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Abstract  The concept of the transcriptome revolves around the complete set of 
transcripts present in a given cell type, tissue or organ and encompasses both cod-
ing and non-coding RNA molecules, although we often assume that it consists only 
of messenger RNAs (mRNAs) because of their importance in encoding proteins. 
Unlike the nuclear genome, whose composition and size are essentially static, the 
transcriptome often changes. The transcriptome is influenced by the phase of the 
cell cycle, the organ, exposure to drugs or physical agents, aging, diseases and a 
multitude of other variables, all of which must be considered at the time of its deter-
mination. However, it is precisely this property that makes the transcriptome useful 
for the discovery of gene function and as a molecular signature. In this chapter, we 
review the beginnings of transcriptome research, the main types of RNA molecules 
found in a mammalian cell, the methods of analysis, and the bioinformatics pipe-
lines used to organize and interpret the large quantities of data generated by the two 
current gold-standard methods of analysis: microarrays and high-throughput RNA 
sequencing (RNA-Seq). Attention is also given to non-coding RNAs, using microR-
NAs (miRNAs) as an example because they physically interact with mRNAs and 
play a role in the fine control of gene expression.
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1.1 � What is the Transcriptome, How it is Evaluated  
and What Types of RNA Molecules Exist?

Strictly speaking, the transcriptome can be conceptualized as the total set of RNA 
species, including coding and non-coding RNAs (ncRNAs), that are transcribed in 
a given cell type, tissue or organ at any given time under normal physiological or 
pathological conditions. This term was coined by Charles Auffray in 1996 to refer 
to the entire set of transcripts. Soon after, this concept was applied to the study of 
large-scale gene expression in the yeast S. cerevisiae (Velculescu et al. 1997; Dujon 
1998; Pietu et al. 1999).

However, due to the importance of messenger RNAs (mRNAs), which represent 
protein-coding RNAs, the term transcriptome is often associated with this set of 
RNA and as an analogy species. Researchers later coined the analogous term miR-
Nome to refer to the total set of miRNAs.

The proteome is conceptually similar to the transcriptome and refers the total set 
of proteins translated in a given cell type, tissue or organ at any given time during 
normal physiological or pathological conditions. Nevertheless, despite its impor-
tance, the proteome will not be discussed in this book, and we suggest the following 
reviews for further reading: Anderson 2014; Forler et al. 2014; Padron and Dormont 
2014; Altelaar et al. 2013; and Ahrens et al. 2010.

Analyses of the transcriptome began well before its conceptualization. Large-
scale analyses of gene expression in the murine thymus gland (Nguyen et al. 1995), 
the human brain and liver (Zhao et al. 1995) and human T cells (Schena et al. 1996) 
have been performed since the mid-1990s. These independent groups used cDNA 
clones arrayed on nylon membranes or glass slides to hybridize labeled tissue- or 
cell-derived samples. These arrayed cDNA clones represented the prototypes of the 
modern microarrays currently used in transcriptome research (Jordan 2012).

1.1.1 � How the Transcriptome is Evaluated: The Birth  
of Transcriptome Methods

Although the first method used to analyze transcriptional gene expression emerged 
in 1980 with the development of Northern blot hybridization (Wreschner and Hers-
berg 1977), this method was not and still is not capable of being performed on 
a large scale, and thus cannot be considered a transcriptome approach. In 1990s, 
the human genome project, through partially automated DNA sequencing, had 
the ambition to identify, characterize and analyze all of the genes in the human 
genome (Watson 1990; Cantor 1990). This revolutionary approach led to thou-
sands of entries that were constructed via the tag-sequencing of randomly selected 
cDNA clones (Adams et al. 1991, 1992, 1993a, b; Okubo et al. 1992; Takeda et al. 
1993), thus opening an avenue for high-throughput approaches by making these 
data widely available in repositories such as the dbEST database (http://www.ncbi.
nlm.nih.gov/dbEST). As more and more genes are identified, efforts are now being 
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redirected towards understanding the precise temporal and cellular control of gene 
expression. The advances provided by the current progress in high-throughput tech-
nologies have enabled the simultaneous analysis of the activity of many genes in 
cells and tissues, essentially depicting a molecular portrait of the tested sample. The 
transcriptome approach, based on the large-scale measurement of mRNA, became 
the method of choice among the emerging technologies of so-called “functional 
genomics”, primarily because this method was rapidly identified as one that can be 
performed at a reasonably large scale using highly parallel hybridization methods, 
and it has allowed a more holistic view of what is really happening in the cell (Sudo 
et al. 1994; Granjeaud et al. 1996, 1999; Botwell 1999; Jordan 1998).

As mentioned above, the first transcriptome analysis was performed on large 
nylon arrays using high-density filters containing colony cDNA (or PCR products) 
followed by quantitative measurements of the amount of hybridized probe at each 
spot. A common platform used spotted cDNA arrays, where cDNA clones repre-
senting genes were robotically spotted on the support surface either as bacterial 
colonies or as PCR products. These “macroarrays”, or high-density filters, were 
made on nylon membranes measuring approximately 10 cm2. Although this is now 
considered a dated approach, it was nonetheless effective enough to test sets of 
hundreds or even a few thousand genes.

DNA arrays allow the quantitative and simultaneous measurement of the mRNA 
expression levels of thousands of genes in a tissue or cell sample. The technology 
is based on the hybridization of a complex and heterogeneous RNA population 
derived from tissues or cells. Initially, this was referred as a “complex probe”, i.e., 
a complex mix that contains varying amounts of many different cDNA sequences, 
corresponding to the number of copies of the original mRNA species extracted from 
the sample. This complex probe was produced via the simultaneous reverse tran-
scription and 33P labeling of mRNAs, which were then hybridized to large sets of 
DNA fragments, representing the target genes, arrayed on a solid support. Thus, 
each individual experiment provided a very large amount of information (Gress 
et al. 1992, Nguyen et al. 1995; Jordan 1998; Velculescu et al. 1995; Zhao et al. 
1995; Bernard et al. 1996, Pietu et al. 1996, Rocha et al. 1997).

1.1.2 � Miniaturization, an Obvious Technological Evolution 
Towards Microarrays

One of the major challenges that researchers faced was to obtain the highest pos-
sible sensitivity when working with a limited amount of sample (biopsies, sorted 
cells, etc.). In this regard, five parameters were taken into account: 1) the amount 
of DNA fixed on the array support; 2) the concentration of RNA that should be 
labeled with the 33P isotope; 3) the specific activity of the labeling; 4) the duration 
of the hybridization; and 5) the duration of exposure of the array to the phosphor 
imager shields.
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The miniaturization of this method lay in the intrinsic physical characteristics of 
nylon membranes, which allowed a significant increase in the amount of immobi-
lized DNA. The feasibility of miniaturizing nylon was demonstrated in the Konan 
Peck (Academia Sinica, Taiwan) laboratory in 1998 using a colorimetric method as 
the detection system (Chen et al. 1998). A combination of nylon microarrays and 
33P-labeled radioactive probes was subsequently shown to provide similar levels of 
sensitivity compared with the other systems available at the time, making it possible 
to perform expression profiling experiments using submicrogram amounts of un-
amplified total RNA extracted from small biological samples (Bertucci et al. 1999).

These observations had important implications for basic and clinical research 
in that they provided a cheaper alternative approach that was particularly suitable 
for groups operating in academic environments and led to a large numbers of ex-
pression profiling analyses when only small amounts of biological material were 
available.

Microarrays based on solid supports, typically coated glass, were simultaneously 
developed in different academic and industrial laboratories. These arrays boasted 
the advantage of performing dual hybridization of a test sample and a reference 
sample, as they could be labeled with two different fluorescent compounds, name-
ly the fluorochrome “Cy-dyes” cyanine-3 (Cy3) and cyanine-5 (Cy5) (Chee et al. 
1996).

Around the same time, another well known DNA array platform was developed 
by Affymetrix (Santa Clara, CA, USA). Their array used oligonucleotide chips fea-
turing hundreds of thousands of oligonucleotides that were directly synthesized in 
situ on silicon chips (each measuring a few cm2) using photochemical reactions and 
a masking technology (Lockhart et al. 1996). This microarray platform promised 
a rapid evolution in miniaturization because it was based on the synthesis of short 
nucleic acid sequences, which could be updated on the basis of the current knowl-
edge of the genome.

It quickly became clear in the academic community, as well as in industry, that 
the available microarray technologies represented the beginning of a revolution 
with considerable potential for applications in the various fields of biology and 
health because gene function is one of the key elements that researchers want to 
extract from a DNA sequence. Microarrays have become a very useful tool for this 
type of research (Gershon 2002). Therefore, the development of the microarray 
opened the door to various DNA chip technologies based on the same basic concept. 
For example, the maskless photolithography used to produce oligonucleotide arrays 
was originally developed in 1999 using the light-directed synthesis of high-reso-
lution oligonucleotide microarrays with a digital micromirror array to form virtual 
masks (Singh-Gasson et al. 1999). However, this technology was barely accessible 
to academic laboratories at the time because of the high initial cost, the limited 
availability of equipment, non-reusability, and the need for a large amount of start-
ing RNA (Bertucci et al. 1999).

This development formed the basis for the NimbleGen company, which in 2002 
demonstrated the chemical synthesis quality of maskless arrays synthesis (MAS) 
and its utility in constructing arrays for gene expression analysis (Nuwaysir et al. 
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2002). Currently, NimbleGen is focused on products for sequencing (http://www.
nimblegen.com/).

Similarly, in 2005, Edwin Southern’s team developed a method for the in situ 
synthesis of oligonucleotide probes on polydimethylsiloxane (PDMS) microchan-
nels through the use of conventional phosphoramidite chemistry (Moorcroft et al. 
2005). This became the basis of the Oxford Gene Technology company (http://
www.ogt.co.uk/), which today develops array products centered on cytogenetics, 
molecular disorders and cancer.

It is also widely known that Affymetrix (http://www.affymetrix.com/estore/) and 
Agilent (http://www.home.agilent.com/agilent/home.jspx?lc=eng&cc=US) devel-
oped the most popular microarray technology for expression profiling based on ink 
jet technology, which is still widely available in the transcriptome market.

1.1.3 � Reliable Microarray Results Depend on a Series  
of Complex Steps

The reliability of transcriptome results has concerned scientists since the begin-
ning of transcriptome research, resulting in a number of studies comparing the dif-
ferent platforms, which was a real challenge in the early 2000s. Transcriptomic 
results largely depend on the technology used, which itself is dependent on several 
complex steps, ranging from the fabrication of the microarray to the experimental 
conditions, in addition to the chosen detection system, which also determines the 
method of analysis.

The results obtained with one microarray platform cannot necessarily be re-
produced on another, and differences in the presence of different target sequences 
representing the same gene on different arrays can make it extremely difficult to 
integrate, combine and analyze the data (Järvinen et al. 2004).

The fabrication of high-quality microarrays has been a challenging task, taking 
a decade to reach several stabilized solutions, and has become an industry of its 
own. There are a large number of parameters and factors that affect the fabrication 
of a microarray, as performance depends on the array geometry, chemistry, and spot 
density, as well as on characteristics such as morphology, probe and hybridized 
density, background and sensitivity (Dufva 2005). Among the different methods 
used to fabricate DNA microarrays, in situ synthesis is the most powerful because 
a very high spot density can be achieved and because the probe sequence can be 
chosen for each synthesis.

To achieve a 105-fold dynamic range, which is an important parameter for gene 
expression analysis, the spots must contain at least 105 molecules, and the optimal 
spot size should be large enough to acquire the maximum hybridized density to 
obtain good sensitivity. Bead arrays that have different combinations of fluorescent 
dyes, which essentially constitute a barcode tag associated with the different im-
mobilized probes, appeared to be the next evolution because they are in suspen-
sion and are therefore suitable for automation using standard equipment, leading 
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to extremely high-throughput approaches. Optical microarrays that are detected via 
flow cytometry can use a large number of different beads because each bead can 
be decoded using a series of hybridization reactions following the immobilization 
of the beads to the optical fibers (Ferguson et al. 2000; Epstein et al. 2003). This 
increases the multiplex capacity to several thousands of different beads (Gunder-
son et al. 2004). Optical fiber microarrays have been commercialized by Illumina 
(http://www.illumina.com/), currently the leader in high-throughput sequencing 
technology, which allow the measurement of expression profiles by counting the 
amount of each RNA molecule expressed in a cell.

Experimental conditions also vary from lab to lab, as the preparation is depen-
dent on the array platform. Variations in the quality of RNA preparations can be 
evaluated using the 2100 Bioanalyzer instrument developed by Agilent, which has 
become a standard, even if some slight variations have been observed from time 
to time. This system provides sizing, quantitation and quality control for RNA and 
DNA, as well as for proteins and cells, on a single platform, providing high-quality 
digital data (http://www.genomics.agilent.com/en/Bioanalyzer-System/2100-Bio-
analyzer-Instruments/?cid=AG-PT-106) (Fig. 1.1).

The preparation of RNA prior to hybridization can affect microarray performance, 
particularly in terms of data accuracy, by distorting the quantitative measurement of 
transcript abundance. To obtain enough material from an initial nano- or picogram 
range of starting material, the RNA is transcribed in vitro and amplified using dif-
ferent protocols, which can introduce bias. In 2001, several publications discussed 
the different commercial protocols that were available. A publication from Charles 
Decreane’s team examined the methods for amplifying picogram amounts of to-
tal RNA for whole genome profiling. The authors set up a specific experiment to 
compare three commercial RNA amplification protocols, Ambion messageAmpTM, 
Arcturus RiboAmpTM and Epicentre Target AmpTM, to the standard target labeling 
procedure proposed by Affymetrix, and all of the samples were tested on Affyme-
trix GeneChip microarrays (Clément-Ziza et al. 2009). The results obtained in this 
study indicated large variations between the different protocols, suggesting that the 
same amplification protocol should always be used to maximize the comparability 
of the results. Additionally, it was found that the RNA amplification affects the ex-
pression measurements as well, which was in agreement with earlier observations 
seen at the nanogram scale, as well as with other studies that were concerned with 
this question (Nygaard and Hovig 2006; Singh et al. 2005; Wang et al. 2003; Van 
Haaften et al. 2006; Degrelle et al. 2008).

In 2012, questions surrounding RNA amplification were still relevant. Indeed, 
even if the amplification of a small amount of RNA is reported to have a high 
reproducibility, there is still bias, and this can become time consuming. Even tak-
ing into account a correlation coefficient of 0.9 between microarray assays using 
non-amplified and qRT-PCR samples, the matter should still be reconsidered. In 
one study, the authors used the 3D-GeneTM microarray platform and compared 
samples prepared using either a conventional amplification method or a non-am-
plification protocol and a probe set selected from the MicroArray Quality Con-
trol (MAQC) project (http://www.fda.gov/ScienceResearch/BioinformaticsTools/

http://www.fda.gov/ScienceResearch/BioinformaticsTools/MicroarrayQualityControlProject/
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Fig. 1.1   Agilent Bioanalyzer model 2100 showing in. a A RNA Nano Chip and in. b A typical 
result of a microfluidic electrophoresis of a total human RNA sample extracted from leukocytes. 
On the right side of this figure appears a virtual gel with the respective bands of 28S and 18S 
rRNAs and 5S rRNA plus 4S tRNAs (from top to bottom). On the left side is shown the densi-
tometry of this gel were appears the respective peaks of 28S rRNA, 18S rRNAs, 5S rRNA and 
4S tRNAs. The rRNA ratio (28S/18S) = 2.0 enabled a RNA integrity number (RIN = 9.7), which 
indicated that this sample was intact (not degraded)
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MicroarrayQualityControlProject/). They found that the samples from the non-
amplification procedure had a higher quantitative accuracy than those from the 
amplification method but that the two methods exhibited comparable detection 
power and reproducibility (Sudo et al. 2012).

