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Preface

The completion of the human genome, with its more than 3 billion base pairs (bp) 
of sequenced DNA, has provided an unprecedented wealth of knowledge. With the 
additional investigation of single nucleotide polymorphisms (SNPs), we have also 
learned how little genetic variability there truly is in the human genome. More-
over, genome-wide association studies (GWAS) have revealed important genotype-
phenotype correlations. Nevertheless, our understanding of the functionality of the 
genome is still lacking.

Dispersed among its 3 billion bp, the human genome features approximately 
20–25,000 functional genes that encode various proteins and their isoforms. In re-
cent years, however, scientists realized that the functionality of the genome is not 
restricted to only protein-encoding genes, which are transcribed into messenger 
RNAs, but also to the transcription of non-coding RNAs [e.g., microRNAs (miR-
NAs)], which play important roles in the posttranscriptional control of gene expres-
sion and, consequently, influence the resulting phenotypes.

Broadly speaking, it is at this point—from studies investigating where the func-
tions of the genome first begin—that the science of transcriptomics emerged. For 
example, how are RNA molecules transcribed, what are the different species of 
RNA, what are the functions of each of these species and how are they differentially 
expressed among cells, tissues and organs?

Transcriptomics can therefore be thought of as the molecular biology of gene 
expression on a large scale. It is derived from functional genomics studies with a 
focus on transcription. Since its inception, transcriptomics has benefitted from and 
will continue to benefit from microarray technology. Sequencing is undoubtedly 
the ultimate tool when the objective is to delve into the differences at the sequence 
level or to confirm the specific RNA isoform involved. Even more so now, with the 
emergence of new technologies for high-throughput RNA sequencing (RNA-Seq), 
we can answer more questions about the structure of RNAs, such as those found in 
alternative splicing. However, the bottleneck remains in the data analysis because 
sequences are currently being obtained in quantities that have never been previously 
achieved.

However, as microarray bioinformatics has reached a very advanced stage (with 
more than 15 years to perfect the analysis pipeline) and as microarray slides them-
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selves have become increasingly “large”, currently encompassing sequences from 
the entire functional genome plus the complete set of known non-coding RNAs, 
researchers have not neglected the applications of this important technology.

Recent comparative analyses have indicated a strong concordance between exon 
microarrays and RNA-Seq data. Therefore, the goal is now to use these two comple-
mentary strategies for in-depth transcriptomics studies.

This book was organized on the basis on these assumptions. It includes 17 chap-
ters and covers the fundamental concepts of transcriptomics, as well as the cur-
rent analytical methods. We provide examples in high-level technical and scientific 
detail, using accessible language whenever possible, as each chapter is written by 
experienced and productive researchers in the field.

Over the first six chapters (Part I), we introduce the concept of the transcriptome, 
as well as how microarrays or RNA-Seq can be used to trace expression signatures, 
measure transcriptional expression levels and establish connections between genes 
based on their transcriptional activity in normal cells, differentiating cells and or-
gans.

Chapters 7–17 (Part II) then provide examples of the state of the transcriptome 
associated with major human diseases, such as inflammatory diseases, autoimmune 
diseases, metabolic diseases (such as type 2 diabetes mellitus), genetic diseases 
(such as Down syndrome), cancer and infections caused by pathogenic microor-
ganisms, such as tuberculosis mycobacteria, fungi and the protozoan Trypanosoma 
cruzi, which is the causative agent of Chagas disease.

Special attention is also given to Chap. 17, which was strategically placed at the 
end of this book. The author of this chapter, who was one of the original develop-
ers of microarray technology in the mid-1990s, discusses the medical potential of 
transcriptomics from an analytical point of view.

I hope this book will be useful to researchers who wish to gain a comprehensive 
view of transcriptomics in health and human disease. I would like to thank all of the 
authors for their dedication and time spent writing these chapters. Finally I thank 
Springer for providing this opportunity and for its continued support during the 
writing and organization of this work.

Internet Access to Video Clip 

The owner of this text will be able to access these video clips through Springer 
with the following Internet link: http://www.springerimages.com/videos/ 
978-3-319-11984-7.

Ribeirão Preto, Brazil Geraldo A. Passos

http://www.springerimages.com/videos/978-3-319-11984-7
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Chapter 1
What Is the Transcriptome and How  
it is Evaluated?

Amanda F. Assis, Ernna H. Oliveira, Paula B. Donate, Silvana Giuliatti, 
Catherine Nguyen and Geraldo A. Passos

© Springer International Publishing Switzerland 2014 
G. A. Passos (ed.), Transcriptomics in Health and Disease,  
DOI 10.1007/978-3-319-11985-4_1
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Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, 
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P. B. Donate
Inflammation and Pain Group, Department of Pharmacology, Ribeirão Preto Medical School, 
University of São Paulo, 14049-900, Ribeirão Preto, Brazil
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Bioinformatics Group, Department of Genetics, Ribeirão Preto Medical School,  
University of São Paulo, 14049-900, Ribeirão Preto, Brazil

C. Nguyen
Laboratory TAGC INSERM U1090, National Institute for Health and Medical Research, 
Scientific Park of Luminy, 13100, Marseille, France

Abstract The concept of the transcriptome revolves around the complete set of 
transcripts present in a given cell type, tissue or organ and encompasses both cod-
ing and non-coding RNA molecules, although we often assume that it consists only 
of messenger RNAs (mRNAs) because of their importance in encoding proteins. 
Unlike the nuclear genome, whose composition and size are essentially static, the 
transcriptome often changes. The transcriptome is influenced by the phase of the 
cell cycle, the organ, exposure to drugs or physical agents, aging, diseases and a 
multitude of other variables, all of which must be considered at the time of its deter-
mination. However, it is precisely this property that makes the transcriptome useful 
for the discovery of gene function and as a molecular signature. In this chapter, we 
review the beginnings of transcriptome research, the main types of RNA molecules 
found in a mammalian cell, the methods of analysis, and the bioinformatics pipe-
lines used to organize and interpret the large quantities of data generated by the two 
current gold-standard methods of analysis: microarrays and high-throughput RNA 
sequencing (RNA-Seq). Attention is also given to non-coding RNAs, using microR-
NAs (miRNAs) as an example because they physically interact with mRNAs and 
play a role in the fine control of gene expression.
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1.1  What is the Transcriptome, How it is Evaluated  
and What Types of RNA Molecules Exist?

Strictly speaking, the transcriptome can be conceptualized as the total set of RNA 
species, including coding and non-coding RNAs (ncRNAs), that are transcribed in 
a given cell type, tissue or organ at any given time under normal physiological or 
pathological conditions. This term was coined by Charles Auffray in 1996 to refer 
to the entire set of transcripts. Soon after, this concept was applied to the study of 
large-scale gene expression in the yeast S. cerevisiae (Velculescu et al. 1997; Dujon 
1998; Pietu et al. 1999).

However, due to the importance of messenger RNAs (mRNAs), which represent 
protein-coding RNAs, the term transcriptome is often associated with this set of 
RNA and as an analogy species. Researchers later coined the analogous term miR-
Nome to refer to the total set of miRNAs.

The proteome is conceptually similar to the transcriptome and refers the total set 
of proteins translated in a given cell type, tissue or organ at any given time during 
normal physiological or pathological conditions. Nevertheless, despite its impor-
tance, the proteome will not be discussed in this book, and we suggest the following 
reviews for further reading: Anderson 2014; Forler et al. 2014; Padron and Dormont 
2014; Altelaar et al. 2013; and Ahrens et al. 2010.

Analyses of the transcriptome began well before its conceptualization. Large-
scale analyses of gene expression in the murine thymus gland (Nguyen et al. 1995), 
the human brain and liver (Zhao et al. 1995) and human T cells (Schena et al. 1996) 
have been performed since the mid-1990s. These independent groups used cDNA 
clones arrayed on nylon membranes or glass slides to hybridize labeled tissue- or 
cell-derived samples. These arrayed cDNA clones represented the prototypes of the 
modern microarrays currently used in transcriptome research (Jordan 2012).

1.1.1  How the Transcriptome is Evaluated: The Birth  
of Transcriptome Methods

Although the first method used to analyze transcriptional gene expression emerged 
in 1980 with the development of Northern blot hybridization (Wreschner and Hers-
berg 1977), this method was not and still is not capable of being performed on 
a large scale, and thus cannot be considered a transcriptome approach. In 1990s, 
the human genome project, through partially automated DNA sequencing, had 
the ambition to identify, characterize and analyze all of the genes in the human 
genome (Watson 1990; Cantor 1990). This revolutionary approach led to thou-
sands of entries that were constructed via the tag-sequencing of randomly selected 
cDNA clones (Adams et al. 1991, 1992, 1993a, b; Okubo et al. 1992; Takeda et al. 
1993), thus opening an avenue for high-throughput approaches by making these 
data widely available in repositories such as the dbEST database (http://www.ncbi.
nlm.nih.gov/dbEST). As more and more genes are identified, efforts are now being 



51 What Is the Transcriptome and How it is Evaluated?

 redirected towards understanding the precise temporal and cellular control of gene 
expression. The advances provided by the current progress in high-throughput tech-
nologies have enabled the simultaneous analysis of the activity of many genes in 
cells and tissues, essentially depicting a molecular portrait of the tested sample. The 
transcriptome approach, based on the large-scale measurement of mRNA, became 
the method of choice among the emerging technologies of so-called “functional 
genomics”, primarily because this method was rapidly identified as one that can be 
performed at a reasonably large scale using highly parallel hybridization methods, 
and it has allowed a more holistic view of what is really happening in the cell (Sudo 
et al. 1994; Granjeaud et al. 1996, 1999; Botwell 1999; Jordan 1998).

As mentioned above, the first transcriptome analysis was performed on large 
nylon arrays using high-density filters containing colony cDNA (or PCR products) 
followed by quantitative measurements of the amount of hybridized probe at each 
spot. A common platform used spotted cDNA arrays, where cDNA clones repre-
senting genes were robotically spotted on the support surface either as bacterial 
colonies or as PCR products. These “macroarrays”, or high-density filters, were 
made on nylon membranes measuring approximately 10 cm2. Although this is now 
considered a dated approach, it was nonetheless effective enough to test sets of 
hundreds or even a few thousand genes.

DNA arrays allow the quantitative and simultaneous measurement of the mRNA 
expression levels of thousands of genes in a tissue or cell sample. The technology 
is based on the hybridization of a complex and heterogeneous RNA population 
derived from tissues or cells. Initially, this was referred as a “complex probe”, i.e., 
a complex mix that contains varying amounts of many different cDNA sequences, 
corresponding to the number of copies of the original mRNA species extracted from 
the sample. This complex probe was produced via the simultaneous reverse tran-
scription and 33P labeling of mRNAs, which were then hybridized to large sets of 
DNA fragments, representing the target genes, arrayed on a solid support. Thus, 
each individual experiment provided a very large amount of information (Gress 
et al. 1992, Nguyen et al. 1995; Jordan 1998; Velculescu et al. 1995; Zhao et al. 
1995; Bernard et al. 1996, Pietu et al. 1996, Rocha et al. 1997).

1.1.2  Miniaturization, an Obvious Technological Evolution 
Towards Microarrays

One of the major challenges that researchers faced was to obtain the highest pos-
sible sensitivity when working with a limited amount of sample (biopsies, sorted 
cells, etc.). In this regard, five parameters were taken into account: 1) the amount 
of DNA fixed on the array support; 2) the concentration of RNA that should be 
labeled with the 33P isotope; 3) the specific activity of the labeling; 4) the duration 
of the hybridization; and 5) the duration of exposure of the array to the phosphor 
imager shields.
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The miniaturization of this method lay in the intrinsic physical characteristics of 
nylon membranes, which allowed a significant increase in the amount of immobi-
lized DNA. The feasibility of miniaturizing nylon was demonstrated in the Konan 
Peck (Academia Sinica, Taiwan) laboratory in 1998 using a colorimetric method as 
the detection system (Chen et al. 1998). A combination of nylon microarrays and 
33P-labeled radioactive probes was subsequently shown to provide similar levels of 
sensitivity compared with the other systems available at the time, making it possible 
to perform expression profiling experiments using submicrogram amounts of un-
amplified total RNA extracted from small biological samples (Bertucci et al. 1999).

These observations had important implications for basic and clinical research 
in that they provided a cheaper alternative approach that was particularly suitable 
for groups operating in academic environments and led to a large numbers of ex-
pression profiling analyses when only small amounts of biological material were 
available.

Microarrays based on solid supports, typically coated glass, were simultaneously 
developed in different academic and industrial laboratories. These arrays boasted 
the advantage of performing dual hybridization of a test sample and a reference 
sample, as they could be labeled with two different fluorescent compounds, name-
ly the fluorochrome “Cy-dyes” cyanine-3 (Cy3) and cyanine-5 (Cy5) (Chee et al. 
1996).

Around the same time, another well known DNA array platform was developed 
by Affymetrix (Santa Clara, CA, USA). Their array used oligonucleotide chips fea-
turing hundreds of thousands of oligonucleotides that were directly synthesized in 
situ on silicon chips (each measuring a few cm2) using photochemical reactions and 
a masking technology (Lockhart et al. 1996). This microarray platform promised 
a rapid evolution in miniaturization because it was based on the synthesis of short 
nucleic acid sequences, which could be updated on the basis of the current knowl-
edge of the genome.

It quickly became clear in the academic community, as well as in industry, that 
the available microarray technologies represented the beginning of a revolution 
with considerable potential for applications in the various fields of biology and 
health because gene function is one of the key elements that researchers want to 
extract from a DNA sequence. Microarrays have become a very useful tool for this 
type of research (Gershon 2002). Therefore, the development of the microarray 
opened the door to various DNA chip technologies based on the same basic concept. 
For example, the maskless photolithography used to produce oligonucleotide arrays 
was originally developed in 1999 using the light-directed synthesis of high-reso-
lution oligonucleotide microarrays with a digital micromirror array to form virtual 
masks (Singh-Gasson et al. 1999). However, this technology was barely accessible 
to academic laboratories at the time because of the high initial cost, the limited 
availability of equipment, non-reusability, and the need for a large amount of start-
ing RNA (Bertucci et al. 1999).

This development formed the basis for the NimbleGen company, which in 2002 
demonstrated the chemical synthesis quality of maskless arrays synthesis (MAS) 
and its utility in constructing arrays for gene expression analysis (Nuwaysir et al. 
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2002). Currently, NimbleGen is focused on products for sequencing (http://www.
nimblegen.com/).

Similarly, in 2005, Edwin Southern’s team developed a method for the in situ 
synthesis of oligonucleotide probes on polydimethylsiloxane (PDMS) microchan-
nels through the use of conventional phosphoramidite chemistry (Moorcroft et al. 
2005). This became the basis of the Oxford Gene Technology company (http://
www.ogt.co.uk/), which today develops array products centered on cytogenetics, 
molecular disorders and cancer.

It is also widely known that Affymetrix (http://www.affymetrix.com/estore/) and 
Agilent (http://www.home.agilent.com/agilent/home.jspx?lc=eng&cc=US) devel-
oped the most popular microarray technology for expression profiling based on ink 
jet technology, which is still widely available in the transcriptome market.

1.1.3  Reliable Microarray Results Depend on a Series  
of Complex Steps

The reliability of transcriptome results has concerned scientists since the begin-
ning of transcriptome research, resulting in a number of studies comparing the dif-
ferent platforms, which was a real challenge in the early 2000s. Transcriptomic 
results largely depend on the technology used, which itself is dependent on several 
complex steps, ranging from the fabrication of the microarray to the experimental 
conditions, in addition to the chosen detection system, which also determines the 
method of analysis.

The results obtained with one microarray platform cannot necessarily be re-
produced on another, and differences in the presence of different target sequences 
representing the same gene on different arrays can make it extremely difficult to 
integrate, combine and analyze the data (Järvinen et al. 2004).

The fabrication of high-quality microarrays has been a challenging task, taking 
a decade to reach several stabilized solutions, and has become an industry of its 
own. There are a large number of parameters and factors that affect the fabrication 
of a microarray, as performance depends on the array geometry, chemistry, and spot 
density, as well as on characteristics such as morphology, probe and hybridized 
density, background and sensitivity (Dufva 2005). Among the different methods 
used to fabricate DNA microarrays, in situ synthesis is the most powerful because 
a very high spot density can be achieved and because the probe sequence can be 
chosen for each synthesis.

To achieve a 105-fold dynamic range, which is an important parameter for gene 
expression analysis, the spots must contain at least 105 molecules, and the optimal 
spot size should be large enough to acquire the maximum hybridized density to 
obtain good sensitivity. Bead arrays that have different combinations of fluorescent 
dyes, which essentially constitute a barcode tag associated with the different im-
mobilized probes, appeared to be the next evolution because they are in suspen-
sion and are therefore suitable for automation using standard equipment, leading 
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to extremely high-throughput approaches. Optical microarrays that are detected via 
flow cytometry can use a large number of different beads because each bead can 
be decoded using a series of hybridization reactions following the immobilization 
of the beads to the optical fibers (Ferguson et al. 2000; Epstein et al. 2003). This 
increases the multiplex capacity to several thousands of different beads (Gunder-
son et al. 2004). Optical fiber microarrays have been commercialized by Illumina 
(http://www.illumina.com/), currently the leader in high-throughput sequencing 
technology, which allow the measurement of expression profiles by counting the 
amount of each RNA molecule expressed in a cell.

Experimental conditions also vary from lab to lab, as the preparation is depen-
dent on the array platform. Variations in the quality of RNA preparations can be 
evaluated using the 2100 Bioanalyzer instrument developed by Agilent, which has 
become a standard, even if some slight variations have been observed from time 
to time. This system provides sizing, quantitation and quality control for RNA and 
DNA, as well as for proteins and cells, on a single platform, providing high-quality 
digital data (http://www.genomics.agilent.com/en/Bioanalyzer-System/2100-Bio-
analyzer-Instruments/?cid=AG-PT-106) (Fig. 1.1).

The preparation of RNA prior to hybridization can affect microarray performance, 
particularly in terms of data accuracy, by distorting the quantitative measurement of 
transcript abundance. To obtain enough material from an initial nano- or picogram 
range of starting material, the RNA is transcribed in vitro and amplified using dif-
ferent protocols, which can introduce bias. In 2001, several publications discussed 
the different commercial protocols that were available. A publication from Charles 
Decreane’s team examined the methods for amplifying picogram amounts of to-
tal RNA for whole genome profiling. The authors set up a specific experiment to 
compare three commercial RNA amplification protocols, Ambion messageAmpTM, 
Arcturus RiboAmpTM and Epicentre Target AmpTM, to the standard target labeling 
procedure proposed by Affymetrix, and all of the samples were tested on Affyme-
trix GeneChip microarrays (Clément-Ziza et al. 2009). The results obtained in this 
study indicated large variations between the different protocols, suggesting that the 
same amplification protocol should always be used to maximize the comparability 
of the results. Additionally, it was found that the RNA amplification affects the ex-
pression measurements as well, which was in agreement with earlier observations 
seen at the nanogram scale, as well as with other studies that were concerned with 
this question (Nygaard and Hovig 2006; Singh et al. 2005; Wang et al. 2003; Van 
Haaften et al. 2006; Degrelle et al. 2008).

In 2012, questions surrounding RNA amplification were still relevant. Indeed, 
even if the amplification of a small amount of RNA is reported to have a high 
reproducibility, there is still bias, and this can become time consuming. Even tak-
ing into account a correlation coefficient of 0.9 between microarray assays using 
non-amplified and qRT-PCR samples, the matter should still be reconsidered. In 
one study, the authors used the 3D-GeneTM microarray platform and compared 
samples prepared using either a conventional amplification method or a non-am-
plification protocol and a probe set selected from the MicroArray Quality Con-
trol (MAQC) project (http://www.fda.gov/ScienceResearch/BioinformaticsTools/

http://www.fda.gov/ScienceResearch/BioinformaticsTools/MicroarrayQualityControlProject/
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Fig. 1.1  Agilent Bioanalyzer model 2100 showing in. a A RNA Nano Chip and in. b A typical 
result of a microfluidic electrophoresis of a total human RNA sample extracted from leukocytes. 
On the right side of this figure appears a virtual gel with the respective bands of 28S and 18S 
rRNAs and 5S rRNA plus 4S tRNAs (from top to bottom). On the left side is shown the densi-
tometry of this gel were appears the respective peaks of 28S rRNA, 18S rRNAs, 5S rRNA and 
4S tRNAs. The rRNA ratio (28S/18S) = 2.0 enabled a RNA integrity number (RIN = 9.7), which 
indicated that this sample was intact (not degraded)
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MicroarrayQualityControlProject/). They found that the samples from the non-
amplification procedure had a higher quantitative accuracy than those from the 
amplification method but that the two methods exhibited comparable detection 
power and reproducibility (Sudo et al. 2012).

However in the above study, the researchers also used a few micrograms of RNA 
and a large volume of hybridization buffer. It is known that the ability to reduce the 
quantity of input RNA while maintaining the reaction concentration can be achieved 
in a device that decreases the hybridization reaction volume. Devices developed for 
use with beads have this characteristic; therefore, would hybridization using a bead 
device resolve this issue?

1.1.4  Bioinformatics and Standardization Approaches:  
A Possible Solution?

With regard to bioinformatics and standardization approaches, the MAQC project 
was initiated in 2006 to address these questions, as well as other performance and 
data analysis issues. The Microarray Quality Control (MAQC Consortium 2006) 
(http://www.fda.gov/ScienceResearch/BioinformaticsTools/MicroarrayQuality-
ControlProject/) study tested a large number of laboratories, platforms and samples 
and found that there were notable differences in various dimensions of performance 
between microarray platforms. Each microarray platform has different trade-offs 
with respect to consistency, sensitivity, specificity and ratio compression. One in-
teresting result was that platforms with divergent approaches for measuring ex-
pression often generated comparable results. The authors of this study concluded 
that the technical performance of microarrays supports their continued use for gene 
expression profiling in basic and applied research and may lead to the use of mi-
croarrays as a clinical diagnostic tool as well. This project has provided the mi-
croarray community with standards for data reporting, common analysis tools and 
useful controls that can help promote confidence in the consistency and reliability 
of these gene expression platforms (MAQC Consortium 2006). Similarly, in 2007, 
another meta-analysis of microarray results suggested several recommendations for 
standardization under the Standard Microarray Results Template (SMART) to fa-
cilitate the integration of microarray studies and proposed the implementation of 
the Minimum Information About a Microarray Experiment (MIAME) (http://www.
mged.org/Workgroups/MIAME/miame.html) to facilitate the comparison of results 
(Cahan et al. 2007).

Given that measurement precision is critical in clinical applications, the ques-
tion of the measurement precision in microarray experiments was addressed again 
in 2009 through an inter-laboratory protocol. In this study, the authors analyzed 
the results of three 2004 Expression Analysis Pilot Proficiency Test Collaborative 
studies using different methods. The study involved thirteen participants out of six-
teen, each of whom provided triplicate microarray measurements for each of two 
reference RNA pools. To facilitate communication between the user and developer, 

http://www.fda.gov/ScienceResearch/BioinformaticsTools/MicroarrayQualityControlProject/
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this study sought to set up standardized conceptual tools, but the result of this analy-
sis was relatively disappointing and did not allow the creation of a gold standard, 
though it did put forth several recommendations (Duewer et al. 2009).

All of these studies focus on the same concept that has been defended since 
2001 by the Microarray Gene Expression Data Society (http://www.mged.org) – 
the reanalysis and reproduction of results by the scientific community. The MGED 
society was the first to define the MIAME, which describes the minimum infor-
mation required to ensure that microarray data can be easily interpreted and that 
the results derived from their analysis can be independently verified. This protocol 
became the standard for recording and reporting microarray-based gene expression 
data and for inserting it in databases and public repositories (Brazma et al. 2001, 
Ball et al. 2002). Currently, raw and/or normalized microarray data are deposited 
either in the ArrayExpress databank (https://www.ebi.ac.uk/arrayexpress/) or in the 
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/), providing 
the scientific community with data for further analysis.

1.1.5  Analysis of the Expression Data

The past two decades have seen the development of methods that allow for a nearly 
complete analysis of the transcriptome, in the form of microarrays and, more re-
cently, RNA-Seq, which are the most popular technologies used in genome-scale 
transcriptional studies. These high-throughput gene expression analysis systems 
generate large and complex datasets, and the development of computational meth-
ods to obtain biological information from the generated data has been the primary 
challenge in bioinformatics analysis.

Even a simple microarray experiment generates a large amount of data, which 
places certain demands on the analysis software. Fortunately, microarrays have ben-
efited from the availability of many commercial and open-source software packages 
for data manipulation that have been developed over the years. RNA-Seq, however, 
demands more bioinformatics expertise. There are publicly available online tools 
such as the Galaxy platform (Goecks et al 2010, but a basic knowledge of UNIX 
shell programming and Perl/Python scripting is necessary for data modification. 
Furthermore, similar to microarray analysis, a familiarity with the R programming 
environment is useful, as the software programs for many of the downstream analy-
ses are collected in the Bioconductor (http://www.bioconductor.org/) (Gentleman 
et al 2004) suite of the R package. Other important considerations regarding the 
choice for RNA-Seq include the need for data storage resources and computing 
systems with large memories and/or many cores to run parallel, sophisticated algo-
rithms efficiently and faster.

In this section, we present the main steps for analyzing multi-dimensional ge-
nomic data derived from the application of microarray or RNA-Seq assays based on 
a common pipeline illustrated in Fig. 1.2.

https://www.ebi.ac.uk/arrayexpress/
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Fig. 1.2  An overview of the steps in a typical gene expression microarray or RNA-Seq experiment
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1.1.5.1  Experimental Design

The aim of the experimental design is to make the experiment maximally informa-
tive given a certain amount of samples and resources and to ensure that the ques-
tions of interest can be answered. All of the decisions made at this initial step will 
affect the results of all the subsequent steps. The consequences of an incorrect or 
poor design range from a loss of statistical power and an increased number of false 
negatives to the inability to answer the primary scientific question (Stekel 2003).

The basic principles of experimental design rely on three fundamental aspects 
formalized by Fisher (1935), namely, replication, randomization and blocking.

Randomization dictates that the experimental subjects should be randomly as-
signed to the treatments or conditions to be studied to eliminate unknown factors 
that may potentially affect the results (Fang and Cui 2011).

Replication is essential for estimating and decreasing the experimental error and, 
thus, to detect the biological effect more precisely. A true replicate is an independent 
repetition of the same experimental process and an independent acquisition of the 
observations. There are different levels of replication in gene expression experi-
ments: (1) a technical replicate provides measurement-level error estimates and (2) 
a biological replicate provides estimates of the population-level variability. If the 
goal is to evaluate the technology, technical replicates alone are sufficient. Other-
wise, if the goal is to investigate the biological differences between tissues/condi-
tions/treatments, biological replicates are essential (Alison et al 2006; Fang and Cui 
2011). Replication is widely used in microarray experiments, though technical rep-
licates are generally no longer performed, as analyses have shown that the results 
will be relatively consistent overall (Slonin and Yanai 2009). However, in RNA-Seq 
studies, replication is still neglected primarily due to the current high costs of these 
experiments. Studies conducted on the variability of this technology, both technical 
(Marioni et al. 2008) and biological (Bullard et al. 2010), underscore the importance 
of including replicates in the study design. The fundamental problem with general-
izing the results gathered from unreplicated data is a complete lack of knowledge 
about the biological variation. Without an estimate of variability (i.e., within the 
treatment group), there is no basis for inference (i.e., between the treatment groups) 
(Auer and Doerge 2010).

As with microarray studies, RNA-Seq experiments can be affected by the vari-
ability coming from nuisance factors, often called technical effects, such as the 
processing date, technician, reagent batch and the hybridization/library preparation 
effect. In addition to these effects, in RNA-Seq experiments, there are also other 
technology-specific effects. For example, there is variation from one flow cell to 
another, resulting in a flow cell effect and variation between the individual lanes 
within a flow cell due to systematic variation in the sequencing cycling and/or base 
calling. A blocking design dictates comparisons within a block, which is a known 
uninteresting factor that causes variation, such as the hybridization scheme (micro-
array) or flow cell effect (RNA-Seq) (Fig. 1.3) (Alison et al. 2006, Slonin and Yanai 
2009, Auer and Doerge 2010, Fang and Cui 2011, Luo et al 2010).
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In the case of microarray and RNA-Seq experiments, design issues are intrinsi-
cally dependent on hybridization and library construction, respectively. It is beyond 
the scope of this section to discuss and compare the different technologies available, 
but we recommend reading the following articles for microarray technologies: Pa-
terson et al. (2006), Alison et al. (2006), Stekel (2003), Churchill (2002), Kerr and 
Churchill (2001), Jordan (2012). For RNA-Seq technologies, please see Auer and 
Doerge (2010) and Fang and Cui (2010), as well as chapter 2 of this book.

1.1.5.2  Quality Control

To assure the reproducibility, comparability and biological relevance of the gene 
expression data generated by high-throughput technologies, several research groups 
have provided guidelines regarding quality control (QC):

•	 Minimum Information About a Microarray Experiment (MIAME): de-
scribes the minimum information required to ensure that microarray data can be 

Fig. 1.3  Comparison of two methods for testing differential expression between treatments. a 
( red) and b	 ( blue).	In	the	ideal	balanced	block	design	( left), six samples are barcoded, pooled, 
and processed together. The pool is then divided into six equal portions that are input into six 
flow	 cell	 lanes.	The	 confounded	 design	 ( right) represents a typical RNA-Seq experiment and 
consists of the same six samples, with no barcoding, and does not permit batch and lane effects 
to be distinguished from the estimate of the intra-group biological variability (adapted from Auer 
and Doerge 2010)

 



151 What Is the Transcriptome and How it is Evaluated?

easily interpreted and that the results derived from their analysis can be indepen-
dently verified (Brazma et al. 2001).

•	 External RNA Control Consortium (ERCC): develops external RNA controls 
useful for evaluating the technical performance of gene expression assays per-
formed by microarray and qRT-PCR (Baker et al. 2005).

•	 MicroArray Quality Control (MAQC) Consortium: a community-wide ef-
fort, spearheaded by the Food and Drug Administration (FDA), that seeks to ex-
perimentally address the key issues surrounding the reliability of DNA microar-
ray data. Now in its third phase (MAQC-III), also known as Sequencing Quality 
Control (SEQC), the MAQC project aims to assess the technical performance of 
next-generation sequencing platforms by generating benchmark datasets using 
reference samples and evaluating the advantages and limitations of various bio-
informatics strategies in RNA and DNA sequencing (Shi et al. 2006, Shi et al. 
2010, (www.fda.gov/MicroArrayQC).

•	 Standards, Guidelines and Best Practices for RNA-Seq: a guideline for con-
ducting and reporting on functional genomics experiments performed with RNA-
Seq. It focuses on the best practices for creating reference-quality transcriptome 
measurements (The ENCODE Consortium 2011) (http://www.genome.gov/en-
code).

However, there are several sources of variability originating from biological and 
technical causes that can affect the quality of the resulting data, including biological 
heterogeneity in the population, sample collection, RNA quantity and quality, tech-
nical variation during sample processing, and batch effects, among others. Some of 
these issues can be avoided with an appropriate and carefully designed experiment 
that controls for the different sources of variation, but others require a quality as-
sessment of the raw data through computational support tools. Therefore, regardless 
of the technology used to measure gene expression, ensuring quality control is a 
critical starting point for any subsequent analysis of the data (Churchill 2002, Ge-
schwind and Gregg 2002, Cobb et al. 2005, Larkin et al. 2005, Irizarry et al. 2005, 
Heber and Sick 2006).

With regard to microarray technology, many tools applying diagnostic plots have 
been developed to visualize the spread of data and compare and contrast the probe 
intensity levels between the arrays of the dataset. These qualitative visualization 
plots include histograms, density plots, boxplots, scatter plots, MAplots, score plots 
of the PCA, hierarchical clustering dendrograms, and even chip pseudo plots and 
RNA degradation plots (Fig. 1.4). Comparing the probe intensity between samples 
allows us to observe if one or more of the arrays have intensity levels that are drasti-
cally different from the other arrays, which may indicate a problem with the arrays. 
For a better review of the use of diagnostic plots in quality control metrics, please 
see Gentleman et al. (2005) and Heber and Sick (2006).

In regard to RNA-Seq, several sequence artifacts are quite common, including 
read errors (base calling errors and small indels), poor quality reads and adaptor 
contamination. Such artifacts need to be removed before performing downstream 
analyses, otherwise they may lead to erroneous conclusions. Performing a quality 

http://www.genome.gov/encode
http://www.genome.gov/encode
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assessment of the reads allows us to determine the need for filtering (or cleaning) 
the data, removing low quality sequences, trimming bases, removing linkers, deter-
mining overrepresented sequences and identifying contamination or samples with a 
low sequence performance. The most important parameters used to verify the qual-
ity of the raw sequencing data are the base quality, the GC content distribution and 
the duplication rate (Guo et al. 2013, Patel and Jain 2012).

In addition to the QC pipelines provided commercially by the sequencing plat-
form, there are online/standalone software packages and pipelines available as well 
(see: http://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools). These 
packages present different features, and many are designed for a particular sequenc-
ing platform, such as NGS QC for the Illumina and Roche 454 platforms (Patel and 
Jain 2012) or Rolexa for Solexa sequencing data (Rougemont et al. 2009), or for a 
specific data storage format, such as FastQC toolkit and FastQScreen, which were 
both developed by the Brabaham Institute. The FastQC (http://www.bioinformat-
ics.babraham.ac.uk/projects/fastqc) and FASTX-Tool kits (http://hannonlab.cshl.
edu/fastx_toolkit/) include many of the tools used to remove indexes, barcodes and 

Fig. 1.4  Quality control plots of raw data sets. a Boxplots presenting various statistics for a given 
data set. The plots consist of boxes with a central line and two tails. The central line represents 
the median of the data, whereas the tails represent the upper (75th percentile) and lower (25th 
percentile) quartiles. These plots are often used to describe the range of log ratios that is associated 
with replicate spots. b MA plots are used to detect artifacts in the array that are intensity dependent

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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adapters and filter out the reads based on the quality metrics of the FASTQ files. 
For a comparison of some of the available QC tools for RNA-Seq, please refer to 
Patel and Jain (2012).

1.1.5.3  Data Processing

Once the quality of the data has been assessed and the applicable changes have 
been made, it is still necessary to perform additional processing before analyzing 
the differentially expressed genes. The primary objective in processing raw data is 
to remove unwanted sources of variation, thereby ensuring the accuracy of the final 
results. There are several different methods to process the data being assayed, and 
the specific method used depends on how the data were generated.

According to Geeleher et al. (2008), the data being assayed should be processed 
using several different methods, and the results should be compared to identify the 
most suitable method. The most appropriate method should then be used to process 
the raw data before the differential expression analysis.

Essentially, microarray processing involves three steps depending on the type of 
array: (1) background adjustment, which divides the measured hybridization inten-
sities into a background and a signal component; (2) summarization, which com-
bines the probe-level data into gene expression values, thereby reducing multiple 
probes representing a single transcript to a single measurement of expression; and 
(3) normalization, which aims to remove non-biological variations between arrays 
(Heber and Sick 2006). Other potential processing steps include transformation of 
the data from the raw intensities into log intensities and data filtering to remove 
flagged features, which are problematic features detected by the image-processing 
software (Stekel 2003, Allison et al. 2006).

Microarray data must also be background corrected to remove any signals aris-
ing from non-specific hybridization or spatial heterogeneity across the array. The 
background is a measure of the ambient signal obtained, generally, from the mean 
or median of the pixel intensity values surrounding each spot (Ritchie et al. 2007). 
The traditional correction is to subtract the local background measures from the 
foreground values, but the main problem with this procedure is that it can give nega-
tive corrected intensities, and there is high variability in the low-intensity log-ratios 
when the background is higher than the feature intensity (Stekel 2003). Instead, 
several different methods have been developed as alternatives. Some examples in-
clude the empirical Bayes model developed by Kooperberg et al. (2002), setting a 
small threshold value as suggested by Edwards (2003), the variance stabilization 
method (Vsn) of Huber et al. (2002), the normexp (normal-exponential convolu-
tion) method implemented by the RMA algorithm (Irizarry et al. 2003), and the 
MLE method (maximum likelihood estimation for normexp) (Silver et al. 2009). 
A detailed comparison of several of these methods can be found in the article by 
Ritchie et al. (2007).

The normalization of the microarray signal intensity has been widely used to 
adjust for experimental artifacts within the array and between all of the samples 
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such that meaningful biological comparisons can be made (Quackenbush 2001, Lou 
et al. 2010). According to Stekel (2003), the methods for normalization may be 
broadly classified into two categories:

1. Within-array normalization (normalizes the M-values for each array separately) 
– these methods are applicable for two-channel arrays, in which the aim is to 
adjust the Cy3 and Cy5 intensities to equal levels. Methods such as the linear 
regression of Cy5 against Cy3 and linear or non-linear (Loess) regression of the 
log ratio against the average intensity can correct for the different responses of 
the Cy3 and Cy5 channels. However, these methods rely on the assumption that 
the majority of the genes on the microarray are not differentially expressed. If 
this assumption is not true, a different normalization method, such as using a 
reference sample, would be more appropriate.

2. Between-array normalization (normalizes the intensities or log-ratios to be com-
parable across multiple arrays) – this method is used for one- and two-channel 
arrays. Various methods have been proposed for this approach, such as scaling 
to the mean or median, centering and quantiles. Bolstad et al. (2003) presented a 
review of several methods and found quantile normalization to be the most reli-
able method.

After processing, it is strongly recommended to verify the performance of the cho-
sen method. This can be achieved by applying the aforementioned diagnostic plots 
during a Quality Control session. Several studies have been published on the perfor-
mance of the various processing methods (Bolstad et al. 2003, Ploner et al. 2005), 
but most studies have found the Robust Multichip Average method (RMA) (Irizarry 
et al. 2003) to be the best method. This method applies a model-based background 
adjustment followed by quantile normalization and a robust summary method (me-
dian polish) on the log2 intensities to obtain the probeset summary values.

The RNA-Seq data processing steps that were considered in our pipeline are as 
follows: (1) mapping reads; (2) transcriptome assembly; and (3) normalization of 
the read counts.

A common characteristic of all high-throughput sequencing technologies is the 
generation of relatively short reads, which should be mapped to a reference se-
quence, be it a reference genome or a transcriptome database. This is a critical task 
for most applications of the technology because the alignment algorithm must be 
able to efficiently find the right location for each read from among a potentially 
large quantity of reference data (Fonseca et al. 2012). The assembly of the transcrip-
tome consists of the reconstruction of the full-length transcripts, except in the case 
of small classes of RNAs that are shorter than the sequencing length and require no 
assembly. The methods used to assemble reads fall into two main classes: (1) as-
sembly based on a reference genome and (2) de novo assembly (Martin and Wang 
2011). The strategies used to map the reads and assemble the transcriptome, along 
with the available tools, will be presented in more detail in chapter 2.

Normalization should always be applied to read counts due to two main sources 
of systematic variability: (1) RNA fragmentation during library construction causes 
the longer transcripts to generate more reads compared with the shorter transcripts 
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that are present at the same abundance in the sample, and (2) the variability in the 
number of reads produced for each run causes fluctuations in the number of frag-
ments mapped across the samples. Proper normalization enables accurate compari-
son of the expression levels between and within samples (Garber et al. 2011, Dillies 
et al. 2013). The RPKM (reads per kilobase of transcript per million mapped reads) 
is the most widely used normalization metric. It normalizes a transcript read count 
by both its length and the total number of mapped reads in the sample (Mortazavi 
et al. 2008). This approach facilitates comparisons between genes within a sample 
and combines the inter- and intra-sample normalization. When data originate from 
paired-end sequencing, the FPKM (fragments per kilobase of transcript per million 
mapped reads) metric is used (Garber et al. 2011, Dillies et al. 2013).

