be only of
limited practicality.
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Abstract. Filter refinement is an efficient and flexible indexing approach to sim-
ilarity search with multiple features. However, the conventional refinement phase
has one major drawback: when an object is refined, the partial distances to the
query object are computed for all features. This frequently leads to more distance
computations being executed than necessary to exclude an object. To address this
problem, we introduce partial refinement, a simple, yet efficient improvement of
the filter refinement approach. It incrementally replaces partial distance bounds
with exact partial distances and updates the aggregated bounds accordingly each
time. This enables us to exclude many objects before all of their partial distances
have been computed exactly. Our experimental evaluation illustrates that partial
refinement significantly reduces the number of required distance computations
and the overall search time in comparison to conventional refinement and other
state-of-the-art techniques.

1 Introduction

Similarity search with multiple features is an effective way of finding objects similar to
a query object. Instead of using only a single feature for the comparison of objects (e.g.,
a single color histogram for the comparison of images), multiple features (e.g., color,
edge and texture features) are utilized. A distance function assigned to each feature is
employed to compute the respective partial distances (dissimilarities) between each of
the compared objects’ features. These partial distances are combined into an aggregated
distance by means of an aggregation function. Finally, the most similar objects are
determined according to the lowest aggregated distances to the query object.

Indexing approaches to similarity search [1, 2] aim to exclude as many objects as pos-
sible from the search to decrease CPU and I/O costs for the computation of distances.

Filter refinement is a well-known technique and utilized by several indexing ap-
proaches to multi-feature similarity search (e.g., [3, 4, 5, 6]). In general, the filtering
phase aims to discard objects based on inexpensively computed approximations of the
distance between the query and each database object (bounds). The refinement phase
then computes the exact distances for the remaining candidates to determine the most
similar objects. For search with multiple features, partial bounds for each feature are
combined into an aggregated bound. The exclusion of objects in the filtering and refine-
ment phase is based on those aggregated bounds.

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 13–24, 2014.
DOI: 10.1007/978-3-319-11988-5_2 c© Springer International Publishing Switzerland 2014
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Unfortunately, the performance of filter refinement deteriorates with an increasing
number of features. As the (intrinsic) dimensionality [7] of the aggregation function
rises, the approximation error of the aggregated bounds increases as well. A higher ap-
proximation error results in less efficient search because fewer objects can be excluded.

1.1 Contribution

The main contribution of this paper is the improvement of the refinement step for filter
refinement with multiple features. Conventional refinement (see Section 3) manages
objects with the help of a candidate list sorted in ascending order according to the
aggregated lower bounds. When an object on top of the candidate list is refined, all of
the object’s partial distances are computed exactly and combined into an aggregated
distance. Unfortunately, this frequently leads to more partial distances being computed
than necessary to exclude objects.

In contrast, our partial refinement approach (see Section 5) incrementally replaces
partial distance bounds of objects with their exact partial distances, updates the aggre-
gated bounds and reinserts the objects into the candidate list. This allows us to gradually
tighten the aggregated bounds and to exclude many objects before all of their partial dis-
tances have been computed exactly.

Example 1. Consider for example a similarity search with two features as depicted in
Figure 1a. The filtering phase produces a candidate list ordered according to the aggre-
gated lower bounds. Conventional refinement requires three iterations and each iteration
executes two distance computations (fully refined).

In contrast, partial refinement computes only one partial distance per iteration (par-
tially refined), updates the aggregated bounds of the object and reinserts it into the
candidate list. In this case, it permits a direct (case C1) and a delayed exclusion (case
C2) of two objects, without computing all of their exact partial distances. While the con-
ventional refinement approach requires six distance computations in this example, four
distance computations are sufficient to determine the most similar object with partial
refinement.

Example 2. Another example for the benefits of partial refinement is the partial exclu-
sion of objects (case C3) for specific aggregation functions like the minimum or maxi-
mum function. If it becomes obvious that a specific partial distance does not influence
the aggregated distance, it can be safely excluded from computation. For the example
of the maximum function with three features in Figure 1b, two partial distance com-
putations can be excluded because their upper bound (4 and 3) is lower than the exact
partial distance of the first feature (5).

To demonstrate the efficiency of our approach, we experimentally compare partial re-
finement to the linear scan, conventional filter refinement [6], the Onion-tree [8] and the
Threshold Combiner Algorithm [9] (see Section 6). The evaluation illustrates that partial
refinement is able to significantly reduce the number of required distance computations
and the overall search time.
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(a) Conventional vs. partial refinement
(two features)

(b) Partial refinement for the maximum
function (three features)

Fig. 1. Examples for direct (C1), delayed (C2) and partial exclusion (C3)

2 Preliminaries

This section defines the notations and terms used throughout this paper.

2.1 Nearest Neighbor Search

Similarity search can be performed by means of a k-Nearest Neighbor query. A kNN(q)-
query in the universe of objectsU returns k objects out of a database DB = {o1, . . . , on} ⊆
U that are closest (most similar) to the query object q ∈ U. The distance between objects
is computed by a distance function δ : U×U �→ R≥0 that operates on the features q̂ and
ôi extracted from the objects. The result is a (non-deterministic) set K with |K| = k and
∀oi ∈ K, o j ∈ DB \ K : δ(q, oi) ≤ δ(q, o j).

A multi-feature kNN-query substitutes the single features q̂ and ôi with m features
q̂ = (q̂1, . . . , q̂m) and ôi = (ôi

1, . . . , ô
i
m). A distance function δ j is assigned to each

single feature to compute the partial distances di
j = δ j(q, oi). An aggregation function

agg : Rm
≥0 �→ R≥0 combines all partial distances to an aggregated distance di

agg and the
k nearest neighbors are then determined according to the aggregated distance.

An optional weighting scheme with weights W = (w1, . . . ,wm) and ∀wj ∈ W : wj ≥ 0
can be applied to the features of the aggregation function. These weights are typically
unknown at the time of index construction. Instead, they are dynamically determined at
query time in order to optimally adapt the aggregation function to the query object and
the demands of the user [10].
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2.2 Metric Indexing

A metric is a distance function with the properties positivity (∀x � y ∈ U : δ(x, y) > 0),
symmetry (∀x, y ∈ U : δ(x, y) = δ(y, x)), reflexivity (∀x ∈ U : δ(x, x) = 0) and triangle
inequality (∀x, y, z ∈ U : δ(x, z) ≤ δ(x, y) + δ(y, z)).

Metric indexing approaches [1, 2] exclude objects from search by computing bounds
of the distance from the query object to database objects. The lower bound lbi

j and
upper bound ubi

j of the exact partial distance di
j = δ j(q, o) between query object q

and database object oi can be determined by exploiting the triangle inequality and the
precomputed distance to a reference object (pivot) p as follows:

lbi
j = |δ j(q, p) − δ j(p, oi)| ≤ δ j(q, oi) ≤ δ j(q, p) + δ j(p, oi) = ubi

j . (1)

The approximation error εi1, . . . , εim of the partial distance bounds is calculated by the
weighted difference between the respective upper and lower bounds εij = wj ∗ (ubi

j− lbi
j).

The intrinsic dimensionality ρ is defined as ρ = μ2

2σ2 where μ is the mean and σ2 the
variance of a distance distribution. It is frequently used as an estimator for the indexa-
bility of metric spaces [7].

2.3 Monotonicity and Aggregated Bounds

An aggregation function agg is monotone increasing in the j-th argument with 1 ≤ j ≤
m, d = (d1, . . . , d j, . . . , dm) and d′ = (d1, . . . , d′j, . . . , dm) iff:

∀d, d′ ∈ Rm
≥0 : d j < d′j =⇒ agg(d) ≤ agg(d′) . (2)

This means, if all arguments except d j are constant and d j is increased to d′j, the result
of the aggregation function will either be constant or also increase.

An aggregation function agg is globally monotone increasing iff it contains only
monotone increasing arguments. An example for a globally monotone increasing func-
tion is agg(d1, d2) = d1 + d2.

For the sake of simplicity, we consider only globally monotone increasing aggrega-
tion functions for distances (dissimilarity values) in the following. However, note that
the stated results are easily adaptable to other types, like locally or flexible monotone
aggregation functions and aggregation functions for similarity values [6].

Even though the aggregation function can be a metric if all partial distance func-
tions are also metrics (e.g., arithmetic mean or maximum of L1 distances), this is not
necessarily the case. The minimum and the median function (m > 2) are examples for
non-metric aggregation functions that are globally monotone increasing.

The aggregated lower (upper) bound lbi
agg (ubi

agg) on the exact aggregated distance

di
agg = agg

(
di

1, . . . , d
i
m

)
of a globally monotone increasing aggregation function can be

computed by inserting partial lower (upper) bounds for all features into the aggregation
function:

lbi
agg = agg

(
lbi

1, . . . , lb
i
m

)
≤ agg

(
di

1, . . . , d
i
m

)
≤ agg

(
ubi

1, . . . , ubi
m

)
= ubi

agg . (3)

The approximation error of the aggregated bounds is defined as εiagg = ubi
agg − lbi

agg.
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Algorithm 1. Multi-feature kNN-query – filtering
Input: k, q, DB, agg, W

1 tmax = ∞;
2 foreach oi ∈ DB do
3 Compute partial bounds lbi

j and ubi
j for each feature; // Equation (1)

4 Compute aggregated bounds lbi
agg and ubi

agg; // Equation (3)

5 if lbi
agg > tmax then continue; // exclude object?

6 else
7 candidates.insert(oi);
8 tmax = k-th lowest ubi

agg; // update threshold

9 candidates.cut(tmax); // exclude objects with lbi
agg > tmax

10 return candidates;

3 Filter Refinement

The following section briefly summarizes the conventional filter refinement approach
to similarity search with multiple features.

To build the index, metric filter refinement approaches [4, 6] compute one matrix
of distances between pivots and database objects per feature. Algorithm 1 depicts the
filtering phase for a kNN-query with multiple features. At first, bounds for each partial
distance are computed based on the precomputed distance matrices and Equation (1)
(line 3). Subsequently, these partial bounds are combined into aggregated bounds by
Equation (3) (line 4). Objects having a higher aggregated lower bound lbi

agg than the k-
th lowest aggregated upper bound ubi

agg seen so far (tmax) are excluded from the search
(lines 5 and 9). The remaining objects are managed by a candidate list sorted in ascend-
ing order according to lbi

agg (priority queue).
In the conventional refinement phase (Algorithm 2) the previously determined candi-

date objects have to be refined. Starting with the candidate with the lowest aggregated
lower bound lbi

agg, we check if the object appeared at the top of the candidate list before
(line 3). If not, the object was not refined yet and the exact aggregated distance di

agg has
to be computed (line 5). Afterwards, the object is either excluded because its exact ag-
gregated distance is larger than the current threshold value tmax (line 6) or it is reinserted
into the candidate list.

If the object at the top of the candidate list was already refined before (line 3), the
object is one of the k nearest neighbors because the object’s exact aggregated distance
di

agg is lower than the remaining objects’ aggregated lower bounds lbi
agg. Refinement is

stopped as soon as k nearest neighbors were found.

4 Related Work

This section gives an insight into the state-of-the-art of indexing for similarity search
with multiple features and filter refinement for multiple features in particular.
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Algorithm 2. Multi-feature kNN-query – conventional refinement
Input: k, q, candidates, tmax, agg, W

1 repeat
2 oi = candidates.pop(); // get candidate with lowest lbi

agg

3 if oi is refined then results.insert(oi); // already refined?

4 else
5 Compute exact aggregated distance di

agg; // refinement

6 if di
agg > tmax then continue; // exclude object?

7 else . . . ; // (lines 7 - 9 of Algorithm 1)

8 until results.size() = k;
9 return results;

If the aggregation function is a metric, an arbitrary (single-feature) metric index
(e.g., Onion-tree [8]) can be build directly on top of the aggregated distances (naı̈ve
approach). Unfortunately, this solution prevents partial refinement and is inflexible be-
cause it requires the index to be rebuilt when the used aggregation function, features
or weights are changed [6]. Multi-metric indexing [11] solves this problem partially. It
defines a framework to transform arbitrary metric indexing approaches for single fea-
tures into metric indices for multiple features with dynamic weighting. However, the
restriction to metric aggregation functions remains.

The M2-tree [12] is a multi-dimensional extension of the well-known M-tree. It sup-
ports dynamic weighting as well as metric and non-metric aggregation functions. How-
ever, it is not suitable for partial refinement and has the disadvantage that its clustering
may be inefficient if only a subset of all indexed features is used for a query.

An index comprised of one matrix of distances to pivot objects per feature is de-
scribed in [4]. This allows efficient queries with subsets of the indexed features and
dynamic weighting since each matrix can be accessed individually. Filter refinement is
used to exclude objects. However, the approach does not utilize a candidate list to deter-
mine the order of objects and objects that were not excluded are always fully refined.

Our previous research introduced FlexiDex [6], a flexible metric index for (logic-
based) multi-feature similarity search. The index has to be created only once but can
be efficiently used for different types of aggregation functions, numbers of features
and weighting schemes. Originally, FlexiDex fully refines each object. However, in the
course of our research we adapted it to incorporate all concepts of partial refinement.

Combiner algorithms (e.g., Threshold Algorithm (TA) [9]) merge the result lists of
subqueries for each single feature into an aggregated result list. Once an object is seen in
one of the lists, missing partial distances are computed by random access. This behavior
resembles conventional refinement. However, filter refinement uses a single candidate
list and sorts it based on the aggregated bounds. This allows it to adapt better to the
aggregation function than combiner algorithms.

Our research focuses on metric indexing since it is more flexible and suffers less from
the curse of dimensionality [2] than spatial indexing [1]. Nonetheless, partial refinement
can be easily adapted to improve spatial indices that rely on filter refinement for multi-
feature search (e.g., GeVAS [3] or ASAP [5]).
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5 Partial Refinement

This section presents our main contribution, the partial refinement approach, which
deals with the major drawback of conventional refinement to compute all partial dis-
tances of an object at once. We describe our concept in detail and give a pseudo-code
implementation of the approach.

5.1 Exclusion of Objects

The main idea behind the concept of partial refinement is to exclude objects before all
of their partial distances have been computed by gradually improving the quality of
their aggregated bounds. This is accomplished by updating the aggregated bounds each
time a partial distance of an object is computed exactly.

The order of partial distance computations for each individual object is determined
in the filtering phase. The partial distances with the highest approximation error εij are
computed first in order to quickly reduce the aggregated approximation error εiagg. The
following cases C1 – C3 are considered after every update of the aggregated bounds.

Direct exclusion (C1). If the updated aggregated lower bound lbi
agg has increased above

the current search threshold tmax, the object can be directly excluded from search
without exactly computing the remaining partial distances.

Delayed exclusion (C2). If the updated aggregated lower bound lbi
agg has not increased

above the search threshold tmax, the object can currently not be excluded. The object
is then reinserted into the candidate list and its position in the list is redetermined
according to the updated aggregated lower bound. Now, if the search threshold tmax

decreases below the updated aggregated lower bound lbi
agg before the object reap-

pears at the top of the candidate list, it can be excluded without exactly computing
its remaining partial distances.

Partial exclusion (C3). For specific aggregation functions (e.g., minimum or maxi-
mum function) partial distance computations of an object can be excluded as soon
as it becomes obvious that they do not influence the exact aggregated distance (dom-
inated distances). This is achieved by comparing all partial distance bounds lbi

j and
ubi

j of an object among each other.

5.2 Updating Aggregated Bounds

Partial refinement relies on the assumption that the computation of aggregated bounds
and reinsertion into the candidate list is inexpensive in comparison to the computation
of a partial distance.

In contrast to conventional refinement, which only needs to store the aggregated
bounds for each object at query time, partial refinement additionally requires 2m partial
bound values (m lower and m upper bounds) per object. Furthermore, a bit array bi

consisting of m bits per object is needed. Initially set to false, a bit bi
j is set to true

after the partial distance di
j for object oi has been computed exactly.

It can easily be shown that replacing partial bounds with exact partial distances in
Equation (3) can only result in tighter aggregated bounds. With each newly computed
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partial distance, the approximation error of the aggregated distance bounds εiagg can be

reduced. The updated aggregated lower bounds l̂b
i

agg replace the old bounds after their
computation and are defined as follows:

l̂b
i

j =

{
di

j, if bi
j =true

lbi
j, otherwise

, (4)

l̂b
i

agg = agg
(
l̂b

i

1, . . . , l̂b
i

m

)
≥ lbi

agg . (5)

The updated aggregated upper bounds ûb
i

agg are defined analogously.
Obviously, after all partial distances of object oi have been computed, the updated

aggregated distance bounds are equal to the exact aggregated distance di
agg:

(bi1 ∧ ... ∧ bim) = true =⇒ l̂b
i

agg = diagg = ûb
i

agg . (6)

5.3 Dominated Distances

Depending on the aggregation function (e.g., minimum or maximum function), it is
not always necessary to compute all partial distances to determine the exact aggregated
distance (case C3). In the following we will refer to those partial distances that are not
needed as dominated distances.

For the example of the maximum function aggmax, a partial distance di
j is dominated

if a partial lower bound lbi
x exists that is greater or equal to the partial upper bound ubi

j:

∃x ∈ {1, . . . ,m} : x � j ∧ lbi
x ≥ ubi

j =⇒
aggmax

(
di

1, . . . , d
i
j, . . . , d

i
m

)
= aggmax

(
di

1, . . . , d
i
j−1, d

i
j+1, . . . , d

i
m

)
. (7)

This means the partial distance di
j does not influence the aggregation result (maximum)

as it cannot be the largest distance. We can therefore safely exclude the partial distance
from computation. In this case, bit bi

j is set to true and di
j is set to the partial upper

bound ubi
j.

5.4 Partial Refinement Algorithm

Finally, we present the pseudo-code of partial refinement (see Algorithm 3). The con-
ventional refinement of Algorithm 2 is adapted to incorporate the concepts presented
in sections 5.1 – 5.3: the computation of a single partial distance (line 5), the detec-
tion of dominated distances (line 6), the update of the aggregated bounds (line 7) and
the check for the object’s exclusion or reinsertion into the candidate list, based on the
updated aggregated bounds (lines 8 and 9).

Depending on the memory constraints of the system, disk-based or in-memory in-
dexing can be utilized. A disk-based implementation of the filter refinement approach
to multi-feature similarity search is described in [6] and also applicable to partial re-
finement. There, each distance matrix is compressed and stored in the form of a com-
pact signature file that can be sequentially read from disk. For in-memory indexing all
needed distance matrices are simply preloaded into main memory.
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Algorithm 3. Multi-feature kNN-query – partial refinement
Input: k, q, candidates, tmax, agg, W

1 repeat
2 oi = candidates.pop(); // get candidate with lowest lbi

agg

3 if (bi
1 ∧ . . . ∧ bi

m) =true then results.insert(oi); // Equation (6)

4 else
5 Compute next exact partial distance di

j and set bi
j =true; // partial ref.

6 Check for dominated distances and update bi accordingly; // Equation (7)

7 Compute updated aggregated bounds l̂b
i

agg and ûb
i

agg; // Equation (5)

8 if l̂b
i

agg > tmax then continue; // exclude object?

9 else . . . ; // (lines 7 - 9 of Algorithm 1)

10 until results.size() = k;
11 return results;

6 Evaluation

This section presents the experimental evaluation. We demonstrate that partial refine-
ment can vastly reduce the number of required distance computations and the over-
all search time in comparison to conventional refinement and other state-of-the-art
approaches.

6.1 Experimental Setup

Partial refinement was compared to the linear scan, conventional refinement [6], an
Onion-tree [8] build on top of aggregated distances and the Threshold Combiner Algo-
rithm [9] based on m (single-feature) Onion-trees in connection with the HS-Algorithm
[13]. As recommended by the authors, all Onion-trees were built with the keep-small
strategy [8].

All experiments were run on a 2 × 2.26 GHz Quad-Core Intel Xeon with 8 GB
RAM and an HDD with 7,200 rpm. However, we restricted our experiments to a sin-
gle CPU core since the provided implementation of the Onion-tree does not support
parallelization.

We utilized the image collections Caltech-256 Object Category Dataset [14] (30,607
images) and ImageCLEF WEBUPV Image Annotation Dataset [15] (250,000 images)
for our experiments. Efficiency was assessed by measuring the average number of dis-
tance computations and the average search time (wall-clock time) of kNN-queries for
100 randomly chosen query objects.

Features of varying intrinsic dimensionality and distance computation cost were cho-
sen to examine the performance in distinct scenarios. Table 1 summarizes the used fea-
tures and distance functions δ (Minkowski (Lp), Earth Mover’s (EMD) and Quadratic
Form (QFD)) and depicts the according intrinsic dimensionality ρ.

We used 64 pivot objects (randomly selected) per feature for filter refinement and
kept all index data in main memory. Per feature, each object occupied 512 bytes of
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Table 1. Used features, distance functions δ and intrinsic dimensionality ρ

ρ per collection
Feature δ

Caltech256 WEBUPV
CEDD L2 12.05 11.70
FCTH L1 5.77 6.35

EdgeHistogram weighted L1 8.55 9.97
DominantColor EMD + L2 2.16 1.91
ColorHistogram dynamic QFD 11.48 10.47

memory for the distances to the pivot objects (64 × 8 bytes; double precision), 16 bytes
for the lower and upper partial distance bounds and 1 bit for the boolean flag bi

j. Addi-
tional 16 bytes per object were required for the aggregated lower and upper bounds.

6.2 Aggregation Functions and Number of Features

The performance of partial refinement was investigated for various aggregation func-
tions and numbers of features m. The features were added in the same order as given in
Table 1 (from top to bottom).

Figures 2a and 2b show the number of required distance computations and search time
for 10−NN-queries with the arithmetic mean. Obviously, the results of conventional and
partial refinement were the same for a single feature. However, with an increasing num-
ber of features, partial refinement considerably outperformed all other approaches. It
required up to 70 % less distance computations and up to 63 % less search time than con-
ventional refinement. This means that the overhead of partial refinement (recomputing
aggregated bounds and reinserting objects into the candidate list) is rather low in com-
parison to the time saved trough the reduced number of distance computations.

The number of required distance computations for 10-NN-queries with the median
function is depicted in Figure 3a. Again, partial refinement was the optimal approach
and computed up to 55 % less distances than conventional refinement. Note that the
median function does not fulfill the triangle inequality for m > 2. Therefore, the Onion-
tree frequently excluded objects that belonged to the correct query result.

In case of 10-NN-queries with the maximum function (Figure 3b), partial refine-
ment slightly improved the already very good results of conventional refinement. The
increase in the number of required distance computations per added feature was surpris-
ingly low for partial refinement (≈ 200).

We conducted further experiments for other aggregation functions, like the minimum
function, the geometric or the harmonic mean. However, these results are not shown as
their behavior was mostly similar to the previous experiments.

6.3 Number of Result Objects and Collection Size

Figure 4a depicts the number of required distance computations of kNN-queries with
the arithmetic mean for different numbers of result objects k. The Onion-tree and both
filter refinement approaches were especially efficient for k = 1 because the query ob-
jects were elements of the collection. This allowed a very early termination of the search,
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Fig. 2. Search performance for 10-NN-queries with arithmetic mean (Caltech256)
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Fig. 4. No. of distance computations for kNN-queries with arithmetic mean (m = 4)

as soon as the respective query object was seen the first time. However, partial refine-
ment was the optimal approach for greater numbers of result objects k and constantly
required approximately 65 % less distance computations than conventional refinement.

The impact of the collection size n on the number of needed distance computations
is presented in Figure 4b. Subsets of the WEBUPV image collection were obtained by
dividing it into chunks of 50,000 images each. While the number of needed distance
computations increased linearly with the collection size for all approaches, partial re-
finement exhibited the overall lowest increase.

7 Conclusions and Outlook

This paper introduced partial refinement, a simple, yet efficient improvement of the
filter refinement approach to similarity search with multiple features. Partial refinement
progressively replaces partial distance bounds with exact partial distances, updates the
aggregated bounds accordingly and checks if objects can be excluded.
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Our experimental evaluation has shown that partial refinement is able to significantly
reduce the number of required distance computations and search time in comparison to
conventional refinement and other state-of-the-art techniques.

Future research will focus on the introduction of new strategies to determine the
optimal order of partial distance computations. Adapting the computation order to the
used distance and aggregation functions can further improve the search performance.
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[8] Carélo, C.C.M., Pola, I.R.V., Ciferri, R.R., Traina, A.J.M., Traina Jr., C., de Aguiar Ciferri,
C.D.: Slicing the Metric Space to Provide Quick Indexing of Complex Data in the Main
Memory. Inf. Syst. 36(1), 79–98 (2011)

[9] Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. In: Proc.
of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS 2001, pp. 102–113. ACM, New York (2001)
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Abstract. In this paper, we present an effective yet efficient approach
for known-item search in video data. The approach employs feature sig-
natures based on color distribution to represent video key-frames. At
the same time, the feature signatures enable users to intuitively draw
simple colored sketches of the desired scene. We describe in detail the
video retrieval model and also discuss and carefully optimize its parame-
ters. Furthermore, several indexing techniques suitable for the model are
presented and their performance is empirically evaluated in the experi-
ments. Apart from that, we also investigate a bounding-sphere pruning
technique suitable for similarity search in vector spaces.

1 Introduction

The volume of video data has been increasing rapidly over the last years which
challenges the state-of-the-art video management and retrieval systems. Inde-
pendently on the volume and the nature of the data, users still expect fast and
accurate responses as well as simple user interfaces to specify a query and to
intuitively browse the results. These demands are making the design of a system
for video indexing and retrieval a true challenge.

A large amount of attention has been paid to the systems based on semantic
annotation [3, 7], allowing users to specify text queries. To deal with the lack
of annotation, complex concept and event detectors are being employed, but
despite the progress made in the last years, the semantic gap still persists. If we
consider just the reliably detectable common concepts (e.g., human faces or cars)
we may end up with zero annotation, thus we cannot rely on them exclusively.

For these reasons the general-purpose content-based methods are getting more
popular. Many visual descriptors [19, 22] were introduced to enable fast extrac-
tion, indexing and searching in large scale video archives. The systems [16] based
on these descriptors usually demand an example as a query; however, such an
example may not be always available. In such case, the user has to put an effort
into obtaining the example, say using the Google Images, which can be time
consuming or even impossible in some cases. Let us give an example: We are
searching for a shot containing a particular TV studio interior, filmed from an
unusual angle while we do not have an example. If we try to find the example in
an independent image database with the phrase ”TV studio” we will probably
retrieve plenty of results and it might be hard to find such image that is visually
close to the searched scene.

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 25–36, 2014.
DOI: 10.1007/978-3-319-11988-5_3 c© Springer International Publishing Switzerland 2014
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This scenario matches the problem of the so-called known-item search (KIS),
where the user “knows” what objects in images she is searching for (by imagina-
tion and/or textual description), however, she has no example to run a traditional
query (an example video shot/key-frame in our case). By allowing users to spec-
ify the desired shot directly, for example using a sketch [6], the need of example
can be eliminated. It is crucial, however, to keep the user interface as simple
as possible. Only such descriptor shall be utilized that is descriptive enough, is
understandable to users, and can be easily specified (sketched/drawn).

Respecting the mentioned demands, we utilize the feature signatures [18]
where a video key-frame is represented by a set of color regions. Such simple
representation enables users to specify these regions directly in simple sketches.
Unlike the fixed grid or dominant color features, the feature signatures are able
to capture even fewer significant color regions and adapt to the complexity of a
key-frame. Moreover, the resulting feature space has only 5 dimensions and is
suitable for usage of the Euclidean distance which makes the retrieval process
efficient.

We already introduced a simple tool [9] based on the feature signatures at
the Video Browser Showdown (VBS) 2014 workshop [1, 20] and, by winning 3
out of 4 categories, it was demonstrated that the feature signatures alone can
form a model which is able to compete with and even outperform the current
state-of-the-art methods. In this paper, we describe in detail an improved model
(and tool) that is able to deal with large amount of data. In order to preserve
properties of the tool such as instant responses and high effectiveness, a proper
indexing technique has to be introduced. We evaluate the performance of a
simple grid index as well as the state-of-the-art of indexing metric spaces - M-
Index [15]. We employ a Bounding-sphere based pruning technique in addition
to other techniques [11, 24].

First, we discuss other approaches in the field of the KIS in video (Section
2). Then, we describe in detail the feature signatures video retrieval model and
propose several index variants suitable for our feature space (Section 3). In the
experiments (Section 4) we evaluate the performance of the proposed index vari-
ants as well as optimize the parameters of the retrieval model. Finally, we con-
clude the paper and propose a possible future work (Section 5).

2 Related Work

Tools for the KIS in video are being evaluated at various multimedia retrieval
events, like the VBS workshop at the Multimedia Modeling (MMM) conference
series. In this particular case, the usage of a textual query is prohibited, par-
ticipants are forced to introduce innovative and interactive interfaces to their
tools which makes the event even more interesting. Visual as well as textual KIS
tasks are evaluated in a single video document and in a large video archive. We
shortly describe the tools of all the participants of VBS 2014. The results will
be briefly reviewed later.
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David Scott et al. [21] participated with a tool based on automated semantic
annotation of both audio and video data. In particular, occurrences of 60 visual
concepts were identified and indexed using the current state-of-the-art methods
such as SIFT, SVM and BoVW. In addition, the tool supported “face browsing”
where all the faces found in the video were presented and users could list the
shots in which selected faces appeared.

Similar approach was followed by Anastasia Moumtzidou et al. [13]. More than
300 concepts were detected and visual similarity search among the results was
supported by MPEG-7 and SURF features. Agglomerative hierarchical clustering
of the detected shots were employed in order to provide a hierarchical view of
the results.

A very innovative tool was introduced by Claudiu Cob Arza et al. [5] which
exploited advantages of collaborative search. In contrast to the previous ap-
proaches, only simple descriptors such as MPEG-7 color layout and motion his-
togram [19] were extracted. Users could specify the desired scene (via dominant
color, background and foreground movement, scene duration, etc.) simultane-
ously on several devices such as tablets or smart-phones. Promising results could
be marked for further examination by any of the collaborators.

A tool benefiting from both concept detectors and simple color descriptors
was presented by the team from NII and UIT [14]. Training data for concept
classifiers were obtained from Google Images. In addition, a simple 4x3 grid of
the dominant colors for each video segment was calculated. Users could specify a
sequence of patterns comprising a concept occurrence and grid-like color sketch
to filter out the irrelevant segments of a video.

Werner Bailer et al. [2] introduced a video browsing tool originally created
for media production where a high redundancy is expected. Low-level features
such as a global color distribution, camera motion and object trajectories are
extracted and aggregated into MPEG-7 descriptors in addition to SURF descrip-
tors. Both descriptor types are used to cluster the video segments and to enable
a visual similarity search.

Finally, we participated with a tool Signature-Based Video Browser [9] which
extended version is introduced in this paper.

3 Retrieval Model

In this section, we describe in detail the employed retrieval model for searching
key-frames of user interest along with suitable indexing technique.

3.1 Video Representation

In our approach, we assume users can easily memorize simple color stimuli from
the observed video clip and thus we focus on position-color feature signatures [18]
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that can flexibly aggregate and simply represent the color distribution of the
contents of the key-frames. In order to extract a feature signature from a given
key-frame, the extraction algorithm maps all pixels of the key-frame into 5-
dimensional feature space1 F ⊂ R

5 and then performs an adaptive variant of the
k-means algorithm [8]. The k-means algorithm results in the set of centroids of
the detected clusters (ideally centers of distinct color regions in the extracted
key-frame) forming feature signature FS ⊂ F, where the initial set of centers
for the k-means is distributed uniformly. Due to the adaptive nature of the
utilized k-means algorithm, the feature signatures vary in the number of centroids
respecting the complexity of the key-frames. Beside the color and the position
of centroids, the weight (i.e., the number of pixels contributing to the cluster)
could be extracted; however, in this work we do not utilize this information in
the retrieval model. An example of a feature signature is shown in Fig. 1, where
we may observe the utilized feature signatures can be simply and intuitively
interpreted as a rough approximation of the original image. Such simple colored
circles can be directly sketched by users trying to define their query intent which
can substitute the uncomfortable need of an example query image.

Fig. 1. A key-frame and the
visualization of the feature sig-
nature. For each centroid a
circle with the corresponding
color and position is drawn.
The weight of the centroid is
depicted as the diameter of the
circle.

The video retrieval techniques also try to reduce the number of key-frames
by selecting only the representative ones. However, employing a scene detection
and representing the detected scenes with only one key-frame would bring a
possibility of not capturing some of the less significant color regions. For this
reason, we decided to select simply every k-th frame for the feature signatures
extraction. Although this method may introduce a noticeable overhead, it gives
the desired robustness to the retrieval model. Furthermore, the extraction is still
reasonably fast allowing to extract the feature signatures from an hour of video
within a few minutes (on a low-end desktop PC using single core). One feature
signature comprises tens of centroids and it is sufficient to reserve only 3 bytes
for the color and 4 bytes for the position. As a result, the memory demands are
reasonably low2.

1 The feature space is formed by coordinates (x, y, L, a, b), where x, y denotes the
position of the pixel and L, a, b represent its color in the CIE LAB color space [23].

2 In practice, it is sufficient to process 2 frames per a second of the video. Assuming
the proposed 7-byte representation and 25 centroids per frame, an hour of video
produces less than 2Mb of descriptor data.
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3.2 Retrieval Algorithm

Let us assume that we have already extracted the feature signatures FSi = {rij}
for the selected key-frames Fi where rij denotes the j-th centroid of the i-th
feature signature. Users are enabled to specify a simple sketch of the viewed scene
with colored circles (i.e., user-defined centroids) which allows to represent a query
in the same way as the extracted feature signatures. Since users may memorize
only the most distinct color regions from the desired scene, we expect only a
few query centroids to be specified; hence, the model uses local instead of global
matching. Let us explain the ranking scheme on a user defined query sketch FSu

comprising centroids ruv . The centroid distance distuvi between query centroid
ruv and a key-frame Fi is estimated as the distance to the nearest centroid from
FSi (1), L2 denoting the Euclidean distance.

distuvi = min
∀rij∈FSi

L2(rij , ruv) (1)

To obtain the sketch ranking rankui of the key-frame Fi the centroid distances
are scaled to the [0;1] interval and averaged according to (2) where Duv =
{distuvi | ∀i} (i.e., all the distances from centroid ruv to the key-frames).

rankui = avg
∀ruv∈FSu

(distuvi −minDuv)

(maxDuv −minDuv)
(2)

As the searched shot may consist of more than one visually discriminative
scene, users are enabled to specify two (and possibly more) time-ordered query
sketches. For a two-sketch query FSu followed by FSw the sketch rankings
rankui and rankwi are obtained and the overall ranking ranki of the key-frame
Fi is calculated according to (3) where ε denotes a user-defined time range. Note
the second query sketch is treated differently than the first – the most similar
key-frame within a consecutive time neighborhood3 is used.

ranki = rankui +
i+ε
min
t=i+1

rankwt (3)

Once we obtain the overall rankings, it is desirable to merge near-duplicate
results generated by the dense key-frame representation. We accomplish that
with the Alg. 1 where the function Neighbor returns all the key-frames from the
predefined neighborhood, say 10 seconds around the popped key-frame. Note
that the algorithm produces properly sorted results. The final results are pre-
sented as a simple list of the matched key-frames, each surrounded with adjacent
key-frames in order to make the identification of the searched scene easier.

The model presented so far demands the database to be fully scanned. Al-
though the computation of the distances is not expensive, the processing of a
query is not feasible once the dataset grows significantly. It is thus desirable
to omit as much database centroids from the ranking process as possible and
consequently to avoid computing the distances. As long as we do not omit the

3 Note t is logical time, i.e., the order of key-frames.
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Algorithm 1. Results merging

queue ← overall rankings � A priority queue with respect to the ranking
merged ← empty � A list of the results after merging
while queue.NonEmpty() do

result ← queue.Pop()
merged.Add(result)
queue.Remove(Neighbor(result))

end while
return merged

centroids from the searched key-frames4, their ranking will not be affected nega-
tively and the effectiveness will be preserved. We will derive later (Sec. 4.3) that
this paradigm leads to standard range queries.

Now, a key-frame Fi having all the centroids omitted has not properly defined
the centroid distance distuvi. In such case, we set it to maxDuv, i.e., the worst
match.

3.3 Indexing the Feature Space

In order to efficiently process range queries in the utilized 5-dimensional vector
space (x, y, L, a, b) using the Euclidean distance, we investigate both spatial and
metric indexing approaches, each represented by a suitable method. Since the
utilized feature extraction does not favor any key-frame region, the distribution
of the position coordinates shows high degree of uniformity and thus we have
selected a grid index as the representative of spatial indexing methods. As a
metric space method, we have selected the current state-of-the-art technique –
the M-Index [15]. As both techniques are well described in the literature, we just
simply remember their most important properties.

Grid Index. The grid index (Grid) can be used to divide the feature space into
uniform cuboid-like bins, where the number of bins grows exponentially with the
space dimension which limits this approach only for low-dimensional spaces. The
advantage of the uniform grid index is that the bin where an indexed centroid
belongs can be directly computed. When the index is queried with a range query
(q, r) every bin having non-empty intersection with the sphere defined by q and
r has to be examined.

M-Index. The M-Index is a member of permutation-based index family where
the pivots (selected objects from the metric space) help to dynamically cluster
the feature space with respect to the data distribution. More specifically, the
M-index uses the repetitive Voronoi-based partitioning to define the dynamic

4 In fact, even some centroids from the searched key-frames can be omitted since (1)
implies that only the closest centroid from the key-frame contributes to the ranking.
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cluster tree structure used for efficient range query processing where all possible
metric filtering principles are combined (for more details, see [15]). Besides the
original M-Index, we employ the Cut-region extension (M-Index CR)[11] enabling
more efficient filtering already in the upper levels of the cluster tree. Since pivot
selection technique is crucial for the M-Index performance [4] as well as the
number of pivots and other parameters, we carefully determine the optimal setup
for each M-Index variant separately.

Bounding Sphere Constraint. Since we utilize vector spaces, we can im-
prove filtering power of the utilized indexes by tight bounding spheres5 evaluated
dynamically for each bin/cluster separately. The motivation is the additional
bounding can describe the region more tightly than grid bin or voronoi-based
cell cut-off by rings centered in global pivots. On the other side, the creation and
maintenance of the bounding spheres (finding centers and radii) can be a costly
indexing overhead and thus we employ efficient approximate algorithm [17] suit-
able also for dynamic indexing. We utilized the Bounding Sphere Constraint for
both the Grid (Grid BS) and M-Index (M-Index BS and M-Index BS + CR).

4 Experiments

Firstly, the optimal parameters of the proposed retrieval model are established
basing on the users behavior. In particular we determine the importance of the
color and position and the minimal relevant neighborhood of a query centroid
so that the model remains effective. Secondly, the performance of the proposed
index variants is evaluated under user-defined queries and a real dataset. We
also include a short overview of the VBS 2014 results.

4.1 Settings

The experiments were realized on an EBU MIM-SCAIE video dataset [12] from
which we have selected 27 hours of diverse video content. The resulting database
contained total of 4.8 millions centroids.

More than 40 users were told to find a randomly selected short clip within
five minutes. Almost 100 successfully found clips along with user-defined sketches
were gathered and were used to optimize the parameters.

In order to evaluate the performance of the indexing techniques, 300 user-
defined query centroids were collected and used for querying the index. Since
we have utilized just cheap Euclidean distance, we have focused mainly on the
overall time needed to process a query. The measurements were performed on
an Intel Xeon CPU @2.80 GHz in a single thread. The data structures occupied
only a few Mb of memory (excluding key-frame images) and were kept in the
RAM memory.

5 Referred also as ball-regions or enclosing balls.
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The best performing parameters for each index variant were explored and
used for the comparison of the indexing techniques.

4.2 The Importance of the Position and Color

In this section, we focus on the relation between the color and position coor-
dinates, i.e., what is more important for finding the relevant key-frames. This
relation is typically modeled by additional weighs for the color and position
coordinates, for example, using weighted Euclidean metric. However, for fixed
weights, the same effect can be achieved by scaling the feature space prior to the
indexing and searching. In the following text, we fix the color coordinates and
scale only the position coordinates with a position-color ratio (PCR)6.

To determine the optimal value of the PCR, we have performed following
steps. For every searched clip c, we have queried the system with the user-
defined query sketch under different values of the PCR and tracked the position
of the clip c in the results. For PCR = x, the impairment ranking was obtained
according to (4) where Pcx denotes the position of the searched clip in the results
(less is better). In this way, the impcx is the relative impairment of the position
with respect to the best and worst possibility within the evaluated interval of
the PCR.

impcx =
(Pcx −minPc)

(maxPc −minPc)
where Pc = {Pcx | ∀x} (4)

The average position impairment from all the user searches is depicted in
Fig. 2a. The optimal PCR found in this process depends of course on the initial
setup. In our case, the color coordinates were scaled to the interval 0-255 and
the position coordinates followed the proportions of the key-frames (350 x 200).
Finding the optimum at 1.35, we scaled the position coordinates by this number.
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Fig. 2. The position-PCR dependency and the distribution of the user errors

6 Note that the sketch rankings computed in (2) are scaled which allows us to optimize
only the PCR.
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4.3 Relevant Neighborhood of a Query Centroid

It is desirable to delimit the minimal neighborhood of a query centroid in the
database that has to be examined in order to retrieve the wanted clip. Users
are of course inaccurate in specifying the query centroids (e.g., the color of the
intended region may be in fact darker) and the model has to tolerate these
inaccuracies. We define the user error for a query centroid as the distance to
the nearest database centroid from the searched clip. More formally, for a query
centroid r specified by a user searching for a clip c the user error er is calculated
according to (5) where FSc stands for all the feature signatures extracted from
the searched clip c.

er = min
∀rij∈FSc

L2 (r, rij) (5)

The empirical distribution function of the user errors is depicted in Fig. 2b,
where the vertical red line marks the 95% quantile which is ca 87 in our case.
Please note that this number may vary with different datasets and users. We can
see that if we omit the database centroids beyond the range of 87 (i.e., a range
query), the ranking of the searched clip remains unaffected in most of the cases.

4.4 Index Performance

The performance of the index variants were evaluated under the growing database
of up to 4.8 millions of centroids. The results are depicted in Fig. 3a, where we
can observe that the BS Constraint brings decent performance improvement to
the Grid as well as to the M-Index and M-Index CR.

Since the Grid uses fixed data structures, visiting bins demands a constant
time, independently on the database size. This is not the case of the M-Index
where the number of buckets grows with the database size causing the cost of
their traversing to reflect this trend. As a result, for smaller databases with less
than 500 000 centroids (i.e., almost 4 hours of video) the M-Index BS + CR is
the best option, despite the need of more distances to be computed (Fig. 3b),
while for larger ones the Grid BS takes the lead.

100000 1000000 2000000 3000000 4000000

0

10

20

30

40

50

60

70

80

90

100

Database size

O
ve

ra
ll 

tim
e 

in
 m

s

Grid
Grid BS
M−Index
M−Index CR
M−Index BS
M−Index BS + CR

(a) The overall time.

100000 1000000 2000000 3000000 4000000

10

13

16

19

22

25

Database size

%
 o

f a
 s

eq
ue

nt
ia

l s
ca

n

Grid
Grid BS
M−Index
M−Index CR
M−Index BS
M−Index BS + CR

(b) The number of distance computations.

Fig. 3. The performance of the index variants under growing database
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4.5 VBS 2014 Results
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Fig. 4. The results of VBS 2014. The dashed lines mark
the maximal possible score.

The full analysis of the
VBS 2014 results is out
of the scope of this pa-
per; however, we include
a brief overview in order
to support the statements
about the effectiveness of
our approach. As men-
tioned earlier, the tools
competed in four cate-
gories: visual and textual
KIS in single video and vi-
sual and textual KIS in
video archive. The score

for each KIS task was calculated as
50+50 limit−t

limit

penalty where t, limit and penalty
denotes the time of the correct submission, the time limit for the KIS task and
the number of incorrect submissions (or 1 if there is none). The results are de-
picted in Fig. 4.

5 Conclusion

In this paper we presented the feature signatures based video retrieval model
along with suitable indexing techniques. It was shown at VBS 2014 that such
a simple approach can compete with and even outperform current the state-
of-the-art complex approaches in the known-item search in video. Although we
optimized both the parameters of the model and the indexing technique, it is
questionable whether the model is capable of preserving both efficiency and effec-
tiveness in scope of hundreds or thousands of hours of video. We believe, however,
that the model forms solid basis for content-based video retrieval systems and
can be further improved.

It may seem that the M-Index is not suitable for our scenario since is outper-
formed by the Grid index; however, it should be stressed out that the M-Index
is faster in very small databases. If we have many small video files indexed sep-
arately and users are enabled to filter the files (e.g., by the creation date or
length) prior to the search itself, the M-Index would be better choice.

We also investigated the BS Constraint which can help to prune a vector fea-
ture space more efficiently when processing range queries. Approximate bound-
ing spheres can be computed efficiently and dynamically and we demonstrated
that even roughly computed bounding spheres can improve the filtering power.

5.1 Future Work

Video data carry way more information than the color distribution in static
key-frames. For example, the motion of the background and foreground can be
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possibly detected and associated with particular centroids. It is also desirable
to utilize the weights of centroids. In our opinion, this information may play an
important role and we plan to incorporate it in the retrieval model.

Next, we believe that enhancing the results browsing can improve effectiveness
greatly. The results can be organized in an advanced way [10] or the standard
query-by-example paradigm might be employed once users retrieve some initial
results.

Acknowdledgement. This research has been supported in part by Czech Sci-
ence Foundation projects P202/11/0968 and P202/12/P297.
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[13] Moumtzidou, A., et al.: Verge: An interactive search engine for browsing video
collections. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H.,
O’Connor, N. (eds.) MMM 2014, Part II. LNCS, vol. 8326, pp. 411–414. Springer,
Heidelberg (2014)

[14] Ngo, T.D., Nguyen, V.H., Lam, V., Phan, S., Le, D.-D., Duong, D.A., Satoh, S.:
Nii-uit: A tool for known item search by sequential pattern filtering. In: Gurrin,
C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM
2014, Part II. LNCS, vol. 8326, pp. 419–422. Springer, Heidelberg (2014)

[15] Novak, D., Batko, M.: Metric index: An efficient and scalable solution for similarity
search. In: Second International Workshop on Similarity Search and Applications,
SISAP 2009, pp. 65–73 (August 2009)

[16] Padmakala, S., AnandhaMala, G.S., Shalini, M.: An effective content based video
retrieval utilizing texture, color and optimal key frame features. In: 2011 Interna-
tional Conference on Image Information Processing (ICIIP), pp. 1–6 (November
2011)

[17] Ritter, J.: An efficient bounding sphere. In: Graphics Gems, pp. 301–303. Morgan
Kaufmann, San Diego (1990)

[18] Rubner, Y., Tomasi, C.: Perceptual metrics for image database navigation, vol. 1.
Springer (2000)

[19] Schoeffmann, K., Lux, M., Taschwer, M., Boeszoermenyi, L.: Visualization of video
motion in context of video browsing. In: IEEE International Conference on Mul-
timedia and Expo, ICME 2009, pp. 658–661 (June 2009)

[20] Schoeffmann, K., Ahlström, D., Bailer, W., Cobârzan, C., Hopfgartner, F.,
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Abstract. Permutation based approaches represent data objects as or-
dered lists of predefined reference objects. Similarity queries are executed
by searching for data objects whose permutation representation is similar
to the query one. Various permutation-based indexes have been recently
proposed. They typically allow high efficiency with acceptable effective-
ness. Moreover, various parameters can be set in order to find an optimal
trade-off between quality of results and costs.

In this paper we studied the permutation space without referring to
any particular index structure focusing on both theoretical and experi-
mental aspects. We used both synthetic and real-word datasets for our
experiments. The results of this work are relevant in both developing and
setting parameters of permutation-based similarity searching approaches.

Keywords: permutation-based indexing, similarity search, content based
image retrieval.

1 Introduction

Representing dataset objects as lists of preselected pivots ordered by their close-
ness to each object is a recent approach that have been proved to be very useful
in many recent approximate similarity search techniques [3,8,14,20]. These ap-
proaches share the intuition that similarity between objects can be approximated
by comparing their representation in terms of permutations. The quality of the
obtained results have proved that whenever the permutations of two objects are
similar then the two objects are likely to be similar also with respect to the
original distance function.

In this paper, we studied the permutation space withouth relying on any spe-
cific indexing structure with the goal of making theoretical and experimental
observations that can be of help in both setting parameters of existing permu-
tation based approaches and developing new one.

2 Related Work

Predicting the closeness between objects on the basis of ranked lists of a set
of pivots was originally and independently proposed in [8] and [4]. In [8] data

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 37–49, 2014.
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objects and queries are represented as appropriate permutations of a set of
reference objects, called permutants, and their similarity is approximated by
comparing their representations in term of permutations. As distance between
permutations, Spearman rho, Kendall Tau and Spearman Footrule were tested.
Spearman rho revealed better performance.

The MI-File approach [4,3] uses an inverted file to store relationships between
permutations. Spearman Footrule Distance is used to estimate the similarity
between the query and the database objects. To reduce the storage, each object
is encoded using the only nearest reference points and further approximations
and optimizations are adopted to improve both efficiency and effectiveness.

The Permutation Prefix Index (PP-Index), was proposed in [13,14]. PP-Index
associates each indexed object with a short prefix of predefined length of the
full permutation. The prefixes are indexed by a prefix tree kept in main memory
and all the relevant information relative to the indexed objects are serialized
sequentially in a data storage kept on disk. PP-index uses the permutations
prefixes in order to quickly retrieve a candidate set of objects that are likely
to be at close distance to the query. The result set is then obtained using the
original distance function by a sequential scan of the candidate set.

In [20], the concept of Locality-sensitive Hashing (LSH) was extend to a gen-
eral metric space by using a permutation approach. In [19], a quantized represen-
tation of the permutation lists with its related data structure was proposed and a
specific data structed, namely the Metric Permutation Table, was also defined. In
[22] authors presented the neighboord approximation (NAPP) techinique whose
main idea is to represent each object by the set of its nearest pivots and approxi-
mate the similarity between objects on the basis of the number of shared pivots.
Three strategies for parallelization of permutation-based indexes using inverted
files were presented in [18]. Posting lists decomposition, reference points decom-
position, and multiple independent inverted files were studied and compared.

In [2], various pivot selection techniques were tested on three permutation-
based indexing approaches (i.e., [8,3,14]). The results revealed that each indexing
approach has its own best selection strategies but also that the random selection
of pivots, even if never the best, results in good performance.

In [17,1] a Surrogate Text Representation (STR) derivated from the MI-File
has been proposed. The conversion of the permutations in a textual form allows
using off-the-shelf text search engines for similarity search.

3 Permutation-Based Representation

Given a a domain D, a distance function d : D × D → R and a fixed set of
objects P = {p1 . . . pn} ⊂ D that we call pivots, we define a permutation-based
representation Πo (briefly permutation) of an object o ∈ D as the list of pivots
identifiers ordered by their closeness to o, with the pivots being a fixed set of
objects.
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Formally, thepermutation-based representationΠo = (Πo(1), Πo(2), ..., Πo(n))
lists the pivot identifiers in an order such that ∀j ∈ {1, 2, . . . , n−1}, d(o, pΠo(j)) ≤
d(o, pΠo(j+1)), where pΠo(j) indicates the pivot at position j in the permutation as-
sociated with object o.

Denoting the position of a pivot pi, in the permutation of an object o ∈ D, as
Π−1

o (i) so that Πo(Π
−1
o (i)) = i, we obtain an equivalent representation Π−1

o :

Π−1
o = (Π−1

o (1), Π−1
o (2), ..., Π−1

o (n))

This representation is very useful for essentially two reasons: first, Π−1
o ∈ R

n

allowing representing permutation in the Cartesian coordinate system; second,
the Euclidean distance between two objects x, y represented as Π−1

x and Π−1
y is

equivalent to the Spearman rho distance between Πx and Πy (see Section 3.1).

3.1 Comparing Permutations

The idea of approximating the distance d(x, y) between any two objects x, y ∈
D by comparing their permutation-based representation Πx, Πy was originally
proposed in [8]. As distance between permutations, Spearman rho, Kendall Tau
and Spearman Footrule were tested. Spearman rho revealed better performance.
Given two permutations Πx and Πy, Spearman rho is defined as:

Sρ(Πx, Πy) =

√ ∑
1≤i≤n

(Π−1
x (i)−Π−1

y (i))2

Following the intuition that the most relevant information of the permutation
Πo is in the very first, i.e. nearest, pivots, Spearman rho distance with location
parameter Sρ,l defined in [15], intended for the comparison of top-l lists, has
been also proposed.

Sρ,l differs from Sρ for the use of an inverted truncated permutation Π̃−1
o that

assumes that pivots further than pΠo(l) from o being at position l+1. Formally,

Π̃−1
o (i) = Π−1

o (i) if Π−1
o (i) ≤ l and Π̃−1

o (i) = l+ 1 otherwise.
It is worth to note that only the first l elements of the permutation Πo are

needed, in order to compare any two objects with the Sρ,l.

4 Theoretical Observations

As mentioned in Section 3, the permutation-space representation Π−1
o belongs

to R
n. Moreover, the Spearman rho distance between two permutations Πx and

Πy results in a Euclidean distance between Π−1
x and Π−1

y . In the following we
consider the Π−1

o representation in a Cartesian coordinate system.
If we consider the case n = 3, the set of all possible permutation-based

representation (i.e., the set of all permutations on 3 elements) is formed by
{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. It is easy to see that all this
points lie on the plane x + y + z = 6 and represent the vertices of a regular
hexagon as depicted in Figure 1.
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Consider now the n = 4 case: the vectors of all possible Π−1
o lie in a three-

dimensional subspace of R4 and are the vertices of a truncated octahedron (see
Figure 2).

In general, the n! points x obtained by permuting the coordinates of the vector
(1, 2, . . . , n), form the vertices of a (n− 1)-dimensional polytope embedded in a
n-dimensional space, referred to as permutahedron (also spelled permutohedron)
[23,16]. In fact, given that both the sum of vector values xi (i.e., Π−1

o (i)) and
their squared values are fixed, all the vertices lie on both the hyperplane

x1 + x2 + · · ·+ xn =
n(n+ 1)

2

the n−sphere

x2
1 + x2

2 + · · ·+ x2
n =

n(n+ 1)(2n+ 1)

6
.

That is they lie on the intersection between an hyperplane and a sphere both in
R

n, i.e., on a n− 1 sphere residing in n-dimensional space.
The permutahedron is a very interesting convex polytope. It is centrally sym-

metric and its vertices can be identified with the permutation of n objects in
such a way that two vertices are connected by an edge if and only if the cor-
responding permutations differ by an adjacent transposition. It is rather easy
to see that the squared Euclidean distance between any two vertices is an even
integer, moreover, for n > 4, the squared distances constitute every even integer
up through the maximum possible value, that is 1

3 (n
3 − n) [21,23].
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As observed in [21], standing on any vertex of a permutahedron and looking
around at neighbouring vertices, the view of the surrounding space is the same:
there would be n−1 adjacent vertices evenly distributed around the observation
vertex, which Euclidean distance is

√
2. Furthermore, the number of vertices and

their relative positions within a generic ε-ball neighbourhood is independent of
the observation vertex.

The permutahedron precisely illustrate how the permutation-based represen-
tation are positioned in the space were the Euclidean distance is equivalent to the
Spearman rho. It is worth to mention that the Spearman Footrule, sometimes
used in permutation based-indexing, results in a L1 (also Manattan) distance
in the same space. However, it does not help very much in understanding the
distance distribution.

In order to understand the Spearman rho distance distribution it is useful
to use its not-squared root variant (S2

ρ) because of its interesting distribution
properties. In [11] it was shown that S2

ρ distance has:

– mean: 1
6 (n

3 − n)
– variance: 1

36n
2(n− 1)(n+ 1)2

– maximum value: 1
3 (n

3 − n)

Unfortunately, S2
ρ is not a metric. However, due to the monotony of the square

root function, there are not changes in the order of the results of a k-NN search
with respect to the ones that can be obtained with Sρ. Moreover, normalized
by its means and variance, S2

ρ has a limiting normal distribution [12]. Chávez’s
intrinsic dimensionality [10] of the permutation space with squared Spearman
rho distance is 1

2 (n− 1).

5 Performance Evaluation of the Permutation Space

For our experiments we did not use any specific index approach. In fact, we
performed sequential scan of permutation-based representation archives in order
to retrieve most similar objects with respect to the query by using the Spearman
rho distance function.

5.1 Datasets and Groundtruth

Random Float Vectors. As synthetic dataset we considered random gener-
ated vectors of floats of various dimensionalities d between 2 and 10. For each
dimension we randomly generated float between 0 and 1. As distance measure
for comparing any two vectors we used the Euclidean distance.

CoPhIR. As real-word dataset we used CoPhIR dataset [7], which is the largest
multimedia metadata collection available for research purposes. It consists of 106
millions images crawled from Flickr. We run experiments by using as distance
function d a linear combination of the five distance functions for the five MPEG-7
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descriptors that have been extracted from each image. We adopted the weights
proposed in [5]. As the ground truth, we have randomly selected 100 objects
from the dataset as test queries and we have sequentially scanned the CoPhIR
to compute the exact results. The queries were removed from the dataset itself.

5.2 Pivots Selection

For the CoPhIR dataset we randomly selected 10,000 pivots from the whole
106M objects collection. We then created subsets of this first selection. In the
following we report experiments obtained on a subset of the entire CoPhIR
collection. Thus it happens that some pivots are also in the dataset while some
are not.

Pivots for the random float vectors were randomly generated without selecting
between the objects in the dataset.

Variuos pivots selection strategies have been proposed for permutation-based
indexing [2]. Experimental results have shown that while each specific index
strategies have its own best selection approach, the random selection is always
a good choice.

5.3 Parameters

In this section we summarize the parameters that have to be set for each specific
experiment.

d - Float Vectors Dimensionality. This parameter is only necessary to in-
dicate which random float vector dataset was used for the specific experiment.
Experiments are reported for d = 2, 4, 6, 8.

m - Dataset Size. For both the synthetic and the CoPhIR dataset we recur-
sively selected a subset of the collection. We performed experiments up to 1M
and 10M objects for the random float vectors and CoPhIR datasets respectively.

n - Number of Pivots. The max number of pivots we used was 10,000. The
smallest set of pivots have been obtained recursively selecting a subset of the
larger collection.

l - Permutation Length. Various values of l for the Spearman rho with
location parameter (see Section 3.1) where tested. Please note that l = n results
in the standard Spearman rho distance.

a - Amplification Factor. When a k-NN search is performed, a candidate
set of results of size k′ = a ∗ k is retrieved considering the similarity of the
permutations based on Sρ. This set is then reordered considering the original
distance d : D ×D → R.
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Fig. 3. Variances (eigenvalues) λ1 ≥ λ2 ≥ · · · ≥ λn, for various number of pivots
n, corresponding to each principal component of the permutation obtained from the
random float vectors of dimensionality 4 (a), 8 (b)

5.4 Evaluation Measure

Permutation-based indexing approaches, typically re-rank a set of approximate
results using the original distance. In this work we did the same. Thus, if the
k-NN results list R̃k returned by a search technique has an intersection with the
ground truth Rk, the objects in the intersection are ranked consistently in both
lists. The most appropriate measure to use is then the recall : |R̃k ∩ Rk|/k. In
the experiments we fixed the number of results k to 10.

5.5 Principal Component Analysis

While PCA can not be performed on a generic domain D that can have a non
metric distance and/or being a non vector space, once the permutation-based
representation has been obtained it is always possible to run PCA on the Π−1

o .
We did this for both the random float vectors and CoPhIR dataset.

In Figure 3, we show the eigenvalues of each principal component of the per-
mutations obtained for various number of pivots n. The dimensionality of the
float vectors was 4 for (a) and 8 for (b). Please note, that both axes have log-
arithmic scale. With 1,000 pivots it is clear in both cases what the original
dimensionality of the vector space was. In fact, there is a large drop in the eigen-
values passing from the 4th and 5th eigenvectors in (a), and from 8th and 9th in
(b). The results also show that with more pivots we obtain a permutation-based
representation that better fix the original data complexity.

We did the same for the CoPhIR dataset reporting the results in Figure 4.
It is interesting to see that, in the logarithmic scale, the eigenvalues linearly
decrease. However, CoPhIR did not reveal any specific dimensionality.
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In [6], it was shown that the combined distance function that we are also using
in our experiments, results on the CoPhIR dataset in a near normal distribution
with an intrinsic dimensionality, measured following the approach presented in
[9], of about 13. Unfortunately, the same information can’t be induced from
Figure 4. Some non-linearity can be seen around 6 and 9, but performing PCA
on the CoPhIR doesn’t allow to understand the intrinsic dimensionality of the
dataset as well as it allowed to understand the real dimensionality of the random
generated float vectors.

5.6 Recall

In this section we relate the various parameters presented in 5.3 to the recall
obtained on k-NN searching for k = 10. As mentioned before, results were ob-
tained sequentially scanning archives of permutations by using the Spearman rho
with and without location parameter l. Please note that l = n, i.e. for location
parameter l equal to the number of pivots, the Spearman rho with an without
location parameter are equivalent.

In Figure 5, we report the recall obtained on the random float vector datasets
of 2 (a), 4 (b), 6 (c), 8 (d) dimensionalities, varying the location parameter l and
for various number n of pivots. In these experiments we fixed the amplification
factor a = 1. The most interesting result is that for small dimensionalities (2 and
4) there is a maximum recall that can be obtained varying l. In other words, l = n
it is not always the best solution, but there is an optimal l that appears not to vary
for n > l. It also interesting to see that this optimal l varies significantly with the
dimensionality of the original vector space. For 8 dimension vectors we are not
even able to see this effect in the results. Probably, in this case the optimal l is
well above 10,000 which is the max number of pivots we tried. Another important
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Fig. 5. Recall varying l for various number of pivots obtained on 100,000 random float
vectors of dimensionality 2 (a), 4 (b), 6 (c), 8 (d)

observation is that the differences between the recall obtained by the various set
of pivots tend to be smaller for higher d.

The same type of experiments were conducted on the CoPhIR dataset. In
Figure 6, we report the recall obtained for a = 1 (a) and a = 10 (b). As for the
random float vectors, it appears to be an optimal l that does not vary signifi-
cantly with n. While the amplification factor does significantly impact the overall
recall, the optimal l still remain almost the same. These results are consistent
with the ones obtained on the random float vectors for dimensionality of about
4. In terms of indexability with respect to the permutation-based approach,
CoPhIR appears to be as complex as random generated vectors of dimensional-
ity between 4 and 6. In fact, we shown in Figure 5 that for random float vectors
of 8 dimensions, the optimal l equals the number of pivots.
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Fig. 6. Recall varying location parameter l for various number of pivots and a = 1 (a)
and 10 (b) on CoPhIR 10M objects
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In Figure 7, the recall obtained varying the number of pivots for various size of
CoPhIR subsets is reported. In this case we use a = 1. In Figure 7 (a), we show
the results obtained for l = n (i.e., the standard Spearman rho). In Figure 7 (b),
we report the recall obtained for the optimal l which depends on both n and
dataset size. Comparing these two figures it is evident that higher recall can be
obtained increasing the number of pivots only if the optimal location parameter
l is used. However, in our experiments, we had very near optimal results by
using l = 200 (as can be seen for 10M objects in Figure 6). The intuition is that
after a certain number of pivots, information regarding distant pivots is not only
useless but distracting. Pleas note that the experiments performed on the random
vectors indicate that the distant pivots are useful when the dimensionality of the
dataset is above 8 (up to 10,000 pivots). Thus, while the observations made on
the CoPhIR datasets are useful for understanding its characteristics and the
fact that it exists an optimal l for a specific dataset, l = 200 is a near optimal
solution only for the CoPhIR dataset and it probably reflects its complexity
which appears to be lower than the intrinsic dimensionality evaluated in [6]
following the [9] approach.

In Figure 8, we show the recall obtained varying the size of the CoPhIR
subset for various number of pivots, optimal l (different for each combination
of number of pivots n and dataset size) and a = 10. This graph is useful for
understanding the loss in recall when the dataset increase. The results show
that there is almost a linear dependency between the number of pivots needed
to achieve a given quality of results and the dataset size.

In Figure 9, we fixed both the number of pivots (10, 000) and the dataset size
(10M) reporting the recall varying a for various l. As obvious, the larger the
amplifier factor a the better the quality of the results. Please note that l and
a are the most relevant parameters in trading efficiency versus effectiveness in
permutation based indexes. In fact, the shorter the permutation Πo, the fewer
the information to be stored for each object. Moreover, the less the amplification
factor a, the smaller the number of objects to be retrieved for each search.

6 Conclusion

In this work we studied the permutation space focusing on both theoretical and
experimental aspects not relying on any specific index structure. We used both
synthetic and the CoPhIR dataset for the experiments varying various parame-
ters that are typically used for trading-off between efficiency and effectiveness.

We first made some observations on the permutation space generating random
permutations in order to understand its specific characteristic. We showed that
the points are vertices of a permuthaedron, that using a squared Spearman rho
results in Gaussian distance distribution.

The experiments conducted using random float vectors of various dimension-
ality shown that the complexity of the dataset affects the optimal value of l in
terms of recall and that the dimensionality of the original vector space can be
argued by performing PCA on the permutation space.
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Also in the case of the CoPhIR dataset we found that it exists an optimal l for
each specific number of pivots. Moreover, this optimal l is very stable and typi-
cally around 200. Thus, we believe that the optimal length of the permutations
is in relation with the intrinsic complexity of the dataset even if this complexity
can not be clearly seen performing PCA on the permutation space.

The experiments also revealed a linear dependency between the number of
pivots and dataset size. Other results were shown considering l and amplifier
factor a combination considering that they are the most useful parameters in
trading-off efficiency and effectiveness in permutation indexes.
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Abstract. We present a novel index for approximate searching in metric
spaces based on random bisectors and binary fingerprints. The aim is
to deal with scenarios where the main memory available is small. The
method was tested on synthetic and real-world metric spaces. Our results
show that our scheme outperforms the standard permutant-based index
in scenarios where memory is scarce.
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1 Introduction

Similarity search is an extension of exact searching, motivated by data types that
cannot be queried by exact matching. This problem consists in finding elements
within a given dataset that are similar to a given query according to a similarity
criterion. There is a wide range of applications where the exact comparison is
of little use. For instance, consider the case when a person is asked to scan its
fingerprint so as to retrieve medical records. The system will obtain a different
version of the fingerprint depending on the amount of pressure the person places
on the sensor. In these situations, the only way of retrieving relevant objects —
that is, objects that are similar to the query— is by tolerating small variations
between objects. Other applications include multimedia databases containing
images, audio, video, documents, and so on [4].

Proximity queries can be formalized using the metric space model [4,8,10,11].
Essentially, this model considers a pair (X, d), where X is a universe of objects
and d : X×X → R+∪{0} is a nonnegative distance function defined among them.
Objects in X do not necessarily have coordinates (think, for instance, in strings).
On the other hand, the function d provides a dissimilarity criterion to compare
objects from X. In general, the smaller the distance between two objects, the
more “similar” they are. The function d satisfies the metric properties, namely:
positiveness d(x, y) ≥ 0, symmetry d(x, y) = d(y, x), reflexivity d(x, x) = 0, and
triangle inequality d(x, z) ≤ d(x, y) + d(y, z), for every x, y, z ∈ X.

The standard scenario of proximity searching considers a finite database of
interest U ⊂ X, of size n. Later, when a new query object q ∈ X \ U arrives, its
proximity query consists in retrieving relevant objects from U.
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There are two basic queries, namely, range and k-nearest neighbor ones. The
range query (q, r) retrieves all the elements in U within distance r to q. The k-
nearest neighbor query NNk(q) retrieves the k elements in U that are closest to
q. Both queries can be trivially answered by exhaustively scanning the database,
requiring n distance evaluations. However, as the distance function is assumed
to be expensive to compute (e.g., when comparing two fingerprints), frequently
the complexity of the search is defined in terms of the total number of distance
evaluations performed, instead of using other indicators such as CPU or I/O
time. Thus, the ultimate goal is to build an offline index that, hopefully, will
accelerate the process of solving online queries.

In this paper, we show a novel metric space index based on random bisectors
and binary fingerprints to approximately solve the similarity search problem.
An advantage of our index is that only requires a marginal amount of space.
As we detail in the experimental section, when solving the NN1(q) in the hard
metric space of uniformly distributed vectors in R

128 under Euclidean distance,
our method is able to retrieve 98% of the true answer by analyzing only 10%
of the dataset, and this is achieved by using only 288 bits per element in the
index. In the same experimental setup, our index overcomes the state-of-the-art
Permutation Based Index (PBI) [3], as the later only retrieves 77% of the answer.