However in the above study, the researchers also used a few micrograms of RNA 
and a large volume of hybridization buffer. It is known that the ability to reduce the 
quantity of input RNA while maintaining the reaction concentration can be achieved 
in a device that decreases the hybridization reaction volume. Devices developed for 
use with beads have this characteristic; therefore, would hybridization using a bead 
device resolve this issue?

1.1.4 � Bioinformatics and Standardization Approaches:  
A Possible Solution?

With regard to bioinformatics and standardization approaches, the MAQC project 
was initiated in 2006 to address these questions, as well as other performance and 
data analysis issues. The Microarray Quality Control (MAQC Consortium 2006) 
(http://www.fda.gov/ScienceResearch/BioinformaticsTools/MicroarrayQuality-
ControlProject/) study tested a large number of laboratories, platforms and samples 
and found that there were notable differences in various dimensions of performance 
between microarray platforms. Each microarray platform has different trade-offs 
with respect to consistency, sensitivity, specificity and ratio compression. One in-
teresting result was that platforms with divergent approaches for measuring ex-
pression often generated comparable results. The authors of this study concluded 
that the technical performance of microarrays supports their continued use for gene 
expression profiling in basic and applied research and may lead to the use of mi-
croarrays as a clinical diagnostic tool as well. This project has provided the mi-
croarray community with standards for data reporting, common analysis tools and 
useful controls that can help promote confidence in the consistency and reliability 
of these gene expression platforms (MAQC Consortium 2006). Similarly, in 2007, 
another meta-analysis of microarray results suggested several recommendations for 
standardization under the Standard Microarray Results Template (SMART) to fa-
cilitate the integration of microarray studies and proposed the implementation of 
the Minimum Information About a Microarray Experiment (MIAME) (http://www.
mged.org/Workgroups/MIAME/miame.html) to facilitate the comparison of results 
(Cahan et al. 2007).

Given that measurement precision is critical in clinical applications, the ques-
tion of the measurement precision in microarray experiments was addressed again 
in 2009 through an inter-laboratory protocol. In this study, the authors analyzed 
the results of three 2004 Expression Analysis Pilot Proficiency Test Collaborative 
studies using different methods. The study involved thirteen participants out of six-
teen, each of whom provided triplicate microarray measurements for each of two 
reference RNA pools. To facilitate communication between the user and developer, 

http://www.fda.gov/ScienceResearch/BioinformaticsTools/MicroarrayQualityControlProject/
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this study sought to set up standardized conceptual tools, but the result of this analy-
sis was relatively disappointing and did not allow the creation of a gold standard, 
though it did put forth several recommendations (Duewer et al. 2009).

All of these studies focus on the same concept that has been defended since 
2001 by the Microarray Gene Expression Data Society (http://www.mged.org) – 
the reanalysis and reproduction of results by the scientific community. The MGED 
society was the first to define the MIAME, which describes the minimum infor-
mation required to ensure that microarray data can be easily interpreted and that 
the results derived from their analysis can be independently verified. This protocol 
became the standard for recording and reporting microarray-based gene expression 
data and for inserting it in databases and public repositories (Brazma et al. 2001, 
Ball et al. 2002). Currently, raw and/or normalized microarray data are deposited 
either in the ArrayExpress databank (https://www.ebi.ac.uk/arrayexpress/) or in the 
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/), providing 
the scientific community with data for further analysis.

1.1.5 � Analysis of the Expression Data

The past two decades have seen the development of methods that allow for a nearly 
complete analysis of the transcriptome, in the form of microarrays and, more re-
cently, RNA-Seq, which are the most popular technologies used in genome-scale 
transcriptional studies. These high-throughput gene expression analysis systems 
generate large and complex datasets, and the development of computational meth-
ods to obtain biological information from the generated data has been the primary 
challenge in bioinformatics analysis.

Even a simple microarray experiment generates a large amount of data, which 
places certain demands on the analysis software. Fortunately, microarrays have ben-
efited from the availability of many commercial and open-source software packages 
for data manipulation that have been developed over the years. RNA-Seq, however, 
demands more bioinformatics expertise. There are publicly available online tools 
such as the Galaxy platform (Goecks et al 2010, but a basic knowledge of UNIX 
shell programming and Perl/Python scripting is necessary for data modification. 
Furthermore, similar to microarray analysis, a familiarity with the R programming 
environment is useful, as the software programs for many of the downstream analy-
ses are collected in the Bioconductor (http://www.bioconductor.org/) (Gentleman 
et al 2004) suite of the R package. Other important considerations regarding the 
choice for RNA-Seq include the need for data storage resources and computing 
systems with large memories and/or many cores to run parallel, sophisticated algo-
rithms efficiently and faster.

In this section, we present the main steps for analyzing multi-dimensional ge-
nomic data derived from the application of microarray or RNA-Seq assays based on 
a common pipeline illustrated in Fig. 1.2.

https://www.ebi.ac.uk/arrayexpress/
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Fig. 1.2   An overview of the steps in a typical gene expression microarray or RNA-Seq experiment
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1.1.5.1 � Experimental Design

The aim of the experimental design is to make the experiment maximally informa-
tive given a certain amount of samples and resources and to ensure that the ques-
tions of interest can be answered. All of the decisions made at this initial step will 
affect the results of all the subsequent steps. The consequences of an incorrect or 
poor design range from a loss of statistical power and an increased number of false 
negatives to the inability to answer the primary scientific question (Stekel 2003).

The basic principles of experimental design rely on three fundamental aspects 
formalized by Fisher (1935), namely, replication, randomization and blocking.

Randomization dictates that the experimental subjects should be randomly as-
signed to the treatments or conditions to be studied to eliminate unknown factors 
that may potentially affect the results (Fang and Cui 2011).

Replication is essential for estimating and decreasing the experimental error and, 
thus, to detect the biological effect more precisely. A true replicate is an independent 
repetition of the same experimental process and an independent acquisition of the 
observations. There are different levels of replication in gene expression experi-
ments: (1) a technical replicate provides measurement-level error estimates and (2) 
a biological replicate provides estimates of the population-level variability. If the 
goal is to evaluate the technology, technical replicates alone are sufficient. Other-
wise, if the goal is to investigate the biological differences between tissues/condi-
tions/treatments, biological replicates are essential (Alison et al 2006; Fang and Cui 
2011). Replication is widely used in microarray experiments, though technical rep-
licates are generally no longer performed, as analyses have shown that the results 
will be relatively consistent overall (Slonin and Yanai 2009). However, in RNA-Seq 
studies, replication is still neglected primarily due to the current high costs of these 
experiments. Studies conducted on the variability of this technology, both technical 
(Marioni et al. 2008) and biological (Bullard et al. 2010), underscore the importance 
of including replicates in the study design. The fundamental problem with general-
izing the results gathered from unreplicated data is a complete lack of knowledge 
about the biological variation. Without an estimate of variability (i.e., within the 
treatment group), there is no basis for inference (i.e., between the treatment groups) 
(Auer and Doerge 2010).

As with microarray studies, RNA-Seq experiments can be affected by the vari-
ability coming from nuisance factors, often called technical effects, such as the 
processing date, technician, reagent batch and the hybridization/library preparation 
effect. In addition to these effects, in RNA-Seq experiments, there are also other 
technology-specific effects. For example, there is variation from one flow cell to 
another, resulting in a flow cell effect and variation between the individual lanes 
within a flow cell due to systematic variation in the sequencing cycling and/or base 
calling. A blocking design dictates comparisons within a block, which is a known 
uninteresting factor that causes variation, such as the hybridization scheme (micro-
array) or flow cell effect (RNA-Seq) (Fig. 1.3) (Alison et al. 2006, Slonin and Yanai 
2009, Auer and Doerge 2010, Fang and Cui 2011, Luo et al 2010).
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In the case of microarray and RNA-Seq experiments, design issues are intrinsi-
cally dependent on hybridization and library construction, respectively. It is beyond 
the scope of this section to discuss and compare the different technologies available, 
but we recommend reading the following articles for microarray technologies: Pa-
terson et al. (2006), Alison et al. (2006), Stekel (2003), Churchill (2002), Kerr and 
Churchill (2001), Jordan (2012). For RNA-Seq technologies, please see Auer and 
Doerge (2010) and Fang and Cui (2010), as well as chapter 2 of this book.

1.1.5.2 � Quality Control

To assure the reproducibility, comparability and biological relevance of the gene 
expression data generated by high-throughput technologies, several research groups 
have provided guidelines regarding quality control (QC):

•	 Minimum Information About a Microarray Experiment (MIAME): de-
scribes the minimum information required to ensure that microarray data can be 

Fig. 1.3   Comparison of two methods for testing differential expression between treatments. a 
( red) and b ( blue). In the ideal balanced block design ( left), six samples are barcoded, pooled, 
and processed together. The pool is then divided into six equal portions that are input into six 
flow cell lanes. The confounded design ( right) represents a typical RNA-Seq experiment and 
consists of the same six samples, with no barcoding, and does not permit batch and lane effects 
to be distinguished from the estimate of the intra-group biological variability (adapted from Auer 
and Doerge 2010)
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easily interpreted and that the results derived from their analysis can be indepen-
dently verified (Brazma et al. 2001).

•	 External RNA Control Consortium (ERCC): develops external RNA controls 
useful for evaluating the technical performance of gene expression assays per-
formed by microarray and qRT-PCR (Baker et al. 2005).

•	 MicroArray Quality Control (MAQC) Consortium: a community-wide ef-
fort, spearheaded by the Food and Drug Administration (FDA), that seeks to ex-
perimentally address the key issues surrounding the reliability of DNA microar-
ray data. Now in its third phase (MAQC-III), also known as Sequencing Quality 
Control (SEQC), the MAQC project aims to assess the technical performance of 
next-generation sequencing platforms by generating benchmark datasets using 
reference samples and evaluating the advantages and limitations of various bio-
informatics strategies in RNA and DNA sequencing (Shi et al. 2006, Shi et al. 
2010, (www.fda.gov/MicroArrayQC).

•	 Standards, Guidelines and Best Practices for RNA-Seq: a guideline for con-
ducting and reporting on functional genomics experiments performed with RNA-
Seq. It focuses on the best practices for creating reference-quality transcriptome 
measurements (The ENCODE Consortium 2011) (http://www.genome.gov/en-
code).

However, there are several sources of variability originating from biological and 
technical causes that can affect the quality of the resulting data, including biological 
heterogeneity in the population, sample collection, RNA quantity and quality, tech-
nical variation during sample processing, and batch effects, among others. Some of 
these issues can be avoided with an appropriate and carefully designed experiment 
that controls for the different sources of variation, but others require a quality as-
sessment of the raw data through computational support tools. Therefore, regardless 
of the technology used to measure gene expression, ensuring quality control is a 
critical starting point for any subsequent analysis of the data (Churchill 2002, Ge-
schwind and Gregg 2002, Cobb et al. 2005, Larkin et al. 2005, Irizarry et al. 2005, 
Heber and Sick 2006).

With regard to microarray technology, many tools applying diagnostic plots have 
been developed to visualize the spread of data and compare and contrast the probe 
intensity levels between the arrays of the dataset. These qualitative visualization 
plots include histograms, density plots, boxplots, scatter plots, MAplots, score plots 
of the PCA, hierarchical clustering dendrograms, and even chip pseudo plots and 
RNA degradation plots (Fig. 1.4). Comparing the probe intensity between samples 
allows us to observe if one or more of the arrays have intensity levels that are drasti-
cally different from the other arrays, which may indicate a problem with the arrays. 
For a better review of the use of diagnostic plots in quality control metrics, please 
see Gentleman et al. (2005) and Heber and Sick (2006).

In regard to RNA-Seq, several sequence artifacts are quite common, including 
read errors (base calling errors and small indels), poor quality reads and adaptor 
contamination. Such artifacts need to be removed before performing downstream 
analyses, otherwise they may lead to erroneous conclusions. Performing a quality 

http://www.genome.gov/encode
http://www.genome.gov/encode
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assessment of the reads allows us to determine the need for filtering (or cleaning) 
the data, removing low quality sequences, trimming bases, removing linkers, deter-
mining overrepresented sequences and identifying contamination or samples with a 
low sequence performance. The most important parameters used to verify the qual-
ity of the raw sequencing data are the base quality, the GC content distribution and 
the duplication rate (Guo et al. 2013, Patel and Jain 2012).

In addition to the QC pipelines provided commercially by the sequencing plat-
form, there are online/standalone software packages and pipelines available as well 
(see: http://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools). These 
packages present different features, and many are designed for a particular sequenc-
ing platform, such as NGS QC for the Illumina and Roche 454 platforms (Patel and 
Jain 2012) or Rolexa for Solexa sequencing data (Rougemont et al. 2009), or for a 
specific data storage format, such as FastQC toolkit and FastQScreen, which were 
both developed by the Brabaham Institute. The FastQC (http://www.bioinformat-
ics.babraham.ac.uk/projects/fastqc) and FASTX-Tool kits (http://hannonlab.cshl.
edu/fastx_toolkit/) include many of the tools used to remove indexes, barcodes and 

Fig. 1.4   Quality control plots of raw data sets. a Boxplots presenting various statistics for a given 
data set. The plots consist of boxes with a central line and two tails. The central line represents 
the median of the data, whereas the tails represent the upper (75th percentile) and lower (25th 
percentile) quartiles. These plots are often used to describe the range of log ratios that is associated 
with replicate spots. b MA plots are used to detect artifacts in the array that are intensity dependent

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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adapters and filter out the reads based on the quality metrics of the FASTQ files. 
For a comparison of some of the available QC tools for RNA-Seq, please refer to 
Patel and Jain (2012).

1.1.5.3 � Data Processing

Once the quality of the data has been assessed and the applicable changes have 
been made, it is still necessary to perform additional processing before analyzing 
the differentially expressed genes. The primary objective in processing raw data is 
to remove unwanted sources of variation, thereby ensuring the accuracy of the final 
results. There are several different methods to process the data being assayed, and 
the specific method used depends on how the data were generated.

According to Geeleher et al. (2008), the data being assayed should be processed 
using several different methods, and the results should be compared to identify the 
most suitable method. The most appropriate method should then be used to process 
the raw data before the differential expression analysis.

Essentially, microarray processing involves three steps depending on the type of 
array: (1) background adjustment, which divides the measured hybridization inten-
sities into a background and a signal component; (2) summarization, which com-
bines the probe-level data into gene expression values, thereby reducing multiple 
probes representing a single transcript to a single measurement of expression; and 
(3) normalization, which aims to remove non-biological variations between arrays 
(Heber and Sick 2006). Other potential processing steps include transformation of 
the data from the raw intensities into log intensities and data filtering to remove 
flagged features, which are problematic features detected by the image-processing 
software (Stekel 2003, Allison et al. 2006).