In previous years, other methods for the normalization of RNA-Seq data have 
been proposed as well. These methods also applied inter-sample normalization us-
ing scaling factors and include the following: (1) Total count (TC), in which the 
gene counts are divided by the total number of mapped reads (or library size) as-
sociated with their lane and multiplied by the mean total count across all of the 
samples in the dataset; (2) Upper Quartile, which has a very similar principle to 
TC and in which the total counts are replaced by the upper quartile of counts dif-
ferent from 0 in the computation of the normalization factors; (3) Median, which is 
similar to TC, in which the total counts are replaced by the median counts different 
from 0 in the computation of the normalization factors; (4) DESeq, which is the 
normalization method included in the DESeq Bioconductor package (version 1.6.0) 
(http://bioconductor.org/packages/release/bioc/html/DESeq.html) and is based 
on the hypothesis that most genes are not differentially expressed; (5) Trimmed 
Mean of M-values (TMM), which is the normalization method implemented in the 
edgeR Bioconductor package (version 2.4.0) (http://www.bioconductor.org/pack-
ages/release/bioc/html/edgeR.html) and is also based on the hypothesis that most 
genes are not differentially expressed; and (6) Quantile, which was first proposed 
in the context of microarray data and consists of matching the distributions of the 
gene counts across lanes. These proposed normalization methods, in addition to the 
RPKM method, were comprehensively compared and evaluated by members of 
The French StatOmique Consortium. Based on this comparative study, the authors 
proposed practical recommendations for the appropriate normalization method to 
be used and its impact on the differential analysis of RNA-Seq data (Dillies et al. 
2013).

1.1.5.4  Statistical Analysis and Interpretation

The primary goal of gene expression studies is to identify genes that are differen-
tially expressed between RNA samples from two types of biological conditions. 
Differential gene expression can provide insights into biological mechanisms or 
pathways and form the basis for further experiments by determining the sample and 
gene similarity via clustering analyses or testing a gene set for enrichment.

http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
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Differential expression analysis searches for genes whose abundance has changed 
significantly across the experimental conditions. In general, this means taking the 
quantified and normalized expression values for each library and performing statis-
tical testing between samples of interest. In theory, the transcript abundance of the 
mRNA would be directly proportional to the number of reads, thereby determining 
the expression level (Oshlack et al. 2010).

Many methods have been developed for the analysis of differential expression 
using microarray data. In the early days of microarrays, only the simple fold-change 
method was used (Chen et al. 1997). However, the evolution of the technology 
called for more accurate analytical methods, and many more sophisticated statisti-
cal methods have been proposed.

In addition to the traditional t-test and ANOVA approaches used to access dif-
ferential gene expression in microarray assays, variations on these tests have been 
developed for the purpose of overcoming the problem of a small sample size when 
accessing such a large dataset: dealing with many genes but only a few replicates 
may lead to large fold-changes driven by outliers, as well as to small error variances 
(Lönnstedt and Speed 2002). SAM (Significant Analysis of Microarrays) (Tusher 
et al. 2001) is a very popular differential expression method that uses a modified 
t-statistic to identify significant genes using non-parametric statistics.

Other statistical approaches for microarray data analysis have introduced linear 
models. The Bioconductor package Limma, developed by Smyth (2005), applies a 
gene-wise linear model that allows for the analysis of complex experiments (com-
paring many RNA samples), as well as more simple replicated experiments using 
only two RNA samples. Empirical Bayes and other shrinkage methods are used to 
borrow information across genes, making the analyses stable even for experiments 
with small numbers of arrays. Another powerful method to detect differentially ex-
pressed genes in microarray experiments is based on calculating the rank products 
(RP) from replicate experiments, while at the same time providing a straightforward 
and statistically stringent way to determine the significance level for each gene and 
allow flexible control of the false-detection rate and familywise error rate in the 
multiple testing situation of a microarray experiment (Breitling and Herzyk 2005).

Differential expression analysis methods that use probability distributions have 
also been proposed for use in modeling the count data from RNA-Seq studies, in-
cluding Poisson and negative binomial (NB) distributions. The Poisson distribution 
forms the basis for modeling RNA-Seq counts. However, when there are biological 
replicates, the RNA-Seq data may exhibit more variability than expected by the 
Poisson distribution because it assumes that the variance is equal to the mean. If this 
occurs, the Poisson distribution will predict a smaller variation than that observed in 
the data, and the analysis will be prone to high false-positive rates that result from 
an underestimation of the sampling error (Anders and Huber 2010). Therefore, the 
NB model is the better method to address this so-called overdispersed problem 
because an NB distribution specifies that the variance is greater than the mean (Os-
hlack et al. 2010, Anders and Huber 2010, Garber et al. 2011).

Statistical analyses of RNA-Seq data will be discussed in more detail in chapter 
2. There are also several reviews that discuss and compare the statistical methods 
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used to compute differential expression. For further information, please refer to 
Seyednasrollah et al. (2013) and Soneson and Delorenzi (2013).

1.1.5.5  Classification and Enrichment Analysis

Classification can be performed either before or after the differential expression 
analysis. This process entails either placing the objects (in this case, the samples, 
genes or both) into pre-existing categories (known as a supervised classification) 
or developing a set of categories into which the objects can subsequently be placed 
(unsupervised classification) (Allison et al. 2006). Class discovery, or clustering 
analysis, is an unsupervised classification method that is widely used in the study 
of transcriptomic data because it allows us to identify co-regulated genes and/or 
samples with similar patterns of expression (biological classes). Various clustering 
techniques have been applied to identify patterns in gene-expression data. Most 
cluster analysis techniques are hierarchical: the resultant classification has an in-
creasing number of nested classes, and the result resembles a phylogenetic classifi-
cation. Non-hierarchical clustering techniques also exist, such as k-means cluster-
ing, which simply partition objects into different clusters without trying to specify 
the relationship between the individual elements (Quackenbush 2001). Eisen et al. 
(1998) is a classical reference for the use of hierarchical clustering with microarray 
data. In this study, the authors developed an integrated pair of open-source pro-
grams, Cluster and TreeView, for analyzing and visualizing clusters and heat maps 
(http://rana.lbl.gov/EisenSoftware.htm).

Biological insights into an experimental system can be gained by looking at the 
expression changes of sets of genes. Many tools focusing on gene set testing, net-
work inference and knowledge databases have been designed for analyzing lists of 
differentially expressed genes from microarray datasets. Examples include Gene 
Set Enrichment Analysis (http://www.broadinstitute.org/gsea/index.jsp) (Subrama-
nian et al. 2005) and DAVID (http://david.abcc.ncifcrf.gov/tools.jsp) (Dennis et al. 
2003), which combine functional themes, such as those defined by the Gene Ontol-
ogy consortium, (Ashburner et al. 2000), and metabolic and signaling pathways, 
such as KEGG pathways (http://www.genome.jp/kegg/pathway.html) (Kanehisa 
and Goto 2000) and Biocarta (http://www.biocarta.com/), with statistical enrich-
ment analyses to determine whether specific pathways are overrepresented in a 
given list of differentially expressed genes. These approaches can also be applied 
to RNA-Seq, but the biases presented by this type of data should be taken into ac-
count (Oshlack et al. 2010). Therefore, specialized approaches (Bullard et al. 2010) 
and tools to perform enrichment analyses of RNA-Seq data are being developed, 
for example, GO-seq (http://www.bioconductor.org/packages/release/bioc/html/go-
seq.html) (Young et al. 2010), SeqGSA (http://www.bioconductor.org/packages/re-
lease/bioc/html/SeqGSEA.html) (Wang and Cairns 2013) and generally applicable 
gene set enrichment for pathway analysis (GAGE) (Luo et al. 2009).

http://www.bioconductor.org/packages/release/bioc/html/goseq.html
http://www.bioconductor.org/packages/release/bioc/html/goseq.html
http://www.bioconductor.org/packages/release/bioc/html/SeqGSEA.html
http://www.bioconductor.org/packages/release/bioc/html/SeqGSEA.html
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1.2  The Diversity of the Transcriptome

Unlike the genome, which is essentially static in terms of its composition and size 
(barring the rare occurrence of somatic and germline mutations or the rearrange-
ment of immunoglobulin and T cell receptor genes), the transcriptome (and similar-
ly, the miRNome) is extremely variable and depends on the phase of the cell cycle, 
the organ, exposure to drugs or physical agents, aging, diseases such as cancer and 
autoimmune diseases and a multitude of other variables, which must be considered 
at the time that the transcriptome is determined. This variability arises from the fact 
that RNAs are differentially transcribed (or transcribed at different rates) depend-
ing on the cell type and status, though this excludes ribosomal RNAs, as they are 
considered housekeeping molecules.

For many years, the central dogma of molecular biology stated that RNAs mol-
ecules were intermediates between DNA and protein. This idea presupposed that 
the function of RNA was primarily linked to the translation of the genetic material 
into polypeptide chains (proteins). The genetic material was interpreted as being 
involved in the synthesis of these RNAs, which were termed mRNAs (Brenner et al. 
1961; Jacob and Monod 1961).

During the human genome sequencing era of the 1980s and 1990s, independent-
ly led by Francis Collins and Craig Venter, the latter individual and his coworkers 
conceived of expressed sequence tags (ESTs), which focus on mRNAs because they 
encode proteins. Libraries of mRNA-derived cDNA clones were generated based 
on first-strand synthesis using oligonucleotide primers for that are anchored at the 
3´ end of the transcript [the poly(A) tail of mRNA] (Starusberg and Riggins 2001) 
and then sequenced to create unique identifiers for each cDNA, with lengths rang-
ing from 300 to 700 bp (Adams et al. 1992; Adams 2008).

ESTs were very useful for identifying new expressed genes in normal and dis-
eased tissues (Strausberg and Riggins 2001), and transcriptome analysis at this time 
was largely, if not solely, based in this approach. The EST clones were distributed 
through the former IMAGE Consortium, whose sequences can now be retrieved via 
the National Center for Biotechnology Information (NCBI) dbEST Database (http://
www.ncbi.nlm.nih.gov/dbEST/). The current number of public entries for all uni- or 
multicellular eukaryotic organisms that have been sequenced stands at more than 
74 million ESTs, including more than eight million human and nearly five million 
mouse ESTs.

However, as was to be expected, imaginative new strategies were emerging 
around the same time as well. The Serial Analysis of Gene Expression (SAGE) 
method (Velculescu et al. 1995), which produces short sequence tags (usually 14 
nucleotides in length) positioned contiguous to defined restriction sites near the 3´ 
end of the cDNA strand (Strausberg and Riggins 2001), has also been widely used. 
At the time, the NCBI created the SAGEmap as a public repository for SAGE se-
quences. Currently, all of the SAGE libraries have been uploaded and accessioned 
through the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) 
repository.
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Another novel strategy, which had yet to be tested at that time, was the genera-
tion of open reading frame (ORF) ESTs (ORESTES). This approach was jointly 
developed by researchers funded by the São Paulo Research Foundation (FAPESP) 
and by the Ludwig Institute for Cancer Research (FAPESP/LICR)-Human Can-
cer Genome Project (Camargo et al. 2001). Unlike ESTs, ORESTES sequences 
are spaced throughout the mRNA transcript, providing a scaffold to complete the 
full-length transcript sequences. The authors generated a substantial volume of 
tags (700,000 ORESTES), which at the time represented nearly 20 % of all human 
dbESTs (Strausberg and Riggins 2001).

The Transcript Finishing Initiative, another FAPESP/LICR project, was then un-
dertaken for the purpose of identifying and characterizing novel human transcripts 
(Sogayar et al. 2004). This strategy was also novel and was based on selected EST 
clusters that were used for experimental validation. In this method, RT-PCR was 
used to fill in the gaps between paired EST clusters that were then mapped on the 
genome. The authors generated nearly 60,000 bp of transcribed sequences, orga-
nized into 432 exons, and ultimately defined the structure of 211 human mRNA 
transcripts.

However, the increasing use of modern transcriptome-wide profiling approach-
es, such as microarrays and whole-genome and transcriptome sequencing, allied to 
the precise isolation and characterization of different RNA species from eukaryotic 
(including mammalian) cells, led to an explosion of findings and revealed that al-
though approximately 90 % of the mammalian genome is actively transcribed into 
RNA molecules, only a tiny fraction (—2 % of the total human genome) encodes 
mRNAs and, consequently, proteins (Maeda et al. 2006; Djebali et al. 2012).

In fact, the function of the genome can be seen from two different but comple-
mentary views. From a functional standpoint, only a fraction of the genome encodes 
RNA molecules (including coding and non-coding RNAs), and only a fraction of 
these are translated into proteins. In other words, when considering the genome 
in numerical terms, or rather the physical portion of DNA that is functional, we 
realize that only a small number of genes are transcribed specifically into mRNA 
molecules. However, a larger number of “variable” mRNA molecules are gener-
ated through alternative splicing, and these are translated into a greater number of 
proteins (including various isoforms). A large portion of the genome is then tran-
scribed into non-coding RNAs, which play a role in the posttranscriptional control 
of mRNAs during their translation into proteins (Fig. 1.5).

Molecular mapping of the human genome has been largely resolved, revealing 
slightly more than three billion bp encompassing approximately 20–25,000 func-
tional nuclear genes and mitochondrial DNA located in the cytoplasm. We suggest 
consulting the ENCODE Project (http://www.genome.gov/encode/) to follow ongo-
ing progress in the identification of the functional elements in the human genome 
sequence. Nevertheless, the definition of the human transcriptome is still far from 
set, and it appears that most of the RNA molecules in eukaryotic cells are composed 
of ncRNAs that are involved in the fine control of gene expression.

Aside from knowing the exact number of mRNA molecules in a human cell, 
which is currently being investigated using new sequencing technologies (de Klerk 
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et al. 2014; Kellis et al. 2014), one of the great challenges of the next decade will be 
to decipher the posttranscriptional interactions between coding and ncRNAs in the 
control of gene expression.

In fact, the human genome was revealed to be more than just a collection of pro-
tein-coding genes and their splice variants, rather, it displays extensive antisense, 
overlapping and ncRNA expression (Taft et al. 2010).

In mammals, the vast majority of the genome is transcribed into ncRNAs, which 
exceed the number of protein-coding genes (Liu and Taft 2013). These molecules 
are characterized by the absence of protein-coding capacity, but these RNAs have 
been described as key regulators of gene expression (Geisler and Coller 2013).

ncRNAs are grouped into two major classes based on their transcript size: small 
ncRNAs (19–30 nt) and long non-coding RNAs (200 nt to ~100 kilobases). These 
groups are distinct in their biological functions and mechanisms of gene regulation 
(Geisler and Coller 2013; Fatica and Bozzoni 2014; Neguembor et al. 2014).

Furthermore, ncRNAs can be grouped into a third class of housekeeping ncRNAs, 
which are normally constitutively expressed and include ribosomal (rRNAs), trans-
fer (tRNAs), small nuclear (snRNAs), small nucleolar (snoRNAs) and regulatory 
noncoding RNAs (rnRNAs) (Ponting et al. 2009; Bratkovic and Rogelj 2014).

Small ncRNAs are primarily associated with the 5’ or 3’ regions of protein-
coding genes, and based on their precursors and mechanism of action, they have 
been divided into three main classes: miRNAs, small interfering RNAs (siRNAs) 
and piwi-associated RNAs (piRNAs). These ncRNAs are involved in posttranscrip-
tional gene regulation through translational repression or RNAi (Sana et al. 2012).

Fig. 1.5  Two ways to interpret the functioning the genome and the relative proportions of molecu-
lar entities. a In functional terms only a part of the genome encodes RNAs from which only a small 
fraction encodes proteins. b However, in numerical terms the set of functional genes transcribe a 
larger number of mRNAs from which a larger number of proteins is translated. The part A of this 
figure was conceived by Dr. Sven Diederichs (German Cancer Research Institute, DKFZ, Heidel-
berg, Germany) who allowed their use
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Interestingly, the aberrant expression of small ncRNAs has been associated with 
a wide variety of human diseases, including cancer, central nervous system disor-
ders, and cardiovascular diseases (Taft et al. 2010; Sana et al. 2012) (Table 1.1).

For much of the last decade, special attention has been paid to research into long 
non-coding RNAs (lncRNAs), as these molecules tend to be shorter and have fewer 
introns than protein-coding transcripts (Ravasi et al. 2006). lncRNAs are considered 
to be the most numerous and functionally diverse class of RNAs (Derrien et al. 
2011). Over 15,000 lncRNAs have already been identified, and this number is con-
stantly increasing (Derrien et al. 2012; Fatica and Bozzoni 2014).

Amidst the great discoveries being made during this time of genome explora-
tion, RNA is beginning to take center stage, and lncRNAs are a major part of this. 
These molecules are more abundant and functional than previously imagined, and 
they have been shown to be key players in gene regulation, genome stability, and 
chromatin modifications. Therefore, the identification and characterization of the 
function of lncRNAs has added a high degree of complexity to the comprehension 
of the structure, function and evolution of our genome.

lncRNAs can be grouped into one or more of five categories based on their posi-
tion relative to protein-coding genes: (1) sense or (2) antisense, when they overlap 
with one or more exons of another transcript on the same or opposite strand, re-
spectively; (3) bidirectional, when the expression of a lncRNA and a neighboring 
coding transcript on the opposite strand is initiated in close genomic proximity; (4) 
intronic, when the lncRNA is fully derived from the intron of a second transcript; or 
(5) intergenic, wherein a lncRNA is located within a gene (Poting et al. 2009). Most 
lncRNAs are transcribed by RNA Pol II and are often polyadenylated and have 
splice sites (Guttman et al. 2009; Mercer et al. 2013). However, they are devoid of 
obvious ORFs (Fatica and Bozzoni 2014).

The functional characterization of several mammalian regulatory lncRNAs has 
identified many biological roles, such as dosage compensation, genomic imprint-
ing, cell cycle regulation, pluripotency, retrotransposon silencing, meiotic entry and 
telomerase length, and gene expression through chromatin modulation (Wery et al. 
2011; Wilusz et al. 2009; Nagano and Fraser 2011).

The number of lncRNAs with described functions is steadily increasing, and 
many of these reports revolve around the regulatory capacity of lncRNAs. These 
molecules localize both to the nucleus and to the cytosol and can act at virtually ev-
ery level during gene expression (Batista and Chang 2013; Van et al. 2014). Nuclear 
lncRNAs act as modulators of protein-coding gene expression and can be subdi-
vided into cis-acting RNAs, which act in proximity to their site of transcription, 
or trans-acting lncRNAs, which work at distant loci. Both cis- and trans-acting 
lncRNAs can activate or repress transcription via chromatin modulation (Penny 
et al. 1996; Pandey et al. 2008; Nagano et al. 2008; Chu et al. 2011; Plath et al. 
2003; Bertani et al. 2011).

Cytoplasmic lncRNAs can modulate translational control via sequences that are 
complementary to transcripts that originate from either the same chromosomal lo-
cus or independent loci. Target recognition occurs through base pairing (Batista and 
Chang 2013).
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Class Symbol Characteristic
Classical
RNAs

Messenger RNAs mRNAs Variable in the size (average size 
about 2.2 kb) depending on the 
coded protein. Its linear structure 
includes a 5´ G cap, the 5´UTR, 
AUG start codon, coding sequence 
(CDS), stop codon, 3´UTR and the 
poly A tail. Account 1–2% of the 
total cellular RNA.

Transfer RNAs tRNAs This class of RNAs takes the form 
of “clover leaf” and has vari-
able size ranging 70-100 nt. The 
residues 34, 35 and 36 are comple-
mentary to the mRNA codons 
located at CDS. For this reason 
they are considered as adaptors 
between mRNAs and elongation 
peptide chains.

Ribossomal RNAs rRNAs Are components of ribosomes 
along with ribosomal proteins. The 
high molecular weight rRNAs are 
the 28S rRNA (~5000 nt), which is 
present in the large subunit of the 
ribosome and 18S rRNA (1870 nt) 
present in the small ribosomal sub-
unity. The low molecular weight 
rRNAs are the 5.8 rRNA (156 nt) 
and the 5.0S rRNA (121 nt), both 
present in the large ribosomal 
subunit.

Small
non-coding
RNAs

MicroRNAs miRNAs Average size about 18–25 nt; 
account 1–2% of the human 
genome; control the 50% of 
protein-coding genes; guide sup-
pression of translation; Drosha and 
Dicer dependent small ncRNAs.

Small interfering 
RNAs

siRNAs Average size about 19–23 nt; 
made by Dicer processing; guide 
sequence specific degradation of 
target mRNA.

Piwi-interacting
RNAs

piRNAs Average size about 26–30 nt; bind 
Piwi proteins; Dicer indepen-
dent; exist in genome clusters; 
principally restricted to
the germline and somatic cells 
bordering the germline.

Small nucleolar RNAs snoRNAs Average size about 60–300 nt; 
enriched in the nucleolus; in verte-
brate are excised from premRNA 
introns; bind snoRNP proteins.

Table 1.1  Main RNA species found in eukaryotic cells including human
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Class Symbol Characteristic
Promoter-associated
small RNAs

PASRs Average size about 20–200 nt; 
modified	5′	(capped)	ends;	coin-
cide with the transcriptional start 
sites of protein- and noncoding 
genes; made from transcription of 
short capped

Transcription
initiation RNAs

tiRNAs Average size about 18 nt ; have the 
highest density just downstream 
of transcriptional start sites; show 
patterns of positional conservation; 
preferentially located in GC-rich 
promoters.

Centromere repeat 
associated small 
interacting

crasiRNAs Average size about 34–42 nt;
processed from long dsRNAs.

Telomere-specific 
small RNAs

tel-sRNAs Average size about 24 nt; Dicer 
independent;	2′-O-methylated	at	
the	3′	terminus;	evolutionarily	
conserved from
protozoa to mammals; but have 
not been described in human up 
to now.

Pyknons Subset of patterns of variable 
length; form mosaics in 
untranslated and protein-coding 
regions;	more	frequently	in	3′	
UTR.

Long
non-coding 
RNAs

Long intergenic 
Non-coding  
RNAs

lincRNAs Ranging from several hundreds to 
tens of thousands nts; lie within 
the genomic intervals between two 
genes; transcriptional cisregulation 
of neighbouring genes.

Long intronic
non-coding
RNAs

Lie within the introns; evolution-
ary conserved; tissue and subcel-
lular expression specified 

Telomere-associated
ncRNAs

TERRAs Average size about 100 bp to > 9 
kb; conserved among eukaryotes; 
synthesized from C-rich strand; 
polyadenylated; form intermolecu-
lar G-quadruplex structure with 
single-stranded telomeric DNA.

Long non-coding
RNAs with dual
functions

Both protein-coding and function-
ally regulatory RNA capacity.

Table 1.1 (continued) 
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RNA-Seq, the most powerful methodology for de novo sequence discovery, has 
been used to identify and analyze the expression of new lncRNAs in different cell 
types and tissues. Interestingly, sequencing experiments have shown that lncRNA 
expression is more cell-type specific than that of protein-coding genes (Riin and 
Chang 2012; Derrien et al. 2012; Guttman et al. 2012; Mercer et al. 2008; Cabili 
et al. 2011; Pauli et al. 2012).

The identification of lncRNAs relies on the detection of transcription from ge-
nomic regions that are not annotated as protein coding. However, other similarly 
robust methodologies have been used in the identification of lncRNAs, including 
the following: (1) Tiling arrays: this technology enables the analysis of global tran-
scription from a specific genomic region and were initially used to both identify and 
analyze the expression of lncRNAs; (2) Serial analysis of gene expression (SAGE): 
this methodology allows both the quantification and the identification of new tran-
scripts throughout the transcriptome; (3) Cap analysis gene expression (CAGE): 
this methodology is based on the isolation and sequencing of short cDNA sequence 
tags that originate from the 5’ end of RNA transcripts; (4) Chromatin immuno-
precipitation (ChIP): this method allows the isolation of DNA sequences that are 
associated with a chromatin component of interest, thereby allowing the indirect 
identification of many unknown lncRNAs; and (5) RNA-Seq: in a single sequenc-
ing run, this methodology produces billions of reads that are subsequently aligned 
to a reference genome (Fatica and Bozzoni 2014).

Transcriptome research began in parallel with the genome project because of 
Craig Venter’s idea to sequence the “most important” genes, i.e., the function-
ing genome. This directive clearly fell upon mRNAs, as this type of RNA carries 
the protein code. Of course, this concept has not changed and mRNAs are still 
of central importance; however, what followed was the subsequent discovery of a 
large number of different ncRNAs whose functions are linked to the fine control 
of gene expression, often controlling the translation of mRNAs into proteins, i.e., 

Class Symbol Characteristic
Pseudogene RNAs Gene copies that have lost the abil-

ity to code for a protein; potential 
to regulate their protein coding 
cousin; made through retrotrans-
position; tissue specific.

Transcribed- 
ultraconserved
regions

T-UCRs Longer than 200 bp; absolutely 
conserved between orthologous 
regions of human, rat, and mouse; 
located in both intra- and inter-
genic regions.

Circular RNAs circRNAs Noncoding RNAs generated dur-
ing splicing through exon or intron 
circularization. They are transcrip-
tion regulators or play their role as 
sponges for miRNAs.

Part of this table was adapted from Sana et al. (2012) J Transl Med 10: 103

Table 1.1 (continued) 
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 posttranscriptional control as it is exerted by miRNAs. In its broadest sense, the 
transcriptome is undoubtedly more complex than anyone previously imagined.

1.3  The Transcriptome and miRNome are Closely 
Associated: The Role of MicroRNAs, a Class of Non-
Coding Rnas Linked to the Fine Control of Gene 
Expression

Cellular gene expression is governed by a complex, multi-faceted network of regu-
latory interactions. In a very unique way, RNA molecules hybridize to each other. 
In the last decade, miRNAs have emerged as critical components of this cross-
hybridization network. The miRNome was found to physically interact with the 
transcriptome, and this has important consequences for biological function.

The miRNA class of ncRNAs was first discovered in the worm Caenorhabditis 
elegans (Lee and Ambros 1993; Wightman and Ruykun 1993) and represents a 
family of small ncRNAs that posttranscriptionally regulate the stability of mRNA 
transcripts or their translation into proteins.

miRNAs participate in the regulation of a wide variety of biological processes, 
including cell differentiation and growth, development, metabolism chromosome 
architecture, apoptosis, and stress resistance. They are also involved in the patho-
genesis of diseases as diverse as cancer and inflammation as well (Ambros 2004; 
Bushati and Cohen 2007; Stefani and Slack 2008). miRNAs are also promising 
candidates for new targeted therapeutic approaches and as biomarkers of disease. At 
approximately 22 nucleotides long, miRNAs are among the shortest known func-
tional eukaryotic RNAs, and they repress most of the genes they regulate by just a 
small amount.

Many miRNAs are found in clusters and are transcribed from independent genes 
by either RNA Pol II or RNA Pol III (Chen et al. 2004; Borchert et al. 2006; Winter 
et al. 2009). They are normally found in three genomic locations: in the introns of 
protein-coding genes, in the introns of non-coding genes and in the exons of non-
coding genes (Kim et al. 2006; Lin et al. 2008). Most miRNAs are derived from 
longer, double-stranded RNAs, which are termed primary miRNAs (pri-miRNAs).

Within these primary transcripts, miRNAs form stem-loop structures that con-
tain the mature miRNA as part of an imperfectly paired double-stranded stem con-
nected	by	a	short	terminal	loop.	pri-miRNAs	are	initially	modified	with	a	5′	7-meth-
ylguanosine	cap	and	a	3′	poly-A	 tail	 (Cullen	2004) and contain hairpins that are 
further excised by the nuclear RNase III Drosha and its dsRNA-binding partner 
DGCR8 (DiGeorge syndrome critical region gene 8) (Gregory et al. 2004; Denli 
et al. 2004, Landthaler et al. 2004). The resulting pre-miRNA consists of an approx-
imately 70-nucleotide double-stranded hairpin characterized by imperfect base-
pairing	in	the	stem-loop	and	a	2-nucleotide	overhang	at	the	3′	end	(Lee	et	al.	2003).

The stem-loop of a pre-miRNA is recognized by the nuclear transport protein 
exportin-5, which exports the pre-miRNA to the cytoplasm, in combination with 
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the guanosine triphosphate (GTP) binding RAS-related nuclear protein (Ran-GTP) 
(Yi et al. 2003; Bohnack et al. 2004; Lund et al. 2004). In the cytoplasm, the pre-
miRNAs are then cleaved by the RNAse III enzyme Dicer and the double-stranded 
RNA-binding protein TRBP (TAR RNA-binding protein) into duplexes of miRNA 
and passenger strands of approximately 22 base pairs (Hutvagner et al. 2001; Zhang 
et al. 2002).

After the sequential processing of the miRNA precursors, one of the two strands 
of the miRNA duplex is incorporated into the RNA-induced silencing complex 
(RISC). This complex comprises the mature miRNA strand as well as several pro-
teins from the Argonaute and Gw182 families (Chendrimada et al. 2005; Haase 
et al. 2005). RISC can then find and bind to complementary mRNA sequences and 
perform its silencing function (Kawamata and Tomari 2010, Czech and Hannon 
2011). In addition, a few miRNAs are produced by alternative pathways, indepen-
dent of Drosha and/or Dicer, by exploiting diverse RNases that normally catalyze 
the maturation of other types of transcripts (Yang and Lai 2011).

Although miRNAs typically function in the cytoplasm, there is increasing evi-
dence that they can play important roles in the nucleus as well (McCarthy 2008; 
Politz et al. 2009). They can also be found in the mitochondria, where they may be 
involved in the regulation of apoptotic genes (Kren et al. 2009).

The regulatory roles of miRNAs have been the subject of intense research (Shi-
moni et al. 2007; Wang and Raghavachari 2011; Levine et al. 2007; Levine and Hwa 
2008; Mehta et al. 2008; Osella et al. 2011; Mitarai et al. 2009; Bumgarner et al. 
2009; Iliopoulos et al. 2009). In mammals, the majority of miRNAs are inferred to 
be functional on the basis of their evolutionary conservation.

The major determinant for recognition between an miRNA and a target mRNA 
is a region of high sequence complementary that consists of an approximately 7-nu-
cleotide	domain	at	the	5ʹ	end	of	the	miRNA	known	as	the	“seed”	sequence	(Bartel	
2009). The remaining nucleotides are generally only partially complementary to 
the target sequence. Sequences that are complementary to the seed (“seed match-
es”) trigger a modest but detectable decrease in the expression of an mRNA. Seed 
matches can occur in any region of an mRNA but are more likely to decrease mRNA 
expression	when	they	are	located	in	the	3ʹ	untranslated	region	(3ʹ	UTR)	(Grimson	
et al. 2007; Forman et al. 2008, 2010; Gu et al. 2009) (Fig. 1.6). Because the region 
used to create the seed is so short, more than half of the protein-coding genes in 
mammals are regulated by miRNAs, and thousands of other mRNAs appear to have 

Fig. 1.6  Interaction of a miRNA with the 3´UTR of its mRNA target by base pairing. (Figure 
adapted from Filipowicz et al (2008) Nat Rev Genetics 9: 102–114)
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undergone negative selection to avoid seed matches with miRNAs that are present 
in the same cell (Baek et al. 2008; Lewis et al. 2003, 2005; Farh et al. 2005, Stark 
2005; Lewis 2005).

Despite the aforementioned basic features, a “seed” sequence is neither neces-
sary nor sufficient for target silencing. It has been shown that miRNA target sites 
can often tolerate G:U wobble base pairs within the seed region (Miranda et al. 
2006; Vella et al. 2004),	and	extensive	base	pairing	at	the	3ʼ	end	of	the	miRNA	may	
offset the absence of complementarity in the seed region (Brennecke et al. 2005; 
Reinhart et al. 2000). Moreover, centered sites showing 11–12 contiguous nucleo-
tide base pairing with the central region of the miRNA without pairing to either end 
have also been reported (Shin et al. 2010). Adding to this repertoire, other studies 
have reported efficient silencing from sites that do not fit any of the above patterns 
and appear to be seemingly random (Lal et al. 2009; Tay et al. 2008), and even 
sites	with	 extensive	 5ʼ	 complementarity	 can	 be	 inactive	when	 tested	 in	 reporter	
constructs (Didiano et al. 2006).

How miRNAs repress or activate gene expression in animals is another impor-
tant question, in addition to the high number of high-quality studies examining the 
biochemistry, biology and genomics of miRNA-directed mRNA regulation. The 
factors that determine which mRNAs will be targeted by miRNAs, or the mecha-
nism by which they will be silenced, remain unclear. Extensive computational and 
experimental research over the last decade has substantially improved our under-
standing of the mechanisms underlying miRNA-mediated gene regulation (Ameres 
and Zamore 2013; Yue et al. 2009; Ripoli et al. 2010; Bartel 2009, Chekulaeva et al. 
2009, Brodersen and Voinnet 2009).

miRNAs posttranscriptionally control gene expression by regulating mRNA 
translation or stability (Valencia-Sanchez et al. 2006, Standart et al. 2007; Jackson 
2007, Nilsen 2007). What is known is that miRNAs can interfere with the initia-
tion or elongation of translation; alternatively, the target mRNA may be affected by 
isolating it from the ribosomal machinery (Nottrott et al. 2006; Pillai et al. 2007). 
The binding of eIF4E to the cap region of an mRNA marks the initiation of initia-
tion complex assembly. It has been demonstrated that miRNAs interfere with eIF4E 
and impair its function, and the function of the poly(A) tail can also be inhibited 
(Humphreys et al. 2005). There is additional evidence suggesting that miRNAs re-
press translation at the later stages of initiation as well. The miRNA lin-4 targets the 
lin-14 and lin-28 mRNAs, but under inhibitory conditions, lin-14 and lin-28 are not 
altered, indicating that miRNAs inhibit translation after the initiation stage. Interest-
ingly, in both cap-dependent and independent translation, the mRNAs are inhibited 
by synthetic miRNA, suggesting post-initiation inhibition. Another mechanism by 
which miRNAs inhibit translation is by ribosome drop off, in which the ribosomes 
engaged in translation are directed to prematurely terminate translation. There are 
also proposed mechanisms by which miRNAs can direct the degradation of nascent 
polypeptides by recruiting proteolytic enzymes (Olsen and Ambros 1999; Petersen 
et al. 2006).

Microarray studies of transcript levels in cells and tissues in which miRNA 
pathways were inhibited or in which miRNA levels were altered support the role 
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of miRNAs in mRNA destabilization (Behm-Ansmant et al. 2006; Giraldez et al. 
2006; Rehwinkel et al. 2006; Schmitter et al. 2006; Eulalio et al. 2007). Reports 
have demonstrated the interaction of the P-body protein GW182 with Argonaute 1 
is a key factor that marks mRNAs for degradation, as the depletion of these proteins 
leads to the upregulation of many mRNA targets. Moreover, knockdown experi-
ments and analyses of the decay intermediates originating from repressed mRNAs 
in mammalian cells (Wu and Belasco 2006) support the role of decapping and 
5′→3′	 exonucleolytic	 activities	 in	 these	 systems.	Although	many	of	 the	mRNAs	
that are targeted by miRNAs undergo substantial destabilization, it is not known 
what factors determine whether an mRNA follows the degradation or translational-
repression pathway (Filipowicz et al. 2008).

In addition to their recognized roles in repressing gene expression, miRNAs 
have also surprisingly been linked to gene activation. The mechanism of activation 
is often indirect, with the repression of a repressor leading to the increased expres-
sion of specific transcripts. A relatively small number of studies have demonstrated 
that miRNAs can stimulate gene expression, indicating that these effects are medi-
ated	via	gene	promoters,	extracellular	receptors	and	the	selective	control	of	3ʼ	or	5ʼ	
UTRs. Below, we discuss three of the current examples of the role of miRNAs as 
stimulators of gene expression.

1) Promoter activation: Earlier studies have shown that the exogenous applica-
tion of small duplex RNAs that are complementary to promoters activates gene 
expression in a manner similar to proteins and hormones, a phenomenon referred to 
as RNA activation (RNAa) (Li et al. 2006, Janowski et al. 2007). Soon afterwards, 
it was discovered that mir-373 targets sites in the promoters of e-cadherin and cold 
shock domain containing protein C2 (CSDC2), and its overexpression induced the 
transcription of both genes. Subsequently, mir-205 was discovered to bind to the 
promoter of the interleukin (IL) tumor suppressor genes IL-24 and IL-32 and, simi-
lar to mir-373, induce gene expression (Place et al. 2008; Majid et al. 2010).

2) Target activation: Several reports have shown that miRNAs can induce trans-
lation	by	binding	to	the	5ʼ	or	3ʼ	UTR	of	an	mRNA.	In	the	brain,	a	target	sequence	of	
mir-346	was	found	in	the	5ʼ	UTR	of	a	splice	variant	of	receptor-interacting	protein	
140 (RIP140). Gain- and loss-of-function studies established that mir-346 elevated 
the RIP140 protein levels by facilitating the association of its mRNA with the poly-
some fraction. This activity did not require Ago2, indicating that other proteins in 
complex with the miRNA or a different RIP140 mRNA conformation induced by 
the miRNA mediated the effect (Tsai et al. 2009). In another study, mir-145 was 
shown to regulate smooth muscle cell fate and plasticity by upregulating the myo-
cardin gene (Cordes et al. 2009). Along with this, miR-466l, a miRNA discovered in 
mouse embryonic stem cells, upregulated IL-10 expression in TLR-triggered mac-
rophages by antagonizing IL-10 mRNA degradation mediated by the RBP tristetra-
prolin (TTP) (Ma et al. 2010).

3) Receptor ligands: Mouse TLR7 and human TLR8, which are members of the 
Toll-like receptor (TLR) family that are expressed on dendritic cells and B lympho-
cytes, physiologically recognize and bind to and are activated by ~20-nucleotide 
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viral single-stranded RNAs (Heil et al. 2004; Lund et al. 2004). Because miRNAs 
can be secreted in exosomes and are of similar size, it was predicted that they may 
also serve as TLR7/8 ligands. It was also found that the tumor-secreted mir-21 and 
mir-29a were ligands for TLR7/8 and were capable of triggering a TLR-mediated 
prometastatic inflammatory response (Fabbri et al. 2012).

1.3.1  Control of miRNA Expression

Despite the substantial advances in our understanding of miRNA-mediated gene 
regulation, the mechanisms that control the expression of the miRNAs themselves 
are less well understood. Homeostatic and feedback mechanisms coordinate the 
levels of miRNAs with their effector proteins or harmonize the levels of the biogen-
esis factors that function within the complexes. Often we have the impression that 
these processes are constitutive and inflexible.

However, diverse mechanisms that regulate the biogenesis and function of small 
RNAs have been uncovered (Bronevetsky and Ansel 2013; Heo and Kim 2009). 
Notably, many of these mechanisms provide homeostatic control over the levels 
of biogenesis factors and/or the resultant miRNAs. Both transcriptional and post-
transcriptional mechanisms regulate miRNA biogenesis (Carthew and Sontheimer 
2009; Siomi 2010; Schanen and Li 2011).

The first and one of the most important mechanisms controlling miRNA abun-
dance is the regulation of pri-miRNA transcription. pri-miRNAs can be positively 
or negatively regulated by different factors such as transcription factors, enhancers, 
silencers and epigenetic modification of the miRNA promoter (Ruegger et al. 2012; 
Macedo et al. 2013). Investigations in this area have been slowed by limitations in 
the methods used to define the promoters and measure the transcripts. pri-miRNAs 
are unstable, as they are processed by the nuclear microprocessor complex very 
soon after transcription. Therefore, they generally do not accumulate in great abun-
dance in cells and are underrepresented in EST and RNA-Seq libraries.

Recently, these challenges have been overcome by epigenomic and transcrip-
tomic experiments. One study took advantage of the fact that many pri-miRNAs 
accumulate in cells lacking Drosha to map pri-miRNAs using RNA-Seq (Kirigin 
et al. 2012).