2 Related Work

In this section we briefly explain the compact-partition based algorithms and
the PBI. Then, we describe two concepts that are central for the present study,
namely, the Hamming distance and locality-sensitive hashing.

Compact-Partition Based Indices. These methods split the space into zones
as compact as possible. For each partition, they store a representative object and
extra information that permits the exclusion of that partition at query time.

This family of methods can be divided into the Voronoi partition and covering
radius schemes. A Voronoi Partition method selects a subset of representative
objects, called centers, denoted as {c1, . . . , cm}, associating the remainder of
the objects according to their proximity to its closest center. At query time,
the distances (d(q, c1), . . . , d(q, cm)) are evaluated and the closest center c is
identified. Those regions satisfying the inequality d(q, ci) > d(q, c) + 2r can be
safely discarded because they never intersects the query ball. On the other hand,
the covering radius, cr(ci), corresponds to the distance between its center and
the farthest element in its respective zone. So, at query time, when d(q, ci)− r >
cr(ci), then the zone i can be safely discarded.

The Permutation Based Index. Let P ⊂ U be a subset of permutants. Each
element u ∈ U computes the distance towards all the permutants p1, . . . , p|P| ∈ P.
The PBI does not store distances. Instead, for each u ∈ U, it stores a se-
quence of permutant identifiers Πu = i1, i2, . . . , i|P|, called the permutation of
u. Each permutation Πu stores the identifiers in increasing order of distance, so
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d(u,Pij ) ≤ d(u,Pij+1). Permutants at the same distance take an arbitrary but
consistent order. Thus, a simple implementation needs n|P| space. Observe that
it is possible to compact several permutant identifiers in a single machine word.

The crux of the PBI is that two equal objects are associated to the same
permutation, while similar objects are, hopefully, related to similar permuta-
tions. In this sense, when Πu is similar to Πq one expects that u is close to q.
The similarity between the permutations can be measured by Kendall Tau Kτ ,
Spearman Footrule SF , or Spearman Rho Sρ metric [5], among others. As these
three distances have similar retrieval performance [3], for simplicity we use SF ,
defined as SF (Πu, Πq) =

∑
j=[1,|P|] |Π−1

u (ij)−Π−1
q (ij)|, where Π−1

u (ij) denotes
the position of permutant pij in the permutation Πu. For example, if we have
two permutations Πu = (42153) and Πv = (32154), then SF (Πu, Πv) = 8.

Finally, at query time, we compute Πq and compare it with all the permuta-
tions stored in the PBI. Next, U is traversed in increasing permutation dissimi-
larity. If we limit the number of distance computations, we obtain a probabilistic
search algorithm that is able to find the right answer with some probability.

Hamming Distance. Given two binary sequences of equal length, the Ham-
ming distance is the number of positions at which the corresponding symbols
differ [7].

Locality-Sensitive Hashing. The Locality-Sensitive Hashing (LSH) is a fam-
ily of techniques that map the input data into a set of buckets using several
hash functions. The overall goal is that, with high probability, similar objects
are mapped to the same bucket, and simultaneously, different objects are as-
signed to different buckets. This concept differs from the usual approach of hash
functions, instead of avoiding collisions between similar objects, LSH encourages
them.

The key point of LSH is to define the hash function family. The authors of
[1] survey several alternatives for the vector space. One of those alternatives is
related to our bisector approach. That idea is to pick random unit-length vectors
u ∈ R

D and then define hu(v) = sign(u · v). Using many random vectors, it is
possible to build a binary sequence for each object. This hash function family
was devised to approximate the cosine distance between two vectors in R

D.
As far as we know, there is only one application of LSH to metric spaces.

In [9], the authors use LSH to avoid the sequential scanning of the PBI.

3 Random Bisectors and Binary Fingerprints

In this section, we detail our proposed index for approximated similarity search-
ing in metric spaces and the corresponding algorithms for solving similarity
queries. The index uses the concepts of virtual random bisectors and binary fin-
gerprints (RBBF) to build the data structure. We use virtual bisectors, since in
general metric spaces, objects do not necessarily possess Cartesian coordinates.

Our index, called the Random Bisectors and Binary Fingerprints 1 (RBBF1),
represents the objects using binary fingerprints. RBBF1 can be classified as a
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Fig. 1. Randomly generated data points used to show the behavior of our index. In
(a), we see the objects partitioned using two virtual bisector hyperplanes H1 and H2.
In (b), we see the fingerprint associated to each object.

new LSH approach for metric space searching, where each bisector hyperplane
is a member in the hash function family.

For lack of space, in the following we only sketch the algorithms. A longer
explanation, including pseudo-codes can be found in [2] (in Spanish).

Construction. RBBF1 only stores the binary fingerprint Fj for each object
uj ∈ U. One of the main advantages of this philosophy is that it demands
very little memory. To compute the fingerprint of an object, we need to simulate
several bisectors. In this context, a bisector is understood as a virtual hyperplane
which is orthogonal to the imaginary segment connecting the two endpoints and
which intersects the midpoint of the segment.

If we were considering the vector space, each bisector hyperplane can be ac-
tually computed. However, in general metric spaces, objects do not necessarily
have coordinates. Instead, what is available is the dissimilarity function d. Hence,
when randomly picking two objects hi1, hi2 ∈ U, we can implicitly separate the
space into two regions (by closeness to hi1 or hi2) in an analogous manner as
the above-mentioned bisector. Therefore, the method computes the distance be-
tween each object u ∈ U to the objects hi1 and hi2. The index then determines
which of two object is the closest, identifying the corresponding region with a
bit.

Fig. 1a illustrates the RBBF1. It shows a scatter plot with 12 random objects
and two random bisectors. The first bisector, H1, is induced by the objects
h11 = u1 and h12 = u12. The first component of the fingerprint refers to H1,
and is set to one for those elements closer to u1 and set to zero when they are
closer to u12. Analogously, the second bisector, H2, is generated from the objects
h21 = u4 and h22 = u9. Fig. 1b shows resultant fingerprints for each object.

As we manage several hyperplanes, we store all the location information
in a binary matrix F as follows. For all the objects uj ∈ U, and for all the
λ hyperplanes, if d(uj , hi1) ≤ d(uj , hi2) then Fji ← 1, otherwise, Fji ← 0.
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The j-th row of the matrix F is called the fingerprint for instance j, and contains
λ bits, one for each bisector, respectively. Naturally, the construction cost of
RBBF1 is O(nλ) both in evaluations of the distance function and CPU time.

Solving Similarity Queries with RBBF1. We use the RBBF1 index to
speed up both k-nearest neighbor and range search queries, as explained below.

Our assumption is that two objects that are equivalent (i.e., with distance
equal to zero) possess the same binary fingerprint, and that similar objects
should be associated to fingerprints that differ in few bits. More in detail, if
the fingerprint Fq is similar to the Fu, we expect that the object u is close to
q. Note that two neighboring regions in the Voronoi diagram differ in just one
bit in their respective fingerprints. We decided to follow the intuitive idea of
traversing the dataset following the order induced by the increasing Hamming
distance between the query fingerprint Fq and the fingerprint of every object in
U.

RBBF1 does not allow the exclusion of objects at query time, which in our
opinion is not an inconvenient, because in high-dimensional metric spaces almost
all the exact algorithms resort to sequential scanning. Fortunately, as the order
induced by the Hamming distance is so promissory, we can stop the searching
after reviewing a fraction αn of the objects in the dataset, as a workload, and
obtain a really good answer. Naturally, the bigger the workload, the fewer rel-
evant elements are lost by the technique. This desirable property is verified in
Section 4 with strings and vectors.

The search mechanism starts by computing the fingerprint Fq of the query
object q. Next, the method ranks all the elements within U by increasing Ham-
ming distance with respect to Fq so as to compute the promissory review order.
Subsequently, we use the workload to compare the best ranked objects with the
query using the real distance of the metric space.

When solving range queries, the method reports any object in the workload
within a distance r with respect to the query object q. On the other hand, in the
case of k-nearest neighbors, the k closets objects in the workload are reported.

4 Experimental Evaluation

We tested our method on strings using the edit distance, and also uniformly
distributed vectors in R

D, for dimensions D = 32, 64, and 128 using Euclidean
distance. The experiments were run on an Intel i5 of 2.6 GHz (two physical and
four virtual cores), with 2GB of RAM, local drive and MS Windows 8.1 Profes-
sional of 64 bits, using JDK version 1.7.0_45. In the construction experiment,
we only measure the CPU as RBBF1 needs 2nλ distance evaluations to build
the index. The results shown correspond to averages after 10 constructions.

To test the search method, we measure the percentage of query retrieval vary-
ing λ and the workload, and also the percentage of retrieval for a fixed workload
varying λ. We compare our approach with the standard PBI in the compact ver-
sion, that is, we pack several permutant identifiers in the same machine word.
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The permutations are compared using the Spearman Footrule (see Section 2).
Additionally, we do not measure distance evaluations as they are limited by the
workload. The results include the average of 100 NNk queries. A longer experi-
mental evaluation, including range query results is available in [2].

4.1 String under Edit Distance

We tested RBBF1 using a dictionary called Dutch.dic, obtained from the Metric
Space Library [6], which contains an unsorted set of 229,328 words belonging to
the Dutch language.

Construction. RBBF1 pre-calculates the distances between each object of the
dataset to the set of λ pair of objects, thus demanding O(nλ) time, with a
correlation coefficient R2 ≥ 0.966.

Searching. Fig. 2a shows a summary of the best retrieval results for NN1 and
NN20 queries using the optimal value of λ for this dataset. RBBF1 presents a
good retrieval performance. For instance, reviewing just a 5% of the dataset,
RBBF1 retrieves 96% of the true answers in NN1 queries, and 82% in NN20

queries. This is achieved by requiring only a single integer per object. For space
constrains, we omit range query plots. However, we verify that the performance
is similar. For instance, a query (q, 1) retrieves 1.38 objects in average, and the
optimal value of λ is also 24, retrieving a 91.3% of the true answers.

Because 8 identifiers can be packed using 32 bits, it is fair to compare RBBF1
with the standard PBI using 8 permutants. We observed that RBBF1 outper-
forms the PBI index with respect to retrieval ratio using the same space. We
allowed more permutants in the PBI until its performance matches the one ob-
tained by RBBF1 (these curves are omitted in the plot). This occurred when
PBI employed 14 permutants, necessitating 63% more memory than RBBF1.

4.2 Uniformly Distributed Vectors under Euclidean Distance

We also performed tests by generating 30,000 random vectors from a uniform
distribution in the range [0, 1]D. We randomly selected 100 query items and
computed the respective percentage of retrieval. Our aim is to observe the per-
formance of RBBF1 in different dimensional spaces.

Searching. Figs. 2b, 2c and 2d summarize the best retrieval results for NN1

and NN20 queries for D equals to 32, 64, and 128, respectively. RBBF1 and PBI
are compared using the same memory requirements (i.e., 8 permutants). We also
allow that the PBI uses more memory to match the performance of RBBF. This
occurs when the PBI uses 63% to 100% more memory than the RBBF.

We observe that for the case of R
32, the RBBF1 index with a workload of

reviewing 10% of the dataset reaches to 82% and 74% of retrieval for NN1 and
NN20, respectively. Since RBBF1 consistently improves with the available space,
we run experiments using longer signatures.
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Fig. 2. Comparison of RBBF1 and PBI using NNk queries on strings and vectors.
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Fig. 3. NNk queries of uniformly distributed vectors in R
D, for D = {32, 128}, using

an increasing number of fingerprints. In (c) the equivalence between the number of
fingerprints and the cardinality of the permutant set.
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Table 3c shows the size of a permutant set that uses the same memory than
the allowed for the long signatures. Figure 3 shows NNk retrieval for k = 1 and
20 reviewing 10% of the database (that is, with α = 0.1). We note that RBBF1
effectively uses the extra space in order to improve the retrieval, and also use
the space more efficiently than standard PBI.

5 Conclusions and Future Work

The paper presented a novel index for approximate searching that relies on
random bisectors and binary fingerprints. The method was tested on strings
and vectors, comparing the respective performances with the Permutant-Based
Index (PBI). The experimental results show that our index outperformed the
PBI scheme. We believe that this occurs because of the sorting mechanism, based
on neighboring regions between fingerprints. Remarkably, a marginal amount of
memory is required for storing the index. In fact, we use a single integer per
object for the experiments with strings and nine for the case of vectors.

Avenues to be explored include the pattern recognition applications of the
RBBF and the concept of maintaining a graph of neighborhood between signa-
tures that, hopefully, would improve the results.
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Abstract. In this paper we present the Distal Spatial Approximation
Tree (DiSAT ), an algorithmic improvement of SAT. Our improvement
increases the discarding power of the SAT by selecting distal nodes in-
stead of the proximal nodes proposed in the original paper. Our approach
is parameter free and it was the most competitive in an extensive bench-
marking, from two to forty times faster than the SAT, and faster than
the List of Clusters (LC) which is considered the state of the art for main
memory, linear sized indexes in the model of distance computations.

In summary, we obtained an index more resistant to the curse of
dimensionality, establishing a new benchmark in performance, faster to
build than the LC and with a small memory footprint. Our strategies can
be used in any version of the SAT, either in main or secondary memory.

1 Introduction

Proximity searching consists in finding objects from a collection near a given
query. The literature is vast and there are many specializations of the prob-
lem. We will fix our attention in exact queries under metric distances. A met-
ric database is a finite subset S ⊆ U. Distances are computed with a function
d : U×U → R, such that for any x, y, z ∈ U, d(x, y) > 0, d(x, y) = 0 ⇐⇒ x = y,
d(x, y) = d(y, x) (symmetry), and obeying the triangle inequality: d(x, z) +
d(z, y) ≥ d(x, y). For a query q ∈ U and r ∈ R

+, (q, r)d = {x ∈ S | d(q, x) ≤ r}
denote a range query. kNNd(q) denote the K-nearest neighbors of q, say R ⊆ S
such that |R| = k and ∀u ∈ R, v ∈ S − R, d(q, u) ≤ d(q, v). If the database S
is large and/or the distance function is expensive to compute, than a sequential
scan to answer queries does not scale and an index should be used.

Complexity Model. The problem at hand has been elusive for the analysis. A
cost model allowing worst case guarantees for known indexing techniques is still
pending in the literature. The folklore among specialists sustains that metric ax-
ioms are too weak to produce even a usable notion of complexity for the problem.
However, it is well documented the existence of instances of metric databases
hard to index, all data algorithms will end up reviewing the entire database
even for selective queries. This is known as the curse of dimensionality even if
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a proper notion of dimensionality is elusive [1]. Complementarily, more progress
have been done in the approximate setup, where probabilistic guarantees have
been provided for the accuracy, when the memory, the speed and a notion of
dimensionality are bounded, as in [2] and references therein. In view of the above
discouraging panorama, our algorithmic improvement proposal for indexing will
be tested experimentally. In this regard, only a few tricks are known and used for
indexing. In a way those tricks are derived from the triangle inequality. Survey-
ing all of them is beyond the scope of this paper. Much more details are found
in surveys and books on the topic, such as [3–5].

Pivot tables are well known, generic approaches to indexing. Another alter-
native is to partition the space in compact zones, usually in a recursive manner,
storing a representative object (a “center”) ci for each zone plus a few extra data
that permits quickly discarding the zone at query time. The general idea is to
have coherent clusters of objects. During search, entire zones can be discarded
depending on the distance from their cluster center ci to the query q. Two cri-
teria can be used to delimit a zone. Representative techniques are: Geometric
Near-neighbor Access Tree (GNAT ) [6], List of Clusters (LC ) [7] , the Spatial
Approximation Tree (SAT and DSAT) [8, 9].

Some data structures combine both ideas by dividing the space into compact
partitions, and at the same time storing distances to pivots. The D–index [10,11]
divides the space into separable partitions of data blocks and combines this with
pivot-based strategies to decrease I/O costs and distance evaluations performed
during searches. It supports disk storage and it is dynamic. Adapting the D–
index to particular applications requires a non-trivial parameterization process.
Another example in this group is obtained by adding pivots to some clustering-
based data structure, as the PM–tree [12] does on top of the M–tree [13].

2 The Spatial Approximation Tree

Since our approach is an improvement of all the versions of SAT we will include
a detailed discussion of this data structure. The Spatial Approximation Tree
(SAT) [8] is a data structure aiming at approaching the query spatially, that is,
start at the root and get iteratively closer to the query navigating the tree. The
SAT is build as follows. An element a is selected as the root, and it is connected
to a set of neighbors N(a), defined as a subset of elements x ∈ U such that x
is closer to a than to any other element in N(a). The other elements (not in
N(a)∪{a}) are assigned to their closest element in N(a). Each element in N(a)
is recursively the root of a new subtree containing the elements assigned to it.
For each node a the covering radius is stored, that is, the maximum distance
R(a) between a and any element in the subtree rooted at a. Fig. 1 shows an
example SAT and the search path for a query.
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Fig. 1. Example of a SAT and the traversal towards a query q, starting at u11. From [5].

BuildTree(Node a, Set of nodes S)
1. N(a) ← ∅ /* neighbors of a */
2. R(a) ← 0 /* covering radius */
3. For v ∈ S in increasing distance to a Do

4. R(a) ← max(R(a), d(v, a))
5. If ∀b ∈ N(a), d(v, a) < d(v, b) Then

6. N(a) ← N(a) ∪ {v}
7. For b ∈ N(a) Do S(b) ← ∅
8. For v ∈ S −N(a) Do

9. c ← argminb∈N(a)d(v, b)

10. S(c) ← S(c) ∪ {v}
11. For b ∈ N(a) Do BuildTree(b,S(b))

Algorithm 1. Algorithm to build a SAT for S ∪ {a} with root a

Algorithm 1 depicts the construction process.
It is first invoked as BuildTree(a,S− {a}) where a is a random element of

S selected as its root.
Note the construction process do not enforce a balanced data structure. While

it is a disadvantage in exact searching, it seems that unbalancing does speed up
searching in metric data structures [7]. In fact, the most competitive indexing
algorithm in high dimensions, is precisely the List of Clusters (LC ) which can
be seen as an extremely unbalanced tree. The LC is considered the state of the
art for indexing. We will see in the experimental part that our data structure
outperforms the LC both in construction and searching time in all but a few
cases, establishing a new benchmark.

One key aspect of SAT is that a greedy search will find all the objects
previously inserted. For a query (q, r)d, in each node a it is determined the
closest element c of q among a ∪ N(a), then we use the same greedy search
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RangeSearch(Node a, Query q, Radius r,
Distance dmin)

1. If d(a, q) ≤ R(a) + r Then

2. If d(a, q) ≤ r Then Report a
3. dmin ← min {d(c, q), c ∈ N(a)} ∪ {dmin}
4. For b ∈ N(a) Do

5. If d(b, q) ≤ dmin + 2r Then

6. RangeSearch(b,q,r,dmin)

Algorithm 2. The algorithm to search for (q, r)d in a SAT with root a

entering all the nodes b ∈ N(a) such that d(q, b) ≤ d(q, c) + 2r because any
element x ∈ (q, r)d, can differ from q by at most r at any distance evaluation, so
it could have been inserted inside any of those b nodes. In the process, we report
all the nodes x founded close enough to q.

Algorithm 2 RangeSearch(a,q,r,d(a, q)) describes the process. Here a is the
tree root, r the range of the search and q the query object.

2.1 Dynamic Spatial Approximation Trees

If the objects to be indexed are not known beforehand, the SAT cannot be built
with Algorithm 1. Instead of examining all possible objects to decide which of
them fulfill the near condition, the neighbors are selected in a first-come-first-
serve basis. There are several strategies to maintain an arbitrary arity in the
tree, and to support also deletions as described in [9]. The arity was thought to
play the lead role in the efficiency of searching, in this paper we have found a
different factor accounting for the efficiency.

It has been shown that DSAT outperforms the static version for certain arity
combinations. In [9] the authors proposed a couple of practical rules based on
experiments: a) Low arities are good for low intrinsic dimensions or small search
radii, and b) Large arities can be used for high intrinsic dimensions. From an
algorithmic perspective this is an odd behavior, because a static data structure
may have all the information of the data instance, while a dynamic data struc-
ture have limited knowledge about the data. In this paper we have found the
underlying reason of this behavior. We describe our findings below.

3 The Distal Spatial Approximation Tree

From the definition of the SAT in algorithm 1, the starting set for neighbors of
the root a, N(a) is empty. This implies we can select any database element as
the first neighbor. Once this element is fixed the database is split in two halves
by the hyperplane defined by proximity to a and the recently selected neighbor.
Any one of the elements in the a side can be selected as the second neighbor.
While the zone of the root (those database elements closer to the root than the
previous neighbors) is not empty, it is possible to continue with the subsequent
neighbor selection.
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BuildTree(Node a, Set of nodes S)
1. N(a) ← ∅ /* neighbors of a */
2. R(a) ← 0 /* covering radius */
3. Fix an order π in the set S
4. For v ∈ S according to order π Do

5. R(a) ← max(R(a), d(v, a))
6. If ∀b ∈ N(a), d(v, a) < d(v, b) Then

7. N(a) ← N(a) ∪ {v}
8. For b ∈ N(a) Do S(b) ← ∅
9. For v ∈ S −N(a) Do

10. c ← argminb∈N(a)d(v, b)

11. S(c) ← S(c) ∪ {v}
12. For b ∈ N(a) Do BuildTree(b,S(b))

Algorithm 3. Algorithm to build a SAT+ for S ∪ {a} with root a

Sorting the elements in increasing order of distance to the root is just one of the
n! possible permutations of the database elements. Each database permutation
can be used as an order for the SAT construction. Each insertion order will
produce a correct version of the SAT, and the same searching algorithm can
be used. It is very likely that the performance at search time will be different
for each permutation, one natural question is: What is the best permutation
for a given database? Instead of blindly trying every permutation we try to
optimize the discarding rules of the SAT. A subtree is avoided using two rules,
hyperplanes and covering radius. The key aspect in the hyperplane discarding
rule is the separation between the two defining points, because the query ball
is more likely to fall completely in either side of the hyperplane and all the
objects in the opposite side can be discarded. A good hyperplane separation
in the upper levels of the tree also implies small covering radius in the lower
levels of the tree. We exploit this two observations using several heuristics in our
DiSAT data structure. Interestingly enough, the original policy for SAT works
exactly in the opposite direction of this improvement strategy. Even a random
selection of the insertion order outperform the original SAT ; this explains the
dynamic version being better than the static version.

3.1 The SAT+ Strategy

Algorithm 3 gives a formal description of the construction of our data structure.
The difference is in selecting the insertion order π in line 3. We tried farthest-
to-nearest order from the root . Searching is done with the standard procedure
described in Algorithm2.

A random permutation, or equivalently a random order, for the construction
of the SAT is similar to inserting elements online in the DSAT. The difference
will be to have a natural number of neighbors instead of an arbitrary arity
to be tuned up. We call this the SATRand in the experiments. We tested this
construction mainly to explain the behavior of the DSAT.
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When working with hyperplanes to perform data separation it is advisable to
use object pairs far from each other as documented in [5] for the GNAT andGHT
data structures. Using the above observations, we can ensure a good separation
of the implicit hyperplanes by selecting the first neighbor as the farthest element
to the root. Clearly it is advisable to do this recursively, at every node of the
tree. Please note that this heuristic is the exact opposite of the original ordering
in the construction of the SAT.

3.2 The SATGlob Strategy

Sorting elements by distance at every level can be time consuming. We tried a
fixed insertion order π by sorting elements for distance to the tree root, farthest
first. This fixed order π is used in all the following levels. Therefore, SATGlob

and SAT+ are similar only at the first level of the tree, on the following levels
the order π already determined is used without performing any new sort. This
also serves to probe for the recursive need to select good hyperplanes at each
tree level.

3.3 The SATOut Strategy

So far we have selected a random element as the tree root. Since we are aiming
at maximizing the hyperplane separation, it makes a lot of sense to select the
fathest pair as the root and the first neighbor respectively. This way there will
be a lot of room for farthest pair selection in the lower levels of the tree.

The “farthest pair problem” is well known. We want objects x, y ∈ S, such
that d(x, y) ≥ d(z, v), ∀z, v ∈ S. This can be doing by comparing all against
all the elements of the database, this is prohibitively expensive since it involves
O(n2) operations. A randomized version is very effective and uses only O(n)
operations. The idea is to select a random starting point u0, locate its farthest
neighbor u1 and repeat to find u2, etc. A few iterations will get a good approx-
imation of the farthest pair.

4 Experimental Results

For our first experiment we selected three widely used benchmark databases,
all from the SISAP Metric Library www.sisap.org, NASA images, Strings and
Color Histograms. We use euclidean distance for NASA images and Color His-
tograms, and edit distance for Strings. In all cases, we built the indexes with
90% of the points and used the other 10% (randomly chosen) as queries. All re-
sults are averaged over 10 index constructions using different permutations of the
datasets. We have considered range queries retrieving on average 0.01%, 0.1%
and 1% of the dataset. Given the existence of range-optimal algorithms for k-
nearest neighbor searching it is enough to consider only range searches in the ex-
perimental part. The source code SAT and DSAT is available in www.sisap.org,
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we submitted the code for DiSAT. The arity parameter of the DSAT was selected
using the recommendation in [9]1 .

Fig. 2 (Subfigs. 2(a)) contains the results of construction costs obtained in the
experiments for the three metric spaces. We show the comparison of the con-
struction costs for the original SAT, for the DSAT, and for the new SATRand,
SAT+, SATGlob, and SATOut built using the new construction criterions. As it
can be seen, the SAT+ gets the worst construction costs. It can be explained
because the arity in this case is the largest, and as it was shown in [9] construc-
tion cost grows with the tree arity. Moreover, despite of SATOut uses the same
neighbor selection policy as SAT+, SATOut achieves better construction costs
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Fig. 2. Comparison of construction and search costs

1 The best arity for the NASA images and for Color histograms is of 4, and arity 32
for the Strings.
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because the maximum arity tree is significantly lower than SAT+ because we
selected the root more properly. Fig. 2 (Subfigs. 2(b)) depicts that the new
SAT+, SATGlob and SATOut significantly improve searching costs with respect
to other ones, and they are very similar between them. However, SATOut achieves
the lowest search costs.

We postulate that in the new indexes the neighbors of the root represent a
more accurate sample of the different zones in the metric space and produce
better hyperplane separation in two senses, the inter-sibling separation and the
root-node separation. These two conditions also imply small covering radii. This
in turn produces a more compact partition of the space, improving the search
cost.

5 Comparison with Other Indexes

Among all the exact indexes AESA [14] stands as the lower bound in distance
computations; however, it uses a quadratic amount of space. In this version of
the paper we will only compare with linear size indexes. We have performed an
exhaustive comparison with other approaches and confirmed the DiSAT as a
competitive, standing as a new efficiency benchmark. Due to space restrictions,
in this version of the paper we only compare with the List of Clusters (em LC),
as this data structure currently holds the benchmark for exact searching. In [8,9]
SAT and DSAT were compared with several competitive indexes, so transitively
we show that DiSAT is a very efficient index because is a better option than
SAT and DSAT.

5.1 List of Clusters

The List of Clusters (LC ) [7], with a proper parameter selection stands as the
most competitive exact index when counting distance computations as the com-
plexity measure. As we have improved the original SAT, with our SAT+ and
SATOut, we want to test how competitive is our approach against the state of
the art. One drawback of the LC is the construction cost, another is the manually
selected cluster size.

Fig. 3 compares construction and search costs, Subfigs. 3(a) and Subfigs.
3(b) respectively, of the SAT+, SATOut, and LC. We test different values of
m (LC(m)), some of them are presented in this comparison. We select values
that allow us to show the behavior of LC at a similar construction cost and a
similar or even better search cost with respect to our indexes.

For the NASA images database, SAT+ and SATOut beat LC for all search
radii, even with a value of m = 25 for LC that implies approximately 5 times
our construction costs. Moreover, in this database we could not get any cluster
size that would enable LC to be superior to our indexes, , even if we disregard
construction costs. Nevertheless, LC outperforms our indexes with m = 100
in all radii considered for Strings database, but it needs 2.5 to 3 times our
construction costs. Moreover, in this database LC with similar construction costs
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Fig. 3. Comparison of construction and search costs against the LC, considering dif-
ferent cluster sizes

(with m = 200, 300) beats us, but for large radii. For Color histograms database,
again it can be seen that our our SAT+ and SATOut surpass LC for all radii
considered. However, for m = 50 LC achieves slightly higher search costs than
ours, but it needs to pay almost 6 times more than our cost of construction.

Please notice that as the size of the database grows, the increase in con-
struction cost per element is not significant. It is also apparent that SAT+ and
SATOut have a good tolerance to large radii without needing parameter tuning.
In the case of the LC a wrong parameter imply poor performance and/or large
construction cost.

Scalibility. We also experimented with a larger database to test the scalabil-
ity of our approach, and at the same time to compare with the LC. For this
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experiments, we use a 10 million images subset of the COPHIR database. For
the List of Clusters we use a cluster size of 2048. We build the indexes on increas-
ing sizes of the database in order to evaluate how is the behavior of all indexes
as the database size grows. We started in 100,000 objects, doubling the size of
the database up to 10 million objects. We reserved 200 objects, which would not
be indexed, to be used as queries. In all sizes we use the same threshold r of
200 for the range queries, with r = 200 we retrieve in average more than 100
objects. Please notice that the items retrieved decrease with the database size,
not retrieving any object in the sizes range of 100,000 to 400,000. Fig. 4 shows
the construction costs obtained, and Fig. 5 depicts the search costs for the three
indexes compared.

 0

 500

 1000

 1500

 2000

 2500

 100  1000  10000

D
is

ta
nc

e 
ev

al
ua

tio
ns

Database size used x 1,000

Construction Cost per element for n = 10,000,000 image vectors

SAT+
SAT Out

LC(2048)

(a) Distance evaluations for building.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 100  1000  10000

T
im

e

Database size used x 1,000

Construction Cost per element for n = 10,000,000 image vectors

SAT+
SAT Out

LC(2048)

(b) Time for building.

Fig. 4. Comparison of construction costs for increasing subsets of COPHIR database
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Fig. 5. Comparison of search costs for increasing subsets of COPHIR database

As it can be noticed, our indexes outperform significantly the List of Clusters,
in both construction and search time. Although construction costs are higher in
lower sizes of the database on our indexes, our costs do not change too much as
the database size grows, while with the List of Clusters it grows very quickly.
During searches is even more remarkable that our indexes are better than the
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List of Clusters obtaining better search costs for all sizes considered. Therefore,
these experiments allow empirically to demonstrate that SAT+ and SATOut are
very scalable indexes.

6 Conclusions and Future Work

We have presented a new heuristic for constructing the SAT. The rule is coun-
terintuitive and consist in selecting distal instead of proximal nodes. With this
approach our proposed indexDiSAT stands as the new efficiency benchmark, sup-
ported by exhaustive experimentation. It improves the construction and searching
times w.r.t. LC and other data structures.

Distal node selection can be used in static, dynamic and secondary memory
versions of the SAT and produce more compact subtrees, inducing more locality
to the implicit partitions of the subtrees. This factor will impact IO operations
in secondary memory versions of DiSAT.

One possible consequence of a compact underlying partition, induced by a
small covering radius is the possibility of producing coherent clusters suitable
for statistics, mining, pattern recognition and machine learning purposes. One
aspect of the putative clustering procedure is to produce a stable clustering
(independent of the choice of the root, for example), or alternatively detecting
natural, parameter free clusters.
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spaces. ACM Computing Surveys 33(3), 273–321 (2001)

6. Brin, S.: Near neighbor search in large metric spaces. In: Proc. 21st Conference on
Very Large Databases (VLDB 1995), pp. 574–584 (1995)
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Abstract. Metric indexes aim at reducing the amount of distance evalu-
ations carried out when searching a metric space. Spatial approximation
trees (sa-trees for short), in particular, are efficient data structures, which
have shown to be competitive in metric spaces of medium to high diffi-
culty, or queries with low selectivity. Sa-trees can be also made dynamic,
and can use the available space to improve the query performance adding
pivot information. In this paper we extend previous work on dynamic sa-
trees with pivots, and show how the pivot information can be used to
a full extent to improve the search performance. The result is a tech-
nique that allows one to traverse a dynamic sa-tree without necessarily
comparing all traversed nodes against the query object. As a result, the
novel algorithm makes a much better use of the available space, yielding
a saving of distance computations of about 10% to 70%, compared with
previous sa-tree schemes that use pivot information.

1 Introduction

The classical way of searching a database has been that of finding those database
records whose search attribute (or key) has a given value. However, this is not
suitable when searching non-traditional databases, such as multimedia databases
(e.g., image, video, or audio), multidimensional vector spaces (which has appli-
cations in GIS), and digital libraries, among others. In such cases, one would
want to find the database objects that are “similar” to a given query object.

The similarity search problem is usually modeled as proximity searches in
metric spaces. In the metric space model [2], there is a universe U of objects,
and a positive real-valued distance function d : U× U → �

+ defined among
them. The distance between two objects models their similarity: the smaller the
distance is, the more similar the objects are. We assume that the distance satisfy
the three axioms that make the set a metric space:

Strict positiveness: ∀x, y ∈ U, d(x, y) = 0 ⇔ x = y;
Symmetry: ∀x, y ∈ U, d(x, y) = d(y, x); and
Triangle inequality: ∀x, y, z ∈ U, d(x, z) � d(x, y) + d(y, z).

The triangle inequality property is used to save comparisons in a proximity
query. The distance function is usually expensive to compute, hence we define
the search complexity as the number of distance evaluations performed.

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 70–81, 2014.
DOI: 10.1007/978-3-319-11988-5_7 c© Springer International Publishing Switzerland 2014
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We are given (in advance to queries) a database S ⊆ U of size |S| = n.
Proximity-search algorithms are allowed to build an index of the database, avoid-
ing exhaustive searches at query time [2]. Building an index is usually an ex-
pensive process. However, this cost is amortized after enough queries have been
issued. At query time, given a query object q ∈ U, we must retrieve all similar
elements found in S. There are two typical queries of this kind:

Range Queries: retrieve all elements in S within distance r to q. That is, the
set {x ∈ S, d(x, q) � r}.

Nearest-Neighbor Queries: retrieve the k closest elements to q in S. That
is, a set A ⊆ S such that |A| = k and ∀x ∈ A, y ∈ (S−A), d(x, q) � d(y, q).

In this paper we focus on range queries only.
Algorithms to search in general metric spaces can be divided into two large

areas [2]: pivoting algorithms, and compact partitions algorithms. Pivoting al-
gorithms are better suited for low dimensional (or easy) metric spaces, whereas
compact partitions algorithms deal better with high dimensional (or hard) metric
spaces. Although pivoting algorithms can use the available memory to improve
the query performance, they need to use more memory to beat the latter as
dimension grows. On the other hand, indexes based on compact partitions use
a fixed amount of memory and cannot be improved by giving them more space.

Since a time ago, there are also data structures that combine both approaches,
as for instance the memory-adaptive dynamic spatial approximation trees from
[1]. These are basically dynamic spatial approximation trees (dsa-trees) [3], on
which pivot information is added. Hence, they are able to trade memory space
for a better query performance. However, pivots on dsa-trees are not used to
prune the search nor to discard traversed elements. They are used just to save
(in some cases) distance evaluations when the stopping criterion of dsa-trees
determines that a given branch of the tree must be pruned. Every traversed
node is inevitably compared against the query, even though it is not contained
within the query radius. This obviously increases the query cost. Our research
question is: What are the consequences for the spatial approximation approach,
if we use pivot information to avoid comparing traversed elements?

In this paper we extend previous work [1] on dsa-trees with pivots, and show
how the pivot information can be used to a full extent to improve the search per-
formance. Basically, we adapt the search approach [1] such that pivots are used
to avoid distance evaluation on traversed nodes. The resulting algorithms allows
one to traverse a dynamic sa-tree without necessarily comparing all traversed
nodes against the query. Avoiding such distance evaluations does not necessarily
represents an improvement of query performance: we have less information for
the spatial approximation, hence probably more tree branches would be visited.
Ours is a compromise which probably traverses more tree branches, yet using
pivots to avoid distance evaluations. We will show experimental results indicat-
ing that our approach uses the available memory more efficiently than previous
work [1]: our search algorithm makes a better use of the available space, yielding
a saving of distance computations of about 10% to 70%.
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2 Preliminary Concepts on Metric Space Indexing

Indexing metric spaces is key for achieving efficient search performance in simi-
larity search applications. We review in this section the most important indexing
approaches needed to understand our work.

2.1 Pivoting Algorithms

Pivoting algorithms choose a set P = {p1, . . . , pk} of pivots from the database S.
They precompute and store all distances d(a, p1), . . . , d(a, pk) for all a ∈ S. Given
a query q ∈ U, pivoting algorithms compute the distances d(q, p1), . . . , d(q, pk)
against the pivots. By using the information stored for every database object
and the distances between the pivots and the query, we define:

Definition 1. Given a query element q ∈ U, the pivot distance between a ∈ S
and q gets defined as:

D(a, q) = max
pi∈P

|d(a, pi)− d(q, pi)|.

It can be proven that D(a, q) � d(a, q) for any a ∈ S, q ∈ U. The pivot
distance D is an estimation of the actual distance d, which is used to save
distance evaluations: each a such that D(a, q) > r can be discarded because we
deduce d(a, q) > r. All the elements that cannot be discarded in this way are
directly compared against q.

Pivoting schemes perform better as more pivots are used, this way beating
any other index. They are, however, better suited to “easy” metric spaces [2]. In
hard spaces they need too many pivots to beat other algorithms.

2.2 Dynamic Spatial Approximation Trees

We briefly outline in this subsection how dynamic spatial approximation trees
(dsa-trees) work, as we build on this data structure. See [3] for further details
and proofs of correctness of the algorithms.

Insertion Algorithm. The dsa-tree is built incrementally, via insertions. The tree
has a maximum arity A. Each tree node a stores a timestamp of its insertion
time, time(a), its covering radius, R(a), and its set of children N(a) (the so-
called neighbors of a). To insert a new element x, its point of insertion is sought
starting at the tree root and moving to the neighbor closest to x, updating R(a)
in the way. We finally insert x as a new (leaf) child of a if (1) x is closer to a
than to any b ∈ N(a), and (2) the arity of a, |N(a)|, is not already maximal. In
other case, we insert x in the subtree of the closest element b ∈ N(a). Neighbors
are stored left to right in increasing timestamp order. Note that the parent is
always older than its children.
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Range Search Algorithm. The idea is to replicate the insertion process of the
elements to be retrieved. Given a query q and a radius r, we act as if we wanted
to insert q but keep in mind that relevant elements may be at distance up to r
from q, so in each decision for simulating the insertion of q we permit a tolerance
of ±r. So it may be that relevant elements were inserted in different children of
the current node, and backtracking is necessary.

Note that, at the time an element x was inserted, a node a may not have been
chosen as its parent because its arity was already maximal. So, at query time,
we must choose the minimum distance to x only among N(a). Note also that,
when x was inserted, elements with higher timestamp were not yet present in the
tree, so x could choose its closest neighbor only among older elements. Hence,
we consider the neighbors {b1, . . . , bk} of a from oldest to newest, disregarding
a, and perform the minimization as we traverse the list. That is, we enter into
subtree bi if d(q, bi) � min {d(q, b1), . . . , d(q, bi−1)} + 2r.

We use timestamps to reduce the work inside older neighbors. Say that
d(q, bi) > d(q, bi+j)+2r. We have to enter subtree bi anyway because bi is older.
However, only the elements with timestamp smaller than time(bi+j) should be
considered when searching inside bi; younger elements have seen bi+j and they
cannot be interesting for the search if they are inside bi. As parent nodes are
older than their descendants, as soon as we find a node inside subtree bi with
timestamp larger than time(bi+j) we can stop the search in that branch.

Algorithm 1 performs range searching on a dsa-tree. Note that, except in
the first invocation, d(a, q) (lines 1 and 2) is already known from the invoking
process, so it must no be recomputed in a real implementation.

Algorithm 1. dsat Search(Node a, Query q, Radius r, Timestamp t).

1: if time(a) < t ∧ d(a, q) � R(a) + r then
2: if d(a, q) � r then
3: report a
4: end if
5: dmin ← +∞
6: for bi ∈ N(a) in increasing timestamp order do
7: if d(bi, q) � dmin + 2r then
8: k ← min {j > i, d(bi, q) > d(bj , q) + 2r}
9: dsat Search(bi, q, r, time(bk))
10: end if
11: dmin ← min {dmin, d(bi, q)}
12: end for
13: end if

2.3 DSA-Trees with Pivots

Previous work [1] showed how to use the available memory to improve the search
performance of dsa-trees. We associate a set of pivots to every tree node. At
insertion time, in order to decide that a new element x must be added as a
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children (or neighbor) of an already existing node a, note that x has been already
compared against the set A(x) of ancestors of x, and also against the siblings
of the ancestors. Some of these distances are used as pivot information, without
introducing extra distance computations. See the original work [1], which shows
how these pivots are computed at insertion time. From now on, we assume that
each node x of a dsa-tree has a set P(x) of pivots. The resulting data structure
is called hybrid dsa-tree (h-dsat for short).

Range Search Algorithm. dsa-tree Algorithm 1 is modified to use the set P(x)
stored at each tree node x. Recall that, given a set of pivots, D(a, q) is a lower
bound for d(a, q). Consider again Algorithm 1. If at line 1 it holds that D(a, q) >
R(a) + r, then surely d(a, q) > R(a) + r, and hence we can stop the search at
node a without actually evaluating d(a, q). This leads to the following definition.

Definition 2. An element a in S is said to be covering radius feasible ( cr-
feasible for short) for query q if D(a, q) � R(a) + r. The set of cr-feasible
neighbors of a node a is a subset of N(a), and will be denoted by cr-F (a).

Also, we use D along with the hyperplane criterion to save distance computa-
tions at search time: for any cr-feasible element bi such that D(bi, q) > dmin+2r,
it holds that d(bi, q) > dmin+2r. Hence, we can stop the search in the cr-feasible
node bi without evaluating d(bi, q) (at line 5 of Algorithm 1).

Definition 3. Let cr-F (a) be the set {b1, . . . , bk}, in increasing order of times-
tamp. An element bi ∈ cr-F (a) is said to be hyperplane feasible (h-feasible for
short) for query q if D(bi, q) � dmin+2r, where dmin is minimized using only the
distances d(b1, q), . . . , d(bi−1, q) that have been computed in the current query.

Definition 4. The feasible neighbors of node a, denoted F (a), are the cr-feasible
plus the h-feasible neighbors b ∈ N(a). The other neighbors of a are said to be
infeasibles.

Note that only feasible neighbors of a node a must be taken into account when
processing a query. The remaining subtrees can be discarded completely using D

rather than d. However, it does not immediately follow that we obtain for sure
an improvement in search performance. The reason is that infeasible nodes still
serve to reduce dmin in Algorithm 1, which in turn may save us entering into
younger siblings. Hence, by saving computations against infeasible nodes, we may
have to enter into new siblings later. This is an intrinsic price of our method. At
search time, D(a, q) can be computed without additional evaluations of d for any
a in the data structure. A query stack is used to maintain the distances between
the query object and the pivots as we backtrack the tree (see [1] for details).
Algorithm 2 shows the first basic approach for range search on a h-dsat.

However, in order to use timestamp information as much as possible in line
8, we run into the risk of comparing infeasible elements against q. this reduces
the benefits of pivots in the data structure. Some improvements to this weakness
were presented [1], being the best one as follows.



A Dynamic Pivoting Algorithm Based on Spatial Approximation Indexes 75

Algorithm 2. h-dsat Search(Node a, Query q, Radius r,Timestamp t)

1: if time(a) < t ∧ d(a, q) � R(a) + r then
2: if d(a, q) � r then
3: report a
4: end if
5: dmin ← +∞
6: cr -F (a) ← {b ∈ N(a),D(b, q) � R(b) + r}
7: for bi ∈ N(a) in increasing timestamp order do
8: if bi ∈ cr -F (a) ∧D(bi, q) � dmin + 2r then
9: if d(bi, q) � dmin + 2r then
10: k ← min {j > i, d(bi, q) > d(bj , q) + 2r}
11: h-dsat Search(bi, q, r, time(bk))
12: end if
13: end if
14: if d(bi, q) has already been computed then
15: dmin ← min {dmin, d(bi, q)}
16: end if
17: end for
18: end if

Using Timestamps of Feasible Neighbors. The use of timestamps is not essential
for the correctness of the algorithms. Any larger value would work, although the
optimal choice is to use the smallest correct timestamp. Another alternative is
to compute a safe approximation to the correct timestamp, but ensuring that no
infeasible elements are ever compared against q. Note that every feasible neighbor
of a node will be compared against q inevitably. If for bi ∈ F (a) it holds that
d(bi, q) � dmin+2r, then we compute the oldest timestamp t among the reduced
set {bi+j ∈ F (a), d(bi, q) > d(bi+j , q) + 2r}, and stop the search inside bi at
nodes whose timestamp is newer than t. This ensures that only feasible elements
are compared against q, and under that condition it uses as much timestamping
information as possible. This alternative is called h-dsatF.

3 Reducing the Cost of Traversing an h-dsat

h-dsats [1] use the available memory space to improve the search performance of
dsa-trees. However, their search algorithms use pivots only to check the spatial
approximation stopping criteria (that is, the covering-radius and hyperplane
feasibility, see line 8 of Algorithm 2). This means that all traversed nodes are
inevitably compared against q, even though for some element x in the search path
it holds that D(x, q) > r. The question is, therefore, whether we can improve
the search cost if we avoid comparing elements in the search path of a dsa-tree.
However, and as we will see, saving distances in this way is not for free. When the
distance among the query and a traversed node is not computed, many search
criteria would need to be relaxed, as we will see. Hence, it is not clear whether
we will obtain an improvement or not.
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To answer this question, we define a new search alternative for h-dsat that
avoids computing d(x, q) whenever D(x, q) > r holds. Assume that, at search
time, we reach the node a of the tree. For each bi ∈ N(a) in increasing order of
timestamp, we perform the following steps:

Step 1: If D(bi, q) > R(bi) + r or D(bi, q) > dmin + 2r, prune the search at bi
since it is infeasible; otherwise, go to the next step.

Step 2: If D(bi, q) > r, bi is not within the query radius. Therefore, we search
inside the subtree of bi without evaluating d(bi, q). Thus, all the descendants of
bi cannot use it as a pivot in the current query. We mark this fact by pushing
an invalid distance into the query stack [1]. As d(bi, q) has not been computed,
we cannot check whether d(bi, q) > d(bi+j , q) + 2r holds. Therefore we cannot
search for the timestamp of a younger sibling of bi to search inside the subtree
of bi (step 10 of Algorithm 2). In order to use timestamp information even in
this case, if we reach bi searching for elements with timestamp older than t, then
we also use t to search inside the subtree of bi. This is a correct (although not
optimal) timestamp to search inside bi.

Step 3: On the other hand, ifD(bi, q) � r, we compute d(bi, q), and we report bi if
it lies within the search radius. Also, we try to prune the search using the covering
radius and hyperplane criterions: if d(bi, q) > R(bi) + r or d(bi, q) > dmin + 2r,
the search can be pruned at bi. If the search cannot be prunned at bi, we compute
the oldest timestamp t among the set {bi+j ∈ F (a),D(bi+j , q) � r ∧ d(bi, q) >
d(bi+j , q)+2r}, and stop the search inside bi at nodes whose timestamp is newer
than t.

We call h-dsatP this search alternative, which is formalized in Algorithm 3.
Notice that we have added an extra parameter dist, which is the value d(a, q)
in case a has not been discarded using pivots, otherwise dist = 0 holds (see line
10). Let us take a look also at the condition in line 1: every time D(a, q) > r
holds, it also holds that dist = 0, hence condition dist � R(a)+r is true in these
cases. Thus, only the timestamp condition time(a) < t can be used to prune the
search when D(a, q) > r holds.

Notice that our algorithm can be regarded as a pivoting scheme that uses the
spatial approximation approach to prune the search space. This has the addi-
tional advantage of reducing the overhead incurred when computing D (which
uses to be high for pure pivoting algorithms [2]).

When an element bi is not compared against the query q (lines 9 and 10), the
descendants of bi cannot use it as a pivot. As a result, the value of D for these
descendants can become underestimated, which is obviously a drawback. How-
ever, this gives the data structure the potential to adapt itself to the difficulty
of the metric space and “decide” the number of pivots used for each element.
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Algorithm 3. h-dsatP Search(Node a, Query q, Radius r,Timestamp t,
distance dist)

// dist is d(a, q) in case it has been computed, 0 otherwise.

1: if time(a) < t ∧ dist � R(a) + r then
2: if D(a, q) � r ∧ dist � r then
3: report a
4: end if
5: dmin ← +∞
6: cr -F (a) ← {b ∈ N(a),D(b, q) � R(b) + r}
7: for bi ∈ N(a) in increasing timestamp order do
8: if bi ∈ cr -F (a) ∧D(bi, q) � dmin + 2r then
9: if D(bi, q) > r then
10: h-dsatP Search(bi, q, r, t, 0)
11: else
12: if d(bi, q) � dmin + 2r then
13: k ← min {j > i, bj ∈ F (a) ∧D(bj , q) � r ∧ d(bi, q) > d(bj , q) + 2r}
14: h-dsatP Search(bi, q, r, time(bk), d(bi, q))
15: end if
16: end if
17: end if
18: if d(bi, q) has been already computed then
19: dmin ← min {dmin, d(bi, q)}
20: end if
21: end for
22: end if

If for an element bj ∈ F (a) it holds that D(bj , q) > r, hence bj cannot be used
to minimize dmin when searching inside the subtree of an element bi ∈ F (a)
younger than bj : the condition d(bi, q) > d(bj , q)+2r implies computing d(bj , q).
Since we know that d(bj , q) > r, we will prefer not to use bj to minimize dmin,
saving the distance computation. This is a relaxation to the original spatial
approximation approach. Line 13 of Algorithm 3 shows this formally. Also,
every time d(bi, q) is computed (Step 3 above), we take full advantage of this
evaluation by using the pruning criterion of the original dsa-trees, we use d(bi, q)
to minimize dmin, and later, the descendants of bi can use it as a pivot.

h-dsatP might traverse more nodes of the data structure than the original
h-dsats, because if D(bi, q) � R(bi) + r, D(bi, q) � dmin +2r, and D(bi, q) > r,
then we have not computed d(bi, q) and the search must continue in the subtree
of bi. However, it might be that d(bi, q) > R(bi) + r or d(bi, q) > dmin + 2r, and
the search would have stopped at bi. That is, the cost of traversing a node is,
in some cases, less expensive, but we may traverse more nodes than the original
h-dsats. The experiments of the next section will show that, despite the possible
drawbacks we have remarked, in general it pays off to use D to exchange more
traversed nodes for a smaller total cost.
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4 Experimental Results

For the experiments of this paper we have considered range queries on four
widely different metric spaces.

NASA images : a set of 40,700 feature vectors of dimension 20, generated from
images downloaded from NASA 1. The Euclidean distance is used. This is
an easy space (sparse histogram of distances). For this space we use radii
0.605740, 0.780000 and 1.009000, which retrieve on average 0.01%, 0.1%, and
1% of the database respectively.

Words : a dictionary of 69,069 English words 2. We use the edit or Levenshtein
distance, that is, the minimum number of character insertions, deletions and
replacements needed to make two strings equal. This distance is useful in
text retrieval to cope with spelling, typing and optical character recognition
(OCR) errors. The space turns out to be of low to medium difficulty. As the
distance is discrete, we use radii 1 to 4, which retrieve on average 0.00003%,
0.00037%, 0.00326% and 0.01757% of the dataset, respectively

Color histograms : a set of 112,682 color histograms (112 dimensional vectors)
from an image database 3. Any cuadratic form can be used as a distance,
so we chose Euclidean distance as the simplest meaningful alternative. The
resulting space is of medium difficulty. For this space we use radii 0.051768,
0.082514 and 0.131163, which retrieve on average 0.01%, 0.1%, and 1% of
the database respectively.

Documents: a set of 1,265 documents under the Cosine similarity, heavily used
in Information Retrieval. In this model the space has one coordinate per
term and documents are seen as vectors in this high-dimensional space. The
distance we use is the angle (arccos of inner product) among the vectors.
The documents are the files of the trec-3 collection 4. This is a space of
medium to high difficulty, and the distance is expensive to compute. For this
space we use radii 0.140000, 0.150000 and 0.195000, retrieving on average 1,
2, and 16 documents respectively.

For all these metric spaces, we build the indexes 10 times using 90% of the
database elements, leaving the remaining 10% (randomly chosen) as queries. We
test with arities 4, 8, 16 and 32 in the tree [3]. Due to lack if space, we show
results only for the arity that produced the best results in each case.

We will suffix “1” the versions of h-dsat that use the ancestors as pivots, and
will use “2” for the versions that use the ancestors and their older siblings as
pivots [1]. Hence, the alternative proposed in this paper will have two instances,
h-dsatP1 and h-dsatP2. We will compare against the best alternative in pre-
vious work [1]: h-dsatF (the resulting instances are h-dsatF1 and h-dsatF2).

1 http://www.sisap.org/library/metricSpaces/dbs/vectors/nasa.tar
2 http://www.sisap.org/library/metricSpaces/dbs/strings/dictionaries.tar
3 http://www.sisap.org/library/metricSpaces/dbs/vectors/colors.tar
4 http://trec.nist.gov



A Dynamic Pivoting Algorithm Based on Spatial Approximation Indexes 79

Figure 1 shows the experimental query cost for search variants of h-dsat using
just ancestors as pivots. In all metric spaces we tested, h-dsatP1 performs better
with arity 4. This is because the pivot information is more heavily used in this
alternative, hence having small arity makes the three higher, hence each element
has a bigger amount of pivots. h-dsatF1, on the other hand, uses the spatial
approximation idea as much as it can. Hence, it performs better using arity 16
(except for the space of documents, where h-dsatF1 has the best performance
using arity 32).

In the experiments, h-dsatP1 outperforms h-dsatF1, in many cases consid-
erably. In the space of NASA images, we obtain about 15% (large radius) to 30%
(small radius) less distance evaluations at query time. For color histograms, the
improvements are from 28% to 40%. For the dictionary of English words, from
11% to 35%. Finally, for documents from 10% to 11%. The best improvements
are obtained for small radii —since the problem is easier in these cases, on which
pivots are more effective— and easier metric spaces —e.g., color histograms.
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Fig. 1. Experimental query cost for different search alteratives of h-dsat1

Figure 2 shows the experimental query cost for variants of h-dsat2. As it
can be seen, h-dsatF2 and h-dsatP2 perform better with arity 32 (except
in the space of documents, where h-dsatP2 performs better using arity 16).
As before, h-dsatP2 outperforms h-dsatF2, obtaining better improvements
compared with the former alternatives. In the space of NASA images, we obtain
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about 14% (large radius) to 37% (small radius) less distance computations, for
color histograms 35% to 68%, for English dictionary 20% to 77%, and for the
document database 13% to 17%.
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Fig. 2. Experimental query cost for different search alternatives of h-dsat2

An important result that must be also considered is that comparing the results
in Figures 1 and 2, we can conclude that hdsatP1 outperforms hdsatF2 in all
cases, even though the former uses less pivots per node than the latter [1]. This
reinforces the fact that our algorithm makes a better use of pivots, compared to
the algorithms proposed in [1].

Finally, we obtained the following results regarding the number of traversed
nodes by our algorithm. In the space of NASA images, h-dsatP1 traverses from
about 23% (small radius) to 28% (large radius) of the tree nodes. This is 1.92 and
1.45 times the number of nodes traversed by h-dsatF1. For color histograms,
h-dsatP1 traverses from about 17% (small radius) to 28% (large radius) of
the tree nodes. This is 4.34 and 1.62 times the number of nodes traversed by
h-dsatF1, respectively. For the English dictionary, h-dsatP1 traverses from
about 44% (r = 1) to 77% (r = 4) of the tree nodes. This is 4.04 and 1.19
times the number of nodes traversed by h-dsatF1. For h-dsatP2, the results
are similar, yet smaller than those of h-dsatP1.

Note that, even though h-dsatP traverses more nodes of the data structure
than the original dsa-tree data structures, the total number of traversed nodes is
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a relatively small fraction of the whole tree. This is important in cases where one
wants to reduce the overhead incurred by traversing the whole database. Tree-
based pivoting schemes are specifically good for this matter. However, given
a fixed amount of storage, they must encode the tree structure, hence using
space that the array-based indexes could use just for pivots (hence, storing a
bigger number of pivots, improving the overall search performance). Nowadays,
however, trees (even dynamic ones, as in our case) can be encoded using about
2 bits per node [4].

Our results clearly indicate a trend: for small radii and easier spaces (e.g.,
color histograms), we obtain the best improvements over h-dsatF (in number
of distance evaluations), yet the number of traversed nodes by h-dsatP is higher
than for h-dsatF. This is because in such cases our algorithm behaves like a
pivoting scheme in these cases. For large radii and more difficult spaces, on the
other hand, the improvements over h-dsatF are moderate (yet important), and
the number of traversed nodes is similar to h-dsatF. This is because in these
cases the data structure tends to behave as dsa-trees.

5 Conclusions

From our experimental results, we conclude that it is worth to relax some spatial
approximation criteria (hence probably traversing more dsa-tree nodes) provided
pivot information is used at every tree node as we propose. The search algorithm
we proposed in this paper makes a better use of the available memory space used
by pivots in dsa-trees. Compared with previous approaches [1] that use pivots on
dsa-trees, our range search algorithm carries out from 10% to 70% less distance
evaluations at query time. Our best improvements on previous results [1] were
obtained in cases of small radii and easier spaces.

Our experimental results seem to indicate that our algorithm is adaptive to
the difficulty of the search: on easier cases (i.e., easier metric spaces and small
query radii) the data structure tends to behave as a pivoting algorithm; on harder
cases (i.e., harder metric spaces and large radii), the data structure behaves like
a dsa-tree, which are known to be more resistant to hard spaces. This deserves
future research.
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Abstract. Locality-Sensitive Hashing (LSH) is extremely competitive for simi-
larity search, but works under the assumption of uniform access cost to the data,
and for just a handful of dissimilarities for which locality-sensitive families are
available. In this work we propose Parallel Voronoi LSH, an approach that ad-
dresses those two limitations of LSH: it makes LSH efficient for distributed-
memory architectures, and it works for very general dissimilarities (in particular,
it works for all metric dissimilarities). Each hash table of Voronoi LSH works
by selecting a sample of the dataset to be used as seeds of a Voronoi diagram.
The Voronoi cells are then used to hash the data. Because Voronoi diagrams de-
pend only on the distance, the technique is very general. Implementing LSH in
distributed-memory systems is very challenging because it lacks referential local-
ity in its access to the data: if care is not taken, excessive message-passing ruins
the index performance. Therefore, another important contribution of this work is
the parallel design needed to allow the scalability of the index, which we evaluate
in a dataset of a thousand million multimedia features.

1 Introduction

Content-based Multimedia Information Retrieval (CMIR) is an alternative to keyword-
based or metadata-based retrieval. CMIR works by extracting features from the mul-
timedia content itself, and using those feature to represent the multimedia objects.
The features capture perceptual characteristics (color, texture, motion, etc.) from the
documents, helping to bridge the so-called “semantic gap”: the disparity between the
amorphous low-level multimedia coding (e.g., image pixels or audio samples) and the
complex high-level tasks (e.g., classification or retrieval) performed by CMIR engines.

That way, searching for similar multimedia documents becomes the more abstract
operation of finding the closest features in the feature space — an operation known as
similarity search. CMIR systems are usually complex and may include several phases,
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but similarity search will often be a critical step. Similarity search for multimedia
descriptors is a complex problem that has been extensively studied for decades [1].
Challenges of this task include (i) the very large and increasing volume of data to be
indexed/searched; (ii) the high dimensionality of the multimedia descriptors; (iii) the
diversity of dissimilarity functions employed [2].

Among indexing algorithms for efficient searching in high-dimensional datasets,
Locality-Sensitive Hashing (LSH) [3,4,5] deserves attention as one of the best per-
forming and most cited algorithms in the literature [3,4,5]. LSH uses functions that
hash together, with higher probability, points in the space that are close to each other.
For architectures with uniform access cost to the data, and for a handful of dissimi-
larities (mainly the Hamming, Euclidean and Manhattan metrics) LSH will often be
the technique with best compromise between precision and speed. However, the need
to discover a new family of locality-sensitive hashing functions for each dissimilarity
function precludes the generalization of LSH; in addition, the poor referential locality
of LSH makes its adaptation to distributed-memory systems — essential for scalability
— very challenging.

In this work, we address those two shortcomings with Parallel Voronoi LSH, which
extends LSH for very general dissimilarities (in particular, any metric distances), and
for distributed-memory architectures, enabling the index to scale-up to huge datasets.
Each hash table of Voronoi LSH works by selecting a sample of the dataset to be used
as the seeds of a Voronoi diagram. The Voronoi cells are then used to hash the data.
Because Voronoi diagrams depend only on distances, the technique is very general.

Parallel Voronoi LSH builds upon previous works in literature that employ, implicitly
or explicitly, the notion of Voronoi cells in order to perform similarity search using the
principles of locality-sensitive hashing [6,7,8]. We aim at tackling a large class of dis-
similarity functions (including all metric distances), and at scaling-up the index to very
large corpora. As far as we know, our work is the first to tackle at once both problems of
general metric spaces and very large scales (thousand of millions) for locality-sensitive
hashing. An additional contribution of this work is the evaluation of adaptive locality-
sensitive functions for metric data. First proposed for Euclidean data [6], in this work
we adapt them for general metric data, and measure the impact of chosing adaptive
functions versus random ones.

2 Background

A comprehensive review of similarity search for multimedia would include hundreds of
papers and is beyond the scope of this work. For a starting point, the reader is referred
to [1,9]. In this section, we focus on the key papers of Locality-Sensitive Hashing and
some recent developments. Since our focus is on practical index design instead of theo-
retical computational geometry, we review less the recent theoretical advances of LSH,
and more the papers with a practical/experimental slant.

LSH relies on the existence of families H of locality-sensitive hashing functions, to
map points from the original space into a set of hash keys, such that points that are near
in the space are hashed to the same value with higher probability than points that are
far apart. The seminal work on LSH [3] proposed locality-sensitive hashing families
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for Hamming distances in Hamming spaces, and for Jacquard indexes in spaces of sets.
Later, extensions for L1-normed (Manhattan) and L2-normed (Euclidean) spaces were
proposed by embedding those spaces into Hamming spaces [4]. The practical success
of LSH, however, came with E2LSH1 (Exact Euclidean LSH) [5], which proposed a
new family of locality-sensitive functions, based upon projections onto random lines,
which worked “natively” for Euclidean spaces.

LSH works by boosting the locality sensitiveness of the hash functions. This is
done by building from the original {hi ∈ H} locality-sensitive function family, a family
{g j ∈ H}, where each g j is the concatenation of M randomly sampled hi, i.e., each g j

has the form g j(v) = (h1(v), ...,hM(v)). Then, we sample L such functions g j, each to
hash an independent hash table. As M grows, the probability of a false positive (points
that are far away having the same value on a given g j) drops sharply, but so grows the
probability of a false negative (points that are close having different values). But as
L grows and we check all hash tables, the probability of false negatives falls, and the
probability of false positives grows. LSH theory shows that it is possible to set M and
L so to have a small probability of false negatives, with an acceptable number of false
positives. That allows the correct points to be found among a small number of candi-
dates, dramatically reducing the number of distance computions needed to answer the
queries.

The need to maintain and query L independent hash tables is the main weak point
of LSH. In the effort to keep both false positives and false negatives low, there is an
“arms race” between M and L, and the technique tends to favor large values for those
parameters. The large number of hash tables results in excessive storage overheads.
Referential locality also suffers, due to the need to random-access a bucket in each of
the large number of tables. More importantly, it becomes unfeasible to replicate the data
on so many tables, so each table has to store only pointers to the data. Once the index
retrieves a bucket of pointers on one hash table, a cascade of random accesses ensues to
retrieve the actual data.

Multiprobe LSH [10] considerably reduces the number of hash tables of LSH, by
proposing to visit many buckets on each hash table. It analyses the relative position of
the query in the boundaries of the hash functions of E2LSH to estimate the likelihood
of each bucket to contain relevant points. A posteriori LSH [11] extends that work
by turning the likelihoods into probabilities using priors estimated from training data.
Those works reduce the storage overhead of LSH at the cost of greatly increasing the
number of random accesses to the data.

2.1 Unstructured Quantizers, General Spaces

In K-means LSH [6], the authors address LSH for high-dimensional Euclidean spaces,
introducing the idea of hash functions adapted to the data, generated by running a
K-means or hierarchical K-means on a sample, using the centroids obtained as seeds
to a Voronoi diagram. The Voronoi diagram becomes the hash function (each cell in-
duces a hash value over the points it contains). They call those hash functions unstruc-
tured quantizers, in contrast to the regular hash-functions (intervals on projections over

1 LSH Algorithm and Implementation (E2LSH). http://www.mit.edu/~andoni/LSH/

http://www.mit.edu/~andoni/LSH/
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random lines, cells on lattices), which are blind to the data, that they call structured
quantizers. Their experimental results show that the data-adapted functions perform
better than the data-blind ones.

DFLSH (Distribution Free Locality-Sensitive Hashing) [7], works on the same prin-
ciple of Voronoi-diagram induced hash functions, but instead of applying the K-means,
randomly chooses the centroids from the dataset. The advantage of the scheme is gener-
ality: while the averaged centroids of K-means LSH imply an Euclidean (or at the very
least coordinate) space, DFLSH work for any space in which Voronoi diagrams work.

Another LSH technique for general metric spaces is based on Brief Proximity In-
dexing (BPI) [8]. Similarity is inferred by the perspective on a group of points called
permutants (if point p sees the permutants in the same order as point q, p and q are
likely to be close to each other). This is similar to embedding the data into a space
for which LSH is available and then applying a LSH function for that space. Indeed
the method consists of those two steps: first it creates a permutation index; and then it
hashes the permutation indexes using LSH for Hamming spaces [3].

M-Index [12] is a Metric Access Method for exact and approximate similarity search
constructed over a universal mapping from the original metric space to scalars values.
The values of the mapping are affected by the permutation order of a set of reference
points and the distance to these points. In a follow-up work [13], this indexing scheme
is analyzed empirically as a locality-sensitive hashing for general metric spaces.

Works on generalizing LSH for all metric spaces have focused more on proposing
practical techniques and show that they work empirically rather than in proving theoret-
ically that the scheme strictly follows the axioms of locality sensitiveness as proposed
by Indyk and Motwani [3]. K-means LSH offers no theoretical analysis. In [7] a proof
sketch showing that the hashing family is locality-sensitive is presented, but only for
Euclidean spaces. Permutation-based index employs Hamming spaces, whose locality-
sensitive family was proved to be so in the seminal LSH paper, but they offer no formal
proof that the embedding they propose into Hamming spaces preserves the metric of
the original space.

In this paper we combine and extend the efforts of those previous works. As in
DFLSH we employ Voronoi cells over points chosen from the dataset, allowing us to
tackle very general dissimilarity functions2. As in K-means LSH, we are interested in
evaluating the impact of the adaptation to the data in the performance of the technique.
Unlike existing art, we are concerned on how to scale-up the index to very large datasets.
In the next two sections we will describe the basic technique, and the distributed imple-
mentation proposed to tackle those large collections.

3 Voronoi LSH and Parallel Voronoi LSH

Each hash table of Voronoi LSH employs a hash function induced by a Voronoi dia-
gram over the data space. If the space is known to be Euclidean (or at least coordinate)

2 A precise characterization of which dissimilarities are compatible with our technique (and with
DFLSH, for that matter) seems very complex, but it is sure that it includes all metric distances
(e.g. Euclidean and Manhattan distance on coordinate spaces, edit distance on strings, etc.),
and all non-decreasing functions of metric distances (e.g., squared Euclidean distance).
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the Voronoi diagram can use as seeds the centroids learned by a Euclidean clustering
algorithm, like K-means (in which case Voronoi LSH coincides with K-means LSH).
However, if nothing is known about the space, points from the dataset must be used as
seeds, in order to make as few assumptions as possible about the structure of the space.
In the latter case, randomly sampled points can be used (in which case Voronoi LSH co-
incides with DFLSH). However, it is also possible to try select the seeds by employing
a distance-based clustering algorithm, like K-medoids, and using the medoids as seeds.

Neither K-means nor K-medoids are guaranteed to converge to a global optimum,
due to dependencies on the initialization. For Voronoi LSH, however, obtaining the
best clustering is not a necessity. Moreover, when several hash tables is applied, the
difference on the clustering results between runs is an advantage, since it is one of
the sources of diversity among the hash functions (Figure 1). We further explore the
problem of optimizing clustering initialization below.