Microarray data must also be background corrected to remove any signals aris-
ing from non-specific hybridization or spatial heterogeneity across the array. The 
background is a measure of the ambient signal obtained, generally, from the mean 
or median of the pixel intensity values surrounding each spot (Ritchie et al. 2007). 
The traditional correction is to subtract the local background measures from the 
foreground values, but the main problem with this procedure is that it can give nega-
tive corrected intensities, and there is high variability in the low-intensity log-ratios 
when the background is higher than the feature intensity (Stekel 2003). Instead, 
several different methods have been developed as alternatives. Some examples in-
clude the empirical Bayes model developed by Kooperberg et al. (2002), setting a 
small threshold value as suggested by Edwards (2003), the variance stabilization 
method (Vsn) of Huber et al. (2002), the normexp (normal-exponential convolu-
tion) method implemented by the RMA algorithm (Irizarry et  al. 2003), and the 
MLE method (maximum likelihood estimation for normexp) (Silver et al. 2009). 
A detailed comparison of several of these methods can be found in the article by 
Ritchie et al. (2007).

The normalization of the microarray signal intensity has been widely used to 
adjust for experimental artifacts within the array and between all of the samples 
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such that meaningful biological comparisons can be made (Quackenbush 2001, Lou 
et  al. 2010). According to Stekel (2003), the methods for normalization may be 
broadly classified into two categories:

1.	 Within-array normalization (normalizes the M-values for each array separately) 
– these methods are applicable for two-channel arrays, in which the aim is to 
adjust the Cy3 and Cy5 intensities to equal levels. Methods such as the linear 
regression of Cy5 against Cy3 and linear or non-linear (Loess) regression of the 
log ratio against the average intensity can correct for the different responses of 
the Cy3 and Cy5 channels. However, these methods rely on the assumption that 
the majority of the genes on the microarray are not differentially expressed. If 
this assumption is not true, a different normalization method, such as using a 
reference sample, would be more appropriate.

2.	 Between-array normalization (normalizes the intensities or log-ratios to be com-
parable across multiple arrays) – this method is used for one- and two-channel 
arrays. Various methods have been proposed for this approach, such as scaling 
to the mean or median, centering and quantiles. Bolstad et al. (2003) presented a 
review of several methods and found quantile normalization to be the most reli-
able method.

After processing, it is strongly recommended to verify the performance of the cho-
sen method. This can be achieved by applying the aforementioned diagnostic plots 
during a Quality Control session. Several studies have been published on the perfor-
mance of the various processing methods (Bolstad et al. 2003, Ploner et al. 2005), 
but most studies have found the Robust Multichip Average method (RMA) (Irizarry 
et al. 2003) to be the best method. This method applies a model-based background 
adjustment followed by quantile normalization and a robust summary method (me-
dian polish) on the log2 intensities to obtain the probeset summary values.

The RNA-Seq data processing steps that were considered in our pipeline are as 
follows: (1) mapping reads; (2) transcriptome assembly; and (3) normalization of 
the read counts.

A common characteristic of all high-throughput sequencing technologies is the 
generation of relatively short reads, which should be mapped to a reference se-
quence, be it a reference genome or a transcriptome database. This is a critical task 
for most applications of the technology because the alignment algorithm must be 
able to efficiently find the right location for each read from among a potentially 
large quantity of reference data (Fonseca et al. 2012). The assembly of the transcrip-
tome consists of the reconstruction of the full-length transcripts, except in the case 
of small classes of RNAs that are shorter than the sequencing length and require no 
assembly. The methods used to assemble reads fall into two main classes: (1) as-
sembly based on a reference genome and (2) de novo assembly (Martin and Wang 
2011). The strategies used to map the reads and assemble the transcriptome, along 
with the available tools, will be presented in more detail in chapter 2.

Normalization should always be applied to read counts due to two main sources 
of systematic variability: (1) RNA fragmentation during library construction causes 
the longer transcripts to generate more reads compared with the shorter transcripts 
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that are present at the same abundance in the sample, and (2) the variability in the 
number of reads produced for each run causes fluctuations in the number of frag-
ments mapped across the samples. Proper normalization enables accurate compari-
son of the expression levels between and within samples (Garber et al. 2011, Dillies 
et al. 2013). The RPKM (reads per kilobase of transcript per million mapped reads) 
is the most widely used normalization metric. It normalizes a transcript read count 
by both its length and the total number of mapped reads in the sample (Mortazavi 
et al. 2008). This approach facilitates comparisons between genes within a sample 
and combines the inter- and intra-sample normalization. When data originate from 
paired-end sequencing, the FPKM (fragments per kilobase of transcript per million 
mapped reads) metric is used (Garber et al. 2011, Dillies et al. 2013).

In previous years, other methods for the normalization of RNA-Seq data have 
been proposed as well. These methods also applied inter-sample normalization us-
ing scaling factors and include the following: (1) Total count (TC), in which the 
gene counts are divided by the total number of mapped reads (or library size) as-
sociated with their lane and multiplied by the mean total count across all of the 
samples in the dataset; (2) Upper Quartile, which has a very similar principle to 
TC and in which the total counts are replaced by the upper quartile of counts dif-
ferent from 0 in the computation of the normalization factors; (3) Median, which is 
similar to TC, in which the total counts are replaced by the median counts different 
from 0 in the computation of the normalization factors; (4) DESeq, which is the 
normalization method included in the DESeq Bioconductor package (version 1.6.0) 
(http://bioconductor.org/packages/release/bioc/html/DESeq.html) and is based 
on the hypothesis that most genes are not differentially expressed; (5) Trimmed 
Mean of M-values (TMM), which is the normalization method implemented in the 
edgeR Bioconductor package (version 2.4.0) (http://www.bioconductor.org/pack-
ages/release/bioc/html/edgeR.html) and is also based on the hypothesis that most 
genes are not differentially expressed; and (6) Quantile, which was first proposed 
in the context of microarray data and consists of matching the distributions of the 
gene counts across lanes. These proposed normalization methods, in addition to the 
RPKM method, were comprehensively compared and evaluated by members of 
The French StatOmique Consortium. Based on this comparative study, the authors 
proposed practical recommendations for the appropriate normalization method to 
be used and its impact on the differential analysis of RNA-Seq data (Dillies et al. 
2013).

1.1.5.4 � Statistical Analysis and Interpretation

The primary goal of gene expression studies is to identify genes that are differen-
tially expressed between RNA samples from two types of biological conditions. 
Differential gene expression can provide insights into biological mechanisms or 
pathways and form the basis for further experiments by determining the sample and 
gene similarity via clustering analyses or testing a gene set for enrichment.

http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
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Differential expression analysis searches for genes whose abundance has changed 
significantly across the experimental conditions. In general, this means taking the 
quantified and normalized expression values for each library and performing statis-
tical testing between samples of interest. In theory, the transcript abundance of the 
mRNA would be directly proportional to the number of reads, thereby determining 
the expression level (Oshlack et al. 2010).

Many methods have been developed for the analysis of differential expression 
using microarray data. In the early days of microarrays, only the simple fold-change 
method was used (Chen et  al. 1997). However, the evolution of the technology 
called for more accurate analytical methods, and many more sophisticated statisti-
cal methods have been proposed.

In addition to the traditional t-test and ANOVA approaches used to access dif-
ferential gene expression in microarray assays, variations on these tests have been 
developed for the purpose of overcoming the problem of a small sample size when 
accessing such a large dataset: dealing with many genes but only a few replicates 
may lead to large fold-changes driven by outliers, as well as to small error variances 
(Lönnstedt and Speed 2002). SAM (Significant Analysis of Microarrays) (Tusher 
et al. 2001) is a very popular differential expression method that uses a modified 
t-statistic to identify significant genes using non-parametric statistics.

Other statistical approaches for microarray data analysis have introduced linear 
models. The Bioconductor package Limma, developed by Smyth (2005), applies a 
gene-wise linear model that allows for the analysis of complex experiments (com-
paring many RNA samples), as well as more simple replicated experiments using 
only two RNA samples. Empirical Bayes and other shrinkage methods are used to 
borrow information across genes, making the analyses stable even for experiments 
with small numbers of arrays. Another powerful method to detect differentially ex-
pressed genes in microarray experiments is based on calculating the rank products 
(RP) from replicate experiments, while at the same time providing a straightforward 
and statistically stringent way to determine the significance level for each gene and 
allow flexible control of the false-detection rate and familywise error rate in the 
multiple testing situation of a microarray experiment (Breitling and Herzyk 2005).

Differential expression analysis methods that use probability distributions have 
also been proposed for use in modeling the count data from RNA-Seq studies, in-
cluding Poisson and negative binomial (NB) distributions. The Poisson distribution 
forms the basis for modeling RNA-Seq counts. However, when there are biological 
replicates, the RNA-Seq data may exhibit more variability than expected by the 
Poisson distribution because it assumes that the variance is equal to the mean. If this 
occurs, the Poisson distribution will predict a smaller variation than that observed in 
the data, and the analysis will be prone to high false-positive rates that result from 
an underestimation of the sampling error (Anders and Huber 2010). Therefore, the 
NB model is the better method to address this so-called overdispersed problem 
because an NB distribution specifies that the variance is greater than the mean (Os-
hlack et al. 2010, Anders and Huber 2010, Garber et al. 2011).

Statistical analyses of RNA-Seq data will be discussed in more detail in chapter 
2. There are also several reviews that discuss and compare the statistical methods 
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used to compute differential expression. For further information, please refer to 
Seyednasrollah et al. (2013) and Soneson and Delorenzi (2013).

1.1.5.5 � Classification and Enrichment Analysis

Classification can be performed either before or after the differential expression 
analysis. This process entails either placing the objects (in this case, the samples, 
genes or both) into pre-existing categories (known as a supervised classification) 
or developing a set of categories into which the objects can subsequently be placed 
(unsupervised classification) (Allison et  al. 2006). Class discovery, or clustering 
analysis, is an unsupervised classification method that is widely used in the study 
of transcriptomic data because it allows us to identify co-regulated genes and/or 
samples with similar patterns of expression (biological classes). Various clustering 
techniques have been applied to identify patterns in gene-expression data. Most 
cluster analysis techniques are hierarchical: the resultant classification has an in-
creasing number of nested classes, and the result resembles a phylogenetic classifi-
cation. Non-hierarchical clustering techniques also exist, such as k-means cluster-
ing, which simply partition objects into different clusters without trying to specify 
the relationship between the individual elements (Quackenbush 2001). Eisen et al. 
(1998) is a classical reference for the use of hierarchical clustering with microarray 
data. In this study, the authors developed an integrated pair of open-source pro-
grams, Cluster and TreeView, for analyzing and visualizing clusters and heat maps 
(http://rana.lbl.gov/EisenSoftware.htm).

Biological insights into an experimental system can be gained by looking at the 
expression changes of sets of genes. Many tools focusing on gene set testing, net-
work inference and knowledge databases have been designed for analyzing lists of 
differentially expressed genes from microarray datasets. Examples include Gene 
Set Enrichment Analysis (http://www.broadinstitute.org/gsea/index.jsp) (Subrama-
nian et al. 2005) and DAVID (http://david.abcc.ncifcrf.gov/tools.jsp) (Dennis et al. 
2003), which combine functional themes, such as those defined by the Gene Ontol-
ogy consortium, (Ashburner et al. 2000), and metabolic and signaling pathways, 
such as KEGG pathways (http://www.genome.jp/kegg/pathway.html) (Kanehisa 
and Goto 2000) and Biocarta (http://www.biocarta.com/), with statistical enrich-
ment analyses to determine whether specific pathways are overrepresented in a 
given list of differentially expressed genes. These approaches can also be applied 
to RNA-Seq, but the biases presented by this type of data should be taken into ac-
count (Oshlack et al. 2010). Therefore, specialized approaches (Bullard et al. 2010) 
and tools to perform enrichment analyses of RNA-Seq data are being developed, 
for example, GO-seq (http://www.bioconductor.org/packages/release/bioc/html/go-
seq.html) (Young et al. 2010), SeqGSA (http://www.bioconductor.org/packages/re-
lease/bioc/html/SeqGSEA.html) (Wang and Cairns 2013) and generally applicable 
gene set enrichment for pathway analysis (GAGE) (Luo et al. 2009).

http://www.bioconductor.org/packages/release/bioc/html/goseq.html
http://www.bioconductor.org/packages/release/bioc/html/goseq.html
http://www.bioconductor.org/packages/release/bioc/html/SeqGSEA.html
http://www.bioconductor.org/packages/release/bioc/html/SeqGSEA.html
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1.2 � The Diversity of the Transcriptome

Unlike the genome, which is essentially static in terms of its composition and size 
(barring the rare occurrence of somatic and germline mutations or the rearrange-
ment of immunoglobulin and T cell receptor genes), the transcriptome (and similar-
ly, the miRNome) is extremely variable and depends on the phase of the cell cycle, 
the organ, exposure to drugs or physical agents, aging, diseases such as cancer and 
autoimmune diseases and a multitude of other variables, which must be considered 
at the time that the transcriptome is determined. This variability arises from the fact 
that RNAs are differentially transcribed (or transcribed at different rates) depend-
ing on the cell type and status, though this excludes ribosomal RNAs, as they are 
considered housekeeping molecules.

For many years, the central dogma of molecular biology stated that RNAs mol-
ecules were intermediates between DNA and protein. This idea presupposed that 
the function of RNA was primarily linked to the translation of the genetic material 
into polypeptide chains (proteins). The genetic material was interpreted as being 
involved in the synthesis of these RNAs, which were termed mRNAs (Brenner et al. 
1961; Jacob and Monod 1961).

During the human genome sequencing era of the 1980s and 1990s, independent-
ly led by Francis Collins and Craig Venter, the latter individual and his coworkers 
conceived of expressed sequence tags (ESTs), which focus on mRNAs because they 
encode proteins. Libraries of mRNA-derived cDNA clones were generated based 
on first-strand synthesis using oligonucleotide primers for that are anchored at the 
3´ end of the transcript [the poly(A) tail of mRNA] (Starusberg and Riggins 2001) 
and then sequenced to create unique identifiers for each cDNA, with lengths rang-
ing from 300 to 700 bp (Adams et al. 1992; Adams 2008).

ESTs were very useful for identifying new expressed genes in normal and dis-
eased tissues (Strausberg and Riggins 2001), and transcriptome analysis at this time 
was largely, if not solely, based in this approach. The EST clones were distributed 
through the former IMAGE Consortium, whose sequences can now be retrieved via 
the National Center for Biotechnology Information (NCBI) dbEST Database (http://
www.ncbi.nlm.nih.gov/dbEST/). The current number of public entries for all uni- or 
multicellular eukaryotic organisms that have been sequenced stands at more than 
74 million ESTs, including more than eight million human and nearly five million 
mouse ESTs.