It has long been known that the levels of mature miRNAs are not determined 
solely by their transcription. Measurements of pri-miRNAs and their corresponding 
mature miRNAs were poorly correlated, suggesting that specific miRNAs are sub-
ject to developmental regulation of their processing and/or stability (Thomson et al. 
2006). Additionally, the expression of these miRNAs continues to be regulated after 
biogenesis is complete. Mature miRNA homeostasis can be influenced by signals 
that modulate the stability of the miRISC complex, by nucleases that degrade miR-
NAs, and/or by the abundance of their mRNA targets. It is estimated that 5–10 % of 
mammalian miRNAs are epigenetically regulated (Breving and Esquela-Kerscher 
2010, Brueckner et al. 2007, Han et al. 2007, Toyota et al. 2008).
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Despite early reports indicating that miRNAs are often surprisingly stable in 
cells, displaying half-lives up to 12 days (van Rooij et al. 2007), cell differentiation 
and cell-fate decisions are frequently marked by dramatic changes in the expression 
of mature miRNAs.

The Argonaute proteins are limiting factors that determine the total abundance of 
cellular miRNAs. The deletion of these proteins, specifically Ago1 and Ago 2, was 
sufficient to drastically reduce miRNA expression (Bronevetsky et al. 2013; Died-
erichs and Haber 2007; Lund et al. 2011). Conversely, overexpressing Ago2, but not 
the other proteins in the miRNA biogenesis pathway, increases miRNA expression 
in HEK293 cells. Thus, changes in the expression and stability of Ago proteins can 
have dramatic effects on the expression of mature miRNAs within cells.

The action of miRNA nucleases in the regulation of miRNAs is not well under-
stood, especially in mammals. At least two ribonucleases have been shown to nega-
tively regulate the expression of mature miRNAs. IRE1a, an endoplasmic reticulum 
(ER) transmembrane RNase activated in response to ER stress, cleaves precursors 
corresponding to miR-17, miR-34a, miR-96, and miR-125b and mediates the rapid 
decay of their expression in response to sustained cellular stress (Upton et al. 2012). 
Additionally,	Eri1,	a	3′-to-5′	exoribonuclease	with	a	double-stranded	RNA-binding	
SAP domain, was discovered to limit miRNA abundance in CD4 + T cells and natu-
ral killer (NK) cells (Thomas et al. 2012).

The sequence-specific degradation of miRNAs has also been observed with 
the addition of RNA targets. miRNA “antagomirs” and “miRNA sponges” are two 
technologies used to specifically knockdown miRNA expression, and both rely on 
miRNA degradation induced by high levels of miRNA-to-target complementarity 
(Krutzfeldt et al. 2005; Ebert et al. 2007; Plank et al. 2013). Further work is still 
needed to determine the extent to which miRNA expression is regulated by target 
mRNAs, as well as the molecular mechanisms that mediate this final step in the 
control of miRNA expression.

The posttranscriptional regulatory mechanisms that affect miRNA processing 
at different stages have recently been investigated (Siomi 2010). For example, p53 
can form a complex with Drosha, which increases the processing of pri-miRNAs 
to pre-miRNAs (Suzuki et al. 2009). Histone deacetylase I can also enhance pri-
miRNA processing by deacetylating the microprocessor complex protein DGCR8 
(Wada et al. 2012). Additionally, cytokines such as interferons have been shown to 
inhibit Dicer expression and decrease the processing of pre-miRNAs (Wiesen and 
Tomasi 2009).

1.3.2  Extracellular miRNAs

RISC components and miRNAs have also been found in exosomes (Valadi et al. 
2007). Exosomes isolated from the culture supernatant of many hematopoietic cells, 
including cytotoxic T lymphocytes, mast cells, and dendritic cells (DCs), as well as 
DC-derived exosomes, have been shown to stimulate CD4 + T-cell activation and 
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induce tolerance (Zitvogel et al. 1998). Experimentally, vesicles containing both 
Ago2 and miRNAs, including miR-150, miR-21, and miR-26b, as well as the ves-
icle-derived miR-150, could be delivered to recipient HMEC-1 human endothelial 
cells and repress the target mRNAs in the recipient cells. These findings illustrate 
another mechanism by which immune cell stimulation/activation can lead to signifi-
cant changes in mature miRNA levels. Interest in extracellular miRNAs in various 
body fluids has increased substantially as early findings indicated their utility as 
readily accessible biomarkers.

Circulating miRNAs have been studied in patient samples and animal models 
in the context of cardiovascular disease, liver injury, sepsis, cancer, and various 
other physiological and pathophysiological states (Cortez et al. 2011). The origin of 
extracellular miRNAs is still poorly understood, with blood cells appearing to be a 
major contributor to circulating miRNAs (Pritchard et al. 2012).

It has also become clear that extracellular miRNAs exist in several distinct 
forms in human plasma. In addition to miRNAs encapsulated in vesicles such as 
exosomes, there are stable non-vesicular miRNAs that can be copurified with Ago 
proteins, which are accessible for direct immunoprecipitation from plasma samples 
(Arroyo et al. 2011). Further research is needed to clarify the cellular sources of 
miRNAs, the forms in which they are released, and whether this process is regulated 
during biological processes.

1.3.3  An Example of the Biological Consequence of miRNAs: 
Their Role in the Immune System

The role of miRNAs in the immune system has been extensively investigated. Both 
innate and adaptive immune responses are highly regulated by miRNAs. By target-
ing the signal transduction proteins involved in the transmission of intracellular 
signals following initial pathogen recognition and by directly targeting mRNAs that 
encode specific inflammatory cytokines, miRNAs can have a significant impact on 
the innate immune response. In addition to their role in regulating the innate im-
mune system, miRNAs have been implicated in adaptive immunity, wherein they 
control the development, activation and plasticity of T and B cells (Lu and Liston 
2009; Xiao and Rajewsky 2009; O’ Connell et al. 2010; O’ Neill et al. 2011; Plank 
et al. 2013; Baumjohann and Ansel 2013; Donate et al. 2013).

Furthermore, the central role of miRNAs across many important aspects of innate 
and adaptive immunity strongly supports their potential in regulating inflammatory 
diseases. The identification of a broad range of miRNAs that play pathogenic roles is 
growing. To date, a relatively small number of miRNAs has been associated with spe-
cific inflammatory diseases, and most of the identified miRNAs are expressed across 
multiple tissues and cell types, and many have been shown to play roles in other 
disease settings, particularly in cancer. Despite the limited numbers of verified targets 
in inflammatory diseases, many of the targets that were verified in other experimental 
settings may also be relevant in inflammatory diseases (Plank et al. 2013).
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1.4  Conclusion

Early on, transcriptome research was intertwined with the genome. Much of this 
was due to the mapping of ESTs, and sequencing dominated the scene. Through 
the use of EST clones and the application of technical concepts such as nucleic acid 
hybridization, researchers began to use arrayed filters to explore the transcriptional 
expression of a large number of genes in a single experiment.

The constant improvement of these DNA arrays led to the fabrication of high-
density arrays and, finally, microarrays.

At the same time, sequencing also underwent significant changes involving au-
tomation and the endless quest to increase the number of reads, and this contributed 
substantially to a better understanding of the diversity of the transcriptome. Indeed, 
transcriptome research was rooted in these two major technological approaches 
(i.e., large-scale hybridization and sequencing).

What made microarrays robust and increased their popularity was the increase in 
the number of sequences deposited on the slides (currently, these slides contain the 
entire human or mouse functional genome), the sensitivity of the method (currently, 
experiments are being performed with nanogram amounts of total RNA to screen 
the entire functional genome), the simplicity of its use, its commercial availability 
and the availability of bioinformatics packages dedicated to analyzing the large 
amounts of data being generated.

Of key importance was the development of statistical procedures for the analysis 
of large amounts of data, which opened the door for biostatisticians and bioinfor-
maticians.

All of these ongoing technological advances have contributed to the consolida-
tion of the concept of the transcriptome. Unlike the genome, which is essentially 
static, the transcriptome is variable and is dependent on normal physiological, path-
ological or environmental conditions. Moreover, it is composed not only of mRNAs 
but also non-coding RNAs, including miRNAs.

This concept has provided the opportunity for all types of biomedical research to 
re-examine their results in light of transcriptomics.
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Abstract Differential gene expression profile is a powerful tool to identify changes 
in cell or tissue trancriptomes, which allows to understanding complex biological 
process such as oncogenesis, cell differentiation and host immunological response 
to pathogens, among others. To date, the gold standard technique to compare gene 
expression profile is micro-array hybridization of a RNA preparation. In recent 
years technological advances led to a new generation of sequencing methods, which 
can be explored to uncover the complete content of a cell transcriptome. Such a 
deep sequencing of a RNA preparation, named RNA-seq, allows to virtually detect 
the complete RNA content, including low abundant isoforms. The RNA-seq quan-
titative aspect may be further explored to detect gene differential expression based 
on a reference genome and gene model. In contrast to micro-arrays, RNA-seq may 
find a broader range of RNA isoforms as well as novel RNA molecules, and has 
been gradually substituting micro-arrays to differential gene expression profile. In 
this chapter we describe how deep sequencing may be used to describe changes in 
the gene expression profile, its advantages and limitations.

2.1  High-Throughput Sequencing Techniques

Since the development of Sanger’s technology in the 70’s, DNA sequencing has 
been continuously improved regarding to both throughput and low cost. Next gen-
eration sequencing (NGS), also called high-throughput or deep sequencing, consti-
tutes a new breakthrough of increasingly research power, a revolutionary advance 
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in molecular biology knowledge. An increasing number of biological questions may 
be addressed by NGS technologies, which provides a much larger comprehensive 
survey compared to the Sanger method, and under a system biology perspective. 
In particular, transcriptomics has been strongly benefited by the use of these new 
technologies, also called RNA-seq, allowing a complete characterization of whole 
transcriptome at both gene (Kvam et al. 2012) and exon (Anders et al. 2012) levels, 
and with an additional ability to identify rare transcripts, new genes, novel splic-
ing junctions and gene fusions (Katz et al. 2010; Wang et al. 2009; Van Verk et al. 
2013).

In this chapter, first we address a brief overview on sequencing techniques and 
the most common next-generation platforms, as well as computational methods for 
RNA-seq data analysis. After, we discuss two case studies to assess the capabilities 
of RNA-seq in addressing important biological issues.

2.1.1  Sanger’s Sequencing Technology

In 1977, Frederick Sanger and colleagues (Sanger et al. 1977) developed the DNA 
sequencing method, which in 2001 allowed the first Human genome draft (Lander 
et al. 2001). This method called dideoxy chain-termination or simply Sanger method 
is based on the use of special nucleotide molecules (called ddTNP), lacking a 3’-OH 
at the deoxyribose, which blocks the DNA elongation. These special nucleotides 
are mixed in lower concentrations to the regular nucleotides and used as reagents 
for DNA polymerase reaction. Therefore, with the polymer synthesis stopped by 
the inclusion of a ddNTP, the last nucleotide can be determined. Each of the four 
ddNTPs was added separately in four different reactions. At the beginning, one of 
the regular nucleotides, most commonly dATP or dCTP, was radioactively labeled 
(e.g., 32P or 35S) in order to achieve the radioactive signal. Usually, polyacrylamide 
gel electrophoresis was used for separation of the DNA molecules, which diverged 
in length by a single nucleotide. Then the gel was dried and exposed to X-ray film.

An important modification of the method was the substitution of the radioactive 
label by a fluorescent dye (Smith et al. 1986). Each distinct wave length produced 
by the fluorescent dyes linked to dideoxynucleotides corresponds to a different 
nucleotide, with the four sequencing reactions performed in the same tube. With 
the automation of the Sanger sequencing method, the performance reached up to 
96 different reactions running in parallel capillary gel electrophoresis (Marsh et al. 
1997), which is considered the first-generation technology. In the top of the tech-
nology 384 samples could be sequenced at once in a single multi-well plate. The 
main sequencing devices using Sanger method are ABI (Applied Biosystems) and 
MegaBACE (GE Healthcare Life Sciences).

The main advantage of Sanger sequencing is the length of the produced sequenc-
es, about 1000 kb, which is still unreachable by the main NGS technologies nowa-
days. However, deep sequencing has the advantage of high coverage, i.e., a large 
amount of redundant data, further treated through bioinformatics analysis, generat-
ing much more informative data in a single run.
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2.1.2  Next Generation Sequencing

Regulatory mechanisms and gene expression profiles have been widely investigat-
ed towards elucidation of several essential cellular processes. Hybridization-based 
technology, e.g., microarray, has been very useful for determining global gene ex-
pression. However, the high background levels due to cross-hybridization, a limited 
range of quantification and a restricted detection of known genes are bottlenecks for 
large scale use of this technique (Shendure 2008). RNA-seq allows a genome-scale 
transcriptome analysis, including novel genes and splice variants, with a large range 
of quantification and reduced sequencing costs (Wang et al. 2009; Soon et al. 2013). 
These advantages make RNA-seq a better and attractive solution for whole-genome 
transcriptome analysis of several organisms, even for those with no sequenced ref-
erence genomes.

Nowadays, the most commonly used NGS platform for RNA-seq research is the 
Illumina HiSeq. A comparison of NGS technologies is shown in Table 2.1 based on 
data from Liu et al. (2012).

The enormous amounts of data generated by NGS create new challenges to the 
downstream bioinformatics analysis, which has to handle with large sequence files 
while searching for comprehensive and useful biological information, discussed 
later in this chapter.

2.1.3  454 Sequencing

In 2005, the 454 sequencing platform was formally announced by Roche as a new 
massive parallelized sequencer (Margulies et al. 2005). It was the first technol-
ogy, among several others, considered as next generation sequencing. Since 454 
produces the largest sequences among the NGS platforms, it is mainly used for 
transcriptome studies concerning organisms without a reference genome.

The pyrosequencing method used by 454 sequencing is based on the detec-
tion of pyrophosphate released during the nucleotide incorporation promoted by 
DNA polymerase (Harrington et al. 2013; Mardis 2013). In contrast to the Sanger 
sequencing, pyrosequencing is designated as a sequence-by-synthesis technique 
because DNA synthesis is monitored in real time. Single-stranded DNA library 
is generated after fragmentation and addition of adaptors to both fragment ends 

Table 2.1  Comparison of next generation sequencing technologies
Sanger ABI 
3730xl

454 GS FLX HiSeq 2000 SOLiDv4 Ion Torrent 
PGM (318 chip)

Read length (bp) 900 700 150 85 100
Cost (US$/Mb) 500 12.56 0.02 0.04 0.63
Output data/run 2.88 Mb 0.7 Gb 600 Gb 30 Gb 1 Gb
Time run 3 h 1 day 8 days 7 days 3 h
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(Fig. 2.1a and b). One single fragment is ligated to beads covered by adaptors to 
proceed to the clonal amplification by emulsion PCR. Bead-ligated sequence is 
added, along with amplification reagents, in a water-in-oil mixture to trap indi-
vidual beads in amplification micro-reactors. Next, the bead-ligated amplified se-
quences are added to the PicoTiterPlate device containing millions of 28 µm wells, 
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the precise size for a single bead (Fig. 2.1c). To these wells, enzyme beads (contain-
ing sulfurylase and luciferase) are added to the device. Each nucleotide is added to 
the system separately during the sequencing rounds. With the incorporation of one 
nucleotide, a pyrophosphate is released and used by sulfurylase to convert ADP into 
ATP, the substrate of luciferase (Fig. 2.1d). ATP and luciferin are used by luciferase 
to produce luminescence, which is detected by a visible-light high-sensitivity CCD 
camera. Apyrase is subsequently added to remove any non-incorporated nucleotide, 
and, then, the next round is initiated. The signal strength is proportional to the num-
ber of added nucleotides, recorded as a pyrogram (Fig. 2.1e). Sequences are stored 
as standard flowgram format (SFF), a binary format that is further converted in the 
FASTQ format, used in the bioinformatics analysis.

2.1.4  Illumina Sequencing

Illumina sequencing uses reversible dye-terminator technique that adds a single 
nucleotide to the DNA template in each cycle (Bentley et al. 2008). This system 
was initially developed in 2007 by Solexa and was subsequently acquired by Il-
lumina, Inc. Illumina is widely used in several whole transcriptome studies since it 
reaches the deepest depth among NGS technologies. However, the small sequence 
size (around 100 bp) hampers the assembly into contigs as normally used for Sanger 
and 454 sequencing. Therefore, a reference genome is usually necessary for Illu-
mina data analysis.

As 454, Illumina sequencing is based on sequencing-by-synthesis, however, in-
stead of clonal amplification using beads, Illumina sequencing is performed in a 
solid slide covered by adaptors complementary to those added to the fragmented 
DNA sequences (Metzker 2010). This procedure, called bridge PCR, consists in 
amplification of bended DNA sequences, attached by both ends to the solid surface 
(Fig. 2.2a). By the end of the clonal amplification, clusters of identical DNA se-
quences will be formed in order to amplify the fluorescence signals. In each round, 
one single nucleotide is added to the single-strand template sequences followed by 
fluorescence detection by a high-sensitivity CCD camera (Fig. 2.2b and d). As in 
Sanger’s technology, different fluorophore molecules are attached to each nucleo-
tide, however, these molecules hamper the polymerase to add new ones. The fluo-
rescence emission releases the 3’OH of the recent added nucleotide allowing it to 
receive new monomers in the next sequencing round.

Single-end sequencing, i.e., reads generated from a single end adaptor, is being 
replaced by the paired-end sequencing, since the accuracy in downstream analysis 
is greater with a fairly price. Paired-end reads are produced from the adaptor prim-
ing sites in both template sequence ends, being the second adaptor primer used in a 
subsequent sequencing run (Fig. 2.2c).
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2.2  Bioinformatics Pipelines for Transcriptome Projects

As described previously, Illumina sequencing has been commonly used in tran-
scriptome projects, since the volumes of sequenced reads (named raw data) allow 
to finding virtually the total of the expressed genes (transcripts). Due to the short 

Fig. 2.2  The Illumina sequencing technology. a Two basic steps encompass an initial priming 
and extending of the single-stranded, single-molecule template, and bridge amplification of the 
immobilized template in a solid device with immediately adjacent primers to form clusters. b 
The	four-color	cyclic	reversible	termination	( CRT) method uses terminator chemistry. A cleavage 
step	removes	the	fluorescent	dyes	and	regenerates	the	3′-OH	group.	c Paired-end sequencing by 
which reads are generated from both template strand. “A” block indicates the device-ligation adap-
tors and “SP”, sequencing primers. d In the images, the sequencing data is highlighted from two 
sequence clusters. (Source: Metzker 2010 and http://www.illumina.com/)
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lengths of the Illumina reads, they are usually mapped in a reference genome, the 
mapped regions indicating the expressed genes of the RNA-seq sample. If the or-
ganism genome is not yet sequenced, new specially developed methods to handle 
short reads have been used to reconstruct the transcript sequences, e.g., 454 se-
quencing produces sequences four times larger than those produced by Illumina. 
Also in this case, the original reads are usually assembled in larger sequences, in 
order to rebuild each (fragment of) transcript. In both cases, the metaphor for re-
constructing the transcripts is like mounting a puzzle, where the pieces (the reads) 
have to be assembled (relative to a reference genome or not) to obtain the picture 
(the transcripts of the transcriptome). After this, different analyses can be performed 
on these reconstructed transcripts, e.g., quantitative analysis and differential expres-
sion. In transcriptome projects, the tasks of reconstructing transcripts and perform-
ing biological analyses are performed by bioinformatics pipelines, discussed next.

2.2.1  Pipelines

A bioinformatics pipeline is a computational system composed of a sequence of 
softwares (computer programs), sequentially executed, in which the output data 
from one software is the input data for the following software.

In general, transcriptome bioinformatics pipelines have the following phases, 
which can be combined according to the input raw data and the objectives of each 
project:

•	 filter (or clean) raw data for quality assessment: this is usually performed in two 
steps as follows. In the clipping step, a fragment (or the whole read) containing 
adapters is removed, while in the trimming step, reads are filtered to remove low 
quality sequences. This filtering phase guarantees a reliable dataset of quality 
short reads, to be used in the following phases of the pipeline;

•	 map short reads to reference genomes: the filtered reads are aligned to a refer-
ence genome, in order to find the genomic regions presenting matches with these 
reads;

•	 assembly (or group) reads: each group of reads (called contig), composed of 
reads having similar extremities (the end of a read is similar to the beginning of 
another read), allows to construct one larger sequence (called consensus), which 
is a predicted (fragment of) transcript;

•	 analysis of the set of (fragments of) transcripts obtained from the mapping or the 
assembling phase: allows to obtain relevant biological information, e.g.,
− quantitative analysis: among others, coverage analysis shows the abundance 

of genes expressed in one RNA-seq sample, more precisely, the number of 
reads mapped in a certain region of the chromosome

− differential expression: allows to analyze the variability of genetic expression 
between samples

− annotation: assigns a biological function to each transcript
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Two generic bioinformatics pipelines for transcriptomes are discussed next, al-
though the design of a particular pipeline depends on the objectives of the tran-
scriptome project and other information, e.g., the sequencer (since the sequencing 
techniques may cause specific errors in the raw data, which have to be treated), and 
availability of information to be used in the analysis phase (e.g., quantitative and 
differential expression softwares and availability of reference genome).

Pipeline 1 The organism of interest has at least one reference genome already 
sequenced, with well-annotated genes and other biological characteristics, and the 
reads are short (about 100 bp, e.g., short reads produced by Illumina). A pipeline with 
three phases can be designed (Fig. 2.3a): filtering, mapping and quantitative analysis.

Pipeline 2 The organism of interest has not been sequenced before, and the reads 
are longer (from 400 bp to 800 bp, e.g., reads produced by 454). A pipeline can 
be designed with three phases (Fig. 2.3b): filtering, assembly and annotation. The 
assembly phase construct one consensus sequence for each group of reads present-
ing similar extremities. The annotation phase assigns biological functions to the 
consensus sequences.

A pipeline is usually implemented using a programming language (e.g., Java 
or Perl) that controls the execution of the softwares, which use files organized in 
file directories, or a database management system (e.g., MySQL (MySQL 1995) or 
PostgreSQL [PosGres]) that stores, retrieves and manages data. Each pipeline phase 
uses public (open source) or private softwares, and some of the most commonly 
used public ones are described next.

2.2.2  Bioinformatics Softwares

2.2.2.1  Filtering

As can be seen in Part 4.1, the high-throughput sequencers use different techniques, 
which may cause specific errors in the reads. These errors have to be treated to guar-
antee quality to the reads used in the next pipeline phases. Therefore, the filtering 

Fig. 2.3  a Pipelines for short reads, with a well-characterized reference genome, and two types 
of analyses—coverage statistics and differential expression. b Pipeline for longer reads, with no 
reference genome, and annotation (biological function, gene categories and ontologies)
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(or cleaning) phase performs clipping and trimming, as described before. The reads 
are stored using format FASTQ, which stores the nucleotides of each read together 
with their corresponding quality scores.

Some tools are used to assess the qualities as well as other information about the 
input sequences. FastQC (Andrews 2010) allows to verifying quality of raw data. 
FASTX-Toolkit (Gordon and Hannon 2010) provides options for performing both 
clipping and trimming. Other commonly used tools are Cutadapt (Martin 2011) for 
clipping and PRINSEQ (Schmieder and Edwards 2011) for trimming. All of them 
present several options such as minimum size of one read, minimum quality score 
and polyadenylation removal.

2.2.2.2  Softwares for Mapping

The objective of the mapping phase is to find where each filtered short read is lo-
cated in a reference genome (Fig. 2.4).

There are many softwares capable to performing the mapping process. In gen-
eral, these softwares are computational intensive (to process and store data), and 
mapping techniques use indices to accelerate the search procedure and to reduce the 
memory cost associated to finding the location of the short reads to the reference 
genome.

Bowtie (Langmead et al. 2009) is a fast short aligner that tolerates a small num-
ber of mismatches. Bowtie first concatenates all the reference genome in one single 
string, and performs the Burrows-Wheeler transformation to generate one index to 
this reference genome. Next, one character of each sequence is mapped until the 
entire sequence is aligned. If the sequence cannot be aligned, the program back-
tracks one step, substituting one character, and repeating the process. The maximum 
number of character substitutions is a parameter in Bowtie.

Fig. 2.4  Short reads mapped to a reference genome. (Source: http://readtiger.com/wkp/en/
Genomics)

 

http://readtiger.com/wkp/en/Genomics
http://readtiger.com/wkp/en/Genomics
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TopHat (Trapnell et al. 2009; Kim et al. 2013) first aligns the RNA-seq short 
reads to large genomes using Bowtie, and then analyzes the mapping results to 
identify splice junction between exons.

Segemehl (Hoffmann et al. 2009, 2014) maps short reads to reference genomes, 
detecting mismatches, insertions and deletions. Moreover, Segemehl can deal with 
different read lengths and is able to correctly map primer—or polyadenylation con-
taminated reads. Segemehl matching method is based on enhanced suffix arrays, 
supporting the SAM format and queries with gziped reads to save disk and memory 
space, and allowing both bisulfite sequencing and split read mappings.

There are many other computational methods to map short reads to a reference 
genome, as shown in Table 2.2.

2.2.2.3  Softwares for Assembling

The assembly phase aims to group reads with similar extremities (Fig. 2.5), i.e., the 
overlapping of the end of one read and the beginning of another indicates that both 
probably belong to the same transcript. These similar extremities enable to recon-
struct larger regions of the transcripts. As said before, each of these groups is called 

Fig. 2.5  Overlapping of the extremities of the reads indicates that they are parts of the same (frag-
ment of one) transcript

 

Mapping software Web site
Bowtie http://bowtie.cbcb.umd.edu
BWA http://bio-bwa.sourceforge.net/bwa.shtml
Maq http://maq.sourceforge.net
Mosaik http://bioinformatics.bc.edu/marthlab/wiki/index.php/Software
Novoalign http://www.novocraft.com
Segemehl http://www.bioinf.uni-leipzig.de/Software/segemehl/
SOAP2 http://soap.genomics.org.cn
TopHat http://tophat.cbcb.umd.edu/
ZOOM http://www.bioinfor.com

Table 2.2  Softwares and their corresponding web sites. (Adapted from Trapnell and Salzberg 
2009)

http://bio-bwa.sourceforge.net/bwa.shtml
http://bioinformatics.bc.edu/marthlab/wiki/index.php/Software
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contig, and the sequence resulting of the overlapping extremities of the reads in one 
contig, called consensus, is a predicted (fragment of) transcript.

Assembly (or de novo assembly) is convenient for 454, which generates se-
quences from 400 to 600 bp. The assembly software has to consider the sequencing 
errors when joining the reads produced by one sequencer. One of the main problems 
of the 454 sequencer is the existence of homopolymers errors.

MIRA (Mimicking Intelligent Read Assembly) (Chevreux et al. 2004) maps 
reads from electrophoresis sequencing (Sanger) and RNA-seq (Illumina) to con-
tigs. In particular, miraEST is a fragment assembler for EST transcripts, capable 
of reconstructing mRNA transcripts while detecting and classifying single nucleo-
tide polymorphisms (SNPs) occurring in different variations of the transcripts. The 
assembly system uses iterative strategies based on highly reliable regions within the 
sequences, with a return strategy that uses low reliable regions if needed. miraEST 
has: special functions to assemble numerous highly similar sequences without prior 
masking; an automatic editor to perform editions and analysis of alignments by 
looking at the underlying traces; possibilities to use incorrectly preprocessed se-
quences; routines to use additional sequencing information, e.g., base error prob-
abilities and template insert sizes; and functions to detect and solve possible misas-
semblies. Besides, miraEST can detect and classify sequence properties, e.g., SNPs, 
with high specificity and sensitivity of one mutation per sequence. The assembler 
is commonly used for similarity analysis of transcripts between organisms, and as-
sembly of sequences from various sources for oligonucleotide design in clinical 
microarray experiments. The default values for MIRA mapping should allow it to 
work with many ESTs and RNA-seq datasets, even from non-normalized libraries. 
However, for very high coverage (e.g., about 10 k coverage), some procedure to re-
duce data will lead to a more efficient processing with MIRA. Recent developments 
of MIRA allowed to perform de novo RNA-seq assembly of non-normalized librar-
ies, and MIRA can be used for datasets with up to 50 million Illumina 100 bp reads.

ABySS (Assembly By Short Sequences) (Simpson et al. 2009) is a de novo, 
paired-end sequence assembler designed for short reads. The single-processor ver-
sion is useful for assembling genomes of up to 100 Mbases, while the parallel ver-
sion (implemented using MPI) is capable of assembling larger genomes.

Table 2.3 summarizes some important assemblers, together with their sites.

Assembly software Web site
Abyss (Simpson et al. 2009) http://www.bcgsc.ca/platform/

bioinfo/software/abyss
Edena (Hernandez et al. 2008) http://www.genomic.ch/edena
MIRA (MIRA, Mira 
mapping)

http://mira-assembler.
sourceforge.net/docs/
DefinitiveGuideToMIRA.
html#chap_mapping

Table 2.3  Characteristics of 
assembly softwares for high-
throughput sequencers

 

http://www.bcgsc.ca/platform/bioinfo/software/abyss
http://www.bcgsc.ca/platform/bioinfo/software/abyss
http://mira-assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html#chap_mapping
http://mira-assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html#chap_mapping
http://mira-assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html#chap_mapping
http://mira-assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html#chap_mapping
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2.2.2.4  Softwares for Analyses

In transcriptome projects, quantitative analysis, differential expression, and tran-
script annotation are extensively used.

Quantitative Analysis The transcript coverage is the number of reads “covering” 
(or the number of mapped reads in) a transcript. The larger the number, the more 
abundant is the expressed gene in a RNA-seq sample (Fig. 2.6).

Coverage abundance can be computed using Bioconductor (Open Source Soft-
ware for Bioinformatics) (Gentleman et al. 2004), which provides tools for the 
analysis of high-throughput data. Bioconductor uses the R statistical programming 
language (Team 2005), and is open source and open development. In particular, 
the RNASeqMap library (Leõniewska and Okoniewski 2011) provides classes and 
functions to analyze the RNA-sequencing data using the coverage profiles in mul-
tiple samples at a time.

R (Team 2005) is a language and an environment for statistical computing and 
graphics. R provides a wide variety of statistical (e.g., linear and nonlinear mod-
eling, classical statistical tests, classification and clustering) and graphical tech-
niques, and is highly extensible. R is easy to use, allowing to output well-designed 
publication-quality plots. Among other softwares, which facilitate data manipu-
lation, calculation and graphical display, R includes: effective data handling and 
storage facility; a collection of intermediate tools for data analysis; a simple and 
powerful programming language which includes conditionals, loops, user-defined 
recursive functions and input and output facilities.

Differential Expression Differential expression refers to the study of the variability 
of genetic expression between samples. One important objective of transcriptome 
projects is to identify the differentially expressed genes in two or more conditions 
(Rapaport et al. 2013). These genes are selected based on parameters, usually based 
on p-values generated by statistical modeling. The expression level is measured 
by the number of reads mapping to the transcript, which is expected to correlate 
directly with its abundance level. This measure is different from gene probe-based 
methods, e.g., microarrays. In RNA-seq, the expression of a transcript is limited by 
the sequencing depth and depends on the expression levels of other transcripts, in 
contrast to array-based methods, in which probe intensities are independent one of 

Fig. 2.6  Read coverage of transcripts relative to a reference genome. (Source: http://www.plosone.
org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0016266 (adapted from Twine et al. (2011) 
Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions 
affected by Alzheimer’s disease. Plos one 6(1):e16266))

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0016266
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0016266
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each other. This, and other technical differences, has motivated the development of 
many statistical algorithms, with different approaches for normalization and differ-
ential expression detection. As an example, Poisson or negative binomial distribu-
tions to model the gene count data and a variety of normalization procedures are 
common approaches.

Cufflinks (Trapnell et al. 2010) may be used to measure global de novo tran-
script isoform expression. It assembles transcripts, estimates their abundances, and 
determines differential expression (Trapnell et al. 2013) and regulation in RNA-seq 
samples. Moreover, Cufflinks accepts reads aligned by other mapper, and assembles 
the alignments to a parsimonious set of transcripts. Then, it estimates the relative 
abundances of these transcripts based on how many reads support each one, consid-
ering also biases in library preparation protocols.

Some articles discuss and compare statistical methods to compute differen-
tial expression. Kvam et al. (2012) make a review and compare four statistical 
methods—edgeR, DESeq, baySeq, and a method with a two-stage Poisson model 
(TSPM). Rapaport et al. (2013) describe an extensive evaluation of common meth-
ods—Cuffdiff (Trapnell et al. 2013), edgeR (Robinson et al. 2010), DESeq (Anders 
and Huber 2010), PoissonSeq (Li et al. 2012), baySeq (Hardcastle and Kelly 2010), 
and limma (Smyth 2004) adapted for RNA-seq use, using the Sequencing Quality 
Control (SEQC) benchmark dataset and ENCODE data.

Splice Junctions Splice junctions are nucleotide sequences at the exon–intron 
boundary in the pre-messenger RNA of eukaryotes, that are removed during the 
RNA splicing, and can generate many processed transcripts from one gene. Com-
putationally, the problem is to recognize, given a sequence of DNA, the boundaries 
between exons (the parts of the DNA sequence retained after splicing) and introns 
(the parts of the DNA sequence that are spliced out). This problem consists of two 
subtasks: recognizing exon/intron boundaries (called EI sites), and recognizing 
intron/exon boundaries (IE sites). IE borders are called “acceptor sites” while EI 
borders are called “donor sites”. The recognition and quantification of splice vari-
ants is one of the advances of RNA-seq over micro-array to measure differential 
gene expression.

TopHat (Trapnell et al. 2009) identifies splice junctions, producing the junctions.
bed file, where the field score is used to indicate coverage depth. The identified 
splice junctions can be displayed in browsers (e.g., UCSC genome browser (Kuhn 
et al. 2013)) using.bed files encoding splice junctions. Junction files should be in 
the standard.bed format.

Pasta (Patterned Alignments for Splicing and Transcriptome Analysis) (Tang and 
Riva 2013) is a splice junction detection algorithm designed for RNA-seq data, 
based on a highly accurate alignment strategy and on a combination of heuristic and 
statistical methods to identify exon–intron junctions with high accuracy.

Annotation The annotation phase has the objective of assigning a biological func-
tion for each transcript, identifying genes and finding more information, e.g., bio-
logical categories and ontologies.



62 T. Raiol et al.

The annotation methods can be organized in two classes:

•	 softwares	to	find	genes	ab initio, where some structural characteristics of genes 
are used;

•	 softwares	to	perform	pairwise	comparison	of	one	transcript	against	a	file	with	
known transcripts and their corresponding annotation. This can be done compar-
ing the nucleotides, or the translated nucleotides.

The pairwise sequence comparison (or pairwise alignment), where a query sequence 
(transcript of the organism of interest) is compared with other sequences (and corre-
sponding biological functions) stored in files, relies on an algorithm that computes 
an alignment among two transcripts. The hypothesis is based on Darwin evolution 
theory, which claim that living organisms evolved from ancestor organisms. There-
fore, if two transcripts have similar sequences of nucleotides, they may be homo-
logs, and probably share the same biological functions. This means that biological 
function may be inferred from similar sequences. Important pairwise algorithms, 
which produce alignments between pairs of sequences, are Smith-Waterman (Smith 
and Waterman 1981) and BLAST (Altschul et al. 1990).

Similarly to the assembly phase, the main difficult in annotation is due to the 
transcript length. The resulting genes may be fragmented, causing loss of informa-
tion. Since alignment programs are error-tolerant, it is reasonable to expect that 
the annotation for transcripts (predicted from reads generated by high-throughput 
sequencers) is correct if functions of genes of other organisms have been found 
correctly.

In contrast, finding genes ab initio is not so error robust, since some kinds of er-
rors can lead to incorrect gene prediction. In particular, sequencing errors introduc-
ing a stop codon can result in an incorrectly predicted gene.

2.3  Case Study 1

RNA-seq as an efficient tool to analyze and identify gene expression patterns related 
to murine bone marrow-derived macrophage’s susceptibility to Candida albicans 
infection.

The improvements of organ transplantation techniques, as well as the rise of 
immune compromised diseases, like AIDS, are directly linked to the exponential 
growth of invasive infections in these patients. Therefore, the study of the etio-
logical agents of these diseases, particularly fungal pathogens, together with the 
immune response they elicit, became paramount (Marr et al. 2002; Miceli et al. 
2011; Richardson and Lass-Florl 2008). Among fungi, Candida albicans appears as 
a main cause of invasive infections, showing high rates of morbidity and mortality 
(Pappas 2006; Pappas et al. 2003; Chi et al. 2011; Shigemura et al. 2014).

Many studies have been done to understand the aspects of immune responses 
to C. albicans (Martinez-Alvarez et al. 2014; Miramon et al. 2013; Hunniger et al. 
2014; Tierney et al. 2012). In this work, transcriptomic response of murine bone 
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marrow-derived macrophages (BMDM) was analysed by RNA-seq to character-
ize the transcriptomic patterns of susceptibility. RNA-seq permits the discovery 
of new exons or transcripts, the identification of different alternative splicing pat-
terns, as well as a global overview of the transcriptome, offering a more flexible 
experimental approach (Black et al. 2014; Zhao et al. 2014; Wang et al. 2009; Soon 
et al. 2013). Therefore, the main objective of this project was the identification of 
BMDMs gene expression patterns between resistant and susceptible mice after C. 
albicans infection, by the analysis of the resulting transcriptome profiles.

Bone marrow was extracted from the mice, and the hematopoietic stem cells 
were then differentiated into macrophages. 2 × 106 BMDMs were co-cultured 
with 4 × 106 C. albicans yeasts for 2 h, and the RNA was extracted using RNeasy 
(Qiagen). RNA quality and concentration were verified employing a Bioanalyzer 
(Agilent) and NanoDrop (Thermo Scientific) or Qubit® Fluorometric (Invitrogen), 
respectively. Three microgram of total RNA was used for the library preparation, 
which also included a step of rRNA depletion using Ribozero (Epicentre) before 
sequencing in an Illumina HiSeq platform.

The sequencing results were provided in FASTQ format. FastQC (Andrews 
2010) was used to assess quality. Adaptors clipping and quality trimming were per-
formed using Cutadapt (Martin 2011).

Two mapping softwares, NextGenMap (NGM) (Sedlazeck et al. 2013) and 
TopHat2 (Kim et al. 2013), were employed. Since both generate similar number of 
mapped reads, we chose NextGenMap due to its faster analysis. Low quality map-
pings were removed using Samtools (Li et al. 2009), which was also used to sort, 
index and convert the mapping results from.sam to.bam files. Bedtools (Quinlan 
and Hall 2010) was then used to count reads for both genes or exons, and generate 
a table of these counts, to be analyzed for differential expression. As said before, 
differential expression can be analyzed using different methodologies (Soneson and 
Delorenzi 2013; Wagner et al. 2012), and edgeR (Robinson et al. 2010) and DESeq 
(Anders and Huber 2010) were chosen. Both outputted very similar results. Alterna-
tive splicing can be checked by differential exons usage (Anders et al. 2012). There-
fore, the resulting list of genes or transcripts differentially expressed was checked 
for gene onthology (GO terms) using either Biomart (Kasprzyk 2011), or the topGO 
(Alexa and Rahnenfuhrer 2010) Bioconductor package.

Several problems may occur in RNA-seq projects, and here we point out some 
of these:

•	 Infection conditions: the optimization of the protocols of co-culture conditions, 
as well as RNA extraction, may be hard to adjust. Setting a Multiplicity of infec-
tion (MOI—proportion of host/pathogen cells in the co-culture) that suffices to 
induce a transcriptomic response in the host cells is the first step. However, a 
very high MOI may result in host cells death and apoptosis, which may result in 
altered gene expression or low amounts of RNA extracted from these cells;

•	 Infection time: the definition of correct time intervals of interaction between 
pathogen and host cells is essential, since different genes have different kinet-
ics of transcription during co-culture. This may vary drastically for different 
pathogens;
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•	 Biological replicates: in transcriptomic studies, a robust statistical analysis is of 
very important. In this sense, the experimental design have to incorporate proper 
biological replicates to allow valid statistical inferences (Robles et al. 2012);

•	 Library preparation and sequencing parameters: the choice of the preparation 
methodologies, e.g., polyA enrichment protocols versus rRNA depletion pro-
tocols, or paired-end versus single-end sequencing, may strongly impact in the 
results. Improper handling of samples in this step may also result in sample 
degradation, or inefficient rRNA depletion, which may compromise the whole 
experiment if not properly adjusted. A well-defined experimental design for 
the sequencing step must also be taken into consideration. A final low coverage 
of the transcriptome can result in an inadequate analysis of differential gene ex-
pression.