{ {

Fig. 1. Each hash table of Voronoi LSH employs a hash function induced by a Voronoi diagram
over the data space. Differences between the diagrams due to the data sample used and the ini-
tialization seeds employed allow for diversity among the hash functions.

We define more formally the hash function used by Voronoi LSH in Equation 1. In
summary, it computes the index of the Voronoi seed closest to a given input object. In
addition, we present the indexing and querying phases of Voronoi LSH, respectively,
in Algorithms 1 and 2. Indexing consists in creating L lists with k Voronoi seeds each
(Ci = {ci1, . . . ,cik},∀i ∈ {1, . . . ,L}). When using K-medoids, which is expensive, we
suggest the Park and Jun fast K-medoids algorithm (apud [6]), performing this cluster-
ing over a sample of the dataset, and limiting the number of iterations to 30. Then, for
each point in the dataset, the index stores a reference in the hash table Ti (i∈ {1, . . . ,L}),
using the hashing function defined in Equation 1 (hCi(x)). When using K-means, we
suggest the K-means++ variation [14,15]. The seeds can also simply be chosen at ran-
dom (like in DFLSH). The querying phase is conceptually similar: the same set of L
hash functions (hCi(x)) is computed for a query point, and all hash tables are queried
to retrieve the references to the candidate answer set. The actual points are retrieved
from the dataset using the references, forming a candidate set (shortlist), and the best
answers are selected from this shortlist.

In this work, we focus on k-nearest neighbor queries. Therefore, this final step con-
sists of computing the dissimilarity function to all points in the shortlist and selecting
the k closest ones.

We mention, in passing, that several variations of K-medoids clustering exist, from
the traditional PAM (Partitioning Around Medoids) [16] to the recently proposed
FAMES [17]. We chose the method of Park and Jun [18] due to its simplicity of imple-
mentation and good speed. K-medoid is expensive (even more so than K-means, which
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is already not cheap), but Park and Jun restrict the search for new medoid candidates to
other points already assigned to cluster, making it much faster. Still, our technique can
in principle be employed with the other variations, if desired.

Definition 1. Given a metric space (U,d) (U is the domain set and d is the distance
function), the set of Voronoi seeds C = {c1, . . . ,ck} ⊂U and an object x ∈U:

hC : U → N

hC(x) = argmini=1,...,k{d(x,c1), . . . ,d(x,ci), . . . ,d(x,ck)}
(1)

input : Set of points X , number of hash tables L, size of the sample set S and
number of Voronoi seeds k

output: list of L index tables T1, . . . ,TL populated with all points from X and list
of L Voronoi seeds Ci = {ci1, . . . ,cik},∀i ∈ 1, . . . ,L

for i ← 1 to L do
Draw sample set Si from X ;
Ci ← choose k seeds from sample Si (random, K-means, K-medoids, etc.);
for x ∈ X do

Ti[hCi(x)]← Ti[hCi(x)] ∪ {pointer to x};
end

end

Algorithm 1. Voronoi LSH indexing phase: a Voronoi seed list (Ci) is indepen-
dently selected for each of the L hash tables used. Further, each input data point
is stored in the bucket entry (hCi(x)) of each hash table.

input : Query point q, index tables T1, . . . ,TL, L lists of M Voronoi seeds each
Ci = {ci1, . . . ,cik}, number of nearest neighbors to be retrieved N

output: set of N nearest neighbors NN(q,N) = {n1, . . . ,nN} ⊂ X
CandidateSet ← /0 ;
for i ← 1 to L do

CandidateSet ← CandidateSet ∪ Ti[hCi(q)] ;
end
NN(q,N)← {k closest points to q in CandidateSet };

Algorithm 2. Voronoi LSH querying phase: the input query point is hashed using
same L functions as in indexing phase, and points in colliding bucket in each hash
table are used as nearest neighbors candidate set. Finally, N closest points to the
query are selected from the candidate set.

Initialization. K-means and K-medoids strongly depend on the initial centroid/medoid
selection. K-means++ [14,15] solve the O(logk)-approximate K-means problem by
carefully choosing those initial centroids. Moreover, because K-means++ initialization
employs only distance information and sampling, it can be transposed to K-medoids.
Park and Jun [18] also propose a special initialization for their fast K-medoids algo-
rithm, based on a distance-weighting scheme. We evaluated both of those special ini-
tializations, as well as random initialization.
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3.1 Parallelization Strategy

The parallelization strategy is based on the dataflow programming paradigm. Dataflow
applications are typically represented as a set of computing stages, which are connected
to each other using directed streams.

Our parallelization decomposes Voronoi LSH into five computing stages organized
into two conceptual pipelines, which execute the index building and the search phases
of the application. All stages may be replicated in the computing environment to create
as many copies as necessary. Additionally, the streams connecting the application stages
implement a special type of communication policy referred here as labeled-stream.
Messages sent through a labeled-stream have an associated label or tag, which pro-
vides an affordable scheme to map message tags to specific copies of the receiver stage
in a stream. We rely on this communication policy to partition the input dataset and to
perform parallel reduction of partial results computed during a query execution. The
data communication streams and processes management are built on top of Message
Passing Interface (MPI).

The index building phase of the application, which includes the Input Reader (IR),
Bucket Index (BI), and Data Points (DP) stages, is responsible for reading input data
objects and building the distributed LSH indexes that are managed by the BI and the
DP stages. In this phase, the input data objects are read in parallel using multiple IR
stage copies and are sent (1) to be stored into the DP stage (message i) and (2) to be
indexed by the BI stage (message ii). First, each object read is mapped to a specific
DP copy, meaning that there is no replication of input data objects. The mapping of
objects to DPs is carried out using the data distribution function obj_map (labeled-
stream mapping function), which calculates the specific copy of the DP stage that should
store an object as it is sent through the stream connecting IR and DP. Further, the pair
<object identifier, DP copy in which it is stored> is sent to every BI copy holding
buckets into which the object was hashed. The distribution of buckets among BI stage
copies is carried out using another mapping function: bucket_map, which is calculated
based on the bucket value/key. Again, there is no replication of buckets among BIs
and each bucket value is stored into a single BI copy. The obj_map and bucket_map
functions used in our implementation are modulo operation based on the number of
copies of the receiver in a stream. We plan to evaluate other hashing strategies in the
future.

The index construction is very compute-intensive, and involves many distance cal-
culations between the input data objects and the Voronoi seeds. For Euclidean data, we
implemented a vectorized code using Intel SSE/AVX intrinsics to take advantage of the
wide SIMD instructions of current processors. Preliminary measurements have shown
that the use of SIMD instructions sped-up the index building 8 times.

The search phase of the parallel LSH uses four stages, two of them shared with the
index building phase: Query Receiver (QR), Bucket Index (BI), Data Points (DP), and
Aggregator (AG). The QR stage reads the query objects and calculates the bucket values
into which the query is hashed for the L hash tables. Each bucket value computed for
a query is mapped to a BI copy using the bucket_map function. The query is then sent
to those BI stage copies that store at least one bucket of interest (message iii). Each BI
copy that receives a query message visits the buckets of interest, retrieves the identifier
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of the objects stored on those buckets, aggregates all object identifiers to be sent to the
same DP copy (list(obj_id)), and sends a single message to each DP stage that stores
at least one of the retrieved objects (message iv). For each message received by a DP
copy, it calculates the distance from the query to the objects of interest, selects the k-
nearest neighbors objects to the query, and sends those local NN objects to the AG
stage. Finally, the AG stage receives the message containing the DPs local NN objects
from all DPs involved in that query computation and performs a reduction operation to
compute the global NN objects. The DP copies (message v) use the query_id as a label
to the message, guaranteeing that the same AG copy will process all messages related
to a specific query. As a consequence, multiple AG copies may be created to execute
different queries in parallel. Although we have presented the index building and the
search as sequential phases for sake of simplicity, their executions may overlap.

The parallelization approach we have proposed exploits task, pipeline, replicated and
intra-stage parallelism. Task parallelism results from concurrent execution that allows
indexing and searching phases to overlap, e.g. during an update of the index. Pipeline
parallelism occurs as the search stages, for instance, execute different queries in parallel
in a pipeline fashion. Replicated parallelism is available in all stages of the application,
which may have an arbitrary number of copies. Finally, intra-stage parallelism results of
the application’s ability to use multiple cores within a stage copy. This parallelism has
the advantages of sharing the same memory space among computing cores in a stage
copy, and a reduced number of messages exchanged, since a smaller number of state
partitions may be used.

4 Experimental Evaluation

Datasets: two datasets were used: the English dictionary of strings with Levenshtein
distance from SISAP Metric Library [19]; and BigANN [20]. The English dataset has
69,069 strings, 500 strings are randomly removed from the set to serve as query dataset.
The BigANN contains a thousand million (109) 128-dimensional SIFT local feature
vectors extracted from images, and 10,000 query feature vectors. Euclidean distance
is used for SIFT. We perform k-NN searches, with k=5, 10, and 30 for the Dictionary
dataset, and k=10 for the BigAnn dataset.

Metrics: We employ the recall as a metric of quality, and the extensiveness as metric
of cost for the techniques. The recall is defined as usual for information retrieval, as
the fraction of relevant answers that was effectively retrieved. The extensiveness metric
is the fraction of the dataset selected into the shortlist for linear scan. As the indexes
work by selecting a (hopefully small) fraction of the dataset as candidates, and then
computing the actual distance to the query for those candidates, the size of the shortlist
corresponds to the number of distances computed for that query. The related selectiv-
ity metric (selectivity = 1− extensivity) has distinct (and sometimes conflicting) use in
the database and image retrieval research communities: some authors used it as a syn-
onymous for extensiveness, while others and we use it as a complementary notion (as
selectivity grows, extensivity drops). We also employ the query runtime as metric of
cost. Runtimes are difficult to compare across the literature, due to differences in code
optimization, programming language, and execution environment, but in controlled ex-
periments like ours they can offer a perspective on the cost of different techniques.
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(a) (b)

Fig. 2. (a) Voronoi LSH recall–cost compromises are competitive with those of BPI (error bars
are the imprecision of our interpretation of BPI original numbers). To make the results commen-
surable, time is reported as a fraction of brute-force linear scan. (b) Different choices for the seeds
of Voronoi LSH: K-medoids with different initializations (K-means++, Park & Jun, random), and
using random seeds (DFLSH). Experiments on the English dictionary dataset.

4.1 Comparison of Voronoi LSH and BPI-LSH

We compared our Voronoi LSH with Brief Permutation Indexing (BPI) LSH [8] in a
sequential (non-distributed) environment. We implemented our Voronoi LSH on Java
with The Apache Commons Mathematics Library3. Also included is Distribution-Free
LSH (DFLSH) [7], which we evaluate as a specific configuration of our implementation
of Voronoi LSH with the seeds of the Voronoi diagram chosen at random.

In order to allow the comparison with BPI LSH, we followed an experiment protocol
as close as possible to the one described in their paper, and used the recall and query
runtimes reported there. In order to remove the effects of implementation details and ex-
ecution environment differences, we normalize both our times and theirs by the runtime
of the brute-force linear scan. Because the authors report their numbers graphically, we
added error bars to indicate the imprecision of our reading of their results.

The experiments used the English Dictionary dataset. Figure 2 summarizes the re-
sults. We compare the impact of the Clustering algorithm initialization to the search
quality of the K-medoids nearest neighbors results. For sake of this analysis, the ini-
tialization strategy proposed in K-means++ and in the work of “Park and Jun” and
the naive random initialization are considered. Figure 2b presents the recall and query
time for varying number of centroids. As shown, the K-means++ initialization and the
random initialization performance are not very distinguishable. On the other hand, the
initialization of Park and Jun is clearly poorer than the others.

4.2 Large-Scale Distributed Voronoi LSH

The large-scale evaluation used a distributed-memory machine with 70 nodes intercon-
nected through a FDR Infiniband switch. Each computation node was equipped with a
dual-socket Intel E5 2.60 GHz Sandy Bridge processor with a total of 16 CPU cores,

3 Commons Math: The Apache Commons Mathematics Library.
http://commons.apache.org/proper/commons-math/

http://commons.apache.org/proper/commons-math/
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Fig. 3. Random seeds vs. K-means++ centroids on Parallel Voronoi LSH (BigAnn). Results re-
ported are averaged over 10,000 queries. Well-chosen seeds have little effect on recall, but occa-
sionally lower query times.

32 GB of DDR3 RAM, running Linux OS kernel version 2.6.32. Parallel Voronoi LSH
was implemented on C++ and MPI.

The Figure 3 shows the query phase execution time and recall of parallel Voronoi
LSH using BigANN dataset with Voronoi seeds chosen at random, and by using K-
means++ centroids. Although the difference in recall is neglectable, using K-means++
centroids in general resulted in better query times than using random seeds. The best ex-
ecution time in both cases was with 10,000 Voronoi seeds. For minimizing the distance
computations, there is an expected compromise between too few seeds (cheap hash
functions, large shortlists due to more points in buckets) and too many (costly hash
functions, smaller shortlists). The theoretical sweet spot is obtained with

√
n seeds,

where n is the dataset size (around 30,000 for BigAnn). However, in our tests, the em-
pirical best value was always much smaller than that, favoring, thus, the retrieval of
fewer buckets with many points in them, instead of many buckets with fewer points.
That suggests that the cost of accessing the data is overcoming the cost of computing
the distances.

Our parallelism efficiency analysis employs a scale-up (weak scaling) experiment in
which the reference dataset and the number of computing cores used increase propor-
tionally. A scale-up evaluation was selected because we expect to obtain an abundant
volume of data for indexing, which would only fit in a distributed system. For each CPU
core allocated to the BI stage 4 CPU cores are assigned to the DP stage, resulting in a
ratio of computing cores by BI:DP of 1:4. A single core is used for the AG stage.

The efficiency of the parallel Voronoi LSH is presented in Figure 4. As the number
of CPU cores and nodes used increase, the application achieves a very good parallel
efficiency of 0.9 when 801 computing cores are used (10 nodes for BI and 40 nodes
for DP), indicating very modest parallelism overheads. The high efficiency attained is
a result of (i) the application asynchronous design that decouples communication from
computation tasks and of (ii) the intra-stage parallelization that allows for a single multi-
threaded copy of the DP stage to be instantiated per computing node. As a consequence,
a smaller number of partitions of the reference dataset are created, which reduces the
number of messages exchanged by the parallel version (using 51 nodes) in more than
6× as compared to an application version that instantiates a single process per CPU
computing core.
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Fig. 4. Efficiency of Parallel Voronoi LSH parallelization as the number of nodes used and the
reference dataset size increase proportionally. The results show that the parllelism scheme scales-
up well even for a very large dataset, with modest overhead.

5 Conclusion

Efficient large-scale similarity search is a crucial operation for Content-based Mul-
timedia Information Retrieval (CMIR) systems. But because those systems employ
high-dimensional feature vectors, or other complex representations in metric spaces,
providing fast similarity search for them has been a persistent research challenge. LSH,
a very successful family of methods, has been advanced as a solution to the problem, but
it is available only for a few distance functions. In this article we propose to address that
limitation, by extending LSH to general metric spaces, using a Voronoi diagram as basis
for a LSH family of functions. Our experiments show that employing Voronoi diagrams
to index the data works well both for metric and for Euclidean data. The experiments
do not show any clear advantage in learning the seeds of the Voronoi diagram by clus-
tering: a random choice seems to work just as well. The lack of effect of clustering on
recall is somewhat disappointing, and must be confirmed by evaluating a more diverse
selection of datasets. However, if confirmed, it will also be an important hint for scala-
bility, since learning the seeds by clustering is expensive. On the other hand, clustering
might in some cases affect query times, which is surprising. This seems to be due to a
more uniform partition of the data, since random seeds tend to create an unbalanced dis-
tribution of the dataset on the buckets of the hash tables. The large-scale experiments
show that our proposed parallelization has very modest overhead and scales-up well
even for a very large collection.

As a future work, we would like to explore very large collections of non-Euclidean
metric data. This is currently a challenge because creating an exact ground truth for
such corpora is very expensive.
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Abstract. We introduce a dynamic and secondary-memory-based vari-
ant of the List of Clusters, which is shown to be competitive with the
literature, especially on higher-dimensional spaces, where it outperforms
the M-tree in searches and I/Os used for insertions. The basic principles
of our design are applicable to other secondary-memory structures.

1 Introduction

The metric space approach has become popular in recent years [2,14,16,6] and a
large number of indexing methods have flourished. Most of the research, however,
is still in the stage of static solutions that work in main memory. Static indexes
have to be rebuilt from scracth when the set of indexed objects undergoes inser-
tions or deletions. In-memory indexes can handle only small datasets, suffering
serious performance degradations when the objects reside on disk. Most real-
life database applications require indexes able to work on disk and to support
insertions and deletions of objects interleaved with the queries.

To date, there exist only a few indexing structures supporting dynamism and
designed for secondary memory. Some are based on so-called pivots [5,8,13], some
on hierarchical clustering [3,11,12], and some on combinations [4,15].

A further challenge is that the metric spaces arising in many applications
are intrinsically high-dimensional, that is, the histogram of distances is con-
centrated. Pivot-based indexes are known to perform well on low-dimensional
spaces, whereas hierarchical clustering indexes handle medium dimensions bet-
ter. A simple structure that has shown to perform well on higher-dimensional
spaces is the List of Clusters (LC) [1], but it is a static in-memory structure.
There is a dynamic version of LC, named Recursive List of Clusters (RLC) [9],
but it is also designed to work in main memory.

In this paper we introduce a dynamic and secondary-memory variant of the
List of Clusters, aiming at higher-dimensional spaces. Our secondary memory
version, DLC, retains the good features of the LC, and in addition performs well
on secondary memory. In this paper we focus on handling searches and inser-
tions (thus enabling incremental construction), leaving deletions for future work
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(these are usually handled with lazy deletion mechanisms). Our experimental
comparisons show that our structures need little extra space, achieve very good
disk page utilization, and are competitive with state-of-the-art alternatives. For
example, compared to the M-tree [3], the best known alternative structure, the
DLC is more efficient at searches. For insertions, the DLC performs fewer I/Os,
but more distance computations. Overall, the DLC turns out to be a practical
and easy-to-implement index that fits several practical scenarios.

2 Basic Concepts

Let U be a universe of objects, with a nonnegative distance function d : U×U −→
R

+ defined among them. This distance function satisfies the three axioms that
make (U, d) a metric space: strict positiveness, symmetry, and triangle inequality.
We handle a finite dataset S ⊆ U, which is a subset of the universe of objects
and can be preprocessed (to build an index). Later, given a new object from
the universe (a query q ∈ U), we must retrieve all similar elements found in the
dataset. There are two basic kinds of queries: range query and k-nearest neighbor
queries. We focus this work on range queries, where given q ∈ U and r > 0, we
need to retrieve all elements of S within distance r to q.

In a dynamic scenario, the set S may undergo insertions and deletions, and
the index must be updated accordingly for the subsequent queries. It is also
possible to start with an empty index and build it by successive insertions.

The distance is assumed to be expensive to compute. However, when we work
in secondary memory, the complexity of the search must also consider the I/O
time; other components such as CPU time for side computations can usually be
disregarded. The I/O time is composed of the number of disk pages read and
written; we call B the size of the disk page.

In terms of memory usage, one considers the extra memory required by the
index on top of the data, and in the case of secondary memory, the disk page
utilization, that is, the average fraction of the disk pages that is used.

3 List of Clusters

We briefly recall the list of clusters (LC ) [1]. The LC splits the space into zones
(or “clusters”). Each zone has a center c and a radius rc, and it stores the internal
objects I = {x ∈ S, d(x, c) ≤ rc}, which are at distance at most rc from c.

The construction proceeds by choosing c and rc, computing I, and then build-
ing the rest of the list with the remaining elements, E = S−I. Many alternatives
to select centers and radii are considered [1], finding experimentally that the best
performance is achieved when the zones have a fixed number of elements m (and
rc is defined accordingly for each c), and when the next center c is selected as
the element that maximizes the distance sum to the centers previously chosen.
The brute force algorithm for constructing the list takes O(n2/m) time.

A range query (q, r) visits the list zone by zone. We first compute d(q, c), and
report c if d(q, c) ≤ r. Then, if d(q, c)− rc ≤ r, we search exhaustively the set of
internal elements I. The rest of the list is processed only if rc ≤ d(q, c) + r.
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4 Our Proposal

In this section we introduce the DLC. We base our index on the LC [1], and also
use some ideas from the M-tree [3]. The challenge is to maintain a disk layout
that minimizes both distance computations and I/Os, and achieves a good disk
page utilization.

4.1 Structure

We store the objects I of a cluster in a single disk page, so that the retrieval
of the cluster incurs only one disk page read. Therefore, we use clusters of fixed
size m, which is chosen according to the disk page size B.1

For each cluster C the index stores (1) the center object c = center(C); (2)
its covering radius rc = cr(C) (the maximum distance between c and any object
in the cluster); (3) the number of elements in the cluster, |I| = #(C); and (4)
the objects in the cluster, I = cluster(C), together with the distances d(x, c)
for each x ∈ I. In order to reduce I/Os, we will maintain components (1), (2)
and (3) in main memory, that is, one object and a few numbers per cluster.
The cluster objects and their distances to the center (component (4)) will be
maintained in the corresponding disk page.

Unlike in the static LC, the dynamic structure will not guarantee that I
contains all the objects that are within distance rc to c, but only that all the
objects in I are within distance rc to c. This makes maintenance much simpler,
at the cost of having to consider, in principle, all the zones in each query.

The structure starts empty and is built by successive insertions. The first
arrived element becomes the center of the first cluster, and from then on we
apply a general insertion mechanism described next.

4.2 Insertions

To insert a new object x we must locate the most suitable cluster for accommo-
dating it. The structure of the cluster might be improved by the insertion of x.
Finally, if the cluster overflows upon the insertion, it must be split somehow.

Two orthogonal criteria determine which is the “most suitable” cluster. On
one hand, choosing the cluster whose center is closest to x yields more compact
zones, which are then less likely to be read from disk and scanned at query time.
On the other hand, choosing clusters with lower disk page occupancy yields
better disk usage, fewer clusters overall, and a better value for the cost of a disk
page read. We consider the two following policies to choose the insertion point:

Compactness: the cluster C whose center(C) is nearest to x is chosen. If there
is a tie, we choose the one whose covering radius will increase the least. If
there is still a tie, we choose the one with least elements.

1 In some applications, the objects are large compared to disk pages, so we must relax
this assumption and assume that a cluster spans a constant number of disk pages.



Dynamic List of Clusters in Secondary Memory 97

Occupancy: the cluster C with lowest #(C) is chosen. If there is a tie, we
choose the cluster whose center(C) is nearest to x, and if there is still a tie,
we choose the one whose covering radius will increase the least.

As it can be noticed, to determine the cluster where the new element will
be inserted it suffices with the information maintained in main memory, thus no
I/Os are incurred, only distance computations between x and the cluster centers.
Once the cluster C that will receive the insertion is determined, we increase #(C)
in main memory and read the corresponding page from secondary memory.

Before updating the page on disk, we consider whether x would be a better
center of C than c = center(C): We compute crx = max{d(x, y), y ∈ I∪{c}}, the
covering radius C would have if x were its center. If crx < max(cr(C), d(x, c)), we
set center(C) ← x and cr(C) ← crx in main memory, and write back I ∪ {c} to
disk, with all the distances between elements and the (new) center recomputed.
Otherwise, we leave the current center(C) as is, set cr(C) ← max(cr(C), d(x, c)),
and write back I ∪ {x} to disk, associating distance d(x, c) to x

This improvement of cluster qualities justifies our “compactness” choice of
minimizing the distance d(x, center(C)) against, for example, choosing the center
C with smallest cr(C) resulting after the insertion of x: The insertion of elements
into the clusters of their smallest centers will, in the long term, reduce the
covering radii of the clusters.

On large databases, a sequential scan for the center most appropriate for in-
sertion can be too expensive in terms of distance evaluations. To reduce this
time, the centers stored in memory are organized in a Dynamic Spatial Approx-
imation Tree (DSAT) [10], a fully-dynamic in-memory metric index that uses
little extra space per element. Any change involving a center is then reflected
in the DSAT. For insertions, we determine K candidate centers with a K-NN
query in the DSAT and then select one of them according to the policy to choose
the insertion point. We use K to be 10% of the centers.

When the cluster chosen for insertion is full, the procedure is different. We
must split it into two clusters, the current one (C) and a new one (N), choose
centers for both (according to a so-called “selection method”) and choose which
elements in the current set {c} ∪ cluster(C)∪ {x} stay in C and which go to N
(according to a so-called “partition method”). Finally, we must update C and
add N in the list of clusters (and in the DSAT) maintained in memory, and write
C and N to disk. The combination of a selection and a partition method yields
a split policy, several of which have been proposed for the M-tree [3].

Split Policies. The M-tree [3] considers various requirements for split policies:
minimum volume refers to minimizing cr(C); minimum overlap to minimizing
the amount of overlap between two clusters (and hence the chance that a query
must visit both); and maximum balance to minimizing the difference in number
of elements. The latter is less relevant to our structure, because the LC is not a
tree, but still it is important to maintain a minimum occupancy of disk pages.

The selection method may maintain the old center c and just choose a new
one c′ (the so-called “confirmed” strategy [3]) or it may choose two fresh centers
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(the “non-confirmed” strategy). The confirmed strategy reduces the splitting
cost in terms of distance computations, but the non-confirmed one usually yields
clusters of better quality. We use their same notation [3], adding 1 or 2 to the
strategy names depending on whether the partition strategy is confirmed or not.

Random: The center(s) are chosen at random, with zero distance evaluations.
Sampling: A random sample of s objects is chosen. For each of the

(
s
2

)
pairs

of centers, the m elements are assigned to the closest of the two. Then, the
new centers are the pair with least sum of the two covering radii. It requires
O(s2m) distance computations (O(sm) for the confirmed variant, where one
center is always c). In our experiments we use s = 0.1m.

M LB DIST: Only for the confirmed case. The new center is the farthest one
from c. As we store those distances, this requires no distance computations.

mM RAD: Only for the non-confirmed case. It is equivalent to sampling with
s = m, so it costs O(m2) distance computations.

M DIST: Only for the non-confirmed case, and not used for the M-tree. It aims
to choose as new centers a pair of elements whose distance approximates that
of the farthest pair. It selects one random cluster element x, determines the
farthest element y from x, and repeats the process from y, for a constant
number of iterations or until the farthest distance does not increase. The last
two elements considered are the centers. The cost of this method is O(m)
distance calculations.

Once the centers c and c′ are choosen, the M-tree proposes two partition
methods to determine the new contents of the clusters C and C′ = N . The first
yields unbalanced splits, whereas the second does not.

Hyperplane Partition: It assigns each object to its nearest center.
Balanced Partition: It starts from the current cluster elements (except the

new centers) and, until assigning them all, (1) moves to C the element nearest
to c, (2) moves to C′ the elment nearest to C′.

A third strategy ensures a minimum occupancy fraction αm, for 0 < α < 1/2:

Mixed Partition: Use balanced partitioning for the first 2αm elements, and
then continue with hyperplane partitioning.

4.3 Range Search

Upon a search for (q, r), we determine the candidate clusters as those whose zone
intersects the query ball, using the data maintained in memory. More precisely,
for each C, we compute d = d(q, center(C)), and if d ≤ r we immediately report
c = center(C). Independently, if d − cr(C) ≤ r, we read the cluster elements
from disk and scan them. Note that, in the dynamic case, the traversal of the
list cannot be stopped when cr(C) ≤ d+ r, as explained.

The scanning of a cluster also has a filtering stage: Since we store d(x, c) for
all x ∈ cluster(C), we compute d(x, q) explicitly only when |d(x, q)−d(q, c)| ≤ r.
Otherwise, we already know that d(x, q) > r by the triangle inequality.
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Finally, in order to perform a sequential pass on the disk when reading the
candidate clusters, and avoid unnecessary seeks, we first sort all the candidate
clusters by their disk page number before starting reading them one by one.

For lack of space we have focused on range search. Nearest neighbor search
algorithms can be systematically built over range searches in an optimal way
[7]. To find the k objects nearest to q, the main difference is that the set
of candidate clusters must be traversed ordered by the lower-bound distances
d(q, center(C)) − cr(C), in order to shrink the current search radius as soon as
possible, and the process stops when the currently known kth nearest neighbor
is closer than the least d(q, center(C))− cr(C) value of an unexplored cluster.

5 Experimental Results

In order to give a broad picture of the performance of our index, we have se-
lected three widely different metric spaces, all from the SISAP Metric Library
(www.sisap.org). The disk page size used in this experiments is 4KB.

Words: a dictionary of 69,069 English words. The distance is the edit distance,
that is, the minimum number of character insertions, deletions and substi-
tutions needed to make two strings equal.

Images: 40,700 20-dimensional feature vectors, generated from NASA images,
using Euclidean distance.

Histograms: 112,682 8-D color histograms (112-dimensional vectors) from an
image database. Euclidean distance is used.

5.1 Search Performance

For the search experiments, we built the indexes with 90% of the elements and
used the other 10% (randomly chosen) as queries. All our results are averaged
over 10 index constructions using different permutations of the datasets. We
have considered range queries retrieving on average 0.01%, 0.1% and 1% of
the dataset. This corresponds to radii 0.605740, 0.780000 and 1.009000 for the
images, and 0.051768, 0.082514 and 0.131163 for the histograms. Words have a
discrete distance, so we used radii 1 to 4, which retrieved on average 0.00003%,
0.00037%, 0.00326% and 0.01757% of the dataset, respectively. The same queries
were used for all the experiments on the same datasets.

For lack of space, we show the results of the best alternatives considering
mainly search costs. From the point of view of searches, the best alternatives
are: compactness (COMP) for the search of the insertion point, mM RAD 2,
Sampling 1 (SAMP 1), and M LB DIST 1 for center selection, and pure (HY-
PERPL) or combined with balancing (MIXED) hyperplane distribution for par-
titioning. As expected, the balanced partitioning obtains worse search costs than
the others, because it prioritizes occupancy over compactness. The same occurs
with the insertion strategy that looks for improved occupancy. Fig. 1 shows the
search costs in terms of distance evaluations (1(a)) and pages read (1(b)).
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Fig. 1. Search costs for the best alternatives of DLC

As it can be seen, with respect to distance evaluations, in general better costs
are obtained with hyperplane distributions. For the NASA images, the best
strategy of center selection depends on the radius, but a good global alternative
is M LB DIST 1. For Words, the best alternative of center selection for all radii
is M LB DIST 1. If we consider the number of pages read during searches for
NASA images, better costs are obtained with the two versions of M LB DIST 1,
with the distribution that ensures a minimum occupancy of disk pages (MIXED)
and with hyperplane distribution. For Words, the best results are achieved with
MIXED distribution and the center selection strategies SAMP 1 and Random 1
(RAND 1). Notably, the confirmed center selection policies are better than non-
confirmed ones, except for mM RAD 2. This fact suggests that if we are not
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Table 1. Average space usage for the different datasets

Dataset Fill ratio Total pages used
DLC DSA+-tree DLC DSA+-tree M-tree

Words 34% 66% 1,288 1,536 1,608
Images 54% 67% 1,431 1,726 1,973
Histograms 45% 67% 24,922 21,136 31,791

willing to spend the necessary number of distance evaluations to test all pairs of
elements as centers, we should leave the old center and choose only a new one.
Finally, on Histograms, the MIXED alternative is better than the HYPERPL
one regarding distances, and conversely considering the number of pages read.

5.2 Comparison with Other Indexes

The M-tree [3] is the best-known dynamic and secondary-memory index, and
its code is freely available2. We have used the parameter setting suggested
by the authors: SPLIT FUNCTION = G HYPERPL, PROMOTE PART FUNCTION = MIN RAD,

SECONDARY PART FUNCTION = MIN RAD, RADIUS FUNCTION = LB, MIN UTIL = 0.2.
Another suitable index is the DSA+-tree [11]. Its only parameter is the maxi-

mum arity, for which we use the best values reported before [11] for each metric
space: 4 for all the spaces except Words, where it is 32.

There are other suitable metric indexes [5,8,13,4,15], not all of which have
available code. For this conference version we compare our structure with the
two indexes described above, plus the static LC, using the same bucket size used
in DLC, as a reference.

Table 1 shows the average disk page occupancy achieved, considering the
best search alternative for the different spaces: M LB DIST 1 HYPERPL for
Words, SAMP 1 HYPERPL for NASA images, and mM RAD 2 HYPERPL for
Histograms. The table also shows the total number of disk pages used, compared
to the M-tree and the DSA+-tree. Our fill ratios vary depending of the space,
but they are always over 30%. Although 30% occupancy is not good, even then
the DLC is more compact than the other indexes. We remind that, by using the
MIXED partition strategy, we can guarantee a minumum disk page occupancy,
if desired.

Fig. 2 compares the search costs, considering distance computations (2(a))
and pages read (2(b)). In terms of distance computations, the DSA+-tree always
takes over as the search radius grows, even outperforming the static LC. A larger
query range makes the problem harder, equivalently to a higher dimension. For
smaller radii, however, the DSA+-tree or the LC are significantly faster. In terms
of disk pages read, however, the DLC is significantly better than the M-tree and
the DSA+-tree. Only the latter gets close for small search radii on NASA images.

2 At http://www-db.deis.unibo.it/research/Mtree/



102 G. Navarro and N. Reyes

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 0.1 0.01

D
is

ta
nc

e 
ev

al
ua

tio
ns

Percentage of database retrieved

Query Cost per element for n = 40,700 feature vectors

DSA+-tree, arity 4
M-tree

Static LC
DLC, mM_RAD_2, HYPERPL

DLC, M_LB_DIST_1, HYPERPL
DLC, SAMP_1, HYPERPL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 0.1 0.01

N
um

be
r 

of
 p

ag
es

 r
ea

d

Percentage of database retrieved

Query Cost per element for n = 40,700 feature vectors

DSA+-tree, arity 4
M-tree

DLC, mM_RAD_2, HYPERPL
DLC, M_LB_DIST_1, HYPERPL

DLC, SAMP_1, HYPERPL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1  2  3  4

D
is

ta
nc

e 
ev

al
ua

tio
ns

Search radius

Query Cost per element for n = 69,069 words

DSA+-tree, arity 32
M-tree

Static LC
DLC, RAND_1, HYPERPL
DLC, SAMP_1, HYPERPL

DLC, M_LB_DIST_1, HYPERPL
 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 1  2  3  4

N
um

be
r 

of
 p

ag
es

 r
ea

d

Search radius

Query Cost per element for n = 69,069 words

DSA+-tree, arity 32
M-tree

DLC. RAND_1, HYPERPL
DLC, SAMP_1, HYPERPL

DLC, M_LB_DIST_1, HYPERPL

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 0.1 0.01

D
is

ta
nc

e 
ev

al
ua

tio
ns

Percentage of database retrieved

Query Cost per element for n = 112,682 color histograms

DSA+-tree, arity 4
M-tree

Static LC
DLC, mM_RAD_2, HYPERPL

DLC, M_LB_DIST_1, HYPERPL
DLC, RAND_1, HYPERPL

(a) Distance Evaluations

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 0.1 0.01

N
um

be
r 

of
 p

ag
es

 r
ea

d

Percentage of database retrieved

Query Cost per element for n = 112,682 color histograms

DSA+-tree, arity 4
M-tree

DLC, mM_RAD_2, HYPERPL
DLC, M_LB_DIST_1, HYPERPL

DLC, RAND_1, HYPERPL

(b) Pages Read.

Fig. 2. Comparison of search costs of DLC, LC, DSA+-tree, and M-tree

5.3 Insertion Performance

Now we analyze the insertion costs of our alternatives, and compare the best
ones with previous indexes. Fig. 3(a) shows the insertion cost per element as the
database grows, measured in number of distance computations. All the methods
have basically the same I/O cost, 1 read and 1 write per insertion, plus a very
small number equal to the average number of page splits produced, which is the
inverse of the average number of objects per disk page.

Fig. 4 compares our best alternatives with previous methods, both in distance
computations and I/Os. In general, DLC pays more distance computations for
insertions than the other indexes, but it outperforms them in number of I/Os.
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(a) DLC variants.
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Fig. 3. Construction costs for best DLC alternatives (left) and scalability test (right)

5.4 Scalability

Fig. 3(b) shows the search costs in terms of distance evaluations, number of pages
read, and construction costs (in terms of distance evaluations) on a larger syn-
thetic dataset composed of 1,000,000 random vectors on dimension 15, uniformly
distributed on the unitary hypercube.

The conclusions obtained for the smaller datasets are roughly maintained for
this larger one. The fill ratio for the best searching strategy is over 30%. A more
thorough study of the performance of the index on more massive scenarios is left
for future work.
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Fig. 4. Construction costs of DLC, LC, DSA+-tree, and M-tree

6 Conclusions

We have presented the Dynamic List of Clusters (DLC), a dynamic and
secondary-memory variant of the List of Clusters [1], which maintains its simplic-
ity, low space overhead, and a good search performance in high dimensions. The
DLC, in addition, supports efficient insertions and works in secondary memory.
It achieves a reasonable disk page utilization (30% to 54%) and is competitive
in both distance computations and I/Os. For the journal version we plan to add
experimental results over larger real datasets and measure the evolution of the
search performance as a function of n.
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The weakest point of our structure is its high cost for insertions in terms of
distance computations (whereas its number of I/Os is outstanding). We plan to
study ways to optimize our idea of using an in-memory index to lower the cost
of insertions. A variant of this structure can also be used to discard clusters at
query time, without comparing their centers against the query.

Another important remaining work is to handle deletions, which is likely to
work well with a lazy deletion mechanism that reconstructs clusters when they
reach a fraction of marked elements. Adapting the original construction algo-
rithm for the LC as a bulk-loading mechanisms for the DLC seems promising
as well.
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2. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.: Searching in metric
spaces. ACM Computing Surveys 33(3), 273–321 (2001)

3. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity
search in metric spaces. In: Proc. 23rd VLDB, pp. 426–435 (1997)

4. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: Distance searching index
for metric data sets. Multimedia Tools and Applications 21(1), 9–33 (2003)

5. Santos Filho, R.F., Traina, A.J.M., Traina Jr., C., Faloutsos, C.: Similarity search
without tears: The OMNI family of all-purpose access methods. In: Proc. 17th
ICDE, pp. 623–630 (2001)

6. Hetland, M.L.: The basic principles of metric indexing. In: Coello, C.A.C., De-
huri, S., Ghosh, S. (eds.) Swarm Intelligence for Multi-objective Problems in Data
Mining. SCI, vol. 242, pp. 199–232. Springer, Heidelberg (2009)

7. Hjaltason, G., Samet, H.: Index-driven similarity search in metric spaces. ACM
Transactions on Database Systems 28(4), 517–580 (2003)

8. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: iDistance: An adaptive
B+-tree based indexing method for nearest neighbor search. ACM Transactions on
Database Systems 30(2), 364–397 (2005)

9. Mamede, M.: Recursive lists of clusters: A dynamic data structure for range queries
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Abstract. Similarity Joins are some of the most useful and powerful data 
processing operations. They retrieve all the pairs of data points between different 
data sets that are considered similar within a certain threshold. This operation is 
useful in many situations, such as record linkage, data cleaning, and many other 
applications. An important method to implement efficient Similarity Joins is the 
use of indexing structures. The previous work, however, only supports self joins 
or requires the joint indexing of every pair of relations that participate in a Simi-
larity Join. We present an algorithm that extends a previously proposed index-
based algorithm (eD-Index) to support Similarity Joins over two relations. Our 
approach operates over individual indices. We evaluate the performance of this 
algorithm, contrast it with an alternative approach, and investigate the configura-
tion of parameters that maximize performance. Our results show that our  
algorithm significantly outperforms the alternative one in terms of distance com-
putations, and reveal interesting properties when comparing execution time. 

1 Introduction 

The Similarity Join (SJ) is one of the most useful and studied data processing opera-
tors. It has applications in many different situations or domains, such as multimedia 
applications, sensor networks, marketing analysis, and many others. Many different 
implementations and algorithms for SJ have been proposed, ranging from on-the-fly 
algorithms to index-based techniques. Index-based algorithms have the potential to 
significantly reduce execution time since they store pre-computed information that 
can be used during query execution. One such technique is the eD-Index [1]. This 
index enables efficient similarity-aware operations such as similarity search and Self-
SJ. In this paper, we present an algorithm that significantly extends this technique to 
support generic SJ queries over two relations. The main contributions of our work are: 

• We implemented the Range Query Similarity Join (RQ-SJ) algorithm using succes-
sive similarity search operations for the case of SJ with two relations. This tech-
nique was previously proposed in [2] for the case of Self-SJ only. 

• We designed and implemented an efficient algorithm, i-SimJoin to extend eD-
Index to support SJ operations over two relations using only the individual indices. 

• We evaluated the performance of i-SimJoin and RQ-SJ. Our preliminary results 
show that i-SimJoin significantly outperforms the alternative one in terms of dis-
tance computations and interesting properties when comparing execution time.  

• We explore ways to tune the eD-Index parameters to improve performance.   
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The remaining part of the paper is organized as follows. Section 2 presents the re-
lated work. Section 3 gives a brief overview of the indexing structures we used in our 
algorithms, the RQ-SJ algorithm, and a detailed explanation of our i-SimJoin algo-
rithm. Section 4 presents the performance evaluation of the i-SimJoin and RQ-SJ 
algorithms. Section 5 presents the conclusions and future work directions. 

2 Related Work 

Significant work has been carried out on the study of Similarity Joins. Much of this 
work has focused on standalone operators – both index-based and dynamic (on-the-
fly) – while some has focused on implementing Similarity Join operators inside of 
database systems. The distance range join (retrieves all pairs whose distances are 
smaller than or equal to μ) is one of the most studied Similarity Join types 
[1,2,3,4,5,6,7,8]. This is the Similarity Join type focused on in this paper. Of the non-
index-based approaches, some of the most relevant algorithms are Epsilon Grid Order 
(EGO) [4], Generic External Space Sweep (GESS) [5], and Quickjoin [6]. These  
algorithms dynamically partition and cluster the data into smaller, easier to process 
subsets in such a way that all similar pairs are still captured by the algorithm. The 
index-based approaches include such algorithms as Pass-Join [7], an algorithm pro-
posed for string data, and the D-Index [2, 3], eD-Index [1] and List of Twin Clusters 
(LTC) [8], which are indices that can apply to any metric space. Pass-join [7] parti-
tions strings into substrings and used inverted indices in order to efficiently prune 
dissimilar pairs. LTC [8] is an indexing approach that constructs a combined index for 
both datasets involved in the Similarity Join. This indexing structure consists of clus-
ters of data points within a fixed radius of given reference points. This structure al-
lows Similarity Join queries with a μ less than or equal to the radius of the clusters to 
be easily computed. An important disadvantage of this approach is the need to build 
joint or combined indices for every pair of datasets that can be joined. The D-Index 
[3] and eD-Index [1] construct an index structure based around separate buckets ar-
ranged in a hierarchical structure of levels. This index-structure allows for efficient 
similarity search and Self-Similarity Join queries. Our work extends on the D-Index 
and eD-Index, and focuses on algorithms to utilize the eD-Index functionality to effi-
ciently perform Similarity Joins between two relations in metric spaces. 

3 The i-SimJoin Algorithm 

3.1 The eD-Index 

The structure of the D-Index and its extension, the eD-Index, are detailed in [3] and 
[1] respectively. In brief, the eD-Index makes use of multiple levels where each level 
is organized into separable buckets and an exclusion set. The top level partitions the 
initial dataset. Each subsequent level after the first is created by partitioning the ex-
clusion set of the previous level. Separable buckets are constructed by picking n pi-
vots and a radius d from each pivot. d can be different for each pivot and is calculated 
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when constructing the index so as to attempt to balance the number of tuples in each 
separable bucket. n can also vary between levels. Objects are placed in the appropriate 
separable bucket or the exclusion set based on their distance from the pivots and the 
global parameters ρ and ε, which determine the maximum query radius the eD-Index 
can be used to answer efficiently. Objects with a distance between d + ρ and d – ρ 
from a pivot are placed into the exclusion set. All other objects are placed into a se-
parable bucket determined by the objects’ distances from all pivots on that level. All 
objects with a distance of between d ± ρ and d ± (ρ + ε) from a pivot are duplicated 
into the exclusion set in addition to being placed in a separable bucket. 

3.2 RQ-SJ: Range Query Similarity Join 

The Range Query Similarity Join is an algorithm proposed in [2] for the case of Self-
SJ only. As part of our work, we implemented and evaluated the performance of this 
algorithm for the case of SJ for two relations. This algorithm applies successive simi-
larity search operations over the indexed dataset R, using all elements of the dataset S 
as the targets of the similarity searches. For each object s in S, the output is the collec-
tion of all objects in R that are within μ of s. 

3.3 i-SimJoin: Index-Based Similarity Join 

i-SimJoin is an algorithm for performing Similarity Join operations over two datasets 
indexed using the D-Index (individual indices). The indices are constructed so that 
they share the same index structure – that is, that the index for relation S uses the 
same number of levels and the same pivots for each level as relation R does. This 
allows the indices to be treated as the same logical index containing two separate 
relations while maintaining the index of each relation as a separate structure. On this 
logical index, we can apply an extension of a Self SJ operation such as the sliding 
window algorithm proposed in [1] with the added modification of awareness of which 
relation the tuples originally came from. This last modification ensures that only 
matches of pairs between both relations R and S will be returned. 

To create the indices for the relations, an index is first created for relation R. The 
index structure generated from this is then used to create the index for relation S. This 
allows for the index of relation R to be used for Similarity Join queries with relation 
S, while still allowing the index on relation R to be independently used for other simi-
larity-aware queries. Other approaches to create logical indices over the two relations 
while maintaining independent physical indices is a task for future work.  

The i-SimJoin algorithm consists of two routines. First, we process the indices si-
multaneously, treating the corresponding buckets as a logical combined bucket as 
shown in Algorithm 1. Algorithm 2 is the algorithm that is run on each combined 
bucket. The getNextObject() function returns the next object in the combined bucket, 
ordered by the pre-computed distance from the object to the pivot. upObject and 
loObject are pointers to the current objects from each relation being compared – the  
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iSimJoin(indices, mu) 

Input: indices (logical combined indices from relations), mu (query 

radius) 

Output: all the results of the Similarity Join operation R ⊳⊲ θμ(r,s) S 

1 for each CombinedLevel L in indices 

2  for each CombinedBucket b in L 

3   b.iSimJoin_bucket(mu) 

4  end for 

5 end for 

6 indices.exclusionSet.iSimJoin_bucket(mu) 

Alg. 1. iSimJoin 

upObject is the highest-ordered of the two objects, while the loObject iterates through 
the current sliding window. A marking system is used to correctly slide the window 
through the combined bucket. 

 
iSimJoin_bucket(mu) 

Input: mu (query radius) 

Output: all the results of the Similarity Join operation R ⊳⊲ θμ(r,s) S 

for one logical CombinedBucket 

1  Object loObject = getNextOb-

ject() 

2  Object upObject = loObject 

3  while(upObject.relation == 

loObject.relation) 

4   upObject = getNextObject() 

5  end while 

6  if(loObject.relation == R) 

7   markR = loObject 

8   markS = upObject 

9  else 

10  markR = upObject 

11  markS = loObject 

12 end if 

13 while(upObject != NULL) 

14  while(upObject.distance – 

loObject.distance > mu) 

15   loObject = loObject.next() 

16  end while 

17  if(loObject.relation == R) 

18   markR = loObject 

19  else 

20   markS = loObject 

21  end if 

22  while(loObject.distance <= 

upObject.distance) 

23   if(loObject.distance == 

upObject.distance && loOb-

ject.relation == S) 

24    break 

25   end if 

26   if(dist(loObject, upObject) 

<= mu 

27    report (loObject, upObject) 

28   end if 

29  end while 

30  upObject = getNextObject() 

31  if(upObject.relation == R) 

32   loObject = markS 

33  else 

34   loObject = markR 

35  end if 

36 end while 

Alg. 2. iSimJoin_bucket 
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Lines 1-12 of the iSimJoin_bucket algorithm are the initial setup of the data struc-
tures and the marking system. Lines 14-21 advance the rear of the window as it slides 
through the bucket and marking the new loObject appropriately. Lines 22-29 report 
all similar matches in the current window. Additional checks are done here to prune 
out dissimilar pairs before performing the final distance calculation on the candidate 
matches. The check at line 23 ensures that no match will be added twice if the current 
upObject and loObject have the same pre-computed distance. Lines 30-36 advance 
the upObject to the next element in the bucket and set loObject to the correct marked 
position for its relation. 

4 Performance Evaluation 

We implemented the i-SimJoin algorithm as a stand-alone application written in C++. 
In this section, we present preliminary results comparing the i-SimJoin algorithm to  
the Range Query (RQ-SJ) algorithm over two relations in terms of number of distance 
computations and execution time. 

All experiments are performed on an Intel Core I-5 1.70 GHz 4-core machine with 
6GB of RAM running Linux (OpenSUSE 12.3 64-bit) as the operating system. The 
dataset used for this experiment is a synthetically generated, 10-dimensional vector 
dataset with randomly-generated values for each dimension ranging from 0 to 100. 
This dataset contains 100K tuples per relation, or 200K in total. The Euclidean dis-
tance function is used to calculate distances between objects. 

The strategy taken for constructing each index was to choose a number of pivots 
for each level such that the number of objects in the largest separable bucket in that 
level fell within the range of 5,000 to 10,000 objects, resulting in an index structure 
with 3 levels and 9 pivots. The value of ρ was 0.5% of the maximum distance and the 
value of ε was 1.0% of the maximum distance. 

 

Fig. 1. Comparing Distance Computations 
while Increasing Query Radius 

Fig. 2. Comparing Execution Time while In-
creasing Query Radius 

 

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

ta
nc

e 
Co

m
pu

ta
ti

on
s 

(1
00

k)

Query Radius (% Max Distance)

i-SimJoin

RQ-SJ

0
2
4
6
8

10
12
14
16
18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Query Radius (% Max Distance)

i-SimJoin

RQ-SJ



 Index-Based R-S Similarity Joins 111 

Fig. 1 presents the number of distance calculations needed for each algorithm as 
the query radius increases. i-SimJoin requires a significantly lower amount of distance 
computations than the RQ-SJ algorithm, ranging from only 2.1% of the distance com-
putations of the RQ-SJ algorithm at a query radius of 0.1% of the maximum distance, 
to 48.7% at a query radius of 1.0%. 

Fig. 2 presents the execution time of the algorithms, with the execution time of i-
SimJoin being comparable to that of the Range Query algorithm. The execution time 
of i-SimJoin ranges from 44.8% when the query radius is low to 148.3% of that of the 
Range Query algorithm. Note that i-SimJoin performs better than RQ-SJ in terms of 
execution time when the number of distance computations required for i-SimJoin is 
very low compared to that of RQ-SJ. 

As part of our initial tests, we also compared the original Self-SJ algorithms pro-
posed in [1] (range query and sliding window algorithms) and extended in this paper. 
We used the described 10D vector dataset and Euclidean distance function. The re-
sults were very similar to the ones reported in this paper for the case of SJ over two 
relations, i.e., while the sliding window technique performs significantly less distance 
computations, both algorithms have similar execution times. Note that the work in [1] 
only reports the number of distance computations and not the execution times. 

The comparison of these approaches contrasting both distance computations and 
execution time is actually quite revealing. These results highlight the fact that the 
overhead required in processing these algorithms is a significant factor in the execu-
tion time. For instance, the i-SimJoin algorithm performs many tests to prune out 
pairs that are not in the result set. Although these checks do not necessarily involve 
distance computations, they still contribute to the processing that needs to be done. 
Since the results reported in this paper were obtained from a 10-dimensional dataset, 
the distance computations involved were not highly expensive. More complicated 
distance functions over more complex data types can significantly increase the com-
plexity of the distance computations, and this would be expected to result in the num-
ber of distance computations being more significant in terms of the execution time. 
While i-SimJoin is expected to outperform RQ-SJ for complex data types and dis-
tance functions, it is also important to observe that the simple RQ-SJ algorithm can be 
the most efficient approach for simple data types and distance functions.  

5 Conclusions 

This paper presents i-SimJoin, an algorithm to perform Similarity Joins on two rela-
tions using physically independent indexing structures. Our performance evaluation 
shows that i-SimJoin requires far fewer distance calculations than an alternative SJ 
algorithm, and has a comparable execution time. Our future work will include: (1) 
extensive performance evaluations of more complex data types and distance functions 
to investigate how this affects the execution times of i-SimJoin and RQ-SJ, and (2) 
generalization of the i-SimJoin algorithm to the case of multiple SJ predicates. 
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Abstract. Some instances of multimedia data can be represented as high dimen-
sional binary vectors under the hamming distance. The standard index used to han-
dle queries is Locality Sensitive Hashing (LSH), reducing approximate queries to
a set of exact searches. When the queries are not selective and multiple families
of hashing functions are employed, or when the collection is large, LSH indexes
should be stored in secondary memory, slowing down the query time.

In this paper we present a compressed LSH index, queryable without de-
compression and with negligible impact in query speed. This compressed rep-
resentation enables larger collections to be handled in main memory with the
corresponding speedup with respect to fetching data from secondary memory.

We tested the index with a real world example, indexing songs to detect near
duplicates. Songs are represented using an entropy based audio-fingerprint (AFP),
of independent interest.

The combination of compressed LSH and the AFP enables the retrieval of
lossy compressed audio with near perfect recall at bit-rates as low as 32 kbps,
packing the representation of 30+ million music tracks of standard length (which
is about the total number of unique tracks of music available worldwide) in half a
gigabyte of space. A sequential search for matches would take about 15 minutes;
while using our compressed index, of size roughly one gigabyte, searching for a
song would take a fraction of a second.

Keywords: Audio indexing, Succinct Audio-Fingerprint, Succinct LSH Indexes.

1 Introduction

High dimensional binary vectors under the hamming distance can represent many inter-
esting objects for applications. The standard index used to handle queries in this setup
is Locality Sensitive Hashing (LSH), reducing approximate queries to a set of exact
searches. When the queries are not selective and multiple families of hashing func-
tions are employed, or when the collection is large, LSH indexes should be stored in
secondary memory, slowing down the query time.
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DOI: 10.1007/978-3-319-11988-5_11 c© Springer International Publishing Switzerland 2014



114 F. Santoyo, E. Chávez, and E.S. Téllez

Compressing the data is an option to avoid overflow to secondary memory as long as
the compressed representation is usable without decompressing. In this paper we present
a compressed LSH index, which can be queried without decompression and with neg-
ligible impact in the query speed. This defer the use of secondary memory for larger
collections, implying a non-trivial speedup with respect to a secondary memory index.

We performed a real world test for our algorithms. We selected the problem of index-
ing music tracks. The total amount of music tracks worldwide is in the order of 30 mil-
lion. The Apple iTunes music-store lists less than 30 million songs in its catalog. Other
on-line music-stores like Amazon MP3 offer a 22 million song catalog to choose from
and Deezer or Spotify just advertise more than 30 million songs. With the increasing
number of records, the creation of high performance music search algorithms becomes
a basic requirement for any music on demand application. The industry should respond
with systems being able to discover, navigate, and recommend music. One basic tool
for music retrieval is the simple matching of a track in a collection.

The task of matching whole songs in audio collections has been tackled by fingerprint-
ing the audio, and then comparing the corresponding fingerprints. This method serves
multiple purposes, on the one hand the fingerprinting procedure masks subtle differences
between audio objects and conflates near duplicates. On the other hand, having a succinct
representation of the audio avoids a lengthy comparison in the original domain.

While audio fingerprints (AFP) can be made very robust to ambient noise and other
severe degradations, there is a tension between robustness and the memory footprint of
the representation [1]. Other commercial approaches use a time-frequency representation
of the audio (as in [2] and [3]) with limitations in both, the processing power required to
obtain the AFP, and the type of index to be engineered to obtain fast answers.

We did focus on whole-song identification with the only expected degradation
transcoding (e.g. lossy compression), which induces very mild distortions to the songs.
We will also assume that both the query song and the song in the database have the same
length and that they are correctly aligned. This is the case, for example, of an audio label-
ing service; where the user rips the audio from a CD and wants it automatically labeled.

Our second contribution consists in a lightweight AFP using just a few bits per minute
of audio (precisely one bit every two seconds). Every song will produce a string of
bits of the same size (the strings are cyclically completed to a fixed size). To compare
two songs we use the hamming distance between the corresponding AFPs. With this
procedure near duplicates are conflated (they have small Hamming distance) and non
corresponding songs have large distances. These two facts allow extremely fast searches
with no false positives. The unique combination of speed, precision and small memory
footprint is unparalleled in the literature. We can pack about 300 million minutes of
audio in about one gigabyte, and query a database of this size in a fraction of a second.

2 Related Work

A variant of the classical KD-tree algorithm which efficiently indexes high-dimensional
data by recursive spatial partitioning is presented by McFee and Lanckriet [4]. They
perform experiments on the One Million Song Dataset [5] to demonstrate that content-
based similarity search can be significantly accelerated by the use of spatial partitioning
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structures. However, KD-tree suffers (as any exact spatial and metric index) of the so
called curse of dimensionality (Samet [6] and Chavez et al. [7]); as any spatial method
working with the explicit dimensionality, it becomes suboptimal on high dimensional
datasets [7].

The interested reader on a more general point of view of Music Information Retrieval
is referred to the surveying works of Lu [8], which provides a comprehensive survey of
audio indexing and retrieval techniques; Stober and Nürnberger [9] present a structured
view on the last decade of Music Information Retrieval research; and Yan et al. [10]
present a rich review of large-scale multimedia analysis techniques.

3 Computing the Fingerprint

Our approach is derived from [11]. The signal is framed and for each frame we measure
the information content, directly in the time domain. The Information content or self
information I(pi) of a value vi, depends only on its probability pi = P (vi) to occur,
the less likely a value to appear, the more information it will bring when it shows up.
Therefore, the self information must be a monotonically decreasing function of the
probability, usually it is defined as I(pi) = ln( 1

pi
) = − ln(pi)

Let X = {x1, x2, · · · , xn} a sequence of values, with fi denoting the frequency of
xi. The entropy H(X) is the average of all the information contents weighted by their
probabilities to occur

H(X) =
m∑
i=1

fi
n
log(

xi

n
) = −

n∑
i=1

pi log(pi)

Transcoded versions of the same song will differ in the amount of information packed,
producing a vertical shift. To avoid this shift we keep only the sign of the derivative,
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zontal axis).

Fig. 1. The process for obtaining the fingerprint and an example of two versions of the same song
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which can be computed measuring only the relative change between frames, with 1 if
the change is positive and 0 otherwise, see Figure (1a). The frames can be overlapped to
smooth the changes in the sequence, because transcoding induces a time shift. In other
words, two versions of a song will be almost aligned. The frame overlapping smooths
the time shift, however this increases the size of the fingerprint and also modifies the
distance distribution between songs. The optimal frame size and overlap amount can be
found experimentally, the optimization goal is to minimize the distance between near
duplicates while maximizing the distance between unrelated songs. Figure 1a illustrates
the process of obtaining the fingerprint of a song. One of the nice characteristics of this
approach is the trivial parallelization in obtaining the fingerprint, fitting well in modern
hardware. Furthermore, the operations needed are simple enough to be implemented in
low-end processors, such as mobile devices.

We computed the AFP with frames of sizes half, 1 and 2 seconds with overlaps of
0, 50, 75, 90 and 95%. The experiments were performed in a sample of 4000 songs
with mp3 encoding at different bit-rates mp3@{128, 96, 64, 32}Kbps, also, we denote
the original as wav@1411Kbps. We observed two things in this experiment, the first
is that overlap increases the distance between near duplicates; the minimum distance
(and variance) is obtained with no overlap. The second observation was that the frame
size was not critical, changes in the distance were not significant. Due to the later fact,
we selected a 2 second frame with no overlap because it gives the smallest memory
footprint.

Table 1 shows both the average distance and the standard deviation matrix for a 2-
second frame with no overlap. For near duplicates the average distance goes from 1.8%
to 4.2% with a small variance.

Table 1. Average normalized distances from one song to all its versions. (μ, ρ)

@1411Kbps @128Kbps @96Kbps @64Kbps @32Kbps
@1411Kbps (0, 0) (0.018, 0.076) (0.022, 0.076) (0.026, 0.076) (0.054,0.075)
@128Kbps (0, 0) (0.008, 0.010) (0.012, 0.013) (0.042, 0.028)

@96Kbps (0, 0) (0.013, 0.013) (0.042, 0.028)
@64Kbps (0, 0) (0.042, 0.029)
@32Kbps (0, 0)

Complementarily, for the same setup, the average distance between unrelated songs
is one order of magnitude larger as shown in Table 2. The average distance is 42.7%,
with standard deviation depending on the bit-rate.

Table 2. Average normalized distances from one song to all the other songs. (μ, ρ)

@1411Kbps @128Kbps @96Kbps @64Kbps @32Kbps
@1411Kbps (0.426, 0.061) (0.427, 0.061) (0.427, 0.061) (0.427, 0.060) (0.429, 0.058)
@128Kbps (0.427, 0.061) (0.427, 0.061) (0.427, 0.060) (0.429, 0.058)
@96Kbps (0.427, 0.061) (0.427, 0.060) (0.429, 0.058)
@64Kbps (0.427, 0.060) (0.429, 0.058)
@32Kbps (0.429, 0.058)
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Since we do not have overlap, frames are independent of each other which gives us
the capability to parallelize the fingerprint computation.

We ended up with a succinct representation of a song, fast to compute, and with nice
conflation properties. Near duplicates are one order of magnitude closer than unrelated
songs, respectively shown in Tables 1 and 2. This fact avoids the retrieving of false
positives when querying by content, as discussed in the next section.

4 Matching Songs

Since we are using the Hamming distance with the AFP, it is natural to use locality
sensitive hashing (LSH) (Gionis et al. [12]) as the base of our index.

LSH is a fast approximate proximity searching technique giving probabilistic guar-
antees on the quality of the result. The general idea of an LSH index is to find hashing
functions that applied to close objects give the same bucket with high probability. This
technique is prone to two types of errors, namely: 1) False positives, when two non
related objects fall in the same bucket, and 2) False negatives, when two near duplicates
end in a different bucket. Those errors can be alleviated by using more than one LSH
function.

In general, the process of finding hashing functions gi can be tricky; however Ham-
ming spaces are the most studied and hash functions are very simple, they are just
random samples of the bit strings.

Definition 1 (Locality Sensitive Hashing, Gionis et al. [12]). A family of hashing
functions H = {g1, g2, · · · , gh}, gi : U → {0, 1} is called (p1, p2, r1, r2)-sensitive, if
for any p, q:

— If d(p, q) < r1 then Pr[hash(p) = hash(q)] > p1
— If d(p, q) > r2 then Pr[hash(p) = hash(q)] < p2

Where hash(u) is the concatenation of the output of individual hashing functions gi,
following a fixed order, i.e. hash(u) = g1(u)g2(u) · · · gh(u).

Let dmax be the maximum possible distance between objects in the metric space;
the probability that some gi computes the same hash for u, v ∈ U is determined as
Pr[gi(u) = gi(v)] = 1− d(u, v)/dmax.

If hashing functions are selected independently, with replacement, and equally prob-
ably to fail, we obtain Pr[hash(u) = hash(q)] = 1 − (d(u, v)/dmax)

h. In order to
have a sound LSH scheme, the above formula should comply with definition 1.

Other data models and distance functions, like vectors measured with Minkowski
norms or sets with Jaccard distances are also studied in the literature, Gionis et al. [12],
and Andoni & Indyk [13].

4.1 Normalizing AFP Size

Our AFP is a bit string of variable length, proportional to the length of the song. The
LSH based index needs a fixed size representation. Hence each fingerprint is conceptu-
ally expanded to be of the size of the largest fingerprint on our database, or any fixed
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large size if that length is unknown beforehand. Let �max be such length, and �i be the
length of the i-th fingerprint si. Let s[j] be the j-th bit in the fingerprint s.

Our database S of size n is denoted as S = {ŝ1, ŝ2, · · · , ŝn}, where ŝi[j] = si[1+(j
mod �i)] for all 1 ≤ j ≤ �max. The same method is applied to obtain any valid object
(e.g. queries q ∈ U ), using �max obtained from S. The distance between any two
database objects is D (Hamming distance).

A single index would be enough if the length of the objects are not very different,
all of them will have the same length using the above normalization. However in a
database with disparate lengths, the normalization would be unfair since LSH captures
(relatively) very large hashes for smaller fingerprints. In this case the database should
be partitioned into several sets, and indexed separately.

4.2 Indexing the AFP Database

We have seen before that all versions of the same song are quite close to each other as
shown in Table 1, and complementarily unrelated songs are distant from each other as
shown in Table 2. There is a balance between the size of the sample in an LSH index,
the implicit searching radius, and the time to retrieve the near duplicates. We cascade a
set of indexes of non decreasing selectivity, all of them using different samplings. We
apply the hashing in order until reaching the last index, and give up when we reach it.

We compute the minimum and maximum sampling sizes using Table 1 and the size
of the AFPs. We can use a single parameter α (where 0 ≤ α ≤ 1) establishing what
is the selectivity of each index in the cascade, i.e, anything with larger distance than
α will be discarded. The maximum α would be fixed to 0.15 because this will capture
most of the near duplicates.

The average searching cost will be very low since most queries are solved using
only the first indexes, only a fraction of the queries would require all the indexes. The
searching steps are described in Algorithm 1.

Algorithm 1: Near-duplicate searching of songs

Input: The query song Q, the index set L corresponding to the size of Q , the maximum
distance α.
Output: The set R of near-duplicate objects of Q.

1: Process Q and obtain its fingerprint q
2: Normalize the audio-fingerprint as the object q̂
3: Initialize R ← ∅
4: for all I ∈ L do
5: Lookup I to match similar objects q̂, put candidates in C
6: Remove from C objects not matching the length of q
7: R ← R ∪ {û ∈ C | d(q, u) ≤ α}.
8: Stop the iteration if |R| ≥ 1 (or the minimum desired cardinality)
9: end for
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5 Compressing LSH

To reduce false positives and false negatives multiple hashing functions are needed;
thus, the search index will require more memory and probably will resort to secondary
memory for large instances. Our goal is to produce a representation of the LSH index
with close to optimal storage.

The general idea is to represent the hashing tables as inverted indexes, and in turn
to represent those inverted indexes as an indexed sequence. This type of representation
can be compressed and can be queried without decompression.

Let T = s1s2 · · · sn be a sequence of symbols on the alphabet Σ of size σ, i.e.
si ∈ Σ. Without loss of generality, let Σ be a set of integers, that is Σ = {1, 2, · · · , σ}.
The i-th symbol in T is denoted as Ti.

An index of sequences (IoS) provides three basic operations:

– Rankc(T, pos) counts how many c’s occurs in T until pos, c ∈ Σ.
– Selectc(T, r) returns the smaller position pos such that Rankc(T, pos) = r.
– Access(T, pos) retrieves the symbol stored at the position pos in T , i.e., Tpos.

Notice that an IoS replaces T , since we can reconstruct it using Access, but our
notation requires to put T in the arguments even when it is not necessarily stored.

5.1 A Brief Survey for Indexes of Sequences

There are several indexes achieving near optimal space bounds, we briefly review some
of them. We start establishing the memory costs for any representation.

Memory usage. Let nc be the number of symbols c in T , then from information theory
we can obtain the following formulation, using a fixed code word for each symbol,
we require at least nH0(T ) ≤ n log σ bits, here, H0(T ) is the order zero empirical
entropy of T , i.e., nH0(T ) = n

∑
c∈Σ pc log

1
pc

=
∑

c∈Σ nc log
nc

n bits. Here pc is the
probability of occurrence of c in T , empirically, pc = nc/n.

Binary alphabets (Bitmaps). Most IoS use as building block the binary case, an alphabet
of two symbols c ∈ {0, 1} without loss of generality. Consider a bitmap B with n bits,
let n0 and n1 the number of 0’s and 1’s respectively in the bitmap.

Gonzalez et al. [14] developed a fast practical approach. It consists on a directory
structure of absolute Rankc samples every log2 n bits. This structure solves Rankc and
Selectc in O(log n) time, and Access in constant time. It stores the plain bitmap using
n bits and used o(n) bits to store the absolute samples.

Several indexes achieve near-optimal space for binary alphabets. For example, Ra-
man et al. [15] based on classifying bit blocks and then codifying blocks using tuples
(ci, offset) where ci describes the class of the block (the number of bits set to 1) and an
offset to distinguish a block inside the class ci. These tuples are cleverly codified such
that classes with few members will produce smaller offset’s codes. This approach uses
nH0(B) + O(log logn) + o(n) bits and solves the three basic operations in constant
time; however, the constants are too large in practice. Claude and Navarro [16] improved



120 F. Santoyo, E. Chávez, and E.S. Téllez

the practical, sample based implementation introduced by Gonzales in [14], achieving
better performance in practice; however, the space space complexity is similar and can
be a waste of resources when n1 � n. On the other side, Okanohara and Sadakane [17]
presented the sparse array (SArray) which achieves n1 logn/n1 + O(n1) space with
O(1) time for Select1.