However, as was to be expected, imaginative new strategies were emerging 
around the same time as well. The Serial Analysis of Gene Expression (SAGE) 
method (Velculescu et al. 1995), which produces short sequence tags (usually 14 
nucleotides in length) positioned contiguous to defined restriction sites near the 3´ 
end of the cDNA strand (Strausberg and Riggins 2001), has also been widely used. 
At the time, the NCBI created the SAGEmap as a public repository for SAGE se-
quences. Currently, all of the SAGE libraries have been uploaded and accessioned 
through the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) 
repository.
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Another novel strategy, which had yet to be tested at that time, was the genera-
tion of open reading frame (ORF) ESTs (ORESTES). This approach was jointly 
developed by researchers funded by the São Paulo Research Foundation (FAPESP) 
and by the Ludwig Institute for Cancer Research (FAPESP/LICR)-Human Can-
cer Genome Project (Camargo et  al. 2001). Unlike ESTs, ORESTES sequences 
are spaced throughout the mRNA transcript, providing a scaffold to complete the 
full-length transcript sequences. The authors generated a substantial volume of 
tags (700,000 ORESTES), which at the time represented nearly 20 % of all human 
dbESTs (Strausberg and Riggins 2001).

The Transcript Finishing Initiative, another FAPESP/LICR project, was then un-
dertaken for the purpose of identifying and characterizing novel human transcripts 
(Sogayar et al. 2004). This strategy was also novel and was based on selected EST 
clusters that were used for experimental validation. In this method, RT-PCR was 
used to fill in the gaps between paired EST clusters that were then mapped on the 
genome. The authors generated nearly 60,000 bp of transcribed sequences, orga-
nized into 432 exons, and ultimately defined the structure of 211 human mRNA 
transcripts.

However, the increasing use of modern transcriptome-wide profiling approach-
es, such as microarrays and whole-genome and transcriptome sequencing, allied to 
the precise isolation and characterization of different RNA species from eukaryotic 
(including mammalian) cells, led to an explosion of findings and revealed that al-
though approximately 90 % of the mammalian genome is actively transcribed into 
RNA molecules, only a tiny fraction (—2 % of the total human genome) encodes 
mRNAs and, consequently, proteins (Maeda et al. 2006; Djebali et al. 2012).

In fact, the function of the genome can be seen from two different but comple-
mentary views. From a functional standpoint, only a fraction of the genome encodes 
RNA molecules (including coding and non-coding RNAs), and only a fraction of 
these are translated into proteins. In other words, when considering the genome 
in numerical terms, or rather the physical portion of DNA that is functional, we 
realize that only a small number of genes are transcribed specifically into mRNA 
molecules. However, a larger number of “variable” mRNA molecules are gener-
ated through alternative splicing, and these are translated into a greater number of 
proteins (including various isoforms). A large portion of the genome is then tran-
scribed into non-coding RNAs, which play a role in the posttranscriptional control 
of mRNAs during their translation into proteins (Fig. 1.5).

Molecular mapping of the human genome has been largely resolved, revealing 
slightly more than three billion bp encompassing approximately 20–25,000 func-
tional nuclear genes and mitochondrial DNA located in the cytoplasm. We suggest 
consulting the ENCODE Project (http://www.genome.gov/encode/) to follow ongo-
ing progress in the identification of the functional elements in the human genome 
sequence. Nevertheless, the definition of the human transcriptome is still far from 
set, and it appears that most of the RNA molecules in eukaryotic cells are composed 
of ncRNAs that are involved in the fine control of gene expression.

Aside from knowing the exact number of mRNA molecules in a human cell, 
which is currently being investigated using new sequencing technologies (de Klerk 
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et al. 2014; Kellis et al. 2014), one of the great challenges of the next decade will be 
to decipher the posttranscriptional interactions between coding and ncRNAs in the 
control of gene expression.

In fact, the human genome was revealed to be more than just a collection of pro-
tein-coding genes and their splice variants, rather, it displays extensive antisense, 
overlapping and ncRNA expression (Taft et al. 2010).

In mammals, the vast majority of the genome is transcribed into ncRNAs, which 
exceed the number of protein-coding genes (Liu and Taft 2013). These molecules 
are characterized by the absence of protein-coding capacity, but these RNAs have 
been described as key regulators of gene expression (Geisler and Coller 2013).

ncRNAs are grouped into two major classes based on their transcript size: small 
ncRNAs (19–30 nt) and long non-coding RNAs (200 nt to ~100 kilobases). These 
groups are distinct in their biological functions and mechanisms of gene regulation 
(Geisler and Coller 2013; Fatica and Bozzoni 2014; Neguembor et al. 2014).

Furthermore, ncRNAs can be grouped into a third class of housekeeping ncRNAs, 
which are normally constitutively expressed and include ribosomal (rRNAs), trans-
fer (tRNAs), small nuclear (snRNAs), small nucleolar (snoRNAs) and regulatory 
noncoding RNAs (rnRNAs) (Ponting et al. 2009; Bratkovic and Rogelj 2014).

Small ncRNAs are primarily associated with the 5’ or 3’ regions of protein-
coding genes, and based on their precursors and mechanism of action, they have 
been divided into three main classes: miRNAs, small interfering RNAs (siRNAs) 
and piwi-associated RNAs (piRNAs). These ncRNAs are involved in posttranscrip-
tional gene regulation through translational repression or RNAi (Sana et al. 2012).

Fig. 1.5   Two ways to interpret the functioning the genome and the relative proportions of molecu-
lar entities. a In functional terms only a part of the genome encodes RNAs from which only a small 
fraction encodes proteins. b However, in numerical terms the set of functional genes transcribe a 
larger number of mRNAs from which a larger number of proteins is translated. The part A of this 
figure was conceived by Dr. Sven Diederichs (German Cancer Research Institute, DKFZ, Heidel-
berg, Germany) who allowed their use
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Interestingly, the aberrant expression of small ncRNAs has been associated with 
a wide variety of human diseases, including cancer, central nervous system disor-
ders, and cardiovascular diseases (Taft et al. 2010; Sana et al. 2012) (Table 1.1).

For much of the last decade, special attention has been paid to research into long 
non-coding RNAs (lncRNAs), as these molecules tend to be shorter and have fewer 
introns than protein-coding transcripts (Ravasi et al. 2006). lncRNAs are considered 
to be the most numerous and functionally diverse class of RNAs (Derrien et  al. 
2011). Over 15,000 lncRNAs have already been identified, and this number is con-
stantly increasing (Derrien et al. 2012; Fatica and Bozzoni 2014).

Amidst the great discoveries being made during this time of genome explora-
tion, RNA is beginning to take center stage, and lncRNAs are a major part of this. 
These molecules are more abundant and functional than previously imagined, and 
they have been shown to be key players in gene regulation, genome stability, and 
chromatin modifications. Therefore, the identification and characterization of the 
function of lncRNAs has added a high degree of complexity to the comprehension 
of the structure, function and evolution of our genome.

lncRNAs can be grouped into one or more of five categories based on their posi-
tion relative to protein-coding genes: (1) sense or (2) antisense, when they overlap 
with one or more exons of another transcript on the same or opposite strand, re-
spectively; (3) bidirectional, when the expression of a lncRNA and a neighboring 
coding transcript on the opposite strand is initiated in close genomic proximity; (4) 
intronic, when the lncRNA is fully derived from the intron of a second transcript; or 
(5) intergenic, wherein a lncRNA is located within a gene (Poting et al. 2009). Most 
lncRNAs are transcribed by RNA Pol II and are often polyadenylated and have 
splice sites (Guttman et al. 2009; Mercer et al. 2013). However, they are devoid of 
obvious ORFs (Fatica and Bozzoni 2014).

The functional characterization of several mammalian regulatory lncRNAs has 
identified many biological roles, such as dosage compensation, genomic imprint-
ing, cell cycle regulation, pluripotency, retrotransposon silencing, meiotic entry and 
telomerase length, and gene expression through chromatin modulation (Wery et al. 
2011; Wilusz et al. 2009; Nagano and Fraser 2011).

The number of lncRNAs with described functions is steadily increasing, and 
many of these reports revolve around the regulatory capacity of lncRNAs. These 
molecules localize both to the nucleus and to the cytosol and can act at virtually ev-
ery level during gene expression (Batista and Chang 2013; Van et al. 2014). Nuclear 
lncRNAs act as modulators of protein-coding gene expression and can be subdi-
vided into cis-acting RNAs, which act in proximity to their site of transcription, 
or trans-acting lncRNAs, which work at distant loci. Both cis- and trans-acting 
lncRNAs can activate or repress transcription via chromatin modulation (Penny 
et al. 1996; Pandey et al. 2008; Nagano et al. 2008; Chu et al. 2011; Plath et al. 
2003; Bertani et al. 2011).

Cytoplasmic lncRNAs can modulate translational control via sequences that are 
complementary to transcripts that originate from either the same chromosomal lo-
cus or independent loci. Target recognition occurs through base pairing (Batista and 
Chang 2013).
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Class Symbol Characteristic
Classical
RNAs

Messenger RNAs mRNAs Variable in the size (average size 
about 2.2 kb) depending on the 
coded protein. Its linear structure 
includes a 5´ G cap, the 5´UTR, 
AUG start codon, coding sequence 
(CDS), stop codon, 3´UTR and the 
poly A tail. Account 1–2% of the 
total cellular RNA.

Transfer RNAs tRNAs This class of RNAs takes the form 
of “clover leaf” and has vari-
able size ranging 70-100 nt. The 
residues 34, 35 and 36 are comple-
mentary to the mRNA codons 
located at CDS. For this reason 
they are considered as adaptors 
between mRNAs and elongation 
peptide chains.

Ribossomal RNAs rRNAs Are components of ribosomes 
along with ribosomal proteins. The 
high molecular weight rRNAs are 
the 28S rRNA (~5000 nt), which is 
present in the large subunit of the 
ribosome and 18S rRNA (1870 nt) 
present in the small ribosomal sub-
unity. The low molecular weight 
rRNAs are the 5.8 rRNA (156 nt) 
and the 5.0S rRNA (121 nt), both 
present in the large ribosomal 
subunit.

Small
non-coding
RNAs

MicroRNAs miRNAs Average size about 18–25 nt; 
account 1–2% of the human 
genome; control the 50% of 
protein-coding genes; guide sup-
pression of translation; Drosha and 
Dicer dependent small ncRNAs.

Small interfering 
RNAs

siRNAs Average size about 19–23 nt; 
made by Dicer processing; guide 
sequence specific degradation of 
target mRNA.

Piwi-interacting
RNAs

piRNAs Average size about 26–30 nt; bind 
Piwi proteins; Dicer indepen-
dent; exist in genome clusters; 
principally restricted to
the germline and somatic cells 
bordering the germline.

Small nucleolar RNAs snoRNAs Average size about 60–300 nt; 
enriched in the nucleolus; in verte-
brate are excised from premRNA 
introns; bind snoRNP proteins.

Table 1.1   Main RNA species found in eukaryotic cells including human
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Class Symbol Characteristic
Promoter-associated
small RNAs

PASRs Average size about 20–200 nt; 
modified 5′ (capped) ends; coin-
cide with the transcriptional start 
sites of protein- and noncoding 
genes; made from transcription of 
short capped

Transcription
initiation RNAs

tiRNAs Average size about 18 nt ; have the 
highest density just downstream 
of transcriptional start sites; show 
patterns of positional conservation; 
preferentially located in GC-rich 
promoters.

Centromere repeat 
associated small 
interacting

crasiRNAs Average size about 34–42 nt;
processed from long dsRNAs.

Telomere-specific 
small RNAs

tel-sRNAs Average size about 24 nt; Dicer 
independent; 2′-O-methylated at 
the 3′ terminus; evolutionarily 
conserved from
protozoa to mammals; but have 
not been described in human up 
to now.

Pyknons Subset of patterns of variable 
length; form mosaics in 
untranslated and protein-coding 
regions; more frequently in 3′ 
UTR.

Long
non-coding 
RNAs

Long intergenic 
Non-coding  
RNAs

lincRNAs Ranging from several hundreds to 
tens of thousands nts; lie within 
the genomic intervals between two 
genes; transcriptional cisregulation 
of neighbouring genes.

Long intronic
non-coding
RNAs

Lie within the introns; evolution-
ary conserved; tissue and subcel-
lular expression specified 

Telomere-associated
ncRNAs

TERRAs Average size about 100 bp to > 9 
kb; conserved among eukaryotes; 
synthesized from C-rich strand; 
polyadenylated; form intermolecu-
lar G-quadruplex structure with 
single-stranded telomeric DNA.

Long non-coding
RNAs with dual
functions

Both protein-coding and function-
ally regulatory RNA capacity.

Table 1.1  (continued) 
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RNA-Seq, the most powerful methodology for de novo sequence discovery, has 
been used to identify and analyze the expression of new lncRNAs in different cell 
types and tissues. Interestingly, sequencing experiments have shown that lncRNA 
expression is more cell-type specific than that of protein-coding genes (Riin and 
Chang 2012; Derrien et al. 2012; Guttman et al. 2012; Mercer et al. 2008; Cabili 
et al. 2011; Pauli et al. 2012).

The identification of lncRNAs relies on the detection of transcription from ge-
nomic regions that are not annotated as protein coding. However, other similarly 
robust methodologies have been used in the identification of lncRNAs, including 
the following: (1) Tiling arrays: this technology enables the analysis of global tran-
scription from a specific genomic region and were initially used to both identify and 
analyze the expression of lncRNAs; (2) Serial analysis of gene expression (SAGE): 
this methodology allows both the quantification and the identification of new tran-
scripts throughout the transcriptome; (3) Cap analysis gene expression (CAGE): 
this methodology is based on the isolation and sequencing of short cDNA sequence 
tags that originate from the 5’ end of RNA transcripts; (4) Chromatin immuno-
precipitation (ChIP): this method allows the isolation of DNA sequences that are 
associated with a chromatin component of interest, thereby allowing the indirect 
identification of many unknown lncRNAs; and (5) RNA-Seq: in a single sequenc-
ing run, this methodology produces billions of reads that are subsequently aligned 
to a reference genome (Fatica and Bozzoni 2014).

Transcriptome research began in parallel with the genome project because of 
Craig Venter’s idea to sequence the “most important” genes, i.e., the function-
ing genome. This directive clearly fell upon mRNAs, as this type of RNA carries 
the protein code. Of course, this concept has not changed and mRNAs are still 
of central importance; however, what followed was the subsequent discovery of a 
large number of different ncRNAs whose functions are linked to the fine control 
of gene expression, often controlling the translation of mRNAs into proteins, i.e., 

Class Symbol Characteristic
Pseudogene RNAs Gene copies that have lost the abil-

ity to code for a protein; potential 
to regulate their protein coding 
cousin; made through retrotrans-
position; tissue specific.

Transcribed- 
ultraconserved
regions

T-UCRs Longer than 200 bp; absolutely 
conserved between orthologous 
regions of human, rat, and mouse; 
located in both intra- and inter-
genic regions.

Circular RNAs circRNAs Noncoding RNAs generated dur-
ing splicing through exon or intron 
circularization. They are transcrip-
tion regulators or play their role as 
sponges for miRNAs.

Part of this table was adapted from Sana et al. (2012) J Transl Med 10: 103

Table 1.1  (continued) 
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posttranscriptional control as it is exerted by miRNAs. In its broadest sense, the 
transcriptome is undoubtedly more complex than anyone previously imagined.

1.3 � The Transcriptome and miRNome are Closely 
Associated: The Role of MicroRNAs, a Class of Non-
Coding Rnas Linked to the Fine Control of Gene 
Expression

Cellular gene expression is governed by a complex, multi-faceted network of regu-
latory interactions. In a very unique way, RNA molecules hybridize to each other. 
In the last decade, miRNAs have emerged as critical components of this cross-
hybridization network. The miRNome was found to physically interact with the 
transcriptome, and this has important consequences for biological function.