2.4  Case Study 2

Differential transcriptomics from T Cell stimulated with anti-CD3 antibodies using 
RNAseq.

The high-throughput sequencing of a whole cell RNA can suggest changes in 
the genetic programming of cultured human T lymphocyte cell. The model system 
proposed here relies in the interaction of antibodies to plasma membrane receptors. 
The anti-CD3 antibodies display a profound change in cell phenotype that may 
lead to the control of tolerance and inflammation in one individual (Carpenter et al. 
2000; Belghith et al. 2003) These antibodies induce a change in the normal signal 
transduction pathway of these target cells allowing a change in gene expression 
profile (Chatenoud 2003). The identification of up and down regulation of certain 
genes may help understand the fate of the antibody-stimulated lymphocyte. The 
use of quantitative RNA detection approach such as RNA-seq leads to accurate 
understating of individual RNA levels variation among samples (Zhao et al. 2014). 
Moreover, it may also leads to the identification of new RNA molecules, and a more 
wise quantification based on gene models (alternative splice forms of RNA). These 
last two measurements are exclusive of RNA-seq and it is not possible to achieve 
using other quantitative techniques such as microarrays (Sirbu et al. 2012).

The aim of this research was to analyze the transcriptome of T cells after stim-
ulation with recombinant anti-CD3 antibodies to identify pathways involved in 
modulation of immune tolerance. Human peripheral mononuclear cell (PBMC) was 
isolated from a single individual using standard Ficoll-Hypac separation. About 
1–2 × 106 cells were grown in RPMI media with 250 ng of anti-CD3 antibodies. 
After 72 h of stimulation T cells were isolated from PBMC culture using negative 
selection on magnetic beads (Invitrogen). This protocol was used to isolate un-
stimulated human T cells from PBMC by depleting B cells, NK cells, monocytes, 
platelets, dendritic cells, granulocytes and erythrocytes. After isolation, the purity 
of T cells obtained was more than 96 %, as checked by flow cytometry (FacsVerse, 
Becton and Dickinson).



652 Transcriptome Analysis Throughout RNA-seq

Total RNA was isolated from each sample utilizing the miRNeasykit (Qiagen). 
The RNA integrity and quantity was checked in Bioanalyzer and Qubit® Fluoro-
metric	(Invitrogen).	The	yield	was	about	3	μg	total	RNA	for	each	106 T-cells. Up 
to 1.5 µg of total RNA was sent to a commercial sequencing facility. The samples 
were sent in a RNA-stable tube (Biomatrica) to preserve integrity of total RNA at 
room temperature for a long period of time. The HiSeq Illumina platform was used 
due to its sequence deepness associated with a low price per base. The HiSeq 2500 
can achieve 4 billion reads in a total of 1 Tb of data. The use of paired end strategy 
allow to a better mapping into the reference genome.

A polyA+ library and paired end strategy was used for the sequencing. The se-
quencing results were available by the facility in FASTQ format. The sequencing 
output files (FASTQ) was the input for the analysis.

The reads were analyzed by first clipping (Cutadapt) (Martin 2011) and trim-
ming (PRINSEQ) primers, besides performing quality check (FastQC) (Andrews 
2010). Paired-end Illumina data was stored in two files, R1 and R2, corresponding 
to both ends of a single RNA fragment. The cleaning process eventually removes 
same bad quality sequence, and R1 and R2 files became unsynchronized. The pair-
ing of R1 and R2 has to be performed (with a Perl script), before the mapping step. 
We used TopHat2 due its simply interface and speed. TopHat2 produces.bam or.sam 
files, which are ordered and indexed using Samtools (Li et al. 2009), to be further 
used for differential expression (read count) and gene model quantification. The in-
dexed data is now used for detecting differential gene expression using two Biocon-
ductor packages: edgeR and DESeq (Anders et al. 2013). These programs allow to 
uncovering fold change among samples attributing a reliability parameter (p-value) 
to each prediction. Cufflinks is an alternative to perform differential expression 
among samples using predicted gene model, suggesting differential expression of 
alternatively spliced isoforms.
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Abstract Recently, molecular biology has been substantially improved by the 
development of new technologies that allow the assessment of the genome, tran-
scriptome and proteome on a high-throughput scale and at reasonable costs. The 
translation of all the information generated by these technologies into new biomark-
ers is an enormous challenge for the biomedical community, and vast efforts have 
been made in this arena. The practice of personalized medicine based on DNA/RNA 
information used for clinical decision-making has led to considerable advances in 
different areas of medicine and is now a reality at several medical centers world-
wide. The aspiration is that in the near future, the medical community will have 
more and more available biomarkers to properly classify patients and to allow them 
to offer efficient and tailored treatment for a broader range of diseases, resulting 
in a high cure rate and minimal side effects. In this chapter, we discuss the identi-
fication of biomarkers by primarily examining gene expression. Two of the most 
important approaches, microarrays and RNA sequencing (RNA-Seq), and strategies 
for defining gene expression signatures are addressed. We also present important 
aspects involved in the validation of gene expression signatures as biomarkers, the 
bottlenecks and difficulties for their broader use in clinical practice and some good 
examples of signatures representing aspects of human diseases.

3.1  Biomarker Discovery and the Understanding  
of Human Diseases

Biological markers (biomarkers) are officially defined by the NIH (National Insti-
tutes of Health) as “a characteristic that is objectively measured and evaluated as an 
indicator of normal biological processes, pathogenic processes, or pharmacologic 
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responses to a therapeutic intervention” (Biomarkers Definitions Working Group 
2001).

In practical terms, biomarkers can be seen as the end result of a laboratory tech-
nique that involves the direct evaluation of a specific molecule in biological speci-
mens such as blood, saliva, cells or tissues. The measurement of a biomarker can 
then be expressed as a positive or negative result, as intensities, as quantities, such 
as the level of a serum protein, or as high-dimensional panels of markers, also called 
“signatures”, including those proposed by the genomic, proteomic, and metabolo-
mic fields.

Biomarker discovery is a major topic in biomedical research and involves multi-
disciplinary teams with complementary expertise, including physicians, epidemi-
ologists, and scientists whose aim is to study and understand human diseases. The 
fundamental idea is that it is possible to identify patterns of clinical, demographic, 
genomic, and other types of data that can be used alone or together to benefit indi-
vidual patients. Biomarkers can be divided into two major types: biomarkers used 
for predicting the risk of developing a specific disease, and biomarkers used for 
investigating the behavior of a disease that is already established. The latter include 
markers for disease diagnosis, for predicting disease progression and responses to 
specific therapies and for monitoring treatment efficacy.

Although the applications of biomarkers in a variety of different diseases are 
clear, the experimental delineation, assay development and optimization, and vali-
dation of the biomarker candidates constitute a lengthy process (Rifai et al. 2006). 
In fact, the vast majority of biomarkers described in scientific publications has not 
been endorsed by a validation phase and, thus, cannot be used in clinical settings. 
Among the difficulties in this process, variability is a major concern. Intra-individ-
ual variability is primarily related to technical issues and to intra-disease hetero-
geneity. Intra-individual variability might be associated with the time of sample 
collection, the storage conditions, or the lack of equipment performance uniformity 
at different time points during a study or diagnostic follow-up. In contrast, inter-
individual variability includes demographic variables such as age, gender, ethnicity 
and the individual genetic background, which may or may not be easily associated 
with ethnicity. The presence of unidentified mutations associated with the response 
to a pharmacological therapy, for instance, will impact conclusions on the efficacy 
of a tested drug (Sahin et al. 2013). Other sources of variability include exposure to 
chemicals or toxins, as well as diet or other personal habits that may alter biomarker 
patterns. Thus, for reliability and reproducibility, careful consideration of the sourc-
es of variability in the measurement of a biomarker is critical to avoid potential 
misclassification of individuals and to minimize the high rate of failed biomarkers, 
especially given that less than 1 % of biomarkers introduced by literature reports 
make it to clinical practice, according to Kern (2012).
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3.2  Gene Expression Assessment for Disclosure  
of Disease Biomarkers

High-throughput gene expression analysis enables the measurement of the activity 
of thousands of different transcripts, generating a gene expression profile of a cell or 
tissue. The assessment of the gene expression profile has contributed to the defini-
tion of the molecular basis of disease development, finding specific features that, in 
turn, can be associated with specific diseases. Similarities and disparities revealed 
by gene expression profiles of samples from distinct groups representing different 
medical conditions can be explored as potential biomarkers. DNA microarrays and 
RNA sequencing (RNA-Seq) will be addressed in this chapter.

Biomarker discovery studies using gene expression analysis demands robust 
methods for sample selection, sample processing and data analysis. The process 
starts with a RNA isolation procedure that recovers a representative RNA popula-
tion. The term transcriptional analysis refers to the expression measurement of one 
specific species of RNA, the messenger RNA (mRNA). The synthesis and matu-
ration of mRNA is part of a complex regulation network allowing fast response 
and adaptation under environmental changes. Thus the gene expression profile of 
mRNAs faithfully reflects the biology of a given sample at the time that it was 
collected. Problems associated with this step predominantly arise due to the sus-
ceptibility of RNA to degradation by ubiquitously found RNases. Sample handling 
and the subsequent procedures need to be under rigorous well-controlled conditions 
aiming to preserve the integrity of RNA, as the degradation of this molecule can 
significantly influence the quality and interpretation of gene expression data.

Microarrays have been extensively used for evaluating global gene expression 
profiles, revealing the complexity of the human functional transcriptome (see box 
1). Typically, microarrays are able to evaluate the expression level of thousands 
of genes, enabling the quantitative assessment of their differential activity among 
distinct cell types or tissues. This characteristic has revolutionized both basic and 
clinical science, motivating its use for biomarker research. Despite specific details 
of the distinct commercially available microarray platforms used for gene expres-
sion analysis, including scale, labeling and solid substrate, the principles governing 
hybridization between the labeled nucleic acid that is in solution to the nucleic acid 
immobilized on a solid substrate are the same. Technical problems arising from 
hybridization are, therefore, common to every study design. Frequent complications 
can be related to fluorophore labeling, hybridization conditions and post-hybridiza-
tion washes. Printing artifacts—spot morphology and nucleic acid concentration, 
for example—used to be an important issue in the past, when the majority of mi-
croarrays were made in-house. This has been mostly overcome with the advent of 
commercial sources of microarray slides.

Given that the most important factor for the success of a microarray experi-
ment has been properly addressed, i.e., the quality of input material, hybridization 
quality assessment is performed when fluorescent signals are captured by an ap-
propriate scanner. Scanner software usually has built-in quality control tests that 
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can be used for filtering out spots that do not meet thresholds of saturation, signal 
intensity significantly above the background or standard deviation of background. 
The spots that do not meet the quality control criteria will be omitted from further 
analysis. Positive and negative control probes included in the microarray slide are 
also essential for quality assessment calculations and generate reports on technical 
variation between experiments. Notably, the ability to detect a meaningful biologi-
cal distinction between the studied groups is closely related to the extent to which 
the technical variations have been controlled and minimized.

RNA-Seq is based on next-generation sequencing (NGS) (see box 2). RNA-Seq 
provides digital-counting analysis of the transcriptome, enabling quantitative and 
qualitative information. In contrast to microarray experiments, RNA-Seq quanti-
fication is based on absolute rather than relative values. The sequencing depth is 
therefore an important aspect when planning RNA-Seq experiments, and it is a criti-
cal parameter when performing comparative expression analysis. RNA-Seq data are 
also able to reveal the architecture of the transcriptome, such as alternatively spliced 
transcripts, mutations, alternative polyadenylation and transcript fusions. In addi-
tion, given that RNA-Seq does not rely on immobilized probes as do microarrays, 
it allows the identification of novel transcripts by the sequencing of any transcript 
species that is produced by the cell at a specific moment.

Typically, the first step of RNA-Seq analysis is to perform mapping of sequenced 
fragments, called “reads”, to the reference genome. The accuracy of read mapping 
depends on the quality of the reads and on other specific DNA features such as GC 
content and the presence of repetitive elements. For quantitative measurements, the 
number of reads generated for each transcript must be normalized by considering 
the total number of reads obtained for each sample. This normalization step takes 
into consideration the fact that higher counts in “sample A” compared to “sample 
B” can be a result of the deeper sequencing of sample A instead of higher expres-
sion of the transcript in this sample. It is noteworthy that during library preparation, 
longer transcripts will generate a higher number of fragments for sequencing com-
pared to shorter transcripts, impairing direct comparisons between expression mea-
surements from different transcript lengths. Common normalization techniques for 
RNA-Seq are RPKM (Reads Per Kilobase of exon per Million fragments mapped), 
when fragments are sequenced from one end (single-end sequencing), or FPKM 
(Fragments Per Kilobase of exon per Million fragments mapped), when fragments 
are sequenced from both ends, providing two reads for each fragment (paired-end 
sequencing) (Mortazavi et al. 2008; Trapnell et al. 2010).

Although microarrays and RNA-Seq methodologies have a huge potential to 
be used for biomarkers discovery, the interpretation of such data is a major chal-
lenge. Different mathematical and statistical tools are available to detect associa-
tions between expression profiles and the clinical features of a given patient and 
to ultimately identify a group of genes whose expression pattern distinguishes 
between different groups and that is truly correlated with the clinical phenotype. 
Gene expression analyses by both approaches have mostly focused on identifying 
sets of genes that are differentially expressed or differentially co-expressed in dis-
tinct biological states, for instance, in diseased but not in disease-free individuals 
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or vice versa (Watson 2006). Numerous studies have linked multi-gene signatures 
with clinical significances in human diseases as well as supported toxicological and 
functional studies at the systems level.

3.3  Potential and Current Clinical Applications of Gene 
Expression Signatures

Advances in transcriptional analysis, such as tools for the comprehensive integra-
tion of gene expression and clinical data, and technologies for assessing transcrip-
tional information from restrict amounts of biological material have contributed to 
the improvement of biomarkers currently available for complex diseases.

For many cancers, for example, the standard diagnostic and prognostic evalu-
ation methods are based on morphological characteristics with the use of a few 
molecular markers. Thus, it is common that patients diagnosed with the same tu-
mor and bearing similar morphologic features have different outcomes. Research 
efforts in microarray profiling have addressed several aspects of cancer manage-
ment, including tumor classification according to their sites of origin (Su et al. 
2001; Bloom et al. 2004; Arango et al. 2013), the discovery new cancer subtypes 
(Alizadeh et al. 2000; Lapointe et al. 2004), and the prediction of clinical outcomes 
(Shipp et al. 2002; van,t Veer et al. 2002; Balko et al. 2013)

Two successful implementations of gene expression microarrays as biomark-
ers in clinical practice are the MammaPrint and Oncotype DX assays. Both tests 
were developed for breast carcinomas and have been approved by the U.S. Food 
and Drug Administration (FDA). The MammaPrint test is available from a Dutch 
company, Agendia (www.agendia.com). The test is based on the expression pattern 
of 70 genes, evaluated by a microarray chip. Its application is to evaluate the risk of 
recurrence (high or low) in Estrogen Receptor (ER)-negative and -positive patients 
of less than 55 years of age, with invasive breast carcinomas in stage I or II, without 
lymph node metastases. The test was adjusted, and even in subsequent research on 
older breast cancer patients, the 70-gene signature turned out to be an accurate risk 
indicator (Drukker et al. 2014).

The Oncotype DX test is provided by the American company Genomic Health 
(www.genomichealth.com) and is based on the determination of the expression of 
21 genes (16 genes used as the test and 5 used as a control) by quantitative RT-PCR 
and is indicated only for women with early-stage ER-positive breast cancer. Both 
MammaPrint and Oncotype DX are prognostic tests and are also used as predictors 
for chemotherapy results (Paik et al. 2006).

Other tests based on gene expression are in the final stages of development. For 
example, for colon carcinoma, there are two promising tests: ColoPrint (Maak et al. 
2013), under validation by Agendia, the same company that markets MammaPrint, 
and the test Oncotype DX Colon Cancer, by the company Genomic Health, which 
predicts the risk of individual recurrence for stage II colon cancer patients who 
have proficient MMR (mismatch repair pathway) (Gray et al. 2011). More recently, 
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Oncotype DX Genomic has developed a similar test for prostate cancer, the Onco-
type DX Genomic Prostate Cancer Score. The test has been shown to have broad 
application for men in different situations, with high or low-risk prostate tumors. 
Both groups seem to benefit from using the test, improving the choice between ac-
tive surveillance for low-risk and aggressive treatment for high-risk patients (Klein 
2013).

Although still in early stages of development, there are efforts being made in 
leukemia subclassification and diagnosis using gene expression signatures. Despite 
enormous amounts of experimental data, consensus in representative gene sets has 
not been met. The Microarray Innovations in Leukemia initiative (Haferlach et al. 
2010), the so-called “international standardization program towards the application 
of gene expression profiling in routine leukemia diagnostics”, exemplifies the ef-
fort and difficulties in achieving implementation within the boundaries of clinical 
practice. The aim of the study was to assess the clinical utility of gene expression 
profiling in a single test to subtype leukemias into categories of myeloid and lym-
phoid malignancies, complementing current diagnostic algorithms.

Gene expression signatures are also being assessed for clinical application in 
human neurodegenerative diseases, but the results are still very preliminary. The 
primary aim of these gene expression studies is to understand key molecular events 
associated with phenotypes, comparing patient groups, disease stages and anatomi-
cal locations. A large number of cerebral regions have been examined by microar-
ray studies in neurodegenerative disorders such as Alzheimer,s and Parkinson,s to 
identify potential gene expression signatures associated with these diseases. How-
ever, studies addressing neurodegenerative diseases share difficulties, especially 
concerning sample procurement and the obtaining of high-quality tissue for reliable 
experiments (Cooper-Knock et al. 2012).

Blood-based gene expression profiling as a diagnostic tool has been explored for 
a broad range of diseases, due to the non-invasive nature of such a test. Examples 
include research in heart diseases, such as the identification of the presence and 
extent of coronary artery disease (Elashoff et al. 2011), or the early detection of 
cancer (Aaroe et al. 2010), Most studies evaluate the gene expression of peripheral 
blood cells, but they lack the corroboration and validation necessary to confirm ap-
plicability in a clinical setting. Variability due to sample collection and processing 
is the biggest drawback of this approach.

With respect to RNA-Seq as a biomarker, results are still preliminary. In spite of 
the fact that RNA-Seq exhibits great sensitivity in both qualitative and quantitative 
characterization of the transcriptome, the high costs associated with the technol-
ogy and the complexity of data analysis are some of the obstacles that impair its 
broader use for discovering biomarkers. Instead, RNA-Seq is currently being used 
for microarray validation and as a complementary approach. However, its ability to 
generate an unprecedented detailing of the transcriptome promises to add substan-
tial value to medicine and pharmacogenomics in the near future.
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Box 3.1: Microarray

Microarray technology (Schena et al. 1995) is based on solid hybridization 
between two single-stranded nucleic acid molecules, the probes and the target 
mRNAs from cell or tissues. The probes are DNA molecules such as small 
oligonucleotides, cDNA or PCR products corresponding to the genes that are 
immobilized on a glass slide. The targets are mRNA molecules extracted from 
the tissues and/or cells of interest that are converted to complementary DNAs 
(cDNA) or complementary RNAs (cRNA) and labeled with reporter mol-
ecules (typically fluorescent molecules). The hybridization takes place in a 
hybridization chamber that maintains the appropriate temperature and humid-
ity for 16 hours to favor the hybridizations. The non-hybridized molecules are 
rinsed away by successive washes, and only strongly paired complementary 
strands will remain hybridized on the slides. The slides are then scanned to 
detect the fluorescent signals of each spot. The intensity of the signal is pro-
portional to the number of hybridized molecules, which in turn corresponds 
to the expression level of each gene evaluated.

Commonly, microarray experiments are based on competitive hybrid-
izations. In a competitive hybridization, two populations of RNA, the test 
and reference samples, are labeled with different fluorescent molecules and 
co-hybridized to one single slide. The intensity of signals obtained by each 
fluorescent dye is computed, and the expression level of each gene is a rela-
tive measurement between the test and reference sample. This design allows 
comparative analysis between different samples that were co-hybridized to 
the same reference sample. The best reference is a sample that has the highest 
number of active genes and consequently generates intensity values   for most 
spots, resulting in valid relative expression values for all genes. The most 
commonly used fluorophores in microarrays are cyanine 3 (Cy3)—wave-
lengths measurement from 550 to 610 nm—and Cyanine 5 (Cy5)—wave-
lengths measurement from 650 to 750 nm.

3 Identification of Biomarkers and Expression Signatures

3.4  Final Considerations

In this chapter, we addressed characteristics and some of the major difficulties in 
using DNA microarrays and RNA-Seq for biomarker discovery in human diseases. 
Although long development periods are common due to the need of validation in 
different populations, several successful examples of biomarkers based on gene ex-
pression signatures are already used in clinical practice, despite the obstacles. Bio-
marker’s applicability for populations of distinct genetic backgrounds and difficul-
ties in the implementation of gene expression-based tests in routine laboratories are 
a major concern, but a more precise stratification of patients has become a reality in 
several clinical settings.
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Box 3.2: RNA-Seq

RNA-Seq is a recently developed approach for transcriptome analysis based 
on high-throughput sequencing technologies that enables transcriptional eval-
uation at nucleotide resolution (Morin et al. 2008). In this approach, the entire 
population of mRNA that is extracted from the cell is sequenced, allowing the 
determination of gene expression and the identification of alternative splicing 
events, single-nucleotide polymorphisms, transcript fusion events and post-
transcriptional RNA editing events.

Different protocols and commercially available kits have been proposed 
for RNA-Seq experiments. Nonetheless, they all follow a similar strategy. 
Briefly, total RNA is isolated from a sample of interest, and mRNAs are puri-
fied by PolyA tail enrichment or ribosomal RNA (rRNA) depletion. Obtain-
ing high quality RNA is critical for a good RNA-Seq library.

The mRNA is then fragmented into smaller pieces by mechanical shear-
ing (usually Covaris sonication) or chemical digestion (using the RNase III 
enzyme). First- and second-strand cDNA is reverse transcribed from frag-
mented RNA using random hexamers, oligo (dT) primers or specific link-
ers coupled to fragmented RNAs. The use of 5’ and 3’ end specific adapters 
is advantageous because it allows for strand-specific sequencing, enabling 
the investigation of sense and antisense transcripts. Finally, cDNA fragments 
are amplified by PCR for the enrichment of molecules that were correctly 
ligated to adapters. During library preparation, a size-selection step is usually 
performed prior to or after linker ligation or PCR amplification. The cDNA 
library is quantified by RT-qPCR or Bioanalyzer and is ready for sequencing.

Depending on the throughput of the sequencing platform, sample multi-
plexing by using barcoded adapters is an interesting option because it allows 
for simultaneous sequencing of multiple libraries in a single sequencing run 
(Fig. 3.1).

High-throughput transcriptional analysis of a group of patients represent-
ing different medical conditions (training set) are carried out using Microar-
ray or RNA-Seq approaches, leading to the definition of a gene expression 
profile of each sample. Different mathematical and statistical tools are used 
to detect associations between expression profiles and the clinical features 
of a patient and to identify a gene expression signature that is able to distin-
guish between different patients and that is truly correlated with the clinical 
phenotype. In order to be validated, the gene signature must be evaluated in 
a large cohort of samples from an independent population. The gene expres-
sion signature that demonstrates consistent and accurate association between 
gene expression and the clinical feature is validated and then goes into an 
optimization step to determine the best evaluation method (microarray and 
Quantitative Real-Time PCR) and an optimal gene panel to be incorporated as 
a biomarker into clinical practice. The biomarker may then be used in clinical 
practice to help clinicians to make informed decisions on the best treatment 
options based on the predictive value of the biomarker concerning prognosis, 
recurrence or response to treatment.
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Abstract Gene network analysis is an important tool for studying the changes in 
steady states that characterize cell functional properties, the genome-environment 
interplay and the health-disease transitions. The integration of gene coexpression 
and protein interaction data is one current frontier of systems biology, leading, for 
instance, to the identification of unique and common drivers to disease conditions. 
In this chapter the fundamentals for gene coexpression network construction, visual-
ization and analysis are revised, emphasizing its scale-free nature, the measures that 
express its most relevant topological features, and methods for network validation.

4.1  Introduction

The development of high-throughput techniques for concurrently measuring the 
expression levels of thousands of genes, mostly based on DNA microarrays, al-
lowed monitoring cell’s transcriptional activity across multiple conditions, opening 
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broad perspectives for functional genomics (Ideker and Krogan 2012). Hereafter, 
new insights were gained on the genomic mechanisms underlying relevant biologi-
cal processes—such as cell cycle and development, and the genome-environment 
interplay—leading to a systemic approach for the identification of disease-related 
genes (Chuang et al. 2010; Kim et al. 2011; Sahni et al. 2013).

A single microarray generates data on the expression levels of thousands of genes 
and typical microarray studies encompass multiple arrays covering several distinct ex-
perimental conditions, e.g. tissue samples from patients and controls, or cultured cells 
submitted to different treatments (Bando et al. 2013; Herbst et al. 2014). Advanced 
statistical and computational tools have been developed to deal with the large amount 
of data derived from microarray experiments (Zhang and Horvath 2005; Lee and Tzou 
2009; Faro et al. 2012). One of the most effective methods for the analysis of microar-
ray data is based on the construction of gene coexpression networks, or GCNs: gene ex-
pression levels are pairwise compared and the pairs above a cutoff threshold are linked 
to create a gene-gene interaction network (Weirauch 2011). GCNs, as well as protein-
protein and metabolic networks, are governed by universal laws (see Sect. 3.3.2) and 
the topological and dynamic properties of these networks provide important clues for 
understanding the functional organization of cells and tissues (Barabási and Oltvai 
2004; Zhu et al. 2007). This chapter is centered in network-based methods for analyz-
ing DNA microarray data: the fundamentals for construction, visualization, interpreta-
tion and validation of GCNs will be discussed in the next paragraphs, emphasizing 
the use of graph methods (Barabási and Oltvai 2004; Barabási et al. 2011; Costa et al. 
2011; Villa-Vialaneix et al. 2013; Winterbach et al. 2013) for all these tasks.

A few considerations are still needed before we start to review the network-
based approach to functional genomics. Firstly, one should keep in mind that gene 
function is not isolated: the network effect of genes is the driving force moving cell 
metabolism from one steady state to another, frequently in response to environmen-
tal changes (Sieberts and Schadt 2007; Sahni et al. 2013). These transitions shape 
what we call complex phenotypes—normal or altered by a disease state—and can 
be correlated with specific changes in GCNs (Benson and Breitling 2006; Carter 
et al. 2013; Bando et al. 2013). Secondly, in order to study these network changes 
is mandatory to: (i) gain access to the cells or tissues specifically involved in the 
physiological or pathological process under investigation; (ii) collect an adequate 
number of biological replicates; (iii) obtain good quality RNA samples; (iv) use a 
microarray platform suitable for attaining the research goals. Therefore, comments 
on sample quality and experimental design will be made in the following section.

4.2  Analysis of DNA microarray data

Essentially, DNA microarrays for assaying gene expression consist in grid that can 
contain tens of thousands of probes corresponding to known transcripts of a par-
ticular genome (human, rat, etc.). Fluorescent-labelled complementary DNA (DNA 
synthesized from messenger RNA) samples are hybridized to probes and the rela-
tive abundance of each sequence in a sample is quantified in microarray scanner 
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for fluorescence detection (image capture). The steps from RNA extraction to array 
scanning, data export and subsequent statistical and network analyses are outlined 
in the following subsections. This workflow is presented in Fig. 4.1.

4.2.1  RNA Isolation and Preservation

Messenger RNA for DNA microarray experiments must be preserved in its last 
physiological state and be prevented from degrading. Larger tissue samples 
( > 50 mg) may be snap-frozen in liquid nitrogen. Smaller tissue samples (5 mm 
thick fragments) are usually preserved in RNA Later, a product (distributed by Am-
bion and Qiagen) which penetrates cell membranes and inactivates RNAses. After 
RNA extraction, RNA quality should be assessed in a microfluidics-based platform 
(e.g. BioAnalyzer) for sizing, quantification and quality control (Fig. 4.1a). The 
integrity of RNA molecules is estimated by using the RIN algorithm (Schroeder 
et al. 2006). RIN values range from 1 (total degradation) to 10 (intact). As a general 
rule, only RNA samples with RIN values of 7 or higher should be used in DNA mi-
croarray experiments. Irrespective of the cellular RNA extraction protocol adopted, 
a final column purification step (e.g. RNeasy) consistently leads to a high yielding 
synthesis of cDNA.

Fig. 4.1  Workflow for gene coexpression network visualization and analysis. a data acquisition. b 
statistical analysis. c network visualization and statistical analyses. d data validation
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4.2.2  Gene Expression Analysis

Scanner generated data (image file) are pre-processed, filtering out probes flagged 
as unreliable (low intensity, saturation, restriction control probes, etc.) by the scan-
ning software, and thereafter normalized ending up with a file of numerical values 
corresponding to probe’s expression levels in a microarray experiment. The assess-
ment of raw data quality and data grouping (comparison groups, e.g. patients and 
controls) can be done using free software packages, like R software (R Develop-
ment Core Team 2012), for normalization (Lowess test for arrays normalization), 
outliers exclusion and exporting of valid transcript expression data.

MeV (TIGR Multiexperiment Viewer) is a popular free software for comparative 
analysis that can be used for clustering, visualization, classification, statistical anal-
ysis and biological theme (Gene Ontology, or GO) discovery (Saeed et al. 2003). 
The differentially expressed transcripts for two comparison groups are obtained us-
ing SAM test—Significance Analysis for Microarray—for parametric analysis (us-
ing non-parametric statistics) or Wilcoxon-Mann-Whitney test for non-parametric 
analysis. ANOVA is used for multiple comparisons across conditions. Thereafter, 
false discovery rate tests are applied (already included in SAM test). Finally, the 
differential GO annotated gene expression data can be used for gene expression 
analyses (Fig. 4.1b) and in the construction of coexpression networks, as described 
in Sect. 4.3.

4.3  Construction and Analysis of GCNs

GCNs can be obtained for a subset of genes, i.e. differentially expressed GO an-
notated genes (DE networks), or for all valid GO annotated genes (complete, or CO 
networks). These networks are constructed based on gene-gene covariance correla-
tion, usually using Pearson’s, or Spearman’s rank correlation or cosine similarity 
measurements (Fig. 3.1c) (Prifti et al. 2008; Song et al. 2012). Genes presenting 
similar patterns of expression are strongly bounded together forming a weighted 
complete graph.

In order to construct a GCN links are removed from the initially complete 
graph by gradually increasing the correlation threshold (Elo et al. 2007). After link 
strength threshold adoption, usually above 0.80, the network is tested for scale free 
status (see Sect. 4.3.2) by Kolmogorov-Smirnov (K-S) statistics, i.e. power law 
distributions in empirical data (Clauset et al. 2009). Here we used a demonstrative 
example of a “patient versus control” gene coexpression analysis (Fig. 4.2). This 
analysis considered: 202 genes and 561 links for patients’ DE network; 219 genes 
and 486 links for control DE networks; 6,927 genes and 12,768 links for patients’ 
CO networks; 6,705 genes and 12,468 links for control CO networks. Link strength 
cut-offs were 0.998 for control CO network and 0.999 for the other three networks. 
Figures. 4.2 and 4.3 show K-S distribution for DE and CO networks, respectively, 
of patients’ group (Figs. 4.2c and 4.3c) and controls’ group (Figs. 4.2d and 4.3d).
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The number of samples available for each gene is also directly connected to the 
statistical significance of the generated GCN. Networks constructed from datasets 
with less than 5 samples per gene can lead to high adherence to the null model, 
where nodes are randomly connected, thus presenting degree distributions with 
 asymptotic exponential decay behavior. This effect can occur even when consider-
ing a very large correlation threshold, such as above 0.999.

Fig. 4.3  Complete CO networks analysis for patients and control groups. CO coexpression net-
works for patients (a) and control (b) groups. Kolmogorov-Smirnov test for scale free status for 
patients (c) and control (d) groups. Scatter plot of node degree (k0) vs concentric node degree (k1) 
measures for patients (e) and control (f) groups. Hubs, VIPs and high-hubs are indicated by rect-
angles, diamonds and triangles, respectively. For 3D CO network visualization access the video 
hyperlinks (videos 4.1 and 4.2)
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4.3.1  Network Visualization

The Cytoscape free software (Saito et al. 2012; www.cytoscape.org) is very useful for 
data analysis and visualization of DE networks or subnetworks (Fig. 4.2a, b). On the 
other hand, CO network analysis is only possible through 3D visualization (Fig. 4.3a, b 
and Videos 4.1 and 4.2 http://www.springerimages.com/videos/978-3-319-11984-7). 
Several 3D visualization softwares for gene-gene and protein-protein networks are be-
ing developed (Ishiwata et al. 2009; Pavlopoulos et al. 2008; Wang et al. 2013). One 
of them, under development by Luciano Costa's Research Group (http://cyvision.ifsc.
usp.br/Cyvision/), Institute of Physics at São Carlos, University of São Paulo, was de-
scribed in a paper by our group (Bando et al. 2013). This software—suitable for obtain-
ing visualization of large complex networks—is based on the Fruchterman-Reingold 
algorithm, FR (Fruchterman and Reingold 1991), which is a force-directed technique 
based on molecular dynamics employing both attractive and repulsive forces between 
nodes (Silva et al. 2013)

4.3.2  GCNs are Scale Free Networks

GCNs, like other biological networks and similarly to social and internet networks, 
are not random and follow some basic principles (Newman 2010). In random net-
works the nodes have nearly the same number of links and, therefore, highly linked 
nodes are rare. In network terminology, the number of links, or edges, connected to 
a node is called node degree. Hence, nodes in random networks characteristically 
have low diversity of node degrees. Conversely, most of the “real world networks”, 
as GCNs or protein-protein networks, are scale free, what means that the degree dis-
tribution follows a power law: the node degree distribution P(k), with node degree 
k, follows P(k)~k-γ, where γ is the degree exponent. Therefore, scale free networks 
have a limited number of highly connected nodes, or hubs, that, as we shall discuss 
latter, are usually associated to relevant biological functions and responsible for the 
network robustness, i.e., hold the whole network together (Winterbach et al. 2013).

The categorization of nodes according to their node degree encompasses two 
other categories besides the hubs. The VIPs (a term coined in the study of social 
networks) are nodes presenting low node degree but connected only with hubs (Ma-
suda and Konno 2006; Mcauley et al. 2007). In some networks VIPs may represent 
the highest control hierarchy in a system and hubs may be under VIPs influence. 
Some nodes may present VIP status (connected with many hubs) and also present 
high overall number of connections, being called high-hubs (Bando et al. 2013). 
These hierarchical categories are all coherent with the biological role and dynamic 
behavior of GCNs hubs, as discussed below.

Some hubs are highly interlinked in local regions of a network thereby forming 
network clusters, topologically called modules or communities. Modules may be 
associated to specific biological processes in gene coexpression and protein-protein 
networks. For this reason, hubs may be sometimes classified as “party hubs”, those 

http://www.springerimages.com/videos/978-3-319-11984-7
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functioning inside a module, or “date hubs”, i.e., those linking different processes 
and organizing the network, playing a role similar to VIPs and high hubs (Zhu et al. 
2007; Barabási et al. 2011; Weirauch 2011).

4.3.2.1  Concentric Characterization of Nodes

One way to classify network nodes as VIPs, hubs or high-hubs is by obtaining the 
node degree, k0, and the first level concentric node degree, k1, which takes into ac-
count all node connections leaving from its immediate neighborhood, then project-
ing all node values in a k0 vs k1 graphic. VIPs should present low k0 but high k1, 
while hubs present high k0 and low k1, and high-hubs present high k0 and k1 values. 
Figures. 4.2e, f and 4.3e, f show each of these node categories in scatter plots of 
node degree vs concentric node degree measures obtained in DE and CO networks 
distribution	scatter	plots	( k0 vs k1) generated for distinct GCNs.

Because most real networks present scale-free distributions, there is no clear 
definition for setting a degree threshold for which we can classify nodes as being 
hubs or not (Barabási and Oltvai 2004; Barabási et al. 2011). This same is true for 
objectively defining VIPs and high-hubs, since the distribution of k1 also suffers 
from the problem of not presenting a scale. Here we define hubs, VIPs and high-
hubs by ranking them according to k0 and k1, and then considering a set of those 
presenting the highest values of each property. All calculations can be performed 
by using the software available at (http://cyvision.if.sc.usp.br/~bant/hierarchical/). 
These measures are used for nodes categorization such as Hub (high k0 VIP (high k1 
and low k0) and High-hub (high k0 and k1).

4.3.3  Betweenness Centrality

Betweenness centrality (Costa et al. 2008; Freeman 1978; Brandes 2001) is a mea-
surement of node importance which takes into account the entire set of shortest 
paths between nodes and passing through a particular node in a network. Between-
ness is one of the most important topological properties of a network: nodes with 
the highest betweenness control most of the information flow in the network (Yu 
et al. 2007).

4.3.4  Positive or Inverse Gene-Gene Correlation

Pearson’s correlation coefficient (PCC) gives us the strength of the relationship be-
tween a pair of genes (nodes in the network) (Allen et al. 2010). PCC ranges from 
−1	to	1	and	the	closer	the	number	to	either	of	these	boundaries	the	stronger	the	rela-
tionship: a negative number indicates an inverse correlation (e.g. expression of gene 
A increases as expression of gene B decreases) while a positive number indicates a 
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positive correlation (e.g. as A increases B tends to increase). This is depicted by the 
blue (positive correlation) and red (negative correlation) edges in Figs. 4.2a and b.

4.3.5  Network Connectivity

This and the two next subsections will address issues on network topology. Network 
topology exerts a pivotal role in unravelling GCNs organization and performance 
under different conditions (Barabási and Oltvai 2004; Zhu et al. 2007; Costa et al. 
2011). Network connectivity is an elementary network property: a pair of nodes that 
have just one independent path between them are more weakly connected than a 
pair that has many paths (Flake et al. 2002). Connectivity is commonly visualized as 
bottlenecks between nodes and formalized by the notion of cut set (Newman 2010). 
A node cut set is a set of nodes whose removal will disconnect a specific pair of 
nodes. Conversely, an edge cut set (or link cut set) is a set of edges whose removal 
will disconnect a pair of edges. A node with a higher degree of links (edges) is better 
connected in the network and it is supposed to play a more important role in main-
taining the network structure (Barabási and Oltvai 2004; Albert 2005), what is gen-
erally associated to a relevant biological role (Langfelder et al. 2013). Connectivity 
is the most widely used concept for distinguishing the nodes of a network (Horvath 
and Dong 2008). Densely interconnected groups of nodes, or clusters (pointed out 
by arrows in Figs. 4.2a, b and in color in videos 4.1 and 4.2, are frequently found in 
most GCNs and protein-protein networks (Newman 2006) in accordance to its scale 
free connectivity distribution (Winterbach et al. 2013). These groups form topologi-
cal modules, i.e. highly interlinked regions in a network, and have been associated, 
in GCNs and protein-protein networks, with highly conserved genes (Barabási and 
Oltvai 2004) and genes involved with complex diseases (Tuck et al. 2006; Cai et al. 
2010; Barabási et al. 2011).