In addition to the above, there exists specialized indexes achieving near optimal
space. One example is presented in Tellez et al. [18,19] they key idea consist in stor-
ing differences with variable length integer codifications along the necessary directory
structures to accelerate operations. Tellez introduced Diffset, which is basically the rep-
resentation of the bitmap as a compressed sorted list with directory structures to provide
fast Rankc, Selectc, and Access performances. Diffset achieves nH0(B) + o(n) bits.
Similarly, Diffset-RL is defined adding run-length compression for large consecutive
runs of ones; depending of the distribution it could produce much better compression
and times or add n bits in the worst case.

Larger alphabets. For σ > 2 there are several canonical techniques to index a sequence
T of length n as described below.

Grossi et al. [20] introduce the Wavelet Tree (WT), it uses n log σ +O(σ logn) bits
solving all operations in O(log σ) time. There exists several variants of the WT. For
example, the WT with Huffman shape or with internal bitmaps compressed to nH0,
like surveyed by Navarro and Mäkinen [21]. Very large alphabets are problematic with
this scheme since the time complexity of all operations depend on σ.

Golinsky et al. [22] introduce a fast index, robust to large σ. It uses n log σ +
o(n log σ) bits, it solves Selectc in constant time, and both Rankc and Access on
O(log log σ) time. Claude and Navarro [16] show an implementation of Rankc and
Access on O(log σ) time performing better in practice for most instances.

Tellez [18] introduces the Extra Large Bitmap (XLB) family of indexes for large
alphabets achieving both compression and fast operations, specially on sequences with
low local entropy. The main idea is to codify a sequence using a permutation of [1 . . . n];
the trick is to store the inverse in o(n) bits extra, while the direct is represented with
a large bitmap that takes advantage of the sparseness of the resulting bitmap. The se-
quence T = T1T2 · · ·Tn is represented with a bitmap P [1, σn] where the i-th bit is
1 if Timodσ = i

σ , and 0 otherwise. Then, P is a large bitmap, with regions of length
n corresponding to each symbol. The basic algorithm solves Rankc and Selectc on
T performing Rank1 and Select1 on P . Access is solved using Π−1 where Π(i) =
Select1(P, i) mod n. Also, Π−1 is stored with the cyclic representation of Munro et
al. [23] using 1

t logn bits; it solves Π−1 in t time (Select1 operations on P ), where
t ≥ 1. Since all operations are delegated to the P bitmap, the efficiency is tightly linked
to P . Since we need to represent a very large bitmap of nσ bits with n bits set to 1, then
we need an underlying bitmap taking advantage of the sparseness of the represented
bitmap.

5.2 The Sequence Representation of LSH

Consider the databaseS ⊆ U , S = {u1, u2, · · · , un}, and a family of hashing functions
H = {g1, g2, · · · , gh}, where h = |H| and gi : U → {0, 1}. A tag of an object



A Compressed Index for Hamming Distances 121

is defined as tag(u) = g1(u)g2(u) · · · gh(u). The set of all possible values of tag(·)
is called the alphabet, Σ = {0, 1, 2, · · · , σ − 1}, where σ = |Σ| ≤ 2h. Even when
tag(u) = hash(u), conceptually tag is an atomic item (indivisible and recognized as a
unit), and defines a sequence’s symbol. Let us define T = tag(u1) tag(u2) · · · tag(un).
We can store T using log

(
n

n1,n2,··· ,nσ

)
bits, where ni is the number of occurrences of

the tag i in T .
Recall that high quality results with LSH require several LSH tables, which increase

the memory cost and hence the need of a memory efficient representation. The alphabet
derived from the LSH representation is large. One option of index is WT, described
in the previous section, but the operations for the simulation of LSH make heavy use
of the Selectc operation. The performance of WT and most of its variants is poor for
our needs. Hence we focus on the Golynski and the XLB approaches. In particular, we
use XLB with SArray, Diffset and Diffset-RL; XML-SArray will use n log σ + o(n)
bits, while XML-Diffset and XML-DiffsetRL can achieve better compression under
particular entries with low local entropy; however, the latter two will introduce a minor
term of O(n log log n) bits which can impact on sequences with high local entropy
since they will be added to the resulting worst case.

5.3 Solving Approximate Nearest Neighbors with T

The abstract data structure for LSH needs access to the buckets. To solve a query, the
structure needs to count the number of items in a bucket, and retrieve all items on it.
Figure 2b shows a hash table of an example database of 16 objects. Each row is a bucket,
represented by some hash value. Figure 2a shows the sequence T of the hash table.

As an abstract data structure T solves similarity queries using the same proximity
properties than LSH tables. Algorithm 2 solves the approximate nnd,S,U(q) queries.
The idea is to retrieve all items using Selecttag(q).

LSH is essentially an indexed table, we can emulated its functionality as follows.
i) The number of items with the same hash c is computed with Rankc(T, n) (Fig-
ure 2c); ii) all items with the same tag c are retrieved as Selectc(T, i) for i = 1, 2, · · · ,
Rankc(T, n).

Algorithm 2: Searching for the approximate nnd,S,U (q)

Input: The query q, the distance function d, and T .
Output: The approximate nearest neighbor nn∗(q)
1: Let c = tag(q)
2: Let nn∗(q) ← undefined
3: for i = 1 to Rankc(T, n) do
4: Define p as Selectc(T, i)-th object in T
5: nn∗(q) ← p if nn∗(q) is undefined or p is closer to q than the previous nn∗(q)
6: end for
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
tag(ui) 8 7 4 6 2 1 3 8 8 4 0 1 1 1 5 9

(a) The sequence T representing the LSH table of Figure 2b

hash tag occurrences list
0000 0 → 11
0001 1 → 6, 12, 13, 14
0010 2 → 5
0011 3 → 7
0100 4 → 3, 10
0101 5 → 15
0110 6 → 4
0111 7 → 2
1000 8 → 1, 8, 9
1001 9 → 16

(b) An example of the LSH hash table represen-
tation

Selectc(T, i)
1 2 3 4

Rank0(T, n) = 1 11
Rank1(T, n) = 4 6 12 13 14
Rank2(T, n) = 1 5
Rank3(T, n) = 1 7
Rank4(T, n) = 2 3 10
Rank5(T, n) = 1 15
Rank6(T, n) = 1 4
Rank7(T, n) = 1 2
Rank8(T, n) = 3 1 8 9
Rank9(T, n) = 1 16

(c) Reconstructing the LSH table

Fig. 2. An example of the LSH sequence representation LSH, and its operations

6 Experimental Results

All experiments were performed in a 16 core Intel Xeon 2.40 GHz workstation with
32GiB of RAM, running CentOS. All tasks were restricted to run into a single core, we
did not exploited the parallel capabilities of our workstation.

6.1 Case of Study

For the real world example, we collected 3.7 million songs (about 1.5 Tb) and finger-
printed them with the techniques described, using 1 bit every two seconds of music.
A collection of this size is necessarily diverse. Our database of fingerprints requires
54 MiB (15 bytes per song), that is always maintained in main memory. Proximity be-
tween fingerprints is measured with the Hamming distance. Each fingerprint requires
0.31 seconds in average to be computed (reading PCM files with 16 bits per sample, and
44100 Hz, 1411kbps). We randomly selected 400 songs from the songs database and
compressed them to @128kbps, @96kbps, @64kbps, and @32kbps. These versions of
the song are similar to the versions in personal music libraries.

Table 3 contains the average size of the LSH indexes for our setups (over our 3.7
million song audio-fingerprint database). It is interesting to notice that the compression
ratio (smaller is better) decreases as h does. Using the compact sequence representation
of LSH we expect to use from 54% to 77% of the original space of an LSH index. This
improvement is important because we are trying to maintain our data structures in the
higher places of the memory hierarchy, asymptotically obtaining faster indexes.
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Table 3. Average memory requirements

method h
10 15 20

LSH 14.0 MiB 14.3 MiB 22.0 MiB
compressed LSH 7.6 MiB 9.9 MiB 17.0 MiB
compression ratio 0.54 0.69 0.77
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(a) |L| = 1 (a single index)

0.50

0.60

0.70

0.80

0.90

1.00

 100  1000  10000  100000  1e+06

re
c
a

ll

time (micro-seconds)

10-10
15-15
20-20

(b) |L| = 2 (two indexes)
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(c) |L| = 3 (three indexes)
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(d) |L| = 4 (four indexes)

Fig. 3. Recall vs. time to retrieve the near-duplicated using different LSH families and several
indexes. The points in the curves are generated searching for different versions of the songs,
i.e., perfect recall is achieved for 1411kbps, and from it each point matches with versions with
decreasing quality 128, 96, 64, and 32 kbps.

The recall increases as h decreases. However, as h decreases we expect higher
searching times since the database is partitioned in fewer buckets. The searching and re-
call compromise is shown in Figure 3. For instance, Figure 3a shows the performance of
a single index. Decreasing h increases the searching time exponentially, while the recall
is only moderately improved. An option to improve the performance is using more than
one index, a set of them L (as described in Algorithm 1). Using two indexes, Figure 3b,
performs better than reducing h, at the cost of using twice the memory. The improve-
ments with three and four indexes, Figures 3c and 3d respectively, are more notorious.
Note that the average searching time is smaller than just multiplying the searching time
for the number of indexes, this is because we only advance to the next index if the
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Fig. 4. Our mixed setups that optimize both recall and time performances. The points in the
curves are generated searching for different versions of the songs, i.e., perfect recall is achieved
for 1411kbps, and from it each point matches with versions with decreasing quality 128, 96, 64,
and 32 kbps.

Table 4. Average memory requirements for our mixed setups

setup memory
compressed LSH LSH compression ratio

20, 15, 10 34.5 MiB 50.3 MiB 0.686
20, 20, 15, 10 51.5 MiB 72.3 MiB 0.712
20, 20, 20, 15, 10 68.5 MiB 94.3 MiB 0.726
20, 20, 20, 20, 15, 10 85.0 MiB 116.3 MiB 0.735
20, 20, 20, 20, 15, 15, 10 95.4 MiB 130.6 MiB 0.730

current one fails to retrieve the near-duplicates (Algorithm 1). It is clear that the better
time-recall tradeoff is found for several indexes with large h values, also the memory
cost is reduced using the compressed LSH index (Table 3).

As seen on Figure 3d, we obtain at least 85% of recall for all versions when h = 20.
However we always obtain at least 90% for h = 15, and 95% for h = 10. Based
on the above facts, we tuned the strategy improving the recall with a small impact in
both average searching time and memory cost. The idea is to filter by solving most
queries very fast, with only a few queries passing the filter and using a more expensive
procedure. This is illustrated in Figure 4. Here we can see that most configurations
perform better than 95% of recall with a moderate searching time. For example those
instances with at least 5 indexes achieve more than 98% for high quality songs, and
less than 7 milliseconds searches. Our setup with seven indexes gives more than 99%
of recall and 3 millisecond searches for songs of quality @64,@96,@128 and @1411
kbps.
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Table 4 shows the cost of storage of the setups of Figure 4. The memory usage
is maintained below 100 MiB, since compressed indexes require close to 70% of the
uncompressed LSH. Please notice that the compression is important, since it can be
central for running a standalone version of the indexes in mobile devices.

7 Conclusions

We presented a compressed index for LSH. The index can be queried without decom-
pression and with negligible impact in the query time. We tested the index for the prob-
lem of near duplicate detection in whole-song querying. We made experiments with
3.7 million songs, obtaining near perfect recall and searching times of 5 milliseconds.
The index fits well under 100MiB of RAM, and requires only simple operations, easily
cacheable. The fingerprint of a 4 minute song is computed in 0.3 seconds in a standard
CPU without parallelization. This allows to think in applications running standalone in
small devices. Making a simple linear extrapolation of our index, which is a pessimistic
assumption, we can fingerprint about 37 million songs in half gigabyte of RAM; being
able to query the collection in a fraction of a second. The assumption is pessimistic
because the compression ratio and searching times scale sub-linearly.

In future work we will try to estimate with very few parameters the audio quality of
a song using our fingerprinting technique. We believe we only need the area under the
curve of the time entropy profile. This feature can act as filter in a third party storage and
streaming service, for example, the service provider may reject to stream low quality
audio found in the users folders.

From the searching point of view we will investigate generalizations of the L set of
indexes using metric indexes, more robust than LSH with higher error rates.

Acknowledgements. We want to thank the anonymous referees who helped us to im-
prove the presentation with insightful observations. This work was partially supported
by CONACyT and CICESE grants. The third author was a postdoc in Universidad Mi-
choacana under the CONACyT’s grant 179795 (project “Bases de Datos Multimedia
Superescalables”).

References

1. Chandrasekhar, V., Sharifi, M., Ross, D.: Survey and evaluation of audio fingerprinting
schemes for mobile query-by-example applications. In: Proceedings of ISMIR (2011)

2. LTD, S.: (2006), http://www.shazam.com/
3. SoundHound (2008), http://www.soundhound.com/
4. McFee, B., Lanckriet, G.R.G.: Large-scale music similarity search with spatial trees. In:

Klapuri, A., Leider, C. (eds.) ISMIR, pp. 55–60. University of Miami (2011)
5. Bertin-Mahieux, T., Ellis, D.P.W., Whitman, B., Lamere, P.: The million song dataset. In:

Klapuri, A., Leider, C. (eds.) ISMIR, University of Miami, pp. 591–596. University of Miami
(2011)

6. Samet, H.: Foundations of Multidimensional and Metric Data Structures, 1st edn. The mor-
gan Kaufman Series in Computer Graphics and Geometic Modeling. Morgan Kaufmann
Publishers, University of Maryland at College Park (2006)

http://www.shazam.com/
http://www.soundhound.com/


126 F. Santoyo, E. Chávez, and E.S. Téllez
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Abstract. Similarity search methods face serious performance issues
since similarity functions are rather expensive to compute. Many opti-
mization techniques were designed to reduce the number of similarity
computations, when a query is being resolved. Indexing methods, like
pivot table prefiltering, based on the metric properties of feature space,
are one of the most popular methods. They can increase the speed of
query evaluation even by orders of magnitude. Another approach is to
employ highly parallel architectures like GPUs to accelerate evaluation
by unleashing their raw computational power. Unfortunately, resolving
the k nearest neighbors (kNN) queries optimized with metric indexing is
a problem that is serial in nature. In this paper, we explore the perils of
kNN parallelization and we propose a new algorithm that basically con-
verts kNN queries into range queries, which are perfectly parallelizable.
We have experimentally evaluated all approaches using a highly parallel
environment comprised of multiple GPUs. The new algorithm demon-
strates more than 2× speedup to the näıve parallel implementation of
kNN queries.

Keywords: parallel, GPU, kNN queries, similarity search, indexing.

1 Introduction

Similarity search presents a specific concept of information retrieval where com-
plex objects are being looked up based on their contents. It is being used in a
wide variety of applications including computer vision, pattern recognition, data
mining, content-based image retrieval, or bioinformatics. It introduces a query-
by-example paradigm, where the user provides an object as a query and expects
to receive the most similar objects from the database in return.

Unfortunately, similarity search suffers from serious performance issues, since
the functions that determine similarity of two objects are quite computationally
demanding in most models [5,16]. There are various optimization techniques
that address the performance issue. In this work, we will focus on combining
two approaches:
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• Metric indexing techniques which can be employed to reduce the number of
similarity computations and which have been shown to increase the overall
performance by orders of magnitude [3,14].

• Utilizing the raw computational power of current parallel hardware, espe-
cially the parallel accelerators such as GPGPUs or Xeon Phi devices. In the
previous work [12,10], we have shown that GPUs can be utilized to accelerate
SQFD adaptive distance measure by two orders of magnitude with respect
to common CPU.

Our main objective is to investigate the problems that arise when these two
methods are combined in one system. We have discovered that when most of the
metric indexing methods are applied for standard k nearest neighbour (kNN)
queries, any attempt to parallelize the algorithm will lead to a suboptimal solu-
tion (i.e., a solution that has to evaluate the similarity function more times than
the serial solution).

In the remainder of this paper, we will narrow our focus to similarity func-
tions, with nontrivial computational demands, like Signature Quadratic Form
Distance (SQFD) [5,4] or Earth Mover’s Distance (EMD) [16]. Very cheap func-
tions (e.g., a simple Euclidean distance in low-dimensional space) can utilize only
limited variety of metric indexing methods, which can efficiently prune the object
candidates, so that the overhead of the indexing does exceed the computational
time of the similarity function. Analogically, extremely expensive functions (e.g.,
protein alignment models from bioinformatics [8]) require best possible metric
access methods and their internal parallelization (i.e., computing each similar-
ity in parallel) is becoming more important than computing multiple distances
concurrently.

We have selected multimedial database as our referential dataset for experi-
mental evaluation. Feature signatures [16] that reflect localized image properties
regarding color, contrast, and coarseness were used as the object descriptors and
SQFD was used as the distance (i.e., inverse of similarity) function. It has been
established in previous work [12,10] that SQFD can be accelerated by GPUs, so
we have used this parallel platform in our evaluation. Finally, we have selected
pivot table prefiltering (which is based on LAESA [15] method) for indexing. The
regular structure of pivot table makes it a very good candidate for parallelization.
Furthermore, the prefiltering can use not only metric axioms (triangular inequal-
ity), but also Ptolemaic inequality [14], since the SQFD conforms to Ptolemaic
axioms. Despite the fact we have selected a specific setup for our experiments,
our observations and proposed solutions may be extended to other similarity
problems and indexing methods and to other parallel hardware.

The paper is organized as follows. Section 2 revises the fundamentals of simi-
larity search and querying principles. In Section 3, we address the issues that rise
when parallel processing is introduced in query evaluation. Possible strategies
and our proposed solution are described in Section 4 and empirically evaluated
in Section 5. Section 6 concludes our work.
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2 Similarity Search

Similarity model consists of two parts – object descriptors and a distance (dis-
similarity) function. The object descriptors represent the object features that
are essential for similarity comparisons. The distance function measures the dis-
similarity of two object descriptors.

In the similarity search paradigm, the user provides an example object as a
query. A query descriptor is extracted from the query object and it is compared
with descriptors in the database using the distance function. The closest (least
dissimilar) objects to the query object are then returned to the user.

There are two basic types of queries. The range query selects all objects with
distance to the query lower than given range r. The k nearest neighbours query
(kNN) returns k the most similar objects from the database. The kNN query
is the prefered choice in many systems, since its concept is obvious to the user
and the size of the result is predetermined by parameter k. The range query
applications are limited to cases when the distance function produce values that
can be somehow related to object attributes (e.g., in case of Levenshtein edit
distance [13]) or when the filtering range can be determined by other means
(e.g., from the results of previous queries).

2.1 Sequential Scan

When no indexing method is applied, both queries are evaluated using a sequen-
tial scan algorithm. It sequentially computes distances from the query object to
all objects in the database and filter out the results based on these distances. In
case of the range query, the filtering step simply compares computed distances
with the range r and all objects closer than r are included into the result.

The kNN query evaluation usually maintains an intermediate set of k closest
objects, which is (possibly) updated with each computed distance. When all
distances are computed the intermediate set becomes the result. From this point
of view, we can perceive the kNN query as a range query with dynamic filtering
range that is decreasing as the intermediate results gets more refined.

2.2 Metric and Ptolemaic Indexing

The indexing methods are designed to reduce the number of distance computa-
tions made during the query evaluation. The idea is to select object candidates,
which can be possibly included into the result, thus it is worth computing their
exact distance. In another words, the indexing method prunes out objects which
cannot pass the final filtering. In the remainder of our work, we will address the
indexing step as prefiltering since it pre-filters the candidates from the database.

We have focused on pivot table prefiltering (which is based on the LAESA
method [15], and is often denoted 2-phase LAESA), as it has little requirements
and it can be easily parallelized. The method selects some objects from the
database called pivots or vantage points and precomputes a matrix (pivot table)
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containing distances between the pivots and all objects in the database. The pre-
computed values can be used to determine lower bounds for the object distances
if the distance function conforms to metric or even Ptolemaic axioms.

The prefiltering algorithm works in two phases. In the first phase, it computes
distances between the query object and all pivot objects. In the second phase,
it sequentially computes lower bounds for all non-pivot objects by triangular
inequality [3] or Ptolemaic inequality [14] and compare them with the filtering
range – a constant value r in case of range queries or maximal distance in the
intermediate top-k set in case of kNN queries. If the lower bound is greater
than the filtering range, the object may be pruned out without computing its
distance, which must be greater than or equal to its lower bound. The schema
of kNN algorithm that employs pivot table prefiltering is depicted in Figure 1.

Fig. 1. Schema of a kNN algorithm that employs pivot table prefiltering

Let us emphasize that the intermediate top-k result may be refined after each
computed distance. This refinement is particularly important when the indexing
is employed, since the prefiltering step uses the same range (i.e., the greatest
distance from the intermediate top-k set) as the final filtering step.

3 Introducing Parallel Processing

The parallelization efforts of the SQFD presented in previous work [12,10] were
twofold. Each distance has to be computed in parallel manner and multiple
distances has to be computed concurrently in order to utilize the hardware to its
full potential. Since the host-GPU communication and data transfers are bound
with nontrivial overhead, the SQFD distances need to be computed in batches.

3.1 Parallel Query Evaluation

Despite the word “sequential” in the name, the sequential scan is an embarrass-
ingly parallel algorithm for both range queries and kNN queries. If we assume
that the distance function is computationally demanding, it is reasonable to
compute only the distances on the parallel hardware (GPUs in our case). The
filtering step can be performed sequentially by the CPU and overlapped with
GPU workload, since the time required for filtering is negligible in comparison
to the time consumed by the distance computations.

The situation gets slightly more difficult when an indexing technique is em-
ployed in the query processing. The first complication is risen by the compu-
tational demands of the prefiltering itself. Computing the lower bounds and
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dispatching batches of the candidate objects to the GPUs may become a bot-
tleneck, especially when multiple state-of-the-art GPUs are used in combination
with Ptolemaic inequality1. Fortunately, this problem can be solved by precom-
puting the lower bounds on GPUs [10] and by dispatching multiple CPU threads
to feed the GPUs [11].

Much more serious issue, which we address in this work, present the updates
of kNN filtering range as illustrated in Figure 1. When a candidate object passes
the filtering step, it is added into the intermediate top-k set, which ultimately
changes the value of the filtering range. The filtering range is not employed only
in filtering, but also in the prefiltering step. In order to achieve optimal prefilter-
ing effectivity, each candidate yielded by the prefiltering has to be processed
completely (since it may lower the filtering range) before another database ob-
ject is prefiltered.

When multiple distances are computed concurrently, the prefiltering step must
yield multiple candidates at once, so they can be dispatched to a GPU in a
batch. Therefore, any parallel algorithm will lead to a suboptimal solution, since
it may (and usually will) compute more distances than its serial counterpart.
On the other hand, the parallel version could still outperform the serial algo-
rithm significantly if we compensate the inefficiency of prefiltering with the raw
computational power of the GPUs.

3.2 Related Work

The kNN query problem has been extensively studied and reaches well beyond
the realms of similarity search. One of the first parallel approaches to nearest
neighbour search [6] was proposed by a research team from Munich university in
1997. In their work, the authors assumed that the object descriptors are mapped
to high dimensionality spaces and compared by rather cheap distance functions.
They proposed to cluster the feature space, so the clusters may be searched
concurrently.

One of the first implementations of kNN query on GPUs was presented by
Bustos et al. [7] in 2006. Their implementation was restricted to compute k
nearest neighbours using Manhattan distance in R

d spaces, where d varied up
to 256. The work proposed a GPU-specific data representation, which allowed
better utilization of the texture cache (shared memory) of its symmetric multi-
processors.

A similar approach was taken by Garcia [9] in 2008. Their experiments tested
Euclidean and Manhattan distances in R

d spaces for dimensions between 8 to 96.
The brute force implementation outperformed not only näıve serial algorithm,
but also the version which used kd-tree to index the space [1].

The most recent work on the topic was done by Barrientos et al. [2]. They
improved the performance by replacing parallel sorting with standard 2-regular
heap that holds the intermediate top-k result. The GPU parallel implementation

1 Computing Ptolemaic lower bounds have time complexity O(P 2), where P is the
number of pivots.
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was based on heap reduction. The heap is kept replicated, so each thread in
a warp has its own copy and the data from multiple heaps are then combined
by a parallel reduction algorithm.

To the best of our knowledge, all papers that address the parallel processing
of kNN queries focus on concurrent distance computations and on combining the
top-k results efficiently. Our work integrates the prefiltering step into kNN query
processing. This modification affects the parallelism in a specific way, which has
not been investigated yet.

4 Parallel Top-k Queries with Pivot Table Prefiltering

We have established that the metric indexing employed in kNN queries is opti-
mal only when the evaluation is conducted serially. If the query is processed in
parallel, we sacrifice optimality, thus we compute more distances than would be
required by the sequential method. Our goal is to compute as few unnecessary
distances as possible whilst exploiting the parallelism to its full potential.

4.1 Computing Distances on GPU

We assume that the distance function is not expensive (or not parallelizable)
enough so that one distance computation would occupy all available cores. Hence,
the data parallel approach is employed and multiple distances are computed
concurrently to fully utilize the hardware. Blocks of signatures are dispatched to
the GPUs and blocks of corresponding distances are returned back. The details
of this process are thoroughly described in the previous work [12,10].

Fig. 2. Schema of our GPU framework
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The framework for computing SQFDs on GPUs is depicted in Figure 2. The
feeding threads are used to serve data to the GPUs and fetch the results back.
The main thread is responsible for prefiltering the candidates, dispatching work
to feeding threads, gathering distances returned by these threads, and refining
the intermediate top-k set. Several different strategies can be implemented in
the main thread. These strategies have significant impact on the performance.

4.2 The Näıve Approach

The simplest way of parallelizing the kNN query with pivot table prefiltering has
been suggested along with the parallelization of the SQFD [10]. We denote this
method the näıve approach, as it is a direct extension of the serial algorithm.
The main thread prefilters candidates, puts them in blocks of constant size S,
and dispatches them to GPUs. There can be at most B blocks simultaneously
dispatched. When this limit is reached, the main thread waits for the first block
of the distances to return from one of the GPUs, incorporates these distances
into the intermediate top-k set, and prepares another block of candidates which
are immediately dispatched.

We have empirically observed that the system works at its peak performance
if the limit is set to B = 2G, where G is the number of GPUs. This number
corresponds with the overlapping strategy, when each GPU is simultaneously
processing one block and transferring another block from the host memory.

The block size S tunes the ratio between effectiveness of the prefiltering and
the efficiency of the parallel hardware. Lower values causes that the intermediate
top-k result is updated more often, so the prefiltering works better. Higher val-
ues present larger workloads for the GPUs, thus the parallel hardware is better
utilized and the overhead is reduced. The best block size depends on the com-
putational costs of the distance function, on properties of the parallel hardware,
and the indexability of the database (as presented in Section 5).

Initial Phase Optimization. We have made a simple observation about the
indexing effectiveness. At the beginning of the query evaluation, the candidate
prefiltering is not very effective since the intermediate top-k set is produced from
a very small portion of the database. As the evaluation advances, the filtering
range is getting lower, thus the prefiltering pruning ratio is getting higher.

Our first attempt to improve the näıve algorithm is based on this observation.
We divide the query processing into two phases. The initial phase does not
use the candidate prefiltering, since it is not efficient at the beginning of the
query evaluation anyway. Instead, the distances are computed in a highly parallel
manner on the GPUs. When the distances for the initial part are computed, the
intermediate top-k set is updated and the remaining objects are processed by
the näıve algorithm. We have empirically observed that this optimization has
measurable impact on the performance if the size of the initial part is selected
properly.
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4.3 Converting kNN Query to Range Query

Introducing parallelism into kNN queries with pivot table prefiltering caused
a serious complication. On the other hand, the range queries remain to be an
embarrassingly parallel problem even if we use prefiltering, since the filtering
(and prefiltering) range is constant for the whole time.

Let us define an optimal range ropt for a given k as a filtering range for the
range query algorithm that produces a result set Rropt equal to the result set
RkNN produced by the kNN algorithm for the same k. If we knew the ropt in
advance, we could easily convert the kNN algorithm to the range algorithm,
which would compute significantly less distances, and which would be perfectly
parallelizable.

Since we do not know ropt in advance, we propose a range estimation algo-
rithm. It computes a range estimate rest ≥ ropt, which is then used for processing
of the range query. The results of the range query Rrest are obviously a superset
of the kNN result since rest ≥ ropt ⇒ Rrest ⊇ Rropt = RkNN . The final kNN
result can be quickly extracted from the range query result as the distances have
been already computed.

The Range Estimation The most essential part of the range estimation algo-
rithm is its initial part that estimates the range. Our approach is based on the
observation that the filtering works significantly better, if the database objects
are sorted by their lower bounds and processed in an ascending order. However,
the sorting process takes a significant amount of time (even when performed on
the GPU), so we just take a database subset of the objects with the smallest
lower bounds2. We can summarize the algorithm into the following steps.

1. Object lower bounds are computed on GPUs (based on a combination of the
triangular inequality and Ptolemaic inequality).

2. An estimate set E ⊆ D of a given size is computed, so that ∀e ∈ E, o ∈
D \ E : LB(e) ≤ LB(o).

3. SQFD distances for all objects in E are computed on GPUs and an inter-
mediate top-k set is constructed from E.

4. Let rest be the greatest distance from the intermediate top-k set.
5. A set of candidate objects c ∈ D \ E : LB(c) ≤ rest is constructed on CPU

(using all available cores).
6. SQFD distances for the candidates are computed on GPUs and the top-k

set is refined.

In both SQFD steps (3 and 6), the distances are computed for a predefined set
of objects. Therefore, we can dispatch the SQFD batches in a way that optimally
utilizes all available GPUs and minimize the overhead. Furthermore, the estimate
set of objects is picked based on their lower bounds, thus it is very likely that
the range estimate algorithm would require less distance computations than the
näıve algorithm.

2 We assume that the size of the estimate set is significantly smaller than the size of
the entire database, so it is much efficient to select its items using a d-regular heap
data structure for instance instead of sorting the whole database.
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Combining Range and Näıve Algorithm. The range estimation algorithm
is designed to perform better in common cases. However, if the range set con-
sists of objects that are in fact very far from the query, the estimate range rest
will be quite high. A poor range estimation could affect the performance sig-
nificantly as the number of computed distances depends on it strongly and the
subsequent range query algorithm does not refine the filtering range. We can
alter the original range estimation algorithm and replace its last two steps by
the näıve algorithm. This combination is less suitable for the parallelism, but it
is significantly more resilient to range misestimation.

The choice between the original range estimation version and the range-näıve
version could be made at runtime. The first four steps of both algorithms are
exactly the same so the decision can be postponed until the distances of the
estimate set are computed. These distances can be used help with this decision
and we are planning to investigate this possibility in our future work.

5 Experimental Results

This section summarizes the intensive empirical research we have conducted. We
have selected only the most intriguing data due to the limited space. All times
were measured by the real-time clock of the operating system. The experiments
were performed multiple times to verify the measured values.

Our experiments were performed on a GPU server equipped with a Xeon
E5645 processor that contains 12 logical cores running at 2.4 GHz, 96 GB of
DDR3-1333 RAM, and four NVIDIA Tesla M2090 GPU cards based on Fermi
architecture. Each GPU card has 512-core chip and 6 GB of memory.

We have used 5 million photographs as testing dataset and 100 randomly
picked queries. Three signature sets with different signature sizes were created
in order to simulate different computational costs of distance functions3. We
denote these sets small, medium, and large, and they have average signature
sizes of 14.3, 90.5, and 286, respectively. We have also tested various values of
the SQFD parameter α in the range 0.1 to 2, which tunes the ratio between
indexability and precision.

5.1 The Näıve Algorithm

The näıve algorithm has only one important parameter – the block size. We keep
the block size constant during the whole evaluation time since we have observed
that varying the block size disrupts the pipeline data flow to the GPUs and
the workload imbalance causes significant drop in performance. The number of
blocks which are on fly was empirically determined as 2× the number of GPU
devices.

The results presented in Figure 3 support our original assumptions. The more
expensive the distance function is, the smaller blocks are required to achieve

3 The SQFD time complexity is quadratically proportional to the size of signatures.
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Fig. 3. Query times (in ms) of the näıve algorithm for different block sizes (α = 0.5)

optimal performance. The expensive functions benefit from the prefiltering more,
thus smaller blocks (which refine the filtering range more often) are a better
choice. Extremely expensive distance functions cannot be efficiently computed
by this data parallel model and the only option is to parallelize their internal
evaluation.

On the other hand, very cheap distance functions do not benefit from the can-
didate prefiltering, since the cost of the prefiltering and the cost of the distance
computations are tending to be similar. Therefore, it is better to compute all
the distances concurrently without any disruptions.

5.2 The Range Estimation Algorithm

The Figure 4 depicts the comparison of all tested approaches. The optimal al-
gorithm is a theoretical baseline created by modified range algorithm which has
been given the optimal filtering range by an oracle in advance. Hence, the optimal
algorithm computes the fewest distances in an optimally parallel manner.

The range estimation algorithm is quite close to the optimal algorithm in
every case and significantly outperforms the näıve algorithm for selected alpha4.
The range-näıve combination does not perform better than range algorithm.
However, this difference gets smaller as we increase the alpha value and for
α = 2 (the prefiltering gets less effective), the 58% of queries perform better
with the range-näıve algorithm than the original range algorithm (on the large
signature set). We will focus on more detailed analysis in the future work.

We did not provide comparison with serial kNN and parallel kNN without
pivot table prefiltering (i.e., the sequential algorithm) as both of these approaches
are slower by more than an order of magnitude. This observation supports our

4 The α = 0.5 has been selected as a good compromise between indexability and
precision.
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Fig. 4. Comparison of query evaluation times (in ms) for small, medium, and large
signature sizes (α = 0.5)

original assumption that we need the combination of parallel processing and
metric indexing to achieve peak performance.

6 Conclusions

We have performed an analysis of various strategies to evaluate kNN queries
that combine parallel distance computations with metric and Ptolemaic index-
ing. The näıve algorithm, which is a direct extension of the serial algorithm,
performs adequately if we select a block size that is appropriate for given situ-
ation. The block size can be determined by a statical analysis of the similarity
model computational costs for instance.

Furthermore, we have proposed a new algorithm that basically converts kNN
queries into range queries, which are embarrassingly parallel and require less
distance computations in most cases. The combination of the range estimation
and the näıve algorithm has been proven as a fall back solution for outlier queries.

In the future work, we will focus on a more detailed cost analysis. We are
currently in the process of designing a model that will help us select the best
algorithm and its parameters based simple cost estimations and on the query
properties at runtime. We also wish to test different types of parallel hardware,
to determine the scalability of our approach.

Acknowledgements. This paper was supported by Czech Science Foundation
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Abstract. In information retrieval and classification, the relevance of
the obtained result and the efficiency of the computational process are
strongly influenced by the distance measure used for data comparison.
Conventional distance measures, including Hamming distance (HD) and
Levenshtein distance (LD), count merely the number of mismatches (or
modifications). Given a query, samples mapped at the same distance
have the same number of mismatches, but the distribution of the mis-
matches might be different, either disperse or blocked, so that other
measures must be cascaded for further differentiation of the samples.
Here we present a new type of distances, called transition-sensitive dis-
tances, which count, in addition to the number of mismatches, the cost
of transitions between positionally adjacent match-mismatch pairs, as
part of the distance. The cost of transitions that reflects the dispersion
of mismatches can be integrated into conventional distance measures.
We introduce transition-sensitive variants of LD and HD, referred to as
TLD and THD. It is shown that while TLD and THD hold properties of
the metric similarly as LD and HD, they function as more strict distance
measures in similarity search applications than LD and HD, respectively.

Keywords: Transition-sensitive Distance, Transition-sensitive Leven-
shtein Distance, Transition-sensitive Hamming Distance, distance mea-
sure, metric, string matching, pattern matching, dynamic programming.

1 Introduction

Recently, a variety of information has been accumulated to a growing scale.
Highly demanded is a simple and efficient method to retrieve relevant infor-
mation of interest out of the accumulated source. In the core of information
retrieval systems is data comparison or pattern matching. Numerous methods
and strategies have been developed for comparison of various kinds of symbolic
data, including text, voice, music, image, and video [1–7]. The relevance of the
retrieved result and the efficiency of the computational process are both strongly
influenced by the distance measure used for comparison.

When two patterns of equal size in arbitrary dimensions, such as multi-
dimensional bitmap image data, to be compared, Hamming distance (HD) [8]
has been widely used, which is defined as the minimum number of substitutions
required to transform one pattern into the other. For comparison of two strings,
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whose lengths may be different, Levenshtein (or edit) distance (LD) [9] has been
used instead, which is defined as the minimum number of insertions, deletions,
and substitutions required to transform one string to the other.

Given a query string ’form’, for example, two strings, ’forms’ and ’forum’, are
mapped by LD at the same distance, 1, both for one insertion: the last charac-
ter ’s’ of ’forms’ and the fourth character ’u’ of ’forum’. Mismatches, including
deletions, insertions, and substitutions, break up one string into fragments, each
composed of all matching (or mismatched) characters. The former ’forms’ is split
into two fragments of lengths 4 and 1, such as form-s, while the latter ’forum’
is broken into three fragments of lengths 3, 1 and 1, such as for-u-m. Thus the
LD measure gives the same distance as long as the number of mismatches is
the same no matter whether the mismatches are blocked or distributed, whether
they are on the edge or in the middle.

In many different applications, such as linguistic analysis, it is often presumed
that strings with mismatches at the head or tail may be related objects, while
those with mismatches found in the middle or distributed throughout could
be independent objects. In the previous example, ’forms’ (form-s) is a variant of
’form’, while ’forum’ (for-u-m) is an independent word. Simple methods for segre-
gating variants from others are highly demanded for natural language processing
systems as in [10].

To further differentiate those two strings (or arrays) which are mapped at
the same LD (or HD), other measures need to be cascaded as additional steps.
To capture the locations of mismatches, the N -gram method that is to conduct
pattern matching locally in a window of length N sliding along each string has
been used as in [11, 12]. To assess the degree of fragmentation of mismatches,
Shannon entropy, which is defined: H = −Σpi · log pi with the occupancy pi of
a fragment of length i, has been used as in [13–15].

In this paper, we present a new type of distances, called transition-sensitive
distances, that reflect not only the sum but also the distribution of mismatches
between the subjects of comparison.

2 Transition-Sensitive Distances

2.1 Transition-Sensitivity

Suppose that the subjects of comparison are arrays of arbitrary number of di-
mensions and size. Each array is composed of symbolic elements that are either
atomic or composite. Atomic elements are quantitatively comparable symbols.
Composite elements are those consisting of two or more atomic elements.

The difference between two corresponding elements is referred to as the ele-
ment dissimilarity. Depending on the comparison method used, whether discrete
or fuzzy, the element dissimilarity may be a discrete binary integer (0 for match
and 1 for mismatch) or a real number in the range [0,1] in fuzzy indicating a
degree of mismatch.

The difference between two element dissimilarities at adjacent positions, which
is referred to as the transition, is represented as a real number in the range
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[-1, 1], where negative numbers, positive numbers, and zero represent ascents,
descents and none, respectively. The positional adjacency is defined by the spatial
properties of the arrays. Transition-sensitivity is the property that the distance
is variable depending on the transitions in the element dissimilarities. In the fol-
lowing, we extend two conventional metrics, Levenshtein distance and Hamming
distance, to be transition-sensitive.

2.2 Transition-Sensitive Levenshtein Distance

Transition-sensitiveLevenshtein distance (TLD) is a distance between two strings,
which is formulated in the dynamic programmingmanner similarly as Levenshtein
distance (LD) is.

Definition 1 (Transition-sensitive Levenshtein Distance, TLD). Given
a string X of length m and a string Y of length n, the transition-sensitive Levenshtein
distance (TLD) between the two strings is:

TLD(X,Y ) = D[m,n]

where

1. D[i, j] (0 ≤ i ≤ m, 0 ≤ j ≤ n) is a string distance defined as:

D[i, 0] = i, (0 ≤ i ≤ m); D[0, j] = j, (0 ≤ j ≤ n);

D[i, j] = min

⎧
⎨

⎩

D[i − 1, j] + 1 + t(d[i− 1, j], d[i, j], A,B) (deletion)
D[i, j − 1] + 1 + t(d[i, j − 1], d[i, j], A,B) (insertion)
D[i − 1, j − 1] + d[i, j] + t(d[i− 1, j − 1], d[i, j], A,B) (substitution)

⎫
⎬

⎭
,

(0 ≤ i ≤ m, 0 ≤ j ≤ n).

2. d[i, j] (0 ≤ i ≤ m, 0 ≤ j ≤ n) is an element dissimilarity defined as:

d[0, 0] = −1; d[i, 0] = 1, (1 ≤ i ≤ m); d[0, j] = 1, (1 ≤ j ≤ n);

d[i, j] = c(Xi, Yj), (1 ≤ i ≤ m, 1 ≤ j ≤ n);

Xi and Yj are the i-th element of X and the j-th element of Y , respectively.

3. c(x, y) is a function that returns a real number within the range [0, 1] representing
the dissimilarity (or normalized distance) between two elements, x and y as follows:

0 ≤ c(x, y) = |x− y| ≤ 1

Note that 0 indicates a complete match and 1 a complete mismatch.
The element dissimilarity may be either taken as it is or further binarized with a
given threshold γ, called the dissimilarity threshold, as:

c(x, y) =

{
0 if |x− y| ≤ γ (match)
1 otherwise (mismatch)



142 K. Yoshida

4. t(d1, d2, A,B) is a function that returns a non-negative real number representing
the cost for a transition from one element dissimilarity d1 to the other d2 as follows:

t(d1, d2, A,B) =

⎧
⎨

⎩

A · (d2− d1) if 0 ≤ d1 < d2 (ascent)
B · (d1− d2) if 0 ≤ d2 < d1 (descent)
0 otherwise (no transition)

A and B are the cost coefficient for the ascent or descent, respectively, under the
following constraint:

0 ≤ A+B ≤ 1.

��
Proposition 1. Given two strings x and y and transition cost coefficients A
and B, TLD(x, y) satisfies the following conditions:

1. TLD(x, y) ≥ 0 (non-negativity)
2. || x | − | y ||≤ TLD(x, y) ≤ max(| x |, | y |) (lower and upper bounds)
3. TLD(x, y) = 0 if and only if x = y and | x |=| y | (identity)
4. TLD(x, y) = TLD(x, y) (symmetry)
5. Given another string z, TLD(x, z) ≤ TLD(x, y) + TLD(y, z) (triangle in-

equality)

where | x | denotes the length of string x.

Proof.

1. TLD(x, y) is defined with addition, multiplication and minimum operators
on non-negative numbers, thereby resulting in a non-negative number.

2. If x and y do not match in any elements, the element dissimilarity ma-
trix is filled up with 1s, yielding the maximum value of TLD(x, y) through
the shortest path of the matrix, which is equal to the larger one of the
string lengths. For x and y of different lengths, the case where the shorter
string fully matches either the beginning or ending part of the longer string
yields the minimum value of TLD(x, y), || x | − | y || +min(A,B), where
min(A,B) = 0 if A = B = 0.

3. if and only if x and y are of the same length and fully match, the element
dissimilarity matrix is filled up with 0s, yielding TLD(x, y) = 0.

4. In computing TLD(x, y) and TLD(y, x), element dissimilarities and transi-
tion costs are similarly maintained, except that their coordinates are trans-
posed. Since the computation algorithm is uniform for each axis of the
coordinates, the same distance is yielded.

5. It is trivial for special cases involving identity, including x = y = z, x = y �=
z, x �= y = z, and x = z �= y. In other cases, there is at least one mismatch
in all three paths: x → y, y → z and x → z. If element dissimilarities and
accompanied transitions on the path x → y and those on the path y → z
do not positionally overlap in y, TLD(x, z) = TLD(x, y) + TLD(y, z) can
hold. Otherwise, TLD(x, z) ≤ TLD(x, y)+TLD(y, z) holds, since positional
overlaps on the sequential path x → y → z may be reduced on the direct
path x → z, such as double substitutions to a single substitution or zero for
the reversion. ��
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(a) (b)

Fig. 1. Levenshtein distance (LD) and Transition-sensitive Levenshtein distance
(TLD). (a) Comparison of strings, ’form’ and ’Forums’, with LD and TLD in discrete
and fuzzy matching modes. Gray rectangles indicate element dissimilarities (or mis-
matches), each of which is either 0 or 1 in the discrete mode or a real number in the
range [0,1] in the fuzzy mode. such as c(Uppercase, Lowercase)=0.4. Striped triangles
indicate ascending or descending transitions, whose cost coefficients,A=0.4 and B=0.5,
are assumed. (b) TLD for different patterns of mismatches and various cost coefficients.
Note that TLD with A=0 and B=0 is equivalent to LD.

Figure 1(a) illustrates comparison of two strings, ’form’ and ’Forums’, using
four different distance measures: Discrete LD, Fuzzy LD, Discrete TLD and
Fuzzy TLD. While LD counts merely mismatches, TLD counts not only mis-
matches but also their transition costs. ’Discrete’ or ’Fuzzy’ implies whether the
mismatch is represented with a binary or real number, respectively. The value
of TLD varies depending on the distribution of mismatches and also on the cost
coefficients for ascending and descending transitions, as shown in Figure 1(b).
In the first five cases (S1-S5), there are five mismatches in common between
the compared strings. However, the mismatches are distributed differently, as
blocked in S1-S3 and distributed in S4-S5, so that they are given different TLDs
(see the second or later columns). In the last string S6, all elements mismatched,
so that LD and TLD are both 10. S4 and S5 contain only 50% mismatches, but
the mismatches are evenly distributed, resulting in the highest transition cost.
When the cost coefficients are set high, the TLDs of S4 and S5 get close or equal
to the maximum 10 of S6 that contains 100% mismatches.

2.3 Transition-Sensitive Hamming Distance

Transition-sensitive Hamming distance (THD) is a distance between two ma-
trices of equal size in arbitrary dimensions. Unlike LD and TLD, insertions
and deletions are not allowed in HD and THD. For n-dimensional matrices,
Transition-sensitive Hamming distances are formulated below.

Definition 2 (Transition-Sensitive Hamming Distance, THD). Given
two matrices X and Y of equal size m1m2 . . .mn in n dimensions, n-dimensional
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Hamming distance (HDn), n-dimensional transition cost (TCn), and Transition-
sensitive n-dimensional Hamming distance (THDn) between the two matrices are
respectively defined as:

HDn(X,Y ) =

m1∑
i1=1

. . .

mn∑
in=1

d[i1, . . . , in]

TCn(X,Y ) =

m1∑
i1=1

. . .

mn∑
in=1

n∑
h=1

t(d[i1, . . . , ih−1, . . . in], d[i1, . . . , ih, . . . , in], Ah, Bh)

THDn(X,Y ) = HDn(X,Y ) + TCn(X,Y )

where

1. d[i1, . . . , in] (1 ≤ h ≤ n, 0 ≤ ih ≤ mk) is an element dissimilarity defined as:

d[0, . . . , 0] = −1;

d[i1, . . . , ih = 0, . . . , in] = 1, (1 ≤ h ≤ n);

d[i1, . . . , in] = c(Xi1,...,in , Yi1,...,in), (1 ≤ h ≤ n, 1 ≤ ih ≤ mh);

Xi1,...,in and Yi1,...,in are the elements of X and Y at the corresponding po-
sition, i1, . . . , in, respectively.

2. c(x, y) and t(d1, d2, A,B) are functions previously defined. ��

Proposition 2. Given two matrices x and y of the same dimension N and size
Li and transition cost coefficients Ai and Bi for each dimension (1 ≤ i ≤ N),
THD(x, y) satisfies the following conditions:

1. THD(x, y) ≥ 0 (non-negativity)
2. 0 ≤ THD(x, y) ≤ L (lower and upper bounds)
3. THD(x, y) = 0 if and only if x = y (identity)
4. THD(x, y) = THD(x, y) (symmetry)
5. Given another matrix z of the same dimension and size as x and y,

THD(x, z) ≤ THD(x, y) + THD(y, z)(triangle inequality)

where L =
∏n

i=1 Li.

Proof. Similarly proved as in Proposition 1. ��

Figures 2(a) and 2(b) illustrate THD used for comparison of two-dimensional
(2D) and three-dimensional (3D) data, respectively. In individual figures, pattern
a shows a complete match and pattern f a complete mismatch. In pattens b and
c, there is one mismatch in common, but the mismatch in pattern c is in the
center, costing more for the transitions than in pattern b where the mismatch
is in the corner. In patterns d and e of Figure 2(a), there are five mismatches
in common, but the mismatches in pattern e are more distributed, costing more
for the transitions than the rather blocked mismatches in pattern d.
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(a) (b)
Fig. 2. Transition-sensitive Hamming Distance (THD). (a) THD for 2D data (THD2).
Transitions are counted along two different axes, i and j. (b) THD for 3D data (THD3).
Transitions are counted along three different axes, i, j, and k.

3 Applications

3.1 Application of TLD: Approximate Name Search

Given two strings, it is simple to compare the whole strings in the flat form, that
is, in the manner of whole-string matching. When strings are physically large or
contain semantic components, however, it is desirable to reflect the structures of
the strings in the comparison. In the case of natural language texts, for example,
statements can be split into coarse-grain elements (e.g., words) and further into
fine-grain elements (e.g., characters). TLD is applicable to the comparison at
such different grain levels.

Fig. 3. Hierarchical application of TLD. Strings, ’patent application form’ and ’Patent
Education Forums’, are split into words (Level 2), where a single space is used as the
separator. The word distance D (at the left bottom) obtained from word comparison
(Level 1) is normalized to the dissimilarity d2 (at the left top) to be used for phrase
comparison (Level 2), i.e., for words u and v, d2(u, v) = D(u, v)/max(| u |, | v |). The
phrase distance D2 (at the right bottom) is similarly normalized to the dissimilarity d3.
Note that the transition cost coefficients, A=A2=0.4 and B=B2=0.5, and the element
dissimilarity, c(Uppercase, Lowercase)=0.4, are assumed.
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Figure 3 introduces a hierarchical method of string comparison, referred to
as the word-wise matching. After strings, ’patent application form’ and ’Parent
Education Forums’, are individually split into words, TLD is similarly applied
to both word comparison (Level 1) and phrase comparison (Level 2). The word
distance D obtained from word comparison is normalized to the dissimilarity
d2 to be used for phrase comparison. After conducting phrase comparison simi-
larly as word comparison, the obtained phrase distance D2 is normalized to the
dissimilarity d3.

(a) (b)

(c) (d)

Fig. 4. Approximate String Search. Total 4688 records of biological terms in a database
were compared against the query string, ’ribosomal RNA processing’, using two different
matching methods (whole-string and word-wise) in combination with two different dis-
tance measures (LD and TLD). (a) Composition of individual records in the database.
(b) Frequency of individual words constituting the database. (c) Frequency versus com-
position of individual words. (d) Relative similarity of individual records to the query,
evaluated through four different measures, where the transition cost coefficients, A=0.4
and B=0.5, and the element dissimilarity, c(Uppercae, Lowercase)=0.4, are assumed.

Using two different matching methods (whole string and word-wise) in com-
bination with two different distance measures (LD and TLD), we conducted ap-
proximate name search on a database containing 4688 different biological terms,
including gene and protein names. The content of the database is statistically
characterized as shown in Figures 4(a) - 4(c). Individual string records were
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composed of 5-82 (mean 31) characters and of 1-13 (mean 3) words as shown
in Figure 4(a). Total 5115 different words were contained in the database. As
shown in Figure 4(b), the frequency of words made a power-law distribution,
obeying Zipf’s law [16] that is empirically known to hold for natural language
texts rather than for artificial language texts. Frequently appearing words were
general terms of 3-13 characters, such as ’protein’, ’subunit and ’domain’ ranked in
the top, as shown in Figure 4(c). A string, ’ribosomal RNA processing’, composed
of 24 characters containing three words, was used as the query. While the query
string had a complete match with only one record, individual words frequently
appeared in the database, such that ’ribosomal’ occurred in 129 records, ’RNA’
in 117 records and ’processing’ in 33 records.

After comparing individual string records against the query string, the dis-
similarity obtained for each string record i was converted to the similarity
and normalized against the maximum of similarity to the relative similarity:
Si = 1−d∗i; si = Si/max(S). The relative similarity was ranked and normalized
against the total number of records (N) to the relative rank: ri = rank(Si)/N .
Functions of the relative similarity to the normalized rank, evaluated through
the four different measures, are plotted in Figure 4(d). The inner the function
curve lies, less records will chosen above the given threshold, so that the more
strict the evaluation is meant to be. For each matching method, the curve of
TLD was found inner than that of LD. For each distance measure, the curve of
the word-wise matching was found inner than that of the whole-string matching.
Given 0.4 relative similarity as the threshold, for example, only one record was
fished by the word-wise matching with TLD, while 4, 3 and 10 records were
found by the whole string matching with TLD, the word-wise matching with LD
and the whole string matching with LD, respectively. Thus, the combination of
the word-wise matching and TLD is suggested to be the most strict evaluation
measure that would retrieve the least number of records as those above the given
threshold of similarity.

3.2 Application of THD: Image Clustering

THD is applicable to comparison of multi-dimensional data, such as images
and volumes, similarly as HD is. To see how differently THD and HD may
behave, we conducted pair-wise comparison on 20 different images shown in
Figure 5(a), using each of the two distance measures. Individual images are
150x150 black&white pixels in resolution and statistically characterized with
their darkness (the ratio of black pixels to the entire image) and normalized
standard deviation (the standard deviation of the distances of black pixels from
their center, normalized against the maximum of standard deviation), as shown
in Figure 5(b).

For the 20 different images, total 190 pair-wise distances were computed with
HD or THD as the distance measure, and normalized to dissimilarities to pro-
duce a distance matrix. The 190 pair-wise dissimilarities (d) were converted to
similarities (s = 1 − d) and plotted against their ranks in Figure 5(c). The
curve for THD lies inner and more sharply declines than the one for HD does,
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(a)

(b) (c) (d) (e)

Fig. 5. Image Clustering. (a) 20 images (A-T) used in the study. (b) Darkness and
normalized standard deviation of individual images. (c) Similarities (s = 1− d) of 190
different pairs of images, where HD (gray circles) and THD (black squares) were used
for computation of dissimilarities (d). (d-e) Dendrograms obtained through hierarchical
complete-linkage clustering conducted on the distance matrix of the images, using (d)
HD or (e) THD as the distance measure. Note that the transition cost coefficients,
A=0.5 and B=0.5 were used in the computation of THD.

suggesting that less candidates would be retrieved with THD than with HD,
given a certain similarity as the threshold.

Merely the values of similarities decreased with THD? To see if there is any
change in the relationship of proximity among the images, we conducted hierar-
chical complete-linkage clustering [17] on individual distance matrices produced
with HD and THD. Figures 5(d) and 5(e) show the resulting dendrograms for
HD and THD, respectively. Images D, L, R and T, which are clearly separated
from the rest in Figure 5(b), are segregated from the rest similarly in both den-
drograms. The difference is in the rest. While image P is grouped together with
images A, B, C and Q in one clade and the rest forms another clade in the
dendrogram with HD (Figure 5(d)), image P is segregated from images A, B, C
and Q and the whole rest are placed in one clade in the dendrogram with THD
(Figure 5(e)). Other than image P, the relationship of proximity is maintained
in both HD and THD. Thus, the cost of transitions introduced in THD seem-
ingly made the overall evaluation of similarity more strict and contributed to
the differentiation of a rather dense clade.

4 Concluding Remarks

In this paper, we presented a new type of distances, called transition-sensitive
distances, which count, in addition to the number of mismatches between the
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compared data, the cost of transitions between positionally adjacent match-
mismatch pairs, as part of the distance. By integrating the cost of transitions,
conventional distance measures can be extended to be transition-sensitive.

We introduced transition-sensitive variants of LD and HD, referred to as TLD
and THD. Compared with LD (or HD), each unit operation of TLD (or THD)
needs one additional step of computation for the cost of transitions, but the
computational order remains the same. TLD for strings of length m and n is of
the order of O(mn). 1D (or 2D) THD for strings of length n (or objects of size
m× n) is of the order of O(n) (or O(mn)). Also, one additional matrix to store
element dissimilarities is required for TLD and 2D THD, but it is possible to re-
cycle a matrix of two rows in the actual implementation since only adjacent rows
are used in the computation. We showed that while TLD and THD hold prop-
erties of the metric as well as LD and HD, they function as more strict distance
measures in similarity search applications than LD and HD, respectively.

Properties of the cost of transitions are similar to those of entropy that has
been widely used as a measure of randomness (or the amount of information)
in various applications, including encoding [18], music analysis [19], linguistic
analysis [20], and bioinformatics [21]. The more disperse the mismatches are,
the higher the cost of transitions will be. If the transition cost coefficients are
set to occupy one mismatch, the cost of transitions is highest when the matches
and a mismatches are alternated. When the ratio of mismatches is either smaller
or larger than 0.5, the chance of getting transitions is less. Unlike entropy that
is defined uniformly throughout the data space, the cost of transitions is de-
fined with two separate coefficients, one for ascends and the other for descends.
The separation of cost coefficients makes it possible to express the locational
allowance on mismatches, i.e., whether mismatches are more acceptable in the
leading or tailing part. Behaviors of transition-sensitive distances depending on
various cost coefficients remain to be elucidated in the future work.

In summary, the essence of transition-sensitive distances is that the cost of
transitions is embedded as part of a distance, rather than regarded as an orthog-
onal measure that should be independently applied. At the cost of precision as
a measure due to the dimensionality reduction, gained is computational simplic-
ity that is required for a large scale of data mining, classification and machine
learning. Transition-sensitive distances enable one to segregate data based on the
number and dispersion of mismatches in a single pass of computation, so that
they are useful for screening large datasets or information streams to retrieve
and classify those objects that are highly similar to some part of the target.
As more information accumulates and flows, more needs for transition-sensitive
distances will rise in various fields of similarity search and applications.
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Ludwig-Maximilians-University Munich, Germany
{niedermayer,kroegerp}@dbs.ifi.lmu.de

Abstract. Many state-of-the art object recognition systems rely on local image
features, sometimes hundreds per image, that describe the surroundings of de-
tected interest points by a high-dimensional feature vector. To recognize objects,
these systems have to match features detected in a query image against the fea-
tures stored in a database containing millions or even billions of feature vec-
tors. Hence, efficient matching is crucial for real applications. In the past, feature
vectors were often real-valued, and therefore research focused on such feature
representations. Present techniques, however, involve binary features to reduce
memory consumption and to speed up the feature extraction stage. Matching such
binary features received relatively little attention in the computer vision com-
munity. Often, either Locality Sensitive Hashing (LSH) or quantization-based
techniques, that are known from real-valued features, are used. However, an in-
depth evaluation of the involved parameters in binary space has, to the best of our
knowledge, not yet been performed. In this paper, we aim at closing this research
gap, providing valuable insights for application-oriented research.

1 Introduction

The emergence of sophisticated keypoint detection and description techniques such as
SIFT [13] together with the development of efficient indexing techniques [25] have
started a revolution in the field of object recognition that is pushed forward by the vast
amount of image data available, recorded by smartphones and traditional cameras, and
published in social networks, on photo sharing websites, and on the world wide web in
general. The availability of head-up-displays such as Google glass1 will surely further
enforce the development of even more efficient and effective solutions.

Many state-of-the-art solutions follow a common pipeline using the filter-refinement
paradigm, see Figure 1. First, given an input image, keypoints are extracted at different
image scales that aim at identifying interesting regions of the image. Then, for each of
these keypoints, a high-dimensional feature vector is computed that describes the key-
points’ surroundings in a scale-, rotation-, and translation-invariant way. For efficient
query processing, these features have to be indexed together with meta-information such
as image ID, position, rotation, and scale of the keypoint. Indexing is often achieved
with the Bag of Visual Words (BoVW) paradigm [25]: With this approach, feature vec-
tors are quantized using, for example, kMeans. Each database-feature is mapped to its
closest kMeans centroid. During query processing, for each query feature the closest

1 See http://www.google.com/glass/start/

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 151–163, 2014.
DOI: 10.1007/978-3-319-11988-5_14 c© Springer International Publishing Switzerland 2014
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Fig. 1. Object Recognition Pipeline

cluster center is computed; database features falling into the same cluster center as the
query vote for a given candidate image, filtering irrelevant results and allowing to rank
candidates according to the number of features voting for them. Finally, during a re-
finement step, geometric consistancy between the matched features is checked, and a
re-ranking based on the refinement result is performed.

Within the last years, due to the roughness of the binary decisions involved in the
BoVW-based approach, this procedure has been softened more and more, as including
the closeness between a database feature and a query feature into the ranking can further
improve query performance. Therefore, not only techniques for soft assignment [22]
have been investigated, but also quantization techniques, initially used for BoVW-based
image retrieval, are employed for solving kNN queries on image features [11]; i.e. the
focus seems to shift towards kNN queries again.

In the last years, a new kind of feature vector, not real-valued but rather binary-valued
(e.g. [23,3]) has emerged. In contrast to real-valued feature vectors, binary features are
less redundant, faster to compute and incur less storage overhead at the cost of a lower
recognition rate. Binary features are, to the best of our knowledge, seldomly queried
with BoVW-based approaches [6,7], but rather by more traditional approximate kNN
techniques such as LSH [10,23], but also based on quantization [27,16].

In this paper we aim at shedding more light on this feature matching step on binary
features. Equivalently to the idea of Pauleve et al. [20] in the case of real-valued fea-
tures, we reduce the matching step for binary features to the idea of LSH. Given this
interpretation of the problem, all of the currently used approaches only differ in the com-
putation of the hashes, which allows high comparability. During our experiments, we
evaluate these hash functions under different conditions in the context of kNN queries
and range queries, and investigate under which conditions each of these approaches
performs best. We see the necessity of this research for the following reasons. First, as
stated before, query processing in binary space should consider its specific properties,
such as its thick boundaries [27]. On the other hand, however, a variety of techniques
known from real-valued features is applied to binary features, such as quantization,
although a thorough evaluation of these techniques in binary space has not yet been
performed. Therefore in this paper, we aim at closing this research gap.

The structure of this paper is as follows. Section 2 provides an overview over related
work and the historical context. In Section 3 we review currently available techniques
used for querying binary features in image databases. In Section 4 we provide an in-
depth analysis of the described techniques, complementing the results from [27,16].
Section 5 concludes this work.

2 Related Work

To integrate this paper into the body of research, in this section we draw an arc over
related topics, including quantization in real-valued feature spaces, binarization of real-
valued features, and the direct extraction of binary features. In Section 3 we provide an
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in-depth review of approaches for query processing in binary space that are
currently employed for object recognition. A recent survey on approximate nearest
neighbor queries in general has been provided in [19]. Another survey addressing high-
dimensional indexing especially in the context of image retrieval has been published as
well [2].

Nearest Neighbor Search on Image Features. The idea of quantization-based nearest
neighbor search in image databases has developed from Bag of Visual Words (BoVW)
based retrieval techniques, initially proposed in [25]. Such techniques convert sets of
feature vectors to a frequency representation similar to the word vectors in text re-
trieval. These word vectors can be searched by employing well-known text-retrieval
techniques. For finding a frequency representation however, feature vectors have to be
quantized, i.e. mapped to a set of representants. The cluster ID of these representants is
then used as artificial words. Quantization is usually performed with variants of kMeans
clustering [25]. With larger vocabularies, however, quantization based on kMeans clus-
tering becomes more and more costly, as assigning a value to its representant is linear in
k. To reduce the high complexity of assigning feature vectors to cluster centers during
query evaluation, a variety of non-optimal but fast quantization techniques such as Hi-
erarchical kMeans [17,24], approximate kMeans [21], Product Quantization [11] and
Residual Vector Quantization [5] have been proposed. After employing quantization for
BoVW-based retrieval, it has also been investigated in the context of kNN search [11],
which has since then received quite some attention.

Binary Features. Related to the idea of quantization is the task of extracting distance-
preserving binary codes from real-valued features. Binarization can be seen as some
sort of compression on real-valued image features. The resulting binary codes can
be queried by either retrieving features with equivalent codes from the database if
the codes are relatively short, or by employing LSH-based hashing techniques [10].
The generation of binary signatures corresponds to the problem of finding a func-
tion f : Rd1 → B

d2 where ∀x1, x2 ∈ X : dL2(x1, x2) ∝ dH(f(x1), f(x2))) with
dL2(x1, x2) denoting the Euclidean distance between feature vectors, dH(f(x1), f(x2))
corresponding to the Hamming distance between the transformed points, and X corre-
sponding to the set of points stored in the database. Examples of binarization techniques
include the approach from [26], Random Maximum Margin Hashing [12], Scalar Quan-
tization [29], Spherical Hashing [9] and also combinations of kMeans quantization and
binarization that assign meaningful IDs to cluster centers [8]. Note that in this paper
we do not address the problem of binarization, i.e. computing f(x), but rather aim at
querying binary features efficiently in the context of image retrieval. The binarization
can be seen as a preprocessing step before indexing in order to reduce storage overhead.

In recent times, in addition to binarization, the direct extraction of binary features
from image data has become popular (e.g. ORB [23] and FREAK [3]), as this can
increase not only storage efficiency but also computational efficiency.

3 Querying Binary Features: An Overview

As explained in Section 2, binary signatures are either derived by binarization of real-
valued features or extracted directly from the image. In computer vision, they are
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usually queried using the Hamming Distance. Depending on the matching task and
required accuracy, it is possible to use exact matching approaches (e.g. [18]), approx-
imate solutions based on LSH [10], or approximate solutions based on quantization
[16,27]. Equivalently to the case of real-valued features, all of these approaches can be
reduced to the idea of LSH [20]; we will follow this path in this publication. The binary
space however, according to [27] is different in its behaviour, therefore a specialized
evaluation is appropriate. In the following, we review the current solutions.

Locality Sensitive Hashing. As all of the solutions for matching binary features in
image databases can be reduced to Locality Sensitive Hashing (LSH) [10], we start our
discussion with this approach. LSH and its derivates have been successfully used for
object recognition [23] based on binary features. The approach is furthermore used as
a baseline for other techniques [16,27]. Note that, given that the extracted binary signa-
tures are very short (e.g. 24 bits), they could be used as hash keys without processing,
and queried directly without employing LSH. However currently, binary vectors have
a length of several hundred bits (e.g. ORB: 256 bits [23], FREAK: 512 bits [3]), and
therefore an intermediate LSH-based hashing step has to be employed.

Locality sensitive hashing has been initially proposed by Indyk and Motwani [10],
proposing dedicated hash functions for Hamming space and theoretical approximation
guarantees. LSH is based on a family of functions H = {h : S → U} that map values
from a space S (in our case the binary vector space) to binary strings from space U . To
be useful for similarity search, h(p) must be (r1, r2, p1, p2)-sensitive, i.e. points closer
to a given reference point have a higher probability of beeing assigned the same hash
as points further away. From this family H, a family G = {g : S → Uk} with gj(p) =
(h1(p), . . . , hk(p)), hi ∈ H is constructed, i.e. G corresponds to a concatenation of
different hash functions of the same family. For index generation, t of these functions
gj(p) are generated and for each of them a hash table is constructed from the features
stored in the database. Query processing, both kNN and range queries, can be achieved
by accessing, for a query vector q the hash entry gj(q) from hash table j, concatenating
the resulting candidates, and evaluating the query predicate on these candidates.

Initially, the following functions hi (projecting a binary vector onto atomic random
dimensions) and gj (projecting on a random lower-dimensional space), were proposed
for search in Hamming Space [10]:

H = {h : hi(b) = bi} and G = {g : g(p) = (hi1 , . . . , hin), {i1, . . . , in} ⊂ {1, . . . , n}}
For example, a function h2(b) would project a 3D binary vector to its second di-

mension, e.g. h2((1, 0, 1)) = 0. A function g(p) then concatenates different functions
h, producing a subvector of the initial one. For a function g mapping to the first two
dimensions, we would get a vector g((1, 0, 1)) = (1, 0).

To be effective, LSH has to query a relatively high number t of different hash tables
with different hash functions, incurring high storage overhead, as each of the tables
has to store references to all of the indexed features, resulting in a memory consump-
tion linear in t. To solve this issue, [15] proposed to use Multi-Probe LSH that visits
different hash cells close to the query point in a single hash table, similar to the soft as-
signment policy in computer vision [22]. This procedure significantly reduces storage
overhead and has been successfully used for querying binary features in the computer
vision community [23]. Trzcinski et al. [27] proposed optimized hash functions for
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LSH-based search in Hamming space, aiming at improving the efficiency of this class
of approaches.