The miRNA class of ncRNAs was first discovered in the worm Caenorhabditis 
elegans (Lee and Ambros 1993; Wightman and Ruykun 1993) and represents a 
family of small ncRNAs that posttranscriptionally regulate the stability of mRNA 
transcripts or their translation into proteins.

miRNAs participate in the regulation of a wide variety of biological processes, 
including cell differentiation and growth, development, metabolism chromosome 
architecture, apoptosis, and stress resistance. They are also involved in the patho-
genesis of diseases as diverse as cancer and inflammation as well (Ambros 2004; 
Bushati and Cohen 2007; Stefani and Slack 2008). miRNAs are also promising 
candidates for new targeted therapeutic approaches and as biomarkers of disease. At 
approximately 22 nucleotides long, miRNAs are among the shortest known func-
tional eukaryotic RNAs, and they repress most of the genes they regulate by just a 
small amount.

Many miRNAs are found in clusters and are transcribed from independent genes 
by either RNA Pol II or RNA Pol III (Chen et al. 2004; Borchert et al. 2006; Winter 
et al. 2009). They are normally found in three genomic locations: in the introns of 
protein-coding genes, in the introns of non-coding genes and in the exons of non-
coding genes (Kim et al. 2006; Lin et al. 2008). Most miRNAs are derived from 
longer, double-stranded RNAs, which are termed primary miRNAs (pri-miRNAs).

Within these primary transcripts, miRNAs form stem-loop structures that con-
tain the mature miRNA as part of an imperfectly paired double-stranded stem con-
nected by a short terminal loop. pri-miRNAs are initially modified with a 5′ 7-meth-
ylguanosine cap and a 3′ poly-A tail (Cullen 2004) and contain hairpins that are 
further excised by the nuclear RNase III Drosha and its dsRNA-binding partner 
DGCR8 (DiGeorge syndrome critical region gene 8) (Gregory et al. 2004; Denli 
et al. 2004, Landthaler et al. 2004). The resulting pre-miRNA consists of an approx-
imately 70-nucleotide double-stranded hairpin characterized by imperfect base-
pairing in the stem-loop and a 2-nucleotide overhang at the 3′ end (Lee et al. 2003).

The stem-loop of a pre-miRNA is recognized by the nuclear transport protein 
exportin-5, which exports the pre-miRNA to the cytoplasm, in combination with 
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the guanosine triphosphate (GTP) binding RAS-related nuclear protein (Ran-GTP) 
(Yi et al. 2003; Bohnack et al. 2004; Lund et al. 2004). In the cytoplasm, the pre-
miRNAs are then cleaved by the RNAse III enzyme Dicer and the double-stranded 
RNA-binding protein TRBP (TAR RNA-binding protein) into duplexes of miRNA 
and passenger strands of approximately 22 base pairs (Hutvagner et al. 2001; Zhang 
et al. 2002).

After the sequential processing of the miRNA precursors, one of the two strands 
of the miRNA duplex is incorporated into the RNA-induced silencing complex 
(RISC). This complex comprises the mature miRNA strand as well as several pro-
teins from the Argonaute and Gw182 families (Chendrimada et  al. 2005; Haase 
et al. 2005). RISC can then find and bind to complementary mRNA sequences and 
perform its silencing function (Kawamata and Tomari 2010, Czech and Hannon 
2011). In addition, a few miRNAs are produced by alternative pathways, indepen-
dent of Drosha and/or Dicer, by exploiting diverse RNases that normally catalyze 
the maturation of other types of transcripts (Yang and Lai 2011).

Although miRNAs typically function in the cytoplasm, there is increasing evi-
dence that they can play important roles in the nucleus as well (McCarthy 2008; 
Politz et al. 2009). They can also be found in the mitochondria, where they may be 
involved in the regulation of apoptotic genes (Kren et al. 2009).

The regulatory roles of miRNAs have been the subject of intense research (Shi-
moni et al. 2007; Wang and Raghavachari 2011; Levine et al. 2007; Levine and Hwa 
2008; Mehta et al. 2008; Osella et al. 2011; Mitarai et al. 2009; Bumgarner et al. 
2009; Iliopoulos et al. 2009). In mammals, the majority of miRNAs are inferred to 
be functional on the basis of their evolutionary conservation.

The major determinant for recognition between an miRNA and a target mRNA 
is a region of high sequence complementary that consists of an approximately 7-nu-
cleotide domain at the 5ʹ end of the miRNA known as the “seed” sequence (Bartel 
2009). The remaining nucleotides are generally only partially complementary to 
the target sequence. Sequences that are complementary to the seed (“seed match-
es”) trigger a modest but detectable decrease in the expression of an mRNA. Seed 
matches can occur in any region of an mRNA but are more likely to decrease mRNA 
expression when they are located in the 3ʹ untranslated region (3ʹ UTR) (Grimson 
et al. 2007; Forman et al. 2008, 2010; Gu et al. 2009) (Fig. 1.6). Because the region 
used to create the seed is so short, more than half of the protein-coding genes in 
mammals are regulated by miRNAs, and thousands of other mRNAs appear to have 

Fig. 1.6   Interaction of a miRNA with the 3´UTR of its mRNA target by base pairing. (Figure 
adapted from Filipowicz et al (2008) Nat Rev Genetics 9: 102–114)
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undergone negative selection to avoid seed matches with miRNAs that are present 
in the same cell (Baek et al. 2008; Lewis et al. 2003, 2005; Farh et al. 2005, Stark 
2005; Lewis 2005).

Despite the aforementioned basic features, a “seed” sequence is neither neces-
sary nor sufficient for target silencing. It has been shown that miRNA target sites 
can often tolerate G:U wobble base pairs within the seed region (Miranda et  al. 
2006; Vella et al. 2004), and extensive base pairing at the 3ʼ end of the miRNA may 
offset the absence of complementarity in the seed region (Brennecke et al. 2005; 
Reinhart et al. 2000). Moreover, centered sites showing 11–12 contiguous nucleo-
tide base pairing with the central region of the miRNA without pairing to either end 
have also been reported (Shin et al. 2010). Adding to this repertoire, other studies 
have reported efficient silencing from sites that do not fit any of the above patterns 
and appear to be seemingly random (Lal et  al. 2009; Tay et  al. 2008), and even 
sites with extensive 5ʼ complementarity can be inactive when tested in reporter 
constructs (Didiano et al. 2006).

How miRNAs repress or activate gene expression in animals is another impor-
tant question, in addition to the high number of high-quality studies examining the 
biochemistry, biology and genomics of miRNA-directed mRNA regulation. The 
factors that determine which mRNAs will be targeted by miRNAs, or the mecha-
nism by which they will be silenced, remain unclear. Extensive computational and 
experimental research over the last decade has substantially improved our under-
standing of the mechanisms underlying miRNA-mediated gene regulation (Ameres 
and Zamore 2013; Yue et al. 2009; Ripoli et al. 2010; Bartel 2009, Chekulaeva et al. 
2009, Brodersen and Voinnet 2009).

miRNAs posttranscriptionally control gene expression by regulating mRNA 
translation or stability (Valencia-Sanchez et al. 2006, Standart et al. 2007; Jackson 
2007, Nilsen 2007). What is known is that miRNAs can interfere with the initia-
tion or elongation of translation; alternatively, the target mRNA may be affected by 
isolating it from the ribosomal machinery (Nottrott et al. 2006; Pillai et al. 2007). 
The binding of eIF4E to the cap region of an mRNA marks the initiation of initia-
tion complex assembly. It has been demonstrated that miRNAs interfere with eIF4E 
and impair its function, and the function of the poly(A) tail can also be inhibited 
(Humphreys et al. 2005). There is additional evidence suggesting that miRNAs re-
press translation at the later stages of initiation as well. The miRNA lin-4 targets the 
lin-14 and lin-28 mRNAs, but under inhibitory conditions, lin-14 and lin-28 are not 
altered, indicating that miRNAs inhibit translation after the initiation stage. Interest-
ingly, in both cap-dependent and independent translation, the mRNAs are inhibited 
by synthetic miRNA, suggesting post-initiation inhibition. Another mechanism by 
which miRNAs inhibit translation is by ribosome drop off, in which the ribosomes 
engaged in translation are directed to prematurely terminate translation. There are 
also proposed mechanisms by which miRNAs can direct the degradation of nascent 
polypeptides by recruiting proteolytic enzymes (Olsen and Ambros 1999; Petersen 
et al. 2006).

Microarray studies of transcript levels in cells and tissues in which miRNA 
pathways were inhibited or in which miRNA levels were altered support the role 
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of miRNAs in mRNA destabilization (Behm-Ansmant et al. 2006; Giraldez et al. 
2006; Rehwinkel et al. 2006; Schmitter et al. 2006; Eulalio et al. 2007). Reports 
have demonstrated the interaction of the P-body protein GW182 with Argonaute 1 
is a key factor that marks mRNAs for degradation, as the depletion of these proteins 
leads to the upregulation of many mRNA targets. Moreover, knockdown experi-
ments and analyses of the decay intermediates originating from repressed mRNAs 
in mammalian cells (Wu and Belasco 2006) support the role of decapping and 
5′→3′ exonucleolytic activities in these systems. Although many of the mRNAs 
that are targeted by miRNAs undergo substantial destabilization, it is not known 
what factors determine whether an mRNA follows the degradation or translational-
repression pathway (Filipowicz et al. 2008).

In addition to their recognized roles in repressing gene expression, miRNAs 
have also surprisingly been linked to gene activation. The mechanism of activation 
is often indirect, with the repression of a repressor leading to the increased expres-
sion of specific transcripts. A relatively small number of studies have demonstrated 
that miRNAs can stimulate gene expression, indicating that these effects are medi-
ated via gene promoters, extracellular receptors and the selective control of 3ʼ or 5ʼ 
UTRs. Below, we discuss three of the current examples of the role of miRNAs as 
stimulators of gene expression.

1) Promoter activation: Earlier studies have shown that the exogenous applica-
tion of small duplex RNAs that are complementary to promoters activates gene 
expression in a manner similar to proteins and hormones, a phenomenon referred to 
as RNA activation (RNAa) (Li et al. 2006, Janowski et al. 2007). Soon afterwards, 
it was discovered that mir-373 targets sites in the promoters of e-cadherin and cold 
shock domain containing protein C2 (CSDC2), and its overexpression induced the 
transcription of both genes. Subsequently, mir-205 was discovered to bind to the 
promoter of the interleukin (IL) tumor suppressor genes IL-24 and IL-32 and, simi-
lar to mir-373, induce gene expression (Place et al. 2008; Majid et al. 2010).

2) Target activation: Several reports have shown that miRNAs can induce trans-
lation by binding to the 5ʼ or 3ʼ UTR of an mRNA. In the brain, a target sequence of 
mir-346 was found in the 5ʼ UTR of a splice variant of receptor-interacting protein 
140 (RIP140). Gain- and loss-of-function studies established that mir-346 elevated 
the RIP140 protein levels by facilitating the association of its mRNA with the poly-
some fraction. This activity did not require Ago2, indicating that other proteins in 
complex with the miRNA or a different RIP140 mRNA conformation induced by 
the miRNA mediated the effect (Tsai et al. 2009). In another study, mir-145 was 
shown to regulate smooth muscle cell fate and plasticity by upregulating the myo-
cardin gene (Cordes et al. 2009). Along with this, miR-466l, a miRNA discovered in 
mouse embryonic stem cells, upregulated IL-10 expression in TLR-triggered mac-
rophages by antagonizing IL-10 mRNA degradation mediated by the RBP tristetra-
prolin (TTP) (Ma et al. 2010).

3) Receptor ligands: Mouse TLR7 and human TLR8, which are members of the 
Toll-like receptor (TLR) family that are expressed on dendritic cells and B lympho-
cytes, physiologically recognize and bind to and are activated by ~20-nucleotide 
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viral single-stranded RNAs (Heil et al. 2004; Lund et al. 2004). Because miRNAs 
can be secreted in exosomes and are of similar size, it was predicted that they may 
also serve as TLR7/8 ligands. It was also found that the tumor-secreted mir-21 and 
mir-29a were ligands for TLR7/8 and were capable of triggering a TLR-mediated 
prometastatic inflammatory response (Fabbri et al. 2012).

1.3.1 � Control of miRNA Expression

Despite the substantial advances in our understanding of miRNA-mediated gene 
regulation, the mechanisms that control the expression of the miRNAs themselves 
are less well understood. Homeostatic and feedback mechanisms coordinate the 
levels of miRNAs with their effector proteins or harmonize the levels of the biogen-
esis factors that function within the complexes. Often we have the impression that 
these processes are constitutive and inflexible.

However, diverse mechanisms that regulate the biogenesis and function of small 
RNAs have been uncovered (Bronevetsky and Ansel 2013; Heo and Kim 2009). 
Notably, many of these mechanisms provide homeostatic control over the levels 
of biogenesis factors and/or the resultant miRNAs. Both transcriptional and post-
transcriptional mechanisms regulate miRNA biogenesis (Carthew and Sontheimer 
2009; Siomi 2010; Schanen and Li 2011).

The first and one of the most important mechanisms controlling miRNA abun-
dance is the regulation of pri-miRNA transcription. pri-miRNAs can be positively 
or negatively regulated by different factors such as transcription factors, enhancers, 
silencers and epigenetic modification of the miRNA promoter (Ruegger et al. 2012; 
Macedo et al. 2013). Investigations in this area have been slowed by limitations in 
the methods used to define the promoters and measure the transcripts. pri-miRNAs 
are unstable, as they are processed by the nuclear microprocessor complex very 
soon after transcription. Therefore, they generally do not accumulate in great abun-
dance in cells and are underrepresented in EST and RNA-Seq libraries.

Recently, these challenges have been overcome by epigenomic and transcrip-
tomic experiments. One study took advantage of the fact that many pri-miRNAs 
accumulate in cells lacking Drosha to map pri-miRNAs using RNA-Seq (Kirigin 
et al. 2012).

It has long been known that the levels of mature miRNAs are not determined 
solely by their transcription. Measurements of pri-miRNAs and their corresponding 
mature miRNAs were poorly correlated, suggesting that specific miRNAs are sub-
ject to developmental regulation of their processing and/or stability (Thomson et al. 
2006). Additionally, the expression of these miRNAs continues to be regulated after 
biogenesis is complete. Mature miRNA homeostasis can be influenced by signals 
that modulate the stability of the miRISC complex, by nucleases that degrade miR-
NAs, and/or by the abundance of their mRNA targets. It is estimated that 5–10 % of 
mammalian miRNAs are epigenetically regulated (Breving and Esquela-Kerscher 
2010, Brueckner et al. 2007, Han et al. 2007, Toyota et al. 2008).
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Despite early reports indicating that miRNAs are often surprisingly stable in 
cells, displaying half-lives up to 12 days (van Rooij et al. 2007), cell differentiation 
and cell-fate decisions are frequently marked by dramatic changes in the expression 
of mature miRNAs.

The Argonaute proteins are limiting factors that determine the total abundance of 
cellular miRNAs. The deletion of these proteins, specifically Ago1 and Ago 2, was 
sufficient to drastically reduce miRNA expression (Bronevetsky et al. 2013; Died-
erichs and Haber 2007; Lund et al. 2011). Conversely, overexpressing Ago2, but not 
the other proteins in the miRNA biogenesis pathway, increases miRNA expression 
in HEK293 cells. Thus, changes in the expression and stability of Ago proteins can 
have dramatic effects on the expression of mature miRNAs within cells.