Robustness of complex networks is associated to the capacity of a network to 
preserve its topological features, such as connectivity and average path length, after 
the removal of a set of nodes or edges. Scale-free networks such as GCNs are found 
to be very resilient to random node/edge attacks. This means that random failures 
or perturbations in some nodes or sub-mechanisms do not seems to drive the entire 
system to a critical condition (Albert et al. 2008). However, attacks targeting nodes 
with high number of connections, i.e. hubs, present the opposite effect, thus remov-
ing a small number of such nodes in scale-free networks causes a huge impact on 
the network diameter and on its functionality performance.

4.3.6  Network Motifs

In biological networks it is possible to identify groups of nodes that link to each oth-
er forming a small subnetwork, or subgraph, at numbers that are significantly higher 
than those in randomized networks (Milo et al. 2002). These subgraphs are called 
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motifs. Network motifs constitute smaller common patterns, or ‘building blocks”, of 
GCNs (Barabási and Oltvai 2004; Weinrauch 2011) and were found to be associated 
to some optimized biological functions, such as feedback and feedforward loops, 
related to transcriptional regulation (Shen-Orr et al. 2002; Zhang et al. 2007; Wat-
kinson et al. 2009). Molecular components of a particular motif frequently interact 
with nodes in outside motifs, and aggregation of motifs into motif clusters is likely 
to occur in many real networks (Ravasz et al. 2002). As pointed out by Barabási and 
Oltvai (2004), because “the number of distinct subgraphs grows exponentially with 
the number of nodes that are in a subgraph, the study of larger motifs is combinato-
rially unfeasible”. The alternative is to identify groups of highly connected nodes, 
called modules, directly from the network topology and manage to correlate these 
topological entities with their functional role (Winterbach et al. 2013).

4.3.7  Network Modules

Modules are large subgraph units, encompassing groups of densely associated 
nodes and connected to each other with loose links: in GCNs, for instance, modules 
may be hub clusters tenuously connected by VIPs. Modules serve to identify gene 
functions in a GCN and—as it was already observed for protein networks (Yu et al. 
2007; Zhu et al. 2007)—contain “module organizer” genes, highly connected to 
other genes (equivalent to hubs and high-hubs) and essential to module function-
ing, and “connector” genes, linking different modules and relevant for intermodule 
communication (equivalent to VIPs) (Weirauch 2011; Bando et al. 2011; Bando 
et al. 2013).

There are many statistical and computational methods for identifying modules 
in scale free networks. One of them, the Girvan-Newman algorithm (Girvan and 
Newman 2002), is centered on defining the boundaries of modules by searching for 
those edges with high betweenness, i.e more likely to link different modules. This 
is an important issue: cell functions are carried out in a very modular way. Modular 
structure reflects a group of functionally linked nodes (genes) acting together to 
accomplish a specific task: it may be invariant protein-RNA complexes involved 
post-transcriptional control of RNAs, or temporally coregulated genes controlling 
processes such as cell cycle and differentiation, or bacterial response to growth and 
stress conditions (Costanzo et al. 2010; Wang and Zheng 2012; Rosenkrantz et al. 
2013).

4.3.8  GCNs are Modular Scale Free Networks

The GCNs have a hub-dominated architecture, containing modules, or clusters, 
constituted by a highly connected number of nodes. The clustering coefficient C is 
a measure of the degree to which nodes in a graph tend to cluster together (Watts 
and Strogatz 1998). The average clustering coefficient < C > is significantly higher 
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in most biological networks (gene-gene, protein-protein) than in random networks 
of equivalent size and distribution (Barabási and Oltvai 2004). In Fig. 4.2a, b GCN 
gene clusters appear encircled by a solid line and in Videos 4.1 and 4.2 the clusters 
are identified by distinct colors.

Network modules, or clusters, are present in all cellular networks and identifiable 
by clustering methods based on network’s topology description (Newman 2006; Li 
and Horwath 2009) or by combining topology and functional genomics data (Wang 
and Zheng 2012; Weiss et al. 2012). Therefore, to find out correspondences be-
tween cluster topology and functional properties is a main goal of GCN analysis. A 
large number of evidences show that modules involved in closely related biological 
functions tend to interact and are proximally located in the network (reviewed in 
Barabási et al. 2011). As we mentioned before (Sect. 4.3.6), scale free networks are 
robust but attacks targeting highly connected nodes may cause network disruption. 
There are now compelling data linking the establishment of complex diseases with 
the perturbation (by mutation or altered expression) of highly connected genes in 
GCNs (reviewed by Sahni et al. 2013; see also Bando et al. 2013). Thus, functional 
and disease modules overlap and the transition between health and disease can be 
described as a module breakdown.

Another challenging issue is to understand network controllability. Controllabil-
ity analysis in complex networks, a concept introduced by Liu and Barabási (Liu 
et al. 2011), determines the minimum set of driver nodes necessary to (linearly) 
control an entire system. This also allows determining the degrees of freedom that 
a system can attain; therefore, it can also be understood as a measurement of the 
network complexity. Recently, Liu et al. (2012) introduced the control centrality 
measurement which considers the individual control potential of each node in a 
system. As GCNs may represent complex control systems, this new framework can 
be helpful to understand its control hierarchical structure. However, the inference 
of causality, i.e. who controls whom, stills presents as an open problem in network 
theory (Wu et al. 2012; Yuan et al. 2013).

4.4  Validation of Transcriptional Networks

The analysis of GCNs based on DNA microarray experiments has multiple applica-
tions in life sciences and medicine, ranging from the study of basic cell functions 
to the identification of disease markers and the molecular mechanisms underlying 
complex diseases. Therefore, microarray generated data need to be checked for re-
producibility and biological significance. Two categories of data validation will be 
considered here: (i) the technical and biological validation of DNA microarray ex-
periments (Shi et al. 2008); (ii) the validation of GNCs through interactome analy-
sis (Wang et al. 2014). Additionally, raw microarray data and experimental design 
should be deposited in at least one data repository supporting MIAME (minimum 
information about a microarray experiment)-compliance data (Brazma et al. 2001). 
Two repositories commonly used for this purpose are: Gene Expression Omnibus 
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(GEO, www.ncbi.nlm.nih.gov/geo/) at the National Center for Biotechnology In-
formation, and ArrayExpress—functional genomics data, at the European Bioinfor-
matics Institute (www.ebi.ac.uk/arrayexpress/).

4.4.1  DNA Microarray Technical Validation

Good laboratory proficiency and appropriate data analysis are essential to avoid 
artifactual gene profiles generated from DNA microarrays experiments (Shi et al. 
2008). Nevertheless, is mandatory to check for results erroneously representing 
either under- or over-expression of specific genes. There are several methods to 
quantify gene expression using RNA or gene-specific protein detection, such as 
quantitative real-time PCR (qPCR) and immunohistochemistry, respectively (True 
and Feng 2005).

A popular strategy for microarray technical validation using qPCR is to select in 
the gene data set those presenting the largest fold changes (statistically significant 
differentially expressed genes between groups). Here one can use the RNA aliquots 
from the same biological samples tested in the microarray experiment (Miron et al. 
2006). In order to accomplish biological validations, is necessary to test additional 
biological samples (not those used in the experiment). This is critical, for instance, 
for validating certain genes as disease biomarkers. This kind of validation usually 
encompasses, whenever possible, immunohistochemistry validation.

4.4.2  Interactome Validation of GCNs: A Tool for Gene Function 
Discovery

Interactome analysis, particularly protein-protein interaction (PPI) networks (where 
nodes stand for proteins and edges for the physical interactions), have been used in 
many different areas, from the study of protein function to disease prognosis (Taylor 
et al. 2009), being a very useful tool for disease-gene identification (del Rio et al. 
2009; Barabási et al. 2011; Carter et al. 2013; Wang et al. 2014). This kind of analy-
sis also allows the in silico validation of GNC data. Protein-protein interaction (PPI) 
networks for GCN validation may be constructed using proteins corresponding to 
each of the selected hubs, VIPs and high-hubs of a particular GCN (Bando et al. 
2013). Six major primary protein databases are available for PPI networks: BIND, 
BioGRID, DIP, HPRD, IntAct, and MINT (De La Rivas and Fontanillo 2010). In 
the author’s laboratory these analyses are carried out by using an in house free web 
tool developed by LA Lima & RD Puga—Centro Internacional de Ensino e Pes-
quisa—Hospital A.C. Camargo and the PPI networks annotated in MINT, HPRD 
and IntAct databases (http://bioinfo.lbhc.hcancer.org.br/cgi-bin/interactomegraph/
index.cgi). Data analysis and visualization are accomplished through Cytoscape. 
Figure 4.2g, h shows the interactome networks obtained for the patient and control 
groups DE GCNs used as a demonstrative example along this chapter. Essentially, 
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the software helps to search for interactions among the selected GCN genes (i.e. 
their corresponding proteins) and their neighbors in the human interactome. Con-
sidering our patient versus control example, these neighbors could participate in 
some disease-related metabolic pathways, thus indicating that the selected GCN 
genes are involved in the molecular mechanism of that disease.

The integrative analysis of GCN and PPI data is proving to be very helpful for 
disclosing changes in steady states that characterize the transitions between health 
and disease (Sahni et al. 2013), or the common genomic drivers beyond apparently 
distinct pathophenotypes (Cristino et al. 2014). This approach is also advantageous 
for identifying disease subtypes. Our group recently showed (Bando et al. 2013)—
through GNC and interactome analysis—that pathogenic and compensatory path-
ways differ in refractory temporal lobe epilepsy depending on the initial precipitat-
ing insult (febrile or afebrile). In this complex disease, determined by the interplay 
of genes and environmental factors, the role of disease genes depends substantially 
on their gene-gene connectivity and much less on structural gene alterations. Cor-
relating different pathophenotypes with specific changes in GNCs and interactome 
may be helpful for finding novel potential therapeutic targets and design interven-
tion strategies.

Supporting information (videos)

Video 4.1. Patients’ group CO network 3D visualization Hubs, VIPs and high-
hubs are indicated in blue, red and green, respectively. Clusters are identified by 
distinct colors.

Video 4.2. Control group CO network 3D visualization Hubs, VIPs and high-
hubs are indicated in blue, red and green, respectively. Clusters are identified by 
distinct colors.
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Abstract Stem cells have the potential to both proliferate and self-renew. These 
extraordinary cells also have pluri- or multipotency rendering them the ability to 
differentiate into several tissue-specific lineages. These characteristics make these 
cells ideal candidates for use in cell therapy. However, it is essential for a success-
ful therapy that these cells could be exclusively committed to the cell type that is 
needed. Commitment involves the activation of a particular genetic program and 
this process can be regulated at multiple levels during gene expression. An under-
standing of the gene regulatory networks involved in the committing of these cells 
to differentiation into a specific cell type is essential for the successful repair of 
injured tissue or even whole organogenesis.

The identity and quantity of proteins that a cell produces under a particular set of 
conditions, provides information about almost all cellular processes.

Gene expression can be regulated at multiple complementary levels, to obtain 
tight control of transcript abundance and protein synthesis. This regulation involves 
epigenetic and transcriptional control mechanisms and various complementary 
posttranscriptional steps that regulate maturation, stability and translation of an 
mRNA population.

Translation of mRNA into protein can be divided into three sub-process—ini-
tiation, elongation and termination. The initiation step, includes all the events that 
precede the formation of the first peptide bond, starting with the binding of the 
eukaryotic initiation complex eIF4F to the 5’ cap of the mRNA. After the mRNA 
has been unwound by eIF4F, the pre-initiation complex 43S (which contains the 
40S ribosomal subunit, eIF3, and the ternary complex eIF2, GTP and Met-tRNAi) 
attaches to the 5’-proximal region of the mRNA. This complex scans the 5’-UTR 
region to meet the first AUG codon, recruiting then the 60S ribosomal subunit to 
form the translational competent 80S ribosome (Hashem et al. 2013). Initiation is 
followed by elongation of the peptide chain, the main function of the ribosome. The 
final termination step includes the release of the newly synthesized protein and the 
dissociation of ribosomal subunits from the mRNA (Jackson et al. 2012).Structural 
and functional studies on translation elongation showed a considerable role of these 
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phases as targets of translation control (Dever and Green 2012; Zaretsky and Wre-
schner 2008). Nevertheless, in eukaryotes the initiation phase is the rate-limiting 
step and, thus, the main target for translational control (Fabian et al. 2010).After 
80S formation, the initiation factor eIF4G interacts with poly(A)-binding protein 
(PABP), which is associated with the poly(A) tail, promoting mRNA circulariza-
tion (Wells et al. 1998). This conformation of them RNA promotes the recycling of 
ribosomes for a new round of translation, resulting in the assembly of the polysome 
complex (Szostak and Gebauer 2013).

Regulation of protein synthesis plays a decisive role in a wide range of biologi-
cal situations and is critical for maintaining homeostasis, cell proliferation, growth 
and development. Deregulation of translation is involved in the development of 
several human diseases and cancer (Gkogkas and Sonenberg 2013; Hershey et al. 
2012; Livingstone et al. 2010). Translational regulation can be divided in two types, 
global and transcript-specific control. Modulating the activities of translation initia-
tion factors, or the regulators that interact with them by phosphorylation, enables 
eukaryotic cells to regulate global rates of protein synthesis. In the mRNA specific 
control, translation of a defined group of mRNAs is modulated without affecting 
general protein biosynthesis and frequently occurs through the action of trans-act-
ing RNA binding factors (RNA-binding proteins, miRNA and tRNA fragments). 
These trans-acting factors repress the association of mRNAs to translating ribo-
somes or the assembly of new polysomes (Gebauer et al. 2012; Hershey et al. 2012; 
Sobala and Hutvagner 2013).It has been suggested that the cellular abundance of 
proteins is predominantly controlled at the level of translation (Schwanhäusser et al. 
2011). Hence, the identification of which subpopulation of mRNAs is associated to 
active polysomes is essential to understand the dynamics of translational control in 
the cell.

5.1  Stem Cells and the Control of Protein Synthesis

5.1.1  Identifying Polysome Associated mRNAs During 
Cellular Differentiation

Gene expression profiling has provided insight into the molecular pathways in-
volved in stem cells self-renewal and differentiation (Ivanova et al. 2002; Song 
et al. 2006). Genome-wide analyses based on microarray hybridization and, more 
recently next generation sequencing, have been carried out to assess the global ex-
pression of gene networks. Most attempts to determine the mRNA profile of self-
renewing or differentiating cells have made use of total mRNA for hybridization to 
microarrays or RNA-seq analysis (Jeong et al. 2007; Menssen et al. 2011). Several 
researches have focused on the study of the cellular transcriptome to understand 
gene expression regulation, assuming that the mRNA levels could reflect the fi-
nal concentration of proteins in the cell (Cheadle et al. 2005; Larsson et al. 2013). 
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However, high-throughput analyses in eukaryotes comparing mRNA and protein 
levels have indicated that there is no direct correlation between transcript levels 
and protein synthesis, suggesting a high degree of posttranscriptional regulation in 
eukaryote cells (Tebaldi et al. 2012). The combination of quantitative proteomics 
with microarray analysis of mRNA levels in embryonic and primary hematopoietic 
stem cells showed very low correlation values between protein and mRNA expres-
sion during cell differentiation (Unwin et al. 2006; Williamson et al. 2008). Several 
lines of evidence from different organisms suggest that stem cell self-renewal and 
differentiation are dependent on the control of protein synthesis by posttranscrip-
tional mechanisms (Haston et al. 2009; Kolle et al. 2011; Sampath et al. 2008).
This hampers the classical transcriptome-based approach to investigate controlled 
expression in differentiating cells.

To overcome this limitation, in the past few years new methods were developed 
to compare the amount of total mRNA pool with the fraction of mRNA committed 
in translation. Ribosome association of an mRNA is considered as a general mea-
sure of its translational activity (Sonenberg et al. 2000). Centrifugation of the cy-
tosolic soluble cell fraction in sucrose gradients allows the separation of polyribo-
some complexes from monosomes and ribosome-free transcripts or inactive mRNP 
particles. The different fractions of the gradient can be pooled in order to isolate 
the subpopulation of mRNAs that is associated to translating polysomes. Quanti-
fication of these mRNAs has been successfully used to obtain genome-wide infor-
mation on translationally regulated transcripts (Arava et al. 2003; Sonenberg et al. 
2000) (Fig. 5.1a). This strategy has been used by several groups to better understand 
the posttranscriptional regulation of the process of cell differentiation in stem cells 
(Bates et al. 2012; Blázquez-Domingo et al. 2005; Fromm-Dornieden et al. 2012; 
Kolle et al. 2009; Kolle et al. 2011; Parent and Beretta 2008; Sampath et al. 2008).

One study analyzed gene expression profiles during the differentiation of murine 
embryonic stem cells (ESCs) into embryoid bodies by integrating transcriptome 
analysis with a global assessment of ribosome loading (Sampath et al. 2008). The 
authors used sucrose gradient centrifugation combined with microarray analysis, 
also known as Translation State Array Analysis (TSAA) (Arava 2003; Arava et al. 
2003; Zong et al. 1999), to obtain a genome-scale view of the effect of translation 
on gene expression. In TSAA changes in ribosome loading with mRNAs are mea-
sured on a genome-wide scale indicating the efficiency of translation for individual 
transcripts. Undifferentiated ESCs were found to be relatively polysome poor, as 
the result of inefficient loading of most transcripts onto ribosomes. Differentiation 
was accompanied by a global increase in both transcript abundance and the effi-
ciency of mRNA translation, with almost 80 % of the transcripts showing increased 
ribosome loading. This study highlighted several vital genes that are exclusively 
regulated by translation during differentiation like the ATF5 transcription factor and 
Wnt1 an effector of the Wnt signaling pathway. These data indicates that protein 
production from a vast number of genes is limited in ESCs by both transcript and 
protein synthesis and that ESCs differentiation is accompanied by a notorious in-
crease in translational efficiency (Sampath et al. 2008).
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Fig. 5.1  Strategies to analyze the polysome mRNA content. a Polysome profiling. The cellular 
lysate is placed on a sucrose gradient allowing the separation of polysomal fractions. Actively 
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Human embryonic stem cells are isolated and characterized by surface marker 
expression. Identification of surface markers is essential for characterization and 
purification of stem cells. Kolle et al. (2009) combined immunotranscriptional 
profiling of human ESC lines with membrane-polysome TSAA to determine the 
genes encoding potential human ESC surface marker proteins (Kolle et al. 2009). 
This approach has been used extensively to profile transcripts encoding secreted or 
transmembrane proteins within a variety of cell model systems (de Jong et al. 2006; 
Diehn et al. 2000, 2006; Stitziel et al. 2004). The assay separates mRNAs bound to 
actively translating, membrane-bound polysomes from cytosolic polysome-bound 
and non-translated mRNAs. A total of 88 genes that encode potential cell surface 
markers of hESCs were identified with this approach, greatly expanding the num-
ber of protein antigens that can be used to isolate pluripotent ESCs (Kolle et al. 
2009). Kolle et al. (2011) also proposed a strategy to isolate mRNAs contained in 
the polysome-membrane fraction of hESCs and identified these RNAs this time by 
large scale sequencing (Kolle et al. 2011). They found that more than 1000 genes 
produce transcripts that contain long 5’ and/or extended 3’ UTRs. Their analysis 
of membrane-polysome and cytosolic/untranslated fractions also identified RNAs 
encoding peptides destined for secretion and the extracellular space. This work 
highlights the efficiency of combining cellular fractionation with RNA-sequencing 
to characterize the transcriptome and translatome complexity in ESCs (Kolle et al. 
2011).

Similar findings have been reported for differentiation of adult stem cells. Parent 
and Beretta (2008) used polysome profiling to investigate translational control dur-
ing hepatocytic differentiation of HepaRG liver progenitor cells (Parent and Beretta 
2008). They found that the vast majority of genes regulated during differentiation 
were contained in the polysome-bound RNA population and not in the total RNA 
population, suggesting a strong association between translational control and hepa-
tocytic differentiation. They showed that hepatocytic differentiation is accompanied 
by a reduction in transcriptome complexity and that translational regulation is the 
main regulatory event. Bates et al. (2012) used a similar approach to analyze the 
translational regulation of genes in a model of B Cell differentiation (Bates et al. 
2012). The authors used a streamlined version of traditional polysome profiling on 
a genomic scale during which mRNAs within sequential fractions of a linear su-
crose gradient were differentially labeled and analyzed by DNA microarray (Bates 
et al. 2012). This procedure, called Gradient Encoding, provides an accurate and 
reproducible ranking of the positions of mRNAs in the gradient, allowing sensitive 
detection of changes in the average number of ribosome per mRNA (Hendrickson 

translated polysome-bound mRNAs are denser than free mRNA and settle at the heavier fractions 
of the sucrose gradient. Translationally inactive mRNAs that are not bound to ribosomes settle 
at the top of the gradient. The separation of the fractions is performed by Density Gradient Frac-
tionation (ISCO) and afterwards RNA is quantified and isolated for microarray analysis or RNA 
sequencing. b Ribosome profiling (the deep sequencing of ribosome-protected mRNA fragments). 
The cellular lysate is treated with an RNA nuclease and ribosomes and associated mRNA foot-
prints are purified by ultracentrifugation through a sucrose cushion. Protected mRNA fragments 
from single ribosomes are purified by PAGE and sequenced
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et al. 2009). The authors found that during differentiation, major changes occurred 
in the posttranscriptional regulation of genes with critical roles in transformation or 
differentiation. They also identified additional genes with potential roles in these 
processes based on particular changes in their translational regulation during dif-
ferentiation.

An extensively studied model for adipogenesis in vitro is the mouse embryonic 
fibroblast cell line 3T3-L1 (MacDougald and Lane 1995). Fromm-Dornieden et al. 
(2012) used TSAA to analyze changes to translational control at 6 h after the in-
duction of adipogenesis in 3T3-L1 preadipocytes. The authors detected 43 trans-
lationally up-regulated mRNAs and two translationally down-regulated mRNAs. 
Despite the low number of differentially expressed genes found, they conclude that 
a moderate reorganization of the translational activity is an important step for gene 
expression controls in the initial phase of adipogenesis (Fromm-Dornieden et al. 
2012). Our group used polysome profiling of adult stem cells followed by RNA-seq 
analysis during the initial steps of adipogenesis to investigate how posttranscrip-
tional regulation controls gene expression in human adipose stem cells (hASCs) 
(Spangenberg et al. 2013b). RNA-seq analysis of the total mRNA fraction and the 
subpopulation of mRNAs associated with translating ribosomes showed that a sig-
nificant percentage of mRNAs regulated during differentiation were posttranscrip-
tionally controlled. We demonstrated, that adipogenesis had been triggered at the 
molecular level after 3 days of induction with upregulation of the expression of 
networks of genes involved in adipocyte differentiation. Moreover, three days ap-
pears as the minimum induction time required for the initiation of adipogenesis. Our 
study identified 549 differentially expressed genes during initial steps of adipogen-
esis. Almost 60 % of these genes showed some kind of posttranscriptional regula-
tion. In some cases, this regulation counterbalances fluctuations in total RNA levels. 
Thus, transcripts increasing or decreasing in abundance in the cell are recruited to 
polysomes in equal amounts in differentiating cells. It was also observed a subset 
of transcripts that showed a higher fold change in the polysomal RNA fraction, re-
sembling a mechanism of homodirectional co-regulatory mechanism that results in 
the amplification or potentiation of the positive control of gene expression (Preiss 
et al. 2003). However, there is a subpopulation of mRNAs that is regulated solely at 
the translational level (Fig. 5.2a and b).Specific groups of related genes were found 
to display differential expression mostly in the polysomal fraction. As an example, 
oxidative stress response genes and a family of genes encoding proteins involved 
in the response to changes in the levels of reduced glutathione (Fig. 5.2c and d).
Part of this regulation involved large changes in the length of untranslated regions 
(UTR), and the differential extension/reduction of the 3’ UTR after the induction 
of differentiation. This was similar to what Kolle et al. described previously for 
ESCs. The length of 3’ UTRs has been shown to differ between embryonic stem 
cells and somatic cells, in both humans and mice (Kolle et al. 2011). Proliferating 
cells produce mRNAs with shorter UTRs, which have longer half-lives. It has been 
suggested that transcripts may be stabilized by the loss of miRNA binding sites, 
which usually downregulate gene expression (Sandberg et al. 2008). By contrast, in 
murine stem cells, the UTRs of tissue-specific transcripts increase in length follow-
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ing cell commitment. This extension results from the use of distal polyadenylation 
sites and results in an increase in the half life of the mRNA, by an unknown mecha-
nism (Ji et al. 2009). We analyzed the distribution of alternative transcripts during 
adipogenic differentiation and the potential role of miRNAs in post-transcriptional 
regulation. Our in silico analysis suggests a modest but consistent, bias in 3’ UTR 
lengths during differentiation enabling a fine-tuned transcript regulation via small 
non-coding RNAs (Spangenberg et al. 2013a).

Fig. 5.2  Differential association of mRNAs to polysomes in induced (IN) and non-induced (CT) 
adult stem cells: a LogFC values from different RNA fractions were compared. The logFC values 
(IN vs. CT) for the polysomal fraction (y-axis) were plotted against the logFC values for the total 
RNA fraction (x-axis). The data points are colored according to the change in the fractions. Genes 
displaying changes only in the polysomal fraction include genes with a |logFC| of at least 1.5 
(|logFC| > 1.5) and genes with a |logFC| <	1.5	in	the	total	fraction	( light red). Changes in the total 
RNA fraction were associated with a |logFC| > 1.5 and of |logFC| < 1.5 in the polysomal fraction 
( light green). Genes displaying changes in expression in both sets of conditions had high (or low) 
values	of	logFC	(greater	than	1.5/lower	than	−	1.5)	in	both	RNA	fractions	( violet). Inverse changes 
included genes with high logFC values (logFC > 1.5) in the total fraction and low values (logFC 
<	1.5)	in	the	polysomal	fraction,	or	vice	versa	( orange). b The pie chart shows the percentages of 
genes displaying changes in expression in each of the four categories: only the changing genes are 
considered. GO analysis of two sets of differentially expressed genes: IN vs. CT in the polysomal 
RNA fraction (c) and IN vs. CT in total RNA (d). Only overrepresented Molecular Function (MF) 
GO terms are shown in each pie chart (c) and (d). For each over represented MF GO term its cor-
responding adjusted p-values are shown. (Spangenberg et al. 2013b)
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The control of translational initiation arises as a central step in the regulation of 
cell differentiation and commitment of stem cells. Polysome profiling is a simple 
and straightforward tool to analyze the flow of mRNAs between functionally dis-
tinct cell compartments, because these mRNA populations can be easily separated 
and isolated from a sample by centrifugation in a sucrose gradient. Its use in the 
study of translational regulation of stem cell commitment will help the understand-
ing and identification of signals involved in the biology of these cells.

5.2  Ribosome Footprints on an mRNA

Several studies have used polysome profiling to study the global translation process 
in stem cells during a wide variety of cellular processes, from proliferation to dif-
ferentiation. Nevertheless, high molecular weight ribonucleoprotein complexes not 
directly involved in translation could co-sediment with polysomes, making difficult 
the separation of those transcripts that are indeed being translated (Holetz et al. 
2007; Ingolia 2014).

However, the innovative ribosome profiling technique that was described by 
Ingolia and colleagues in 2009, has provided a detailed view of protein synthesis 
mechanisms from prokaryotes to mammals. This methodology relies on the fact that 
ribosomes protect a stretch of bound mRNA (~ 30 nucleotides) from nuclease diges-
tion. This protected mRNA ‘footprint’ can then be isolated and sequenced by deep-
sequencing technologies (RNA-seq) (Fig. 5.1b). Thus, it is possible to obtain the ex-
act location of ribosomes on mRNA, as well as a detailed overview of all translation 
steps, including initiation, elongation and termination by this method. Ribosome 
profiling measures the number and velocity of ribosomes that are translating the 
mRNA in vivo, instead of on the abundance of the transcript in the cell, providing 
measurements that closely correspond to protein abundance (Ingolia et al. 2009). 
This methodology makes it possible to identify sequences that are actively trans-
lated, amongst a complex array of cellular transcripts. It also enables the monitoring 
of translation and maturation of nascent polypeptides in vivo, and the assessment of 
profiles of protein synthesis (Ingolia 2014).

Ribosome profiling has emerged as a powerful technique to study several aspects 
of translation and is being used to unravel the mechanisms involved in the trans-
lational control of gene expression in stem cells. Ingolia and co-workers obtained 
genome-wide maps of protein synthesis in mouse embryonic stem cells (mESCs) 
and detailed information about the kinetics and mechanism of translation elongation 
and coupled co-translational events (Ingolia et al. 2011). The authors analyzed the 
cumulative distribution of footprinting counts at each codon, relative to the me-
dian density across the gene, and found thousands of pauses in the body of several 
transcripts. Analysis of the sequence around the pause site revealed a peptide motif 
associated with internal translational stalling that was not enriched in rare codons. 
In addition, they used a pulse-chase strategy to measure the rate of translation elon-
gation and found that the kinetics of elongation do not depend on transcript length 
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and protein abundance, even for transcripts that are translated at the ER surface. 
Furthermore, the authors suggest that translation speed does not depend on codon 
usage, which was consistent with the absence of pauses at rare codons. These results 
go against accepted biophysical models of translation, which state that elongating 
ribosomes translate each codon with a speed related to the features of the coding 
sequence and according to cellular factors, such as concentrations of elongation fac-
tors and tRNA molecules (dos Reis et al. 2004; Lu and Deutsch 2008; Tuller et al. 
2011). Recently, Dana and Tuller (2012) re-analyzed ribosomal profiles of mESCs 
measured by Ingolia and co-workers (2011) and showed that translation elongation 
speed is affected by features such as the adaptation of codons to the tRNA pool, and 
local mRNA folding and charge (Dana and Tuller 2012).They also show that the 
translation elongation velocity tends to increase as translation progresses along the 
coding sequence.

Another intriguing result presented by Ingolia and co-workers (2011) was the 
presence of several unannotated near-cognate initiation sites that drive the transla-
tion of upstream open reading frames (uORFs) in mESCs, consistent with the high 
rate of translation observed at many 5’ UTRs. Translation of uORFs was lower 
in differentiating cells than in mESCs, indicating that the translation of uORFs is 
regulated and may be part of a major program of translational control. This find-
ing prompted the authors to search for translated regions within some lincRNAs 
(long intergenic non coding RNAs) which have no conserved sequence with pro-
tein-coding potential. Most putative lincRNAs showed ribosome footprints, rais-
ing the possibility that these transcripts encode small proteins. This is a striking 
observation, however, other findings strongly suggest that lincRNAs function as 
RNA molecules and not as translated proteins (Guttman et al. 2009; Guttman et al. 
2010; Slavoff et al. 2013). Thus, in a recent study the same researchers developed 
a metric termed ribosome release score (RRS) which analyzes the pattern of ribo-
some occupancy across different classes of RNA and distinguishes coding from 
non-coding transcripts (Guttman et al. 2013). The authors categorized lincRNAs 
with well-established non-coding RNAs, indicating that, in general, they do not 
encode functional proteins.

Ingolia and colleagues also examined changes in translation when prolifera-
tive, pluripotent mESCs underwent differentiation into embryoid bodies (EBs). 
The abundance of ribosomal proteins was much lower in EBs than in ESCs, due 
3–4-fold difference in the translational efficiency of transcripts encoding ribosomal 
proteins between EBs and ESCs. Translation of uORFs also declined during differ-
entiation, and the translation rate of 5’ UTRs in differentiated cells was 25 % lower 
than that of the CDS of individual transcripts with defined uORFs.

Ribosome profiling has also helped to characterize important proteins involved 
in mRNA metabolism in mESCs. One study used ribosome profiling to monitor 
translational efficiency after Lin28a knockdown (Cho et al. 2012). LIN28 is a con-
served RNA binding protein that is highly abundant in mESCs. LIN28acts as a 
suppressor of let-7 micro RNA biogenesis, however many lines of evidence suggest 
that LIN28 carries out additional functions. The ribosome occupancy of LIN28A-
bound mRNAs tended to be higher in Lin28a-depleted cells than in control siRNA-
treated cells, indicating that LIN28A targets mRNAs for translation repression.
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A recent study investigated the implications of canonical and non-canonical 
Nonsense-Mediated mRNA Decay (NMD) on the decay of endogenous mRNAs 
in mESCs (Hurt et al. 2013). Messenger RNAs harboring upstream open reading 
frames (uORFs) may be susceptible to NMD, but only a fraction of uORF-con-
taining mRNA is actually targeted by this pathway and the influence of uORFs 
on mRNA stability is poorly understood (reviewed by Hurt et al. 2013). Thus, the 
authors carried out ribosome profiling with UPF1-depleted and control-depleted 
mESCs. UPF1 is a conserved protein in eukaryotes that is essential for NMD. The 
density of footprinting reads was used to distinguish actively translated uORFs 
from non-translated uORFs. The depletion of UPF1 showed that actively translated 
uORFs-genes are normally targeted by NMD whereas non-translated uORFs-genes 
escape repression (Hurt et al. 2013). The authors concluded that NMD triggered by 
uORF translation is an important mechanism of the regulation of gene expression 
in mESCs.

Adipogenic differentiation has been widely used by our group as a model to 
investigate the mechanisms of the posttranscriptional regulation of gene expression 
in hASCs (Spangenberg et al. 2013b). Polysome profiling experiments showed ex-
tensive posttranscriptional regulation 3 days after the induction of adipocyte com-
mitment. Now, we have applied ribosomal profiling methodology to investigate 
differential gene expression of hASCs in the early steps of differentiation to obtain 
new insights into the mechanisms of translational control that may help to improve 
our limited understanding of stem cell differentiation. Preliminary data has con-
firmed extensive translational regulation during cell commitment, and shows that 
entire metabolic networks are regulated by modification of translational rates after 
induction of adipogenesis.

Overall, translational regulation is the focus of intense study and is becoming 
increasingly appreciated as a central step of gene expression control in both em-
bryonic and adult stem cells. Polysome and ribosome profiling are powerful tools 
to analyze translational dynamics on a genome-wide scale and will enhance and 
improve our understanding of translational control during stem cell commitment.
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Abstract This chapter provides a review of recent advances in understanding the 
importance of normal mesenchymal stem cell (MSC) differentiation and the key 
regulators that orchestrate their fate into several cell types. Human bone marrow 
and umbilical cord veins are sources that achieve enough quantities of MSCs, which 
differentiate in vitro into osteoblasts following expansion and proper biochemical 
stimuli. Moreover, these cells feature fast proliferation rate and have great expan-
sion capability. Consequently, MSCs have potential uses for clinical trials as for 
example in healing bone defects. However, understanding their basic processes, 
including the modulation of gene expression during its early differentiation, is still 
focus of intense investigation. Additionally, we show results suggesting that regard-
less the anatomical site from which stem cells are obtained, a shared set of genes is 
activated to trigger osteoblast differentiation.
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6.1  Human Mesenchymal Stem Cells Represent  
a Model-System for Cell Differentiation Studies

The progressive restriction of the differentiation potential from pluripotent em-
bryonic stem cells (ESC) to different populations of multipotent adult stem cells 
depends on the orchestrated action of key transcription factors and changes in the 
profile of epigenetic modifications that ultimately lead to expression of different 
sets of genes. ESC are unique in their capacities to self-renew and differentiate into 
any somatic and germ line tissue, while, by contrast, the differentiation potential of 
adult stem cells is limited (Aranda et al. 2009).

Studies have shown that mesenchymal stem cells (MSC) reflect the stem cell dif-
ferentiation potential and may form the basis of studies designed to provide insights 
into genes that confer the greatest developmental potency (Ulloa-Montoya et al. 
2007). The knowledge of the fundamental processes associated with the differen-
tiation of MSCs is still poor, and elucidation of the genetic cascade guiding these 
cells to become more specialized is important for both basic knowledge and clinical 
application (de Jeong et al. 2004).

MSCs have now been isolated from many sites throughout the body. In the bone 
compartment, they can be found in bone marrow, periosteum, and endosteum, thin con-
nective tissue linings of the surface of bones, and the mineralized bone itself, and are 
known to be the primary sources of cells during bone repair (Knight et al. 2013).

Bone marrow is a reservoir of pluripotent stem/progenitor cells for mesenchymal 
tissues (Cancedda et al. 2003) and the differentiation of MSCs toward different 
lineage seems display different metabolism signatures (Chen et al 2014). For in-
stance, there is a transition from glycolysis to oxidative phosphorylation in MSCs 
differentiation toward osteogenic lineage (Chen et al. 2008) and adipogenic lineage 
(Hofmann et al. 2012; Tormos et al 2011). In contrast, when MSCs differentiate 
toward chondrogenic lineage using pellet culture, glycolysis is enhanced (Pattappa 
et al. 2011). Furthermore, it has been reported that mitochondrial metabolism and 
reactive oxygen species (ROS) generation might be one of the causal factors rather 
than the merely results of adipogenic differentiation (Tormos et al. 2011). Thus, 
treatments altering mitochondrial metabolism and ROS generation might affect or 
determine MSCs fate.

Studies like the ones from Kim et al (2006) indicate that MSCs originating from 
specific tissues are capable of differentiation into several types of tissues. In addi-
tion to the bone marrow (BM), MSCs have been found in several other organs such 
as the circulating blood of preterm fetuses, hematopoietic cells (Campagnoli et al. 
2001; Erices et al. 2000) and Wharton´s jelly explants (Ishige et al. 2009; Wagner 
et al. 2005).

Although the presence of MSCs in the umbilical cord vein (UC) of newborns 
was controversial some years ago (Mareschi et al. 2001; Wexler et al. 2003), this 
site is now being used as a standard source of these cells. Sarugaser et al. (2005) 
have shown that perivascular tissue from human UC vein cultivated in non-osteo-
genic medium contains a subpopulation of cells with an osteogenic phenotype that 
forms calcified nodules. The addition of osteogenic chemical supplementation to 
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the culture medium resulted in a significant increase of these cells. Wang et al. 
(2004) demonstrated that mesenchymal cells from the mucous connective tissue 
of Wharton`s jelly express matrix receptors (CD44, CD105) and integrin markers 
(CD29, CD51), suggesting that these cells are similar to stem cells (SC) in that they 
can be differentiated into chondrogenic, adipogenic or osteogenic cell lines.

6.2  Therapeutic Potential of Human Mesenchymal  
Stem Cells

The therapeutic potential of stem cells is already a reality but there is still a need of 
understanding several aspects of their molecular biology during differentiation and 
induced pluripotency (Cohen and Melton 2011; Stadtfeld and Hockedlinger 2010). 
Considering that the control of messenger RNA (mRNA) transcription corresponds 
to the first step of gene regulation (Rajewsky 2011), which ultimately controls the 
process of differentiation, transcriptome analysis is critical for better understanding 
MSCs. The gene expression of pluripotency-related genes have been examined in 
MSCs derived from bone marrow, adipocytes, amniotic membrane and epithelial 
endometrium-derived stem cells as well as stroma endometrium-derived stem cells, 
and these studies suggest that pluripotency-related gene expression varies in differ-
ent tissues (Tanabe 2014).

Investigating the genes that might act as triggers of MSC early differentiation, 
regardless of their tissue of origin is an interesting approach, and we hypothesized 
that MSCs isolated from different anatomical sites (bone marrow and umbilical 
cord vein) stimulated to differentiate toward a specific cell type would express a set 
of common genes implicated in the differentiation fate (Figs. 6.1 and 6.2).

6.3  Transcriptome Analysis During Mesenchymal Stem 
Cell Differentiation

To explore a larger set of genes (transcriptome profiling) in these two MSC isolates, 
we used microarray screening. As expected, the results showed that during early dif-
ferentiation, bone marrow and umbilical cord vein cells expressed exclusive sets of 
genes. However, these two isolates shared expression of 25 genes, including those 
involved in cell-substrate junction assembly/cell-cell adhesion mediated by integ-
rin (Integrin, alpha 5, fibronectin receptor, ITGA5), hormone-mediated signaling 
pathway/ossification (Thyroid hormone receptor alpha, THRA), cell differentia-
tion (Nephronectin, NPNT) and regulation of cell growth (HtrA1 serine peptidase 
1, HTRA1). Based on their involvement with the molecular/biological processes 
mentioned above, these could be considered key genes in driving early osteoblastic 
differentiation of MSCs, independent of their anatomic origin.
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Earlier studies have compared the gene expression profile of BM stem cells, 
UCV cells and other types of stem cells by means of serial analysis of gene ex-
pression (SAGE) (Panepucci et al. 2004), real time PCR (Guillot et al. 2008) and 
microarrays (Bombonato-Prado et al. 2009; Carinci et al. 2004; Jeong et al. 2005; 
Schilling 2008; Shi et al. 2001; Secco et al. 2009) following an extended culture 
of the MSCs in osteogenic medium. Of note, the previous results of Kulterer et al. 
(2007) have revealed the participation of the genes ID4, CRYAB and SORT1 that 
were considered to be candidates as regulators of osteogenic differentiation.