Exact Solutions. Computing the Hamming distance of binary vectors is generally ex-
tremely fast, as this distance calculation can be split into an XOR operation, followed
by counting the bit population in the resulting bit string. If the number of features stored
in the database is moderate, matching such signatures can be performed by running a
linear scan over the database. Besides this trivial solution, both ε-range queries and
kNN queries can be solved on average in sublinear time by employing the approach
from [18]. Similar to LSH, the authors apply multiple hash functions on disjunctive
substrings of the b-bit binary word, building an index structure for each of the m sub-
spaces of length b/m. ε-Range queries can be solved by enumerating, in each subspace,
the candidates in all bins with range m/ε. This procedure provides a superset of the
actual candidates, which is then refined exhaustively. kNN queries can be solved in a
similar fashion. The technique is based on the assumption that feature vectors are close
to uniformly distributed. It can be interpreted as a version of exhaustive Multi-Probe
LSH, with hash functions close to the original one, but with additonal constraints:

subspace(gi) ∩ subspace(gj) = ∅ and |
⋃

i subspace(gi)| = b

Unfortunately, given a large database, the search time can increase up to tenths of a
second. Given that a single image can contain hundreds of features, the matching times
become tens of seconds, significantly too much in real-world applications. Other exact
solutions similar to [18] exist, mainly varying in the number of substrings to use for
index generation (see [28]).

Quantization-Based. Despite the success of LSH-based methods for querying binary
features in Hamming space, techniques based on quantization (and therefore variants
of kMeans) have been investigated recently. The approaches are either plugged into
the BoVW model [6,7], or used for nearest neighbor search [16,27]. Quantization of
both binary and real-valued image features can be sketched as follows: First, perform a
kMeans clustering of the extracted image features contained the database. Then, assign
each database vector to its closest cluster center. During query processing, assign the
query vector to its closest cluster center, and return all database vectors assigned to the
same cluster.

For kMeans the probability of two features assigned to the same cluster center be-
ing spatially close is high, while the probability of two features assigned to different
cluster centers being spatially close is relatively low. Therefore, according to [20],
quantization-based approaches can be seen as special LSH hash functions: the hash cor-
responds to the ID of the closest cluster center, i.e. features assigned to the same cluster
center have the same hash. This results in the following mathematical definition:

H = {h : hi(b) = argminc∈centersi dH(v(c), b))} and G = {g : g(p) = hi(p)}
with centersi the cluster IDs of clustering i and v(c) the vector corresponding to ID c.
The hash function family G in this case is trivial, as each hashing function of G consist
only of a single function hi. On the other hand hi(p) becomes more complex as it con-
sists of more than one bit. For standard kMeans clustering, due to the assignment step,
the hash computation is exponential in the hash length, therefore approximate solutions
have been developed [17,24,21,11,5]. For quantizing binary vectors, solutions based
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on kMedoids, kMedians or kMeans can be employed. Using kMeans directly does not
optimize according to L1 distance, but rather according to the squared Euclidean dis-
tance, making this solution theoretically inapplicable to Hamming space. Most often,
even if unknowingly, the kMedians [4] algorithm has been used which optimizes cluster
centers according to the L1 norm, directly corresponding to the Hamming distance on
binary feature vectors. kMedians can be optimized for binary features, as the median
computation degenerates to a majority voting in this case [14].

Querying binary features in BoVW-based systems has most likely been initially
proposed by Galvez-Lopez and Tardos [6,7]. To achieve acceptable runtime perfor-
mance, the authors employed the idea of hierarchical kMeans (HkM)[17]. Hieararchi-
cal kMeans (HKM) performs kMeans clustering with a relatively low k′. It then assigns
each point in the database to the corresponding cluster. For each of these sets of feature
vectors, it then recursively clusters the set until a given height l is reached, resulting in
a tree-like structure with k′l leaf nodes. Due to the resulting tree structure, the compu-
tational complexity of assigning feature vectors to cluster centers decreases to O(k′L),
however the storage complexity of the approach remains in O(k′L) and some accuracy
is lost. Utilizing the idea of HkM, Muja and Lowe [16] and Trzcinski et al. [27] simul-
taneously proposed to use a forest of random clustering trees on binary feature vectors.
Mapping this to LSH, the leaves of a tree provide the hash functions, and each tree pro-
vides the hash function for a different hash table. Each of the trees is similar to a HkM
tree, however cluster centers are not assigned by kMedians, but rather by randomly se-
lecting cluster centers from the data: if multiple hash tables (i.e. trees) are employed,
the corresponding hash functions should be independent. If a clustering would be per-
formed, in the best case this clustering would represent a global optimum, generating
exactly the same non-independent clustering for each function from G. However, as the
iterative kMedians based clustering approaches only find local minima instead of global
ones, kMedians clustering could be employed with different initial seeding, as it has
been done in the case of real valued vectors [20]. We will evaluate both randomized and
optimized clusterings in Section 4. In [16], better retrieval performance than LSH-based
approaches is achieved with multi-probing. In contrast, [27] achieved slightly worse re-
sults than LSH, however without multi-probing. Hierarchical kMedians clustering has
also been employed by [14], however with optimized cluster centers.

Other quantization techniques that have been employed for real-valued image fea-
tures could also be used for binary features, such as residual vector quantization [5],
and product quantization [11]. In the context of residual vector quantization that in-
volves subtraction operations, the subtraction operation would have to be replaced by
an XOR operation to make the residuals remain in binary space.

4 Experimental Evaluation

For our experimental evaluation we extracted ORB [23] features from the ALOI dataset2

using OpenCV. We aimed at extracting binary features instead of binarizing real-valued
ones as this can lead to performance advantages in real-world applications. Other

2 http://aloi.science.uva.nl

http://aloi.science.uva.nl
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Parameter Value

#probes 1, 20, 100, 1000, 10000
#tables 1, 2, 4, 8

#bits (LSH) 8, 10, 12, 14, 16, 20
k (kMedians) 28, 210, 212, 214, 216

h (HkM) 4
k′ (HkM) 22, 23, 24, 25, 26

(a) Experimental setup. Values in bold
font denote default values.
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binary features than ORB could be chosen as well; the decision depends on the ap-
plication. From the originally ∼30 million features we used a random sample of size
107 as database content. Distances in the dataset follow a normal distribution with a
maximum frequency at a distance of 124 and covering nearly all possible distances, see
Figure 2(b). The different quantizations (kMedians, HkM and random HkM (RHkM))
were computed from a subset of about 7 million of the 30 million features contain-
ing, for each of the 1000 objects, 18 of the 72 images per object. We only considered
the images varying in camera angle, but not the images varying e.g. in light color, as
these are assumed to produce very similar features. Tailoring quantization to a specific
database is reasonable as it makes quantization techniques more powerful. In contrast
to [16,27], who have first proposed to use hierarchical kMeans in Hamming space, we
aim at investigating the impact of system-inherent parameters on the performance of the
different hashing techniques, namely the number of probes, the number of tables, the
number of bits and the database size. These parameters have not been evaluated in depth
or in comparison to competitors. In our experiments, we fix each of these parameters to
a given value and vary a single parameter to provide a wide image of the algorithms’
performance. The default parameters are provided in Table 2(a). As the parameter k is
overloaded (for kMeans and for the number of neighbors), we denote the number of
neighbors retrieved in a kNN query as |NN |.

All of the evaluated approaches are configured to generate hashes of the same length
(16 bits). Equivalent to [20] we set the number of hash tables to a single one in our
default setting. Although this is not realistic, it gives insight into the performance of
the actual hash function. As it does not provide insights into the independence of dif-
ferent hash functions which becomes relevant when using more than one hash table
(the default with LSH), we will evaluate this behaviour in Figure 3. The number of
neighbors |NN | was set arbitrarily to |NN | = 10, our experiments for |NN | = 2 and
|NN | = 100 have to be omitted for space constraints. We will, however mention vari-
ations in the results for different values of |NN | in the corresponding sections. In our
experiments we concentrate on analyzing the Recall for each set of parameters, for both
range- and kNN queries; a short excursus also considers the BoVW paradigm. Where
necessary we also consider different performance measures such as the number of dis-
tance calculations; we favoured this measure over runtime as it provides a platform-
and implementation-independent measure of the computational complexity of a given
approach. However note that other costs, such as restructuring the priority queue of the
quantization-based approaches, is not considered.
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Fig. 2. Populatation of buckets (log-log-space)

The optimized clusterings have been generated with a kMedoids approach. First, a
random sample of 50% of the training features was selected and clustered with 5 itera-
tions. Then, given the resulting centroids as initial cluster centers, the whole training set
was clustered, stopping after an additional 10 iterations. The experimental evaluation
has been conducted in the JAVA-coded framework ELKI[1] which has been specif-
ically designed for the performance evaluation of data mining and query processing
algorithms, providing variants of the kMeans algorithm, including kMedians.

4.1 Nearest Neighbor Queries

Distribution of Hash-Code Frequencies. Following [20], let us first evaluate the pop-
ulation of hash buckets; Figure 2 visualizes the distribution for hashes of length 16 and
20 (for 20 bits, kMedians has not been evaluated due to its high complexity). If the
population is equi-distributed, this leads to a good selectivity, as regardless of the loca-
tion of a query in binary space, the number of candidates in the corresponding bucket
is similar. The more uneven the distribution of features over different hashes, the more
irrelevant features have to be refined if a highly populated bucket is found, leading to
high runtimes; if a poorly populated bucket is accessed, the recall of the query becomes
unnecessarily low. Similar to the case of real-valued features [20], the original LSH
functions lead to an unbalanced distribution of hashes. On the other hand, both RHkM
and HkM perform better. However, there is a significant difference between the random
and the optimized version; RHkM performs very close to the original LSH, while the
distribution of HkM is much more uniform, quite close to kMedians that performs best.
The skewed distribution of the HkM-based approaches is traded for a better compu-
tational performance: kMedians can only be seen as a theoretic solution, as it implies
scanning all cluster centers during each query. The number of cluster centers scanned
increases exponentially in the number of hash bits. Although these distance calculations
are very fast in binary space, they can still incur a large overhead for higher bit lengths.

Number of Tables. In the following experiment we aim at investigating the effect of
the number of tables on the different approaches (see Figure 3 left) in order to find out
how well several hash tables complement each other. For this experiment, we kept the
number of probes constant and split them between an increasing number of tables. For
traditional hash functions, probes are split equally between tables. For quantization-
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Fig. 3. Varying # Tables (left) and Database Size (right)

based approaches, the cluster centers of all tables are ranked together, resulting in a not
necessarily uniform split between tables. The experimental setup aims at showing if the
performance gain is actually contributed to the higher number of tables rather than the
increasing number of probes.

An increasing number of tables makes mainly sense for the traditional LSH func-
tions, and less strongly for the randomized HkM approach. The performance gain of
optimized quantization-based approaches diminishes with increasing number of tables,
as the different quantizations are not independent. This observation is different to the
real-valued case, where Pauleve et al. [20] stated that initializing kMeans with different
seeds can provide enough randomness to build independent hash tables. Note that, if
the number of tables becomes sufficiently large, even the random HkM-based approach
loses against the LSH-based hash functions. For |NN | = 10, the equilibrium was at
eight tables; for |NN | = 2 it became lower (two tables), and for |NN | = 100 it be-
came larger. Therefore, if memory is important, quantization-based approaches can be
a useful solution. If recall is an issue and memory is not, LSH-based functions are the
matter of choice.

Database Size. As the number of objects indexed in a database affects the nearest neigh-
bor distance of objects, varying the database size can also affect the performance of hash
functions: If the number of bits in a LSH function is too high, the NN range of queries is
severely restricted, such that in small databases the NNs will be found only with small
probability. However if the database size increases, the NN-range of an object shrinks.
Therefore, recall is positively affected by an increasing database size, the largest in-
crease can be observed for the kMedians based quantization approaches (see Figure 3
right). As a result, given a large database size and a specified number of bits, it can
make sense to use methods based on quantization.

Number of Probes. Besides varying the number of hash tables (which trades space
for recall), recall can also be traded for computational complexity by increasing the
number of probes, see Figure 4 (left). Our experiments indicate that for small |NN |
and with an increasing number of probes, the HkM, RHkM and LSH-based approaches
become very similar, leading to no significant performance gain of quantization. For
larger |NN |, LSH catches up only for larger number of probes. The kMedians based
baseline shows a better performance than the rest, reaching recall rates of greater than
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Fig. 4. Varying # Probes, Recall (left) and Distance Calculations (right)

0.9 already at a hundred probes. By comparing the number of distance calculations
(see Figure 4 (right)) we aim at providing implementation-independent insights into
the computational efficiency of the different approaches. The experiment shows that
HkM can significantly better reduce the number of distance calculations than LSH and
kMedians, as this approach leads to a much more uniform distribution of values in dif-
ferent buckets as LSH (cp. Figure 2), and does not have the linear complexity of com-
puting the closest cluster center as kMedians. This, however, does not hold as strictly
for RHkM, indicating a similar runtime for RHkM and LSH. For additional runtime
experiments, we refer to the original papers [16,27].
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Hash Length. In the following exper-
iment, Figure 5, we aim at investigat-
ing the impact of a varying hash length
on the recall of the different approaches.
For the sake of easy configurability it
is important that all approaches behave
similarly, i.e. the choice of the best al-
gorithm does not depend on the number
of bits used, which is the case in our set-
ting. We would like to mention that with
increasing |NN | the difference between
quantization-based approaches and LSH
becomes larger: LSH loses recall rela-

tively to the other approaches, indicating that it can make sense for large |NN | (e.g.
|NN | = 100) to use quantization. As in image recognition it is likely that |NN | is
chosen relatively large to generate more candidate matches and to be more robust to
noise, HkM can achieve a better performance than the LSH hashing functions.

4.2 Range Queries and BoVW

Although this paper concentrates on nearest neighbor queries, for the sake of complete-
ness we also want to shed some light on range queries. Besides mean recall we evaluate
the mean false positive rate. In Figure 6 we plot the recall given a specific radius and
equivalently the false positive rate. Note that for small ranges results become more noisy
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as an object beeing a result of a range query with a small range is quite improbable (see
Figure 2(b)). In our setting, the mean recall of the different approaches behaves very
similar. Only kMedians manages to achieve a significantly higher recall, by increasing
the probability of wanted hash collisions.

Although the false hit rate varies significantly for the different approaches, it does
not have a large effect on range queries, as unwanted results are filtered out during
refinement. However, it provides useful insights into their performance when plugged
into the BoVW framework: Considering that recall is similar for both HkM and LSH,
would it make sense to use LSH functions for binary vectors in the BoVW-paradigm,
directly treating keypoints falling into the same buckets as matches? Not necessarily,
as not only recall matters, but also the false positive rate (see Figure 6 right). As the
difference between BoVW and LSH is mainly that BoVW skips the pruning step, it
is of major importance to avoid false positives: false positives put noise on the word
vector by producing inaccurate word assignments. In Figure 7 we plugged the different
hash functions into the BoVW pipeline (without geometric verification). We used the
dataset from training the quantization approaches as database. As it contains all images
in 20 degree angular steps, we queried with images having an angular distance of 5 and
10 degrees (Figure 7 left and right, respecively), visualizing the recall (of images, not
features) with increasing rank. The different approaches have similar recall curves in
Figure 6, but LSH performs significantly worse than the remaining approaches.

5 Conclusion

To conclude, given that a nearest neighbor search in Hamming space has to be per-
formed, both quantization-based approaches and LSH provide good results, but LSH
can not be beaten for larger number of tables. For a low number of tables, HkM and
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RHkM are the matter of choice. For BoVW-based image retrieval, similarly to the
real-valued domain, the quantization-based approaches are the matter of choice: As
the probability of false hits of quantization-based approaches is significantly lower, the
necessicty of refinement of these solutions decreases, making them applicable to the
BoVW paradigm. In the future we would like to include different types of binary fea-
tures into our evaluation, such as FREAK [3]. As these features can follow a different
distribution, the performance of hashing techniques might differ.

References

1. Achtert, E., Kriegel, H.P., Schubert, E., Zimek, A.: Interactive data mining with 3d-parallel-
coordinate-trees. In: Proc. SIGMOD, pp. 1009–1012 (2013)

2. Ai, L.F., Yu, J.Q., He, Y.F., Guan, T.: High-dimensional indexing technologies for large scale
content-based image retrieval: a review. Journal of Zhejiang University SCIENCE C 14(7),
505–520 (2013)

3. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: Proc. CVPR, pp.
510–517. IEEE (2012)

4. Bradley, P.S., Mangasarian, O.L., Street, W.N.: Clustering via concave minimization. In:
Proc. NIPS, pp. 368–374 (1996)

5. Chen, Y., Guan, T., Wang, C.: Approximate nearest neighbor search by residual vector quan-
tization. Sensors 10(12), 11259–11273 (2010)
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Abstract. Identifying similarities in large datasets is an essential op-
eration in many applications such as bioinformatics, pattern recogni-
tion, and data integration. To make the underlying database system
similarity-aware, the core relational operators have to be extended. Sev-
eral similarity-aware relational operators have been proposed that intro-
duce similarity processing at the database engine level, e.g., similarity
joins and similarity group-by. This paper extends the semantics of the
set intersection operator to operate over similar values. The paper de-
scribes the semantics of the similarity-based set intersection operator,
and develops an efficient query processing algorithm for evaluating it.
The proposed operator is implemented inside an open-source database
system, namely PostgreSQL. Several queries from the TPC-H benchmark
are extended to include similarity-based set intersetion predicates. Per-
formance results demonstrate up to three orders of magnitude speedup in
performance over equivalent queries that only employ regular operators.

1 Introduction

Diverse applications, e.g., bioinformatics [1], data compression [2], data integra-
tion [3], and statistical classification [4] mandate that their underlying database
systems provide similarity-aware capabilities as a means for identifying similar
objects. Several similarity-aware relational operators have been proposed that
introduce similarity processing at the database engine level, e.g., similarity joins
and similarity group-by’s [5], [6], [7]. In this paper, we introduce similarity-aware
set intersection as an extended relational database operator.

In standard SQL, relational set operations are based on exact matching. How-
ever, assume that we want to find common readings that are produced by two
sensors. Assume further that the sensor readings are stored in two separate ta-
bles. The standard SQL set intersect operator is not suitable for intersecting
these two tables to get the common sensor readings; sensor readings may be
similar but not necessarily identical. Thus, it is desirable to perform similarity

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 164–175, 2014.
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set intersection to find similar readings in the two tables. While the focus of
this paper is on the similarity set intersection operator, we study the other sim-
ilarity set operators, namely similarity-based set union and similarity-based set
difference in [8]. We omit their description for space limitation.

Several relational database operators have introduced similarity into SQL.
The similarity group-by operator assigns every object to a group based on a
similarity condition, e.g., as in [9,10,3]. Similarity join retrieves pairs of objects
that overlap based on a join attribute using a predefined threshold. Several types
of similarity join have been proposed, e.g., [11,12,5,13,14]. While the similariy
join reports the joining objects, similarity intersection requires union-compatible
input relations and returns all similar objects from both relations. An extension
to SQL to support nearest-neighbor queries has been studied extensively, e.g.,
see [15]. k-Nearest-neighbor can be viewed as one form of similarity as each point
or tuple is connected with its k-closest (or most similar) values. SIREN [16,17]
allows expressing similarity queries in SQL and executing them via a similarity
retrieval engine. SIREN is a middle-tier implemented between an RDBMS and
application programs that processes and answers similarity-based SQL queries
issued by the application. In [18], extensions to SQL make similarity operators
first-class database operators by implementing the operators inside the database
engine. None of the previous work addresses similarity-based set interesection,
which is the focus of our paper.

The contributions of this paper are as follows. (1) We introduce the Similarity-
aware Set Intersection Operator that extends the standard SQL set intersection
to produce results based on similarity rather than on equality (Section 2). (2) We
develop an efficient algorithm for the proposed operator (Section 3) and im-
plement it inside PostgreSQL, an open-source relational database management
system [19]. (3) We evaluate the performance of the proposed algorithm and
its scalability properties using the TPC-H benchmark [20]. We extend several
queries from the TPC-H benchmark to include similarity-based set intersetion
predicates. Performance results demonstrate up to three orders of magnitude
enhancement in performance over equivalent queries that only employ regular
relational operators (Section 4).

2 Semantics of Similarity-Based Relational Intersect

Let Q (resp. P ) be a relation with k attributes denoted by a1, a2, . . . , ak (resp.
b) and n (resp. m) tuples A1, A2, . . . , An (resp. B), where the schemas of P
and Q are compatible. To express the similarity between two tuples, one may
use several possible functions to describe the distance between each pair of cor-
responding attribute values, e.g., edit distance, p-norm, or Jaccard distance.
Let D = {dis1, dis2, . . . , disr} be r distance functions. For any dist ∈ D, let
dist(Ai.at, Bj .bt) be the distance corresponding to Attribute at between the tu-
ple pair (Ai, Bj) using the distance function dist.

We adopt the following similarity predicate: Given r thresholds ε1, ε2, ..., εr
that are assigned to each of the attributes a1, a2, . . . , ar, respectively, where r ≤
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k, we say two tuples Ai and Bj match iff: pred(Ai, Bj) = dis1(Ai.a1, Bj .b1) ≤ ε1
AND dis2(Ai.a2, Bj .b2) ≤ ε2 . . . AND disr(Ai.ar, Bj .br) ≤ εr. If r < k, the set
of thresholds εr+1, . . . , εk are assumed to have the value zero. An εi of value zero
has to be assigned explicitly if at least one later attribute is assigned an ε >0.
Furthermore, an εi can be assigned an infinity value.

Similarity-aware Set Intersection takes the tuples of two tables as input and
returns only those tuple pairs that are similar within a threshold from both
tables. More formally, given two tables, say P and Q, that have identical (or
compatible) schemas, and a smilarity predicate pred(A,B), the similarity-aware
set intersection operation is defined as follows.

Q ∩̃ P = {A | A ∈ Q, ∃ B ∈ P : pred(A,B)} ∪
{B | B ∈ P, ∃ A ∈ Q : pred(A,B)}

(1)

Example: Consider the following two tables Q and P ; each having a single
compatible attribute, where attribute values x and x̃ are assumed to be sim-
ilar. Q = {a, b, c, d, e, f, g, z} and P = {ã, b̃, c̃, h, i, j, k, l, z} For all calculated

pred(t1, t2) such that t1 ∈ P and t2 ∈ Q, only pred(a, ã), pred(b, b̃), pred(c, c̃),

and pred(z, z) evaluate to true. Thus, P ∩̃ Q = {a, b, c, ã, b̃, c̃, z}.
Three-way similarity-aware set intersection, denoted by ∩̃, is defined as fol-

lows. Let Q, P and R be three tables such that ∩̃(Q,P,R) = U . Each tuple in
U exists in at least one table and has two similar tuples in the two other tables
such that these two tuples are also similar to each other. This can easily be ex-
tended to more than three tables. We skip the formal definition of the three-way
and multi-way similarity intersect operators for brevity.
Example: In addition to the tables P and Q, given in the previous example,

let R = {˜̃a, ˜̃b, v, y}. Assume further that pred(a, ˜̃a), pred(ã, ˜̃a), and pred(b,
˜̃
b)

hold. Thus, applying the three-way similarity set intersect operator produces:

∩̃(P,Q,R)={a, ã, ˜̃a}. Notice that because pred(̃b,
˜̃
b) does not hold, b, b̃,

˜̃
b are not

part of the answer.
We extend SQL with the similarity-aware set intersect operator in the follow-

ing way.

( SELECT a1, a2, ... FROM table1
INTERSECT
SELECT a1, a2, ... FROM table2
INTERSECT
...
SELECT a1, a2, ... FROM tablen
) WITHIN VALUES ( ε1,ε2,...)

where the phrase WITHIN VALUES provides the similarity thresholds for
each of the attributes participating in the similarity intersection operation. No-
tice that the similarity intersect operator can be expressed using standard rela-
tional operators as the query evaluation tree in Fig. 1 demonstrates.
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Result

∪

ΠQ.a1,Q.a2,...

��pred(A,B)

Q P

ΠP.a1,P.a2,...

��pred(A,B)

Q P

Fig. 1. Expressing Similarity Set Intersection Using Relational Operators

3 Processing the Similarity-Aware Intersect Operator

In this section, we present how the proposed similarity-aware set intersect oper-
ator is evaluated. The query processing algorithm for similarity intersect is an
extension of the sort-merge join algorithm. So, the first step of the algorithm
sorts both input tables unless they are already sorted. In high-level terms, simi-
larity intersect compares tuples based on a Mark/Restore mechanism that avoids
the O(n2) complexity that would result from a nested-loops implementation. To
find matching tuples between two relations (named the outer and inner tables),
the Mark/Restore mechanism marks the position of a tuple that may need to be
restored later if some condition is satisfied as explained next.

The semantics of the similarity intersect operator is implementation indepen-
dent. Therefore, the order of processing these relations will not impact the result.
However, the order can impact the performance and therefore it should be part
of query optimization. The current implementation simply uses left associativity
to processes the relations. Since the binary and multi-way similarity set inter-
section operators work in the same way, we develop one algorithm for both. The
result of a multi-way similarity intersect is constructed in stages, where each
stage has a binary operator that produces an intermediate result that is sent
to the next stage. In the first stage (first level), the intermediate result is con-
structed in such a way that each similar outer and inner tuples are consecutive,
i.e., are next to each other in the order of emission. Similarly, results of the
second stage are constructed such that the three similar tuples from the three
input relations of the multi-way similarity intersect are produced in consecutive
order similar to the order of the relations (i.e., the first tuple is from the first
relation, the second tuple is from the second relation, and so on).

Algorithm 1 realizes the similarity-aware set intersection operator. Lines 1
and 2 initialize the outer and inner tuples. Both input relations are assumed to
be sorted. Lines 4-11 advance the current inner and outer tuple(s) until a match
based on the first attribute is found, i.e., when dist(outer[0], inner[0]) ≤ ε1,
where 0 refers to the index of the first attribute. Once a match is found, Line 12
marks the inner tuple position. Marking a tuple allows repositioning the inner
cursor to the marked tuple later in the process.
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Algorithm 1 . SimIntersect(inner, outer, nodeLevel)

Input: outer relation, inner relation and the level of the similarity set intersection.
Output: similarity set intersection result.

1: get initial outer tuple
2: get initial inner tuple
3: do forever {
4: while outer[0]! ∼ inner[0] do
5: if outer[0] < inner[0] then
6: level ← nodeLevel
7: advanceOuter(outer,level)
8: else
9: advance inner
10: end if
11: end while
12: mark inner position
13: do forever {
14: do{
15: count ← compare(outer,inner,nodeLevel)
16: level ← nodeLevel
17: if count = level then
18: ReportMatchingTuples(inner,outer,level)
19: end if
20: prevInner ← inner
21: advance inner
22: }
23: while inner[0] ∼ outer[0]
24: level ← nodeLevel
25: advanceOuter(outer,level)
26: if outer[0] ∼ prevInner[0] then
27: restore inner position to mark
28: end if
29: break
30: }
31: }

This procedure is demonstrated in Figure 2 for the similarity intersection of
tables P , Q, and R. Level 1 performs the similarity intersect between Q and
P , and the result is intersected with R in Level 2. The threshold is usually
determined by the application requirements. For this example, the threshold is
selected to be around 10% of the attribute range of values, i.e., list={0.5,5}.
Initially the outer points to tuple (0.9,10) and the inner points to tuple (0.1,5).
Based on the value of the first attribute, the outer and the inner are advanced
until the outer reaches (2,30) and the inner reaches (1.5,15). Then, the inner
position is marked because both tuples match on the first attribute. Lines 14-
23 are executed to report only the matching tuples while advancing the inner
because the first attribute’s value is within the outer’s corresponding value and
assign to prevInner a copy of the current inner location before advancing the
inner cursor. Notice that the matching tuples are reported consecutively, i.e.,



The Similarity-Aware Relational Intersect Database Operator 169

tuple(s) from the outer then tuples from the inner. The reason is that in the
next level, the consecutive tuples will be reported if a tuple of the next relation
is similar to these consecutive similar tuples. This loop finishes when the inner
reaches (5,50) as dist(2, 5) > 0.5. Then, the outer is advanced and compared to
the previous inner, and if both match on the first attribute, the inner cursor is
restored to the marked position (Lines 25-28). In the example, this happens when
the outer is advanced to tuple (2.5,20) and is compared to the prevInner’s tuple
(2.3,25). The inner is restored to the marked tuple because dist(2.5, 2.3) ≤ 0.5.
Then, the process repeats the search for other matching tuples.

∩

∩

Fig. 2. Sample execution: Sim-Intersect. Threshold list={0.5,5}.

ADVANCEOUTER, COMPARE, and REPORTMATCHINGTUPLES (Al-
gorithms 2, 3, and 4, resp.), work based on the level of the similarity intersection
operator. In Level1, the outer is advanced once to perform any process, while in
Level2, the outer is advanced twice, and so on. The reason is that similar tuples
of the outer are consecutive to each other in the pipeline. When comparing the
inner tuple to the outer, if the process is in Level1, the inner is only compared
to the current outer whereas if the process is in Level2, the inner is compared to
the current and the next outer tuples (i.e., the consecutive similar tuples). Refer-
ring to our example, the inner tuple (2.1,33) is similar to the outer consecutive
tuples (2,30) and (2.2,35) in Level2. REPORTMATCHINGTUPLES produces
the output by first reporting the two similar consecutive outer tuples (2,30) and
(2.2,35), since they are in Level2, then it reports the current matching inner
tuple, i.e., (2.1,33). Then, these three similar tuples are pipelined into Level3
for further processing, if any.
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Algorithm 2 Advance Outer

1: function advanceOuter(outer,level)
2: while level �= 0 do
3: advance outer
4: level ← level − 1
5: end while
6: end function

Algorithm 3 Compare Tuples

1: function compare(inner,outer,level)
2: mark outer position
3: count ← 0
4: while level �= 0 do
5: if outer ∼ inner then
6: count ← count + 1
7: level ← level − 1
8: advance outer
9: else
10: break
11: end if
12: end while
13: restore outer
14: return count
15: end function

Algorithm 4 Report Matching Tuples

1: function ReportMatchingTuples(inner,outer,level)
2: while level �= 0 do
3: report outer
4: advance outer
5: level ← level − 1
6: end while
7: report inner
8: restore outer
9: end function

3.1 Analysis

As mentioned in the previous section, the proposed algorithm assumes sorted
inputs, and is based on a Mark/Restore mechanism that may lead to having a
nested loop in the worst case. The complexity is computed as follows:

– Sorting the input relations: Assume that the outer and inner relations have
n tuples, then the complexity is O(nlogn).
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– Processing the similarity intersect operator: Assume that the n outer tuples
each iterates on average over c tuples of the inner relation, then the complex-
ity is O(n ∗ c). The best-case scenario happens if c = 1, the average case is
achieved when c is small with respect to the number of the inner tuples, and
the worst case occurs when c = n. The worst-case scenario may take place
when having a large similarity threshold, e.g., a big fraction of the domain
range. In our algorithm, the threshold assigned to the first attribute is the
one influencing the performance the most.

– Filtering the output: Filtering is usually performed by sorting the input,
then grouping the duplicates. Assume that there are k output tuples, then
the complexity is O(klogk + k).

Thus, the average case complexity is O(nlogn) while the worst case complexity
is O(n2), which is similar to sort-merge join. Typically, a threshold value is
expected to be small compared to the domain size. Therefore, the complexity
of the similarity intersect algorithm is closer to the average case. Thus, the
performance is comparable to that of the standard set intersect, as demonstrated
in the experimental section.

4 Experimental Results

We have modified PostgresSQL to support similarity intersect as an operator.
We extended the Parser, Optimizer, and Executor modules of PostgreSQL for
this purpose. We skip the details of how each of the PostgreSQL components is
extended to support similarity intersect. The reader is referred to [8] for more
details. Below, we present a summary of the performance results under various
real and synthetic data sets as well as using some extensions to the TPC-H
benchmark to support similarity queries.

Table 1. Equivalent regular operations

Similarity-aware Set Op. Equivalent Query using Regular Ops.
(SELECT a1, a2, . . . , an

FROM tab1 INTERSECT
SELECT a1, a2, . . . , an

FROM tab2) WITHIN
VALUES (ε1, ε2, . . . , εn);

SELECT tab1.a1, tab1.a2, . . . , tab1.an FROM tab1, tab2 WHERE
abs(tab1.a1 − tab2.a2)≤ε1 and abs(tab1.a2 − tab2.a2)≤ε2
. . . and abs(tab1.an − tab2.an)≤εn UNION SELECT
tab2.a1, tab2.a2, . . . , tab2.an FROM tab1, tab2 WHERE
abs(tab1.a1 − tab2.a2)≤ε1 and abs(tab1.a2 − tab2.a2)≤ε2. . .
and abs(tab1.an − tab2.an)≤εn

We run the experiments on an Ubuntu Linux machine with a 2.4GHz In-
tel Core i5 CPU and 4GB memory. Experiments are performed on real data
sets [21], synthetic data, as well as using the TPC-H benchmark data [20]. We
use the edit distance in our computations. We first study the effect of varying
the number of attributes involved in the similarity intersect operator. Then, we
compare the performance of the similarity intersect operator against (i) the stan-
dard relational intersect to demonstrate that the overhead of similarity intersect
is acceptable, and (ii) the equivalent queries that use regular SQL operations to
produce the same results as the corresponding similarity-aware query to demon-
strate that similarity intersect yields better performance. The equivalent queries
are presented in Table 1.
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Impact of the Number of Attributes. We use a public dataset [21] that
contains around 2.3 million readings gathered from 54 sensors deployed in the
Intel Berkeley Research lab. The purpose of this experiment is to study the per-
formance of similarity intersect as the number of involved attributes is increased.
We conduct this experiment by processing the following query:

(SELECT epoch, temp, humidity, voltage FROM sensors WHERE moteid=1
INTERSECT
SELECT epoch, temp, humidity, voltage FROM sensors WHERE moteid=2)
WITHIN VALUES (10,0.1,0.1,0.1);

This query returns similar readings from mote1 and mote2. We start by querying
based on one attribute, namely epoch. Then, we repeat the experiment by adding
each time one more attribute. Figure 3(a) illustrates that the execution time is
the highest when intersecting two datasets consisting of multiple attributes on
their first attribute only and the execution time decreases as we increase the
input attributes of these datasets. The reasons for this behavior are as follows.
Referring to the algorithm for the similarity-aware set intersection, the number
of internal comparison loops is the same for one or more attributes because the
algorithm is based on the first attribute value. What differs here is the number
of the returned matching tuples. When intersecting on one attribute, it is more
likely to have more matching output tuples than when intersecting on two or
more attributes. As the number of the output matching tuples increases, the
time spent by the sort and the duplicate elimination processes increase.
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Fig. 3. Effect of the number of attributes and the output size

Similarity Intersect Using Standard Relational Operators.We study the
performance of the proposed similarity intersect operator against an equivalent
query that performs the same functionality and that produces the same output
but using only standard SQL operators. We vary the data size and the simi-
larity threshold value while using the TPC-H data set [20]. We run the queries
presented in Table 2. Through these queries, we can identify similar customer



The Similarity-Aware Relational Intersect Database Operator 173

0.01
0.1

1
10 1

2

4

8

10

10−1

100

101

102

103

104
−3

.1
2

−1
.6
3

0.
49 2.
06

3.
11

3.
12

3.
25

3.
52

−2
.0
6

−0
.3
6 2.
03 3.
51

4.
47

4.
48

4.
63

4.
88

−0
.8
3

1.
1

3.
55 5.
12

5.
88

5.
89

6.
05

6.
35

0.
47

2.
53

5.
28 6.
62

7.
33

7.
49

7.
65

7.
84

ε (% domain)

Scale Factor(SF)

E
x
ec
u
ti
o
n

T
im

e(
s)

Sim-Intersect RegOps

Fig. 4. Similarity-aware set intersection vs. regular operations

profiles from two countries. We may consider customer profiles to be defined
by the amount of money spent. For this case, we can run queries that use one
attribute (total price). However, some customers may spend a large amount of
money on a small quantity of items or may spend a small amount of money on
a large quantity of items. Therefore, we run a more precise query that uses two
attributes (total price and total quantity) to represent the customer profile. No-
tice that the assigned threshold to custkey attribute is -1. This value is used to
express the infinity value because we want to count the customers with similar
profiles regardless of whether their customer keys match or not.

We study the performance of similarity intersect when varying the similarity
threshold value from 0.01% to 10% of the attribute domain range. We vary the
threshold of the first attribute only because the algorithm is influenced highly
by its value. The threshold assigned to the second attribute is fixed to be 0.1%
of the attribute domain range. Specifically, the customer total price domain and
total quantity domain use values in the range [11020, 6289000] and [10, 4000],
respectively. We vary the input size by repeating the experiment using different
TPCH scale factors (from SF=1 to SF=8).

The results are given in Figure 4 that demonstrate a substantial query pro-
cessing speedup of the similarity set intersection query over the equivalent query
that only employs regular operators. The speedup ranges between 1000 and 4
times for similarity threshold values ranging between 0.01% and 10% of the
attribute domain range, respectively.

Comparison with Standard Queries. This section evaluates the performance
of similarity intersct operator when compared to the standard SQL set intersec-
tion operator. We compare queries that have similar selectivities (i.e., queries
that produce a similar output size for a given input size). We control the output
cardinality by careful generation of synthetic input data. The details of how the
data is generated are omitted due to space limitation. The reader is referred
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Table 2. Similarity-based intersect queries using TPC-H data

Operator Type Syntax
Similarity-aware SetOp, two
attributes

SELECT count(*) FROM ((SELECT p1.priceSum, p1.qtySum,
p1.custkey FROM (SELECT sum(o.o totalprice) as priceSum,
sum(q.qty) as qtySum, o.o custkey as custkey FROM orders
o, customer c, (SELECT l orderkey as o key, sum(l quantity)
as qty FROM lineitem GROUP BY l orderkey) q where
o.o orderkey=q.o key and c.c custkey=o.o custkey and
c.c nationkey=1 GROUP BY o.o custkey) p1 INTERSECT/EXCEPT
SELECT p2.priceSum,p2.qtySum,p2.custkey FROM (SELECT
sum(o.o totalprice) as priceSum, sum(q.qty) as qtySum, o.o custkey
as custkey FROM orders o, customer c, (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey) q
where o.o orderkey=q.o key and c.c custkey=o.o custkey and
c.c nationkey=2 GROUP BY o.o custkey) p2) WITHIN VALUES
(ε1,ε2,-1) ) as result;

Equivalent Regular Opera-
tions to sim-intersect

SELECT count(*) FROM ( SELECT p1.priceSum, p1.qtySum,
p1.custkey FROM (SELECT sum(o.o totalprice) as priceSum,
sum(q.qty) as qtySum, o.o custkey as custkey FROM orders o, cus-
tomer c, (SELECT l orderkey as o key, sum(l quantity) as qty FROM
lineitem GROUP BY l orderkey) q where o.o orderkey=q.o key
and c.c custkey=o.o custkey and c.c nationkey=1 GROUP BY
o.o custkey) p1, (SELECT sum(o.o totalprice) as priceSum,
sum(q.qty) as qtySum, o.o custkey as custkey FROM orders o, cus-
tomer c, (SELECT l orderkey as o key, sum(l quantity) as qty FROM
lineitem GROUP BY l orderkey) q where o.o orderkey=q.o key
and c.c custkey=o.o custkey and c.c nationkey=2 GROUP BY
o.o custkey) p2 WHERE abs(p1.priceSum-p2.priceSum)≤ ε1 AND
abs(p1.qtySum-p2.qtySum)≤ ε2 UNION SELECT p2.priceSum,
p2.qtySum, p2.custkey FROM (SELECT sum(o.o totalprice)
as priceSum, sum(q.qty) as qtySum, o.o custkey as custkey
FROM orders o, customer c, (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey)
q where o.o orderkey=q.o key and c.c custkey=o.o custkey
and c.c nationkey=1 GROUP BY o.o custkey) p1, (SELECT
sum(o.o totalprice) as priceSum, sum(q.qty) as qtySum, o.o custkey
as custkey FROM orders o, customer c, (SELECT l orderkey as o key,
sum(l quantity) as qty FROM lineitem GROUP BY l orderkey)
q where o.o orderkey=q.o key and c.c custkey=o.o custkey
and c.c nationkey=2 GROUP BY o.o custkey) p2 WHERE
abs(p1.priceSum-p2.priceSum)≤ ε1 AND abs(p1.qtySum-
p2.qtySum)≤ ε2 ) as result;

to [8] for further detail. From Figure 3(b), the similarity intersect operator adds
a 20% overhead in the case of one-attribute-based similarity while it varies from
20% to 44% when increasing the output size from 16k to 128k in the case of the
two-attribute-based similarity.

5 Conclusion

We introduced the semantics and extended SQL syntax of the similarity-based
set intersection operator. We developed an algorithm that is based on the
Mark/Restore mechanism to avoid the O(n2) complexity. We implemented this
algorithm inside PostgreSQL and evaluated its performance. Our implementa-
tion of the proposed operator outperforms the queries that produce the same
result using only regular operations. The speedup ranges between 1000 and 4
times for similarity threshold values ranging between 0.01% and 10% of the
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attribute domain range. We also demonstrated that the added functionality is
achieved without a big overhead when compared to standard operators.
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Grants IIS 0916614, IIS 1117766, and IIS 0964639.

References

1. Narayanan, M., Karp, R.M.: Gapped local similarity search with provable guar-
antees. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp.
74–86. Springer, Heidelberg (2004)

2. Wang, J., Li, G., Feng, J.: Fast-join: An efficient method for fuzzy token matching
based string similarity join. In: ICDE (2011)

3. Schallehn, E., Sattler, K.U., Saake, G.: Efficient similarity-based operations for
data integration. Data and Knowledge Engineering 48(3) (2004)

4. Mills, P.: Efficient statistical classification of satellite measurements. International
Journal of Remote Sensing 32(21) (2011)

5. Silva, Y.N., Aref, W.G., Ali, M.H.: The similarity join database operator. In: ICDE
(2010)

6. Silva, Y.N., Aref, W.G., Ali, M.H.: Similarity group-by. In: ICDE (2009)
7. Silva, Y.N., Aref, W.G., Larson, P., Pearson, S., Ali, M.H.: Similarity queries: their

conceptual evaluation, transformations, and processing. VLDB J. 22(3) (2013)
8. Marri, W.J.A.: Similarity-aware set operators. Master’s thesis, Qatar University

(2009)
9. Wang, J., Li, G., Fe, J.: Fast-join: An efficient method for fuzzy token matching

based string similarity join. In: ICDE (2011)
10. Schallehn, E., Sattler, K., Saake, G.: Advanced grouping and aggregation for data

integration. In: CIKM (2001)
11. Yu, C., Cui, B., Wang, S., Su, J.: Efficient index-based knn join processing for high-

dimensional data. Journal of Information and Software Technology 49(4) (2007)
12. Hjaltason, G., Samet, H.: Incremental distance join algorithms for spatial

databases. In: SIGMOD (1998)
13. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity joins. In: VLDB

(2006)
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database system. In: SIGMOD (2010)

19. PostgreSQL Global Development Group: Postgresql (2014),
http://www.postgresql.org/

20. TPCH: Tpc-h version 2.15.0 (2014), http://www.tpc.org/tpch
21. Intel Berkeley Research lab: Intel lab data (2014),

http://db.csail.mit.edu/labdata/labdata.html

http://www.postgresql.org/
http://www.tpc.org/tpch
http://db.csail.mit.edu/labdata/labdata.html


High Dimensional Search Using

Polyhedral Query

Richard Connor, Stewart MacKenzie-Leigh, and Robert Moss

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, G1 1XH, United Kingdom

{richard.connor,s.mackenzie-leigh,robert.moss}@strath.ac.uk

Abstract. It is well known that, as the dimensionality of a metric space
increases, metric search techniques become less effective and the cost of
indexing mechanisms becomes greater than the saving they give. This is
due to the so-called curse of dimensionality.

One effect of increasing dimensionality is that the ratio of unit hyper-
sphere to unit hypercube volume decreases rapidly, making the solution
to a similarity query (the query ball, or hypersphere) ever more difficult
to identify by using metric invariants such as triangle inequality.

In this paper we take a different approach, by identifying points within
a query polyhedron rather than a ball. We show how this can be achieved
by constructing a surrogate metric space, such that a query ball in the
surrogate space corresponds to a polyhedron in the original space. If
the polyhedron contains the ball, the overall cost of the query is likely
to be increased in high dimensions; however, we show that shrinking
the polyhedron can capture a surprisingly high proportion of the points
within the ball, whilst at the same time giving a more efficient, and more
scalable, search.

We show results which confirm our underlying hypothesis. In some
cases we can retrieve significant volumes of query results from spaces
which are otherwise intractable.

1 Introduction

In this paper, we show a novel conceptualisation of an approximate indexing
technique based on the geometry of high-dimensional metric spaces. This is based
on the following observations:

1. the relationship between the shared volume of a hypersphere and a hypercube
centred around the same point in high-dimensional space; especially that, as
the side length of a containing hypercube is reduced, much of the hypersphere
may still be contained

2. that points within an approximate hyper-polyhedron centred around an ar-
bitrary query point can be defined, relying upon triangle inequality, by a set
of inequalities based on distances from a fixed set of reference points1

1 Corresponding to existing multiple-pivot indexing mechanisms.

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 176–188, 2014.
DOI: 10.1007/978-3-319-11988-5_16 c© Springer International Publishing Switzerland 2014
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3. that a finite metric space can be re-indexed, using the Chebyshev distance
over pre-calculated distances to the reference points, to allow the efficient
extraction of points within a hyper-polyhedron centred around a query

The re-indexed (surrogate) space can often be queried more efficiently than
the original: it may have smaller data points, a faster metric, and lower intrinsic
dimensionality. However when queried at the same threshold, the result will be
a much larger proper superset of the query in the original space, and the cost of
filtering against the original space is likely to outweigh any efficiency gain.

However, observation (1) means that, as the surrogate query threshold is
reduced, a corresponding increase in efficiency may be achieved without a cor-
responding significant loss in correct results. This makes the mechanism as pro-
posed useful in the context of high-dimensional metric spaces, where known
indexing techniques are completely ineffective. In this context, it may give a
tractable and scalable approach to at least achieving some kind of imperfect
search, and we show results from searching against GIST image characterisa-
tions [13] which we have been unable to otherwise achieve.

2 Dimensionality: Curse and Counter-Curse

In the domain of metric search, we are very familiar with the so-called curse
of dimensionality [7]. The observable effect is that, as the dimensionality of a
metric space increases, then for arbitrarily selected distances within the space
standard deviation decreases and there are ever fewer very small values.

One explanation of this is that, as the dimensionality increases, the ratio of
the volume of the unit hypersphere to the unit hypercube decreases rapidly.
Points within the space fill a hypercube, while the solution to a threshold query
fills a hypersphere (the query ball) centred around the query point.

It is instructive to observe the magnitude of this effect. The volume of a

hypersphere with radius r in 2k dimensional space2 is πk

k! r
2k which starts to

decrease rapidly after 6 dimensions. The ratio of this volume to the volume

of a containing hypercube is given by πk

22kk!
which clearly becomes very small,

very quickly, as k increases. At 6 dimensions the ratio is 0.08; at 10 it is 0.002
and it drops to 2 × 10−8 at 20. This sharp drop-off fits well with the generally
known rule-of-thumb that metric indexing mechanisms become ineffective at an
intrinsic dimensionality [7] of more than around 6-10.

2.1 Shrinking the Search Hypercube

Imagine that, for a threshold search, all points within the containing hypercube
could be efficiently discovered. Even if this were true, it would be of little practi-
cal value in high dimensions, as in an evenly-distributed space almost all of the
points contained would not be within the solution to the search.

2 Even dimensions are used as the formula is slightly simpler, an equivalent formula
exists for odd dimensions.
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However, if for example all points within a hypercube of the same volume
and centre as the query hypersphere could be discovered, these points will have
a significant overlap with those in the query ball. As the number of dimensions
increases, the overlap becomes proportionally smaller, but not rapidly.

The side length of this cube actually decreases as the dimensionality increases.
Therefore, for example, in 10 dimensions a set of points which will coincide
significantly with a query ball of radius t can be found by extracting points
within a hypercube with a half-side length of just over 1

2 t, and around half of
the space contained in this hypercube will also be in the hypersphere.

There is one further effect of which we can take advantage. As the half-side
length increases up to the sphere radius, the contained volume of the sphere in-
creases rapidly after a threshold of around the equivalent volume. It very slowly
approaches full containment as the half-side length approaches the query radius,
but includes almost all of the points within the sphere at a much smaller value
than this. With higher dimensions, this effect is greater and starts at a lower
threshold. Figure 1 shows the volume overlap in 10 dimensions, the graphs cor-
responding to recall and precision in an evenly distributed Euclidean space as
the half-side length increases from 0 to 1. It can be seen that there is an overlap
where both recall and precision are usefully far from zero: for example, if we
could efficiently retrieve a hypercube with a half-side of little more than 0.6 of
a query radius, we would retrieve over 80% of the true results, while of all the
results retrieved, around 20% of them would be correct. In 10-dimensional space,
this may well be a reasonable compromise if there is an associated reduction in
query cost.

Fig. 1. With half-side ranging from 0 to 1, graphs show percentage of volumes: (a) of
unit hypersphere in hypercube, and (b) of hypercube in unit hypersphere

These observations are used as follows. A surrogate metric space will be con-
structed such that a query ball in the surrogate space corresponds to a hyper-
polyhedron within the original space. The hyper-polyhedron is expected to have
similar volume-ratio properties as those determined for hypercubes. The sur-
rogate space then allows points within an approximate hyper-polyhedron to be
discovered using standard metric indexing techniques. Search at the same thresh-
old corresponds to the minimum containing polyhedron, and will typically give
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a huge proportion of false positive results. However, efficiency gains from drop-
ping the search threshold should maintain a high proportion of the true results
because of the effect shown above.

Fig. 2. Hypothesis: percentage of correct results with threshold reduction

In essence, we would hope to see a pattern as shown in Figure 2. As the query
threshold is reduced, the query cost decreases approximately linearly in both
original and surrogate spaces. In the original space, the amount of data returned
will drop off very rapidly, due to the decrease in the hypersphere volume; however
in the surrogate space, it will drop off at first very slowly, due to the effects just
outlined. This should allow a high proportion of the correct results in return for
a substantial reduction in query cost.

It is worth noting that, although the above discussion implicitly assumes
a Euclidean space, the same patterns occur in other spaces as well, and the
technique proposed works correctly over any metric space.

3 Defining Approximate Hyper-Polyhedra

There remains the issue of finding a scalable mechanism which will identify the
points within the reduced hypercube. For a Euclidean space, this could be done
by setting up an independent search structure for each dimension and finding the
intersection of all points within the appropriate range on all dimensions; with
unlimited parallel hardware this could be extremely efficient. However, our pri-
mary interests include performing search over high-dimensional, non-Euclidean
metric spaces.

Instead of calculating the actual hypercube, we form an approximation of a
hyper-polyhedron by use of reference points within the space. Figure 3 shows a
simple example. Reference points p1 and p2 have been selected. For a query q,
with threshold t, the property of triangle inequality means that for any ui in the
space, if |d(q, p1) − d(ui, p1)| > t or |d(q, p2) − d(ui, p2)| > t, then ui cannot be
in the result set.
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q

p1 p2

Fig. 3. An Approximate Hyper-Polyhedron in 2 dimensions

Generalising to a metric space (S, d), and a set of reference points R, then
an approximate hyper-polyhedron constructed for a query q with threshold t is
defined as:

Poly(q) = {u ← S where ∀p ∈ R, |d(q, p)− d(u, p)| < t′}

where t′ ≤ t, and is chosen according to the tradeoffs highlighted above.
This statement of inclusion essentially corresponds to the pivoting exclusion

principle used in various multiple-pivot mechanisms, and is discussed further in
Section 5. However we now show how to turn the pivot-based exclusion into a
metric search in its own right. The value of doing this is that, as the value of t′

is reduced, the scalability of the search increases.

4 Re-Indexing for Hyper-Polyhedral Search

If we use the denotation uj to mean d(u, pj), then the inclusion criterion for
Poly(q) can be rewritten as maxj(|qj−uj|) ≤ t′, as for any pj ∈ R, |qj−uj|) > t′

means that u does not lie within the polyhedron around the query point.

p1

p2 p3

p4

u1

u2

u3

u4

q

Fig. 4. Euclidean space: data ui, reference points pi and query q
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This condition is captured by applying the Chebyshev distance (L∞) to the
ordered sets of values constructed from the distances of u and q to each reference
point in turn. As Chebyshev is itself a proper metric, this means that elements
of Poly(q) can be found by using metric search over a metric space constructed
from the original by pre-calculating these distances, and using Chebyshev as the
distance metric.

Table 1. The left-hand column shows the Euclidean distances (d) from the query
point in the original space (Figure 4). The right-hand column shows the corresponding
Chebyshev distance (L∞) in the surrogate space.

Original Space Surrogate Space

Point d(q, u) d(p1, u) d(p2, u) d(p3, u) d(p4, u) L∞(q′, u′)
q 0 3.68 1.52 2.67 4.28 0

u1 0.57 3.16 1.41 3.14 4.24 0.52
u2 1.84 3.91 3.35 1.80 2.69 1.83
u3 3.26 3.98 4.72 2.81 1.22 3.20
u4 3.37 2.10 4.43 4.34 1.90 2.91

Figure 4 demonstrates this by example, for data drawn in 2D Euclidean space.
There are four reference points (pi), four data points (ui) and a single query
point (q). Table 1 gives the corresponding distance values used to populate the
surrogate space. It can be seen that, in all cases, the Chebyshev distance over
the surrogate set gives a smaller value than the original distance, this property
deriving from the triangle inequality property of the original space.

4.1 Formal Definition

Consider a metric space (X , d) over which a threshold search is required: that is,
for some finite subset S = {u0, u1, . . . , un} of X , those objects within the close
proximity of some q ∈ X require to be found. Note that X is not necessarily a
Cartesian space, but d must be a proper metric.

Let R be an ordered set of m arbitrarily chosen points in X , where rj denotes
the jth element of R. R can be thought of as a set of reference points within
the space.

A surrogate set TR of S is a set in m-dimensional Cartesian space where, for
each ui ∈ S, there exists a corresponding vi ∈ TR such that vji = d(ui, rj), where

vji denotes the value of the jth dimension of vi.
The surrogate set TR will be used to perform queries without reference to

either the actual values of S, or the metric d. For a query q, a surrogate query
qR will be constructed, such that qjR = d(q, rj).
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The Chebyshev (L∞) distance metric is defined as

L∞(x, y) = lim
n→∞ n

√∑
j

(|xj − yj|)n

which can be conveniently calculated as

L∞(x, y) = max
j

(|xj − yj|)

Being an element of the family of Lebesque metrics with n ≥ 0, this is a proper
metric. Therefore (TR, L∞) is also a metric space.

4.2 Properties

1. L∞(qR, vi) ≤ d(q, ui)
That is, if Qt(q,S, d) denotes the set of values returned by a threshold query
for metric d over S for the point q and the threshold t, then Qt(q,S, d) ⊆
Qt(qR, TR, L∞). The proof of this derives from the triangle inequality prop-
erty of d.

2. The conditional probability of ui ∈ Qt(q,S, d), vi ∈ Qt′(qR, TR, L∞) reduces
at first, very slowly, from 1 as t′ reduces from t downwards, while the cost
of evaluating the query reduces more rapidly.

The following tradeoffs exist, according to a given search scenario:

1. Querying L∞(qR, vi) at the same threshold value t will always give a superset
of the required results, which for a precise search will then have to be tested
back in the original space before being returned as results of the threshold
query. The relative sizes of the true and false results returned by a query
at the same threshold depend upon the size, and individual points chosen,
for the set R; however, this aspect of query performance is likely to be in
contention with choosing R to give the best search performance.

2. Conversely, although L∞(qT , vi) ≤ d(q, ui) is the only guarantee, it may
be the case that, for some given ε, there is an acceptable probability that
L∞(qT , vi) < d(q, ui) − ε. If so, then a smaller threshold value can be used
to produce an approximate result set. In many dimensions, it is extremely
unlikely that a distance very close to the threshold will be reached in the
surrogate space, as this can happen only with very close alignment of three
points in the original space, which is increasingly less likely as the number
of dimensions increases, although more likely as the size of R increases.

The same core mechanism can thus be used either as an accurate, or an
approximate, threshold search, depending on the context of the requirements.
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4.3 Choosing Reference Points

In common with other methods which use reference points, the choice of points
appears to be critical to the performance of the mechanism. However, we are at
an early stage of investigation in this respect.

We have tried various strategies for various spaces, and the only general de-
duction is that a random choice of points is relatively safe, as often the use of
apparently appealing strategies only makes things worse.

For Euclidean space, it seems that the best strategy may be to choose artificial
points in the “corners” of the space rather than points within the existing data.
Thus in unitary space we use the origin, and then the points (0, 1, 0, 0, . . . ),
(0, 1, 1, 0, . . . ), (0, 1, 1, 1, . . . ) etc. We have not yet found equivalent series of
points for other metrics, which are harder to reason about in terms of their
multidimensional geometry, although we suspect they exist.

In terms of the number of reference points, we have seen some surprising
results which show that many less points than might be expected can be used.
This seems to depend very much upon the distribution of points within the
space, and may be beyond theoretical analysis in an uneven distribution. There
is however a clear law of diminishing returns: if each dimension in the surrogate
space gives approximately a constant probability of excluding that point from the
result set, and assuming this probability is reasonably large, then small numbers
of reference points will be much more efficient than large numbers as better use
of memory is made in the surrogate space. The tradeoff is that larger numbers
of reference points will always give a smaller number of false positive returns,
but the magnitude of this effect will depend heavily on how well the reference
points can be chosen.

5 Related Work

There are already a large number of approximate methods suitable for use in
higher-dimensional spaces, classified in [14], many of which use reference points.

Permutation indexing [2,4] is essentially another surrogate space mechanism.
In common with our mechanism, a set of reference points is chosen and the
distance to each is pre-calculated for all points in the data set. However these
distances themselves are then abstracted into only their order from each point.
Searching by these orders should be strongly correlated with a metric search,
especially for nearest-neighbour searches. Many strategies have been suggested,
with the best scaling being produced by using a relatively large number of ref-
erence points and then testing against only a much reduced view of these, al-
lowing the resulting sparse space to be searched using inverted index techniques
e.g. [1,12]. Our observation is that these techniques require more reference points,
and give rather larger numbers of false positive results, than our technique, al-
though the use of inverted indices can give impressive performance.

Re-indexing a space according to a proxy based on reference points was, to
our knowledge, first suggested by Figueroa and Frediksson [10] in which a per-
mutation space is re-indexed to give an improved metric performance.
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As noted, our core semantics is identical to a set of multiple exclusions based
on triangle inequality, and therefore relates closely to the pivoting exclusion
principle used in various multiple-pivot mechanisms which use pre-computed
distances, notably LAESA [15] and Extreme Pivots [16].

Our mechanism has much in common with Extreme Pivots, and in fact was
derived from attempts to use this over GIST data. Perhaps because of the high
dimensionality, or uneven distribution, we failed to find useful pivot groups as
described in [16], and in the course of running experiments to find the best
combination of pivots and pivot groups, we discovered that the best size of pivot
group we could find was in fact 1. The results returned by our surrogate search
are the same as those returned by a degenerate case of Extreme Pivots, using each
reference point as one pivot group of a single value. However this allows the same
search to be conducted in the surrogate space, rather than performing a serial
scan of the data as is more generally required. The comparison of cost between
our mechanism and Extreme Pivots is therefore only the increased efficiency
of performing an indexed search over the space, versus a potentially greater
number of false positive exclusions from using larger pivot groups. We believe
our mechanism will therefore work better with larger, higher dimensional data.
However, the observations based on the efficiency/recall tradeoffs via threshold
reduction should apply equally to both mechanisms.

Since originally proposing this mechanism, we have discovered that exactly the
same tradeoffs between efficiency and recall when reducing the search threshold
within a mulitple-pivot space have been observed by Chávez and Nararro in [5].
Their explanation of the gains is based on the probability distribution function
of distances within the original space, and is fully compatible with our observa-
tions on hyperspheres and hypercubes; the relationship seems worthy of further
investigation. They do not propose reindexing the space using Chebyshev, which
we believe gives much greater efficiency gains as the search threshold decreases.

In common with the motivation for the List of Clusters [6], the use of memory
is critical in real index performance. This can be seen to be the reason for much
of the performance gain we can achieve. As our indexing mechanism works over
the surrogate space of the hyper-polyhedron, we can substantially reduce the
query threshold without significantly reducing the number of results.

6 Results

For all experiments reported here, we have used the Euclidean “corners” strategy
for Euclidean spaces, and randomly selected reference points for other metrics.
We have results against three different types of data set: generated Cartesian
spaces of various dimensions3; the SISAP colors data set, and a data set of
GIST characterisations of images. This last set is the real target of the described
mechanism: with 420 Cartesian dimensions, it is essentially intractable for metric
indexing techniques.

3 Not included due to space constraints, please contact the authors if interested.



High Dimensional Search Using Polyhedral Query 185

In each case, we compare our technique using a balanced Vantage Point Tree
(VPT) in both the original and surrogate spaces. This is just to give a point
of reference against which two searches, the original and the surrogate, can be
compared. It is quite likely that, for any given original or surrogate search, there
are better indexing techniques available.

6.1 SISAP colors

The SISAP colors data was used with Euclidean, Cosine and SED [8, 9] dis-
tances, each of which has very different cost implications for both metric cost
and scalability. 256 random points were removed from the 112,682 data points
to use as queries. For each metric a query threshold sufficient to return around
1k results, i.e. mean of 4 per query, was used.

In each case, the surrogate space was searched and the results from these
queries were then post-processed by comparing the original metric over the orig-
inal data. These, and all other calculations, were performed on a non-optimised
system, written in Java, and executed on a laptop computer, and so only the
relative timings are important; each timed test was repeated until the standard
error of the mean was less than 1%.

For Euclidean queries, only 5 reference points were used, this giving the best
overall performance. This is many fewer than we would have expected, but as
more points are used, only marginally better precision is achieved and the search
cost is substantially increased. It is worth noting that each data point is therefore
represented in less than one-twentieth of the memory required for query against
the original 112-dimensional vectors. For Cosine and SED, the relatively high
costs of the distance metrics themselves imply using larger number of reference
points, to reduce the number of post-processing distances calculated.

Table 2 shows some key measurements for each metric. The figures given
are: the cost of a sequential search; the cost using a standard balanced VPT,
and the surrogate costs for retrieving 90%, 70% and 50% of the query results
by reducing the query threshold. In all cases, achieving this through reducing
the search threshold in the original space makes a negligible difference to cost.
All costs are given in absolute time measured, to highlight the tradeoffs in the
different metrics. The pattern of cost and recall as the surrogate threshold is
decreased is shown in Figure 5.

The relative saving is quite complex, depending on a number of factors. For
SED, the surrogate method is cheaper even to fetch 100% of the query results, as
the number of results returned by the surrogate metric is less than the number of
SED calculations performed in indexing via the VPT, and the cost of the metric
makes this the dominant factor.

Depending on the context of the search, these speedups could already be quite
useful. In all cases, however, the metrics over this space are already relatively
tractable, with VPT indexing being substantially faster than sequential query;
this is not the intended domain of our surrogate mechanism, and we turn our
attention to a higher-dimensional space where this is not the case.
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Table 2. Times (ms per 256 queries) for queries over the colors dataset

Original Space Surrogate Space

Metric Sequential VPT-indexed 90% recall 70% recall 50% recall

Euclidean 1059 148 88 46 19
Cosine 9617 45 52 33 20
SED 79033 2849 1196 558 250

Fig. 5. Colors: three metrics, each showing cost reducing faster than recall. Time mea-
sured corresponds closely to memory use, which is optimised by choosing an appropriate
number of reference points.

6.2 MirFlickr/GIST

The data used here comprises the GIST [13] characterisations of first 10k images
taken from the Mir-Flickr collection [11]. A balanced VPT was built using the
data, and then each value was queried against it at a threshold which returned
10k results (excluding the query itself), i.e. a mean of one per query. As would
be expected with data of this complexity, the VPT gave little or no cost saving
over sequential search for any metric.

Figure 6 shows the result of using polyhedral search for Euclidean and Cosine
distances. The surrogate space was constructed, and a VPT used to query at
different thresholds between the original, and one-tenth of the original, threshold.
All values shown are relative to the cost of the original search.

Values shown are, from top to bottom in the graphs: recall, i.e. how many of
the correct results are returned; tree distances, the relative number of distance
calculations performed during the tree search; the actual measured time for the
queries to complete; and the memory use. These last two figures include both the
surrogate tree search, and the post-processing of the results using the original
metric and data.

Notably for both searches even searching at the containment threshold is
cheaper than the original metric search. This is because the cost is dominated
by the memory cost of the original distance metric searching over the original
points, each of which require 50-100 times more memory than the surrogate
points. Even at the full threshold, a smaller number of results is obtained than
the number of calculations performed during a tree search using the original
metric and data.
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For Euclidean search, the cost of retrieving 99.7% of the true results is just
under half of the original, whereas 75% can be retrieved for just over one-fifth
of the cost. The lack of a good strategy for choosing reference points means that
more surrogate distance calculations are required for Cosine search, however this
is more than compensated for by higher recall at lower relative thresholds, and
the measured cost of retrieving 99.7% of the correct results is just over one-
quarter of the cost of the original search, and 70% of correct results can be
obtained for one-twentieth of the cost.

Fig. 6. Euclidean and Cosine distance over MirFlickr/GIST

7 Conclusions and Further Work

We have presented a novel strategy for approximate search in intractable, high-
dimensional metric spaces. The essence of the mechanism is to re-cast the original
space, via a set of reference points, into another metric space which can be use-
fully searched at lower thresholds. This allows, at least in some cases, a relatively
predicable proportion of the correct results to be obtained for an acceptably low
cost.

We are at an early stage of investigation of this technique, however we have
already used it to obtain some real results that were previously unavailable to
us in complex domains such as image similarity.

One area of investigation which could greatly improve the performance of
the technique would be a better selection of reference points for non-Euclidean
spaces, which may be possible to achieve by analysis of the geometry of these
spaces as we believe we have achieved for Euclidean distance.

Finally, we have seen some interesting preliminary results from approximat-
ing nearest-neighbour (kNN ) search in the surrogate space, for appropriately
increased values of k. This takes advantage of an observation that there may
be better correlation of the surrogate and original distances at lower threshold
values, but requires further investigation.
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Abstract. Recent years have seen an explosion in the volume of historical doc-
uments placed online. The individuality of fonts combined with the degradation 
suffered by century old manuscripts means that Optical Character Recognition 
Systems do not work well here. As human transcription is prohibitively expen-
sive, recent efforts focused on human/computer cooperative transcription: a 
human annotates a small fraction of a text to provide labeled data for recogni-
tion algorithms. Such a system naturally begs the question of how much data 
must the human label? In this work we show that we can do well even if the 
human labels only a single instance from each class. We achieve this good  
result using two novel observations: we can leverage off a recently introduced 
parameter-free distance measure, improving it by taking into account the “com-
plexity” of the glyphs being compared; we can estimate this complexity using 
synthetic but plausible instances made from the single training instance. We 
demonstrate the utility of our observations on diverse historical manuscripts. 

Keywords: Classification, Semi-Supervised Learning, Historical Manuscript, 
Handwriting Analysis. 

1 Introduction 

The classification of individual glyphs is typically the first step in historical document 
processing. The variety of texts (hundreds of languages, tens of thousands of 
handwriting styles/handmade fonts), combined with the degradation often suffered by 
century old manuscripts, precludes the adoption of a “one-size-fits-all” off-the-shelf 
Optical Character Recognition (OCR) Systems.  

Most Semi-Supervised Learning (SSL) techniques make explicit assumptions 
which are violated or only partly true in our domain of interest [3]. In particular, the 
smoothness assumption can be violated in a special way that does not seem to be well 
appreciated. Recall that it requires that “(objects) which are close to each other are 
more likely to share a label” [3]. However, this assumption can be violated in an un-
expected way: “complex” objects tend to be closer to other objects that are “simple,” 
at least under some distance measures such as the recently introduced CK-1 distance 
[2]. In Fig. 1 we show a clustering that hints at this [5, 11]. This “complexity bias” 
violates the notion that objects that are close to each other are more likely to share a 
label, at least for some classes.  
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Fig. 1. (left) A clustering of examples from [5] suggests that the distance measure has difficulty 
clustering objects with different complexities, such as the simple ‘i’ and more complex ‘t’. 
(right) If we compensate for these differences in complexity we can do much better. 