The action of miRNA nucleases in the regulation of miRNAs is not well under-
stood, especially in mammals. At least two ribonucleases have been shown to nega-
tively regulate the expression of mature miRNAs. IRE1a, an endoplasmic reticulum 
(ER) transmembrane RNase activated in response to ER stress, cleaves precursors 
corresponding to miR-17, miR-34a, miR-96, and miR-125b and mediates the rapid 
decay of their expression in response to sustained cellular stress (Upton et al. 2012). 
Additionally, Eri1, a 3′-to-5′ exoribonuclease with a double-stranded RNA-binding 
SAP domain, was discovered to limit miRNA abundance in CD4 + T cells and natu-
ral killer (NK) cells (Thomas et al. 2012).

The sequence-specific degradation of miRNAs has also been observed with 
the addition of RNA targets. miRNA “antagomirs” and “miRNA sponges” are two 
technologies used to specifically knockdown miRNA expression, and both rely on 
miRNA degradation induced by high levels of miRNA-to-target complementarity 
(Krutzfeldt et al. 2005; Ebert et al. 2007; Plank et al. 2013). Further work is still 
needed to determine the extent to which miRNA expression is regulated by target 
mRNAs, as well as the molecular mechanisms that mediate this final step in the 
control of miRNA expression.

The posttranscriptional regulatory mechanisms that affect miRNA processing 
at different stages have recently been investigated (Siomi 2010). For example, p53 
can form a complex with Drosha, which increases the processing of pri-miRNAs 
to pre-miRNAs (Suzuki et al. 2009). Histone deacetylase I can also enhance pri-
miRNA processing by deacetylating the microprocessor complex protein DGCR8 
(Wada et al. 2012). Additionally, cytokines such as interferons have been shown to 
inhibit Dicer expression and decrease the processing of pre-miRNAs (Wiesen and 
Tomasi 2009).

1.3.2 � Extracellular miRNAs

RISC components and miRNAs have also been found in exosomes (Valadi et al. 
2007). Exosomes isolated from the culture supernatant of many hematopoietic cells, 
including cytotoxic T lymphocytes, mast cells, and dendritic cells (DCs), as well as 
DC-derived exosomes, have been shown to stimulate CD4 + T-cell activation and 
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induce tolerance (Zitvogel et  al. 1998). Experimentally, vesicles containing both 
Ago2 and miRNAs, including miR-150, miR-21, and miR-26b, as well as the ves-
icle-derived miR-150, could be delivered to recipient HMEC-1 human endothelial 
cells and repress the target mRNAs in the recipient cells. These findings illustrate 
another mechanism by which immune cell stimulation/activation can lead to signifi-
cant changes in mature miRNA levels. Interest in extracellular miRNAs in various 
body fluids has increased substantially as early findings indicated their utility as 
readily accessible biomarkers.

Circulating miRNAs have been studied in patient samples and animal models 
in the context of cardiovascular disease, liver injury, sepsis, cancer, and various 
other physiological and pathophysiological states (Cortez et al. 2011). The origin of 
extracellular miRNAs is still poorly understood, with blood cells appearing to be a 
major contributor to circulating miRNAs (Pritchard et al. 2012).

It has also become clear that extracellular miRNAs exist in several distinct 
forms in human plasma. In addition to miRNAs encapsulated in vesicles such as 
exosomes, there are stable non-vesicular miRNAs that can be copurified with Ago 
proteins, which are accessible for direct immunoprecipitation from plasma samples 
(Arroyo et al. 2011). Further research is needed to clarify the cellular sources of 
miRNAs, the forms in which they are released, and whether this process is regulated 
during biological processes.

1.3.3 � An Example of the Biological Consequence of miRNAs: 
Their Role in the Immune System

The role of miRNAs in the immune system has been extensively investigated. Both 
innate and adaptive immune responses are highly regulated by miRNAs. By target-
ing the signal transduction proteins involved in the transmission of intracellular 
signals following initial pathogen recognition and by directly targeting mRNAs that 
encode specific inflammatory cytokines, miRNAs can have a significant impact on 
the innate immune response. In addition to their role in regulating the innate im-
mune system, miRNAs have been implicated in adaptive immunity, wherein they 
control the development, activation and plasticity of T and B cells (Lu and Liston 
2009; Xiao and Rajewsky 2009; O’ Connell et al. 2010; O’ Neill et al. 2011; Plank 
et al. 2013; Baumjohann and Ansel 2013; Donate et al. 2013).

Furthermore, the central role of miRNAs across many important aspects of innate 
and adaptive immunity strongly supports their potential in regulating inflammatory 
diseases. The identification of a broad range of miRNAs that play pathogenic roles is 
growing. To date, a relatively small number of miRNAs has been associated with spe-
cific inflammatory diseases, and most of the identified miRNAs are expressed across 
multiple tissues and cell types, and many have been shown to play roles in other 
disease settings, particularly in cancer. Despite the limited numbers of verified targets 
in inflammatory diseases, many of the targets that were verified in other experimental 
settings may also be relevant in inflammatory diseases (Plank et al. 2013).
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1.4 � Conclusion

Early on, transcriptome research was intertwined with the genome. Much of this 
was due to the mapping of ESTs, and sequencing dominated the scene. Through 
the use of EST clones and the application of technical concepts such as nucleic acid 
hybridization, researchers began to use arrayed filters to explore the transcriptional 
expression of a large number of genes in a single experiment.

The constant improvement of these DNA arrays led to the fabrication of high-
density arrays and, finally, microarrays.

At the same time, sequencing also underwent significant changes involving au-
tomation and the endless quest to increase the number of reads, and this contributed 
substantially to a better understanding of the diversity of the transcriptome. Indeed, 
transcriptome research was rooted in these two major technological approaches 
(i.e., large-scale hybridization and sequencing).

What made microarrays robust and increased their popularity was the increase in 
the number of sequences deposited on the slides (currently, these slides contain the 
entire human or mouse functional genome), the sensitivity of the method (currently, 
experiments are being performed with nanogram amounts of total RNA to screen 
the entire functional genome), the simplicity of its use, its commercial availability 
and the availability of bioinformatics packages dedicated to analyzing the large 
amounts of data being generated.

Of key importance was the development of statistical procedures for the analysis 
of large amounts of data, which opened the door for biostatisticians and bioinfor-
maticians.

All of these ongoing technological advances have contributed to the consolida-
tion of the concept of the transcriptome. Unlike the genome, which is essentially 
static, the transcriptome is variable and is dependent on normal physiological, path-
ological or environmental conditions. Moreover, it is composed not only of mRNAs 
but also non-coding RNAs, including miRNAs.

This concept has provided the opportunity for all types of biomedical research to 
re-examine their results in light of transcriptomics.

References

Adams J (2008) Sequencing human genome: the contributions of Francis Collins and Craig Venter. 
Nat Educ 1(1):133

Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu 
A, Olde B et al (1991) Complementary DNA sequencing: expressed sequence tags and human 
genome project. Science 252:1651–1656

Adams MD, Dubnick M, Kerlavage AR, Moreno R, Kelley JM, Utterback TR, Nagle JW, Fields 
C, Venter JC (1992) Sequence identification of 2,375 human brain genes. Nature 355:632–634

Adams MD, Soares MB, Kerlavage AR, Fields C, Venter JC (1993a) Rapid cDNA sequencing 
(expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nat 
Genet 4:373–380



371  What Is the Transcriptome and How it is Evaluated?

Adams MD, Kerlavage AR, Fields C, Venter JC (1993b). Initial assessment of human gene diver-
sity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nat Genet 
4:256–267

Ahrens CH, Brunner E, Qeli E, Basler K, Aebersold R (2010) Generating and navigating proteome 
maps using mass spectrometry. Nat Rev Mol Cell Biol 11:789–801

Allison DB, Cui X, Page GP, Sabripour M (2006) Microarray data analysis: from disarray to con-
solidation and consensus. Nat Rev Genet 7:55–65

Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of 
proteome dynamics. Nat Rev Genet 14:35–48

Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355
Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell 

Biol 14(8):475–488
Anders S, Huber W (2010) Differential expression analysis for sequence count data. Gen Biol 11: 

R106
Anderson L (2014) Six decades searching for meaning in the proteome. J Proteomics. doi:10.1016/j.

jprot.2014
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett 

CF, Pogosova-Agadjanyan EL et al (2011) Argonaute2 complexes carry a population of cir-
culating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 
108:5003–5008

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight 
SS et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

Auer PL, Doerge RW (2010) Statistical design and analysis of RNA sequencing data. Genetics 
185:405–416

Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on 
protein output. Nature 455:64–71

Baker SC, Bauer SR, Beyer RP, Brenton JD, Bromley B, Burrill J, Causton H, Conley MP, Elesp-
uru R et al (2005) The external RNA controls consortium: a progress report. Nat Methods 2 
731–734

Ball CA, Sherlock G, Parkinson H, Rocca-Sera P, Brooksbank C, Causton HC, Cavalieri D, Gaas-
terland T, Hingamp P et al (2002) Microarray gene expression data (MGED) society. Standards 
for microarray data. Science 298:539

Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233
Batista PJ and Chang HY (2013) Long noncoding RNAs: cellular address codes in development 

and disease. Cell 152:1298–1307
Baumjohann D, Ansel MK (2013) MicroRNA-mediated regulation of T helper cell differentiation 

and plasticity. Nat Rev Immunol 13:666–678
Behm-Ansmant I, Rehwinkel J, Doerks T et al (2006) mRNA degradation by miRNAs and GW182 

requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 
20:1885–1898

Bernard K, Auphan N, Granjeaud S, Victorero G, Schmitt-Verhulst AM, Jordan BR, Nguyen C 
(1996) Multiplex messenger assay: simultaneous, quantitative measurement of expression for 
many genes in the context of T cell activation. Nucleic Acids Res 24:1435–1443

Bertani S, Sauer S, Bolotin E et al (2011) The noncoding RNA Mistral activates Hoxa6 and 
Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 
43:1040–1046 

Bertucci F, Bernard K, Loriod B, Chang YC, Granjeaud S, Birnbaum D, Nguyen C, Peck K, Jordan 
BR (1999) Sensitivity issues in DNA array-based expression measurements and performance 
of nylon microarrays for smalls samples. Hum Mol Genet 9:1715–1722

Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-bind-
ing protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191

Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization meth-
ods for high density oligonucleotide array data based on variance and bias. Bioinformatics 
19(2):185–193



38 A. F. Assis et al.

Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. 
Nat Struct Mol Biol 13:1097–101

Botwell D (1999) Options available -from start to finish- for obtaining expression data by microar-
ray. Nat Genet 21:2–32

Bratkovic T, Rogelj B (2014) The many faces of small nucleolar RNAs. Biochim Biophys Acta 
1839:438–443

Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, 
Ball CA et al (2001) Minimum information about a microarray experiment (MIAME) – toward 
standards for microarray data. Nat Genet 29:365–371

Breitling R, Herzyk P (2005) Rank-based methods as a non-parametric alternative of the T-statistic 
for the analysis of biological microarray data. J Bioinf Comp Biol 3:1171–1189

Brennecke J, Stark A, Russell RB et al (2005) Principles of microRNA-target recognition. PLoS 
Biol 3:e85

Brenner S, Jacob F, Meselson M (1961) An unstable intermediate carrying information from genes 
to ribosomes for protein synthesis. Nature 190:576–581

Breving K, Esquela-Kerscher A (2010) The complexities of microRNA regulation: miRandering 
around the rules. Int J BiochemCell Biol 42:1316–1329

Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode 
of action. Nat Rev Mol Cell Biol 10(2):141–1488

Bronevetsky Y, Ansel MK (2013) Regulation of miRNA biogenesis and turnover in the immune 
system. Immunol Rev 253:304–316

Bronevetsky Y, Villarino AV, Eisley CJ, Barbeau R, Barczak AJ, Heinz GA, Kremmer E, Heiss-
meyer V, McManus MT et al (2013) T cell activation induces proteasomal degradation of Argo-
naute and rapid remodeling of the microRNA repertoire. J Exp Med 210:417–432

Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sültmann H, Lyko F (2007) 
The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic 
function. Cancer Res 67:1419–1423

Bullard JH, Purdom E, Hansen KD, Dudoit S (2010) Evaluation of statistical methods for normal-
ization and differential expression in mRNA-Seq experiments. BMC Bioinform 11:94

Bumgarner SL, Dowell RD, Grisafi P, Gifford DK, Fink GR (2009) Toggle involving cis-interfer-
ing noncoding RNAs controls variegated gene expression in yeast. Proc Natinal Acad Sci USA 
106:18321–18326

Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205
Cahan P, Rovegno F, Mooney D, Newman JC, St. Laurent III G, McCaffrey TA (2007) Meta-

analysis of microarray results: challenges, opportunities, and recommendations for standard-
ization. Gene 401:12–18

Camargo AA, Samaia HP, Dias-Neto E, Simão DF, Migotto IA, Briones MR, Costa FF, Nagai MA, 
Verjovski-Almeida S et al (2001) The contribution of 700,000 ORF sequence tags to the defini-
tion of the human transcriptome. Proc Natl Acad Sci USA 98:12103–12108

Cantor CR (1990) Orchestrating the human genome project. Science 248:49–51
Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 

136:642–655
Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris 

MS, Fodor SP (1996) Accessing genetic information with high-density DNA arrays. Science 
274:610–614

Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regu-
lation in animal cells. Curr Opin Cell Biol 21:452–460

Chen Y, Dougherty ER, Bittner ML (1997) Ratio-based decisions and the quantitative analysis of 
cdna microarray images. J Biomed Opt 2:364–374

Chen JJ, Wu R, Yang PC, Huang JY, Sher YP, Han MH, Kao WC, Lee PJ, Chiu TF et al (1998) 
Profiling expression patterns and isolating differentially expressed genes by cDNA microarray 
system with colorimetry detection. Genomics 51:313–324

Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage dif-
ferentiation. Science 303:83–86



391  What Is the Transcriptome and How it is Evaluated?

Chendrimada TP, Gregory RI, Kumaraswamy E (2005) TRBP recruits the Dicer complex to Ago2 
for microRNA processing and gene silencing. Nature 436:740–744

Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long noncoding RNA occupancy reveal 
principles of RNA–chromatin interactions. Mol Cell 44:667–678

Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 
32:490–495

Clément-Ziza M, Gentien D, Lyonnet S, Thiery JP, Besmond C, Decraene C (2009) Evaluation 
of methods for amplification of picogram amounts of total RNA for whole genome expression 
profiling. BMC Genomics 26:10:246

Cobb JP, Mindrinos MN, Miller-Graziano C, Calvano SE, Baker HV, Xiao W, Laudanski K, 
Brownstein BH, Elson CM et al (2005) Application of genome-wide expression analysis to 
human health and disease PNAS 102(13):4801–4806

Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey 
KN et al (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 
460:705–710

Cortez MA, Bueso-Ramos C, Ferdin J (2011) MicroRNAs in body fluids–the mix of hormones and 
biomarkers. Nat Rev Clin Oncol 8:467–477

Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 
16:861–865

Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for argonautes. Nat Rev Genet 
12:19–31

De Klerk E den Dunnen JT t Hoen PA (2014) RNA sequencing : from tag-based profiling to resolv-
ing complete transcript structure. Cell Mol Life Sci (epub ahead of print) 71(18):3537–3551.