In this investigation, we hypothesized that during the initial stages, as early as 
24–168 h into in vitro cultivation, key genes are activated during the critical period 
in which the fate of MSCs is defined toward osteogenic differentiation, independent 
of their anatomical origin. A set of 115 specific genes were found in bone marrow 
MSCs, from which we highlight selected genes including Biglycan (BGN), whose 
coded protein is a proteoglycan of the extracellular matrix that is involved in the 
adhesion of collagen fibers (SOURCE Database). This protein is an extracellular 
matrix structural constituent, which may be involved in collagen fiber assembly (by 
similarity). Inkson et al. (2009) suggested that WNT1 inducible signaling pathway 
protein 1 (WISP-1) and BGN may functionally interact and control each other's 
activities, thus regulating the differentiation and proliferation of osteogenic cells.

Fig. 6.1  Cell morphology 
and ALP expression in human 
umbilical cord stem cells 
after 7 days of culture, a cells 
in contact with osteogenic 
medium, showing polygonal 
shape and expression of ALP. 
b cells in the absence of 
osteogenic medium. Green 
labeling shows actin and 
blue stain labels cell nuclei 
(DAPI). Magnification 400x, 
fluorescence microscopy
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Another modulated gene was fibronectin (FN), which codes the fibronectin 
protein that binds cell surfaces and various compounds including collagen, fibrin, 
heparin and actin (SOURCE Database). Fibronectins are involved in cell adhesion, 
cell motility, opsonization, wound healing, and maintenance of cell shape. Ogura 
et al. (2004) also found that MSCs have the ability to differentiate into osteoblasts 
and that FN can stimulate the attachment and spreading of these cells.

The collagen, type VI, alpha 3 (COL6A3) gene codes the alpha-3 chain, one of 
the three alpha chains of type VI collagen, a beaded filament collagen found in most 
connective tissues. The alpha-3 chain of type VI collagen is much larger than the 
alpha-1 and -2 chains. These domains have been shown to bind extracellular matrix 
proteins, an interaction that explains the importance of this collagen in organizing 
matrix components (SOURCE Database).

A set of 178 umbilical cord specific genes was modulated, including Tafazzin 
(TAZ), which codes the tafazzin protein. Tafazzins compose a group of proteins 
that promote the differentiation and maturation of osteoblasts, while preventing adi-
pocyte maturation (SOURCE Database). In fact, a large number of morphogens, 
signaling molecules, and transcriptional regulators have been implicated in regu-
lating bone development, including transcriptional factors like TAZ, Runx2, Os-
terix, ATF4 and NFATc1 and the Wnt/beta-catenin, TGF-beta/BMP, FGF, Notch and 
Hedgehog signaling pathways (Burns et al. 2010; Deng et al. 2008).

Fig. 6.2  Cell morphol-
ogy and ALP expression in 
mesenchymal stem cells stem 
cells after 7 days of culture, 
a cells in contact with 
osteogenic medium, showing 
polygonal shape and expres-
sion of ALP. b elongated cells 
in the absence of osteogenic 
medium with few cells posi-
tive for ALP. Green labeling 
shows actin and blue stain 
labels cell nuclei (DAPI). 
Magnification 400x, fluores-
cence microscopy
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Another modulated gene is the Microfibrillar-associated protein 3 (MFAP3), 
which codes a microfibrillar protein important for the structure of extracellular ma-
trix (Abrams et al. 1995), the expression of which has been correlated with bone 
formation (Burns et al. 2010).

The Sprouty 2 gene (SPRY2) codes a protein associated with cell signaling and 
cell fate commitment and also plays a role as a modulator of FGF signaling. Welsh 
et al. (2007) demonstrated that mice carrying a deletion that removes the FGF sig-
naling antagonist Spry2 showed cleft palate, suggesting a role for this gene in the 
differentiation of MSCs into osteoblasts. Moreover, it was observed that this pro-
tein modulates tyrosine kinase signaling, regulating cell migration and proliferation 
(Edwin et al. 2008).

These transcriptional profiles obtained with monolayer cultures are comparable 
to those obtained with MSCs cultured in three-dimensional scaffolds (Burns et al. 
2010), which mimic the in vivo bone formation. This demonstrates that the mono-
layer culture model-system reproduces the transcriptional modulation of three-di-
mensional cultures, at least for the genes above mentioned and therefore is adequate 
to study gene profiling of human MSCs differentiation.

Finally, we found 25 differentially expressed genes (Figs. 6.3 and 6.4) that were 
shared between the two MSC sources. Due to the biological processes in which 

Fig. 6.3  Venn diagram show-
ing the specific and the 25 
sharing genes during normal 
differentiation of mesen-
chymal cells obtained from 
human bone marrow or from 
umbilical cord vein. UC: 
umbilical cord vein cells; 
BM: bone marrow mesenchy-
mal cells

 

Fig. 6.4  Expression profiling of the 25 genes with shared modulation during osteoblast differen-
tiation of bone marrow (BM) and umbilical cord vein (UC) mesenchymal stem cells [0 to 7 days 
(168	h)	cultured	in	osteogenic	medium].	FDR	≤	0.05	and	fold	change	≥	2.0
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these genes participate, they can be considered triggers of osteoblastic differentia-
tion of MSCs independent of their anatomical origin. Among these, we will discuss 
selected genes (Table 6.1). The integrin, alpha 5 (fibronectin receptor, alpha poly-
peptide) gene (ITGA5), which is associated with cell-matrix adhesion, was also 
one of these 25 genes. Integrins are cell surface receptors that interact with the 
extracellular matrix (ECM) and mediate various intracellular signals, defining cel-
lular shape and mobility and regulating the cell cycle (SOURCE Database). Integ-
rins may play significant roles in determining osteoblast function because they are 
signal transduction molecules. Type I collagen, fibronectin, and their integrins are 
critical for osteoblast function and bone development (Cowles et al. 2000; Shekaran 
and Garcia 2011).

The HtrA serine peptidase 1 (HTRA1) gene promotes the regulation of cell pro-
liferation (SOURCE Database). It has been proposed that the HtrA1 protein regu-
lates biological processes by modulating growth-factor systems other than IGF, such 
as the system mediated by the transforming growth factor beta 1 (TGFB1) family. 
Transforming growth factor beta (TGF-beta) is effective in regulating osteoblast 
proliferation, differentiation, bone matrix maturation and cell-specific gene expres-
sion, as well as inhibiting the expression of markers characteristic of the osteoblast 
phenotype such as osteocalcin (Oka et al. 2004). Hadfield et al (2008) suggested 
that HTRA1 may regulate matrix calcification via the inhibition of BMP-2 signal-
ing, modulating osteoblast gene expression, and/or via the degradation of specific 
matrix proteins.

Nephronectin (NPNT) gene codes an extracellular matrix protein highly ex-
pressed in long bone. Kahai et al. (2009) discovered that ectopic expression of neph-
ronectin promotes osteoblastic differentiation, thus corroborating with our results.

The Thyroid hormone receptor, alpha-1 (THRA) gene codes one of the several 
receptors of thyroid hormone, acting as a mediator of its biological activities. This 
gene is involved in the formation of bone or of a bony substance and the conversion 
of fibrous tissue or of cartilage into bone or a bony substance (SOURCE Database).

Protein phosphatase 1 regulatory inhibitor subunit 11 (PPP1R11) was also found 
to be a shared gene. Considering that phosphatase activity is important for osteo-
blast differentiation, as in the case of ALPL that we determined in this study, and 
that the PPP1R11 protein is associated with inhibition of phosphatase activity, this 
may be evidence for a mechanism involving phosphatase enhancement/inhibi-
tion during osteoblast differentiation. Further, genes involved in kinase activity/
protein phosphorylation such as Rap guanine nucleotide exchange factor (GEF) 1 
(RAPEF1) and Protein kinase 3 (PKN3) also appeared, reinforcing the importance 
of phosphate metabolism in osteoblast differentiation.

Genes that control apoptosis such as Lectin, galactoside-binding, soluble, 1 
(LGALS1) and CASP2 and RIPK1 domain containing adaptor with death domain 
(CRADD) were also shared between the two sources of MSCs, providing evidence 
for controlled cell death during differentiation.

Genes involved in general processes such as control of transcription including 
Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsi-
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GenBank acc Gene name Symbol Cytoband Function
AB209346 Thyroid hormone 

receptor, alpha-1
THRA 17q11.2 Transcription 

from RNA 
polymerase II 
promoter

NM_031461 Cysteine-rich 
secretory protein 
LCCL domain 
containing 1

CRISPLD1 8q21.11 Function 
unknown

NM_020708 Solute car-
rier family 12, 
(potassium-chlo-
ride transporter) 
member 5

SLC12A5 20q13.12 Potassium ion 
transport

BC037905 CASP2 and 
RIPK1 domain 
containing adaptor 
with death domain

CRADD 12q21.33-
q23.1

Regulation of 
apoptosis

NM_021959 Protein phospha-
tase 1, regulatory 
(inhibitor) subunit 
11

PPP1R11 6p21.3 Protein phos-
phatase inhibi-
tor activity

NM_001184691 Nephronectin NPNT 4q24 Cell 
differentiation

NM_101339 Purple acid phos-
phatase 3

PAP3 1 Acid phospha-
tase activity

AF131786 Clone 25220 
mRNA sequence

– – Function 
unknown

BX537526 CDNA FLJ11602 
fis, clone 
HEMBA1003908

– – Function 
unknown

NM_001081550 THO complex 2 THOC2 Xq25-q26.3 MRNA-
nucleus export

NM_004556 Nuclear factor 
of kappa light 
polypeptide 
gene enhancer in 
B-cells inhibitor, 
epsilon

NFKBIE 6p21.1 Cytoplasmic 
sequestering 
of transcrip-
tion factor

AI220134 Transcribed locus – – Function 
unknown

NM_002775 HtrA serine pepti-
dase 1

HTRA1 10q26.3 Regulation of 
cell growth

NM_000918 Procollagen-pro-
line, 2-oxogluta-
rate 4-dioxygenase 
beta subunit

P4HB 17q25 Electron 
transport

Table 6.1  Genes with shared modulation during osteoblast differentiation of bone marrow and 
umbilical	cord	vein	mesenchymal	stem	cells	(0	to	168	h	in	osteogenic	medium).	FDR	≤	0.05,	fold	
change	≥	2.0
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lon, (NFKBIE) and control of ion transport as Solute carrier family 12 (potassium/
chloride transporter), member 5, (SLC12A5) were also shared.

Finally, we identified the participation of the Protein kinase, DNA-activated, 
catalytic polypeptide (PRKDC) gene; in addition to its role in kinase activity and 
osteoblast differentiation as discussed above, this gene also plays roles in DNA re-
pair and the control of apoptosis, which are both processes that ultimately regulate 
cancer.

These results suggest that regardless of the anatomical site from which stem cells 
were obtained, a shared set of genes is activated to trigger osteoblast differentiation.

GenBank acc Gene name Symbol Cytoband Function
NM_002205 Integrin, alpha 5 ITGA5 12q11-q13 Cell-matrix 

adhesion
NM_198581 Zinc finger 

CCCH-type con-
taining 6

ZC3H6 2q13 Function 
unknown

AK097984 Nicotinamide 
N-methyltrans-
ferase

NNMT 11q23.1 Transferase 
activity

BX396146 Hypothetical pro-
tein LOC728517

LOC728517 1p36.33 Function 
unknown

BQ278455 Eukaryotic transla-
tion initiation 
factor 1

EIF1 17q21.2 Regulation of 
translation

NM_105885 Toxin receptor 
binding

THI2.1 1

NM_198679 Rap guanine 
nucleotide 
exchange factor 
(GEF) 1

RAPGEF1 9q34.3 Transmem-
brane receptor 
protein tyro-
sine kinase 
signaling 
pathway

AL050366 O-linked n-acetyl-
glucosamine 
transferase

OGT Xq13 Signal 
transduction

BF570935 Lectin, galac-
toside-binding, 
soluble, 1 (galectin 
1)

LGALS1 22q13.1 Apoptosis

NM_013355 Protein kinase N3 PKN3 9q34.11 Signal 
transduction

NM_006904 Protein kinase, 
DNA-activated, 
catalytic 
polypeptide

PRKDC 8q11 Protein 
modification

Table 6.1 (continued)
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Abstract In this chapter we characterized trisomy 21-driven transcriptional altera-
tions in human thymus through gene coexpression network (GCN) analysis. We 
used whole thymic tissue (corticomedullar sections)—obtained at heart surgery 
from Down syndrome (DS) and karyotipically normal individuals (CT)—and a net-
work-based approach for GCN analysis allowing the study of interactions between 
all the system’s constituents based on community detection. Changes in the degree 
of connections observed for hierarchically important hubs in DS and CT gene net-
works corresponded to sub-network changes, i.e. module (communities) changes. 
Distinct communities of highly interconnected gene sets were topologically identi-
fied for DS and CT networks. Trisomy 21 gene dysregulation in thymus may there-
fore be viewed as the breakdown and altered reorganization of functional modules.
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7.1  Introduction

Thymus provides the specialized microenvironment for the proliferation, differenti-
ation, T-cell antigen receptor (TCR) gene rearrangement and T-cell repertoire selec-
tion (Anderson and Takahama 2012). The thymic microenvironment encompasses 
thymic epithelial cells (TEC), fibroblasts, thymic myoid cells, and bone marrow-
derived accessory cells such as B lymphocytes, macrophages and dendritic cells 
(Jablonska-Mestanova et al. 2013). Therefore, T-cell selection involves cellular pro-
cesses driven by coordinate changes in the expression of hundreds of genes in the 
thymus (Macedo et al. 2009; Abramson et al. 2010; Mingueneau et al. 2013).

In Down syndrome (Mégarbané et al. 2009) gene expression dysregulation caused 
by trisomy 21—specifically by gene imbalance dosage involving the Hsa21 region 
in chromosome 21 (Aït Yahia-Graison et al. 2007; Prandini et al. 2007; Korbel et al. 
2009)—causes thymic structural and functional abnormalities. DS patients present 
abnormal thymuses, characterized by lymphocyte depletion, cortical atrophy, and 
loss of corticomedullary demarcation. These long time recognized DS thymic ab-
normalities (Levin et al. 1979; Larocca et al. 1990) are not related to DS precocious 
senescence: DS immune system is intrinsically deficient from the very beginning 
(Kusters et al. 2010). This was recently confirmed by imaging studies. Sonographic 
thymic measurements showed that the majority of DS fetuses have smaller thymuses 
than control (De Leon-Luis 2011). Thymic-toraxic ratio (TT-ratio) evaluations ob-
tained through ultrasound examinations showed that fetuses with trisomy 21 have a 
small thymus, suggesting accelerated thymic involution in utero (Karl 2012).

Measuring the total number of signal joint TCR excision circles per ml blood, 
Bloemers et al. (2011) found out that DS thymus has a decreased thymic output, 
concluding that “reduced thymic output, but not reduced peripheral generation nor 
increased loss of naive T cells, results in the low naive T cell numbers found in DS”. 
Studying the Ts65DN mouse model of DS, Lorenzo et al. (2013) showed that imma-
ture thymocyte defects underlie immune dysfunction in DS and that increased oxi-
dative stress and reduced cytokine signaling impair T-cell development. Since DS 
autoimmune diseases are more represented in DS, Pellegrini et al. (2012) investigat-
ed phenotypic and functional alterations of natural T regulatory cells (nTreg) in DS 
people and found an over-expressed peripheral nTreg population with a defective 
inhibitory activity, what may be correlated with autoimmunity in DS. In the same 
line of research, our group investigated the expression of the autoimmune regulator 
(AIRE) gene in the thymuses of DS children and we found, by immunohistochem-
istry, a reduced expression of AIRE protein in DS thymic tissues (Lima et al. 2011). 
On the other hand, Xu et al. (2013), studying global changes and chromosome dis-
tribution characteristics of miRNAs expression in lymphocytes from DS children by 
high-throughput sequencing technology, discovered that most of the overexpressed 
miRNAs in DS were not Hsa21-derived. Therefore, miRNA abnormal expression in 
DS should be probably associated with the dysregulation of disomic genes caused 
by trisomy 21. This result clearly evidenced the importance of performing global 
transcriptome analysis in DS thymuses in order to characterize GCN changes that 
could better explain the mechanisms involved in DS thymic hypofunction.



1257 Thymus Gene Coexpression Networks

7.2  Gene Expression Analysis in Thymic Tissue

Our previous study showing AIRE decreased expression and global thymic hy-
pofunction in DS (Lima et al. 2011) was limited to a few hundred differentially 
expressed genes and network transcriptional analysis was accomplished without 
considering distinct levels of node hierarchy (i.e. without considering concentric 
node degrees; see Chap. 3). Here we employed a network-based analytical strategy 
that allows the study of GCNs encompassing differentially expressed as well as all 
valid GO annotated transcripts from trisomic and kariotypically normal thymuses, 
leading to the identification of modular transcriptional repertoires distinctive for 
each condition.

7.2.1  Experimental Approach

The mRNA samples used in DNA microarray experiments were extracted from 
fresh corticomedullar sections of thymic tissue obtained at heart surgery from DS 
and karyotipically normal individuals. In this analysis we compared ten Down syn-
drome (DS group) patients with ten patients without DS (control group—CT). All 
patients were gender and age matched (age ranging from 2 to 18 months). The use 
of whole tissue coupled with community structure analysis of gene interaction net-
works (see Sect. 8.3.2) is a strategy that may be adopted for circumventing tissue 
microdissection (Chaussabel and Baldwin 2014).

A total of 12,989 valid GO annotated genes (CO) were obtained after exclusion 
of up to three outliers per gene for each group and comparative quality control of 
featured intensities for all patients by boxplot analysis. Hereafter all valid GO genes 
were uploaded to MeV software version 4.8.1 for statistical analysis. A total of 538 
differentially expressed GO annotated genes (DE) were identified using the Signifi-
cance Analysis of Microarrays (SAM) procedure, all up-regulated in the DS group. 
Coexpression gene networks (GCNs) were obtained for differentially expressed 
genes (DE networks) and for the complete set of GO annotated valid transcripts 
(CO networks).

7.3  Gene Coexpression Networks (GNs): Visualization, 
Analysis and Community Detection

GCNs were inferred for DS and CT groups using DE or CO subsets of genes after 
gene-gene Pearson’s correlation method. A 0.965 link-strength cut-off was adopted 
for DE networks. The resulting networks had 251 genes and 425 links for DS group 
(Fig. 7.1a) or 256 genes and 1218 links for CT group (Fig. 7.1c). We adopted a 
higher link-strength cut-off (0.990) to finalize the CO networks, which had 8753 
genes and 24,744 links for DS group or 8205 genes and 38,925 links for CT group. 
All these networks had scale-free node degree distribution (see Chap. 3).
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Fig. 7.1  Comparative DE networks analysis for DS and CT groups. DE coexpression networks 
for DS (a) and CT (c) groups. Hubs, VIPs and high-hubs are indicated by rectangles, diamonds 
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We developed a methodology for GCN visualization (3D) and analysis (see 
Chap. 3 and Bando et al., 2013) that allows the categorization of network nodes 
according to distinct hierarchical levels of gene-gene connections: hubs are highly 
connected nodes, VIPs have low node degree but connect only with hubs, and high-
hubs have VIP status and high overall number of connections. We classified net-
work nodes as VIPs, hubs or high-hubs by obtaining the node degree, k0, and the 
first level concentric node degree, k1, which takes into account all node connections 
leaving from its immediate neighborhood, then projecting all node values in a k0 vs 
k1 graphic (Fig. 7.2a–7.2d).

7.3.1  Connectivity

Network connectivity k for non-directed networks was calculated by k = 2 L/N, 
where L stands for the number of edges and N for the number of nodes.

and triangles, respectively, in both networks. Hubs, VIPs and high-hubs are red-colored in DS-DE 
network and blue-colored in CT-DE network. Green-colored symbol indicates a common node. 
Circular-shaped blue nodes in DS-DE indicate nodes displaying high-hierarchy in CT-DE. Cir-
cular-shaped red nodes in CT-DE indicate nodes displaying high-hierarchy in DS-DE. b and d: 
Community analysis for DE networks (DS in b and CT in d). The clusters (communities) are 
indicated by different colors

Fig. 7.2  Scatter	plot	of	node	degree	( k0) vs	concentric	node	degree	( k1) measures for DS and CT 
groups. DE networks appear in a (DS group) and b (CT group). CO networks appear in c (DS) and 
d (CT). Hubs, VIPs and high-hubs are indicated by rectangles, diamonds and triangles, respectively
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7.3.2  Community Detection

Community detection in complex networks is usually accomplished by discovering 
the network modular structure that optimizes the modularity measurement. Modu-
larity takes into account the relationship between the number of links inside a com-
munity compared to connections between nodes in distinct communities (Newman 
and Girvan 2004). A diverse range of optimization techniques exist to optimize the 
modularity. Here we applied the method proposed by Blondel et al. (2008) which 
attains good modularity values and at same time presents excellent performance.

Communities can be defined as partition sets of nodes C c c c= …1 2 3, ,  in a net-
work that share more links between those inside them than to those in other parti-
tions. Because connectivity is a relative measurement, which depends on the nature 
of each network, Newman and Girvan (Newman and Girvan 2004) introduced the 
concept of modularity by comparing the connectivity inside each community be-
tween the network and a random realization with the same degree distribution. For-
mally, the modularityQC is defined by equation 7.1.

 

((7.1))

The sum in QC is taken over all pair of nodes ( , )v w  that are in each communityc, 
where Auw  is the adjacency matrix of the network ( Auw = 1  if v  and w  are con-
nected, otherwise Auw = 0), kv is the node degree (number of connections) of node 
v, and m  is the total number of edges of the network. This can be written in more 
general terms of the network by equation 7.2:

 
((7.2))

where

 ((7.3))

and

 ((7.4))

In summary, QC  is the fraction of connections restricted to the same community, 
ec, compared to the total fraction of edges connected to nodes in the community ac. 
Higher modularity values imply better quality of the community organization for a 
partition set C  in a network.
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Most of the methods to detect community generate hierarchical structures. The 
Newman-Girvan method uses the edge betweenness centrality measurement as a 
criterion for removing edges and obtaining connected components that correspond 
to each network partition. This builds a tree of communities with branches occur-
ring every time a component is divided in two. Agglomerative methods start from a 
set of communities, where each node corresponds to a different community, which 
are progressively merged together according to a similarity criterion or to directly 
maximize the change of modularity (Clauset et al. 2004). In both cases, a dendro-
gram of the partition hierarchy is obtained. The optimal set of communities is then 
obtained by a cut for the highest value of modularity.

Figure 7.3 illustrates the hierarchical community structure of a small network. 
Starting from non existent community structure the network is split into two parti-
tions [AB, C] and next into tree by splitting AB into [A, B], therefore resulting 
in the set [A, B, C]. When the modularity of both configurations is calculated, it 
reveals that the one with only two communities present much more community-like 
structure than when considering the other, more granular, partition set.

Fig. 7.3  Example of a network’s community hierarchical structure. The dendrogram indicates two 
realizations of network partitions. One made of communities AB and C, and another where com-
munity AB is split into A and B, thus forming the partition set [A, B, C]
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Community structure is present in many real systems, such as social networks, 
knowledge networks, the Internet, etc. This is no different for gene coexpression 
networks, in which communities can encompass complex mechanisms that work 
together to maintain the cellular processes across different conditions. For example, 
community structure analysis of gene coexpression networks obtained from skeletal 
muscle cells’ transcriptome revealed different biological pathways for Duchenne 
muscular dystrophy patients comparatively to normal individuals (Narayanan and 
Subramaniam 2013). The same modular approach has successfully been used for 
investigating immune response to infections (Banchareau et al. 2012) and vaccines 
(Obermoser et al. 2013) using whole blood transcriptome data sets (reviewed in 
Chaussabel and Baldwin 2014).

7.4  Results

Hubs, VIPs and high-hubs showed network centrality in DS and CT net-
works, what is consistent with the network disease model, where a group of 
nodes whose perturbation (e.g. 21 trisomy) leads to a disease phenotype occu-
pies a central position in the network (Barabási et al. 2011; Bando et al. 2013). 
Moreover, network connectivity is lower in DS networks (DS-DE = 3.386; CT-
DE = 9.516; DS-CO = 2.83; CT-CO = 4.74). Gene hierarchy changes are evident 
in the GCNs presented in Fig. 7.1a and 7.1c and also in the scatter plots presented 
in Fig. 7.2a–7.2d (DE and CO data). While both complete networks (CO) present 
good quality of community structure, with modularity around 0.60, the DE net-
works present significant discrepancy in theirs modularity values. The DS-DE 
is much more modular than the CT-DE network, with modularity values of 0.75 
and 0.41 respectively.

7.4.1  Gene Communities

An overall picture of DE gene communities (modules) is depicted in Fig. 7.1b for 
DS-DE and in Fig. 7.1d for CT-DE networks. DS-CO and CT-CO networks and 
respective communities can be properly visualized only in 3D (see videos 7.1 and 
7.2 http://www.springerimages.com/videos/978-3-319-11984-7). Different node 
colors identify the distinct gene communities. The lower connectivity of DS-DE 
network—also observed for DS-CO in comparison to CT-CO—contrasts with its 
higher modularity. DS modules are more sparsely connected to each other than 
CT modules, what may reflect some dysregulation in cell’s functional organization 
(Barabási et al. 2004; Sahni et al. 2013). A full analysis of these gene communities 
surpasses the scope of this chapter and will be published elsewhere.

http://www.springerimages.com/videos/978-3-319-11984-7
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7.4.2  DE Networks

In this section we briefly discuss the biological functions of some selected hubs, 
VIPs and high-hubs found in DE networks. In the DS-DE network (Fig. 7.1a) two 
high-hubs are clearly identified. The first, PPP1R14C (aliase KEPI) is capable to 
activate the MEK-ERK pathway and therefore to interfere in thymocyte develop-
ment (Gallo et al. 2007), whereas the second, NDUVF3, is a gene overexpressed in 
DS (Pereira et al. 2009) which codes for a protein harboring a peptide sequence that 
can induce phenotypic and functional differentiation of CD8 thymocytes (Sasada 
2001). Two of the VIPs in this network—NFU1 and D2HGDH—are mitochondrial 
enzymes and the third, PTTG1IP, is a gene overexpressed in DS with a function in 
T-lymphocyte activation (Stoika and Melmed 2002). One of the hubs, PIP, codes 
for the prolactin-induced protein and plays a role on the proliferation of thymic 
epithelial and dendritic cells (Barnard et al. 2008), as well as in the suppression of 
glucocorticoid-induced thymocyte apoptosis (Krishnan et al. 2003). The other two 
hubs here considered are: GNPDA2, a regulator of energy metabolism (Yang et al. 
2009) and DOK7, a member of the DOK (downstream of kinase) protein family 
that was not previously found to be expressed in thymic tissues. Interestingly, two 
members of DOK family, DOK1 and DOK2, are involved in T cell homeostasis 
maintenance (Guittard et al. 2009) and DOK4 is a negative modulator of T-cell 
activation (Gérard et al. 2009).

In CT-DE (Fig. 7.1b) the high-hubs are GNPDA2, a gene also found as a hub 
in DS-DE, USO1, involved in ER-to-Golgi transport (Kim et al. 2012), MORC3, a 
gene that regulates cell senescence via p53 (Takahashi et al. 2007) and TMEM59, 
which controls autophagy via LC3 (Boada-Romero et al. 2013). Autophagy is a 
very important process in the immune system: in the thymus, autophagy can modu-
late the selection of CD4+ T-cell clones (Puleston and Simon 2014). The VIPs in 
this network contain relevant genes for thymic function: APP, which, equally to 
TMEM59, controls autophagy via LC3 (Tian et al. 2013), YIPF2, involved in ER-
to-Golgi transport (Tanimoto et al. 2011) HEXB, a gene that causes thymic invo-
lution when mutated (Kanzaki et al. 2010), and FBXL5, a regulator of oxidative 
stress (Ruiz and Bruick 2014). All the hubs in this network are also important for 
thymus functioning. Firstly, CGN, which codes for cingulin, a protein that controls 
claudin-3 expression (Gillemot et al. 2013) and, therefore, exerts an important role 
in AIRE (the autoimmune regulator gene, Mathis and Benoist 2009) expression in 
thymic epithelial cells (Hamazaki et al. 2007; Hollaender 2007). The other hubs 
are CEACAM1, a potent regulator of T-cell stimulation (Kammerer et al. 2001), 
CAPN2, which codes for calpain, an inducer of T-cell apotosis (Ishihara et al. 
2013), and CD59, strongly expressed in Hassall’s corpuscles (Berthelot et al. 2010) 
and involved in T cell polarization (Izsepi et al. 2013).
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7.4.3  CO Networks

The first high-hub in DS-CO network (Fig. 7.2c), MOBKL1A, is a regulator of T-
cell proliferation (Zhou et al. 2008) via MST1/MST2, two kinases that control the 
activation of rho family GTPases and thymic egress of mature thymocytes (Mou 
et al. 2012). The other high-hub is PHC1, a human orthologue of the Drosophila 
polyhomeotic member of polycomb group (PcG), which acts on chromatin remod-
eling and regulation of HOX genes during development (Awad et al. 2013). One 
of the two main VIPs is RBM4, a gene which codes for a multifunctional RNA-
binding protein, involved in alternative splicing of pre-mRNA, translation, and 
micro-RNA-mediated gene regulation, and found to be hypoexpressed in DS brain 
tissue (Markus and Morris 2009). The other VIP is KIA1715, a gene that integrates 
the HOXD gene cluster and has multiple roles in embryonic development (Spitz 
et al. 2003). It is tempting to suppose functional interactions between this gene and 
the high-hub PHC1. The two main hubs in this network are PHF20L1, involved in 
regulating DNMT1 activity and DNA methylation in cells (Estéve et al. 2014) and 
HSPG2, which codes for the pelercan protein, an integrant of the lamimin-5 con-
taning conduits in human thymus, a system responsible for the transport of small 
molecules (Drumea-Mirancea et al. 2006).

The CT-CO network (Fig. 7.2d) contains two main high-hubs, HNRNPA0, 
which codes for a RNA-binding protein with a role in determining hematopoietic 
cell fate (Young et al. 2014) and EDEM-3, which enhances glycoprotein endoplas-
mic reticulum-associated degradation (Hirao et al. 2006).

The three VIPs in this network are involved basic biological functions required 
for thymus functioning, as follows. Firstly comes S100BP, a member of the S100 
gene family, the largest subfamily of calcium binding proteins of EF-hand type 
(Chen et al. 2014) and well expressed in human newborn thymus dendritic cells 
(Jablonska-Mestanova et al. 2013). The next is PTAR1, involved in ubiquitination 
(Kim et al. 2011); a cell process required for the selection of natural regulatory T 
cells (Oh et al. 2013). The third VIP is SNAP23, a gene involved in both the de-
termination of cell polarity (Low et al. 2006) and phagosome formation and matu-
ration, presumably by mediating SNARE-based membrane traffic (Sakurai et al. 
2012). Finally we have two CT-CO hubs, also playing important roles. CHST7 is 
a gene involved in apoptosis control of lymphoid cells (Nakayama et al. 2013) and 
INVS codes for inversin, a protein that interacts with calmodulins (Morgan et al., 
2002) and thus is involved in the control of apoptosis in thymocyte development 
(Liang et al. 2007) and directional cell migration processes (Veland et al. 2013).

7.5  Discussion and Conclusions

The data presented here show that thymus global hypofunction in Down syndrome 
correlates with distinctive GCN topology and node hierarchy. The comparative 
genetic and topological analysis of DE networks disclose how significant is the 
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impact of trisomy 21 on thymus functioning. The high modularity of DS-DE net-
work contrasts with its reduced connectivity, thus indicating a certain degree of 
disorganization of modular interactions caused by gene dosage imbalance. Since 
the CO networks are more similar in their connectivity and modularity (although 
not in hubs’ hierarchy), the DS-DE network may represent the “ground zero”, where 
trisomy-driven gene dysregulation strongly impacted the normal gene-gene interac-
tions, with the derived “shock-waves” reflecting on the DS-CO network.

In conclusion, alterations observed in DS networks regarding connectivity, mod-
ularity, and communities’ structure (this latter aspect not fully discussed here) reflect 
chromosome 21 dysregulation and its consequences. As a whole, the results indicate 
that GCNs’ functional and topological modules correspond, and that trisomy 21 
may be interpreted as the breakdown and altered reorganization of functional mod-
ules. This mechanism is coherent with the network-based model of human disease 
(Barabási et al. 2011; Sahani et al. 2013) and has been experimentally confirmed 
both for chronic non-communicable diseases (Bando et al. 2013; Narayanan and 
Subramaniam 2013) and for infectious diseases (Chaussabel and Baldwin 2014).
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Abstract Autoimmune diseases are a group of different inflammatory disorders 
characterized by systemic or localized inflammation, affecting approximately 
0.1–1 % of the general population. Several studies suggest that genetic risk loci are 
shared between different autoimmune diseases and pathogenic mechanisms may 
also be shared. The strategy of performing differential gene expression profiles in 
autoimmune disorders has unveiled new transcripts that may be shared among these 
disorders. Microarray technology and bioinformatics offer the most comprehen-
sive molecular evaluations and it is widely used to understand the changes in gene 
expression in specific organs or in peripheral blood cells. The major goal of tran-
scriptome studies is the identification of specific biomarkers for different diseases. 
It is believed that such knowledge will contribute to the development of new drugs, 
new strategies for early diagnosis, avoiding tissue autoimmune destruction, or even 
preventing the development of autoimmune disease. In this review, we primarily 
focused on the transcription profiles of three typical autoimmune disorders, includ-
ing type 1 diabetes mellitus (destruction of pancreatic islet beta cells), systemic 
lupus erythematosus (immune complex systemic disorder affecting several organs 
and tissues) and multiple sclerosis (inflammatory and demyelinating disease of the 
central nervous system).

8.1  Autimmune diseases have been prominent  
in the medical-scientific scenario Have been 
Prominent in the Medical-Scientific Scenario

The main function of immune system is the protection of the organism against in-
vasion of pathogens and restore tissue integrity. Autoimmune diseases are a group 
of diverse inflammatory disorders characterized by systemic or localized inflam-
mation, usually leading to ischemia and tissue destruction. Therefore, systemic 
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autoimmune disorders encompass diseases caused by a fault in the immune system, 
losing its ability to identify particular self-antigens. In this process, a chronic over-
reactivity of B and T cells may arise producing unsafe signals released for cells or 
tissues when they are in dangerous and have abnormal cell death (Kamradt and 
Mitchison 2001; Matzinger 2002). Other changes occur in the immune system re-
sulting from this failure, such as loss of inflammation control resulting in continu-
ous immune activation without any infection.

The knowledge on the pathogenesis of autoimmune diseases has not yet been 
fully elucidated. Some studies suggest that genetic risk susceptibility factors are 
shared between different systemic autoimmune diseases, and the pathogenic mech-
anisms may be similar (Zhernakova et al. 2009). However, different loci have been 
identified as disease specific, suggesting the presence of many immunopathogenic 
pathways (Cho and Gregersenet 2011).

Although many genetic loci for autoimmune diseases were described, additional 
elements have been identified and associated with development of autoimmunity. 
Approximately 0.1–1 % of the general population develops autoimmune diseases 
during life. Considering first-degree relatives, this incidence increase five times, 
and in monozygotic twins this rate is five-fold increased. Thus, the risk is increased 
with increasing genetic similarity to an affected individual. However, the highest 
autoimmune disease susceptibility rate among monozygotic twins is not higher 
than 20–30 %, showing that there are additional elements and/or multiple factors 
involved in these processes, ranging from genetic to environmental factors (Mackay 
2009). Together, these factors are influencing this rate and may play an important 
role on clinical manifestations in a genetically predisposed individual. In addition, 
some autoimmune diseases are influenced by hormonal factors and may affected 
more women than men, i.e., systemic lupus erythematosus, that affects 80–90 % 
more women than men, and the peak of its incidence occurs during childbearing 
ages (Straub 2007).

There are many autoimmune diseases and in this revision we will devote special 
attention to three of them: type 1 diabetes mellitus, systemic lupus erythematosus 
and multiple sclerosis. These three diseases have been prominent in the medical-
scientific scenario, because recent studies reveal important information about their 
transcriptome, and this knowledge may contribute for a better understanding of dis-
ease features, as well as for the development of new drugs, new diagnostic methods 
and discovery of biomarkers for early diagnosis.

8.1.1  Type 1 Diabetes Mellitus

Diabetes mellitus is one of the most studied diseases and a great amount of infor-
mation is available in public databases regarding genetic association, meta-analysis 
of diabetes and associated complications. Type 1 diabetes (T1D) accounts for ap-
proximately 10 % of all cases of diabetes, affecting individuals under the age of 30, 
but can also manifested later (Geenen et al. 2010). T1D is caused by an autoimmune 
mechanism against pancreatic beta cells, resulting in decrease and/or disruption 
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of insulin production. It is estimated that 80–95 % of pancreatic beta cells are de-
stroyed when T1D is diagnosed. Until now, T1D affects more than 300 million of 
adults in worldwide populations, and this rate will be increase to 440 million by 
2030 (Shaw et al. 2010). Thus, T1D fits as an example of an autoimmune disease, 
in which target organ destruction is allied to the presence of disease-specific target 
organ autoantigens and autoantibodies, and the disease is considered to be a T cell-
mediated autoimmune disorder (Battaglia 2014). The knowledge of the T1D still 
has significant shortcomings, particularly about asymptomatic early stages of auto-
immune attack. This occurs because the difficult accessibility to the pancreas. The 
role of islet autoantibodies is still unknown, although they have important function 
as serological marker for the disease (Achenbach et al. 2004). Actually, autoanti-
bodies for islet cells antigens (ICAs), glutamic acid decarboxylase (GAD), islet 
antigens insulin (IAA) and protein tyrosine phosphatase-like protein IA-2 (IA-2 A) 
are used for the prediction and progression of T1D (Achenbach et al. 2004). In 
recent years, other biomarkers have been used like as autoantibodies against the 
zinc efflux transporter ZnT8 (Herold et al. 2009; Wenzlau et al. 2007). However, 
it is necessary to discovery new biomarkers capable to diagnosis T1D before the 
complete islet cell destruction. Nowadays, it is known that diabetes is a polygenic 
disease resulting of a highly selective autoimmune response that causes inflamma-
tion (insulitis) followed by destruction of insulin-secreting pancreatic beta cells, 
leading to deregulation of glucose metabolism and insulin deficiency (Erlich et al. 
2008; Dib et al. 2008; Geenen et al. 2010).

Despite the identification of several risk factors for T1D, its etiology is still un-
known. The early prediction is still missing due to insufficient predictive power 
of the individual risk factors (Purohit and She 2008). Moreover, Jayaraman et al. 
(2013) showed that chromatin remodeling resulted in simultaneous down-regula-
tion of several inflammatory genes and up-regulation of many genes responsible for 
a set of cellular functions, including glucose homeostasis. Thus, a complex disease 
like T1D involves so many genes that contribute in a different manner in multiple 
signaling and metabolic pathways.