Given enough training data we can learn the amount of “complexity bias” for each 
class and compensate for it. However, this opens up a “chicken-and-egg” paradox, as 
we are using SSL to mitigate the lack of training data. As we shall show, we solve this 
problem by creating additional synthetic examples with a simple random distortion 
model. As hinted at in Fig. 2, we can easily produce plausible variations of hand-press 
or handwritten letters. 

 

Fig. 2. (left) Six examples of a handwritten letter. (right) We can take a single letter (red / hig-
hlighted example) and produce natural looking variations of it with a simple distortion model. 

The rest of the paper is organized as follows. In Section 2 we discuss related work 
and background for our research. In Section 3 we introduce our proposed method. 
Section 4 presents experimental evaluations. Finally, Section 5 offers conclusions and 
a discussion of avenues for future research. 

2 Related Work and Background 

While there is a plethora of classification algorithms available, the simple Nearest 
Neighbor (NN) algorithm is known to be surprisingly competitive in many domains. 
This is because the algorithm can use any distance measure, including ones that can 
“carve out” decision boundaries that are not within the representation power of deci-
sion trees, etc. In this work we propose to leverage off a recently introduced distance 
measure called the CK-1 distance [2]. The CK-1 distance differs from other methods 
(Gabor filters, Fourier transforms, Markov random fields, wavelets, etc.) in two im-
portant ways. First, it considers shape and texture simultaneously. Second, it is com-
pletely parameter-free, freeing us from the need to obtain data to learn parameter 
settings, and greatly reducing the probability of overfitting (with no parameters to fit, 
one cannot overfit). The CK-1 is a compression based distance measure. The distance 
ranges between zero and “soft” one. If two objects are very similar to each other the 
distance is close to zero, whereas for very dissimilar objects the distance is close to 

One handwritten example of  the 
letter ‘n’ from a historical text, 

and five synthetic examples 
generated from it

Six handwritten examples 
of the letter ‘n’ from an 
historical text
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one or slightly greater. Due to its simplicity and effectiveness we use CK-1 distance 
measure in this work; however, it is not a necessary condition for the utility of our 
ideas. CK-1 has proven its efficiency in historical documents processing domain [8], 
but in a bit different sense. While Hu et al. apply this distance measure to initial let-
ters mining (intrinsically textures); we expand it to all glyphs (intrinsically shapes). 
However, there are two problems we must solve in order to use CK-1. The first is data 
scarcity. All classification algorithms benefit from more data; however, our explicit 
problem statement allows us to have as few as one exemplar per class. The second 
problem, which was hinted at in Fig. 1, is less well appreciated in the literature. At 
least some distance measures may overestimate the distance between “complex,” but 
nevertheless similar, objects. For example, in our domain, letters such as T  and U  
are complex, at least relative to the more prosaic versions, A and B. In this case the 
difference in complexity is related to particular typeface/handwriting. However, even 
within a single typeface, there are differences in complexity, ranging from the simple 
single-stroke letters such as I and O, to more complex multi-stroke letters such as W 
and E. The observation that differing complexities cause problems for nearest neigh-
bor classification has been forcefully shown for time series classification [1]. Moreo-
ver, as we shall show below it is also the case for classifying glyphs with the CK-1 
distance measure. Note that we are not making any claims with regard to other shape 
distance measures1. 

Synthetic data generation techniques are widely used to supplement datasets that 
do not have a sufficient number of instances for a given task [6]. If each exemplar can 
be described by a feature vector, then the problem of synthetic data generation can 
often be solved by a technique as simple as adding random Gaussian noise to copies 
of the original vectors, or by averaging randomly chosen vectors from the same class 
(i.e., SMOTE and its variants [4]). The problem becomes more complicated if we are 
dealing with objects that cannot be easily represented by feature vectors. In a recent 
work Yang et al. proposed a method of data densification in image domains [14]. 
Their insight is that they can forgo creating synthetic exemplars, and simply create 
synthetic points in the distance space. Such points make the estimation of the data 
manifold more accurate, and can thus improve retrieval accuracy.  

While this work is closest in spirit to ours, we do need to create actual synthetic 
images in order to learn the potential biases of our distance measure, and correct 
them. To produce synthetic exemplars we apply transformations similar to those pro-
posed by Ha et al. [7]. This model captures majority of variations in writing and pro-
duces plausible results shown in Fig. 2. 

Wang et al. [13] introduced the Adjusted k-Nearest Neighbors Rule, considering 
“influence region for each training example.” They constructed this region as a sphere 
centered on the example “that is as large as possible without enclosing a training 
example of a different class”. After this they rescale the distances to each training 
sample as distance divided by the radius of the influence region. This approach is 
similar to ours, because it takes into account the “density” of training items in the 

                                                           
1 Although preliminary work suggests that other distance measures also have difficulties in 

datasets with classes of varying complexity. 
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distance space. However, this approach requires parameters to be adjusted and opti-
mized for each particular problem, something we are anxious to avoid. 

We will provide necessary definitions before describing our algorithm.  

Definition 1: A labeled example ei of a class Ei is a human annotated glyph. Similar-
ly, an unlabeled example is any example of the same glyphs not labeled by human. 

After selecting ei we can generate synthetic data based on ei by a distortion model:  
Definition 2: A distortion model M is the method to modify labeled glyphs to gener-
ate synthetic data {Si,j} = M(ei), where j denotes index of synthetic exemplars in a 
particular class i (1 ≤ j ≤ const). 

Note: our distortion model M is only one of many methods that can generate syn-
thetic data. Further discussion of synthetic data generation techniques is beyond the 
scope of this paper; we refer the reader to [4] and [7], and therein.  

To classify an unknown item we have to consider distance (similarity measure) be-
tween this item and labeled items from the training set. Our approach exploits the 
correction of distance calculated by some known algorithm.  

Definition 3: The corrected distance between the query image q and any object Si,j in 
the training dataset of the ith class is a distance under some distance measure (i.e., CK-
1) divided by some correction factor ߤ௝. 

3 Proposed Method 

As the dendrogram shown in Fig. 1 (left) suggests, classification using the CK-1 dis-
tance measure sometimes does not correspond to the ground truth. We have observed 
that in cases where both shapes are “complex” (i.e., consisting of several “strokes” 
such as ‘f’ or ‘x’) the distance between them is greater than in cases where the shapes 
are “simple” (i.e., containing a single stroke such as ‘l’ or ‘o’). Fig. 3 presents a visual 
intuition of this phenomenon. In terms of absolute distances the unknown object lies 
slightly closer to the nearest ‘o’. Intuitively however, we may feel it is likely to be-
long to the ‘ft’ class because this class is sparse and the mean distance between two 
instances of this cluster is relatively larger than in ‘o’ class. 

 

Fig. 3. While the unknown “?” object is slightly closer to the nearest o than to the nearest ft, we 
intuitively feel it is more likely to belong to the latter class (exemplars are from [10]) 

The classic nearest neighbor algorithm does not take into account the density of 
each cluster. In order to mitigate this shortcoming, we must correct for density, that 
can be characterized as the mean of intraclass distances. Our approach is inspired by 

d1 < d2

d2d1

?
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the inverse-square law which is widely applied in physics. Let us consider an analogy 
to Newton’s law of universal gravitation which follows an inverse-square law.  

ܨ  ൌ ܩ ௠ெ௥మ  (1) 

In (1) F is the force between two objects which masses are m and M, r is the dis-
tance between centers of mass of these objects and G is the gravitational constant. 
Analogously, in case of the classification problem we can consider the distance be-
tween the unknown object and the nearest neighbors of each class as r (denoted as ri 
for each class i) and the mean of distance inside each class as M (for each class i de-
noted Mi). Since we simply need to compare the resulting values of F given by dis-
tance measuring between the unknown object and the nearest neighbor in each class, 
we are not interested in the values of G and m because they are the same in all cases. 
Thus, we need to compare these ratios: Mi/ݎ௜ଶ and Mj/ݎ୨ଶ. Each ratio shows the “force” 
of attraction of the unknown object by each existing class. Therefore, the unknown 
object should be considered belonging to the class with the greatest “force.” Recall 
that the nearest neighbor classifier assigns unknown objects the class label of a known 
object with the least distance value. Therefore, we can simply look for the least value 
between: ri/ඥܯ௜  and rj/ඥܯ௝  Thus, we can consider division by square root of the 
mean as the appropriate correction factor for the distance. 

We initially imagined that creating synthetic data would be a major challenge. 
However, we found that simply applying tiny amounts of the affine transformations 
homothety, rotation and shear mapping, produced new images that are both visually 
very convincing (cf. Fig. 2) and closely modeled the true distributions of real data. 

We present two different algorithms: supervised learning (SL) and semi-supervised 
learning (SSL). SL algorithm classifies items using only exemplars from the training 
set without addition of newly-classified items from the testing set to the training set. 
In contrast the SSL algorithm adds newly-classified instances to the training set and, 
therefore, performs next item classification using both training (generated) data and 
newly labeled instances from the testing set. For both algorithms we generate synthet-
ic data randomly extracting one example from each class, and then distort this  
example applying the distortion model. After the training set is created we calculate 
distances between exemplars in one class with each other and find the mean of these 
distances to use it as our measure of class density (i.e. correction factor). 

4 Experimental Evaluation 

Table 1 shows the accuracy improvement of glyphs classification using distance cor-
rection over pure nearest neighbor approach. As we can see, our method demonstrated 
better performance than pure nearest neighbor approach.  

Table 1. Classification accuracy (in percent) for the datasets: 1 – Chinese, 2 – G114 Verard 
Grosromain, 3 – R118 Garamount Grosromain, 4 – Liber Floridus, 5 – Petroglyphs 

 Original accuracy, % Accuracy improvement, % 

1 2 3 4 5 1 2 3 4 5 

SL 96.6 81.6 95.8 91.6 81.8 1.3 4.3 1.3 2.5 16.4 

SSL 98.0 86.0 85.9 97.1 81.6 0.5 5.3 1.4 1.2 13.1 
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We have built a webpage [12] to more extensively document the experiments in 
this paper to ensure reproducibility. We tested our SL and SSL algorithms using a 
single, randomly chosen instance from each class. In every case, we averaged our 
results over 100 random runs. We evaluated our approach with both European, Chi-
nese handwritten historical documents and petroglyphs from 5 datasets [5, 9, 10, 15]. 

5 Conclusions and Future Work 

We have shown a method that allows classification of glyphs using only one exemplar 
of each class, by exploiting synthetic data and correcting distance calculations for the 
complexity of the glyph shapes. Experimental evaluation on diverse datasets demon-
strated significant improvements in accuracy. We have committed to keeping a web-
page with all the code and data we used online for at least five years, so others can 
check/reproduce and build upon our work [12].  

For future work we consider expanding our techniques to other areas of images 
recognition as well as exploiting different distance measures for comparison of im-
ages similarity. 

References 

1. Batista, G., Wang, X., Keogh, E.J.: A Complexity-Invariant Distance Measure for Time 
Series. In: Proc. of the SDM 2011, pp. 699–710 (2011) 

2. Campana, B., Keogh, E.: A Compression Based Distance Measure for Texture. In: Proc. of 
the SDM 2010, pp. 850–861 (2010) 

3. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. MIT Press, Cambridge 
(2006) 

4. Chawla, N., Bowyer, K., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling 
technique. J. Artif. Intell. Res. 16, 321–357 (2002) 

5. Derolez, A., Lamberti, S.: Audomari Canonici Liber Floridus, Codex Autographus Biblio-
thecae Universitatis Gandavensis, Ghent (1968) 

6. Eno, J.: Generating Synthetic Data to Match Data Mining Patterns. IEEE Internet Compu-
ting 12(3), 78–82 (2008) 

7. Ha, T., Bunke, H.: Off-line handwritten numeral recognition by perturbation method. IEEE 
Trans. on Pattern Analysis and Machine Intelligence 19(5), 535–539 (1997) 

8. Hu, B., Rakthanmanon, T., Campana, B., Mueen, A., Keogh, E.: Image Mining of Histori-
cal Manuscripts to Establish Provenance. In: Proc. of the SDM 2012, pp. 804–815 (2012) 

9. Indiana MAS Project, http://indianamas.disi.unige.it/ 
10. PaRADIIT Project, https://sites.google.com/site/paradiitproject/ 
11. Roy, P., Rayar, F., Ramel, J.Y.: An efficient coarse-to-fine indexing technique for fast text 

retrieval in historical documents. In: DAS 2012, pp. 150–154 (March 2012) 
12. Supporting web page, https://sites.google.com/site/singleexemplar/ 
13. Wang, J.-G., Neskovic, P., Cooper, L.N.: An adaptive nearest neighbor algorithm for clas-

sification. In: Proc. of ICMLC 2005, pp. 3069–3074 (2005) 
14. Yang, X., Bai, X., Köknar-Tezel, S., Latecki, L.J.: Densifying Distance Spaces for Shape 

and Image Retrieval. Journal of Mathematical Imaging and Vision, 1–17 (2012) 
15. Zhang, X., Nagy, G.: The CADAL calligraphic database. In: Proc. of the HIP 2011, pp. 

37–42 (2011) 



Similarity for Natural Semantic Networks

Francisco Torres and Sara E. Garza
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Abstract. A natural semantic network (NSN) represents the knowledge
of a group of persons with respect to a particular topic. NSN comparison
would allow to discover how close one group is to the other in terms of
expertise in the topic— for example, how close apprentices are to experts
or students to teachers. We propose to model natural semantic networks
as weighted bipartite graphs and to extract feature vectors from these
graphs for calculating similarity between pairs of networks. By comparing
a set of networks from different topics, we show the approach is feasible.

Keywords: natural semantic networks, similarity, bipartite graphs, fea-
ture vectors.

1 Introduction

By means of knowledge representation, we can structure implicit information
and turn it into a valuable asset. Natural semantic networks (NSN’s) represent
the knowledge of a population for a topic or domain by gathering responses from
a sample group. Measuring similarity between NSN’s allows to quantify a group’s
knowledge with respect to the experts of the domain— e.g. we could evaluate a
student, job candidate, or apprentice. We propose an approach for NSN similarity
calculation that is based on graph theory and document similarity; this approach,
which considers both content and structure from the network, views the NSN as
a bipartite graph and extracts a weighted feature vector for comparison.

The rest of this paper is organized as follows: Section 2 offers pertinent back-
ground and Section 3 briefly describes related work; our approach is explained in
Section 4 and results are provided in Section 5. Section 6, finally, offers closing
remarks and future work.

2 Background

This section introduces necessary vocabulary, notation, and formulas for natural
semantic networks, bipartite graphs, and document similarity.

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 195–200, 2014.
DOI: 10.1007/978-3-319-11988-5_18 c© Springer International Publishing Switzerland 2014
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2.1 Natural Semantic Networks

Natural semantic networks (NSN’s), introduced by Figueroa et al. [6], study
long-term memory by gathering a socio-cognitive perspective on a given topic.
To generate a natural semantic network, a set P of participants (20-40) is given
a set C of target concepts (6-10). For every c ∈ C, each participant must provide
a set of individual words that come to mind when c is presented; these words are
known as definers. The participant must also score each definer (using a scale 1-
10) according to its importance within the target concept. Let us formally denote
the score of participant p for definer di in concept ck as scik(p) ∈ {1 . . . 10}.

The total score of a definer within a given concept is known as its m-value;
given di and ck, this value is calculated as mi

k =
∑

p∈P scik(p). The ten definers
with the highest m-value make up a concept’s SAM group, where “SAM” stands
for “Semantic Analysis of M-value” [7]. Let us note that a definer can be in
more than one SAM group; it is thus possible to have not a single but a set
of m-values for a particular definer. This also gives rise to another important
metric: the f -value of a definer. The f -value is simply the number of times that
the definer appears in the network. For di, we denote this value as fi. A fragment
of an NSN is shown in Table 1.

Table 1. Fragment of two SAM groups in a natural semantic network

Ecology
F Definer M
1 Recycle 50
2 Nature 30
2 Animals 20
1 Plants 10

Environment
F Definer M
2 Nature 100
2 Animals 70
1 Water 60
1 Trees 50

2.2 Bipartite Graphs

The mathematical representation for a network is a graph. A graph G = (V,E)
consists of a set V of entities known as vertices and a set E of connections
known as edges. If the edges are assigned numerical weights, the graph is said
to be weighted. A bipartite graph1 is graph whose vertex set V is divided into
two disjoint subsets V1 and V2 and whose set E only contains edges that join
vertices from different subsets. A classical example of a bipartite graph is the
actor-movie network, where the vertex subsets are conformed by actors and
movies, and where each edge indicates an actor participating in a movie [8].

From a bipartite graph, it is possible to extract two projections or unipartite
graphs (e.g. a projection where only movies are vertices and edges are common
actors between them). Formally, in a projection GP = (VP , EP ) of a bipartite
graph GB = (VB , EB) where VP ⊂ VB ,

EP = {{u, v} : (u, v ∈ VP ) ∧ ({u,w} , {v, w} ∈ EB) ∧ (w ∈ VB \ VP )} .
1 Let us note that any graph with a single vertex set is called unipartite or monopartite.
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2.3 Document Similarity with the Vector Space Model

The vector space model of information retrieval views a document as a bag of
words where order is not important and extracts a weight vector from this bag;
each vector’s length is equal to the size of the document collection’s vocabulary
(unique words), and each weight represents the importance of a particular vo-
cabulary word in the document (0 if the word is not present). A common metric
for calculating similarity between document vectors is the cosine similarity [1]:

cosim(a, b) = a � b
|a| × |b| , (1)

where a and b are the documents, a and b are the vectors. A similarity of
0 indicates that the documents have no common words and a similarity of 1
indicates that the documents are identical.

3 Related Work

Network comparison is inherently related to graph matching [3], which can be ex-
act or inexact. While the first addresses problems related to graph isomorphisms
(detecting if two graphs are equal), the second attempts to provide the number
of operations needed to turn one graph into another (graph edit distance) or a
degree of resemblance between graphs (graph similarity). Our work and related
works fall into this last category.

The works by Dehmmer and Emmert [5] and Qureshi et al. [9] both extract
feature vectors for calculating graph similarity; while the former utilizes vertex
degree (i.e. the number of connected edges), the latter uses statistical and sym-
bolic features for object recognition. Meanwhile, the approach by Champin and
Solnon [4] first obtains different mappings for the pair of graphs and then com-
putes similarity with a psychologically-sustainedmetric. With regard to semantic
data similarity, Bergmann and Gil [2] focus on semantic workflow retrieval by
building graphs with different types of vertices and edges; on the other hand,
Sanchez et al. [10] compare the NSN’s of two distinct groups by means of an
index that calculates the ratio of common edges with respect to the total amount
possible (similar to the Jaccard index).

4 Measuring Similarity for Natural Semantic Networks

Our approach consists of calculating NSN pairwise similarity by compacting the
networks into weighted feature vectors and obtaining cosine similarity for these
vectors. Each feature is given either by a vertex or an edge of the networks, and
each weight represents the importance of that feature. Because the nucleus of
an NSN is given by its definers (target concepts are usually fixed along networks
for the same topic), we represent the NSN as a graph where each vertex is a
definer and each edge is the similarity or closeness between a pair of these. To
determine which definers are related, as well as their closeness, we consider that
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the definer graph is a projection from a concept-definer weighted bipartite graph.
In this other graph, there exists an edge between a concept and a definer when
the latter belongs to the SAM group of the former; the weight of the edge is
simply the m-value of the definer in that group.

In the definer projection, there is an edge between definers if these are found
together in one or more SAM groups. To calculate edge weights, we assume that
definers are closer or more similar to each other if the difference in their m-values
is small. As a result, we first compute the relative difference between definers da
and db for the SAM group of a concept c as

δr(m
a
c ,m

b
c) =

∣∣∣∣
ma

c −mb
c

mmax
c −mmin

c

∣∣∣∣ , (2)

where mmax
c and mmin

c are, respectively, the maximum and minimumm-values of
the group. Since the difference between definers is actually a distance, we obtain
relative similarity by taking the complement of δr(m

a
c ,m

b
c):

sim(ma
c ,m

b
c) = 1− δr(m

a
c ,m

b
c). (3)

Also, because one same pair of definers can appear in several groups, we
calculate the overall similarity between da and db as the average of their relative
similarities in the set Ca,b ⊆ C of SAM groups that contains both of them. An
edge weight wa,b is, therefore, calculated with

wa,b =

∑
c∈Ca,b

sim(ma
c ,m

b
c)

|Ca,b|
. (4)

Since a weight of 0 typically indicates the absence of an edge, we set sim(ma
c ,m

b
c)

as half of the second lowest similarity in c’s group when the numerator of Eq. 2
is mmax

c −mmin
c . To illustrate these calculations, an example of the bipartite and

definer graphs (extracted from Table 1) is given by Figure 1.
Every edge weight of the definer graph will become a weight that corresponds

to an edge feature in the NSN’s feature vector. Regarding vertex features, the
weight is given by the relative f -value of the definer, denoted as φa for da:

φa =
fa

fmax
, (5)

where fmax is the highest f -value found in the network. For Fig. 1, the vector
includes, among others, a vertex feature “Recycle” (R) with weight 1/2 = 0.5 and
an edge feature “Recycle-Animals” with weight 1− [(50− 20)/(50− 10)] = 0.25.

5 Results

With the intent of showing how the proposed approach handles objects that
are expected to be similar (networks from the same topic) and objects that are
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(a) Bipartite view of the NSN.
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(b) Definer projection.

Fig. 1. NSN as a graph. EN and EC are concepts, while R, N, A, P, W, and T are
definers

expected to be dissimilar (networks from different topics), we built a similar-
ity matrix with a set of natural semantic networks from different topics; these
networks were made available by a research group at the authors’ university
[11, 12]. The four topics covered by these networks are: ecology (ec1-ec6), sen-
timental relationships (lov1-lov4), ethics (eth1, eth2), and scientific skills (sk).
The resulting matrix is depicted in Figure 2, where networks from the same topic
were placed adjacent to each other (i.e. in blocks). We can clearly appreciate in
the matrix the expected block-diagonal pattern, which indicates that similar-
ity within the same topic (0.23 on average) is higher than similarity between
different topics (0.005 on average).
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Fig. 2. Similarity matrix

6 Conclusions and Future Work

We have presented an approach for measuring similarity between natural seman-
tic networks. The approach, which uses both content and structure, views each
network as a concept-definer bipartite graph and extracts the definer projection
from this graph to create a weighted feature vector; vectors are compared using
cosine similarity. Future work includes comparative experiments and the use of
fuzzy graphs for visualizing specific differences between the networks.
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Anomaly Detection in Streaming Time Series

Based on Bounding Boxes
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Abstract. Anomaly detection in time series has been studied extensively
by the scientific community utilizing a wide range of applications. One spe-
cific technique that obtains very good results is “HOT SAX”, because it
only requires a parameter the length of the subsequence, and it does not
need a training model for detecting anomalies. However, its disadvantage
is that it requires the use of a normalized Euclidean distance, which in
turn requires setting a parameter ε to avoid detecting meaningless pat-
terns (noise in the signal). Setting an appropriate ε requires an analysis of
the domain of the values from the time series, which implies normalizing
all subsequences before performing the detection.We propose an approach
for anomaly detection based on bounding boxes, which does not require
normalizing the subsequences, thus it does not need to set ε. Thereby,
the proposed technique can be used directly for online detection, without
any a priori knowledge and using the non-normalized Euclidean distance.
Moreover, we show that our algorithm computes less CPU runtime in find-
ing the anomaly than HOT SAX in normalized scenarios.

Keywords: Time Series, anomaly detection, indexing, streaming.

1 Introduction

Anomaly detection in time series has been studied extensively by the scientific
community, who has contributed a wide variety of approaches for different types
of applications [8]. In data mining, research is generally focused on searching for
unusual patterns or outliers in a collection of time series using classification or
clustering [21,10,9]. Most of the state-of-the-art techniques for anomaly detec-
tion in time series use a time series sample of “normal” behavior as a training
model. However, data mining on subsequences from a streaming time series is
a more complicated task because of particular challenges that need to be ad-
dressed. The main challenge of the subsequences is their level of overlapping:
contiguous subsequences are similar to each other. This may produce a mean-
ingless clustering result [23]. Moreover, the definition of “anomaly” is ambiguous
and may be mistaken for irregularities that occur along a streaming time series,
for example variations in amplitude scale and the presence of local noise.
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DOI: 10.1007/978-3-319-11988-5_19 c© Springer International Publishing Switzerland 2014



202 H. Sanchez and B. Bustos

Keogh et al. [18] introduced a new anomaly concept, the “Time Series Dis-
cord”, for finding the most unusual time series subsequence which does not need a
training model. While similarity searching by content finds the object most simi-
lar to a query, the discord discovery process finds the time series subsequence that
is least similar to all other subsequences. Moreover, Keogh proposed a generic
heuristic for efficient discord discovery and a solution algorithm, the so-called
HOT SAX, that is based on Symbolic Aggregate approXimation (SAX). Later,
a series of related works were proposed to improve the performance of the basic
heuristic [5,6,20]. All of these solutions use the normalized Euclidean distance
(L2-norm), that is, each subsequence is normalized by a standard normalization
procedure (Z-distribution) to obtain a symbolic sequence.

The problem with using normalized subsequences is the presence of local noise,
which can result in a missed detection. This issue is easily solved by applying
a parameter ε [22]. Given a subsequence C = {c1, . . . , cm}, let σ and μ be
the standard deviation and the mean of C, respectively. Then, if σ < ε one
sets ∀i, ci = μ. The problem with this approach is that one needs setting the
parameter ε, which is context-dependent. On the other hand, the Euclidean
distance over non-normalized subsequences (L2-raw) does not need to set ε and
is more robust to local noise. Additionally, in real-time streaming, the future
values of the time series are unknown. Therefore, obtaining an optimal ε is a
complicated task. Moreover, there are anomalies related to amplitude changes
and local oscillations (e.g., El Niño-Southern Oscillation Events [26]). These
types of anomalies are at risk of not being detected in a normalized scenario.
In these cases, using L2-raw is an effective option. Moreover, scalability is an
important factor for many real time systems that generate large time series
(e.g., seismic signals [12], electrocardiograms [19,11] and network traffic [2]).

This paper makes two contributions in streaming time series anomaly detec-
tion. First, we propose an algorithm for efficient time series discord discovery
which supports both L2-norm and L2-raw distances. Second, we introduce a
new automatic learning online algorithm to detect local discords in streaming
time series. Our model is based on the previous works of Keogh et al. [16] and
Vlachos et al. [27]. Specifically, they proposed the RTree-Index for time series
using Bounding Boxes and the Dynamic Time Warping (DTW) distance. We
propose modifying this structure to work directly with L2-raw and the anomaly
detection algorithm. We experimentally show that our technique is faster than
HOT SAX in normalized subsequences.

2 Background and Related Work

2.1 Time Series

Definition 1. Streaming Time Series. A sequence of observations T = {t(i)/i =
1 · · ·∞} taken at various time moments, evenly spaced and chronologically sorted.

Definition 2. Sliding Window. Given a time series T of length n, we use a
overlapping sliding window of length m � n to extract all possible subsequences
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Cp, p ∈ {1, . . . , (n −m+ 1)}, from T . This window generates overlapping sub-
sequences of contiguous position.

Definition 3. Normalized Subsequence. Given a subsequence C = {c1, . . . , cm},
its normalized version is defined as C′ = C−μ

σ , where μ and σ are the mean and
standard deviation of C.

The main indexing techniques of subsequences use a reduced representation of
the time series to avoid the High-Dimensionality problem. They provide a lower
bounding function of the true distance between two time series. Examples are
the RTree for Dynamic Time Warping (DTW) [16], iSAX for L2-norm [25] and
the TS-Tree that uses the best of both techniques [4].

2.2 Discord Discovery and State-of-the-Art Solutions

Anomaly definition in a time series is ambiguous and is strongly related to the
application context and data properties. In streaming time series, one usually
associates an anomaly with a subsequence that produces a qualitatively signifi-
cant change in the data. Furthermore, most anomaly detection approaches work
on the basis of a normal behavior model of a time series. However, in many real
contexts, obtaining this a priori knowledge is a difficult task. Keogh et al. [19]
introduced a new definition to avoid creating workable definitions for “the most
unusual subsequence”, which does not require a training model.

Definition 4. Non-self match. Given a time series T , containing a subsequence
Cp of length m and a matching subsequence Cq, we say that Cq is a non-self
match to Cp if |p− q| ≥ m, where p and q are their respective starting positions
in T .

Definition 5. Time Series Discord. Given a time series T , the subsequence C
of length m is said to be the discord of T if C has the largest distance to its
nearest non-self match.

This problem can be easily solved by a brute force search using a nested loop.
The outer loop takes each subsequence as a possible candidate, and the inner loop
is used to search the candidate’s nearest non-self match. The candidate that has
the greatest such value is the discord. The computational complexity is O(N2),
where N is the number of subsequences. To improve this complexity, Keogh
et al. [19] proposed a generic algorithm for efficient detection. This algorithm
requires two heuristics that generate two ordered lists of subsequences; one for
the outer loop and the other one for the inner loop. The heuristic Outer is
useful for quickly finding the best candidate, and the heuristic Inner is useful
for quickly finding the best nearest non-self match. We break out of the inner
loop if the distance is less than the best-so-far discord distance.

The main related methods for discord discovery are based on SAX represen-
tation, which is a discretization technique for time series introduced by Lin et
al. [24] and it is used in many application domains for different purposes.
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Definition 6. Breakpoints. “Breakpoints are a sorted list of numbers β = {β1,
. . . , βα−1} such that the area under a N(0, 1) Gaussian curve from βi to βi+1 =
1/α ( β0 and βα area defined as −∞ and +∞, respectively).” [24]

Definition 7. SAX Representation. Given a normalized subsequence C = {c1,
. . . , cm}, first, we obtain the reduced dimension with Piecewise Aggregate Ap-
proximation (PAA [15]): the time series is divided into D equal sized segments,
the mean value of each segment is calculated and a vector of these values becomes
the reduced representation P = {p1, . . . , pD}. Afterwards, P is transformed into
a symbolic sequence W = {w1, . . . , wD}, where pi is mapped to symbol wi of an
alphabet of size α. It uses the predetermined breakpoints to define the symbols.

HOT SAX: It is the first algorithm for efficient discord discovery introduced
by Keogh et al. [19]. HOT SAX uses an augmented trie to embed all the SAX
words, where leaf nodes contain a linked list index of all word occurrences that
map there. The second structure is an array of SAX words of all extracted
subsequences, counting the frequency of each word occurrence in the array. After
building these data structures, HOT SAX uses the following heuristics: (a) Outer
loop heuristic: It first visits the subsequences associated with the SAX words that
have the smallest word count, and then it visits the rest of the subsequences in
random order; (b) Inner loop heuristic: For each candidate in outer loop, it first
searches its nearest non-self match in the leaf node of tree that has the same
SAX word, and then it visits the rest of the subsequences in random order.

HOTiSAX: It extends HOT SAX for working with the iSAX index [6]. iSAX is an
optimized structure for SAX binary representation [25], which provides different
levels of resolution for the same SAX word changing the symbolic alphabet by
binary numbers. The bits are used for building the iSAX index, which allows
an efficient hierarchical access to data. The array of SAX words is refined to
work effectively with the iSAX representation. Afterwards, the same heuristics
of HOT SAX are used for discord discovery. Moreover, it incorporates auxiliary
functions to exclude trivial matches.

3 Bounding Boxes for Discord Discovery

A minimum bounding box is a term used in geometry for enclosing a set of D-
dimensional points [13]. This concept was used by Vlachos et al. [27] for bounding
two-multidimensional time series by a sequence of Minimum Bounding Rectan-
gles (MBRs). All the MBRs are indexing in a RTree in order to allow the efficient
searching. Similarly, Keogh et al. [16] applied bounding boxes over the PAA of
time series. The goal of this work was to generate reduced dimension vectors
for the time series being indexed with a RTree and the DTW distance. Further-
more, in both works the authors provided a lower bounding function of the true
distance for exact searching. In another related project, Chan et al. [7] proposed
the use of a sequence of minimal bounding boxes to contain all of the training
time series for detecting anomalies in trajectories.
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Û = {ûi/i = 1 : D}
L̂ = {l̂1/i = 1 : D}

ûi = max
{
c{m

D
(i−1)+1}, . . . , c{m

D
·i}

}

l̂i = min
{
c{textbf m

D
(i−1)+1}, . . . , c{m

D
·i}

}

Fig. 1. Bounding of the subsequence Cp (top) and our indexing model for discord
discovery (bottom)

In this paper, we use both the modeling of MBRs and the PAA representation
for discord discovery in time series. To obtain efficient results on a streaming
context, we use the Euclidean distance, due to its linear complexity.

3.1 List of MBRs

Figure 1 shows our indexing model of time series subsequences. We build a List
of MBRs = {R1, . . . , RN}, where each Ri envelops a set of similar time series
subsequences. Below, we describe the insertion process phases:

1. Given a time series T , we extract a subsequence Cp = {c1, . . . , cm} using a

sliding window. Next, we generate the minimum bounding boxes (Û , L̂) of
Cp (Figure 1.top). This function requires a reduced dimension D to split the

subsequence Cp in D equal length segments, then, ûi and l̂i is the maximum
and minimum value of the ith segment respectively.

2. We search a MBRs Rj that produces the least expansion to Cp. That is,

volume(Rj ∪ (Û , L̂)) < volume(Ri,∀i�=j ∪ (Û , L̂)). We then stretch Rj to
envelop the minimum bounding boxes ofCp. Finally, the position p is inserted
into an integer number array, which is associated with Rj .
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3. If Rj is full, we apply a splitting algorithm. We use a size threshold thmax

to control the maximum number of elements in a MBRs.

We evaluate three classic splitting algorithms: Guttman’s quadratic and linear
algorithms [14], and an optimized linear algorithm [3]. For the quadratic algo-
rithm, we considered two criteria of distribution; balanced (qua 0.50) and non-
balanced (qua 0.25). Figure 2 shows the number of created MBRs and the CPU
runtime in indexing and searching of the most unusual subsequence. We observe
that the optimized linear algorithm generates the fewest MBRs, and therefore
gets the least memory space. However, the balanced quadratic algorithm achieves
the best runtime because it performs a better grouping of subsequences allowing
fast discrimination in searching time. Therefore, we use the quadratic algorithm
in our indexing model.

Number of MBRs Runtime in seconds

linear linear_op qua_0.25 qua_0.50

1000

1050

1100

linear linear_op qua_0.25 qua_0.50
1.0

1.1

1.2

1.3

1.4

Fig. 2. Testing four splitting algorithms over a set of time series of length 16k. We show
the total number of created MBRs (left) and the CPU runtime (right) for discord128.

The time required to insert a subsequence in the list has an order of O(N),
where N is the total number of created MBRs. The space required for maintain-
ing the index in memory also depends on N . For each Rj = (H,L), we used two
arrays of size D and another array of integer numbers for saving the subsequence
positions; e.g., for a time series of length 16,000 we require 16.7KB for the index
(N=1070) and 62KB for the arrays of positions.

We also build a Tree of MBRs (RTree variant) for maintaining the set of
MBRs. It provides us hierarchical access to the data in order to accelerate the
searching of similar objects regarding a query object. The RTree is generally
used for managing large collections of data in secondary memory.

3.2 Discord Discovery Heuristics

After building the index, we reorder all subsequences for searching the best
candidate using the following heuristics:

Outer Loop Heuristic: First, the algorithm visits all subsequences bounded in
Rj , such that Rj contains the minimum number of subsequences. Then, the algo-
rithm visits the rest of the subsequences in random order. This heuristic ensures
that the subsequences that are most isolated will be visited at the beginning of
the search as potential candidates. We then use an inner loop to search the best
non-self match of each selected candidate Cq. To break the inner loop as early
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as possible, we need to find a subsequence that has a distance to Cq lower than
the best-so-far discord distance.

Inner Loop Heuristic: First, the algorithm visits all subsequences bounded in
Rj , such that MINDIST (C̄q, Rj) < MINDIST (C̄q, Ri,∀i�=j). Then, the algo-
rithm visits the rest of the subsequences in random order. This heuristic allows
us to first visit all the subsequences Cp most similar to Cq, increasing the prob-
ability of early termination of the loop. MINDIST function is calculated by
Equation 1 and illustrated in Figure 3 using C̄q as PAA representation of Cq.

MINDIST (C̄q, R) =

√√√√√∑D
i=1

m
D

⎧
⎨
⎩

(c̄i − hi)
2 c̄i > hi

(c̄i − li)
2 c̄i < li
0 else,

where:

c̄i =
D
m

∑m
D i

j=m
D (i−1)+1 cj .

(1)

3.3 Online Anomaly Detection

We can use discord discovery for detecting anomalous subsequences in stream-
ing time series. A simple idea is to use normal behavior data to build a static
training model. Discord discovery is then used for online detection of new inputs.
This approach is very efficient, because the model retains its size, although the
streaming is increased. However, it does not evolve to new states of the system.
Any input that generates a new behavior is always considered anomalous.

We propose a scalable method for detecting local anomalies, where online
learning is required for adapting the index model with the behavior of the input
data. Our method is based on the inner loop heuristic (Algorithm 1). It requires
a detection starting point in the stream, which is used to determine a “base
history”. Then, we apply discord discovery up to this point to obtain a threshold
distance (line 1). This threshold is used to reduce the number of calls to Dist
in the inner loop. Our method is fed back with each data input (line 6) in order
to avoid detecting recurrent anomalies. That is, if a subsequence is detected as
anomalous, the next similar subsequences will not be detected as anomalous.
Finally, we alert when an value input generates an anomalous subsequence.

PAA C̄q = {c̄1, · · · , c̄D} MBRs R = (H,L) MINDIST (C̄q, R)

Fig. 3. An illustration of the MINDIST function. The lengths of the red arrow lines,
squared, scaled by m/D, summed and square rooted, are returned as the minimum
distance between Cq and any sequence bounded in R [16].
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Algorithm 1 . Online Anomaly Detection

Require: (Streaming T , Window length m, Starting Point sp)
1: threshold dist = TheMostDiscord(T [1 : sp])
2: while Input == True do
3: T [i] = AcquireV alue()
4: Cq = T [(i−m+ 1) : i] � extract the subsequence
5: insert(Cq) � feedback
6: l inner = All Cp from T ordered by heuristic Inner
7: nearest neighbor dist = ∞
8: for Cp ∈ l inner do
9: if |p− q| ≥ m then � non-self match?
10: if Dist(Cp, Cq) < nearest neighbor dist then
11: nearest neighbor dist = Dist(Cp, Cq)
12: end if
13: if Dist(Cp, Cq) < threshold dist then
14: Break � Break out of loop
15: end if
16: end if
17: end for
18: if nearest neighbor dist > threshold dist then
19: Alarm(“Anomaly Detected”)
20: end if
21: end while

The starting point can be automatically computed in real time. This is pos-
sible because the distance to the best non-self match usually reduces its value
when increasing the stream length (see Figure 6.bottom). The idea is to find
the stabilization point and set it as the starting point. A simple way to achieve
this is by counting the distances outside the range of the deviation standard
[μ− σ : μ+ σ] and applying a stop proportion.

In a long stream, it is important to update the threshold with the actual
context to improve the detection of local anomalies. For this, we recommend pe-
riodically removing the past information and again, computing the new threshold
with the rebuilt index. This is a scalability improvement to apply at runtime.

4 Experimental Evaluation

In this section, we evaluate the performance of our approach for discord discov-
ery in different datasets. An Intel Core i7 3.4GHz with 8GB RAM is used for
conducting all our experiments. All algorithms are implemented in C++. We
define thmax = 25 as the maximum size of elements in a MBRs, which was ex-
perimentally selected from the set {5, 10, 15, · · · , 120}. Although better efficiency
is obtained when we vary the value of thmax according the time series length.
The value of this parameter does not alter the effectiveness.
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Fig. 4. The number of calls to the distance function (Dist) by brute force and our
approach for discord128 using L2-raw

4.1 Offline Discord Discovery

To evaluate the efficiency of our approach on static time series, we use the
datasets ECG, EEG, ERP, Koski, Random Walk and Packet from “The UCR
Time Series Data Mining Archive” [17]. We also use the “Time Series for Weather
Data” from the National Oceanic and Atmospheric Administration in the USA [1].
For each dataset, we randomly extract time series of lengths 1k, 2k, 4k, 8k, 16k
and 32k. The metrics used for comparison are the number of computed distances
and the CPU runtime. The goal is to find the most unusual subsequence using
the fewest distance computations and the minimum time of execution.

First, we compare our approach (List of MBRs and Tree of MBRs) with the
brute force search over non-normalized subsequences using the L2-raw distance.
We optimize the brute force search applying symmetry and triangle inequality
properties. Figure 4 shows the performance of our approach in terms of the num-
ber of computed distances. We get the median of the results obtained for all the
datasets for each time series length. From these results we note that our method
clearly outperforms the brute force search, ≈ 2.5 orders of magnitude faster on
all collections with time series of length 32k. This difference is correlative with
the CPU runtime, where our approach was 150 times faster than the brute force.

Second, we compare our approach with the SAX techniques over normalized
subsequences using the L2-norm distance. For SAX representation, the authors
recommended using the following parameter setting: size of alphabet a = 3
and word length depending on data [19]. However, iSAX binary representation
requires a ∈ 2Z (multiple of 2), we therefore set a = 4 [6]. Also, we set the
reduced dimension based on the window length D = 	log2(m)
.

In Figure 5, we note our algorithms have less performance than the SAX
techniques in terms of computed distances. However, our algorithms outperform
HOT SAX in CPU runtime. This is explained by the low number of created

Table 1. The number of calls to MINDIST for discord128

List of MBRs Tree of MBRs HOT SAX HOTiSAX

226,259 482,256 1,950,445 314,407



210 H. Sanchez and B. Bustos

3.
5

4.
5

5.
5

6.
5

length of time series

lo
g 

( 
# 

of
 c

al
l t

o 
D

is
t )

 List_MBRs
Tree_MBRs
HOT_SAX
HOT_iSAX

2k 4k 8k 16k 32k

0.
0

0.
2

0.
4

0.
6

length of time series

lo
g(

 r
un

tim
e 

in
 s

ec
on

ds
 ) List_MBRs

Tree_MBRs
HOT_SAX
HOT_iSAX

2k 4k 8k 16k 32k

Fig. 5. The number of calls to the distance (left) and the CPU runtime (right) by SAX
techniques and our algorithms for discord128 using L2-norm and ε = 0.05

MBRs versus the number of created buckets by HOT SAX, resulting in the lower
memory usage. Our approach uses a balanced splitting algorithm to maximize
the number of elements in the MBRs. Thus, we obtain more closed groups and a
better effect of the MINDIST function. Table 1 shows the number of computed
MINDIST for each technique in a set of real time series.

Finally, the Tree of MBRs does not get a wide lead over the List of MBRs.
The first reason is that we do not need to save all subsequences in secondary
memory as it was sufficient with the referential positions in main memory. The
second due to the additional cost of splitting the internal nodes. Moreover, the
Tree of MBRs produces more calls to MINDIST than the List of MBRs in the
search task. In practice, the discord discovery process is just applied in limited
ranges of time in order not to lose local significance of the anomaly.

4.2 Online Anomaly Detection

In real-time streaming, we do not know the future values of the time series.
Therefore, it is not clear how one could obtain an appropriate value for ε in
normalized subsequences. For this reason, in this experiment we use L2-raw to
evaluate our online anomaly detection algorithm. We cannot use SAX techniques
because it is not compatible with L2-raw.

Fig. 6. Online anomaly detection on a space shuttle time series (m = 128)
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In Figure 6, we evaluate our algorithm in a real case. The top graph shows
the streaming time series and the detected anomalous subsection (red region).
The bottom graphs represent the nearest non-self neighbor distance of each
input subsequence where the dotted vertical line is the detection starting point
that was automatically set. Also, we show the threshold distance (blue line),
which is used to avoid unnecessary matches. We observe that our algorithm is
successful at detecting the points that cause an anomalous subsequence at the
right moment.

Figure 7 shows the number of computed distances over a set of real time series.
We note a wide advantage of our indexing model vs. the brute force on all time
series. In practice, our approach seems to compute far fewer distances than the
quadratic brute force search algorithm. Moreover, we show the benefits of using
our anomaly detection algorithm with regard to the similarity search.

Fig. 7. The number of calls to the distance by both the nearest non-self neighbor search
and the anomaly detection algorithm

5 Conclusions and Future Work

We proposed new algorithms for efficient discord discovery. We used bounding
boxes for designing two indexing models List of MBRs and Tree of MBRs, which
support L2-norm and L2-raw. Our approach outperforms HOT SAX in terms of
the CPU runtime. In addition, we introduced a new algorithm for online anomaly
detection, which does not require a training model and automatically fixes a
detection starting point. We experimentally showed that this online detection
algorithm is faster than the brute search force approach.

Using the discord discovery algorithm over a set of real time series [19], we
obtain 79% correct detection using L2-raw. While it misses some anomalies, its
advantage is that it avoids the exploration step of the data to set ε in smoothing
noisy subsequences. We emphasize that L2-raw may be used as a baseline for
automatic detection techniques for discord discovery, especially for quasi-periodic
streaming time series.

Since we do not apply any discretization technique, we can easily extend our
approach to multivariate time series, which is our next goal. Finally, we plan to
optimize our online algorithm, focusing on scalability for larger amounts of data.
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12. Gabarda, S., Cristóbal, G.: Detection of events in seismic time series by time-
frequency methods. IET Signal Processing 4(4), 413–420 (2010)

13. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for
rapid interference detection. In: Proc. 23rd Annual Conference on Computer
Graphics and Interactive Techniques, pp. 171–180. ACM (1996)

14. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Intl.
Conf. on Management of Data, pp. 47–57 (1984)

15. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and Information
Systems 3(3), 263–286 (2001)

16. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping.
Knowl. Inf. Syst. 7(3), 358–386 (2005)

17. Keogh, E., Xi, X., Wei, L., Ratanamahatana, C.: The UCR Time Series Classifi-
cation/Clustering Homepage (2011)

http://www.esrl.noaa.gov/psd/boulder/


Anomaly Detection in Streaming Time Series Based on Bounding Boxes 213

18. Keogh, E.J., Lin, J., Fu, A.W.: HOT SAX: Efficiently finding the most unusual
time series subsequence. In: IEEE Intl. Conf. on Data Mining, pp. 226–233 (2005)

19. Keogh, E.J., Lin, J., Hee Lee, S., Herle, H.V.: Finding the most unusual time series
subsequence: algorithms and applications. Knowledge and Information Systems 11,
1–27 (2007)

20. Khanh, N.D.K., Anh, D.T.: Time series discord discovery using WAT algorithm
and iSAX representation. In: Proc. Third Symposium on Information and Com-
munication Technology, pp. 207–213. ACM (2012)

21. Liao, T.W.: Clustering of time series data: a survey. Pattern Recognition 38(11),
1857–1874 (2005)

22. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: Proc. 8th ACM SIGMODWorkshop
on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11 (2003)

23. Lin, J., Keogh, E., Truppel, W.: Clustering of streaming time series is meaningless.
In: Proc. 8th ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pp. 56–65. ACM (2003)

24. Lin, J., Keogh, E.J., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery 15, 107–144
(2007)

25. Shieh, J., Keogh, E.: iSAX: indexing and mining terabyte sized time series. In:
Proc. 14th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining,
pp. 623–631. ACM (2008)

26. Trenberth, K.E., Hoar, T.J.: The 1990-1995 El Niño-Southern oscillation event:
Longest on record. Geophysical Research Letters 23(1), 57–60 (1996)

27. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multi-
dimensional time-series with support for multiple distance measures. In: Proc.
Ninth ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pp.
216–225. ACM (2003)



 

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 214–228, 2014. 
DOI: 10.1007/978-3-319-11988-5_20  © Springer International Publishing Switzerland 2014 

SVG-to-RDF Image Semantization 

Khouloud Salameh1, Joe Tekli2, and Richard Chbeir1 

1 LIUPPA Laboratory, University of Pau and Adour Countries (UPPA) 
64600 Anglet, France 

{khouloud.salameh,richard.chbeir}@univ-pau.fr 
2 School of Engineering, Lebanese American University (LAU)  

36 Byblos, Lebanon 
joe.tekli@lau.edu.lb 

Abstract. The goal of this work is to provide an original (semi-automatic) 
annotation framework titled SVG-to-RDF which converts a collection of raw 
Scalable vector graphic (SVG) images into a searchable semantic-based RDF 
graph structure that encodes relevant features and contents. Using a dedicated 
knowledge base, SVG-to-RDF offers the user possible semantic annotations for 
each geometric object in the image, based on a combination of shape, color, and 
position similarity measures. Our method presents several advantages, namely 
i) achieving complete semantization of image content, ii) allowing semantic-
based data search and processing using standard RDF technologies, iii) while 
being compliant with Web standards (i.e., SVG and RDF) in displaying images 
and annotation results in any standard Web browser, as well as iv) coping with 
different application domains. Our solution is of linear complexity in the size of 
the image and knowledge base structures used. Using our prototype SVG2RDF, 
several experiments have been conducted on a set of panoramic dental x-ray 
images to underline our approach’s effectiveness, and its applicability to 
different application domains.  

Keywords: Vector images, SVG, RDF, semantic graph, semantic processing, 
image annotation and retrieval, visual features, image feature similarity. 

1 Introduction 

The need to index and retrieve multimedia data is becoming ever-more important, 
especially on the Web where image search and retrieval techniques do not seem to 
keep pace. Most existing Web image search engines (such as Google and AltaVista) 
and photo sharing sites (e.g., Flickr and Picasa) adopt the keyword (text-based) 
querying paradigm, usually returning a large quantity of search results, ranked by 
their relevance to a text-based query [27]. This can be extremely tedious and time 
consuming, since the returned results usually contain multiple topics mixed together, 
where the automated engines are guessing image visual contents using (in)direct 
textual clues [27]. An alternative approach is content-based image retrieval (CBIR), 
where images are indexed based on their visual content, using low-level color, 
texture, and shape descriptors, and are consequently processed via dedicated search 
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engines (e.g., QBIC [5], Photobook [19], and Google search-by-image1). CBIR has 
been usually less successful than text-search engines since low-level features are 
usually unable to effectively capture the semantic meaning of the image [13]. This is 
known as the so-called semantic gap [14]: discrepancy between low-level image 
features and user semantics. 

The main goal of our study is to convert, with as little human intervention as 
possible, a collection of raw images into a searchable semantic-based structure that 
encodes semantically relevant image content. We specifically target the semi-
automatic annotation of vector images, mainly SVG (Scalable Vector Graphic) 
images [28]. In summary, SVG is an XML-based language for describing two-
dimensional graphics and encoding three types of visual objects: vector graphic 
shapes, images and text. SVG images have interesting properties (resolution-
independent and extremely small-size image coding) and are becoming increasingly 
popular in a wide range of applications covering: medical image annotation [8, 10], 
geographic map annotation [11, 18], manipulating graph charts as well as basic shape 
annotation to simplify data accessibility for the blind [1, 2].  

Here, we introduce a framework titled SVG-to-RDF which allows to convert a 
collection of SVG images into an RDF (Resource Description Framework) [7] graph 
structure. The RDF data model is similar to classic conceptual modeling approaches 
such as entity–relationship or class diagrams, allowing to define statements about 
resources in the form of subject-predicate-object expressions. These expressions are 
known as triples in RDF terminology. The subject denotes the resource being 
described, the predicate denotes traits or aspects of the resource, expressing a relation 
between the subject and the object, and the object designates another resource or data 
values. 

Our system automatically transforms an SVG image into an RDF graph describing 
the geometric objects in the image and their relations (in the form of RDF triples), and 
then offers the user possible semantic annotations for each geometric object encoded 
in the RDF graph, based on shape, color, and position similarity comparison with 
existing objects stored in a dedicated (RDF-based) knowledge base. The annotated 
RDF image graph could be in several cases integrated in the knowledge base helping 
extend its semantic expressiveness and hence provide more accurate annotation offers 
for future comparisons. Our original method presents several advantages over existing 
approaches, namely i) the complete semantization of image contents, ii) allowing 
sophisticated semantic-based data search and processing using standard RDF 
technologies (e.g., SPARQL [20]), iii) while being compliant with Web standards 
(i.e., SVG and RDF) in displaying images and annotation results in any standard Web 
browser, as well as iv) coping with different application domains by its generality and 
adaptability. To validate our approach, a prototype tool called SVG2RDF has been 
developed and tested on a collection of panoramic dental x-ray images. Experimental 
results were satisfactory and promising.  

The rest of the paper is organized as follows. Section 2 presents an overview of our 
approach. Section 3 describes the components of our SVG-to-RDF image 

                                                           
1 https://google.com/imghp 



216 K. Salameh, J. Tekli, and R. Chbeir 

 

semantization framework. In Section 4, we present the experimental results obtained 
when evaluating our approach. Section 5 concludes the paper and discusses future 
directions. 

2 SVG-to-RDF Image Semantization 

An overview of our SVG-to-RDF annotation framework is shown in Fig. 1. It consists 
of five main components: i) SVG feature extraction, ii) RDF graph representation, iii) 
Similarity computation, iv) User verification and feedback, and v) RDF knowledge 
base. Our approach is general in that: 1) it can process both raster and vector images 
(since raster image contours can be automatically extracted and used to generate an 
SVG image), and also 2) it can be associated to different application domains.  

Once an input SVG image is available, the first phase of the process consists in 
automatically extracting the visual features and semantic properties of the image. It is 
worthy to note that unlike traditional raster (visual) feature extraction methods that 
would require important processing time, feature extraction from SVG images 
(identifying geometric shapes, their colors, and related textual descriptions) can be 
undertaken very efficiently and quickly using XML-based parsing from the SVG 
source code.  

 

 

Fig. 1. Simplified activity diagram describing our SVG-to-RDF framework 

After their extraction, SVG features are represented in the form of subject-
predicate-object triples into an RDF graph and consequently compared and mapped 
with those already stored in the dedicated RDF knowledge base, using corresponding 
comparisons. The RDF knowledge base presents domain-specific reference 
knowledge concerning the images being annotated (cf. Section 2.1). Finally, the 
generated annotations could be revised/modified by the user before validating the 
final image graph representation. When new application domain concepts and 
mappings are detected within the obtained graphs, they are injected into the RDF 
knowledge base to incrementally update it and increase continuously its semantic 
expressiveness. 

In the following, we present in more details SVG-to-RDF’s main components. 
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2.1 RDF Knowledge Base  

The RDF knowledge base provides domain experts, who are in charge of 
verifying/validating image annotations, with a set of predefined concepts and relations 
which are then extended by creating new instances of those concepts, based on the 
images being annotated. It can be generated manually by domain experts: including 
application domain concepts as well as their descriptions and mapping with the visual 
concepts (e.g., we adopt a reference dental knowledge base from [9] in our current 
study, cf. Section 3), or automatically2 involving some machine learning techniques, 
using samples (a human expert manually annotates sample images with the intended 
semantic concepts, which are then provided as training data for a learning algorithm 
that induces rules to be used for assigning concepts to other images, thus 
incrementally building the knowledge base) [31]. 

Our RDF knowledge base is represented as an RDF graph (N, E) which nodes N 
are subjects, objects, or subject/object properties representing: i) SVG 
visual/geometric concepts (e.g., ellipse, circle, path), ii) application domain concepts 
(e.g., molar tooth, planet), and iii) corresponding property values (e.g., stroke, 50); 
and edges E are Predicates representing: i) relations between concepts (e.g., Circle 
SubClassOf Geometric Object, circle IsA planet, Teeth HasInfluentialFacts Symptom, 
etc.), and ii) property and value relations (e.g., ellipse HasRadius 50). Fig. 2. shows 
an extract of a sample knowledge base used in our study. 

 

Fig. 2. Extract of the RDF knowledge base used in our study3 

2.2 Feature Extraction 

SVG allows encoding a variety of geometric objects using a set of predefined basic 
shape elements (rectangle, circle, ellipse, line, polyline, polygon and path), defining 
for each shape a set of descriptive attributes known as geometric object properties4.  
                                                           
2 This will be studied in a dedicated work. 
3 Subjects and Predicates URI, e.g., “http://svg2rdf.org#”, are omitted here in order to 

simplify the graph. 
4 SVG includes a text element which we disregard in this paper: for clarity of presentation, and 

since text elements can be straightforwardly handled using traditional natural language 
processing techniques. 
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While the mapping of SVG tags to RDF triples is straightforward at this stage, yet 
it is the building block required to add semantic annotations: allowing additional 
triples to be added when applying the semi-automatic annotation component, in order 
to provide user-specific semantic meaning. For instance, the triple Path1-IsA-Molar 
can be added to provide a semantic meaning for the geometric elements in the image 
(e.g., Path1 represents a molar tooth). The annotation process is described in the 
subsequent sections through the following two components: similarity computation 
and user verification and feedback.  

2.4 Similarity Computation  

Although SVG coding presents the syntactic/structural properties of vector images (in 
the form of basic geometric objects and properties), it does not provide any semantic 
meaning (e.g., the SVG coding in Fig. 3. does not reflect any semantic). Once the 
image graph is produced for a given SVG image, the similarity process compares 
each of the image graph’s geometric objects with those stored in the RDF knowledge 
base using three main similarity criteria: i) shape similarity, ii) color similarity, and 
iii) position similarity5. Given two SVG geometric objects O1 and O2: [6] 

Sim(O1, O2) =   wShape SimShape (O1, O2) +  wColor  SimColor(O1, O2) + 

                 wPos SimPos(O1, O2) 
(1)

where wShape + wColor + wPos = 1 and (wShape, wColor, wPos) ≥ 0, such that (SimShape, 
SimColor, SimPos) ∈ [0, 1]. We utilize the weighted sum function to combine the 
different similarities, allowing the user to fine-tune the weight of each criterion. Then, 
based on the aggregate similarity result greater than a given user or application-based 
predefined threshold ThreshSim, the system provides annotation offers for each 
geometric object in the image, corresponding to the most similar RDF node objects 
found in the knowledge base.  

In the following, we briefly describe the similarity measures used by default in our 
system, note that the user can define his own similarity functions suitable to his 
domain application. 

2.4.1   Shape Similarity 
SVG shape similarity can be performed to compare geometric objects of the same 
type (comparing two circles, or two rectangles, etc.), or to compare objects of 
different shape types (e.g., comparing a circle with a rectangle). For this purpose, Li 
et al. [11] introduce a set of mathematical formulas specially tailored for the task, 
which we adopt in our study. 

On one hand, when comparing two objects of the same type, we start by 
identifying the invariants of the object type, i.e., points which remain invariant even if 
the geometric shape undergoes a transformation (e.g., translation, rotation, or both). 
This results in a general mathematical equation defined based on invariant points (as 
                                                           
5 A text similarity factor can be straightforwardly added when considering SVG text elements, 

using traditional text comparison techniques such as string edit distance and N-gram [6]. 



220 K. Salameh, J. Tekli, and R. Chbeir 

 

its coefficients), which can then be used to compare same-shape elements. For 
example, comparing two ellipses is accomplished using the quadratic conic curve 
similarity formula [11]: 

 

Dist Ellipse (O1, O2) = w Major |a1-a2| + w Minor |b1-b2| + w Ecc |ε1-ε2| (2)

where (wMajor, wMinor, wEcc) ≥ 0 and wMajor + wMinor + wEcc =1; a1 and a2 are the semi-
major axis of O1 and O2 respectively; b1 and b2 are their semi-minor axis; and ε1 and 
ε2 are their eccentricities. Similar formulas are provided in [11] for comparing lines 
and rectangles. 

On the other hand, when comparing two geometric objects having different types, 
such as comparing a circle with a path, the proximity of their contours is computed 
[11]. A contour is treated as a set of points, and hence contour proximity is measured 
in terms of the distances between the points: two contours are more similar, if the 
distance between their points is smaller. Hence, considering A = {p1, p2, …, pn, …} 
and B = {q1, q2, …, qm, …} the set of points describing the contours of objects O1 and 
O2 respectively, the distance between O1 and O2 can be evaluated as: 

DiffShapes 1 2Dist  (O , O ) = (h(A, B), h(B, A))max  

q  B   A  A q  B
Where     h(A, B) = max  min  |p - q|     and       h(B, A) = max  min  |q - p| 

pp ∈ ∈∈ ∈
 (3)

 

Note that, a particular case can be defined when comparing two objects of different 
types, while of them can be transformed into the other (comparing a circle with an 
ellipse). This can be done with a less expensive computation using the same quadratic 
conic curve similarity given in equation (2). 

In our study, we adopt the formal definition of shape similarity as the inverse of a 
distance function[32], and thus deduce similarity scores from distances accordingly: 

 

[ ]Shape 1 2
Shape 1 2

1
Sim (O , O ) =     0,1

1 + Dist (O , O )
∈  

(4)

2.4.2   Color Similarity 
In addition to shape similarity, color is one of the most widely used features in image 
retrieval. On one hand, colors have been traditionally defined on a selected color 
space [15], such as RGB, LAB, HSV, etc., each one serving a different set of 
applications, where a given color is coded as a set of integer values. On the other 
hand, color ontologies have been recently introduced, e.g., [16, 24], in order to bridge 
the gap between low-level (numeric) color features and high-level (semantic) color 
descriptions, where colors are defined using color names (e.g., red, blue, light blue, 
etc.), and organized in an ontological graph structure based on their visual and 
semantic relatedness.  

Since SVG allows coding colors in both: i) numerical format in the RGB feature 
space, and ii) using color names with 147 reference colors [28], we adopt both color 
representations in our approach to calculate the similarity between two colors by 
combining their semantic meaning and their visual properties as follows: 
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SimFillColor/StrokeColor (C1, C2) = wHSVSimHSV(C1,C2) + 

                                                                        wOntSimOnt(C1,C2)) 
(5)

While SVG codes colors in numerical format in the RGB color space, yet we chose to 
convert RGB into the HSV color space, since HSV encoding is considered to be 
closer to human perception [30] and thus can be more semantically descriptive. 
Hence, to compare two colors (based on numerical format), we first convert their 
vectors from RGB to HSV using [30], and then calculate their scalar product. As for 
comparing color names, it can be achieved using any of several existing methods to 
determine the semantic similarity between concepts in a semantic network, e.g. [12, 
21, 22]. These can be classified as i) edge-based: estimating similarity as the shortest 
path between the concepts being compared, and ii) node-based methods: estimating 
similarity as a function of the maximum the amount of information content concepts 
share in common [22]. In our approach, we combine (using weighed sum 
aggregation) two central edge and node-based approaches developed by WuPalmer 
[29] and Lin [12] (omitted here for lack of space). 

Given two objects O1 and O2, we formally compute their color similarity as 
follows: 

  SimColor(O1, O2) =   wFillColorSimFillColor(FC1, FC2) +  
                                   wStrokeColorSimStrokeColor(SC1, SC2) 

(6)

where (wFillColor, wStrokeColor) ≥ 0 and wFillColor + wStrokeColor = 1 such that (SimFillColor, 
SimStrokeColor) ∈ [0, 1]; FC1 and FC2 designate the fill colors of objects O1 and O2 
respectively; and SC1 and SC2 designate their stroke colors. 

2.4.3. Position Similarity 
In order to compare position similarity between two geometric objects O1 and O2, we 
generate their minimum bounding rectangles (MBR1 and MBR2) and then compute the 
Euclidian distance between the top-left vertices of their MBRs (P1 and P2), where  
the top-left vertex serves as a reference position point for SVG rectangle objects  
(cf. Fig. 5.), as indicated in Equation (7). 

 

[ ]Pos
Euclidian 1 2

1Sim (O1, O2) =   0,1
1 Dist  (P , P )

∈
+

    (7)

where P1(x1, y1) and P2(x2, y2) are the coordinates of 
the top-left MBR vertices. 

Fig. 5. Sample MBRs & reference points 

2.5 User Verification and Feedback 

The similarity-based annotation suggestions, which are automatically identified for 
each geometric object in the RDF image graph, are presented to the user according to 

O2 
O1 

MBR2 

MBR1 

P2 
P2 
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a (user or application-based) predefined similarity threshold ThreshSim. Hence, RDF 
object nodes which similarities are lower than ThreshSim are filtered out, retaining the 
most similar nodes which are then ranked and presented to the user according to their 
similarity scores w.r.t. the geometric object being annotated. The user can then verify 
and/or update the annotations according to the system annotation offers. Upon 
accepting the annotation offers, the latter are appended to the corresponding RDF 
image graph describing the image, thus producing a complete semantic representation 
of the image. Consequently, when identifying new application domain concepts and 
mappings, the RDF image graph is integrated in the RDF knowledge base, by 
appending the image graph nodes as instance nodes under their corresponding 
categories in the knowledge base (e.g., nodes representing circle objects are appended 
as instances under the category geometric object, nodes representing molar are 
appended under the category tooth, etc.). 

3 Experimental Evaluation  

We have developed a prototype system6, to test and evaluate our SVG2RDF image 
semantization framework, implemented using Java, and making use of the JENA API7 
in order to create, parse, and search RDF models (using SPARQL). While our 
approach is generic, yet we chose to test it in a real-world application scenario: 
clinical dental therapy.  Our tests were designed to process a collection of dental 
panoramic x-ray images. After several meetings with multiple dentists specialized in 
dental surgery and orthodontia, we identified some of the critical information that is 
of interest to specialists when examining a dental panoramic image, namely: i) the 
shape of the tooth (e.g., the tooth looks poorly developed, decaying, etc.), ii) the tooth 
color (white for synthetic teeth, dark gray for decayed teeth, and black for lack of 
teeth), and iii) the position of the teeth (teeth are juxtaposed, evenly spaced, etc.). At 
this stage, the significance of similarity factors’ weights is emphasized. Consequently, 
we considered that the three similarity criteria are at the same level of importance, 
hence we used equal weights (i.e., wShape = wColor = wPos) However, in other applications, 
those criteria could have different impact in the process, so the user can change the 
values of the weights according to her preferences. To provide domain specific 
annotations, we adopted a reference dental knowledge base from [9], consisting of 
dental domain concepts (tooth, symptoms, etc.) and we extended it to include SVG 
geometric object constructs and properties (cf. Fig. 4.). Note that, initially our 
knowledge base does not contain any visual or semantic description of any SVG image; 
it only contains basic dental domain concepts and SVG basic geometric objects and 
properties. To simplify the process of creating SVG annotations on top of panoramic 
images, we used the minimum bounding rectangle (MBR) as a simple and suitable 
solution where MBRs designate annotated teeth (Fig. 6.). 

                                                           
6 Available online at: http://sigappfr.acm.org/Projects/SVG-To-RDF/ 
7 https://jena.apache.org/ 
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Few approaches have specifically targeted SVG image processing, e.g., [3, 8, 10, 
17, 18]. The work in [3] suggests the organization of features extracted from SVG 
images in the form of an aggregation tree, where each tree node represents an SVG 
geometric object or an aggregated set of objects and is described by an MBR 
(Minimum Bounding Rectangle) and a shape description, taking into consideration 
the topological relationships between the objects (e.g., disjoint, meet, overlap, etc.). 
The aggregation tree is constructed using object-aggregation rules defined based on 
topological relations, e.g., two disjoint objects p and q are grouped under a higher 
level object n consisting of a new MBR encompassing the ones of p and q. The study 
in [3] presents an on-going work, aiming to index SVG images toward easier 
information retrieval. Another approach in [10] introduces a hierarchical SVG image 
abstraction layer for medical imaging, organizing low level features and high level 
semantic information in an image abstraction layer where content pieces are 
represented in XML and SVG. The authors then describe a web-based tool that 
visualizes, manipulates, and searches the abstraction layer using XQuery. Similar 
works investigating the processing and retrieval of SVG images using XML data 
search and manipulation techniques have been proposed in [8, 18]. In [11], the 
authors introduce a library of shape similarity measures designed to compare SVG 
geometric objects. This approach has been adopted in our framework and some of the 
measures are presented in Section 3. An approach which is relatively comparable to 
ours in presented [17] introducing a tool allowing users to manually associate 
semantic annotations to a sketch based query specification. Here, images are drawn 
and transformed into SVG coding, whereas user annotations are transformed into an 
RDF fragment appended to the SVG image code. Nonetheless, this approach solely 
focuses on manual user annotation and does not address semi-automatic annotation. 
Also, the resulting RDF code is appended to the SVG image source code which limits 
RDF semantic processing capabilities. In addition, the authors process images 
separately, in contrast with our approach which introduces the concept of unified 
reference RDF ontology to gather the collective semantics of an image repository, 
allowing annotation suggestions and improving image semantic processing.  

5 Conclusion 

This paper introduces a framework: SVG-to-RDF for transforming a collection of 
SVG images into RDF graphs. The system automatically transforms each input SVG 
image into a basic RDF graph, and then offers the user semantic annotation offers for 
each geometric object in the image, based on shape, color, and position similarity 
comparisons with existing objects already stored in a reference RDF knowledge base. 
When new concepts and mappings are detected, the annotated RDF image graph is 
then integrated in the knowledge base extending its semantic expressiveness. 
Experiments show that our approach is of average linear complexity w.r.t. image and 
knowledge base size, and provides promising annotation results. 