Degrelle SA, Hennequet-Antier C, Chiapello H, Piot-Kaminski K, Piumi F, Robin S, Renard JP, 
Hue I (2008) Amplification biases: possible differences among deviating gene expressions. 
BMC Genomics 9:46

Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microR-
NAs by the Microprocessor complex. Nature 432:231–235

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: 
database for annotation, visualization, and integrated discovery. Genome Biol 4:3

Derrien T, Guigo R, Johnson R (2011) The long non-coding RNAs: a new (p)layer in the “dark 
matter”. Front Genet 2:107 

Didiano D, Hobert, O (2006) Perfect seed pairing is not a generally reliable predictor for miRNA-
target interactions. Nat Struct Mol Biol 13:849–851

Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttran-
scriptional regulation of microRNA expression. Cell 131:1097–1108

Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, 
Castel D et al (2013) A comprehensive evaluation of normalization methods for illumine high-
throughput RNA sequencing data analysis. Brief Bioinform 14(6):671–683

Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 
489:101–108

Donate PB, Fornari TA, Macedo C, Cunha TM, Nascimento DC, Sakamoto-Hojo ET, Donadi EA, 
Cunha FQ, Passos GA (2013) T cell post-transcriptional miRNA-mRNA interaction networks 
identify targets associated with susceptibility/resistance to collagen-induced arthritis. PLoS 
One 8(1):e54803

Duewer DL, Jones WD, Reid LH, Salit M (2009) Learning from microarray interlaboratory stud-
ies: measures of precision for gene expression. BMC Genomics 10:153

Dufva M (2005) Fabrication of high quality microarrays. Biomol Eng 22:173–184
Dujon, B (1998) European functional analysis network (EUROFAN) and the functional analysis of 

the Saccharomyces cerevisiae genome. Electrophoresis 19:617–624
Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small 

RNAs in mammalian cells. Nat Methods 4:721–726
Edwards D (2003) Non-linear normalization and background correction in onechannel cDNA mi-

croarrays studies. Bioinformatics 19:825–833



40 A. F. Assis et al.

Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-
wide expression patterns. PNAS 95(25):14863–14868

Epstein JR, Leung AP, Lee KH, Walt DR (2003) High-density, microsphere based fiber optic DNA 
microarrays. Biosen Bioeletron 18:541–546

Eulalio A, Rehwinkel J, Stricker M, Huntzinger E, Yang SF, Doerks T, Dorner S, Bork P, Boutros 
M et al (2007) Target-specific requirements for enhancers of decapping in miRNA-mediated 
gene silencing. Genes Dev 21:2558–2570

Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C et al 
(2012) microRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. 
Proc Natl Acad Sci USA 109:E2110–E2116

Fang Z, Cui X (2010) Design and validation issues in RNA-seq experiments. Brief Bioinform 
12(3):280–287

Fang Z, Cui X (2011) Design and validation issues in RNA-Seq experiments. Brief Bioinformatics 
12:280–287

Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The 
widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 
310:1817–1821

Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and devel-
opment. Nat Rev Genet 15:7–21

Ferguson JA, Steemers FJ, Walt DR (2000) High-density fiber optic DNA random microsphere 
array. Anal Chem 72:5618–5624

Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of posttranscriptional regula-
tion by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

Fisher RA (1935) The design of experiments. Oxford, England. Oliver & Boyd, p 251
Fonseca NA, Rung J, Brazma A, Marioni JC (2012) Tools for mapping high-troughput sequencing 

data. Bioinformatics 28(24):3169–3177
Forler S, Klein O, Klose J (2014) Individualized proteomics J Proteomics 107C:56–61
Forman JJ, Coller HA (2010) The code within the code: microRNAs target coding regions. Cell 

Cycle 9:1533–1541
Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding re-

gions reveals that the let†‘7 microRNA targets Dicer within its coding sequence. Proc Natl 
Acad Sci USA 105:14879–14884

Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for trasncrip-
tome annotation and quantification using RNA-sEq. Nat Methods 8:469–477

Geeleher P, Morris D, Golden A, Hinde JP (2008) Handbook: bioconductorBuntu users manual. 
http://www3.it.nuigalway.ie/agolden/bioconductor/version1/handbook.pdf

Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse 
cellular contexts. Nat Rev Mol Cell Biol 14:699–672

Gentleman RC, Carey VJ, Bates DM (2004) Bioconductor: open software development for com-
putational biology and bioinformatics. Genome Biol 5(10):R80

Gentleman RC, Carey VJ, Huber W et al (2005) Bioinformatics and computational biology solu-
tions using R and bioconductor. Springer, New York, p 473

Gershon D (2002) Microarray technology, an array of opportunities; technology feature. Nature 
416:885–891

Geschwind DH, Gregg JP (2002) Microarrays for the neurosciences: an essential guide. The 
MIT Press

Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF 
(2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Sci-
ence 312:75–79

Goecks J, Nekrutenko A, Taylor J; Galaxy Team (2010) Galaxy: a comprehensive approach for 
supporting accessible, reproducible, and transparent computational research in the life sci-
ences. Genome Biol 11:R86



411  What Is the Transcriptome and How it is Evaluated?

Granjeaud S, Nguyen C, Rocha D, Luton R, Jordan BR (1996) From hybridization image to nu-
merical values:a practical, high throughput quantification system for high density filter hybrid-
izations. Genet Anal Biomol Eng 12:151–162

Granjeaud S, Bertucci F, Jordan BR (1999) Expression profiling: DNA arrays in many guises. 
Bioessays 21:781–790

Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) 
The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

Gress TM, Hoheisel JD, Lennon GG, Zehetner G, Lehrach H (1992) Hybridization fingerprinting 
of high-density cDNA-library arrays with cDNA pools derived from whole tissues. Mamm 
Genome 3:609–661

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA tar-
geting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

Gu S, Jin L, Zhang F, Sarnow P, Kay MA (2009) Biological basis for restriction of microRNA 
targets to the 3Í´ untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16:144–150

Gunderson KL, Kruglyak S, Graige MS, Garcia F, Kermani BG, Zhao C, Che D, Dickinson T, 
Wickham E et al (2004) Decoding randomly ordered DNA arrays. Genome Res 14:870–877

Guo Y, Ye F, Sheng Q, Clark T, Samuels DC (2013) Three-stage quality control strategies for DNA 
re-sequencing data. Briefings in Bioinformatics doi:10.1093/bib/bbt069

Haase AD, Jaskiewicz L, Zhang H, Lainé S, Sack R, Gatignol A, Filipowicz W (2005) TRBP, a 
regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in 
RNA silencing. EMBO 6:961–967

Han L, Witmer PD, Casey E, Valle D, Sukumar S (2007) DNA methylation regulates MicroRNA 
expression. Cancer Biol Ther 6:1284–1288

Heber S, Sick B (2006) Quality assessment of Affymetrix GeneChip data. OMICS 10(3):358–368
Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, 

Bauer S (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 
and 8. Science 303:1526–1529

Heo I, Kim VN (2009) Regulating the regulators: posttranslational modifications of RNA silencing 
factors. Cell 139:28–31

Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M (2002) Variance stabilization 
applied to microarray data calibration and to the quantification of differential expression. Bio-
informatics 18(1):S96–S104

Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation 
by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci 
USA 102:16961–16966

Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD (2001) A cellular 
function for the RNAinterference enzyme Dicer in the maturation of the let-7 small temporal 
RNA. Science 293:834–838

Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kB, Lin28, Let-7 
microRNA, and IL6 links inflammation to cell transformation. Cell 139:693–706

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) 
Exploration, normalization, and summaries of high density oligonucleotide array probe level 
data. Bioinformatics 4(2):249–264

Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E, Garcia JG, Geoghe-
gan J et  al (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 
2:345–350

Jackson RJ, Standart N (2007) How do microRNAs regulate gene expression? Sci STKE 
2007(367):re1

Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 
3:318–356

Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR (2007) Activating gene ex-
pression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 3:166–173



42 A. F. Assis et al.

Järvinen AK, Hautaniemi S, Edgren H, Auvinen P, Saarela J, Kallioniemi OP, Monni O (2004) Are 
data from different gene expression microarray platforms comparable? Genomics 83:1164–
1168

Jordan B (2012) The microarray paradigm and its various implementations. In Jordan B (ed) Mi-
croarrays in diagnostics and biomarker development. Current and future applications. Spring-
er-Verlag, Berlin Heidelberg.

Jordan BR (1998) Large scale expression measurement by hybridization methods: from high-
density membranes to “DNA chips”. J Biochem 124:251–258

Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids 
Res 28:27–30

Kawamata T, Tomari Y (2010) Making RISC. Trends Biochem. Sci 35:368–376
Kellis M, Wold B, Snyder MP et al (2014) Defining functional DNA elements in the human ge-

nome. Proc Natl Acad Sci USA 111:6131–6138
Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays. Biostatistics 

2:183–201
Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22:165–173
Kirigin FF, Lindstedt K, Sellars M, Ciofani M, Low SL, Jones L, Bell F, Pauli F, Bonneau R et al 

(2012) Dynamic microRNA gene transcription and processing during T cell development. J 
Immunol 188:3257–3267

Kooperberg C, Fazzio TG, Delrow JJ, Tsukiyama T (2002) Improved background correction for 
spotted DNA microarrays. J Comp Biol 9:55–66

Kren BT, Wong PY, Sarver A, Zhang X, Zeng Y, Steer CJ (2009) MicroRNAs identified in highly 
purified liver-derived mitochondria may play a role in apoptosis. RNA Biol 6:65–72

Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silenc-
ing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E, Chowdhury D, Dykxhoorn DM, 
Tsai P et al (2009) miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-
cycle genes via binding to “seedless” 3’ UTR microRNA recognition elements. Mol Cell 
35:610–625

Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 
and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167

Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J (2005) Independence and reproduc-
ibility across microarray platforms. Nat Methods 2:337–344

Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin‘4 encodes small 
RNAs with antisense complementarity to lin‘14. Cell 75:843–854

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O et al (2003) The nuclear 
RNase III Drosha initiates microRNA processing. Nature 425:415–419

Levine E, Hwa T (2008) Small RNAs establish gene expression thresholds. Curr Opin Microbiol 
11:574–579

Levine E, Zhang Z, Kuhlman T, Hwa T (2007) Quantitative characteristics of gene regulation by 
small RNA. PLoS Biol 5:e229

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian 
microRNA targets. Cell 115:787–798

Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indi-
cates that thousands of human genes are microRNA targets. Cell 120:15–20

Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R (2006) 
Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA 
103:17337–17342

Lin SL, Kim H, Ying SY (2008) Intron-mediated RNA interference and microRNA (miRNA). 
Front Biosci 13:2216–2230

Liu G, Mattick JS, Taft RJ (2013) A meta-analysis of the genomic and transcriptomics composition 
of complex life. Cell Cycle 12:2061–2072



431  What Is the Transcriptome and How it is Evaluated?

Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, 
Kobayashi M (1996) Expression monitoring by hybridization to high-density oligonucleotide 
arrays. Nat Biotechnol 14:1675–1680

Lönnstedt I, Speed T (2002) Replicated microarray data. Stat Sinica 12:31–46
Lu LF, Liston A (2009) MicroRNA in the immune system, microRNA as an immune system. Im-

munology 127:291–298
Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA (2004a) 

Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 
101:5598–5603

Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U (2004b) Nuclear export of microRNA pre-
cursors. Science 303:95–98

Lund E, Sheets MD, Imboden SB, Dahlberg JE (2011) Limiting Ago protein restricts RNAi and 
microRNA biogenesis during early development in Xenopus laevis. Genes Dev 25:1121–1131

Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ (2009) GAGE: generally applicable 
gene set enrichment for pathway analysis. BMC Bioinform 10:161

Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davison T, Shi T, Tong W, Shi L 
et al (2010) A comparison of batch effect removal methods for enhancement of prediction per-
formance using MAQC-II microarray gene expression data. Phamacogenomics J 10:278–291

Ma F, Liu X, Li D, Wang P, Li N, Lu L, Cao X (2010) microRNA-466 l upregulates IL-10 ex-
pression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-
mediated IL-10 mRNA degradation. J Immunol 184:6053–6059

Macedo C, Evangelista AF, Marques MM, Octacílio-Silva S, Donadi EA, Sakamoto-Hojo ET, Pas-
sos GA (2013) Autoimmune regulator (Aire) controls the expression of microRNAs in medul-
lary thymic epithelial cells. Immunobiol 218:554–560

Maeda N, Kasukawa T, Oyama R et al (2006) Transcript annotation in FANTOM3: mouse gene 
catalog based on physical cDNAs. PloS Genet 2: e62

Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y, Deng G, Dahiya R (2010) microRNA-
205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer 
116:5637–5649

MAQC Consortium (2006) The microarray quality control (MAQC) project shows inter- and in-
traplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment 
of technical reproducibility and comparison with gene expression arrays. Genome Res 
18(9):1509–1517

Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682
McCarthy JJ (2008) MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys 

Acta 1779:682–691
Mehta P, Goyal S, Wingreen NS (2008) A quantitative comparison of sRNA-based and protein-

based gene regulation. Mol Syst Biol 4:211
Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regu-

lation. Nat Struct Biol 20: 300–307
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) 

A pattern-based method for the identification of MicroRNA binding sites and their correspond-
ing heteroduplexes. Cell 126:1203–1217

Mitarai N, Benjamin JA, Krishna S, Semsey S, Csiszovszki Z, Massé E, Sneppen K (2009) Dy-
namic features of gene expression control by small regulatory RNAs. Proc Natl Acad Sci USA 
106:10655–10659

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, 
Noteboom J, O’Briant KC et al (2008) Circulating microRNAs as stable blood-based markers 
for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

Moorcroft MJ, Meuleman WR, Latham SG, Nicholls TJ, Egeland RD, Edwin M., Southern EM 
(2005) In situ oligonucleotide synthesis on poly(dimethylsiloxane): a flexible substrate for 
microarray fabrication. Nucleic Acids Res 33:e75



44 A. F. Assis et al.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying 
mammalian trasncriptome by RNA-SEq. Nat Methods 5(7):621–628

Nagano T, Mitchell JA, Sanz LA et al (2008) The Air noncoding RNA epigenetically silencestran-
scription by targeting G9a to chromatin. Science 322:1717–1720

Neguembor MV, Jothi M, Gabellini D (2014) Long noncoding RNAs, emerging players in muscle 
differentiation and disease. Skelet Muscle 4:8

Nguyen C, Rocha D, Granjeaud S, Baldit M, Bernard K, Naquet P, Jordan BR (1995) Differential 
gene expression inthe murine thymus assayed by quantitative hybridization of arrayed cDNA 
clones. Genomics 29:207–216

Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends 
Genet 23:243–249

Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on 
actively translating polyribosomes. Nat Struct Mol Biol 13:1108–1114

Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, Pitas A, Richmond T, Gorski T, Berg 
JP et al (2002) Gene expression analysis using oligonucleotide arrays produced by maskless 
photolithography. Genome Res 12:1749–1755

Nygaard VL, Hovig E (2006) Options available for profiling small samples: a review of sam-
ple amplification technology when combined with microarray profiling. Nucleic Acids Res 
34:996–1014

O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles 
for microRNAs in the immune system. Nat Rev Immunol 10(2):111–122

O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor sig-
nalling. Nat Rev Immunol 11:163–175

Okubo K, Hori N, Matoba R, Niiyama T, Fukushima A, Kojima Y, Matsubara K (1992) Large scale 
cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat 
Genet 2:173–179

Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Cae-
norhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. 
Developmental Biol 216:671–680

Osella M, Bosia C, Cora` D et al (2011) The role of incoherent microRNA-mediated feedforward 
loops in noise buffering. PLoS Comput Biol 7:e1001101

Oshlack A, Robinson MD, Young M (2010) From RNA-seq reads to differential expression re-
sults. Genome Biol 11:220–230

Padron G, Domont GB (2014) Two decades of proteomics in Latin America: a personal view.  J 
Proteomics 107C:83–92

Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequenc-
ing data. PLoS ONE 7:e30619.