Furthermore, several genes and gene regions distributed throughout the genome 
have been reported in association with T1D in population, family and linkage stud-
ies. The strongest genetic susceptibility contribution comes from the human leuco-
cyte antigen complex (HLA) region at chromosome 6p21 (IDDM1), responsible 
for	up	to	40–50	%	of	T1DM	susceptibility,	and	from	the	insulin	gene	( INS) region 
(IDDM2) (Pugliese and Miceli 2002). Moreover, three principal cellular types, i.e., 
macrophages, dendritic cells and lymphocytes are involved on T1D pathogenesis, 
acting in a complex way contributing to the loss of tolerance against pancreatic 
autoantigens, including: (i) decreased or very poor expression of insulin in thymus; 
(ii) molecules encoded by the HLA-DQA1*05:01, HLA-DQB1*03:02 and *02:01 
and HLA-DRB1*03/*04 alleles that may mediate the presentation of autoantigens, 
contributing to the development of anti-GAD, insulin (IAA), islet antigen 2 (IA2A) 
and ISS autoantibodies.; (iii) deficient immunoregulation, mediated by specific sur-
face and intracellular molecules, including IL-2, IL-2RA, IL-2RB, CTLA-4, PTPN-
2, PTPN-22; iii) decreased quantity of regulatory T cells; (iv) function-modified 
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molecules involved on innate immune response, (v) regulation by invariant natural 
killer-like T (iNKT) cells (Cipolleta et al. 2005; Sia 2006; Li et al. 2007; Chentoufi 
et al. 2008; Knip and Siljander 2008; McDevitt and Unanue 2008; Tisch and Wang 
2008; Karumuthil-Melethil et al. 2008; Todd 2010; Pociot et al. 2010; Buschard 
2011; Novak and Lehuen 2011).

As the course of insulitis, the progression of diabetes involves interactions be-
tween environmental factors (nutrition, viral infections, etc) and genetic background 
of the patient. Therefore, it is important to identify the molecular mechanisms that 
are involved on the survival of pancreatic beta cells and production of inflammatory 
mediators such as chemokines and cytokines. In this context, several genes were 
identified by genome wide association studies (GWAS) (Barrett et al. 2009; Nerup 
et al. 2009; Plagnol et al. 2011) and by transcriptome analyses in animal models 
(Grinberg-Bleyer et al. 2010; Fornari et al. 2011), in peripheral blood mononuclear 
cells (Rassi et al. 2008; Han et al. 2011; Collares et al. 2013a, b), in pancreatic beta 
cells (Planas et al. 2010) and in whole peripheral blood cells (Reynier et al. 2010), 
and using these approaches several other genes have been associated with T1D.

In 2009, Barrett et al., using GWAS showed more than 40 loci containing prob-
able contributors to T1D (McDevitt and Unanue 2008). Generally, it is assumed that 
most if not all of the candidate genes to T1D modulate the immune system (Con-
cannon et al. 2009). Following this hypothesis, the beta cells undergo a process that 
starts in the pancreas, but is regulated elsewhere, even though 61 % of the genes re-
sponsible for T1D are expressed in human pancreatic islets (Eizirik et al. 2012). An-
other interesting observation is that the expression of these genes is modified after 
exposure to proinflammatory cytokines or double-stranded sRNA (by-product re-
sulting from viral infection) that can contribute for T1D (Eizirik et al. 2009; Moore 
et al. 2009; Colli et al. 2010; Eizirik et al. 2012). Two genes deserve special men-
tion as they play an important role on the production of cytokines/chemokines and 
apoptosis of pancreatic beta cells: IFIH-1 (Colli et al. 2010) and PTPN-2 (Moore 
et al. 2009; Colli et al. 2010; Santin et al. 2011).

At least 3000 genes associated with inflammation, innate immune response and 
apoptosis have their expression controlled by cytokines. In human islets, some very 
relevant cytokine and chemokine genes are induced, such as CCL2, CCL5, CCL3, 
CXCL9, CXCL10, CXCL11, IL-6 and IL-8 (Eizirik et al. 2012). Among them, the 
CCL2 and CXCL10 molecules attract macrophages and may be involved on the 
recruitment of immune cells at the beginning of insulitis.

The gene expression profiles have unveiled new transcriptional alterations in 
several disorders. Microarray technology and bioinformatics offer the most com-
prehensive molecular evaluations and it is widely used to understand the changes 
in gene expression in specifics organs, including in pancreas during the course of 
T1D in NOD mice (Vukkadapu et al. 2005). The great advantage of this technology 
is that it enables the achievement of a set of data from different experiments; these 
data can be combined into a single database, allowing the comparison of gene ex-
pression profiles between different samples. These analyses have led to define new 
transcriptional changes associated with many autoimmune diseases, including T1D. 
The major goal of transcriptome studies is the identification of specific biomarkers 
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for different diseases. Using microarray technologies, Collares et al. (2013a) evalu-
ated the transcriptome of diabetic patients, including T1D, type 2 diabetes (T2D) 
and gestational diabetes (GDM) patients, to see specific expression profile signa-
tures of each type of diabetes. The results revealed that the overall gene expression 
profile is characteristic for each group of diabetic patients and that gene expression 
profile of GDM was closer to T1D than to T2D. An in silico analysis showed that 
the similarities observed in the transcriptional profile of GDM and T1D were due 
to the role of genes associated with inflammation (Evangelista et al. 2014). The 
higher expression of these genes in some T1D and GDM patients seems to influence 
the global gene expression pattern of diabetic patients. Indeed, several important 
molecular mechanisms identified in this cluster account for an intricate array of 
inflammation pathways. Using the DAVID database (http://david.abcc.ncifcrf.gov/) 
it is possible to obtain functionality of these genes, and observed the involvement 
of modulated genes in different biological functions. Our group observed (data not 
published), in a meta-analysis study of T1D, T2D and GDM that induced genes 
were grouped into five major groups of biological function: (i) development of mul-
ticellular organism (20.3 %), (ii) signal transduction (17.9 %), (iii) stress response 
(12.2 %) (iv) cell differentiation (10.7 %), (v) processes the immune system (6.8 %). 
About repressed genes, we showed that these genes were clustered into three main 
biological processes: (i) regulation of metabolic processes (30 %), (ii) biosynthetic 
processes (26.9 %), (iii) transcriptional processes (22 %) (Fig. 8.1).

Performing a more restrictive analysis, we considered just modulated genes that 
showed fold change ≥ 2 for all comparisons of the three groups of diabetes, and we 
observed 10 most significant genes, of which seven were induced in GDM and 
T1D and repressed in T2D and three genes were repressed in GDM and T1D and 
induced in T2D. Taking into account these 10 genes, Fig. 8.2 shows the location of 
each gene.

In terms of gene expression regulation, the non-coding RNAs have been identi-
fied as important or even major regulators of gene expression and include small 
microRNA (miRNA) and long noncoding RNA (lncRNA) (Mattick and Makunin 
2006; Ponting et al. 2009). Some miRNAs have been shown as key players involved 
in pancreatic development and homeostasis. Among them, miR-375 has been con-
sidered a key miRNA that regulates B-cell insulin secretion and, hence, overall 
glucose homeostasis of the body (Dumortier and Van Obberghen 2012). MiRNAs 
play regulatory roles in many biological processes associated with diabetes, includ-
ing adipocyte differentiation, metabolic integration, insulin resistance and appetite 
regulation (Krützfeldt and Stoffel 2006). The role of miRNAs in diabetes has been 
associated with several pathogenic features. For example, miR-410, miR-200a and 
miR-130a regulate secretion of insulin in response to stimulatory levels of glucose, 
and overexpression of miR-410 enhances the levels of glucose-stimulated insulin 
secretion (Hennessy et al. 2010). MiR-30d is upregulated in pancreatic beta-cells 
and collaborates for increasing insulin gene expression (Tang et al. 2009a) and miR-
9 acts in the fine-tuning of glucose metabolism (Plaisance et al. 2006). An important 
miR responsible for insulin gene expression and secretion is miR-375 (El Ouaamari 
et al. 2008; Poy et al. 2004).
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In a recent study, the analysis of mRNA/miRNA signatures encompassing 
T1D, T2D and GDM patients, pinpointed some miRNAs shared among the three 
types of diabetes; selected miRNAs specific for each type of diabetes; and identi-
fied non-described miRNAs associated with each type of diabetes (Collares et al. 

a

b

Fig. 8.1  Biological function of the significant and differentially expressed genes (3747 tran-
scripts), which were modulated after comparing GDM, T1DM and T2DM. In panel A are repre-
sented upregulated transcripts (from GDM to T1D to T2D), which were clustered into five groups 
according to their biological functions: (i) development of multicellular organism (20.3 %), (ii) 
signal transduction (17.9 %), (iii) stress response (12.2 %) (iv) cell differentiation (10.7 %), v) 
immune system processes (6, 8 %). Panel B shows the downregulated transcripts, which clustered 
into three main groups: (i) regulation of metabolic processes (30 %), (ii) biosynthetic processes 
(26.9 %) (iii) transcriptional processes (22 %)
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2013b). The authors showed 9 miRNAs shared among the three types of diabetes, 
including hsa-miR-126, hsa-miR-144, hsa-miR-27a, hsa-miR-29b, hsa-miR-1307, 
hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-199a-5p, and hsa-miR-342-3p, and 
suggested that these miRNAs are associated with diabetes per se. For T1D, they 
pinpointed some miRNAs as candidate to be involved in T1D and the only miRNA 
linked to glucose metabolism was let-7f, which was previously suggested as a po-
tential therapy for T2D (Frost and Olson 2011).

Therefore, there are many studies on the transcriptome on autoimmune diabetes; 
however, knowledge is still at the beginning of a long journey. Although linkage 
studies have been associated with transcriptome and microRNAs and, most recently 
proteomes, many issues are still studied to unveil the intricate mechanisms associ-
ated with the development of diabetes. It is believed that such knowledge will con-
tribute to the development of new drugs, new strategies for diabetes care, including 
early diagnosis (before there is destruction of most of the pancreatic beta cells), 
avoiding autoimmune destruction of pancreatic beta-cells, or even preventing the 
development of T1D.

Fig. 8.2.  Location of the modulated genes obtained from meta-analysis of the gene profiles 
obtained	 for	GDM,	T1D	 and	T2D	patients,	 showing	 those	 upregulated	 ( red) and those down-
regulated	( green) genes
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8.1.2  Systemic Lupus Erythematous

Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder character-
ized by the presence of high amounts of circulating immune complexes, leading to 
accumulation of organ damage over time as a result of persistent tissue inflamma-
tion. SLE involves the activation of the innate and adaptive immune response and 
usually is considered a severe and potentially life-threatening disease, which may 
represent a therapeutic challenge because of its heterogeneous organ manifestations. 
The central features of SLE encompass T- and B-cells abnormalities that could lead 
to autoantibody production. Innate immune cells produce type 1 interferon (IFN) 
that has a central role in systemic autoimmunity and in the activation of B and T 
cells. Autoantibodies produced by B-cells stimulate dendritic cell IFN production, 
encompassing the role of innate and adaptive systems. On the other hand, infectious 
agents combined with genetic factors may serve as an initial trigger for autoimmu-
nity hyperactivity and development of SLE (Crow 2008). Patients may present a 
variety of clinical manifestations and immunological features. Thus, it may cause 
many symptoms as inflammation of nervous system, nephritis, leukopenia, arthritis 
and skin rashes (Petri 1995). SLE pathogenesis involves an increased production of 
immune complexes and an excess of innate immune activation involving Toll-like 
receptors and type I interferon, which in concert yield an abnormal activation of lym-
phocytes. A special attention has been devoted to SLE as a consequence of elevated 
mortality rate that has decreased over the past 30 years, but is still high worldwide 
(Bertsias et al. 2010). Among SLE patients, women are nine times more affected than 
men, suggesting that sex-related factors are crucial in the development of the disease 
(Schwartzman-Morris and Putterman 2012; Weckerle and Niewold 2011).

Genome-wide association and linkage studies have revealed over 40 genes asso-
ciated with SLE and loci linked to pathways of immune system regulation, tissue re-
sponse to injury, endothelial function and other yet undefined functions (Moser et al. 
2009; Deng and Tsao 2010; Guerra et al. 2012). In addition, as in other autoimmune 
diseases, genetic risk factors for SLE include alleles of the human leukocyte antigen 
(HLA) region, and other genes including IRF5, STAT4, BLK, TNFAIP3, TNIP1, 
FCGR2B, and TNFSF13 (Koga et al. 2011). These SLE susceptibility genes are also 
involved in other autoimmune diseases and the genetic polymorphism of cytokines 
may deregulate lymphocyte activity.

Despite numerous studies, the etiology of SLE remains uncertain and disease 
pathogenesis has been associated to the interaction of genetic, epigenetic and envi-
ronmental factors (Liu and Davidson 2012). Additionally, exposure to viruses and 
bacterial infections, and also ultra-violet radiation are known to trigger SLE (Doria 
et al. 2008). In terms of the genetic risk for developing SLE, only 10–20 % of the 
cases can be explained by heritability, and genetic variability of individuals have a 
smaller contribution. The great challenge of the studies on lupus is the identifica-
tion of these variants that are, in 90 % of the cases, in non-coding, intronic or inter-
genic regions (Moser et al. 2009; Deng and Tsao 2010; Guerra et al. 2012; Costa 
et al. 2013; Kilpinen and Dermitzakis 2012). Moreover, in monozygotic twins, the 
concordance rate is 24–69 % and in dizygotic twins is 2–5 % (Jarvinen et al. 1992; 
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Deapen et al. 1992), evidencing the key role of environmental factors in the de-
velopment of SLE. Thus, the role of the environment on SLE risk is overt by the 
high disagreement rate among monozygotic twins. More specifically, there were no 
genomic differences between monozygotic twins, but exist some epigenomic and 
gene expression variations that may provide evidences as how the candidate genes 
exert their roles in the pathogenesis of SLE (Furukawa et al. 2013). Environmental 
factors mediate epigenetic effects, i.e., DNA/RNA methylation and histone modifi-
cation, that may influence the expression of miRNAs, added to microRNA effects, 
regulate gene expression. Maybe this variation on epigenetic factors should explain 
part of the missing heritability (Kilpinen and Dermitzakis 2012; Costa et al. 2013).

Gene expression studies cover genetic and epigenetic effects and are important to 
identify deregulation of molecular and cellular pathways in SLE, which are respon-
sible for its effects on phenotype. The term epigenetics refers to changes in the DNA 
or surrounding chromatin that may alter gene expression, but without modification 
on the genetic composition (Mattick et al. 2010). In this context, peripheral blood 
mononuclear cells (PBMC) have been used in large scale. Studies with PBMC have 
shown interesting results when healthy individuals were compared to SLE patients. 
For instance, the signature of interferon (IFN) is very characteristic and more prom-
inent in patients with more active and severe form of SLE. Any abnormalities of B 
cells, autoantibody production, complement activation and production of type 1 in-
terferon (IFN) are very important in the SLE pathogenesis (Crow and Kirou 2004). 
In special, the production of IFN-alfa may be detected in serum (Bengtsson et al. 
2000) in specific phenotypes of active disease, i.e., several SLE patients have high 
levels of type I IFN in the circulation (Weckerle et al. 2011). Microarray analysis 
showed overexpression of IFN-alfa-regulated genes in SLE patients, including the 
type 1 IFN signature (Crow and Wohlgemuth 2003), and many SLE families with 
high levels of IFN-alfa have been clustered (Niewold et al. 2007). Moreover, it has 
shown that viral infection treated with IFN-alfa may contribute to de novo SLE de-
velopment, which disappears when treatment is discontinued (Niewold and Swedler 
2005; Ronnblom et al. 1990).

Even when considered the subpopulations of purified cells of peripheral blood 
mononuclear cells, there is a unique pattern of expression common among these 
subpopulations, which is the signature of interferon expression. A specific signa-
ture has been identified in SLE T CD4+ cells, involving IFN transcripts, and most 
differentially expressed genes in these cells had promoters with binding sites for 
interferon regulatory factor (IRF) -3 and -7 (Lyons et al. 2010; Li et al. 2010). The 
involvement of IFN and IFN-induced genes also appear when evaluating target or-
gan or tissue. For example, comparing SLE patients with rheumatoid arthritis or os-
teoarthritis, is observed, in the transcriptome of the synovial membrane, induction 
of expression of IFN induced genes and repression of genes involved in extracel-
lular matrix homeostasis (Toukap et al. 2007).

However, considering SLE, the evaluation of bone marrow is more informative 
than PBMC, since bone marrow is a central lymphoid organ with hematopoietic and 
immunoregulatory function and exhibits a variety of histopathological abnormali-
ties in SLE (Voulgarelis et al. 2006). In 2008, Nakou et al. showed the microarray 
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analysis of the bone marrow, in which it was possible to visualize the clear differ-
entiation between active from inactive SLE. Using bioinformatics and evaluating 
bone marrow cells, pathways related with cellular growth, cell survival and immune 
reactions, were identified playing important role in the pathogenesis of SLE (Nakou 
et al. 2010). In addition, some studies have been done in platelets and microarray 
using platelets from SLE patients versus health individual revealed increased ex-
pression of genes encoding cytokines, chemokines and proteins involved in apop-
tosis, and overexpression of type I IFN-regulated genes (Lood et al. 2010). These 
studies confirm the type I INF-related genes expression profile in platelets from 
SLE patients, as well as its related proteins. Regardless of the biological material 
studied, several lines of evidence show that IFN is extremely important for SLE and 
its expression is induced in tissues from SLE patients. Approximately 60 % of pa-
tients exhibit increased expression of genes induced by type 1 IFN, which is directly 
associated with the disease activity (Baechler et al. 2003; Bennett et al. 2003; Han 
et al. 2003; Kirou et al. 2004; Kirou et al. 2005; Feng et al. 2006). In addition, the 
signaling pathways induced by type 1 IFN are also more activated in SLE (Yao et al. 
2009). Grammatikos et al. (2014) showed also three important overexpressed genes 
in SLE patients: (i) IL10 (interleukin 10) that is involved on B cells maturation and 
antibody production; (ii) CD70, which is expressed on activated T cells and is in-
volved in T cell proliferation; iii) OAS2	(2′–5′-oligoadenylate	synthetase	2),	which	
is an interferon-inducible gene. Other important gene that has been studied in SLE 
patients	is	interferon	regulatory	factor	5	( IRF5), in which polymorphisms have been 
shown to confer risk or protective effect in SLE. Recent data have shown charac-
teristic and differential gene expression signatures between SLE patients and health 
individuals, including the identification of IRF5-SLE risk haplotype and defined the 
four most abundant haplotypes in SLE patients (Stone et al. 2013). Furthermore, the 
gene expression profile studies include induction of specific transcripts of granu-
locytes, repression of genes related to DNA repair, differential expression of genes 
involved in cell apoptosis and motility, as well as autoimmune gene signature dif-
ferentiating SLE patients and unaffected first degree relatives (Baechler et al. 2003; 
Han et al. 2003; Rus et al. 2004; Maas et al. 2005; Lee et al. 2011).

Many transcription factors were shown to be crucial for immune system and their 
differences in the expression and activity may imply in discovering novel biomark-
ers in some diseases, including SLE. Comparing levels of transcription factors in 
PBMC of SLE patients, Sui et al. (2012) found 92 differentially expressed transcrip-
tion factors, and indicated activator protein-1 (AP-1), Pbx1 and myocyte enhancer 
factor-2 (MEF-2) as candidates involved in pathogenesis of SLE and new diagnosis 
biomarker for this disease. The transcription factor FOXO1 was also related to SLE, 
which was downregulated in PBMCs from SLE and rheumatoid arthritis patients 
(Kuo and Lin 2007). The transcript family FOXO involves transcription factors 
that play an important role in controlling lymphocyte activation and proliferation. 
A member of nuclear factor (NF)-kB/Rel family of transcription factors, c-Rel, was 
found in higher levels in PBMCs from SLE patients (Burgos et al. 2000). Since 
cytokines are produced by T-help cell 1 (Th1) and 2 (Th2), probably transcrip-
tion factors related to T-help cells must have an important role in SLE (Foster and 
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Kelly 1999). The principal transcription factors for differentiation of Th1 and Th2 
are T-bet and GATA-3, that were found overexpressed and underexpressed in SLE 
patients, respectively (Chan et al. 2006; Lit et al. 2007). Other transcription factors, 
including AP-1, NF-kB, and IRF5 increase STAT-4 expression, which risk haplo-
type for SLE is overexpressed (Remoli et al. 2007) and is important for type 1 IFN 
receptor signaling. Moreover, the IRF5 is mediator of Toll-like receptor-triggered 
expression of proinflammatory cytokines such as type 1 IFN and TNF-alfa (Kawai 
and Akira 2006).

Regarding the control of gene expression within the context of SLE, the levels 
of RNA may be controlled by epigenetic mechanism including microRNAs, which 
usually acts by degradation of target mRNA or inhibiting its translation. Many stud-
ies have reported microRNAs deregulation in SLE and more than 42 differentially 
expressed microRNAs were detected in PBMCs from SLE patients, and some of 
them were pinpointed as biomarker candidates. It has been demonstrated that mi-
croRNAs deregulation are implicated in different systemic autoimmune diseases 
(Stagakis et al. 2011). MiR-21 acts partly through inhibition of PDCD4 (selective 
protein translation inhibitor of genes involved in immune responses) and it was 
found upregulated in T and B-cells (Stagakis et al. 2011) and in CD4T cells (Pan 
et al. 2010) of SLE patients comparing to control group, suggesting it as future 
biomarker for SLE.

An increased expression of miR-224 (Lu et al. 2013), miR-148a (Pan et al. 2010), 
miR-15 (Yuan et al. 2012), miR-142-3p and miR-181a (Carlsen et al. 2013), miR-
189, miR-61, miR-78, miR-21, miR-142-3p, miR-342, miR-299-3p, miR-198 and 
miR-298 (Dai et al. 2007) have been described in patients and animal models. How-
ever, many studies have shown downregulation of different microRNAs in SLE pa-
tients, including: miR-146a (Tang et al. 2009), miR-145 in T cells (Lu et al. 2013), 
miR-155 in serum and urine from SLE patients (Wang et al. 2010), miR-181a in 
pediatric patients (Lashine et al. 2011), miR-19b and miR-20a in monocytes (Teruel 
et al. 2011), miR-125a (Zhao et al. 2010), miR-17, miR-20a, miR-106a, miR-92a, 
and miR-203 in the circulation (Carlsen et al. 2013), miR-196a, miR-17-5p, miR-
409-3p, miR-141, miR-383, miR-112 and miR-184 in PBMCs (Dai et al. 2007).

In the context of SLE, some specific knowledge about some microRNAs and 
their target genes may help to develop new drugs and diagnostics. For example, 
the decreased expression of miR-145 and induction of its target protein activator of 
transcription-1 (STAT-1), seems to be associated with lupus nephritis, and may con-
tribute to the immunopathogenesis of SLE (Lu et al. 2013). MiR-146a, which tar-
gets STAT1 and IRF5 in innate immune cells and is negative regulator of type 1 IFN 
and TLR7 signaling pathways, was described as repressed compared to controls 
(Tang et al. 2009b). Some reports show microRNAs, such as miR-148a, miR-126, 
miR-21, and miR-29b downregulating, directly or indirectly, DNA methyltransfer-
ase-1 expression and, thus, contributing to global hypomethylation observed in SLE 
(Deng et al. 2001; Pan et al. 2010; Zhao et al. 2011; Layer et al. 2003; Qin et al. 
2013). MiR-125a is involved in inflammatory chemokine pathway and contributes 
to higher expression of RANTES, an inflammatory chemokine, indicating that this 
miR can be used as a novel target for SLE treatment (Zhao et al. 2010). Thus, it is 
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believed that many of these microRNAs and other yet to be described may be used 
as biomarkers of SLE.

8.1.3  Multiple Sclerosis

Multiple sclerosis (MS) is a common, severe, chronic inflammatory autoimmune 
and demyelinating disease of the central nervous system (CNS), due to immune re-
action against myelin proteins, mainly affecting white matter in which autoreactive 
T cells attack the myelin-oligodendrocyte complex (Noseworthy et al. 2000). Gen-
erally, it begins at third or fourth decade of life, affects more women (60 % of MS 
cases) than men (Weinshenker 1994), and approximately 80 % of MS patients have 
relapsing-remitting MS form (Lublin and Reingold 1996). The role of autoimmu-
nity becomes clear by the presence of autoreactive T cells for myelin components 
of CNS and peripheral blood of MS patients. The etiology of MS is still unknown; 
however, evidence indicates a multifactorial and complex nature, where genetic and 
environmental factors may influence their onset (Noseworthy et al. 2000). In addi-
tion, evidence pinpoints for polygenic susceptibility and multiple environmental 
triggering factors (Poo 2001).

It is believed that T lymphocytes are activated at lymph nodes in the periphery 
and bind to receptors on endothelial cell, continuing to cross the blood brain bar-
rier into the interstitial matrix (Karpuj et al. 1997). Activation of T cells induce the 
release of cytokines the further opening access to the CNS through the blood-brain 
barrier, stimulating chemotaxis, resulting in a second recruitment of inflammatory 
cells, and leakage of plasma proteins into the CNS, triggering a series of mecha-
nisms responsible for myelin damage. The main pathological feature in MS is the 
plaque, a well-demarcated white matter injury histologically characterized by in-
flammation, T cells and macrophages, demyelination and gliosis, and axonal loss 
(Lucchinetti et al. 1998).

Current knowledge of MS allows the formation of the concept of circulating 
T-cell receptor-selected T cells in MS and that CD8+ T cells may be essential in 
the pathophysiology of the disease. The study of abnormalities of blood T cells 
in MS may contribute to better understanding of the disease and the discovery of 
new drugs against MS (Laplaud et al. 2004). Studying monozygotic twins and 
observing the differences in the manifestation of MS, it has been interpreted that 
this difference was due to the influence of the environment, which is considered 
of great importance in this autoimmune disease (Mumford et al. 1994; Sadovnick 
et al. 1996; Willer et al. 2003; Nielsen et al. 2005; Islam et al. 2006; Chitnis 2007; 
Oksenberg et al. 2008). However, the genetic influence is very important for disease 
development.

In genetically determined diseases, the genetic component is valued at higher 
relative risk of siblings of affected individual presenting the same disease, and there 
is also a higher concordance rate in monozygotic than in dizygotic twins (Sadovnick 
and Ebers 1993; Willer et al. 2003). Considering MS, the most striking susceptibility 
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genes are encoded at the major histocompatibility complex MHC, especially 
class II alleles (Dyment et al. 2004).	 The	 HLA-DR2	 phenotype	 ( DRB1*15:01-
DQB1*06:02) has been described in different populations (Sadovnick and Ebers 
1993; Epplen et al. 1997; Barcellos et al. 2003). It is believed that there are specific 
standards of ethnic, environmental or both association patterns, wherein HLA-DRB1 
alleles may have different behavior in different environmental contexts (Brum et al. 
2007). Furthermore, the allele group DRB1*15 was suggested as significant fac-
tor MS susceptibility and development (Kaimen-Maciel et al. 2009), as previously 
demonstrated in the Brazilian Caucasian population (Brum et al. 2007).

Many research studies of gene expression on MS have been performed using 
brain tissue from patients, and gene profile may be altered in acute, chronic or silent 
lesions or normal tissue. The most important discoveries of this period was a set of 
16 genes related to autoimmunity, with seven of them associated with SLE and two 
associated with T1D (Tajouri et al. 2007). However, MS PBMCs are also widely 
used for obtaining mRNA for gene expression studies.

Approximately 300 differentially expressed genes were detected in a study done 
in PBMCs of MS patients (Bomprezzi et al. 2003). Among them, overexpression 
of	 (i)	 platelet	 activating	 factor	 acetyl	 hydrolase	 ( PAFAH1B1), a gene associated 
with brain development and chemoattraction during inflammation and allergy; (ii) 
tumor	necrosis	factor	receptor	( TNFR or CD27), which is co-stimulator for T cell 
activation and fundamental for immune response development; (iii) T cell receptor 
( TCR), crucial for T cell mediated immune response and it was associated with MS 
susceptibility (Beall et al. 1993);	(iv)	zeta	chain	associated	protein	kinase	( ZAP70), 
gene responsible for TCR induced T cell activation (Chan et al. 1992); (v) interleu-
kin	7	receptor	( IL7R), involved in B and T cells activation. In the same study, sev-
eral	genes	were	repressed,	such	as:	tissue	inhibitor	of	metalloproteinase	1	( TIMP1), 
plasminogen	 activator	 inhibitor	 1	 ( SERPINE 1), histone coding genes, and heat 
shock	protein	70	( HSP70). Additionally, the evaluation of T cells from MS patients 
stressed the importance of transcriptional regulation of NF-kB, which is responsible 
for regulating gene expression during MS relapse; deregulation of NF-kB on T cell 
transcriptome may be used as a molecular biomarker for clinical disease activity 
(Satoh et al. 2008).

Alternative study of the transcription profile of MS patients is the use of cere-
brospinal fluid. Brynedal et al. (2010) investigated gene expression profile in leu-
kocytes of CSF from MS patients and found AIF1, MGC29506, POU2AF1, PLAUR 
and TNFRSF17 as differentially expressed. Recently, a comparative study between 
MS patients at relapse and healthy controls was performed (Jernas et al. 2013), 
showing the overexpression of genes involved in T and NK cell process, genes be-
longing to pathways involved in T-cell co-stimulation, activated T-cell proliferation, 
regulation of cell surface receptors and NK-cell activation. The authors also showed 
a decreased expression of genes associated with innate immunity, B-cell activa-
tion and immunoglobulin secretion and T helper 2 responses in leukocytes of CSF, 
highlighting the HMOX1 gene. The deletion of this gene was associated to enhance 
demyelination (Chora et al. 2007). The induced genes were: i) EDN1, associated 
with integrity of blood-brain-barrier; ii) CXCL11 that is important for recruitment 
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of T-cells to the CNS when disease activity is higher; iii) CXCL13, which may be 
important for the T-helper cell recruitment during relapses. Furthermore, certain 
CXCL13 polymorphic sites associated with high levels of the chemokine are more 
frequent in patients with MS (Linden et al. 2013). Cerebrospinal fluid was also used 
for the study of the hypothalamus–pituitary–adrenal (HPA) axis activity in MS, 
because of its association with disease progression and comorbid mood disorders. 
The activity of axis was determined by measuring cortisol in cerebrospinal fluid 
and the results reveled, in MS patients, low HPA axis activity and associated it with 
increased disease severity (Melief et al. 2013).

Additionally, in a comparative study between three neurodegenerative disorders 
(Associated Neurocognitive Disorders, Alzheimer’s disease and Multiple Sclero-
sis), was observed the common overexpression of BACE2, gene previously asso-
ciated to Alzheimer’s disease (Holler et al. 2012) that codes for an amyloid-beta 
peptide (Borjabad and Volsky 2012). In the same study, among the repressed genes 
were the GABRG2 (GABA receptor 2), impairing GABAergic neuron signal trans-
mission and memory (Melzer et al. 2012). Observing T cell genes in whole blood of 
MS patients, Ganghi et al. (2010) showed overexpressed genes in MS patients com-
paring to control subjects, and most of them was expressed on cells from antigen 
presenting cell, suggesting that excessive T cell activity as a hallmark of disease.

Brain derived neurotrophic factor (BDNF) was suggested as neuroprotective fac-
tor for MS (Frota et al. 2009) and the overexpression of anti-inflammatory pathway, 
BNDF related neuroprotection, showed by overexpression of BDNF, BDNF up-
stream activator-TNK and BDNF receptor NTRK3, was demonstrated during acute 
relapse (Gurevich and Achiron 2012). In addition, some transcript factors were de-
scribed influencing MS disease, in special the YY1, which is related to processes 
that affect myelin protein generation (Berndt et al. 2001), immune response process 
(Guo et al. 2001; Guo et al. 2008) and viral replication (Oh and Broyles 2005) and 
are involved in differential gene expression in MS patients (Riveros et al. 2010).

Recently, many studies are shown de epigenetic role in the pathophysiology of 
MS disease. The epigenetic mechanisms can alter gene expression and can also 
modulate the response to environmental factors, affecting de MS susceptibility. 
Three principal epigenetic mechanisms include: DNA methylation, histone modi-
fications, and micro-RNA-mediated genetic silencing. Among them, microRNAs 
have been extensively evaluated for their influence on the manifestation of vari-
ous autoimmune diseases, including MS. Some of microRNAs were found to be 
induced in different studies, such as: miR-17-5p, that can act on lipid kinases and 
regulate the development of lymphocyte (Lindberg et al. 2010); miR-326, which is 
associated with disease severity in MS patients (Du et al. 2009), miR-214 and miR-
23a, that were present in active and inactive MS lesions and in oligodendrocyte 
differentiation, suggesting their involvement in remyelination (Junker et al. 2009); 
miR-23a was also overexpressed in PBMCs from relapsing-remitting MS patients 
(Ridolfi et al. 2013); miR-338, miR-491 and miR-155 (also referred as miR-155-
5p) in patients with more advanced stage of MS (Noorbakhsh et al. 2011). The last 
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one, miR-155, was found overexpressed in circulating monocytes from MS patients 
and in myeloid cells from MS brain lesions (Moore et al. 2013). Still on induced 
microRNAs in MS patients, miR-145, miR-660 and miR-939 were detected upregu-
lated in PBMCs from patients (Sondergaard et al. 2013); miR-223 from PBMCs 
(Ridolfi et al. 2013), blood (Keller et al. 2009; Cox et al. 2010) and regulatory T 
cells (De Santis et al. 2010)

Considering the repressed microRNA described, there are: miR-219 and miR-
338-5p in inactive lesions of MS patients, that have target genes responsible for 
maintain integrity of myelin (Junker et al. 2009); free circulating miR-15b and miR-
223, that could implicated in induction of their target genes involved in disease 
(Fenoglio et al. 2013); members of the mir-29 family in PBMCs from relapsing-
remitting MS patients, that were associated with apoptotic processes and IFN feed-
back loops (Hecker et al. 2013); miR-20a-5p in whole blood of patients (Keller 
et al. 2014), that target CDKN1A gene, which collaborates in T cell activation and 
has been associated with systemic autoimmunity (Santiago-Raber et al. 2001); miR-
17 and miR-20a, which are related with control of immune function, are involved in 
T cell activation and are implicated in development of MS (Cox et al. 2010).

In conclusion, in this revision we highlightened three representative autoimmune 
diseases: T1D, SLE and MS. In all of them, the non-genetic factors may have im-
portant role in development of the disorders. The discovery of which genes and 
microRNAs are involved in the development of each one of these pathologies is 
one of the great challenges for better understanding of their respective causes and 
course of developments. Thus, new drugs and new diagnostic methods may be de-
termined. Prevention also becomes possible when biomarkers will be known and 
used frequently, because the environmental factors associated with the development 
of these diseases can be avoided, or even eliminated. In concert, these approaches 
may be used to decrease morbidity of individuals with genetic propensity for the 
development of various autoimmune diseases.
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Abstract Diabetes Mellitus (DM) is a group of chronic metabolic diseases that 
arises from a deficiency in insulin secretion and/or action, resulting in hypergly-
cemia. The two main categories of DM are type 1 diabetes mellitus (T1DM) and 
type 2 diabetes mellitus (T2DM). An interplay between oxidative stress and both 
T1DM and T2DM has been observed, with evidence indicating that oxidative stress 
can be the cause and also a consequence of both types of DM. In fact, a number of 
studies has detected elevated levels of oxidative stress markers and DNA damage 
(a consequence of oxidative stress), as well as an impaired antioxidant system in 
patients suffering from T1DM or T2DM. Accordingly, several works have identi-
fied differentially expressed genes that are associated with responses to oxidative 
stress and DNA damage in T1DM as well as in T2DM patients. In addition, a set of 
microRNAs that has been previously shown to clearly distinguish T1DM patients 
from healthy subjects potentially targets a plethora of genes involved in DNA repair 
and response to oxidative stress. Collectively, these studies indicate that patients 
with DM present changes in the gene expression profiles as a response to the insults 
to which they are subjected as part of the development and/or as a consequence of 
the disease.

9.1  Introduction

9.1.1  Reactive Oxygen Species: Definition  
and Consequences

Reactive oxygen species (ROS) are reactive small molecules that contain an oxygen 
atom in their structure (Lenzen 2008, Halliwell and Gutteridge 2007). These small 
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molecules can be free radicals with an unpaired electron, such as superoxide radical 
(O2

•−) and hydroxyl radical (OH•); non-radicals, such as hydrogen peroxide (H2O2); 
anions, including superoxide (O2

−) and peroxynitrite (ONOO−); non-ions, including 
H2O2 and OH•. The reactivity of all these different reactive species varies, with OH• 
being the most reactive oxygen radical (Lenzen 2008). Besides exogenous sources, 
including	smoke,	air	pollutants,	ultraviolet	radiation,	γ-irradiation,	and	many	drugs,	
ROS can also be derived from several endogenous sources, such as NADPH oxidas-
es (NOXs), the mitochondrial respiratory chain, xanthine oxidase, lipoxygenases, 
cyclooxygenases, cytochrome P450 enzymes, nitric oxide synthases, among others 
(Nathan and Cunningham-Bussel 2013, Jiang et al. 2011).

In normal conditions, ROS play a role in physiological processes that trigger ad-
equate cellular responses (Rains and Jain 2011). ROS provide protection to the host 
by killing invading pathogens, as well as act as cellular messengers in a network of 
intra and intercellular communication pathways (Kalyanaraman 2013, Edeas et al. 
2010). In contrast, an excessive amount of ROS can be detrimental to the cells. To 
counteract ROS, cells are equipped with a number of enzymatic and non-enzymatic 
mechanisms as well as with an adaptive mechanism that results in the expression 
of antioxidant genes. Concerning the enzymatic machinery, superoxide dismutases 
(SODs) are involved in the normal dismutation of superoxide and there are at least 
three types of SODs: cytosolic copper/zinc SOD, mitochondrial manganese SOD, 
and extracellular SOD (Kalyanaraman 2013). H2O2 is detoxified by catalase (CAT) 
mainly when its levels are low and by glutathione peroxidase enzyme (GPx) when its 
levels are higher. GPx also metabolizes other lipid peroxides (LOOH) (Kalyanara-
man 2013). Regarding the non-enzymatic detoxification mechanisms, the small 
molecular	weight	antioxidants	include	ascorbic	acid	(vitamin	C),	α-tocopherol	(vi-
tamin	E),	reduced	glutathione	(GSH),	β-carotene,	among	others.	While	vitamin	C	
reacts rapidly with several ROS, such as superoxide and hydroxyl radical, vitamin 
E can halt lipid peroxidation (Kalyanaraman 2013). The constant exposure to a mild 
amount of oxidants triggers the elevated production of antioxidant enzymes and this 
intrinsic mechanism ultimately leads to the re-establishment of the cellular oxidant/
antioxidant homeostasis. This adaptive mechanism consists of the nuclear factor 
erythroid 2-related factor 2 (Nrf2) binding to DNA sequences present in antioxidant 
response elements (ARE) and inducing the transcription of antioxidant genes, in-
cluding, but not limited to SOD, GPx, and CAT (Kalyanaraman 2013).

However, a state known as oxidative stress, in which the levels of prooxidants 
overcome those of antioxidants, can occur. Oxidative stress can be a consequence of 
reduced concentrations of antioxidants or antioxidant enzymes or impaired adaptive 
mechanism, and it can also be a consequence of elevated generation of ROS (Kaly-
anaraman 2013). Oxidative stress can cause oxidative damage to DNA (the focus of 
this chapter); it is important to note that proteins, lipids, and carbohydrates are also 
subjected to oxidative damage (Storr et al. 2013, Kalyanaraman 2013).