We are currently investigating the extension of our approach to allow whole image 
search, as opposed to searching and annotating individual geometric objects within an 



 SVG-to-RDF Image Semantization 227 

 

image. In this context, dedicated reference ontologies and user-defined semantics 
would have to be considered to better assess image and geometric object relatedness. 
We also plan to study the effect of different similarity criteria (shape, color, and 
position) on annotation quality, proposing (if possible) weighting schemes that could 
help the user tune her input parameters to obtain optimal results.  
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Abstract. In the past few years, we have observed a trend of increas-
ing cooperation between computer science and other empirical sciences
such as physics, biology, or medical fields. This e-science synergy opens
new challenges for the computer science and triggers important advances
in other areas of research. In our particular case, we are facing an as-
troinformatics challenge of analysing stellar spectra in order to estab-
lish automated classification methods for recognizing different types of
Be stars. We have chosen similarity search methods, which are effec-
tively utilized in other domains like multimedia content-based retrieval
for instance. This paper presents our analysis of the problematics and
proposed a solution based on Signature Quadratic Form Distance and
feature signatures. We have also conducted intensive empirical evalu-
ation which allowed us to determine appropriate configuration for our
similarity model.

Keywords: similarity, SQFD, stellar spectra, feature signatures, as-
troinformatics, classification.

1 Introduction

The rapid development of computer systems, storage capacities, and communica-
tion technologies allowed empirical sciences – notably physics, biology, medicine,
and engineering – to generate large and complex datasets. Traditional scientific
methods based on individual examination of facts are not applicable anymore
and the empirical sciences lean towards computer science to automate estab-
lished methods, so they can be used for huge amounts of data.

Astroinformatics is a good example of this phenomenon. It is based on a syn-
ergy of modern computer science methods and advanced astronomical models
systematically applied on empirical data gathered by astrophysicists. Machine
learning, automated classification, clustering, and data mining yielded new dis-
coveries and better understanding of the nature of astronomical objects [8].
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1.1 Astroinformatic Challenges

Studying the spectra of celestial objects was the key to many (if not the majority)
of astronomical discoveries of the last two centuries and it still remains the most
valuable instrument in stellar astronomy.

Spectra reveal significant clues about the chemical composition, temperature,
and velocity of the observed object; however, the interpretation of the observed
facts is difficult because different processes may result in similar observations. For
instance, the shape of a spectral line corresponds to the distribution of velocities
of the emitting/absorbing particles; nevertheless, the velocity may correspond
to the thermal motion of gas particles as well as to the circular motion of the
gas around the star. Thus, for many observed objects, the classification of their
spectrum is rather a topic of discussion among astronomers than a mechanical
task.

During the last decade, advances in technology allowed to produce hundreds of
thousands of spectral observations every year. This data avalanche can never be
processed manually; unfortunately, mechanical classification criteria exist only
for the most coarse categories like spectral class or luminosity class.

A machine-learning approach may hopefully act as a multiplier of the hu-
man force in the classification task, using the manually classified spectra as the
ground truth. Machine-learning approaches were already successfully used in
classification of astronomical spectra; however, most of the attempts addressed
the classification of nonstellar objects like galaxies or quasars [1,3].

In our research, we focus on the category of Be stars which are usually char-
acterized by the following phenomena:

• spectral class B,

• the presence of strong emission lines,

• and excess luminosity in infrared band.

These basic criteria are easily determinable from the spectrum of the object
(or even from five-color photometry). Since at least some of the Be stars are
believed to be stars caught in their development stages, they are extraordinarily
important for the understanding of the formation of stars and planetary systems.

The class of Be stars is further divided into subclasses [10] which (presumably)
correspond to different geometries of the object. So far, the classification of stars
into these subclasses is determined only by the consensus of astronomers and
there are no exact classification criteria that could be converted to an algorithm.
Furthermore, some subclasses of Be stars may naturally extend beyond the Be
category, i.e., some objects may be physically similar to a subclass of Be although
they do not meet the general Be-star criteria.

Our goal is to find a classification method which would automatically deter-
mine the subclass of a Be star based on its spectrum, using the objects already
manually classified as the reference for the classification. In addition, the method
may also be able to find similar objects among stars not classified as Be stars.
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1.2 Similarity Search Methods

Our approach is to employ similarity search methods. These methods have been
successfully used in a wide variety of applications including computer vision,
pattern recognition, data mining, content-based image retrieval, or bioinformat-
ics. These methods are often used for information retrieval (similarity search),
where complex database objects are being looked up based on their similarity
with a query object. However, a similarity model can be employed for other tasks
such as object classification or database clustering.

Similarity model consists of two parts – object descriptors and a distance (dis-
similarity) function. The object descriptors represent the object features that are
essential for similarity comparisons. The distance function measures the dissim-
ilarity of two object descriptors.

Since we were planning to experiment with various types of feature-based de-
scriptors, we require an adaptive distance function, which is capable of comparing
descriptors of different sizes. We have selected Signature Quadratic Form Dis-
tance (SQFD) [4,5], since it provides a good compromise between precision and
efficiency. It has been very successful in multimedia content-based retrieval [6]
and in various other domains. Furthermore, it can be indexed not only by metric
methods but also by more effective Ptolemaic indexing [12]. Finally, the SQFD
is quite suitable for GPUs [11], so it can be deployed even for larger scale exper-
iments.

1.3 Outline

Our paper is organized as follows. Section 2 reviews previous and related work
in this topic. The features examined in stellar spectra are explained in Section 3.
Our similarity model is proposed in Section 4 and Section 5 summarizes its
empirical evaluation. Section 6 concludes the paper.

2 Related Work

The idea of the stellar spectra clustering is not completely new. Bazaghan [2]
proposed the self organizing maps as an unsupervised artificial neural network
algorithm for classification of the stellar spectra. Jiang et al. [7] used principal
component analysis methods to reduce dimensionality of the data, where only
the first two eigenvectors are selected. Furthermore, they proposed a hierarchical
clustering method for the data mining approach.

Bromová et al. [10] attempted to employ wavelets as descriptors of the stel-
lar spectra. The spectra were sampled by discrete wavelet transformation and
various transformations of the coefficients into Euclidean space were used, thus
the descriptors were simple vectors. The k-means algorithm was applied on the
descriptors to find similar spectra, especially to identify the spectra of Be stars.
Their implementation achieved 76% precision on a sample set of 656 spectra
with manually annotated ground truth.
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One of the greatest problems of these approaches is that the spectra re-
quire many coefficients to be represented accurately and the number of coef-
ficients is equal to the dimension of the feature space. Distance functions in
high-dimensional metric spaces suffer from a problem called the curse of dimen-
sionality, so the precision of the clustering is dropping as the number of the
dimensions increase.

An alternative to this approach could be to use different types of descriptors.
Traditional approaches like the Fourier transformation [9] are not applicable
here, since the frequency analysis does not reflect the similarity properties de-
scribed by the physicists. The physicists define similarity based on the shape
of the histogram curve. Another option would be matching 2D curves like the
Bezier curve [13] to approximate the histogram and then compare the coeffi-
cients or the defining points of the curves. Some of these alternatives are being
investigated by other research teams; however, no results have been published
yet to our best knowledge.

3 Stellar Spectra

Stellar spectrum is a recording of radiation intensity in the frequency domain,
usually over a range of visible or near-infrared wavelengths. The most prominent
features of a stellar spectrum are its general shape called continuum, absorption
lines, and emission lines.

The continuum of a stellar spectrum usually approximately matches that of
ideal black-body radiation whose temperature is dependent on the spectral class
of the star.

The absorption lines are produced by relatively cold gases surrounding the
star where photons of matching energies transform to excitation of gas atoms or
molecules. The presence and intensity of absorption lines (which determine the
spectral class of the star) depend on the chemical composition of the gas and
also on its temperature and density.

The emission lines are produced by excited hot gas atoms transitioning back
to lower-energy states. To be visible over the background of the star, this process
requires significant amount of gas orbiting close to the star; therefore, prominent
emission lines are present only in some stellar classes, including the Be stars.

Unfortunately, the signal of the observed object is affected by the interstellar
medium and, in case of ground-based measurements, by the atmosphere of the
Earth. The effect of the atmosphere is particularly difficult to isolate due to its
dependency on geographic, meteorologic, and ionospheric conditions. The photon
flux of fainter stars is often lower than the sky background and the subtraction
of concurrently measured sky flux does not remove the noise inherent to the
background.

The main source of noise in modern spectrographs is the fact that even a sta-
ble flux of radiation corresponds to photons randomly distributed in time – this
photon-counting noise is thus inherent to the physical process and can be alle-
viated only at the cost of prolonged exposition time or using a larger telescope.
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Due to the difficulty of separating the star signal from the atmospheric ef-
fects, astronomers often focus on particular lines that are prominent in stars but
negligible in the atmosphere. For many types of stars, including the Be stars,
the selected line is the H-alpha line at 656.281 nm (6562.81 Å), corresponding
to ionized atomic hydrogen.

The experiments described in this paper are based on spectra obtained by
a single-object spectrograph attached to the Ondřejov 2 m telescope. The se-
lected spectra are high-resolution spectra covering a selected wavelength range
approx. 40 nm wide centered at the H-alpha line.

The spectra were already manually normalized : The original signal was di-
vided by a low-degree polynomial which was selected to best fit the signal curve.
This normalization ensures that the continuum part of the normalized spectrum
approximately equals to one; thus emission lines show as features above the y = 1
line and absorption lines under it, as shown in Figure 1. Nevertheless, the sky
flux was not subtracted, which means that the normalized continuum is the sum
of the star and sky continua.
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Fig. 1. Example of a normalized spectrum of Be star

Figure 1 shows features typical for Be stars: The most prominent feature is
the H-alpha emission line, attributed to a disk of hot gas rotating around the
star. The very center of the emission line is cut off by H-alpha absorption in
colder gas surrounding the star at greater distance or in interstellar medium.
The emission line itself rises from the bottom of a wide H-alpha absorption line
caused by the rapidly rotating atmosphere of the star. The differences in the
widths of the three superimposed lines are caused by the different thermal and
rotational velocities of the associated gas masses. Different Be stars also show
different ratios of the intensities of the H-alpha lines – their classification is
mostly connected to these ratios.

The dense group of small absorption lines to the left of the H-alpha lines
correspond to the absorption on water molecules in Earth atmosphere. Such
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sky effects, together with the photon-counting noise, cause that the theoreti-
cally perfectly symmetric H-alpha curves are distorted so that even finding their
extremes is difficult.

The sampling at the x-axis is not equidistant as it is determined by the physi-
cal properties of the spectrograph and may vary due to different conditions of the
measurement. Thus, in our case, a spectrum is a set of ordered pairs (w, i), where
w is the wavelength, traditionally represented in Ångströms, and i is the inten-
sity of the radiation measured by the corresponding sensor pixel. The intensity
is an unit-less quantity due to the normalization process.

4 Similarity Search and Spectra Classification

Based on our previous experience, we have chosen similarity search methods
used in multimedia databases to compare the stellar spectra. When suitable
similarity model is established, we would like to apply clustering to the large
spectra datasets. The ultimate objective is to determine a classification method,
which will divide known stars into categories automatically.

4.1 Feature Signatures and Signature Quadratic Form Distance

The database objects are represented with descriptors, which aggregate essential
object properties. We have selected feature signatures to represent stelar spectra.
Formally, a feature signature So of an object o is defined as So = {(coi , wo

i )|i =
1 . . . n}. In other words, it is a set of ordered pairs, where each pair consist of
a point1 coi in the feature space R

d and its weight wo
i ∈ R

+. Let us emphasize
that the number of features may differ for each signature, since simpler objects
can be covered by fewer features than complex objects. The dimension d of the
feature space R

d is fixed for the similarity model. In our case, we have been
experimenting with low-dimensional spaces (d = 2 and d = 3).

The signature extraction is the process of extracting object features that are
important for the similarity model and aggregating them into signatures. The
extraction process fully determines our similarity model since we have fixed our
selection of the distance function. Several approaches were implemented and
tested (Section 4.2 and Section 4.3).

We have employed the Signature Quadratic Form Distance (SQFD) [5] as
a measure for the signatures. The function is formally defined as

dSQFDfs
(Sq, So) =

√
(wq| − wo) · Afs · (wq | − wo)T ,

where Sq, So are the compared signatures. The vector (wq| − wo) is created
by concatenation of weight vectors wq and −wo, where −wo denotes negated
values of wo. The Afs is the enumeration matrix of the similarity function fs
that compares each pair of features from the signatures. In our case, we have

1 The feature point is sometimes called centroid as it represents center of a cluster of
feature points.
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used the Gaussian similarity function with L2 (Euclidean distance) as a ground

distance (i.e., fs(ci, cj) = e−α·L2
2(ci,cj)). The α parameter is a tuning parameter

between precision and indexability.

4.2 Direct Extraction

The first idea is to use the measured values of the spectra directly as signatures.
Despite the fact the spectrum represents discrete values of a function that as-
signs intensity values to wavelengths, it is also a set of 2-dimensional points.
There are two aspects of this approach that need to be defined: Selecting proper
transformation for both dimensions and defining the best weights for the spectra
points.

Both axes (the wavelength and the measured intensity) have linear proper-
ties, thus we have restricted the extraction process to linear transformations.
Furthermore, the translation process has virtually no effect on the data, so the
model uses only multiplicative constants. We have empirically determined that
constants 1 and 4 used for wavelength and intensity dimensions respectively
procude the best results.

The corresponding weights of the spectra points should reflect the importance
of each point. We have tried three weight functions:

• Uniform weight distribution – each point has weight 1/n, where n is the
number of points. This weight function was selected only as a reference.

• Intensity weight function – each weight is computed as a function of the
intensity. The spectrum is normalized, so that the continuum has intensity
values around 1. Therefore, the interesting parts of the spectrum exhibit
themselves as emissions (values >1) and absorptions (values <1). We can
argue that greater emissions and absorptions are more important than values
closer to the continuum. If we express this dependency linearly, the weight
function will be f(i) = |1− i|.

• Normal distribution (i.e., f(w) = e−(w−μ)2/2σ2

/σ
√
2π) of the wavelengths

w. The mean value μ was set to H-alpha (6562.8Å), since this particular
part of the spectra is the most important in our case. The variance σ2 was
a variable parameter and we have empirically tested several values.

The SQFD requires that weights are normalized so their sum is equal to unity.
Since both the intensity weight function and the wavelength normal distribution
may produce weights that do not comply with this requirement, a linear nor-
malization w′

i = wi/
∑

j wj is applied after the weights are generated.

4.3 Extracting Local Extremes

A more elaborate idea is based on the approach of domain experts who manually
classify the spectra. The most important are the peaks of the spectrum curve –
i.e., the local extremes of the spectrum function. Since we do not have the func-
tion directly, we can select a subset of spectra points as approximate extremes.
Our method works as follows.
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Each point p of the measured spectrum is examined individually to determine,
whether it is an approximate local extreme or not. A point is marked as extreme,
if all neighbour points pni (which have wavelengths in a given radius r around the
wavelength of p) have their intensities either greater or lesser than the examined
point. An example of this method is depicted on Figure 2.
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Fig. 2. Example of extracted approximate extremes from a spectrum

The signatures produced in this case use 3-dimensional feature space. The
first two feature dimensions are the same as in the direct extraction approach
(Section 4.2). The third dimension holds only values 1 and−1, which are assigned
to distinguish local maxima and local minima respectively.

The linear transformation of the feature space is performed in the same way
as in the case of the direct extraction. The optimal multiplicative constants are
1, 1, 4 for the wavelength, intensity, and extreme orientation dimensions respec-
tively. We have selected the normal distribution for the point weighs, since it led
to the best results in the direct extraction method.

Noise Reduction. The extraction of local extremes suffers from the noise
present in the data. It is difficult to determine, whether an extreme is significant
for the pattern recognition, or whether it is just an outlier caused by an error in
measurement. We could extend the range r that is used to identify local extremes,
but such approach prunes some legitimate extremes as well as outliers.

Another approach would be to eliminate extremes that are adjacent (on
the wavelength axis) and their distance (measured on the wavelength-intensity
plane) is small. Unfortunately, this method does not work properly either. Fig-
ure 3 shows two spectra that demonstrate the problem. Both spectra have three
local extremes close by, but whilst these points are essential in the left spectrum,
they need to be eliminated in the right spectrum.

Based on the previous observations, we have selected a method that eliminates
local extremes which are close by, but the threshold for this decision is dynamic.
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Fig. 3. Example of desired and undesired extreme extraction

The threshold is calculated based on the wavelength distance from the H-alpha,
because the shape of the spectrum has more important values closer to that
particular wavelength. The algorithm repeats the following steps until there are
less than three extremes left or until none of the remaining extremes are close
enough to be eliminated.

1. For each adjacent pair (on the wavelength axis) compute Euclidean distance
δi =

√
(λi − λi+1)2 + (Ii − Ii+1)2 in wavelength-intensity plane and a filter-

ing threshold ti = τ · |Hα− (λi+λi+1)/2|, where the λi denotes wavelength,
Ii denotes intensity and τ is the filtering parameter.

2. Create a set C of all pairs (i, i+1), which pass the filtering threshold δi < ti.
3. If no such pair exists (set C is empty), terminate the algorithm.
4. Find and remove a pair from set C with the smallest distance δi.

4.4 Spectra Preprocessing

As we mentioned in Section 3, the spectra are already preprocessed, so that
the continuum is normalized to intensity value 1. We apply a few additional
preprocessing methods to improve the extraction process.

First of all, each spectrum is cropped to selected range of wavelengths. Even
though we could achieve similar results by setting zero weights to the points out
of the range, the cropping process will reduce the number of points, thus increase
the efficiency of both signature extraction and distance function evaluation. We
have experimentally determined that the range of 30Å with its center in the
H-alpha value is the best compromise between the data size and the precision.

The second step is to normalize intensity amplitude. The values are already
levelled around value 1, but the maximal and minimal values are not bounded.
Since we are interested mostly in the shape of the spectra, we linearly normalize
the amplitude, so that either minimal value is equal to zero, or the maximal
value is equal to 2 (whichever is more distant from 1).
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Finally, we have observed that some of the spectra carries a heavy load of
noise caused either by specific conditions that affected the measurement or by
additional physical phenomena, which are not important for this type of classi-
fication. We have tried to apply a gaussian smoothing filter, that updates each
intensity by computing arithmetic average of its neighbour values within given
radius. However, we have discovered that applying this filter also eliminates im-
portant information from the spectra and it had slightly negative effect on the
overall precision in the most of the experiments.

5 Experiments

As mentioned in Section 3, we have used Ondřejov dataset for our experimental
evaluation. The spectra were divided into four subclasses by a domain expert.
Figure 4 depicts typical representatives of each class. We have used this division
as a ground truth to verify our similarity model.
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Fig. 4. Typical representatives of Be-stars subclasses

The model was verified by the following method. We iteratively select each
object as a query q. SQFD distances between query and all remaining spectra,
except spectra that belong to the same star as the query spectrum, are computed.
These distances are used to sort the spectra in ascending order creating a list S.
Then we find the first spectrum s in the list S that belongs to the same class as
the query. All spectra that precedes s in the list are considered to be an error in
ordering and we compute a total sum of these errors over all queries. The results
are presented normalized – i.e., divided by the total amount of the spectra.
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5.1 Results

The results are presented in Figure 5. Each method used optimal configuration
parameters that produced the best result. These parameters were also obtained
by intensive experimentation, but the details of these experiments are beyond
the scope of this paper. The simple, intens, gauss are the results of the direct
extraction method that employs uniform, intensity driven, and normal distribu-
tion of the weights respectively. The extreme denotes the signatures that were
extracted by finding local extremes and the extreme2 also employs the noise
reduction model.
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Fig. 5. Best achieved error rates of examined methods (log scale)

The results clearly indicate that the proposed method achieved the lowest
error rates. Let us emphasize that the scale is logarithmic.

6 Conclusions

In this paper, we have outlined the journey to automated data mining of the
stellar spectra by the means of similarity search and clustering. We hope, that
this journey will take us to new discoveries in the field of astrophysics. The
first step was to define and verify a similarity model, which can be used for
clustering. We have established a signature extraction process that produce small
signatures, which achieved good results when compared by the SQFD function.

The ultimate objective of our research is to develop a classification method
which will learn from the the Ondřejov dataset, which was carefully manually
annotated by domain experts. The learned classification will then be applied to
a large unannotated dataset of the Sloan Digital Sky Survey (SDSS). The appli-
cation to the SDSS data requires further steps like adjustment to the differences
between the two spectrographs. Nevertheless, the results presented in this paper
suggest that our approach is viable.



240 M. Krulǐs et al.
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6. Beecks, C., Lokoč, J., Seidl, T., Skopal, T.: Indexing the signature quadratic form
distance for efficient content-based multimedia retrieval. In: Proceedings of the 1st
ACM International Conference on Multimedia Retrieval, p. 24. ACM (2011)

7. Bin, J., Chang, P.J., Ping, Y.Z., Qiang, G.: A data mining application in stellar
spectra. In: International Symposium on Computer Science and Computational
Technology, ISCSCT 2008, vol. 2, pp. 66–69 (2008)

8. Borne, K.D.: Scientific data mining in astronomy. In: Next Generation of Data
Mining, pp. 91–114 (2009)

9. Bracewell, R.N., Bracewell, R.: The Fourier transform and its applications,
vol. 31999. McGraw-Hill, New York (1986)
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Abstract. We present a method for visual search in multidimensional
time series based on Coulomb’s law. The proposed method integrates: a
descriptor based on Coulomb’s law for dimensionality reduction in time
series; a system to perform similarity searching in time series; and, a
module for the visualization of results. Experiments were performed us-
ing real data, indicating that the proposed method broadens the quality
of through similarity queries in time series.

Keywords:Time series analysis, Index method, Similarity Search, Coulomb’s
law.

1 Introduction

The great early challenges to work with the analysis of temporal observations is
the development of compact storage methods for series that are truly represen-
tative of the collected information, which are easy to handle and show a high
level of accuracy for knowledge extraction. Thus, this paper aims to propose an
integrated environment for similarity search in time series with the incorporation
of a descriptor based on Coulomb’s law for dimensionality reduction. In addition
to it, the paper presents a system to perform similarity searching in time series
and also a module for the visualization of results. Experiments with real data
of varying sizes and dimensions provide validation and confirm that the system
produces satisfactory results.

2 Background and Related Works

A time series can be defined as an set of observations [1], {Y (t), t ε T } in which
Y is the variable of interest and T is an index set. Time series are considered
complex data. There are not any way of establishing an order relation among
series or their ranges. In this context, the concept of similarity is more applicable
than the concept of equality.

Current similarity search methods are, in general, based on the use of de-
scriptors in order to obtain similarity ranges. Some authors define a descriptor
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as being formed by a pair (εD, δD) where εD is the component responsible for
characterizing the object through the extraction of characteristics and generat-
ing a vector that will be used to analyze the data. δD is the function responsible
for comparing the characteristics vectors, giving the amount of similarity be-
tween the object and the query [2]. There are a variety of descriptors that are
effective for certain data fields but end up presenting loss of representativeness
of the series data in most cases [3].

There are two basic types of similarity queries: i) (Range queries) which finds
objects that are at a maximum r distance of the object query Q; and ii) (k-
Nearest Neighbor query or k-NN query) which aim to retrieve the k objects
most similar to a query object.

3 Proposed Method

The proposed system is composed of distinct modules that share data with one
another and work harmoniously getting the information passed by the user to
carry out the queries, applying the Coulomb descriptor to the data according
to the user’s interest and graphically returning objects of interest as found and
listed by the descriptor.

Fig. 1. Relationships among modules

Figure 1 illustrates the relationships
among modules. Time series data serve
as input to the visualization and data
exploration module (VDEM) where
the expert can verify the behavior
and relevant characteristics of the se-
ries and select the interesting inter-
vals for analysis. Also, they serve as
input to the Coulomb descriptor mod-
ule (CDM) which, by dimensionality
reduction and similarity calculation,
passes the ranges with some degree of
similarity on to the data analysis module (DAM), according to the user’s inter-
ests. From there, the data analysis module prepares information that is handed
back to the VEDM, which, in turn, displays them to the user.

Coulomb’s law establishes the mathematical relationship between the charges
of two or more bodies and their electrical force output by calculating the existing
interaction forces (attraction and repulsion) in these charges. The principles of
Coulomb’s law can be expressed thus: i) the intensity of the electric force is
directly proportional to the product of the electric charges; and ii) the intensity
of the electric force is inversely proportional to the square of the distance between
the bodies. The law’s formula is: F = K q1q2

r2 r̂. Where: F is the force in newtons;
r is the distance between the two point charges; q1 and q2 are the intensities of
the charges; r̂ is the unit vector; and K is Coulomb’s constant.

This proposal for similarity search in series considers the observations of the
time series as point charges with q constant charge values. Those are located in
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the coordinate plane formed by the series index and by the value of the obser-
vation. Since calculating the distance between the charges is necessary in order
to ascertain the interaction between them, we take a Cartesian plane formed by
the time series index (x-axis) and the value of the observations (y-axis). Thus,
it is possible to calculate the distance between the charges for the calculation of
forces.

Furthermore, a dummy point charge, of charge q, is inserted into the centroid
composed of the sets of observations that make up the search ranges. This charge
is aimed at providing an optimal representation of the range because, in addition
to its being located at the geometric center of the range, it is used to calculate the
interaction between itself and the other charges, thus generating the resultant
force that represents the range.

As the resultant force is a vector measure, the charge’s direction and magni-
tude influence the calculation. So, it was established that charges that are below
the centroid charge are in the opposite direction to those above it, consequently,
posing a negative force. Accordingly, it is possible to represent a time series
through a system of electrically charged particles and to calculate the resultant
force F, obtained through a vector sum of all forces that comprise the system.
That way, we are able to reduce the series dimensionality, contributing to sim-
ilarity search without major loss of information. In the proposed approach, the
feature vector (V = [F , h]) is formed both by the resultant force calculated in
the range of interest and the height of the centroid.

4 Experimental Results

Fig. 2. Descriptors’ accuracy comparison

The experiments devised to test the
proposed environment were divided
into two groups: i) experiments with
the Coulomb descriptor and DAM to
validate the descriptor’s performance
in reducing data dimensionality and
with DAM in finding windows with higher similarity in the series; ii) experi-
ments with VDEM integrated with other modules. We used randomly generated
databases, a meteorological database of several Brazilian cities with minimum
and maximum temperatures, along monthly precipitation indexes from the years
1961 to 2010 obtained in [8], as well as medical data obtained in [9] regarding
glucose levels in patients in the course of their daily activities.

4.1 CDM and DAM Tests

Validating the Coulomb descriptor and the data analysis module aims to verify
the performance of the descriptor in reducing data dimensionality and in finding
windows with higher similarity in the series. We saw fit that the Coulomb descrip-
tor was compared to the Sequential Matching Sequential Matching (SM) [4], [5]
and Discrete Fourier Transform (DFT) [6] methods, since those methods are
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considered baselines of the work in question. The former for presenting high
accuracy and the latter for having good performance in large databases. The
modules were evaluated in the following aspects:

1) Computational Complexity: in this respect, we performed two experi-
ment. The first, was a runtime test of the same knn query using three descriptors,
with varying database sizes, graph in Figure 3. The second was a runtime test
of a knn query with varying query window sizes, in Figure 4, we note that the
Coulomb descriptor presents a shorter runtime as compared to the SM and DTF
descriptors.

2) Accuracy: intended to measure the number of instances that were pre-
dicted correctly from an input query. In this test, we consulted the most similar
periods (knn-query) to the period encompassing summer (December 21 to March
20 of the following year) and winter (from June 21 to September 21) in the city
of Araraquara/SP. Queries were carried out using the descriptors mentioned and
the accuracy results are presented in table of Figure 2. As shown, the accuracy
displayed by the Coulomb descriptor is satisfactory for similarity queries.

3) Precision vs. Recall: proposed by [7]. From the meteorological base,
we used data concerning monthly maximum temperatures of Presidente Pru-
dente/SP, Brazil. The three aforementioned descriptors were implemented with
a focus on similar seasons, periods of abnormal increase or decrease in tem-
peratures and periods with some cyclical temperature variability. The graph in
Figure 5 represents the precision and recall found. With the medical base, the
tests searched periods of high and low blood glucose levels in patients before
and after the administration of insulin as well as before and after meals. The
precision vs. recall graph is shown in Figure 6. By analyzing the graphs, we note
that the accuracy of the Coulomb descriptor remains satisfactory for good levels
of recall, if compared to other methods.

Fig. 3. Runtime per query with varying
database sizes

Fig. 4. Runtime per query with varying
query window sizes
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Fig. 5. Precision vs. Recall - meteoro-
logical database

Fig. 6. Precision vs. Recall - medical
database

4.2 Viewing Environment Test

For carrying out tests on the visualization and data exploration module, sim-
ilarity queries in meteorological time series were run for winter and summer
periods. The query shown in Figure 7 was run on the time series containing the
average temperature of the city of Araraquara/SP between the years 1979 and
2010. A knn-query with n = 10 and the winter of 1979 as period of interest
(leftmost hatched period in the graph). As can be seen in the figure, the periods
returned (hatched portions of the graph) by the system correspond to winter
periods where there was a minimum temperature close to the selected range.

Another test carried out uses three time series regarding the maximummonthly
temperatures of the cities Avaré, São Paulo and Presidente Prudente in the years
1970-2008. The similarity query with knn = 10 is run by selecting the winter
of 1988 in Presidente Prudente as the period of interest. As shown in Figure 8,
periods of greatest similarity concerning the three series are hatched.

Fig. 7. knn query = 10 applied to winters in the city of Araraquara/SP

Fig. 8. knn query = 10 applied to the winter of 1988 in Presidente Prudente/SP
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As shown, the visual module provides satisfactory results and allows a spe-
cialist to view similar ranges in an understandable and practical way. It makes it
possible for similarity queries to be used in inferring knowledge about the series
under analysis.

5 Conclusions

Upon analysis of the results obtained, we reach the conclusion that the Coulomb
descriptor presents satisfactory values of accuracy and runtime for the execution
of similarity queries on time series. Furthermore, a comparison of the Coulomb
descriptor with traditional search methods for time series, through the analy-
sis of accuracy vs. recall graphs, reveals significant advantages. That makes the
Coulomb descriptor a potential descriptor for time series in different areas. In
addition, the visualization and data exploration module allows a specialist to
perform similarity queries. As a future task, the current modules will be inte-
grated into a data-mining module in order to generate association rules using
the query ranges entered by a specialist.
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Abstract. This paper presents an additional tool the authors have de-
veloped to continue merging the fields of computational neuroscience
with medical based neurodiagnostic clinical research, particularly those
associated with machine learning in Big Electroencephalogram (EEG)
Data. The authors introduce a means to identify various types of epilep-
tic pathologic oscillations using a parameter based on the Shannon en-
tropy of the probability distribution of the amplitudes within EEG sig-
nals. Multiple entropy and entropy-like measures have been explored
to aid in epileptic seizure classification including Kolmogorov-Sinai en-
tropy, spectral entropy, Renyi entropy, approximate entropy, and equal
frequency discretization. Here we propose a more computational efficient
measure which calculates a discrete probability distribution directly from
the recorded amplitudes of an EEG recording over a specified window
and uses an entropy-like calculation to reduce dimensionality.

1 Introduction

In previous work the authors have studied the subjective nature of what consti-
tutes a pathological oscillation [15], and the huge dimensionality of the human
brain, which has approximately 100 billion neurons each having about 1,000 con-
nections (synapses)[16]. Moreover, neurological pathological activity may mani-
fest itself differently from animal to animal or individual to individual [17] [7].
In a healthy human brain there is a precise interaction of neural activities, but
when one develops a neurological illness (pathology) this synchronization breaks
down. These abnormal synchronization processes are found in the pathological
oscillations associated with several neuropsychiatric disorders including epilepsy,
acute brain injury, Alzheimer’s, autism post-neurosurgery Intensive Care Units
(ICU) seizures, stroke, schizophrenia, dementia and basal ganglia disorders such
as Parkinson’s disease. In this paper we present a novel tool using Shannon’s
entropy function to help convert Big EEG Data into a machine learning state
that will improve the efficiency of detecting seizure associated with epilepsy.
Kannathal[6] grouped entropy estimators into two classes: spectral and embed-
ded. Spectral estimators include spectral entropy[5] such as those obtained from
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Fourier Transform and Renyi entropy[6] which differs from the spectral entropies
in the weighting of the lower frequencies. Embedded entropies include state space
reconstructions[1], Kolmogorov-Sinai entropy[6], approximate entropy[10], and
sample entropy[12]. Orhan [8] used an entropy-like method ’Equal Frequency
Distribution’ where the amplitudes of the EEG signal where discretized into ’N ’
bins of equal size and then applied Shannon’s entropy function to the resulting
discrete probability distribution. He then calculated the EFD over a range of
differing ’N ’ values to create a set of entropy-like values that could be used for
epileptic seizure classification. Accordingly, we present a more efficient embed-
ded entropy derived from the amplitude of EEG recordings in the classification
of epileptic seizure events.

We examine a simple entropy measure in three experiments using three dis-
tinct EEG data sets. First, the amplitude entropy measure is explained. The
following sections apply the method to the three data sets. In the first data
set, the measure is used to classify epileptic and non-epileptic EEG segments
prepared by Andrzejak.[2] The second applies the measure to two tonic-clonic,
grand mal, seizure events in a pair of EEG traces made available by Quiroga.[11]
In the third, the measure is applied to the 800 hours of EEG data prepared by
Shoeb[14] and made available through PhysioNet.[4] In 1948 Shannon [13] de-
fined entropy in informational theory as H = −

∑
pilog(pi) .We have used this

definition to measure the entropy in the amplitude of EEG recordings after dis-
cretizing data through the straight forward conversion of the amplitude signal
from floating point values to integers. The entropy measure in a given EEG seg-
ment is calculated after creating a probability distribution for a particular EEG
amplitude by summing the frequency of each amplitude within the segment and
dividing by the total number of amplitude measurements within the segment. In
the following, Y ∗ is the sum of the raw frequency count for each distinct ampli-
tude yi within a particular given EEG segment Y ∗ =

∑
yi where by definition,

Y ∗ sums to number of data points within a given segment. Traditionally, the
sum is normalized by dividing each amplitude frequency by the total sum of
data points which results in a discrete probability distribution from which an
entropy can be calculated as in (1) pi =

yi

Y ∗ .

Experiment 1: Entropy Measure of the Distribution of Amplitude in Fixed
Segments with Data Set 1: Andrzejak / Bonn. This canonical data set was pre-
pared by Andrzejak et.al. and made publicly available.[3] It has been used in
multiple seizure studies including Kannathal, Orhan, and Acharya. Data sam-
ples are collected at 173.6Hz and are divided into 5 labeled sets of 100 files each.
The time series have an effective spectral bandwith of 0.5 Hz to 85 Hz. Each file
consists of 4097 data points representing a continuous 23.6 second interval. Sets
A and B are extracranial with set A comprised of recordings with eyes open and
B of records with the eyes closed. Sets C, D, and E are intracranial recordings
made of epileptic patients following surgical hemispheric division. Set C comes
from the non-epileptic hemisphere while sets D and E are from the epileptic
hemisphere. Set D consists of recordings free from seizure while set E consists
of recordings with seizure. To study the entropy within each set the authors
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calculated the amplitude entropy of each 23.6 second segment in each 100 seg-
ment set. In the next step we aggregate the entropies in each set and test for
normality using SciPy’s normaltest which is based on D’Agostino and Pearson’s
test that combines skew and kurtosis to produce an omnibus test of normality.
Low p-values reject hypothesis that the set is normal. Note that the aggregate
of entropy of the segments within each set in general is not distributed normally
about the mean, although the ’extra-cranial eyes open’ and the ’intra-cranial
seizure’ both have values suggesting normal distributions. For future work the
authors will study whether this could be due to artifact noise in the first case
and an actual stochastic element in the latter. The statistical parameters of all
4 sets are illustrated in Table 3.

Entropy Between Each Set and EEG Classification. A training set is
selected randomly from each of the sets A-E. An entropy Hj is calculated for
each segment in each of the training sets. Boundary points are defined as fol-
lows: Dmin = min(Dtrain), Dmax = max(Dtrain), Emin = min(Etrain) and
Emax = max(Etrain). The calculated boundary points are used to classify the
test segments into the nonseizure/seizure state set as follows: no seizure(W),
possible seizure (X), probable seizure(Y), seizure(Z).

W :={Hj |Hj∈[0,Emin]} (1)
X:={Hj |Hj∈(Emin,Emin+

Dmax−Emin
2 ]} (2)

Y :={Hj |Hj∈(Emin+
Dmax−Emin

2 ,Dmax]}
(3)

X:={Hj |Hj∈(Emin,Emin+
Dmax−Emin

2 ]} (4)

The 2-fold cross-validation was repeated 100000 times. We find that this clas-
sification which includes the two indeterminate states has high precision. For
the non-seizure class W, the precision is assessed as the number of non-seizures
segments classified as such divided by the total number of segments assigned to
the class. For the possible-, probable- and definite- seizure classes, the accuracy
is assessed as the number of seizures segments assigned to the class divided by
the total number of segments assigned to the class. The possible-seizure class is
the least accurate by design and indicates the most mixed classification of seizure
and non-seizure. As we move from class X to classes Y and Z, the confidence
in the seizure classification increases. Allowing for indeterminate states X and
Y, our confidence in the classification of the definite states W and Z increases.
The rough set classification provides a more sensitive tool than a binary classifi-
cation into seizure/non-seizure binary states with the seizure state composed of
X ∪ Y ∪ Z and the non-seizure state W .

Experiment 2: Evolution of Entropy in Time Seriesusing data Set 2: Quiroga
& Caltech. Two longer EEG traces with seizure states have been made publicly
available by Quiroga [11]. These files show tonic-clonic seizures of two subjects
recorded with a scalp rigth central (C4) electrode (linked earlobes reference).
They each contain a total of 3 minutes of data with an approximate 1 minute of
pre-seizure recording followed by a seizure and some post-seizure activity. Each
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Table 1. Classifica-
tion with rough sets
W,X,Y,Z

Set C/E D/E

W 98.1 97.9

X 86.3 70.1

Y 98.6 89.3

Z 99.9 97.8

Table 2. Classification with
binary W+X,Y+Z

Set C/E D/E

W 98.1 97.9

X ∪ Y ∪ Z 97.3 89.8

Table 3. Classification with
binary W+X,Y+Z

Set C/E D/E

W 98.1 97.9

X ∪ Y ∪ Z 97.3 89.8

signal was digitized at 409.6 Hz although after processing, the data set has an
effective frequency of 102.4 Hz with an effective bandwidth of 1-50 Hz. Using
windowed entropy the authors found that the longer EEG trace provides an
opportunity to observe the evolution of entropy over the time series. An entropy
measure of the amplitude distribution was calcuted as above for a frame of 23
seconds. This frame was moved 1 second and entropy recalculated over the length
of the time series. The first deriviative of the entropy was also calcuated and is
displayed in the bottom plot for each time series.

(a) (b)

Fig. 1. Evolution of Entropy on the Time Series: Original EEG comprising both
a pathological oscillation and artifact (a), Entropy Evolution on Caltech data series A
(b), Entropy Evolution on Caltech data series B

Experiment 3: Detection of Seizures in Extended Data Series using data from
Shoeb at Boston Children’s Hospital. This extracranial data was collected at
the Boston Children’s Hospital. The database is described in Shoeb 2004[14]
and made available on PhysioNet.[4][9] From the public source, 664 EDF files
totaling over 44 gigabytes of compressed data were downloaded. These files con-
tain over 800 hours of EEG data. Most files contain 23 EEG signals and they all
are sampled at 256 Hz. Meta data is included with seizure times labeled. The
recordings are grouped into 23 cases and are collected from 22 pediatric patients
with intractable seizures following withdrawal of anti-seziure medicine during
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assement for surgical intervention. Using the Windowed Entropy method. we
used tme evolving entropy series with non-overlapping 23 second windows are
depicted in the figures below. Three exemplary plots from the CHB01 set are
shown with a seizure free time series (a), a time series with a labeled seizure (b),
and a non-seizure series with high noise (c). In Figure 3, an arbitrary entropy
of classifier boundary of 8.2 is displayed. Additional study is being conducted to
further improve this entropy analysis as a pre-processor into machine learning
classifiers.

(a) (b) (c)

Fig. 2. Detection of Seizures in Real Data Series: Original EEG comprising both
a pathological oscillation and artifact (a), Entropy Evolution on PhysioNet a selected
data series CHB01 without seizure (b), with seizure. (c), with noise and no seizure.

2 Conclusions and Future Work

These experiments show that in terms of adding a classification rule based sys-
tem onto the original neuroClustering developed by the authors is a viable option
so long as it will also be in a form conducive to domain adaptation. Utilizing
perceptrons in the manner described in this paper to aid the neurosurgeons se-
lecting what kind of pathological oscillations they are interested in and what
they want the machine to deem as artifact, has shown to be a viable option that
certainly renders the need to continue honing and refining the perceptron based
method illustrated and defined in this paper and these experiments. For our
future work we will test various thresholds in the perceptron algorithms against
large sets of data and see where the strengths and weaknesses of timing and con-
fidence levels pan out. Overall the results of these experiments are encouraging
and are a source to drill down deeper into the methodologies presented in these
experiments.
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Abstract. We propose a system for automatic detection of duplicate
entries in a repository of semi-structured text documents. The proposed
system employs text-entity recognition to extract information regarding
time, location, names of persons and organizations, as well as events
described within the document content. With structured representations
of the content, called “metamodels”, we group the entries into clusters
based on the similarity of the contents. Then we apply machine-learning
algorithms to the clusters to carry out duplicate detection. We present
results regarding precision, recall, and F-value of the proposed system.

Keywords: entity recognition, duplicate detection, Twitter.

1 Introduction

It is now possible to easily create and share text content, which results in vast
repositories of information ready to be queried and analyzed. The content of
such repositories undergoes constant change: updates, deletions, and insertions
of documents are frequent. Therefore, it becomes a complex task to monitor
that no duplicate entries (that is, entries with redundant content considering the
other entries present in the repository) are created as new documents arrive and
the old ones are being edited.

In this work we propose a system for detecting duplicates among text doc-
uments that contain mentions of geographical locations, instances of time, and
events. The operation of the proposed system can be outlined as follows: first, the
words of the document are labeled to identify the entities contained in that doc-
ument; the labeling marks locations, times, names of people and organizations,
and description of events that have occurred. Then, a structured representation
called a metamodel is created from the labeled contents, and finally, clustering
algorithms are applied to the metamodels to reduce the number of comparisons
necessary to identify duplicates among the metamodels.

As a case study to test the proposed system we chose the citizen reports
received at the CIC (Center of Citizen Integration; in Spanish, Centro de Inte-
gración Ciudadana) in the metropolitan area of Monterrey, Mexico, available at
http://www.cic.mx. The CIC reports describe, among other incidents, traffic
accidents, road conditions, and need of maintenance of public infrastructure. Ac-
tive citizens create reports through a web application (also available on mobile

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 253–264, 2014.
DOI: 10.1007/978-3-319-11988-5_24 c© Springer International Publishing Switzerland 2014

http://www.cic.mx


254 J.A. Cordero Cruz, S.E. Garza, and S.E. Schaeffer

*ACCIDENTE* Leones y 18 Av carril de alta MTY #mtyfollow 19:53 via @vigila2 cc @spvmty

Fig. 1. An example of a CIC report via Twitter, reporting an accident at the intersec-
tion of streets called “Leones” and “18” that is blocking a lane

platforms) called Tehuan (available at http://www.tehuan.cic.mx) or by send-
ing a message on Twitter (cf. https://twitter.com) — called a tweet — either
mentioning the account @Cicmty. Upon reception, the CIC staff structures (in
large part manually) the received report and inserts it into a repository.

The CIC reports include information regarding the event or condition that
is being reported, the geographical location (street address or even GPS coor-
dinates of the reporting mobile device), and the time that the event took place
(possibly described verbally, but always at least as a time stamp of the report’s
reception). Regardless of the origin of the report, the text of the resulting doc-
ument is condensed and the language used is abbreviated. Figure 1 shows an
example of a Twitter-originated CIC report regarding a car accident, in Span-
ish. We consider two CIC reports to be duplicates if a human observer would
interpret them as referring to a single event upon examining them both.

The remainder of this article is structured as follows: in Section 2 we discuss
the identification of names within text, after which in Section 3 we discuss related
literature. Section 4 details our proposed solution and then discuss the case study
more closely in Section 5. Finally, in Section 6 we conclude the present work and
discuss opportunities for future work.

2 Named Entity Recognition

The goal of named entity recognition (NER) is to extract words from text and
classify them into predefined categories known as entities. Possible entities of
interest include names of persons, names of places, and dates. There are several
methods for NER and in this work we use a simple version based on hidden
Markov models (HMM) [5, 10, 13], the implementation of which we now explain.

A document x = x1x2 . . . xn is represented as a sequence of n words xi. The
task is to assign for each xi a label yi, resulting in a labeling sequence y =
y1y2 . . . yn, where all labels yi belong to a predefined set K = {e1, e2, . . . , ek}.
The labels in y are chosen by maximizing the joint probability between a given
text x and a labeling sequence y:

P (y,x) = P (x | y)P (y), (1)

where P (x | y) is the conditional probability of generating the text x given the
labeling sequence y and P (y) corresponds to an a priori probability distribution
over the labeling sequence y [13, 16].

Using a second-order HMM the computation of P (y,x) is simplified to

P (y,x) =

n+1∏
i=1

P (yi | yi−1, yi−2)

n∏
i=1

P (xi | yi). (2)

http://www.tehuan.cic.mx
https://twitter.com
@Cicmty
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Now, calculating the parameters P (yi | yi−1, yi−2) and P (xi | yi) of the HMM is
easy as these are based on unigrams, bigrams, and trigrams (that is, sequences
of a single label, two labels, and three labels, respectively) [4], as

P (s | u, v) = c(u, v, s)

c(u, v)
and P (x | s) = c(s � x)

c(s)
, (3)

where, for a given set of labeled words, c(u, v, w) is the number of occurrences
of the label trigram (u, v, w), whereas c(u, v) is the number of occurrences of the
label bigram (u, v), and c(u) the number of occurrences of the label unigram (u);
the number of times that the unigram c(s) corresponds to the word x is denoted
by c(s � x).

Once these parameters are computed, the label sequence is obtained with the
Viterbi algorithm [6, 10], shown as Algorithm 1; the STOP label of the algorithm
is introduced to allow the algorithm to operate with word sequences of different
lengths [12].

Algorithm 1. Pseudocode of the Viterbi algorithm

Require: a text sequence x1 . . . xn, parameters P (s | u, v) and P (x | s).
∀(u, v) such that (u �= ∗) ∨ (v �= ∗), assign π(0, ∗, ∗) = 0

for k = 1 . . . n do

for u ∈ K, v ∈ K do

π(k, u, v) = maxw∈K(π(k − 1, w, u)× P (u | w, u)× P (xk | v))
bp(k, u, v) = argmaxw∈K(π(k − 1, w, u)× P (u | w, u)× P (xk | v))

end for

end for

Assign (yn−1, yn) = argmax(u,v)(π(n, u, v)× P (STOP | u, v))
for k = (n− 2) . . . 1 do

yk = bp(k + 2, yk+1, yk+2)

end for

return the labeling sequence y1 . . . yn

3 Related Work

The proposed system bears similarity with existing work on Twitter analysis.
Tao et al. [19] propose a method for detecting near-duplicate tweets by first
determining if two tweets are considered duplicates and then assigning a level of
duplicity to the pair of tweets varying from exact copy to somewhat overlapping,
using five levels. Natural similarity measures to attempt on tweets include the
edit distance (also known as the Levenshtein distance) [5, 8, 11], the proportion
of shared words, as well as the proportion of shared hashtags. NER is used to
obtain semantic characteristics such as the proportion of shared entities. Also,
the message time stamps and the similarity of the Twitter accounts that sent the
tweet are considered. The duplicate detection in itself is carried out as logistic
regression, given the similarity data.
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Another work is that of Sankaranarayanan et al. [17], extracting and analyzing
news in Twitter. First the system filters the news messages from the rest of the
tweets, then groups the news tweets to obtain those related to a same news
story and then detects the type of news that is being reported. The filtering
of news versus not news is done by a näıve Bayesian classifier [3, 9] that has
been previously trained with a set of tweets marked as either “news” or “noise”.
The grouping of the news tweets is done based on the text contents as well as
metadata, extracting the topic and the location (again with NER).

Agarwal et al. [1] focus on detecting local news on Twitter that report fires
at factories as well as strikes. Their system operates in four stages: first, the
messages that contain information relevant to the topics of interest are filtered
using regular expressions and supervised classifiers, after which the resulting
tweets are compared with those of the last 24 hours, grouping the ones that
correspond to the same event, and then NER is used to extract characteristics
such as the duration, the location, and the type of the event, and finally groups
that have very similar characteristics are merged.

Systems that work with duplicate detection in larger text documents (and
hence can base the detection on a much larger set of data per element) include
the DUDE system1 of University of Michigan for technical papers. A framework
for finding duplicates among XML documents with a known schema is presented
by Weis and Naumann [20], whereas a similarity calculation for text documents
is presented by Schleimer et al. [18].

As the CIC reports are extremely brief, we do not expect systems designed
for longer documents to be able to function well on our data set. Also, the
order in which information is presented is not relevant for the CIC reports to be
considered duplicates, whereas for example detecting whether one text document
copies fragments of another would require several words to follow one another
in a near-identical manner to detect duplicity — a CIC report is usually shorter
than a normal sentence in written text. The work of Gong et al. [7] is intended for
short texts, but does not incorporate the element for determining the similarity
of points of time expressed in the text that is necessary for the CIC reports.

4 Proposed Solution

We propose a four-stage process for the duplicate detection. In this section, we
discuss the details of each stage as well as the steps involved.

Preprocessing into Metamodels: The preprocessing aims to structure the
document for posterior analysis. Information is extracted from the docu-
ment. For example, the CIC reports are available in XML and JSON and a
corresponding parser is applied to access the elements of the document and
obtain the textual content. Filters are then applied to eliminate undesired
features such as non-ASCII characters or stop words, as well as substitu-
tions such as replacing abbreviations with full words. Using NER, labels are

1 Available online at http://sigda.eecs.umich.edu/DUDE/.

http://sigda.eecs.umich.edu/DUDE/
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then assigned to the remaining words. The label categories used depend on
the type of documents being processed. Based on the labeled sequence of
words, sets of words are created by joining those that received the same
label. These are stored along with the corresponding label in a template to
create the metamodel.

Metamodel Clustering: The metamodels are classified into clusters of similar
metamodels (this can be done either incrementally as an online clustering
or globally as a one-time static clustering). The goal is to reduce the set of
metamodels with which the duplicate detection is later carried out.

Classifier Training: Within the clusters of metamodels created by the pre-
vious step, classifiers are trained to distinguish between duplicate and non-
duplicate metamodels, taking into account data regarding the location, time,
and type of event.

Duplicate Detection: The trained classifiers of each cluster are then presented
with pairs of metamodels over all pairs of the cluster if this is a global,
static analysis, and between a new metamodel and the metamodels already
included in the cluster in the case of an online, incremental processing. If
two metamodels are classified as duplicates, then the corresponding input
documents are considered to be duplicates.

5 Case Study

In this section we discuss the application of our proposed duplicate-detection
system on the CIC citizen reports (discussed already in Section 1). The reports
of the CIC were downloaded in the JSON format from the developer API of the
CIC (available at http://www.developers.cic.mx/api); an example is shown
in Figure 2. The CIC reports contain the following fields: ticket is a unique ID
assigned to each report received, content contains the description of the reported
event, created at is a time stamp of the report creation, address detail is the
address with some typical fields (if available), and categories are predefined
categories of the CIC for types of reports.

In this work, we downloaded reports from the following categories (with an
abbreviation indicated in parenthesis, derived from the Spanish name used by
the CIC for each category): accidents (acc), street lights (alu), traffic lights
(sem), road damage (bac), sewer lids (alc), public events (eve), road work or
closure (obr), and situations of risk (sit). Within the categories, we employ the
different criteria for defining whether two reports are to be considered duplicates.
For example, traffic-accident reports are considered as duplicates when the text
describing the location is similar and the time lapse between the reports does
not exceed 15 minutes, whereas if the time lapse is higher (even with the location
being the same), the reports are considered distinct. This is not the same for
missing or damaged sewer lids, for example: the same lid may be reported several
hours apart or on different days. Hence the classifiers are trained separately for
each metamodel cluster.

http://www.developers.cic.mx/api
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"ticket": "#7YPC",

"content": "*ACCIDENTE* En gonzalitos altura de vuelta izquierda a Insurgentes MTY #mtyfollow 17:37",

"created at": "2013-08-04T17:49:56-05:00",

"address detail": {
"formatted address": "Gonzalitos 655, Sin Nombre de Colonia 31, Monterrey, NL, México",

"zipcode": "64000",

"county": {
"long name":"Monterrey", "short name":"Monterrey",

},
"state": {

"long name": "Nuevo León", "short name":"Nuevo León"

},
"neighborhood": {

"long name": "Centro", "short name": "Centro"

}
},
"categories": ["ACCIDENTE"]

Fig. 2. An example of a CIC report in JSON

5.1 Preprocessing

For the preprocessing phase, we employ the Python library json2 to extract
the following fields: ’ticket’, ’content’, ’created at’, ’categories’, and
’address detail’ for each report. From the date, the UTC date and time was
parsed into fields for year, month, day, hour, minute, and second. Then, we apply
the filters to clean up the data; we mention some examples of the filters used:

– Replace all accented characters with their ASCII equivalent.
– Eliminate everything that begins with http.
– Eliminate special characters such as *, :, ?, ;, -.
– Eliminate (with regular expressions) all hashtags and Twitter accounts.

At this point no stop-word elimination has yet been applied, as the prepo-
sitions are important for correct identification of place names in Spanish with
NER: expressions such as entre Avenida P. Livas y Las Americas (between
two specific avenues), en Paseo de los Leones (at a specific street), rumbo a

Lazaro Cardenas (near a specific avenue). The categories used for the NER la-
beling of the reports are the following: places (LOC), time (TIME), persons (NAME),
organizations (ORG), and event descriptions (DESC); a label for irrelevant infor-
mation (IRR) was also employed, as done in the work of Ratinov and Roth [14].
The Vitebri algorithm (Algorithm 1 on page 255) was employed to assign the
labels. Given the labeling, the metamodel is composed (as described in Section
4). Figure 3 shows an example of an input, the resulting labeling, and the created
metamodel.

The clean-up carried out upon creating the metamodel out of the labeled
sequence involves the elimination of stop words, making all words lowercase, re-
placing plural nouns by their singular forms, and elimination of word repetition.

2 Available at https://docs.python.org/2/library/json.html .

https://docs.python.org/2/library/json.html
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ACCIDENTE en Ave. Garza

Sada sin lesionados 6:30

pm MTY NL gracias

(a) Cleaned text

[ACCIDENTE, DESC], [en, LOC], [Ave., LOC], [Garza,

LOC], [Sada, LOC], [sin, DESC], [lesionados, DESC],

[6:30, TIME], [pm, TIME], [NL, LOC], [gracias, O]

(b) Labeled text
<metamodel>

<desc>ACCIDENTE sin lesionados</desc>

<loc>en Ave. Garza Sada</loc>

<time>6:30 pm</time>

</metamodel>

(c) Metamodel

Fig. 3. Cleaned text sequence, the corresponding labeled sequence, and the resulting
metamodel

The information in the metamodels is then accessed by querying on three
text elements: tinfo that describes the reported event (formed by cleaning the
content of the labels DESC, NAME, and ORG of the metamodel), tloc that indicates
the location (simply the cleaned-up content of the label LOC in the metamodel),
and ttime that states the time stamp at level of minutes as UNIX time. Time
differences are measured (for purposes of evaluating their similarity) as

Δti,tj = 1−
(
1 + log10(|ti − tj |)

)−1
, (4)

where ti is the UNIX time of the first metamodel and tj that of the second.

5.2 Classifier Training

Eight support vector machine classifiers [3] are trained to detect duplicate pairs
of metamodels, one per CIC category. The training commences by creating h
training triples

T = [(m1
1,m

1
2, δ

1), (m2
1,m

2
2, δ

2), . . . , (mh
1 ,m

h
2 , δ

h)], (5)

where for the ith triplet, mi
1 y mi

2 are two (distinct) metamodels and δi ∈ [0, 1]
is a binary decision variable: zero indicates that they are not duplicates whereas
one indicates that the two metamodels are considered duplicates of one another.
Each triple is then processed:

1. The fields desc, loc, and time are accessed for both metamodels.
2. Two weighted vectors are created for both metamodels using term frequency

- inverse document frequency or tf-idf [12]: vector Ij is based on tinfo

and vector Lj is based on tloc for metamodel j ∈ {1, 2}. The vocabulary
employed for the terms was created manually from a sample of 1,784 meta-
models and another distinct sample set was used for training each classifier.

3. The cosine similarity [2], defined for two vectors v and w as

(v ·w)/(|v||w|), (6)

is computed for I1 versus I2 (we denote the result by ρI) and also for L1

versus L2 (yielding ρL).
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4. The time difference is computed (cf. Equation (4)); we denote this simply by
Δ when the two metamodels used to obtain the time stamps are implicitly
clear.

Then, a characteristic matrix of dimension h × 3 is created together with a
1× h column vector:

X =

⎡
⎢⎢⎣
ρ1I ρ1L Δ1

...
...

...

ρhI ρhL Δh

⎤
⎥⎥⎦ and y =

[
δ1 δ2 . . . δh

]T
. (7)

Using these two, a classifier is then trained for a specific category with the scikit-
learn3 Python-library. The resulting classifier for category � is denoted by C�.

5.3 Duplicate Detection

The metamodel clustering for the case study is done simply based on the cate-
gory assigned by the CIC (we have also carried out experiments using k-means
variants to recover the categories based on document similarity with reasonable
success). We hence apply the classifier C� for each category � ∈ {acc, alu, . . . sit}
(done either using all pairs of metamodels within that category or upon the
introduction of a new metamodel to a set of existing metamodels) for the test
set of documents (those used for training and dictionary-creating are excluded).
The test set contained 105 metamodels corresponding to the category acc, 20
to alc, 85 to alu, 90 to bac, 45 to eve, 45 to abr, 75 to sem, and 40 to sit.
The pseudocode for the process is shown in Algorithm 2 for the case of adding
a single new metamodel into a set of existing metamodels of the same category.

5.4 Results

Our results include the evaluation of the NER-labeler (alone) and the evaluation
of, properly, the duplicate detection system. With respect to the former, the
cleaned-up CIC reports contained a total of 123,583 words (3,823 reports). All
these words were manually labeled using the labels discussed in Section 5.1: LOC,
TIME, NAME, ORG, DESC, and IRR. Then, the parameters of the NER-labeler were
computed. The labeler was tested with a set of 5,099 words extracted from a
new set of CIC reports; we created one labeling with the trained labeler and
another manually, obtaining a 92% precision on the automated labeling with
respect to the manual one. The success was notable in identifying places, times,
and event descriptions, possibly attributable to the limited vocabulary employed
in the CIC reports. As pointed out by Ritter et al. [15], existing NER tools tend
to perform poorly on Twitter messages; we hence conclude that our labeler has
a sufficient performance with the current precision.

3 Available at http://scikit-learn.org.

http://scikit-learn.org
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Algorithm 2. Duplicate-detection algorithm outline
Require: incoming metamodel m, existing metamodels M , trained classifier C
1: I ← tf-idf(tinfo(m))

2: L ← tf-idf(tloc(m))

3: t ← ttime(m)

4: D = ∅ (list of duplicates of m detected within M)

5: for m′ ∈ M do

6: I ′ ← tf-idf(tinfo(m′))
7: L′ ← tf-idf(tloc(m′))
8: t′ ← ttime(m′)
9: ρI ← sim(I, I ′) with Equation (6)

10: ρL ← sim(L,L′) with Equation (6)

11: Δ ← Δt,t′ with Equation (4)

12: δ ← C(ρI , ρL, Δ) (classifier output)

13: if δ = 1 then

14: D ← D ∪ {m′} (add to results the detected duplicate)

15: end if

16: end for

17: return D

For evaluating the reliability of the duplicate-detection system, we performed
modifications on CIC reports to produce duplicates, then testing whether the
modified duplicates were correctly identified by the classifiers. We used a total of
201 original reports and created two artificially modified duplicates for each, also
creating two artificial non-duplicated by applying drastic modification. The mod-
ifications were made manually to ensure that the resulting reports make sense
and that those intended as duplicates are in fact semantically similar whereas
the non-duplicates have differences that permit a human observer to conclude
that they are clearly distinct.

The set of metamodels thusly obtained was divided into a training set and a
test set as follows: the original 201 metamodels were grouped according to their
respective CIC categories (acc, alu, sem, bac, alc, eve, obr, and sit). With the
K-iterations method [9], one half of each category was assigned to a training set
and the other half to a test set. The modified metamodels (two duplicates and
two non-duplicates) were then inserted in the same category and set as their
corresponding original.

The classifier training was repeated ten times to study possible variations in
the end result; Figure 4 illustrates the precision (on average 55%), recall (on av-
erage 84%), and F-value (on average 66%) obtained for the duplicate detector.
Recent related work on detecting duplicate tweets by Tao et al. [19] obtained
48% precision and 43% recall, in the light of which our system seems to perform
quite satisfactorily given the similarity between the input data in their work and
ours. As the authors know of no other system for duplicate detection adaptable
to the CIC context, we do not present a comparison between our method and
another one; for example, using the system of Tao et al. [19] for comparison would
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Fig. 4. Box-whiskers plots of the statistics of three performance measures over 10
repetitions of the classifier training

be unfair as the mere textual similarity that suffices for tweets is expected to
perform poorly on the CIC reports that may in fact be written by two different
people, simply describing the same indicent in different words.

6 Conclusions

We have presented an approach for detecting duplicates within document repos-
itories, based on named entity recognition and supervised classification. The
proposed method is tested on a case study using citizen-reported urban inci-
dents in the metropolitan area of Monterrey, Mexico. The similarity between
two reports is evaluated in terms of locations, times, events, and names present
in the documents. The computational results obtained are better than expected
from the performance of state-of-the-art solutions for similar data sets.

Improvements to the present system, left as future work, include parsing ver-
bal expressions of time (phrases like “last Friday” or “at noon”) and estimating
geographical coordinates (latitude and longitude) based on textual address in-
formation (for example through the Google Maps API) to estimate the distance
between locations when GPS coordinates are not included in the reports.

The integration of the proposed system as an automated step at CIC upon
report reception is left as future work — presently the staff attempts to notice
duplicates as a human effort and tend to struggle around personnel-shift changes.
Failure to notice a duplicate document may result in a CIC staff member call-
ing the fire department after a colleague already reported the same fire a few
moments earlier before heading home.

As future work, also the generalization of the system towards other types of
repositories such as scientific publications (to detect attempts of double submis-
sion of a single work as well as plagiarism) is of interest. This would require the
design of a label set for the NER phase and a redefinition of what similarity
means for this type of documents.
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Abstract. Authorship attribution of source code is the task of deciding who 
wrote software, given its source code, when the author of the software is not 
explicitly known. There are numerous scenarios in which it is necessary to iden-
tify the author of a piece of software whose author is unknown, including soft-
ware forensics investigations, plagiarism detection, and questions of software 
ownership. A number of methods for authorship attribution of source code have 
been presented in the past, including two state-of-the-art methods: SCAP and 
Burrows. Each of these two state-of-the-art methods was individually improved, 
and – as presented in this paper – an ensemble method was developed from 
them based on the Bayes optimal classifier. An empirical study was performed 
using a data set consisting of 7,231 open-source and textbook programs written 
in C++ and Java by thirty unique authors. The ensemble method successfully 
attributed 98.2% of all documents in the data set, compared to 88.9% by the 
Burrows baseline method and 91.0% by the SCAP baseline method. 

Keywords: authorship attribution, software forensics, plagiarism detection, in-
formation retrieval, Bayesian probability theory. 

1 Introduction 

The term "authorship attribution" refers simply to "the task of deciding who wrote a 
document" [1]. Authorship attribution of source code, then, is the task of deciding 
who wrote a source code document. Source code authorship attribution is a tenet of 
software forensics, which is the process of analyzing software to identify characteris-
tics of its authors for use in forensics activities [2]. The ultimate aim of software fo-
rensics is typically author identification, and it is usually applied to malicious code 
when analyzing software remnants left by an attacker in order to identify the origin of 
the attack or characteristics of the one who originated the attack. 

Source code authorship attribution has many other applications outside of software 
forensics. In academia, the most obvious application is that of plagiarism detection on 
programming assignments. In programming courses, students often plagiarize solu-
tions to programming problems by "borrowing" code from outside sources such as the 
Web, friends, or "Rent-A-Coder" services [3-5]. In industry, applications include 
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activities related to configuration management and software ownership. In regards to 
configuration management, it could be important for author tracking or change con-
trol. In regards to software ownership, it could be important for the protection of trade 
secrets, patent claims, copyright infringement, or cases of software theft [6]. 

An authorship attribution problem usually proceeds as follows: A document is en-
countered of unknown authorship. The document is compared to a corpus of docu-
ments of known authorship. The author from the corpus that is most similar to the 
unknown document is attributed to be its author. The measure of similarity is usually 
based in some way on style so as to answer the question, "Which author's style best 
matches the style in which the unknown document was written?" 

An authorship attribution experiment typically proceeds in a similar fashion: Sev-
eral sample documents (of known authorship) are selected for experimental purposes. 
These documents are excluded from the corpus. An author is attributed to each of the 
samples using the experimental technique. The success is measured as a percentage of 
documents correctly attributed. In a closed form of the experiment, the actual author 
of the document is guaranteed to exist in the corpus. In an open form of the experi-
ment, the actual author may not exist in the corpus. The open form of the experiment 
is obviously much harder, and no such studies of source code authorship attribution 
are known to have been published. Issues such as programming language, size of the 
samples, size of the corpus, etc., are variables that are either controlled or whose ef-
fects are measured experimentally. In most studies of source code authorship attribu-
tion, a "sample document" refers to a single source file. 

Several methods of source code authorship attribution have been proposed [6-20]. 
In 2010, Burrows performed a comparative study of these methods [15] and deter-
mined that the Burrows method [14] is the most effective and the SCAP method [9] is 
the second most effective. The Burrows study is the first known controlled, compre-
hensive comparative study of source code authorship attribution. An extended version 
of this study was later published in [16]. In 2013, Tennyson performed the first 
known independent comparative study of source code authorship attribution [21] and 
found that the SCAP method is the most effective. In either case, the Burrows and 
SCAP methods of source code authorship attribution are considered state-of-the-art. 

This paper presents an overview of the baseline SCAP and Burrows methods, indi-
vidual improvements that can be made to each of the methods, how the methods can 
be combined to create an ensemble method based on the Bayes optimal classifier, and 
an empirical study gauging the effectiveness of this ensemble method. 

2 Literature Review 

This section presents an overview of the baseline SCAP and Burrows methods and 
describes individual improvements made to each. 
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2.1 The Baseline SCAP Method 

The SCAP method [9-13] of source code authorship attribution utilizes byte-level n-
grams to represent programs. That is, every byte contained in the source document is 
included in the n-gram representation of that document. All programs known to have 
been written by each candidate author are concatenated together, represented as n-
grams, and the frequency of each n-gram is stored in a table. This table of n-gram 
frequencies is considered to be the profile of that author, or the Source Code Author 
Profile (SCAP). Only the L-most frequently occurring n-grams are retained, so that L 
is referred to as the profile length. The SCAP method utilizes a similarity measure 
referred to as the Simplified Profile Intersection (SPI), which is simply the number of 
n-grams that an author profile and a program have in common: 

 | PA ∩ PP | 

where PA represents the author profile and PP represents the program profile (i.e., the 
set of n-grams that occur in that program). To determine the author of a query pro-
gram, the program is compared using the SPI similarity measure to all of the author 
profiles in the data set. The author of the most-similar profile is considered the author 
of the query program. So, in essence, it is the author whose profile is most similar to 
the query program that is attributed to be the author. More precisely, it is the author 
who often uses the n-grams that appear in the query program that is attributed. 
 