Pandey RR, Mondal T, Mohammad F et al (2008) Kcnq1ot1antisense noncoding RNA medi-
ates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 
32:232–246.

Penny GD, Kay GF, Sheardown, SA et al (1996) Requirement for Xist in X chromosome inactiva-
tion. Nature 379:131–137

Petersen CP, Bordeleau ME, Pelletier J, Sharp PA (2006) Short RNAs repress translation after 
initiation in mammalian cells. Mol Cell 21:533–542

Pietu G, Alibert O, Guichard V, Lamy B, Bois F, Leroy E, Mariage-Samson R, Houlgatte R, Sou-
larue P, Auffray C (1996) Novel gene transcripts preferentially expressed in human muscles 
revealed by quantitative hybridization of a high density cDNA array. Genome Res 6:492–503

Pietu G, Mariage-Samson R, Fayein NA, Matingou C, Eveno E, Houlgatte R, Decraene C, Van-
denbrouck Y, Tahi F et  al (1999) The Genexpress IMAGE Knowledge Base of the Human 
Brain Transcriptome: a Prototype Integrated Resource for Functional and Computational Ge-
nomics. Genome Res 9:195–209

Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: 
how many mechanisms? Trends Cell Biol 17:118–126



451  What Is the Transcriptome and How it is Evaluated?

Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) microRNA-373 induces expression of 
genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613

Plank M, Maltby S, Mattes J, Foster PS (2013) Targeting translational control as a novel way to 
treat inflammatory disease: The emerging role of MicroRNAs. Clin Exp Allergy 43(9):981–999

Plath K, Fang J, Mlynarczyk-Evans SK et al (2003) Role of histone H3 lysine 27 methylation in X 
inactivation. Science 300:131–135

Ploner A, Miller LD, Hall P, Bergh J, Pawitan Y (2005) Correlation test to assess low-level pro-
cessing of high-density oligonucleotide microarray data. BMC Bioinformatics 6:80

Politz JC, Hogan EM, Pederson T (2009) MicroRNAs with a nucleolar location. RNA 15:1705–1715
Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 

136:629–641 
Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, Tait JF, Tewari M (2012) 

Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. 
Cancer Prev Res 5:492–497

Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427
Ravasi T, Suzuki H, Pang KC et al (2006) Experimental validation of the regulated expression of 

large numbers of non-coding RNAs from the mouse genome. Genome Res 16:11–19
Rehwinkel J, Natalin P, Stark A, Brennecke J, Cohen SM, Izaurralde E (2006) Genome-wide 

analysis of mRNAs regulated by drosha and Argonaute proteins in Drosophila melanogaster. 
Mol Cell Biol 26:2965–2975

Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun 
G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis el-
egans. Nature 403:901–906

Ripoli A, Rainaldi G, Rizzo M, Mercatanti A, Pitto L (2010) The Fuzzy Logic of MicroRNA Regu-
lation: a Key to Control Cell Complexity. Curr Genomics 11:350–353

Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK (2007) A 
comparison of background corrections methods for two-color microarrays. Bioinformatics 
23(20):2700–2707

Rocha D, Carrier A, Naspetti M, Victorero G, Anderson E, Botcherby M, Nguyen C, Naquet P, Jor-
dan BR (1997) Modulation of mRNA levels in the presence of thymocytes and genome map-
ping for a set of genes expressed in mouse thymic epithelial cells. Immunogenetics 46:142–151

Rougemont J, Amzallag A, Iseli C, Farinelli L, Xenarios I, Naef F (2009) Rolexa: statistical analy-
sis of Solexa sequencing data. R package version 1.20.0 Available at Bioconductor (http://
bioconductor.org/packages/release/bioc/html/Rolexa.html)

Rüegger S, Großhans H (2012) MicroRNA turnover: when, how, and why. Trends Biochem Sci 
37:436–446

Sana J, Faltejskova P, Svoboda M, Slaby O (2012) Novel classes of non-coding RNAs and cancer. 
J Translat Med 10:103–123

Schanen BC, Li X (2011) Transcriptional regulation of mammalian miRNA genes. Genomics 
97:1–6

Schena M, Shanon D, Heller R et al (1996) Parallel human genome analysis: microarray-based 
expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93:10614–10619

Schmitter D, Filkowski J, Sewer A et al (2006) Effects of Dicer and Argonaute down-regulation on 
mRNA levels in human HEK293 cells. Nucleic Acids Res 34:4801–4815

Seyednasrollah F, Laiho A, Elo LL (2013) Comparison of software packages for detecting dif-
ferential expression in RNA-seq studies. Briefings in Bioinformatics doi:10.1093/bib/bbt086 
(in press)

Shi L, Campbell G, Jones WD et al (2010) The MicroArray Quality Control (MAQC)-II study of 
common practices for the development and validation of microarray-based predictive models. 
Nat Biotechnol 28 (8):827–838

Shi L, Reid LH, Jones WD et al (2006) The MicroArray Quality Control (MAQC) project shows 
inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24 
(9):1151–1161

http://bioconductor.org/packages/release/bioc/html/Rolexa.html
http://bioconductor.org/packages/release/bioc/html/Rolexa.html


46 A. F. Assis et al.

Shimoni Y, Friedlander G, Hetzroni G et al (2007) Regulation of gene expression by small noncod-
ing RNAs: a quantitative view. Mol Syst Biol 3:138

Shin C, Nam JW, Farh KK et al (2010) Expanding the microRNA targeting code: functional sites 
with centered pairing. Mol Cell 38:789–802

Silver JD, Ritchie ME, Smyth GK (2009) Microarray bakground correction: maximum likelihood 
estimation for the normal-exponential convolution. Biostatistics 10(2):352–363

Singh RL, Maganti RJ, Jabba SV, Wang M, Deng G, Heath JD, Kurn N, Wangemann P (2005) 
Microarray-based comparison of three amplification methods for nanogram amounts of total 
RNA. Am J Physiol Cell Physiol 288:C1179–C1189

Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F (1999) Maskless 
fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat 
Biotechnol 10:974–978

Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. 
Mol Cell 38:323–332

Slonin DK, Yanai I (2009) Getting Started in Gene Expression Microarray Analysis. PLoS Comput 
Biol 5(10):e1000543

Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit 
S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and 
bioconductor. Springer, New York, 397–420

Sogayar MC, Camargo AA, Bettoni F et al (2004) A transcript finishing initiative for closing gaps 
in the human transcriptome. Genome Res 14:1413–1423

Soneson C, Delorenzi M (2013) A comparison of methods for differential expression analysis of 
RNA-seq data. BMC Bioinform 14:91–108

Standart N, Jackson RJ (2007) MicroRNAs repress translation of m7Gppp-capped target mRNAs 
in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 21:1975–1982

Stark A, Brennecke J, Bushati N et al (2005) Animal microRNAs confer robustness to gene expres-
sion and have a significant impact on 3Í´UTR evolution. Cell 123:1133–1146

Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell 
Biol 9:219–230

Stekel D (2003) Microarray Bioinformatics. Cambridge University Press, Cambridge. 
ISBN:9780521525879

Strausberg RL, Riggins GL (2001) Navigating the human transcriptome. Proc. Natl. Acad. Sci. 
USA 98:11837–11838

Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles. PNAS 102:15545–15550

Sudo K, Chinen K, Nakamura Y (1994) 2058 expressed sequence tags (ESTs) from a human fetal 
lung cDNA library. Genomics 24:276–279

Sudo H, Mizoguchi A, Kawauchi J, Akiyama H, Takizawa S (2012) Use of non-amplified RNA 
samples for microarray analysis of gene expression. PLoS ONE 7:e31397

Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of 
microRNA processing by p53. Nature 460:529–533

Taft RJ, Pang KC, Mercer TR et al (2010) Non-coding RNAs: regulators of disease. J. Pathol. 
220:126–139

Takeda J, Yano H, Eng S, ZengY, Bell GI (1993) Construction of a normalized directionally cloned 
cDNA library from adult heart and analysis of 3040 clones by partial sequencing. Hum Mol 
Genet 2:1793–1798

Tay Y, Zhang J, Thomson AM et al (2008) microRNAs to Nanog, Oct4 and Sox2 coding regions 
modulate embryonic stem cell differentiation. Nature 455:1124–1128

The ENCODE Consortium (2011) Standards, guidelines and best practices for RNA-seq. http://en-
codeproject.org/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf

Thomson JM, Newman M, Parker JS et  al (2006) Extensive post-transcriptional regulation of 
microRNAs and its implications for cancer. Genes Dev 20:2202–2207

Thomas MF, Abdul-Wajid S, Panduro M et al. (2012) Eri1 regulates microRNA homeostasis and 
mouse lymphocyte development and antiviral function. Blood 120:130–142

http://encodeproject.org/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf
http://encodeproject.org/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf


471  What Is the Transcriptome and How it is Evaluated?

Toyota M, Suzuki H, Sasaki Y et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell 
translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer 
Res 68:4123–4132

Tsai NP, Lin YL, Wei LN (2009) microRNA mir-346 targets the 5-untranslated region of receptor-
interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem J 
424:411–418

Tusher VG, Tibshirani R, Chu G (2001). Significance analysis of microarrays applied to the ion-
izing radiation response. Proc Natl Acad Sci USA 98(9):5116–5121

Upton JP, Wang L, Hand D et  al (2012) IRE1a cleaves select microRNAs during ER stress to 
derepress translation of proapoptotic caspase-2. Science 338:818–822

Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microR-
NAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

Valencia-Sanchez MA, Liu J, Hannon GJ et al (2006) Control of translation and mRNA degrada-
tion by miRNAs and siRNAs. Genes Dev 20:515–524

Van Haaften RI, Schroen B, Janssen BJ, van Erk A, Debets JJ, Smeets HJ, Smits JF, van den Wijn-
gaard A, Pinto YM, Evelo CT (2006) Biologically relevant effects of mRNA amplification on 
gene expression profiles. BMC Bioinformatics 7:200

Van Heesch S, Van Iterson M, Jacobi J et al (2014) Extensive localization of long noncoding RNAs 
to the cytosol and mono- and polyribosomal complexes. Genome Biol 15:R6

Van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and 
gene expression by a microRNA. Science 316:575–579

Velcunescu VE, Zhang L, Volgelstein B, Kinzler KW (1995) Serial analysis of gene expression. 
Science 270:484–487

Velculescu VE, Zhang L, Zhou W et al (1997) Characterization of the yeast transcriptome. Cell 
88:243–251

Vella MC, Choi EY, Lin SY et al (2004) The C. elegans microRNA let-7 binds to imperfect let-7 
complementary sites from the lin-41 3' UTR. Genes Dev 18:132–137

Wada T, Kikuchi J, Furukawa Y (2012) Histone deacetylase 1 enhances microRNA processing via 
deacetylation of DGCR8. EMBO Rep 13:142–149

Wang S, Raghavachari S (2011) Quantifying negative feedback regulation by microRNAs. Phys 
Biol 8:055002

Wang X, Cairns MJ (2013) Gene set enrichment analysis of RNA-Seq data:integrating differential 
expression and splicing. BMC Bioinform 14(5):S16

Wang J, Hu L, Hamilton SR, Coombes KR, Zhang W (2003) RNA amplification strategies for 
cDNA microarray experiments. Biotechniques 34:394–400

Watson JD (1990) The human genome project: past, present, and future. Science 248:44–49
Wery M, Kwapisz M, Morillon A (2011) Noncoding RNAs in gene regulation. Wiley Interdiscip 

Rev Syst Biol Med. 3:728–738
Wiesen JL, Tomasi TB (2009) Dicer is regulated by cellular stresses and interferons. Mol Immunol 

46:1222–1228
Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene 

lin‘14 by lin‘4 mediates temporal pattern formation in C. elegans. Cell 75:855–862
Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways 

and their regulation. Nat Cell Biol 11:228–234
Wreschner DH, Herzberg M (1984) A new blotting medium for the simple Isolation and Identifica-

tion of highly resolved messenger RNA. Nucleic Acids Res 12:1349–1359
Wu L, Fan J, Belasco JG (2006) microRNAs direct rapid deadenylation of mRNA. Proc. Natl Acad 

Sci USA 103:4034–4039
Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 

136:26–36
Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core 

miRNA pathway mutants. Mol Cell 43:892–903
Yi R, Qin Y, Macara IG et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and 

short hairpin RNAs. Genes Dev 17:3011–3016



A. F. Assis et al.48

Young MD, Wakefield MJ, Smyth GK et al (2010) Gene ontology analysis for RNA-seq: account-
ing for selection bias. Genome Biol 11:R14

Yue D, Liu H, Huang Y (2009) Survey of Computational Algorithms for MicroRNA Target Predic-
tion. Curr Genomics 10:478–492

Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524
Zhang H, Kolb FA, Brondani V et al (2002) Human Dicer preferentially cleaves dsRNAs at their 

termini without a requirement for ATP. EMBO J 21:5875–5885
Zhao N, Hashida H, Takahashi N, Misumi Y, Sakaki Y (1995) High-density cDNA filter analysis: 

a novel approach for large-scale, quantitative analysis of gene expression. Gene 156:207–213
Zitvogel L, Regnault A, Lozier A et al (1998) Eradication of established murine tumors using a 

novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600


	Part I
	Basic Principles of the Transcriptome and Its Analysis
	Chapter-1
	What Is the Transcriptome and How it is Evaluated?
	1.1 What is the Transcriptome, How it is Evaluated and What Types of RNA Molecules Exist?
	1.1.1 How the Transcriptome is Evaluated: The Birth of Transcriptome Methods
	1.1.2 Miniaturization, an Obvious Technological Evolution Towards Microarrays
	1.1.3 Reliable Microarray Results Depend on a Series of Complex Steps
	1.1.4 Bioinformatics and Standardization Approaches: A Possible Solution?
	1.1.5 Analysis of the Expression Data
	1.1.5.1 Experimental Design
	1.1.5.2 Quality Control
	1.1.5.3 Data Processing
	1.1.5.4 Statistical Analysis and Interpretation
	1.1.5.5 Classification and Enrichment Analysis


	1.2 The Diversity of the Transcriptome
	1.3 The Transcriptome and miRNome are Closely Associated: The Role of MicroRNAs, a Class of Non-Coding Rnas Linked to the Fine Control of Gene Expression
	1.3.1 Control of miRNA Expression
	1.3.2 Extracellular miRNAs
	1.3.3 An Example of the Biological Consequence of miRNAs: Their Role in the Immune System

	1.4 Conclusion
	References