Sample Author Profile  Sample Program Profile 
Programs  n-grams Freq.  Program n-grams Freq. 

int main() 
{ 
  cout << "Hi"; 
} 
 

 ) \n { \n _ _ 2  

int main() {
   int x; 
} 

t _ x ; \n } 1 
 _ _ c o u t 2  i n t _ x ; 1 
 _ m a i n ( 2  _ i n t _ x 1 
 a i n ( ) \n 2  { \n _ _ _ i 1 
 i n ( ) \n { 2  ) _ { \n _ _ 1 

int main() 
{ 
  for(int i=0; i<5; i++) 
    cout << i; 
} 

 c o u t _ < 2  a i n ( ) _ 1 
 i n t _ m a 2  n t _ m a i 1 
 n ( ) \n { \n 2  _ { \n _ _ _ 1 
 u t _ < < _ 2  _ m a i n ( 1 
 m a i n ( ) 2  _ _ i n t _ 1 

     _ _ _ i n t 1 
     ( ) _ { \n _ 1 
     \n _ _ _ i n 1 
     n t _ x ; \n 1 
     m a i n ( ) 1 
     t _ m a i n 1 
     i n ( ) _ { 1 
     n ( ) _ { \n 1 
     i n t _ m a 1 

Fig. 1. A trivial SCAP example 

Figure 1 shows an example, where the entire known corpus of the fictitious author 
consists of only two short programs. The corresponding author profile is shown as a 
table of n-gram frequencies, where L=10, so that only the 10 most frequent n-grams 
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are retained. In the example, the SPI is 3, because there are precisely three n-grams 
that appear in both the author profile and the program profile. The intersecting n-
grams are highlighted in the figure. 

2.2 An Improved SCAP Method 

In 2014, Tennyson et al. presented an improvement to the SCAP method [22]. Tenny-
son showed that instead of choosing a discrete value for the profile length L, it is more 
effective to simply to retain all n-grams in a profile except those that appear exactly 
once. Prior to this work, the choice for L was difficult. In the work of Frantzeskou et 
al. [9-13], various values for L had been used and recommended, ranging from 200 to 
10000, while the value 2000 was most often used. In [15], Burrows suggested that the 
best value for L is effectively infinite, so that the author profiles are not truncated at 
all and all n-grams used by the authors are retained in their profiles. Tennyson per-
formed a comparison of these and other approaches, and concluded that retaining all 
n-grams in a profile except those that appear exactly once was most effective. 

2.3 The Baseline Burrows Method 

The Burrows method of source code authorship attribution [14] utilizes token-based 
n-grams and a similarity measure to determine authorship. Tokens include certain 
operators, keywords, and whitespace. Programs are scanned, and the token stream is 
broken into n-grams using a sliding window approach. Based on empirical results, the 
authors chose n=6 for the n-gram size and Okapi BM25 [24] as the similarity meas-
ure. To determine the author of a program, that program is considered to be a query. 
The query is compared using a similarity measure to all of the programs in the data 
set. The author of the most-similar program is considered the author of the query pro-
gram. So, in essence, it is the author who wrote the program that is most similar to the 
query program that is attributed to be its author. 

The tokens used by Burrows were selected by creating six feature classes: opera-
tors, keywords, input/output, functions, white space, and literals. Basic programming 
features were categorized into these classes. Sets of features were formed from all 
possible combinations of the classes and empirical means were used to select the most 
significant feature classes. In the end, the feature classes selected were operators, 
keywords, and white space tokens. A list of these tokens, grouped by class, can be 
found in [15]. The Okapi BM25 metric is used primarily in search engines, and calcu-
lates the likelihood that a document is relevant to the information need expressed in 
the query [24]: 

,ሺܳ݅݌ܱܽ݇  ௗሻܦ ൌ ෍ ௧ݓ · ሺ݇ଵ ൅ 1ሻ ௗ݂,௧ܭ ൅ ௗ݂,௧ · ሺ݇ଷ ൅ 1ሻ ௤݂,௧݇ଷ ൅ ௤݂,௧௧אொ  

௧ݓ ൌ ݈݊ ൬ܰ െ ௧݂ ൅ 0.5௧݂ ൅ 0.5 ൰ , ܭ ൌ ݇ଵ · ൭ሺ1 െ ܾሻ ൅ ܾ · ௗܹ஽ܹ ൱ 
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where Q is the query document, Dd is the document to which the query document is 
being compared, t is a term in the query that also appears in document Dd, N is the 
number of documents in the collection, Wd is the document length, WD is the average 
document length, ft is the collection frequency of the term, fd,t is the within-document 
frequency of the term, and fq,t is the within-query frequency of the term. k1, k3, and b 
are parameters. The values k1 and b default to 1.2 and 0.75, respectively. In long que-
ries, k3 is often set to 1000, which is meant to be effectively infinite. In the Burrows 
method, the default values for k1 and b are used, while k3 = 1010. 

2.4 An Improved Burrows Method 

In 2013, Tennyson et al. [23] improved the Burrows method in two ways: (1) by add-
ing additional features to the feature set used for program representation and (2) by 
selecting different values for the Okapi parameters k1 and b. Features that were added 
included additional keywords, symbols, and frequently-used identifiers. Based on 
empirical testing, Tennyson found that the Okapi parameter values k1=0.2 and b=1.6 
provided better results than the default values for the particular data set used. 

3 The Ensemble Method 

In this paper, two ensemble methods are presented with the aim of developing a new 
method that is even more effective than the current state-of-the-art methods indepen-
dently are. The first ensemble method is based on Bayesian maximum a posteriori, 
and the second is based on the Bayes optimal classifier. Both of these approaches are 
presented in this section. 

3.1 Maximum a Posteriori (MAP) 

In Bayesian probability theory, the maximum a posteriori (MAP) is the most indepen-
dently probable outcome given the observation data: ܨெ஺௉ ൌ argmaxிאு ܲሺܧ|ܨሻ 

where F is a hypothesis (e.g., Author X wrote the document), H is the set of all possi-
ble hypotheses, E is the observable data (e.g., Author X was attributed to be the au-
thor of the document), and P(F|E) is the probability of F given E (e.g., the probability 
that Author X wrote the document given Author X was attributed to be the author). 

The first ensemble method is based on this concept. Using this approach, each of 
the individual methods is used to attribute each document. The posterior probabilities 
are calculated for each author using each method according to Bayes Theorem: ܲሺܧ|ܨሻ ൌ ܲሺܨ|ܧሻܲሺܨሻܲሺܧሻ  
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where E is the observation and F is the hypothesis. The probabilities P(E|F), P(F), 
and P(E) are determined as follows, based on the training data: 
 

1. P(E|F) is the probability that Author X was attributed to be the author given 
that Author X wrote the document. This is the accuracy for that individual 
author (i.e., the percentage of documents written by that author that were 
correctly attributed). 
 

2. P(F) is the probably that Author X wrote the document. This is simply the 
percentage of documents written by the author. Note that this assumes that 
the relative number of documents written by each author in the training data 
is truly representative of the total population (i.e., the distribution of docu-
ments in the sample is identical to the overall distribution in reality). 
 

3. P(E) is the probability that Author X was attributed to be the author. This is 
the percentage of documents attributed to have been written by the author. 

 
Each of the individual methods is used to attribute an author to each document. If 

they agree, then it is the chosen author that is attributed. If they do not agree, then a 
final decision is made based on the FMAP. That is, it is the author that was attributed by 
whichever method has the greater P(F|E) for that author that is attributed to be the 
author. For example, if Burrows attributed Author X and SCAP attributed Author Y, 
and the probability that Author X wrote the document when Burrows attributes Au-
thor X is greater than the probability that Author Y wrote the document when SCAP 
attributes Author Y, then Author X is attributed. 

3.2 Bayes Optimal Classifier 

Attributing based on MAP is not optimal. The most probable classification is not 
always FMAP because FMAP only takes into account part of the observed data. It is the 
greatest of all the independently-calculated outcomes. A better approach would be to 
calculate the probability that Author X wrote the document given that Burrows attri-
buted Author X and SCAP attributed Author Y versus the probability that Author Y 
wrote the document given those same complete observations. 

This is the approach taken in the second ensemble classifier. The probability that 
the author wrote the document taking all observations into account is calculated: ܲሺܨሃܧ஻&ܧௌሻ ൌ ෍ ܲሺܨ|݄ሻܲሺ݄|௛אு  ௌሻܧ&஻ܧ

where F is a classification, h is an hypothesis, H is the set of all hypotheses, EB is 
Burrows' observation, and ES is SCAP's observation. Therefore, P(F|EB&ES) is the 
probability that F is correct given both Burrows' and SCAP's observations. 

It can be shown that the summation given above equates to P(F|EB&ES), given the 
fact that in this particular application the classifications and hypotheses are equiva-
lent. For example, the hypothesis h="Author X wrote the document" is equivalent to 
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the classification F="Author X" and so P(F|h)=1. In other words, the probability that 
Author X is the correct classification given that Author X wrote the document is cer-
tainty. On the other hand, when the h and F don't correspond (e.g., the probability that 
Author X is correct given Author Y wrote the document) is nil. When F corresponds 
to h, P(F|h)=1; otherwise P(F|h)=0. Therefore, the summation can be simplified: ܲሺܨሃܧ஻&ܧௌሻ ൌ ܲሺ݄|ܧ஻&ܧௌሻ 

The most probable classification is then obtained by determining which classifica-
tion F gives the highest probability: argmaxிא஺௨௧௛௢௥௦ ܲሺܨሃܧ஻&ܧௌሻ 

This is accomplished by determining P(F|EB&ES) for every combination of observa-
tions EB and ES. In this ensemble method, each of the individual methods is used to 
attribute an author to each document. If they agree, then it is the chosen author that is 
attributed. If they do not agree, then a final decision is made based on P(F|EB&ES). It 
is the author that has the greater P(F|EB&ES) that is attributed. 

4 Methodology 

In this study, the baseline Burrows method, the improved Burrows method, the base-
line SCAP method, the improved SCAP method, and the two ensemble methods are 
compared. Note that both of the ensemble methods utilize the improved versions of 
the Burrows and SCAP methods. 

The basic experimental design consisted of a 15-class experiment, utilizing a leave-
one-out cross validation, and the results were measured in terms of accuracy. A 15-
class experiment means that the author was determined from a set of fifteen candidate 
authors. A leave-one-out cross validation means that each program in the data set was 
selected, in turn, as a query program while the remaining programs were used as the 
training data. This approach maximizes the size of the training data with each query, 
while simultaneously maximizing the number of queries made. Accuracy was meas-
ured simply as a percentage of programs correctly identified. 

4.1 The Data Set 

The data set consisted of 7,231 programs written in C++ and Java. The programs 
consisted of both open-source programs and sample programs from programming and 
data structures textbooks. The data set was split into four segments: open-source C++ 
programs (SegA), open-source Java programs (SegB), textbook C++ programs 
(SegC), and textbook Java programs (SegD). Each segment contained programs from 
fifteen unique authors, while the data set consisted of 30 unique authors overall. 

The open-source programs were collected using a procedure established by Bur-
rows [15]. The textbook programs were collected using a procedure established by 
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Tennyson [22-23]. The reader is encouraged to consult those sources for detailed 
descriptions of the collection procedures, which are not repeated here. 

A high-level statistical breakdown of the data set is provided in Table 1. A "sam-
ple" refers to a single document – in this case, a single source file. The min, median, 
mean, and max samples describe characteristics of the authors. The min, median, 
mean, and max LOC describe characteristics of the samples themselves. 

Table 1. Statistical overview of the data set 

SegA SegB SegC SegD 
Total Authors 15 15 15 15 
Total Samples 521 536 3134 3040 
Min Samples 4 4 19 29 

Median Samples 24 19 185 219 
Mean Samples 35 36 209 203 
Max Samples 101 172 453 509 

Min LOC 6 6 2 1 
Median LOC 78 92 36 37 
Mean LOC 149 184 48 50 
Max LOC 3265 2724 548 1079 

4.2 Experimental Design and Approach 

The experiment was executed independently for each of the four segments of data. 
Because each segment of data contained fifteen unique authors, each execution of the 
experiment was a 15-class experiment. The leave-one-out cross validation approach 
required that when a program was selected as the query program, that program was 
excluded from the author's profile in order to eliminate any resulting bias. Accuracy 
was measured as a percentage of programs correctly identified. Only the aggregate 
results across all four segments of data are reported in the Results section of this paper 
for the sake of clarity and concision. 

5 Results 

The experimental results are shown in Figure 2 and Table 2. The results show that the 
ensemble method based on the Bayes optimal classifier outperforms all the other me-
thods. Using the optimal ensemble classifier, the performance improved to 98.2% 
compared to 97.3% using the improved version of the SCAP method. This improve-
ment is statistically significant based on a chi-square statistical test for significance. 
The statistical improvement is measured relative to the improved version of the SCAP 
method because the ensemble method is based on the improved versions of the SCAP 
and Burrows method, and the SCAP method itself individually outperforms the Bur-
rows method. The goal was to create an ensemble method that outperforms both 
SCAP and Burrows individually. So, the improved version of the SCAP method is the 
standard against which the ensemble method is measured. 
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6 Analysis and Conclusion 

An ensemble method was created based on the Bayes optimal classifier that improved 
the accuracy to 98.2% compared to 88.9% by the Burrows baseline method and 
91.0% by the SCAP baseline method based on an empirical study whose results are 
shown in Figure 2 and Table 2. 

Table 2. Overview of experimental results 

Method Total Correct Percent Chi-Square 
Burrows Baseline 7231 6426 88.9% N/A 
Burrows Improved 7231 6778 93.7% N/A 

SCAP Baseline 7231 6581 91.0% N/A 
SCAP Improved 7231 7037 97.3% 1 
Ensemble (MAP) 7231 7040 97.4% 0.827167 

Ensemble (Optimal) 7231 7099 98.2% 6.41E-06 

 
 

 

Fig. 2. Overview of experimental results 

6.1 Analysis 

The first ensemble classifier was based on the maximum a posteriori (MAP) attribu-
tion, which is the most independently probable attribution given independently ob-
served data. The issue is that it is based on an independently-determined probability, 
which is not optimal in an ensemble classifier where there are multiple methods and 
multiple observations. The posterior probability is based on data when using only one 
respective method and it only takes into account the observation made by that me-
thod. The method did perform marginally better than the improved SCAP individually 
performed. However, it was not statistically significant. 

The second ensemble classifier is based on the Bayes optimal classifier. This type 
of classifier is guaranteed to be optimal based on the training data, because it takes 
into account all observations and the posterior probabilities are calculated based on all 
observations and attributions from the training data. 
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Although it clearly performs the best, there are two issues with this ensemble me-
thod. The first issue is a general problem that applies to all Bayes optimal classifiers. 
They are susceptible to overfitting. Certainly, this case is no exception. There are 
fifteen unique authors for each segment of data in the data set. There are two individ-
ual classifiers being combined in the ensemble classifier. So there are 15×15=225 
possible permutations, or combined observations. The vast majority of these observa-
tions never occur in the training data. In fact, in the SegA segment of data (picked 
arbitrarily as an example), only 21% (48 out of 225) of the possible observations ac-
tually occurred in the training data. Of those 48 observations, fifteen of those were 
matching observations (i.e., when both methods attributed the same author). That 
leaves only 33 observations of interest. Those 33 observations applied to only 46 
documents (less than 1.4 documents per observation). This means that most of those 
observations applied to only a single document in the data set. So, in those cases, the 
calculated posterior probably was based on a single observation of a single document. 

The second issue deals with the leave-one-out experimental design. In this type of 
experiment, the entire data set is used both for training and querying. Calculating each 
posterior probability 7231 times (once for each document in the data set, as each is 
chosen in turn to be the query document) is computationally not practical. So, the 
classifier was implemented such that the probabilities were calculated only once. As a 
result, the query document was left in the posterior probability calculations used to 
attribute that document. So, there exists the potential for bias in the results. As de-
scribed previously, the potential for bias only exists in an extremely small percentage 
of observations. A vastly smaller percentage of those observations would result in a 
different attribution if the query document were omitted from the probability calcula-
tions. In fact, a manual inspection of the results did not reveal a single attribution that 
would have been made differently had the query document been omitted from the 
calculations. However, it can’t be said with certainty that such an attribution does not 
exist. Therefore, an unavoidable – but certainly nominal – bias potentially exists in 
the posterior probability calculations. 

Despite these issues, the results are indicative that such an ensemble classifier 
could be used in a practical application. In a practical setting, the issue regarding the 
leave-one-out validation would not be applicable. The known corpus of the authors 
would be given, and the probabilities would only need to be calculated once based on 
that data. The issue regarding overfitting, on the other hand, is difficult to mitigate. 
The probabilities would simply be calculated based on the best and only information 
available, and the classifier is guaranteed to be optimal with respect to that data. 

6.2 Future Work 

Student-submitted programs are often used in authorship attribution but are proble-
matic for several reasons. They cannot generally be shared due to privacy issues. Mi-
nimally, the programs would have to be made anonymous, such that all explicitly-
identifying information is stripped. Student-submitted programs are also not a good 
source of "perfect ground truth" because a large portion of student programs are co-
pied and plagiarized. Furthermore, the programs should come from students with 
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varied backgrounds and from various institutions, but typically consist only of pro-
grams from a single institution because such programs cannot be shared. Also, pro-
gramming assignments often contain program segments that are provided by the in-
structor as part of the assignment, which would obviously skew experimental results. 

However, a study could be executed expressly for the purpose of collecting stu-
dent-submitted programs to be shared and used by researchers. The study would need 
to be widespread, covering numerous and varied institutions. The programs would 
need to be developed in a controlled environment to prevent copying and plagiarism. 
Although it would be a large undertaking, such a project would be feasible and appli-
cable to more than just authorship attribution experiments. Any research requiring the 
use of student-submitted programs would be benefitted. 

A universal data set suitable for standard use in authorship attribution experiments 
(as well as other fields also requiring similar collections of programs) is a common 
vision among researchers. Perhaps the use of open-source programs collected using 
the Burrows approach, textbook programs that are freely available and accessible for 
download via the Web, and student-submitted programs collected in a controlled en-
vironment as suggested would together satisfy that vision. 

Other areas of future work include issues such as code reuse, multiple authors, 
code obfuscation, the use of IDEs, the application of conventions and guidelines, 
inconsistent programming style, and programmer background and education. Another 
major factor is the typical closed form presentation of the problem, such that authors 
are attributed from one of a set of finite candidate authors. A variation for further 
study is the much harder open form of the problem: to attribute whether the author 
was one of a finite set or an unknown author from outside that set. 
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Abstract. Permutation-based indexing is a technique to approximate k-nearest
neighbor computation in high-dimensional spaces. The technique aims to pre-
dict the proximity between elements encoding their location with respect to their
surrounding. The strategy is fast and effective to answer user queries. The main
constraint of this technique is the indexing time. Opening the GPUs to general
purpose computation allows to perform parallel computation on a powerful plat-
form. In this paper, we propose efficient indexing algorithms for the permutation-
based indexing using multi-core architecture GPU and CPU. We study the per-
formance and efficiency of our algorithms on large-scale datasets of millions of
documents. Experimental results show a decrease of the indexing time.

Keywords: K-NN, Similarity Search, GPU, Permutation-Based Indexing, Big-
Data.

1 Introduction

Searching for similar objects in a database is a fundamental problem for many appli-
cations, such as information retrieval, visualization, machine learning and data mining.
Several techniques have been proposed for improving the performance of searching.
One of the promising routes is the approximate searching methodologies [1].

Approximate searching provides fast response time, while accepting some impreci-
sion in the output results. Permutation-based indexing [2, 3] is a recent technique for
approximate searching. The idea behind it is to represent each object by a list of permu-
tations of selected neighboring items (reference points). The similarity between any two
objects is then derived by comparing the two corresponding permutation lists. Several
data structures have been proposed to handle these permutation lists [4, 3, 5–7]. They
manage to answer users queries in fast and effective way. On the other hand, the index-
ing process consumes a lot of time, which makes the algorithm not effective for large-
scale data (aka Big-Data). To handle this big data, a parallel platform is needed. The
increase in performance of graphic processing units (GPU) using the NVIDIA Compute
Unified Device Architecture API (CUDA) allows users from different communities to
perform parallel computation on a powerful platform.

Studying the performance of the permutation-based indexing on GPU was proposed
in [8]. In [8], the authors showed how can the GPU be used to answer multiple queries
requests for permutation-based indexing.
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DOI: 10.1007/978-3-319-11988-5_26 c© Springer International Publishing Switzerland 2014
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In this work, we propose a multi-core implementation of the indexing algorithm on
GPU and CPU. Our proposal, can be adapted easily to work for any of the available data
structures for permutation-based indexing [4, 3, 5–7]. To validate our claims, we test
our techniques on number of high dimensional large dataset containing several millions
of objects. Hence, The main difference between this work and the work presented in
[8], that we target the indexing process, while in [8] the searching process is targeted.

The rest of the paper is organized as follows. Section 2 introduces the permutation-
based indexing model. Section 3 provides an overview of the GPU architecture. Section
4 introduces parallel indexing algorithms on GPU and CPU. Finally, we present our
results in section 5 and conclude in section 6.

2 Permutation-Based Indexing

2.1 Indexing Model

Definition 1. Given a set of N objects oi, D = {o1, . . . , oN} in m-dimensional space,
a set of reference objects R = {r1, . . . , rn} ⊂ D, and a distance function which follows
the metric space postulates, we define the ordered list of R relative to o ∈ D, L(o,R),
as the ordering of elements in R with respect to their increasing distance from o:

L(o,R) = {ri1 , . . . , rin} such that d(o, rij ) ≤ d(o, rij+1 ) ∀j = 1, . . . , n− 1

Then, for any r ∈ R, L(o,R)|r indicates the position of r in L(o,R). In other words,
L(o,R)|r = j such that rij = r. Further, given ñ > 0, L̃(o,R) is the pruned ordered
list of the ñ first elements of L(o,R).

Figures 1(b) and 1(c) give the ordered lists L(o,R) (n = 4) and the pruned ordered lists
L̃(o,R) (ñ = 2), for D and R illustrated in Figure 1(a).

In K-NN similarity queries, we are interested in ranking objects (to extract the K
first elements) and not in the actual inter-object distance values. Permutation-based in-
dexing relaxes distance calculations by assuming that they will be approximated in
terms of their ordering when comparing the ordered lists of objects. To efficiently an-
swer users queries, authors in [4, 3, 5–7] proposed several strategies to compare the
ordered lists efficiently. The main weakness of these techniques is the indexing time,
especially when the number of references and objects increases.

2.2 Technical Implementation

Algorithm 1 details the indexing process. For each object in D, the distance d(oi, rj)
with all the references in the reference set R is calculated (lines 1-4). After sorting the
distances in increasing order using the suitable sorting algorithm (QuickSort is used),
the full ordered list L(oi, R) is created (Line 5). In line 6, partial lists L̃(oi, R) are
generated by choosing the top ñ references from L(oi, R). In line 7, L̃(oi, R) are stored
in the appropriate data structure [4, 3, 5–7]. Theoretically, the sorting complexity is
O(nlogn) which leads to O(N(n+ nlogn)) indexing complexity.
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Fig. 1. a) White circles are data objects oi; black circles are reference objects rj ; the gray circle
is the query object q b) Ordered lists L(oi, R), n = 4. c) Pruned ordered lists L̃(oi, R), ñ = 2.

Algorithm 1 (Permutation-Based Indexing)
IN: D of size N , R of n and ñ ≤ n

OUT: L̃(oi, R)∀i = 1, . . . , N − 1
1. For oi ∈ D
2. For rj ∈ R
3. b[j].dis = d(oi, rj)
4. b[j].indx = j
5. L(oi, R) = quicksort(b, n)

6. L̃(oi, R) = partiallist(L(oi, R), ñ)

7. Store the ID i of oi and its L̃(oi, R) for other processing.

3 GPU Architecture

The GPU architecture follows the Single Instruction Multiple Thread (SIMT) model.
That allows to execute single instruction through different threads on different data.
GPUs were dedicated to handle graphics primitives. With the evolution of the NVIDIA
CUDA API, it becomes applicable to access the GPUs for powerful computation. A
device is the GPU card and a host is the computer that hosts the GPU. The GPU con-
tains a large number of computing cores with limited specification to perform multiple
operations in parallel. A kernel (function) launches thousands of threads which are orga-
nized in two levels: grids and blocks. The grids are two or three-dimensional of blocks.
Every block consists of an upper limit of threads (512 or 1024) depending on the de-
vice. GPU has global and local memory. Accessing the local memory is faster than the
global memory. On the other hand, the local memory size (kilo bytes) is smaller than
the global memory (Giga bytes). In order to get a good performance from the GPU,
the data that need to be computed should be small enough in order to fit in the local
memory, otherwise all the time is consumed in fetching the data from the global mem-
ory. Accordingly, algorithms like sorting are not effective on the GPU as the data that
need to be sorted cannot be fitted once in the local memory, hence most of the time is
consumed in fetching the data from the global memory.
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4 Multi-Core Indexing

In sections 4.1 and 4.2, we propose parallel indexing algorithms for our permutation-
based indexing strategy on multicore architecture GPU and CPU, respectively. A gen-
eral baseline, as we are working with large-scale data, the data can not be allocated
neither on the GPU global memory nor on the CPU random-access memory (RAM).
The indexing process is done by portion. Hence, the indexing process is organized as
follows. We read a portion of the data Nl. The read portion is indexed and stored in the
RAM. When the RAM is full, the data are stored to the hard-disk.

4.1 Exploiting GPU Architecture

As explained in section 2, the indexing process is composed of two procedures. First, we
calculate the distance between each object oi and each reference point rj in R. Then, we
select the closest ñ reference points to each object oi by sorting the references based on
their distances (building L̃(oi, R)). The GPU architecture is based on single instruction
multiple threads (SIMT) model. All the threads perform the same operation, but for
different data, which meets our algorithm. In the next three subsections, we propose
three parallel strategies that work on different level for improving the running time and
increasing the throughput.

Fig. 2. Our 3 GPU algorithms a) PDSS b) PDPS c) PIOF

Parallel Distance Calculation and Sequential Sorting (PDSS). In PDSS, the work is
shared between the CPU and the GPU. On the GPU, there is one kernel (Dist()), which
calculates the distances between each Nl object and the reference set R. The distance
information is then sent back to the CPU to be sorted and stored (Figure 2(a)). Using
this technique, only the distances are calculated in parallel. Hence, the complexity of
the algorithm is reduced to O(Nn

P + N(nlogn)) + t1, where P is the number of the
threads that can run in parallel at the same time and t1 is the time needed to transfer the
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data between the CPU and GPU. The data size that can be processed in parallel on the
GPU has to satisfy this equation:

s× ((Nl ×m) + (n×m) + (Nl × n)) < GPU Global Memory Size, (1)

where (Nl ×m), (n×m) and (Nl × n) represent the data objects, the reference points
and the distance information respectively. s represents a 4 byte data-type (float for dis-
tance information and int for object id). The distance calculation kernel on the GPU
is built using 2 dimensional block with sizes equal to 16 and 2D grid with sizes equal
to Nl divided by the block size. Hence, every thread calculates the Euclidean distance
between a given object and a given reference point based on the thread coordinates [9].

Parallel Distance Calculation and Sorting (PDPS). Here, the complete process is
done on the GPU. We parallelize the sorting step to minimize the size of the data trans-
ferred from the GPU to the CPU.

We have two kernels. The first kernel (Dist()) calculates the distances similarly to the
previous technique, between the Nl read objects and the reference set R in parallel. In
the second kernel (Sort()), each thread sorts a separate ordered list using the QuickSort
algorithm. The sorting process of one list on one GPU core is slower compared to using
the CPU core, as the GPU cores are less powerful. On the other hand, on GPU, multiple
lists are sorted in parallel, which should improve the running time (Figure 2(b)).

The complexity of the algorithm is therefore reduced to O(N(n+(nlogn))
P )+t2, where

t2 is the time needed to send the ranks to the host. t1 in PDSS is greater than t2, because
the number of elements that are sent to the CPU is Nl×n while, for this new technique,
it is Nl × ñ.

The main constraint of this technique is that all the data needs to reside on the GPU
(the partial objects, the references, the ids of references and the distances values). Since,
the GPU global memory size is limited. Hence, equation (1) becomes:

s× ((Nl ×m) + (n×m) + (Nl × n)+ (Nl × ñ)) < GPU Global Memory Size, (2)

where (Nl × ñ) represents the reference id (4 bytes). Accordingly, with a high number
of reference points, the number of objects processed at the same time Nl has to be
decreased, which decreases the throughput and affects the speedup.

Parallel Indexing On the Fly (PIOF). As mentioned in section 3, a good performance
can be achieved using the GPU, if the data that needs to be computed is small enough
to fit in the registers of the GPU cores. Otherwise all the time is consumed in moving
the data from and to the global memory. Hence, the sorting process on the GPU for the
PDPS is a major bottleneck, since the distances are located in the GPU global memory.

We propose algorithm 2 to reduce the complexity of sorting to pick up the closest
ñ references. Instead of sorting the whole distances between an object and the list of
references, to get the closest references, we sort only the first ñ references of the list
(line 1) by their distance to the object. Since, there might be other references in the
list closer to the object than the objects in this pilot sorted partial list. The algorithm
checks the distances starting from position ñ+ 1 to n (lines 2-5). If one of the distance
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is smaller than the distance at position ñ, the partial list is updated (lines 5-9). Lines 3-6
in algorithm 1 are simply replaced by algorithm 2.

Theoretically, the indexing sequential complexity is reduced from O(N(n+nlogn))
to O(N(n + (ñlogñ) + n)), where O(ñlogñ) represents the partial sorting and O(n)
represents the updating.

Algorithm 2 (Picking ñ nearest references)
IN: Distance information b and ñ

OUT: L̃(oi, R)
1. quicksort(b, ñ)
2. For j = ñ+ 1 → n
3. If (b[ñ].dis > b[j].dis)
4. i = BinarySearch(0, ñ, b[j].dis)
5. tmp = ñ
6. while(tmp ≥ i)
7. b[tmp].dis = b[tmp− 1].dis
8. b[tmp].indx = b[tmp− 1].indx
9. tmp−−

To map this strategy on the GPU, we have two kernels (Figure 2(c)). In the first kernel
(Dist()), the distance is calculated similarly to the previous techniques, but between the
loaded objects and the first ñ references only, to get primary distance information (line
1 in algorithm 2). Accordingly, the size of the distance information array is reduced
to (Nl × ñ). Then, in the second kernel (DistSort(), lines 2-9 in algorithm 2), each
thread calculates the distance between an object and the rest of references from position
ñ + 1 to position n. If a relative smaller distance information is found, the distance
array is updated. Otherwise, the distance information is ignored. The complexity of the
algorithm is reduced to O(N(2n+(ñlogñ))

P ) + t2. For the memory constraint, equation
(2) becomes:

s× ((Nl ×m) + (n×m) + 2(Nl × ñ)) < GPU Global Memory Size, (3)

With this technique, we gain three privileges. The first gain is decreasing the size of
the distance information array from Nl × n to Nl × ñ. That allows to process more
objects in parallel compared to PDSS and PDPS. The second gain is in decreasing the
dependency between the threads by sharing the work between the kernels, which allows
faster processing of the objects. The third gain is decreasing the latency between the
cores and the global memory. In PDPS, for sorting the lists, the distance information
is loaded from the global memory. With PIOF, the distance information is calculated
instantly. Hence, it is located in the local memory and accessing the local memory
is much faster than the global memory in the GPU architecture, which improves the
performance.

In the second kernel (DistSort()), as the distance is calculated between an object and
the rest of references (from ñ + 1 to n), we reduce the latency by taking a copy of the
object under processing from the global memory to the local memory.
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4.2 Multi-Core CPU

The most common library for CPU multi-core parallelization is OpenMP [10]. We use
it for the indexing process. When deploying algorithm 1, a bottleneck in the access of
the data file appears, because the OpenMP library does not permit parallel disk access.
Accordingly, accessing the hard disk by different threads has to be organized in order
to avoid random disk access. We propose two strategies.

Single-Disk Access. In this procedure, there is only one thread which accesses the hard
disk. The main thread reads Nl objects at each iteration. After that, P threads start to
process the objects in parallel (creating the ordered list, sorting and storing it). The main
issue with this technique is that, if one of the threads finishes its work before the others,
it has to wait to synchronize with the master thread, since the master thread is the only
thread that can access the hard disk per-time.

The complexity of the algorithm is therefore reduced to O(N(n+(nlogn))
P )+ts, where

ts is the time needed for synchronization.

Multiple-Disk Access. Unlike in the previous procedure, all the threads can access the
hard disk. Each thread reads multiple objects per-time and processes them separately
without waiting for the master thread. To avoid random disk access, we setup a pipeline.
Hence, when the algorithm starts, the first thread reads a portion from the file, then the
second thread reads a second portion and so on. Once a thread is done with its portion,
it goes directly to the disk and reads the next portion. The total output size from all the
threads should be less than the maximum size of the RAM:

s× ((n×m) + P ((Np ×m) + 2(Np × ñ))) < RAMSize, (4)

where P is the number of active processes and NP is the number of objects read by
each processor (Np=Nl

P ).
The algorithm complexity is similar to that of the previous technique, but the pipeline

strategy gives more flexibility for the threads, reduces the synchronization time ts and
avoids random disk access.

5 Experimental Results

We use the CoPhIR dataset [11] to evaluate the proposed algorithms. This dataset con-
sists of 106-million MPEG-7 global visual descriptors extracted from 106-million im-
ages. The descriptors are scalable color, color structure, color layout, edge histogram
and homogeneous texture. In our experiments, we extracted three data sets of sizes 1-
million, 10-millions and 106-millions. The vectors in each dataset are constructed by
combining the first three descriptors, which result in vectors of size 208-dimension.

We applied our indexing algorithms on the metric permutation table [4] as it is the
recent data structure for permutation-based indexing. The experiments were performed
for pruned ordered lists of size ñ = 10 and ñ = 100 for n = 1000 and n = 2000.
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The algorithms were implemented in C. We used CUDA 5.1 and OpenMP for GPU
and CPU parallelization respectively. The experiments were run on two different ma-
chines. The first machine C1 holds 4 cores (3GHZ) Intel i7 processor, 4MB L3-Cache,
16GB RAM, NVIDIA NVS 5200M (96 CUDA Cores, 2 Streaming Multiprocessor, 1
GB global memory), and linked with 512GB storage capacity (SSD Disk). The second
machine C2 holds 32 Cores (2.70GHz) Intel Xeon processor, 20MB L3-Cache, 128GB
RAM and linked with 512GB storage capacity (SSD Disk). On the two machines, the
maximum RAM size which is used is 1.5 GB. Hence, writing to the hard disk is done
when the size of the permutation lists produced exceeds 1.5 GB.

For a fair comparison, algorithm 2 is applied for all the implementations (sequential
and multicore CPU and GPU) to pick up the closest ñ reference objects. As the two
machines do not have the same specifications, we run the sequential algorithm on both
of them. On the first machine SeqC1, to compare it with the GPU implementations. On
the second machine SeqC2 to compare it with the CPU multicore implementation. For
equity, we fixed the size of Nl, with respect to the dataset for all the algorithms.

5.1 Indexing Using GPU

Table 1 shows the sequential indexing time SeqC1, the parallel indexing time, the
speedup (Sp = Sequential time

Parallel time ) and the average memory used at each iteration for
the three proposed GPU algorithms in section 4.1.

In terms of indexing time, we note that the PIOF algorithm gives the best index-
ing time and speedup compared to the PDSS and PDPS algorithms. The reason is the
partial sorting process that is achieved through the picking algorithm that we proposed
(algorithm 2). That helps to calculate the distances instantly, which makes the distances
reside in the local memory. Accordingly, the latency of sorting which is consumed in
getting the distance values from the global memory is reduced.

For the PDSS algorithm, we note that the speedup decreases when the number of
nearest references ñ increases, as the sorting step is done sequentially. For the PDPS,
with small number of nearest references ñ = 10, the algorithm performs better than
the PDSS algorithm. On the other hand, when ñ = 100, PDPS becomes similar or
slower than PDSS in performance. The main reason is that for the PDPS, the distances
are pre-calculated and saved in the global memory. As a result, the sorting process on
GPU becomes not efficient due to increasing the latency for getting the distances from
the global memory. Hence, when ñ increases, the parallelization which is offered by
the GPU for sorting becomes not as efficient as the sequential sorting on the CPU.
This effect is reduced, in the PIOF algorithm as the distance information are calcu-
lated instantly, which means that it is located in the local memory, which improves the
performance.

In terms of memory, PIOF gives the lowest memory usage. The main reason is that
we do not store all the distance information. We store only ñ distances and consider
them as a guidance to calculate the rest of references, that allows to reduce the size
of the memory that is needed to be allocated which helps to process more objects in
parallel, which improves the total running time.
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Table 1. Average indexing time (in minutes), memory usage (in MB) and speedup Sp for PDSS,
PDPS and PIOF algorithms on GPU

N n ñ SeqC1 GPU
Nl M PDSS Sp M PDPS Sp M PIOF Sp

1M
1K

10 5 1000 5.4MB 3.9 1.3x 5.4MB 3.5 1.4x 1.6MB 2.4 2x
100 6 1000 5.4MB 4.98 1.2x 5.8MB 6 1x 2.3MB 5 1.2x

2K
10 10 1000 10MB 6.3 1.5x 10MB 6 1.7x 2.5MB 3.54 2.8x
100 12 1000 10MB 8 1.5x 11MB 9 1.3x 3.5MB 7.44 1.6x

10M
1K

10 44 10000 46MB 33 1.3x 47MB 32 1.4x 5MB 16 2.7x
100 50 10000 46MB 47 1.1x 50MB 62 0.8x 16MB 42 1.2x

2K
10 82 10000 85MB 57 1.4x 86MB 56 1.5x 10MB 24 3.4x
100 90 10000 85MB 72 1.3x 89MB 88 1x 17MB 56 1.6x

106M
1K

10 445 10600 49MB 345 1.3x 50MB 330 1.34x 10MB 180 2.5x
100 513 10600 49MB 498 1x 53MB 498 1x 10.5MB 473 1x

2K
10 888 10600 90MB 601 1.5x 91MB 570 1.6x 10MB 261 3.4x
100 1206 10600 90MB 771 1.5x 94MB 996 1.2x 18MB 620 1.9x

Effect of Nl. The number of objects Nl that are processed at the same time affects the
indexing time. To study the effect of Nl, we have increased the size of Nl = 106000
(10 times) and run the experiments on the 106M dataset for n = 1000, n = 2000 and
ñ = 100. Table 2 shows the indexing time of the Nl value for the PIOF algorithm. It
is clear that the running time is reduced (comparing to results in Table 1) and we gain
more speedup when the number of objects that are processed in parallel increases. We
also believe that with more powerful GPU (more cores, more global memory), a much
better performance can be achieved.

Table 2. Average indexing time in minutes (SeqC1 and TPIOF ), average memory usage in
megabytes and speedup Sp on GPU for the PIOF for Nl = 106000

N n ñ SeqC1 GPU
Nl Memory TPIOF Sp

106M
1K 100 513 106000 170MB 466 1.1x
2K 100 1206 106000 180MB 600 2.1x

5.2 Indexing using Multi-core CPU

Tables 3 and 4 show the sequential indexing time, the parallel indexing time, the speedup
(SP ) and the efficiency (E = SP

P ) for the three datasets on 4, 8 and 16 multicore CPU
for the single-disk access and multi-disk access algorithms presented in section 4.2 on
the second machine C2.

We note that the multi-disk access algorithm is faster than the single-disk access
algorithm. In multi-disk access algorithm the threads do not need to wait for each other
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in order to access the hard disk compared to the single-disk access algorithm as it was
discussed in section 4.2. Hence, its indexing time, speedup and efficiency are better
compared to the single-disk access algorithm.

Table 3. Average indexing time in minutes (sequential SeqC2 and parallel T4, T8 and T16),
speedup (S4, S8 and S16) and efficiency (E4, E8 and E16) for single-disk access algorithm

N n ñ SeqC2 Multi-core CPU (single-disk access)
T4 E4 S4 T8 E8 S8 T16 E16 S16

1M
1K

10 4 1.96 0.51 2.03x 1.5 0.33 2.64x 1.35 0.19 2.96x
100 4.5 1.93 0.58 2.3x 2.1 0.3 2.14x 2 0.14 2.3x

2K
10 9.3 2.9 0.79 3.2x 2.55 0.45 3.6x 2.2 0.3 4.3x

100 9.4 4.4 0.53 2.12x 4.4 0.3 2.1x 6.3 0.094 1.5x

10M
1K

10 40.7 17.4 0.58 2.3x 14 0.36 2.9x 10.9 0.23 3.7x
100 46 18.1 0.63 2.5x 15.3 0.4 3x 12.2 0.24 3.8x

2K
10 73 29.4 0.6 2.5x 24.3 0.4 3x 17.4 0.3 4.2x

100 82.4 31.7 0.65 2.6x 27.2 0.38 3x 22 0.23 3.8x

106M
1K

10 402 140 0.0.71 2.9x 109 0.5 3.7x 129 0.193 3.1x
100 450 187 0.6 2.4x 144.9 0.38 3.1x 135 0.21 3.3x

2K
10 804 279 0.72 2.88x 171.8 0.58 4.7x 153 0.33 5.2x

100 912 298 0.76 3x 189.2 0.6 4.8x 174.8 0.33 5.2x

For the two algorithms, we note that when the number of cores increases, the effi-
ciency decreases. The reason for that is the increasing time for reading from and writing
to the hard-disk. For reading (multi-disk access algorithm), the threads access the hard-
disk in a pipeline fashion. Hence, when we have more threads, the pipe-lining queue
length increases, which increases the running time. For writing (single-disk access and
multi-disk access), when the number of processors increases, more objects are pro-
cessed at the same time. The available RAM size is then divided by the available num-
ber of processes, which increases the writing rate to the hard-disk as the RAM is filled
in at a higher rate. For example, we assigned 1.5 GB of memory for our application.
With 16 cores, each thread has only around 96 MB of this memory, which increases the
writing rate to the hard disk for each thread. There should be a good balance between
the available memory and the number of cores that are used to avoid disk contention
and to get a good performance.

Increasing Memory Size for Multi-core CPU. To measure the effect of the memory
size on the multi-core CPU algorithm, we indexed the 106M dataset again but with
different memory size per thread for n = 1000, n = 2000 and ñ = 100. In these
experiments, we assigned 1.8GB of memory for each thread. Hence, if we have 16
running processes, the total allocated memory would be 28.8GB. Table 5 shows the
running time in minutes using the multi-disk access algorithm. It is clear from the table
(comparing to the results in Table 4) that increasing the memory per thread improves
the indexing time. The main reason for that improvement is the decrease of the writing
time to the disk.
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Table 4. Average indexing time in minutes (sequential SeqC2 and parallel T4, T8 and T16),
speedup (S4, S8 and S16) and efficiency (E4, E8 and E16) for multiple-disk access algorithm

N n ñ SeqC2 Multi-core CPU (multi-disk access)
T4 E4 S4 T8 E8 S8 T16 E16 S16

1M
1K

10 4 1.8 0.55 2.2x 1.2 0.41 3.3x 0.66 0.375 6x
100 4.5 1.4 0.8 3.2x 1.2 0.47 3.8x 1.3 0.22 3.5x

2K
10 9.3 3.9 0.6 2.4x 2.4 0.48 3.8x 1.2 0.48 7.7x

100 9.4 3 0.75 3x 2.46 0.5 4x 2.94 0.2 3.2x

10M
1K

10 40.7 10.5 0.98 3.8x 5.4 0.94 7.5x 5.34 0.48 7.7x
100 46 13.2 0.86 3.4x 7.8 0.74 6x 7.5 0.38 6x

2K
10 73 19.8 0.93 3.7x 10.5 0.88 7x 7.8 0.59 9x

100 82.4 22.8 0.9 3.6x 13.2 0.77 6x 10.68 0.5 8x

106M
1K

10 402 108 0.93 3.7x 85 0.59 4.7x 42.6 0.59 9.4x
100 450 132 0.85 3.4x 75 0.75 6x 66 0.43 6.8x

2K
10 804 204 0.98 3.9x 120 0.83 6.6x 84 0.59 9.4x

100 912 240 0.95 3.8x 126 0.9 7x 120 0.48 7.6x

Table 5. Average sequential SeqC2 and parallel T16 indexing time in minutes, speedup S16 and
efficiency E16 on multi-core CPU for multi-disk access algorithm with 1.8 GB per thread

N n ñ SeqC2 Multi-core CPU (multi-disk access)
T16 E16 S16

106M
1000 100 450 50 0.6 9x
2000 100 912 80 0.7 11x

5.3 Comparing GPU to Multi-core CPU

We note that, when we compare the speed up of the PIOF algorithm on GPU (Table 1)
to the speedup of the multi-disk access using 4 cores CPU (Table 4), the CPU provides
much better performance at a lower cost. We believe that there are two reasons. The first
reason is that the data cannot be loaded on the GPU directly. CUDA does not support
system calls. Hence, the reading should be done through the CPU. This results in a two-
layer process, the data is read in the RAM, then transferred to the GPU. While for the
multi-core CPU, it is a one layer process, the data is read to the RAM and processed
directly.

The second reason is the algorithm itself. To get a good performance on the GPU,
the GPU kernel should be as compact as possible to make all the data on the registers of
the cores, which is not possible in the case of our algorithm. However, with some algo-
rithm optimization, we managed to get a modest speedup, compared to the sequential
algorithm as we show in the PIOF algorithm.

6 Conclusion

Opening the GPUs to general purpose computation allows to perform parallel compu-
tation on a powerful platform. We present different permutation-based indexing algo-
rithms for multi-core GPU and CPU architectures. We show that using the multi-core
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CPU a much better performance can be achieved compared to the GPU at a lower cost
due to the limitation of the GPU platform and the complexity of permutation-based
indexing. The main bottleneck of the permutation-based indexing is the sorting of the
ordered lists as it is done many times. Due to the architecture of the GPU, the sorting
process on GPU is not efficient. However, with some algorithm optimization, we man-
aged to get a modest speedup. The evaluation is performed using standard and large
datasets. We now work at a hybrid version of using multicore CPU and GPU at the
same time. We are also working on a distributed version to improve the indexing per-
formance.
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Abstract. We study melodic similarity in flamenco singing by using the
Dynamic Time Warping (DTW) distance. Given two melodic contours,
the score of the alignment of the two melodies is taken as a similarity
measure. Concretely, we consider a particularly representative flamenco
repertoire, the tonás, a cappella flamenco singings with free rhythm and
high degree of complex ornamentation. We show that the DTW-distance
discriminates correctly variations between the styles. In order to speedup
the quadratic time and space complexity of the standard DTW, our strat-
egy is to perform an efficient segmentation on the pitch contour before
applying dynamic programming. We show that our method achieves bet-
ter results (both in efficiency and accuracy) than other existing DTW-
based similarity measures.

Keywords: Melodic Similarity, Alignment, Segmentation, Flamenco
Music.

1 Introduction

Alignment algorithms are widely used as a measure to compare similarities of
sequences of symbols. For instance, in some domains such as speech recognition
there have been many distances proposed all of them providing some alignment
between two sequences. One of the most popular technique is the dynamic time
warping distance (DTW) [29,27]. Another application field is bioinformatics [5],
where the alignment algorithm is used to find patterns in protein sequences.
Also, alignment techniques have been adapted to musical similarity [21,26,20].
One of the reasons that make suitable their use in music is that the structural
alignment is a prominent model in cognitive science for human perception of
similarity [11].

The objective of DTW is to compare two sequences X := x1, x2, ..., xn and
Y := y1, y2, ..., ym where X and Y are feature sequences sampled at equidistant
points in time. To compare two different features, one needs a local cost measure.
Typically, the local cost c(X,Y ) is small (low cost) if X and Y are similar to
each other, and otherwise c(X,Y ) is large (high cost). Evaluating the local cost
measure for each pair of elements of the sequencesX and Y , one obtains the cost
matrix defined by C(n,m) := c(xn, ym). Then the goal is to find an alignment
between X and Y having minimal overall cost.

A.J. Machado Traina et al. (Eds.): SISAP 2014, LNCS 8821, pp. 289–300, 2014.
DOI: 10.1007/978-3-319-11988-5_27 c© Springer International Publishing Switzerland 2014
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An (n,m)-warping path p = (p1, ..., pL) defines an alignment between two se-
quencesX and Y by assigning the element xn ofX to the element ym of Y subject
to max(n,m) ≤ L ≤ n+m−1. The warping path is a sequence of elements from
the matrix where each element pk = (i, j) must meet several criteria: (i) bound-
ary conditions to restrict the searching space for warping paths, (ii) monotony:
the element pairing is monotonous with respect the time and (iii) continuity to
ensure that neighboring elements correspond to adjacent cells in the matrix. The
total cost cp(X,Y ) of a warping path p between X and Y with respect to the

local cost measure c is defined as cp(X,Y ) :=
∑L

�=1 c(xn�
, ym�

). Then, an opti-
mal warping path between X and Y is a warping path p∗ having minimal total
cost among all possible warping paths. The DTW distance DTW (X,Y ) between
X and Y is then defined as the total cost of p∗: DTW (X,Y ) := cp∗(X,Y ) =
min{cp(X,Y ) s.t. p is an (n,m)−warping path}. As most alignment algorithms,
the calculation of the DTW distance uses a dynamic programming approach. The
element C(i, j) in the matrix contains the score of the optimal alignment up to xi

and yj and therefore, C(n,m) contains the score of the optimal alignment of the
complete sequences. Thus, the total alignment is obtained by tracing back from
C(n,m) to C(0, 0) in O(nm) time and space. The quadratic time and space
complexity of DTW creates the need for methods to speed up dynamic time
warping. There have been many efforts spent on speeding the similarity search
under DTW, varying in the assumptions on the DTW variant used (e.g., global
or local constrains).Two of the most commonly used constraints are the Sakoe-
Chiba band [29] and the Itakura Parallelogram [13], where alignments of cells
can be selected only from a specific region. However, the usage of these global
constraints can be problematic, since the optimal warping path may traverse
cells outside the specified constraint region. This fact may lead to undesirable or
even completely useless alignment results. Thus extensive research has been per-
formed on how to accelerate local constrains DTW computations, in particular
for one-dimensional (or low-dimensional) real-valued sequences. Some effective
strategies for time series are data abstraction and lowerbounding,[16,17,2], mul-
tiscale DTW [1,30], among others. We refer to [27] a comprehensive account
on DTW and related pattern recognition techniques in the context of speech
recognition.

In this paper we introduce a modification of DTW, the Segmentation DTW
approximation (SDTW), which is suitable for computing melodic similarity in
presence of baroque ornamentation, specifically in flamenco singing. Thus we
suggest using the DTW distance as a low-level melodic similarity measure for
flamenco music. This measure can be used for automatic classification as well as
for musical studies to characterize variations in the flamenco styles. We prove
that the SDTW approach is an efficient approximation algorithm for melodic
similarity yielding stable alignments in the presence of baroque ornamentation
in a capella flamenco singing. The strategy is based on a sweeping algorithm to
reduce the input size in the classical DTW approach. Using a set of melodies
from the flamenco repertory, we evaluate the strategy and show that it provides



An Efficient DTW-Based Approach for Melodic Similarity 291

better results than other approximation algorithms when trying to automatically
distinguish different styles and variants.

The structure of this paper is as follows. Due to the novelty of the application
area, next section gives a brief overview of the flamenco music and its computa-
tional analysis. Afterwards our strategy is presented. Next, we state the corpus
for the evaluation approach and report the empirical evaluations demonstrat-
ing the practicality of our algorithm. The paper finishes up with a conclusion
section.

2 The Flamenco Melody and Its Computational Analysis

Over the last few years the use of computational tools in music research has
grown rapidly, in music technology and especially in music information retrieval
(MIR). Currently, we can find a large number of applications of music technology
in the literature. Surprisingly enough, most of research and applications were
done for Western music, either popular music or classical music from the common
practice [4]. The challenges posed by the research in ethnic music are significant
because of the particular musical features of a given tradition, which in many
cases are markedly different from the Western one. In this respect, flamenco
music is a case in point. Flamenco is a music tradition originally from Andalusia
in southern Spain. Flamenco music is a non-Western, oral tradition with very
particular musical features. We refer to the books [24,28] for a comprehensive
study of styles, musical forms and history of flamenco.

Many fundamental problems in flamenco music are open. A simple question
such as musical transcription is by no means solved in flamenco music. As an oral
tradition, performers never had the need to transcribe. Furthermore, flamenco
has started to be studied from academia recently and available scores are scant,
mostly limited to guitar. Therefore, recent algorithms have been developed to
automatically transcribe flamenco a cappella singing from audio input [8]. Other
open problems in flamenco music are melodic and rhythmic similarity, style
classification, singer identification, among others.

The most basic element of flamenco is the voice. A lone singer, accompanied
only by handclaps, finger snapping or table rapping, or simply the naked voice,
can be the quintessence of pure flamenco. In the flamenco jargon, singing is called
cante, songs are termed cantes and styles are palos. in this paper we use this
terminology. The musical characteristics are major contributors to what makes
the art unique. Regarding flamenco melodies, a notable feature is the abundant
use of ornamentation, melisma (multiple notes sung on a single syllable) and
the apparent lack of a steady rhythm. The last feature is due to the fact that
the melodic rhythm of the cante generally does not strictly follow the meter
or compás played by the percussion and guitar, although the melodic phrase
must synchronize with the compás at the end of each cycle. Moreover, although
there is an established melodic pattern for each cante (melodic skeleton), the
melodies are performed with variations on the base pattern that depend on
the abilities and esthetic preferences of the singer or the school of cante to



292 J.M. Dı́az-Báñez and J.C. Rizo

which the performer adheres. Thus two cantes belonging to the same style may
sound very different to an unaccustomed ear. As a consequence, from the music
technology point of view, the elaborate ornamentation of flamenco makes it
difficult to automate the separation of the notes of the melodic pattern from the
melismatic ornamentation. In fact, the classification of flamenco cantes is subject
to many difficulties, and such a classification is not yet clearly established in the
flamenco literature. In this scenario, the finding of suitable and efficient similarity
measures is a key challenge.

2.1 Previous Work in Flamenco Similarity

Recently, an interdisciplinary research on flamenco is being conducted by the
COFLA project (http://mtg.upf.edu/research/projects/cofla). In the group
there are researchers of various disciplines, including mathematics, engineer-
ing, and computer science, who strive for understanding a musical tradition as
complex and rich as flamenco music. The first computational approach to char-
acterize and study melodic similarity among various flamenco styles was done
in [3]. After removing ornamentations, the melodic skeletons were estimated.
Then distance measures among songs from styles were calculated based on the
underlying melodic figures and a phylogenetic graphs were created and analyzed
regarding style organization and historic evolution. A more detailed description
is obtained in [22], where several style-specific features defined by experts in the
field were stated. Moreover, in the paper [22] a linear combination of the melodic
contour and a mid-level distance is proposed. In both papers the melodic similar-
ity is calculated by using the edit distance. Finally, results on detecting flamenco
as a genre among other music styles and traditions are obtained when combin-
ing global melodic features with instantaneous spectral and vibrato descriptors
in [18].

3 Our Approach

The main goal of this paper is to know if an efficient and effective algorithm for
flamenco melodic similarity can be derived from the DTW approach. On one
hand, regarding melodic similarity methods, the representation of the melody
strongly depends on the target set. Many approaches represent notes by encod-
ing only pitch and duration, that is, a two-dimensional representation. Others,
only consider pitch to represent the melodic contour, i.e., an one-dimensional
sequence. In any case, some melodic transcription is needed for a specific level.
Since scores are not available (the manual transcription in flamenco singing has
serious difficulties as high degree of ornamentation, very time consuming, sub-
jectivity, etc.) the first step is to extract an automatic transcription from the
audio files. We will consider an automatic transcription system (SmsTools) [8]
that provides melodic descriptors at different levels: low-level feature extraction,
frame-based descriptor extraction (e.g., energy and fundamental frequency), note
segmentation (based on location of note onsets), and note labelling. For more

h
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technical details, see [8] and the references therein. Concretely, we will consider
two levels, a low level representation, the fundamental frequency (f0) related to
the pitch, and a high level representation in which a segmentation into notes is
given (note). In both cases, we will use a one-dimensional sequence.

On the other hand, in order to improve the time complexity of the standard
DTW algorithm, it is possible to consider two strategies to design a melodic
similarity measure under DTW:

1. Apply some DTW-aproximation algorithm to compute an approximated
matching path.

2. Compute exact DTW matching on an approximation of the input obtained
by some segmentation algorithm.

We adopt the second approach. Thus, we need an efficient algorithm to dis-
cretize the fundamental frequency envelope into a short sequence of steps, so that
the similarity performance remains unchanged. It would be desirable that the
time complexity of the segmentation algorithm be subquadratic. Unfortunately,
the automatic segmentation algorithm proposed in [8] is very time consuming
(no complexity study is done in [8] but one can verify experimentally that the
spent time is about the length of the piece). In other context, the second ap-
proach has been used for computing time series similarity [14]. In fact, the so
called Piecewise Dynamic time Warping (PDTW) operates on a higher level
abstraction of the data by computing a piecewise representation of the input.
The time series is divided into a fixed number of frames and the mean of each
frame is calculated. However, this method is out-of-use for music similarity since
the variation of the melodic contour is not captured when we set a priori the
position of the segments and the basic features (peaks) may be lost. Many other
segmentation procedures have been considered in the data mining literature. For
instance, in [15] the sliding window algorithm computes a piecewise linear ap-
proximation of the time series. See [10] for a review on segmentation methods
on time series data mining.

In this paper, we will show that a simple sweeping algorithm is enough to
capture the melodic skeleton of the flamenco singing and then it can be used
to measure melodic similarity as a way to classify flamenco styles and variants.
Given two sequences of length O(n), our segmentation algorithm spends O(n)
time by sampling the data down to O(N) points, N << n. Thus, after perform-
ing dynamic programming within DTW our strategy leads to an O(N2)-time
complexity algorithm that is more efficient than the classical DTW while main-
taining a similar accuracy.

3.1 The Fitting Algorithm: A Linear Time Segmentation

Our segmentation algorithm is based on the following approximation problem:

The Step Function Approximation Problem: Given a set S of n points in
the plane, and a real number α ≥ 0, construct a step function R to fit S such
that the error of R with respect to S is not larger than α and the number
of links of R is minimized.
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An optimal Θ(n) algorithm for this step-function approximation problem was
proposed in [6] when the error is defined as

e(R,S) = max
p∈R,q∈S

dv(p, q)

where dv(p, q) denotes the vertical distance between p and q. We apply this
algorithm on the pitch contour to obtain the shortest segmentation for a fixed
range threshold α. Since the melodic pitch range in flamenco is normally limited
to one octave, values of threshold equal to one or half semitone seems adequate
to capture the melodic skeleton.
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Fig. 1. The fitting algorithm

For completeness, we briefly describe the algorithm, that we call the fitting-
algorithm: Given a set of points P = {p1, p2, · · · , pn} in the plane and an error
tolerance α, plot vertical segments Vi of length D = 2α centered at each point pi,
refer to Figure 1. Our constraint that each point be within α of the step function
is equivalent to saying that the step function intersects each of these segments
of length D = 2α. Sweeping from left to right, the algorithm greedily tries to
intersect as many consecutive segments as possible, before starting a new step
and repeating this procedure. A vertical segment Vi defines a y interval [y−i , y

+
i ]

where y−i and y+i denote the y coordinates of the lower and upper endpoints,
respectively. Sweeping from left to right, we maintain the intersection Δ of the
y intervals of the vertical segments until we reach a segment Vi whose y interval
does not intersect Δ, in which case we terminate the current step, and start a
new step at Vi setting Δ = [y−i , y

+
i ]. Clearly, this algorithm is simple, runs in

O(n) time, and it constructs the optimal step function with error tolerance α.

3.2 The SDTW Strategy

As mentioned before, instead of running the classical DTW matching on the
melodic contour directly, our strategy (SegmentationDTW, SDTW for short)
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obtains an approximation on the input by means of a segmentation algorithm
before applying the DTW distance between two melodies. The stages of the
SWDT strategy are the following:

1. Frame-based descriptor extraction (fundamental frequency). We use SmsTools
[8] to compute the low-level feature (f0) from the audio file. The audio signal is
first cut into frames and by following a frame-by-frame procedure, its funda-
mental frequency (f0) estimated. The fundamental frequency estimation algo-
rithm is based on the computation of amplitude correlation in the frequency
domain.

2. Pre-treatment of the fundamental frequency f0. By removing silences (un-
voiced regions) and spurious f0 values, only sung regions are considered.

3. Standardization of the fundamental frequency to a reference frequency. Since
we are analyzing singing voice performances, the reference frequency (with
respect to 440 Hz) is unknown. In order to locate the main pitches, an ini-
tial estimation of the tuning frequency (i.e. the reference frequency used
by the singer to tune the piece) is considered and an equal-tempered scale
system was assumed. This tuning frequency is computed by minimizing the
estimated instantaneous pitch error weighted average. The weights are com-
puted by combining energy and first and second pitch derivatives.

4. Segmentation algorithm. We consider two f0-based note segmentation pro-
cedures: the SmsTools system and the fitting algorithm. In the SmsTools
system, an iterative approach for note segmentation and labelling can also
be used from the extracted f0 and energy. See [8] for more details.

5. Distance matrix computation and DTW algorithm. The global warp cost [23]
of the optimal path serves as measure for the melodic similarity.

4 The Evaluation

We evaluate our approach on a music collection of 24 sung excerpts representa-
tive of two different a cappella singing styles, (Deblas and Martinetes), selected
from the accessible TONAS dataset 1. This monophonic collection was built by
the Cofla group in the context of a study on similarity and style classification
of flamenco a cappella singing styles. We refer to [22] for a comprehensive de-
scription of the considered styles and their musical characteristics. The files were
manually transcribed to generate the ground truth.

Four strategies have been considered in this paper to evaluate SDTW:

1. Strategy A: Classical DTW on the non-segmented (f0) set of 24 melodies.
2. Strategy B: Classical DTW on the segmented set by using the SmsTools-

based segmentation algorithm.
3. Strategy C: Sakoe-Chiba band algorithm on the non-segmented (f0) set for

different values of the band width r.

1 For details on the TONAS dataset see at
http://mtg.upf.edu/download/datasets/tonas

http://mtg.upf.edu/download/datasets/tonas
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4. Strategy D: Classical DTW on the segmented set by using the fitting seg-
mentation algorithm for different values of the threshold α.

In order to assess how well the different strategies perform, we will classify
the cantes in the corpus by using the k-nearest neighbor classifier. We consider
each of the 24 excerpts as a query and the algorithm returns the k closest items
according to the evaluated distance. The choice of k is critical. Due to the lack of
a deep study on this issue for flamenco music we use the empirical rule-of-thumb
from [7], that is, k equal to the square root of the number of instances and
then k = �

√
12� = 3. Precision and recall measures will be computed for that

classifier. We complemented these measures with a clustering analysis carried out
through phylogenetic techniques. Finally, we explored the relation between the
distance matrices by performing a Mantel test [19]. With respect to efficiency,
measured with the time it takes the computer to complete the overall similarity
algorithm, all tests have been carried on the same computer.

4.1 Precision and Recall for Style Classification

We compute standard information retrieval evaluation measures [25] for each of
the queries. Let us denote the true positive, true negative, false positive and false
negative values as TP , TN , FP and FN , respectively. We consider precision
P = TP/(TP + FP ), recall R = TP/(TP + FN), F-measure F = 2P/(P + R)
and accuracy A = (TP + TN)/(TP + TN + FP + FN). The computed values
of theses measures are shown in Figure 2. The results show high values for
our SDTW procedure (Strategies B and D for α = 0.5)), specially Strategy B.
However, as we will show later, Strategy D is more efficient.

Fig. 2. Evaluation measures

4.2 Phylogenetic Analysis

A clustering analysis can be carried out via self-similarity [9] and phylogenetic
techniques [12]. Distance matrices can be better visualized by employing phylo-
genetic graphs, a visualization technique borrowed from Bioinformatics. Given a
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distance matrix from a set of objects, a phylogenetic graph is a graph whose
nodes are the objects in the set and such that the distance between two nodes
in the graph corresponds to the distance in the matrix. Obviously, this property
cannot be held for arbitrary matrices. The phylogenetic graph algorithm pro-
vides with an index, the LSFit, expressed as a percentage. This index indicates
how accurate the correspondence between the distances in the graph and the
distances in the set of objects is. The higher the index is, the more accurate
the correspondence between matrix and graph distances is. To actually com-
pute our phylogenetic graphs we used the tool SplitsTree (www.splitstree.org/).
In general, clustering and other properties are easier to visualize. The results
validate the SDTW strategy. The LSFit for the obtained graphs is about 0.99.
The SplitsTree tool gives one outsider (Debla by Chocolate) for strategies A,
B, C and D (α = 1) and two outsiders (Deblas by Chocolate and Romero) for
Strategy D with α = 0.5 (Figure 3). The coincidence of the same outsider in
all strategies suggests an interesting subject of musicological study and, this is
indeed, another possible application of the music technology tools. In any case,
in this study the SplitsTree shows a good discrimination between styles.

Fig. 3. Clustering with the fitting segmentation

4.3 Mantel Test

For the sake of completeness, we carried out a Mantel test on the different
strategies. We obtained the correlation coefficients rM = 0.90 for Strategy B,
rM = 0.9137 for Strategy C with band width r = 50, and rM = 0.9509 for
Strategy D with thresold α = 0.5. Thus, the correlation is high for all strategies.
The lowest correlation should be expected for Strategy B, and that was the case.
This fact could be due to the iterative note consolidation and tuning frequency
refinement routines applied in the SmsTools segmentation algorithm [8]. Clearly,
the advantage is that this strategy uses a more rigorous method segmentation
based on musicological aspects and, therefore, dramatically reduces the number
of notes to be considered.

w
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4.4 Efficiency

A comparison of different strategies running times is shown in Figure 4. The
results correspond to the time spent to complete the overall similarity algorithm
on the musical corpus.

Fig. 4. The efficiency with and without segmentation

In the last column the steps (notes in the melodic contour) considered as
input by the DTW algorithm are indicated. The increase in performance of the
SDTW-based alignment in comparison to the classical DTW-based approach
(Strategy A) and the Shakoe-Shiba band approximation algorithm (Strategy
C) can be visualized in the table. For example, although the best result based
on the precision measures was achieved by Strategy B, that is, the SmsTools
segmentation-based approach, Strategy D, this is, the fitting segmentation-based
procedure is the more efficient. For α = 0.5, Strategy D spends half than Shakoe-
Shiba with r = 50 and the third part of the Strategy B. Note that the fitting-
based segmentation can be computed in less than one second, yielding an overall
running time improvement over other strategies.

Finally, putting together all evaluation results, we can conclude that the
SDTW-based similarity measure constitute an improvement over other classical
strategies and is a reasonable approach for the computational study of flamenco
melodies when a compromise between efficiency and precision is required.

Acknowledgments. This research is partially supported by project COFLA:
ComputationalAnalysis of FlamencoMusic, FEDER-P09-TIC-4840 andFEDER-
P12-TIC-1362.

5 Conclusions and Future Research

In this paper, we presented a new efficient DTW-based procedure, the SDTW
approach, to evaluate melodic similarity yielding stable alignments even in the
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presence of high degree of complex ornamentation as is the case of the fla-
menco singing. To evaluate the alignment quality achieved by our strategy, the
method has been tested in a flamenco musical corpus extracted from the meta-
data TONAS, a dataset of flamenco a cappella sung melodies with corresponding
manual transcriptions.

The key idea of SDTW is to apply a segmentation procedure before running
the DTW algorithm. To this end, we use a new simple, efficient and robust seg-
mentation algorithm, the fitting segmentation. This algorithm spends less than
one second to compute the segmentation of the considered melodies collection.
We compared the melodic similarity measure proposed in this paper against
other classical DTW-based measures and show that SDTW is competitive in
both efficiency and accuracy. Our approach is easily extensible to other fla-
menco styles. Although the measure only considers low-level features, it seems
an useful similarity measure for flamenco music and inter-style classification,
even more tacking into account the complexity of the automatic extraction of
some mid-level descriptors [22]. As open problem, it would be interesting to im-
prove the accuracy results with the more efficient strategy, that is, the fitting
segmentation-based approach. For this problem we plan to implement an “auto-
tuning” parameter tolerance, being able to do variable along the melodic contour
to be segmented.
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8. Gómez, E., Bonada, J.: Towards Computer-Assisted Flamenco Transcription: An
Experimental Comparison of Automatic Transcription Algorithms As Applied to
A Cappella Singing. Computer Music Journal 37(2), 73–90 (2013)

9. Foote, J., Cooper, M.: Visualizing musical structure and rhythm via self-similarity.
In: Proceedings of the International Conference on Computer Music, pp. 419–422
(2001)



300 J.M. Dı́az-Báñez and J.C. Rizo
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Blažek, Adam 25
Broberg, Ronald 247
Bustos, Benjamin 201
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