ROS can react with both purines and pyrimidines of DNA, generating a number 
of DNA base products, and because guanine exhibits a low redox potential, it is pref-
erentially oxidized, with 7,8-dihydro-8-oxoguanine (8-oxoguanine; 8-oxoG) being 
the most extensively studied DNA lesion (Dizdaroglu 2012, Storr et al. 2013). ROS 
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can also cause DNA intrastrand and interstrand crosslinks, DNA-protein crosslinks, 
DNA single and double strand breaks (SSB and DSB, respectively), as well as dam-
age to the sugar moiety of DNA (Dizdaroglu 2012, Storr et al. 2013). DNA damage 
can be mutagenic, hence, perturbing maintenance of genomic stability. Thus, repair 
pathways have evolved to remove oxidative DNA lesions and restore DNA struc-
ture, protecting cells from such a harmful condition (Dizdaroglu 2012, Storr et al. 
2013). Base-excision repair (BER) and nucleotide-excision repair (NER) are the 
two key pathways in repairing oxidative DNA damage (Dizdaroglu 2012, Friedberg 
et al. 2006). However, there exist other mechanisms: mismatch repair (MMR), a 
repair pathway in the cellular nucleotide pool, homologous recombination (HR), 
and non-homologous end-joining (NHEJ) (Dizdaroglu 2012).

The ROS pathway, from the exogenous and endogenous sources to the repair 
pathways involved in removing the DNA lesions caused by ROS, is better depicted 
in Fig. 9.1

Fig. 9.1  The ROS pathway. ROS can be generated by both endogenous and exogenous sources. 
Protective mechanisms exist to maintain ROS homeostasis. However, oxidative stress, which is 
the imbalance between the levels of ROS and those of antioxidants, favoring the former, may 
occur. Oxidative stress can damage DNA, generating several types of lesions, which, in turn, can 
lead to genomic instability. Because of that, cells are equipped with many DNA repair mecha-
nisms. NOXs, NADPH oxidases; ROS reactive oxygen species; O2

●− superoxide radical; OH● 
hydroxyl radical; H2O2 hydrogen peroxide; O2

− superoxide; ONOO− peroxynitrite; SSB single 
strand break; DSB double strand break; BER base-excision repair; NER nucleotide-excision repair; 
MMR mismatch repair; HR homologous recombination; NHEJ non-homologous end-joining
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9.1.2  Diabetes Mellitus and ROS

Diabetes Mellitus (DM) is a group of chronic metabolic diseases that arises from a 
deficiency in insulin secretion and/or action, which, in turn, leads to chronic high 
blood glucose levels or hyperglycemia. The latter has been implicated in long-term 
complications involving a variety of organs, including kidneys, eyes, heart, nerves, 
and blood vessels (ADA 2013). Individuals are diagnosed with diabetes when dis-
playing	one	of	the	following:	glycated	hemoglobin	levels	(HbA1C)	≥	6.5	%,	fasting	
plasma	glucose	levels	(FPG)	≥	126	mg/dL	(7.0	mmol/L),	2-h	plasma	glucose	levels	
after	75	g	glucose	load	≥	200	mg/dL	(11.1	mmol/L)	(in	the	absence	of	unequivocal	
hyperglycemia, these three parameters should be confirmed by retaking the test), or 
for individuals with classic hyperglycemic symptoms/hyperglycemic crisis, casual 
plasma	glucose	levels	≥	200	mg/dL	(11.1	mmol/L)	(ADA	2013). According to the 
International Diabetes Federation, there were approximately 382 million people be-
tween the ages of 20 and 79 years with diabetes worldwide in 2013 (http://www.idf.
org/diabetesatlas) (IDF 2013). Hence, DM represents a relevant public health issue.

The two major forms of DM are type 1 diabetes mellitus (T1DM) and type 2 
diabetes mellitus (T2DM). There is evidence of an association between oxida-
tive stress and both types of DM: oxidative stress can be a consequence of these 
disorders due to hyperglycemia, but it can also be a contributing factor to the 
pathogenesis of both diseases because reactive molecules play a crucial role in 
pancreatic	β-cell	damage.	Hyperglycemia	may	lead	to	increased	oxidative	stress	
by the direct production of ROS or by changes in the redox homeostasis through 
the disruption of a variety of mechanisms: elevated polyol pathway flux, higher 
intracellular production of advanced glycation end-products (AGEs), activa-
tion of protein kinase C, or even increased generation of superoxide by the 
mitochondrial electron transport chain (Rains and Jain 2011; Brownlee 2001; 
Ahmad et al. 2005). On the other hand, in the case of T1DM, the invading im-
mune	cells	release	pro-inflammatory	cytokines	into	the	target	β-cells	and	those	
cytokines, in turn, increase the production of reactive species, which leads to 
β-cell	destruction	(Lenzen	2008).	Regarding	T2DM,	β-cell	failure	is	the	major	
contributing factor to its pathogenesis. In this type of diabetes, glucotoxicity 
(which	includes	ROS	generation)	and	lipotoxicity	are	involved	in	the	β-cell	dys-
function as these cells are subjected to longstanding exposure to elevated levels 
of glucose and free fatty acids (Drews et al. 2010). In addition, according to 
some studies, low levels of GPx or CAT protein and activity have been observed 
in human islets (Drews et al. 2010; Tonooka et al. 2007, Robertson and Harmon 
2007), rendering these cells more vulnerable to reactive species.

Taken together, these studies have indicated a crosstalk between the two major 
forms of DM and oxidative stress (which is better depicted in Fig. 9.2), which, in 
turn, can trigger DNA damage. Thus, it is reasonable that in order to cope with the 
disease and its consequences, patients suffering from DM are responding to all these 
insults in several ways, including via alterations in the gene expression profiles.



1659 Expression of DNA Repair and Response to Oxidative …

9.2  Type 1 Diabetes Mellitus

T1DM is a consequence of the autoimmune elimination of the insulin-producing 
pancreatic	β-cells,	which	eventually	ceases	 insulin	production	and	hence	 the	ab-
sorption of glucose by the tissues of the body (ADA 2013; Wållberg and Cooke 
2013). Approximately 5–10 % of all diabetic patients present T1DM, which can oc-
cur even in the elderly, although it usually arises during childhood and adolescence 
(ADA 2013). For the development of T1DM, an immune response with strong pro-
inflammatory	features	against	the	pancreatic	β-cell	antigens	must	arise	and	the	con-
trol of the autoimmune responses must be impaired so those responses can become 
chronic,	leading	to	the	elimination	of	β-cells	(Wållberg	and	Cooke	2013).

The exact cause of this form of diabetes has not been elucidated, but it has been sug-
gested that several susceptibility genes combined with environmental insults contribute 
to the development of this disease (ADA 2013; Wållberg and Cooke 2013). Regard-
ing the genetic background, the HLA genes located on chromosome 6p21 confer the 
highest	genetic	risk	for	T1DM;	other	genes	including	those	encoding	insulin	( INS) on 
11p15,	cytotoxic	T-lymphocyte-associated	protein	4	( CTLA4) on 2q33, protein tyrosine 
phosphatase,	non-receptor	type	22	( PTPN22) on 1p13, and interleukin 2 receptor alpha 
( IL2RA) on 10p15, also present strong associations with the disorder (Burren et al. 2011, 
Barrett et al. 2009, Bell et al. 1984, Nisticò et al. 1996, Bottini et al. 2004, Lowe et al. 
2007). With respect to environmental factors, both the presence and the absence of in-
fections, as well as climate and diet have been suggested to contribute to T1DM onset 
(Wållberg and Cooke 2013, von Herrath 2009, Zaccone and Cooke 2011, Cooper et al. 
2011, Zipitis and Akobeng 2008).

Fig. 9.2  Crosstalk between oxidative stress and the two main categories of Diabetes Mellitus. 
Oxidative stress may be a contributing factor to diabetes, but it can also be a consequence of the 
latter. T1DM, Type 1 Diabetes Mellitus; T2DM, Type 2 Diabetes Mellitus; AGEs, advanced glyca-
tion end-products
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9.2.1  Oxidative Stress and DNA Damage in T1DM

Several studies have investigated the levels of antioxidants, markers of oxidative 
stress, and DNA damage in patients suffering from T1DM relative to healthy subjects. 
Codoñer-Franch and colleagues (2010) found significantly elevated levels of the three 
oxidative stress markers (circulating levels of lipoperoxides (LPO) and malondialde-
hyde (MDA) and plasma concentration of carbonyl groups (CG)), a slightly decreased 
erythrocyte	GPx	activity,	 and	a	 significant	decrease	 in	α-tocopherol/total	 cholesterol	
ratio in T1DM children with good glycemic control versus age-matched control sub-
jects. On the contrary, the same authors did not observe differences in the erythrocyte 
concentration	of	GPxʼs	cofactor	GSH	or	in	the	serum	levels	of	β-carotene.	Moreover,	
another work has demonstrated reduced SOD and GPx activities in leukocytes from 
men and women with T1DM in comparison with their corresponding controls (Dinçer 
et al. 2003). In the same work, the authors reported that strand breakage and formami-
dopyrimidine DNA glycosylase (Fpg)-sensitive sites (oxidised DNA damage detected 
by the comet assay with the DNA repair enzyme Fpg) were elevated in leukocytes of 
the two groups of patients. Furthermore, according to Goodarzi et al. (2010), plasma 
MDA and glycated serum protein (GSP) levels were significantly increased in T1DM 
patients relative to healthy subjects. In agreement with Hata et al. (2006), the previously 
mentioned study also observed that urinary concentrations of the oxidative DNA dam-
age marker 8-hydroxydeoxyguanosine (8-OHdG) were significantly higher in T1DM 
patients when compared with the control group. Likewise, significantly elevated levels 
of both nuclear DNA fragmentation and concentrations of 8-OHdG have also been re-
ported in spermatozoa from T1DM patients relative to non-diabetic fertile men (Agbaje 
et al. 2008). Regarding basal levels of DNA damage, significantly elevated rates were 
found in neutrophils from T1DM patients presenting acceptable glycemic control rela-
tive to age- and sex-matched controls (Hannon-Fletcher et al. 2000). Collectively, these 
studies suggest the impairment of the antioxidant defense system and an increase in 
oxidative stress and DNA damage in T1DM patients, even in subjects presenting a sat-
isfactory glycemic control.

Results from another study indicated that serum copper-to-zinc ratio (re-
duced levels of zinc and elevated levels of copper indicate the presence of oxi-
dative stress), serum SOD activity, blood and urinary MDA, as well as urinary 
8-OHdG were significantly higher in young T1DM patients (in particular in 
poorly-controlled	patients	(HbA1c	≥	9	%)	compared	with	the	control	group	(Lin	
et al. 2014). It is important to note that the findings regarding SOD activity 
contradict the aforementioned results from the work of Dinçer et al. (2003). A 
plausible explanation given by Lin et al. (2014) for the increased SOD activity 
in T1DM patients observed in their work would be that it might compensate for 
the oxidative stress in these individuals. Interestingly, the levels of serum cop-
per, serum copper-to-zinc ratio, urinary MDA, and urinary 8-OHdG were sig-
nificantly elevated in the poorly-controlled patients relative to the optimal-and-
suboptimal-glycemic-control patients (HbA1c < 9 %) (Lin et al. 2014). Taken 
together, these results corroborate the previously cited works (except for the 
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SOD activity findings) and also indicate that poor glycemic control is associ-
ated with augmented oxidative stress and DNA damage in T1DM patients.

9.2.2  Transcriptional Expression of Protein-Coding Genes  
and MicroRNAs Related to Oxidative Stress and DNA  
Repair in T1DM

A number of large-scale transcriptional profiling studies has been performed to 
compare gene expression displayed by T1DM patients relative to healthy subjects 
by carrying out microarray experiments. A study investigated gene expression 
profiles of endothelial progenitor cells (EPC), which were in vitro differentiated 
from peripheral blood mononuclear cells (PBMCs), from T1DM patients pre- and 
post-supplementation with folic acid (FA, a B-vitamin with antioxidant properties) 
and non-diabetic individuals (van Oostrom et al. 2009). The 1591 genes found to 
be differentially expressed between T1DM patients pre-FA treatment and the con-
trol group were classified into Gene Ontology (GO) terms, including response to 
stressʼ	and	‘response	to	hypoxiaʼ.	Among	the	up-regulated	genes	(related	to	these	
two	terms)	detected	in	EPC	from	T1DM	patients	were	dual	oxidase	2	( DUOX2), a 
NADPH	oxidase	that	can	produce	superoxide,	nitric	oxide	synthase	2A	( NOS2A) 
that	 is	 capable	 of	 generating	 nitric	 oxide,	 thioredoxin	 reductase	 2	 ( TXNRD2), a 
major enzyme involved in the control of the intracellular redox balance, lactoper-
oxidase	 ( LPO)	 and	NADPH	oxidase	 organizer	 1	 ( NOXO1), which is associated 
with the generation of ROS. Importantly, FA treatment notably affected the EPC 
transcriptome, resulting in normalization of gene expression in diabetic EPC to lev-
els similar to those exhibited by healthy individuals. In fact, 513 of the 1591 genes 
found differentially expressed in the patients versus the control group returned to 
control levels after FA supplementation. As expected, FA altered the expression 
of	oxidative	stress-associated	genes	in	EPC,	with	four	( DUOX2, NOS2A, NOXO1 
and LPO) being included among the 513 normalized genes. In addition, another 
differentially expressed gene (down-regulated) in T1DM patients that was normal-
ized by FA treatment was the transcription factor (TF) V-maf musculoaponeurotic 
fibrosarcoma	oncogene	homolog	F	( MAFF) (van Oostrom et al. 2009). This TF can 
bind to another TF, Nrf2, which, in turn, induces the expression of ARE-dependent 
genes (Katsuoka et al. 2005, Blank 2008).

Irvine et al. (2012) investigated whether there were differences in gene expres-
sion of purified peripheral blood CD14+monocytes between recently diagnosed 
T1DM children and adult healthy controls by whole-genome microarrays, followed 
by validation of a group of genes by quantitative polymerase chain reaction (qPCR). 
Results indicated that the monocyte expression profiles exhibited by the patients 
clustered into two subgroups, with one of them (group B) clustering separate from 
the other patient subgroup and the healthy controls. At diagnosis, both subgroups 
of patients were clinically identical, however, group B presented increased levels 
of HbA1c 3 and 6 months after diagnosis and needed significantly higher insulin 



168 P. Takahashi et al.

doses during the first year of the disease. Expression profiles in monocytes from 
patients belonging to group B indicated cellular activation through stress, including 
the unfolded protein response (UPR), which results from endoplasmic reticulum 
(ER)	stress	( IRE1, GRP78, DDIT3, XBP1). Furthermore, HIF1A, a major mediator 
of	oxidative	stress,	and	several	of	its	targets	( DDIT4, PFKFB3, and ADM) (Ruiz-
García et al. 2011; Geiger et al. 2011) were up-regulated in group B monocytes, 
while	genes	 that	play	a	 role	 in	mitochondrial	oxidative	phosphorylation	( PDHB, 
MDH1, IDH1, SDHC, ACLY) were found repressed. Moreover, mitochondrion was 
the most significantly enriched cellular component term for the down-regulated 
genes in group B. In addition, repression of many genes related to cellular anti-
oxidant	pathways	( CAT, G6PD, OXR1, PRDX1, PRDX3) were observed in group 
B monocytes, indicating perturbation of protective systems (Irvine et al. 2012). 
The biological processes oxidative and ER stresses are closely associated. Oxida-
tive stress can promote ER stress, and in response to that, ER activates the UPR 
transcriptional program (Martinon and Glimcher 2011). Failure of the UPR results 
in prolonged ER stress, which, in turn, triggers apoptosis and inflammation. Ac-
cordingly, genes controlling apoptosis were enriched in monocytes from group B 
patients. Hence, collectively, these findings imply that the group B monocytes are 
intrinsically susceptible to stress or exist in a stressful environment, as well as indi-
cate the persistence of ER stress (Irvine et al. 2012).

Intriguingly, Stechova and co-workers (2011) compared gene expression profiles 
of freshly isolated PMBCs from patients with T1DM, their first-degree relatives 
with higher genetic risk of developing the disease, and non-diabetic individuals by 
the microarray technology. They observed a clear difference between the expression 
profiles of relatives of patients (in particular the autoantibody-negative ones) and 
healthy controls. Moreover, the highest number of differentially activated cell sig-
nalling processes (99 pathways) was reported in the comparison between the rela-
tives, regardless of autoantibody status, and the control group. Interestingly, DNA 
damage and oxidative stress were among those pathways (Stechova et al. 2011). 
Thus, these findings showed that non-diabetic relatives of T1DM patients also pres-
ent alterations in the expression of genes.

Regarding the target tissue, whole-genome transcript expression for four T1DM 
pancreases (collected at different T1DM stages) and for purified islets from two 
of them was compared with that of the control group by carrying out microarray 
experiments, followed by qPCR validation of a group of genes (Planas et al. 2010). 
In agreement with the aforementioned studies, Planas and colleagues (2010) ob-
served changes in the expression of oxidative stress genes (all up-regulated), includ-
ing metallothioneins, such as MT1M (in the four cases and in purified islets) and 
SOD2, ceruloplasmin and thioredoxin interacting protein (case 1, pancreas and is-
lets). Moreover, islets shared some alterations in the expression of apoptosis-related 
genes,	such	as	repression	of	pro-apoptotic	genes	( MLLT11, PRUNE2, and NLRP1).

With respect to the expression of non-coding protein genes, microRNAs (miR-
NAs) have been indicated both as potential biomarkers for the earlier diagnosis 
of diabetes and as therapeutic targets for the treatment of this disorder (Mao et al. 
2013). miRNAs are endogenous non-coding RNA molecules of approximately 22 
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nucleotides that are involved in the post-transcriptional regulation of protein-coding 
gene expression (Bartel 2004)	by	base-pairing	to	specific	sites	in	the	5ʼ	untranslated	
regions (UTR) (Grey et al. 2010, Helwak et al. 2013), coding sequences (Hafner 
et al. 2010, Helwak et al. 2013, Reczko et al. 2012),	and	3ʼ	UTRs	of	the	mRNA	tar-
gets; in this way, miRNAs lead to the degradation and/or translational repression of 
their targets (Bartel 2009, Krol et al. 2010, Lee et al. 1993, Lim et al. 2005b, Wight-
man et al. 1993). Recently, we compared the miRNA expression profiles displayed 
by PBMCs from T1DM patients with those exhibited by PBMCs from healthy non-
diabetic controls by performing microarray experiments (Takahashi et al. 2014). 
In this study, we were able to identify a set of 44 differentially expressed miRNAs 
(35 induced and nine repressed) that clearly stratified patients with T1DM from 
the healthy subjects. After target prediction, results pointed to 10,827 and 6636 
potential targets of the up- and down-regulated miRNAs, respectively; of note, a 
total of 85 and 75 genes implicated in DNA repair and response to oxidative stress, 
respectively, are potential targets of the 44 differentially modulated miRNAs in 
T1DM (unpublished data).

Taken together, these works on the whole-transcript expression in T1DM pa-
tients are consistent with the aforementioned studies that have detected elevated 
oxidative stress and DNA damage levels, as well as a perturbation in the antioxidant 
defense mechanisms in these individuals (Sect. 9.2.1). Moreover, genes involved 
in DNA repair and response to oxidative stress are putative targets of a set of miR-
NAs that clearly distinguished T1DM patients from healthy individuals. Finally, 
altogether, these works support the hypothesis that patients with T1DM respond to 
the increased oxidative stress and DNA lesions by changing their gene expression 
profiles.

9.3  Type 2 Diabetes Mellitus

T2DM represents approximately 90 % of all diagnosed cases of diabetes (ADA 
2011). The disease is mainly characterized by resistance to insulin action and also 
by deficiency in the secretion of this hormone, presenting great correlation with ag-
ing, obesity, and lack of physical activity (Golay and Ybarra 2005). It is not known 
whether during the development of the disease it is the insulin resistance or the se-
cretion deficiency that occurs first; however, insulin resistance appears as a crucial 
factor, especially when related to obesity, given the fact that about 60–90 % of all 
T2DM patients are or were obese (Gerich 1999, Golay and Ybarra 2005, Stumvoll 
et al. 2005).

Obesity causes a chronic inflammatory response in the adipose tissue, charac-
terized by an abnormal production of cytokines, which include mostly molecules 
playing roles in stress response processes (Sethi and Hotamisligil 1999, Lebrun 
and Van Obberghen 2008). One of these cytokines is the Tumor Necrosis Factor-
alpha	(TNF-α),	which	is	released	at	large	amounts	by	adipocytes	and	acts	on	the	
insulin receptor, inhibiting its tyrosine kinase activity, which culminates in insu-
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lin resistance (Sethi and Hotamisligil 1999, Kohn et al. 2005). In addition, excess 
body fat leads to an increase in the number of fatty acid molecules in the blood. 
Consequently, a preferential use of lipids as an energy source occurs, especially 
by muscles, which prevents glucose utilization and glycogen synthesis, leading to 
hyperglycemia. Furthermore, there is an increase in insulin secretion to compensate 
for the insulin receptor resistance, and this condition gradually leads to the develop-
ment of the disease (Lam et al. 2003, Golay and Ybarra 2005).

The biochemical mechanisms and physiological processes that characterize 
T2DM are not well understood. Some susceptibility genes have been identified, in-
cluding	genes	related	to	cellular	metabolism,	such	as	PPAR	gamma	( PPARG) (Bar-
roso et al. 2006), KCNJ (Schwanstecher and Schwanstecher 2002), and CAPN10 
(Cox et al. 2004), as well as the transcription factors HNF4A (Damcott et al. 2004, 
Hara et al. 2006) and TCF7L2 (Florez et al. 2003, Barroso et al. 2006). Other genes, 
such as ENPP1, RBP4, and SIRT1 are strong T2DM candidate genes, although they 
still need to be validated (Freeman and Cox 2006). The protein encoded by the 
ENPP1 gene acts both on insulin resistance and on obesity development (Meyre 
et al. 2005). High concentrations of RBP4 protein promote systemic insulin resis-
tance and when present at low levels, RBP4 promotes an increased sensitivity to 
the hormone (Yang et al. 2005). The overexpression of SIRT1 protein increases the 
secretion	of	insulin	by	β-cells,	presumably	due	to	increased	efficiency	in	ATP	pro-
duction by the oxidative phosphorylation process (Moynihan et al. 2005).

Currently, the treatment for patients with T2DM is limited to drug therapies that 
improve disease conditions, such as insulin resistance. However, these drugs do not 
aim to restore the normal glucose metabolism, an event that exposes patients to the 
risk of disease complications. Instead, treatment for T2DM aims to reduce hyper-
glycemia by two main mechanisms: increased secretion of insulin by the pancreas 
or decreased production of glucose by the liver. Metformin is one of the most used 
drugs to treat T2DM patients. PPAR gamma antagonists, which act by increasing 
the sensitivity of insulin receptor, have also been used (Moller 2001). Still, sulpho-
nylureas, thiazolidinediones, and insulin are also among the medications indicated 
for the treatment and glycemic control of T2DM patients (Ismail-Beigi 2012). How-
ever, treatment is complicated, mainly due to the lack of control of insulin secretion 
performed	by	 the	β-cells,	which	accurately	adjust	 the	amount	of	 insulin	secreted	
in accordance with the needs of the organism. Therefore, patients often have epi-
sodes of hypoglycemia and hyperglycemia, both with serious consequences for the 
diabetic patient, because the former can lead to coma, while the latter can lead to 
blindness, kidney failure, and vascular diseases (Taylor 1999, Kruger et al. 2006).

9.3.1  Oxidative Stress and DNA Damage in T2DM

In T2DM, hyperglycemia contributes significantly to the production of free radi-
cals. Moreover, the antioxidant defense mechanisms are not able to compensate or 
neutralize the amount of radicals formed, since there is evidence of a reduced activ-
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ity of antioxidant enzymes in these patients, such as SOD, CAT, and glutathione 
reductase (GSR) (Seghrouchni et al. 2002). Thus, an increase in ROS generation 
and hence increased oxidative damage occur (Nishikawa et al. 2000, Blasiak et al. 
2004). Additionally, as previously mentioned, there is the contribution of other pro-
cesses, such as formation of AGEs that initiate cascades related to oxidative damage 
and	are	toxic	to	the	cells,	including	pancreatic	β-cells	(Piperi	et	al.	2012).

As a consequence of oxidative stress, T2DM patients also show increased lev-
els of lipid peroxidation products when compared with healthy individuals (Slatter 
et al. 2000). Accordingly, Abou-Seif and Youssef (2004) performed a study evaluat-
ing a series of markers in diabetic patients compared with healthy individuals, in-
cluding lipid peroxidation products (MDA), antioxidants (GSH, SOD, and CAT) as 
well as oxidation protein products and AGEs markers. As a result, the authors found 
in the diabetic patient group decreased levels of the three antioxidants and increased 
levels of MDA, oxidation protein products, and AGEs, providing further support to 
the information aforementioned.

Hereupon, glycemic control has beneficial effects as it reduces the harmful ef-
fects of hyperglycemia in diabetic patients (Stolar et al. 2008, Ismail-Beigi 2012). 
Concerning the importance of glycemic control, Cakatay (2005) verified protein 
oxidation using different markers comparing hyperglycemic and non-hyperglyce-
mic T2DM patients, both groups without any comorbidity. The author found higher 
levels of protein oxidation in hyperglycemic T2DM patients. As patients had no 
comorbidities, high protein oxidation in these patients indicates that oxidative stress 
may not be a result of complications of the disease, Lodovici et al. (2008) also 
conducted a comparative study between hyperglycemic and non- hyperglycemic 
T2DM patients, but focusing on the antioxidant defense status. The authors ob-
served that patients with elevated glucose levels exhibited decreased antioxidant 
condition when compared with non-hyperglycemic patients. Therefore, these stud-
ies suggest that oxidative stress resulting from hyperglycemia is an important factor 
involved in the decline of antioxidant defense and in the increase in oxidative dam-
age, being necessary a proper control of both, blood glucose levels and free radical 
production, thus, avoiding the action of the latter on different macromolecules, such 
as lipids and proteins.

Regarding the generation of DNA damage, it is well known that the exposure 
of cells to oxidative stress as a consequence of the increased generation of ROS 
induces higher DNA damage levels in PBMCs from diabetic patients when com-
pared with healthy individuals (Bonnefont-Rousselot et al. 2000, Lee and Wei 2007, 
Song et al. 2007, da Silva et al. 2013). Furthermore, Binici et al. (2013) verified an 
increased genomic instability in T2DM patients. In addition, the efficiency of DNA 
repair was compared between a group of poorly controlled T2DM patients and a 
group of healthy subjects, by measuring DNA damage levels (comet assay) caused 
by hydrogen peroxide and by doxorubicin (Blasiak et al. 2004); their results dem-
onstrated that besides having higher baseline DNA damage than healthy subjects, 
when exposed to mutagens, T2DM patients also showed a lower efficiency of DNA 
repair, although both groups were able to repair the damage.
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Even in T2DM patients with good glycemic control, the lack of proper physi-
ological adjustment of insulin secretion, as present in healthy individuals (Kruger 
et al. 2006), may lead these patients to experience periods of hyperglycemia, trig-
gering oxidative stress as a consequence. Even though this might not be enough 
to cause significant damage to the nuclear DNA, there is still the possibility of 
generation of damage in the mitochondrial DNA (mtDNA), since cellular respira-
tion in mitochondria makes this organelle the site of increased production of free 
radicals inside the cell (Fernandez-Sanchez et al. 2011). Some studies suggest that 
DNA damage can be repaired in the mitochondria less efficiently than in the nucleus 
(Arnheim and Cortopassi 1992, Lim et al. 2005a). Santos et al. (2003) found that 
fibroblast strains exposed to hydrogen peroxide also showed differences in nuclear 
DNA and mtDNA efficiency of repair. Under certain conditions, damage in the 
nuclear DNA was fully repaired after a certain period of time, while damage in 
mtDNA was not significantly repaired, increasing apoptosis; these findings sug-
gest the existence of a threshold in the mitochondrial repair and when it is crossed, 
mechanisms of cell death are triggered.

9.3.2  Alterations of Transcriptional Expression Profiles in T2DM

Since the initial work of Schena et al. (1995), the microarray technique became a 
common and important tool in medical and biological research. Thus, in the last 
years, many studies used this technology to analyze the gene expression profiles 
exhibited by T2DM patients in order to reveal new genes and pathways involved 
in the disease. Takamura et al. (2007) compared the gene expression profiles of 
PBMCs from T2DM patients with those from non-diabetic subjects by analyzing 
the modulation of specific gene set categories. The authors found that genes related 
to the c-Jun N-terminal kinase (JNK) and mitochondrial oxidative phosphoryla-
tion (OXPHOS) pathways (possibly related to stress response) were differentially 
modulated in T2DM patients. Palsgaard et al. (2009) compared the gene expression 
profiles of muscle biopsies from T2DM patients with those from their healthy first 
degree relatives in an attempt to investigate if the latter have an increased risk of 
developing the disorder. Their findings indicated that the up-regulated genes in the 
group of T2DM relatives were involved in insulin signaling, which, according to the 
author, could be a compensatory mechanism for a reduced insulin signaling activity. 
Bikopoulos et al. (2008) analyzed the gene expression profiles of human pancreatic 
islets under chronic exposure to free fatty acids; aside from showing a significantly 
reduced glucose-stimulated insulin secretion and increased ROS generation, the 
pancreatic islets chronically exposed to oleate also presented altered expression of 
40 genes; these genes were related to the oleate metabolism inflammation, and also 
to antioxidant defense (which were up-regulated), highlighting the importance of 
free fatty acids as risk factors for the development of T2DM.

Our group also conducted a study comparing the transcriptional expression pat-
terns exhibited by PBMCs from T2DM patients with those from healthy subjects, 
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focusing on pathways such as oxidative stress response, DNA repair, response 
to hypoxia, inflammation, fatty acid processing, and immune response (Manoel-
Caetano et al. 2012). We obtained a list of 92 differentially expressed genes (52 
up-regulated and 40 down-regulated) in diabetic patients compared to the control 
group, and these genes were associated with the six aforementioned biological 
processes; among them, genes related to oxidative stress responses and hypoxia 
( OXR1, SMG1, and UCP3) were highly up-regulated, possibly in an attempt to deal 
with increased oxidative stress. Concerning the down-regulated genes, many were 
involved in inflammation, immune response and DNA repair (including SUMO1, 
ATRX, and MORF4L2). The down-regulation of several DNA repair genes is in 
agreement with the decreased efficiency of DNA repair verified in T2DM patients 
(Blasiak et al. 2004, Pacal et al. 2011). In another study conducted by Marselli 
et al. (2010), genes related to glucotoxicity, oxidative stress (up-regulated), cell 
cycle,	apoptosis,	or	ER	stress	were	found	differentially	expressed	in	β-cell-enriched	
samples obtained from T2DM patients relative to control individuals.

Lately, the role of ER stress has been studied in T2DM regarding both the patho-
genesis of the disease and its consequences. The ER is the major organelle responsi-
ble for regulating not only the synthesis of proteins but also its folding, maturation, 
and transport, representing the most significant sensor of nutrients in the cell and a 
major coordinator of metabolic responses. The ER maintains a controlled balance 
between the synthesis and proper protein folding (Ron and Walter 2007, Piperi et al. 
2012). However, several conditions can break this homeostatic balance, such as ex-
cess of nutrients, insulin resistance, increased levels of ROS, and inflammation re-
lated to obesity (Scheuner et al. 2005). The disturbance of this homeostasis leads to 
an accumulation of misfolded proteins in the organelle, either by an increased rate 
of protein synthesis, or by alterations in the ER milieu, compromising the efficiency 
of protein folding. Regardless the case, the UPR response is triggered to restore 
protein homeostasis (Sano and Reed 2013, Biden et al. 2014). Mainly three proteins 
are	 responsible	 for	 the	 activation	of	UPR	 response:	 inositol-requiring	protein-1α	
(IRE1α),	protein	kinase	RNA	(PKR)-like	ER	kinase	(PERK),	and	activating	tran-
scription factor 6 (ATF6). Under normal conditions, the Binding immunoglobulin 
Protein (BiP) chaperone is bound to the luminal regions of the PERK and ATF6 
proteins, maintaining an inactive conformation. During ER stress, as a response to 
the accumulation of misfolded proteins, BiP is released from PERK and ATF6, in 
order to assist with the proper protein folding (Gardner and Walter 2011, Sano and 
Reed 2013).	Differently,	IRE1α	seems	to	become	active	when	bound	to	misfolded	
proteins. The activation of these three proteins leads to signaling pathways which 
diminish the accumulation of proteins in the ER. This is accomplished by the trans-
lation inhibition of a series of mRNAs (which restricts the protein influx into the 
ER) and by promoting the transport of misfolded proteins outside the ER, where 
they will be ubiquitinated and directed to degradation (Sano and Reed 2013).

UPR has been related to the carbohydrate metabolism, according to studies in 
T2DM. ER stress can inhibit the suppression of gluconeogenic enzymes; as a conse-
quence, there is an increase in the production of glucose by the liver, leading to obe-
sity and the development of diabetes (Kimura et al. 2012). Wang et al. (2009) also 
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showed that acute ER stress promoted the activation and nuclear entry of CRTC2, 
which, in turn, induced the expression of ATF6 and activated gluconeogenesis. In-
sulin resistance mechanism was also related to ER stress as a consequence of a high 
fat diet. The XBP-1 protein binds to promoters of genes related to UPR and to the 
ER assisted degradation, in order to restore protein homeostasis in the ER (Sano and 
Reed 2013). According to Hage Hassan et al. (2012), silencing XBP-1 in C2C12 
cells and human myotubes increased the sensitivity to ER stress and insulin resis-
tance, as a consequence of the insulin receptor substrate-1 (IRS-1) degradation. In 
addition, ER stress provokes IRS-1 serine phosphorylation, disassembling it from 
the insulin receptor and increasing insulin resistance (Bailly-Maitre et al. 2010). 
Likewise,	pancreatic	β-cell	death	was	related	to	ER	stress	and	UPR	response,	due	to	
the high insulin demand, which causes an increased dependence of ER functioning, 
to ensure proper synthesis and insulin folding (Sano and Reed 2013). For instance, 
Back et al. (2009)	showed	that	the	absence	of	eIF2α	phosphorylation	in	mice	β-cells	
caused dysregulated proinsulin translation, increased oxidative damage, and defec-
tive ER trafficking of proteins and apoptosis.

There is evidence that hyperglycemia is also associated with ER stress. Excess 
glucose may react with other molecules such as lipids and proteins, leading to AGEs 
formation, thereby resulting in alterations in the ER homeostasis (Inagi 2011, Piperi 
et al. 2012). The effects of ongoing stress to ER have also been associated with the 
development of inflammation and also with various T2DM complications (Hayashi 
et al. 2005, Piperi et al. 2012). As such, Oslowski et al. (2012) reported that ER 
stress	induced	thioredoxin	interacting	protein	(TXNIP)	through	IRE1α	and	PERK	
action	in	mice	and	human	pancreatic	β-cells.	TXNIP,	in	turn,	promoted	IL-1β	pro-
duction in these cells. Some other studies have demonstrated the importance of ER 
stress to T2DM. Casas et al. (2007) evaluated the influence of amyloid polypep-
tide,	which	is	toxic	to	pancreatic	β-cells,	on	the	expression	profiles	of	MIN6	cells	
and primary cultures of human pancreatic islets. The authors observed not only the 
influence of amyloid polypeptide aggregation on the induction of genes related to 
ER stress, but also an impairment of the proteasome function, which contributed to 
apoptosis.

Komura et al. (2010) studied the immune-mediated response by comparing the 
transcriptional expression profiles of PBMCs from T2DM patients versus healthy 
individuals. The authors detected an elevated expression of markers of ER stress 
in the T2DM group. Finally, Iwasaki et al. (2014) verified the influence of ATF4, a 
transcription factor activated after metabolic stresses (including ER stress), on the 
inflammation mediated by free fatty acids. Using macrophages, the authors pro-
vided evidence that the ATF4 pathway was activated by free fatty acids, linking 
metabolic stress to inflammation process in these cells.

Altogether, the information in the literature regarding transcriptional expression 
profiles highlights not only altered pathways in T2DM, such as inflammation, oxi-
dative stress, immune response, and ER stress, but also establishes a link between 
biological processes. In addition, the use of microarrays and other techniques for 
whole-genome profiling brings forth a large amount of data, whose analysis may 
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reveal new altered pathways in T2DM, increasing our knowledge about the disease 
and also providing new therapy possibilities.

9.4  Conclusions

Diabetes mellitus is a group of chronic metabolic diseases that has a great impact 
on public health. A number of studies have demonstrated a link between the two 
main types of diabetes, T1DM and T2DM, and oxidative stress, since the latter may 
ultimately	result	in	β-cell	damage	as	well	as	can	be	a	consequence	of	diabetes	itself	
due to hyperglycemia. In agreement with that, increased levels of oxidative stress 
markers and DNA damage and impaired antioxidant system have been reported in 
patients suffering from T1DM or T2DM. Thus, it is expected that these patients 
respond to those insults in many ways, including via alterations in the expression of 
genes, which in fact have been described in this chapter.

References

Abou-Seif MA, Youssef AA (2004) Evaluation of some biochemical changes in diabetic patients. 
Clin Chim Acta 346:161–170

ADA (American Diabetes Association) (2011) Standards of medical care in diabetes–2011. Dia-
betes Care 34(Suppl 1):11–61

ADA (American Diabetes Association) (2013) Diagnosis and classification of diabetes mellitus. 
Diabetes Care 36(Suppl 1):S67–S74

Agbaje IM, McVicar CM, Schock BC et al (2008) Increased concentrations of the oxidative DNA 
adduct 7,8-dihydro-8-oxo-2-deoxyguanosine in the germ-line of men with type 1 diabetes. 
Reprod Biomed Online 16:401–409

Ahmad FK, He Z, King GL (2005) Molecular targets of diabetic cardiovascular complications. 
Curr Drug Targets 6:487–494

Arnheim N, Cortopassi G (1992) Deleterious mitochondrial DNA mutations accumulate in aging 
human tissues. Mutat Res 275:157–167

Back SH, Scheuner D, Han J et al (2009) Translation attenuation through eIF2alpha phosphoryla-
tion prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab 
10:13–26

Bailly-Maitre B, Belgardt BF, Jordan SD et al (2010) Hepatic Bax inhibitor-1 inhibits IRE1alpha 
and protects from obesity-associated insulin resistance and glucose intolerance. J Biol Chem 
285:6198–6207

Barrett JC, Clayton DG, Concannon P et al (2009) Genome-wide association study and meta-
analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707

Barroso I, Luan J, Sandhu MS et al (2006) Meta-analysis of the Gly482Ser variant in PPARGC1A 
in type 2 diabetes and related phenotypes. Diabetologia 49:501–505

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233
Bell GI, Horita S, Karam JH (1984) A polymorphic locus near the human insulin gene is associated 

with insulin-dependent diabetes mellitus. Diabetes 33:176–183



176 P. Takahashi et al.

Biden TJ, Boslem E, Chu KY, Sue N (2014) Lipotoxic endoplasmic reticulum stress, beta cell 
failure, and type 2 diabetes mellitus. Trends Endocrinol Metab. Advance online publication. 
doi:10.1016/j.tem.2014.02.003

Bikopoulos G, da Silva PA, Lee SC et al (2008) Ex vivo transcriptional profiling of human pancre-
atic islets following chronic exposure to monounsaturated fatty acids. J Endocrinol 196:455–
464

Binici DN, Karaman A, Coskun M et al (2013) Genomic damage in patients with type-2 diabetes 
mellitus. Genet Couns 24:149–156

Blank V (2008) Small Maf proteins in mammalian gene control: mere dimerization partners or 
dynamic transcriptional regulators? J Mol Biol 376:913–925

Blasiak J, Arabski M, Krupa R et al (2004) DNA damage and repair in type 2 diabetes mellitus. 
Mutat Res 554:297–304

Bonnefont-Rousselot D, Bastard JP, Jaudon MC, Delattre J (2000) Consequences of the diabetic 
status on the oxidant/antioxidant balance. Diabetes Metab 26:163–176

Bottini N, Musumeci L, Alonso A et al (2004) A functional variant of lymphoid tyrosine phospha-
tase is associated with type I diabetes. Nat Genet 36:337–338

Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 
414:813–820

Burren OS, Adlem EC, Achuthan P et al (2011) T1DBase: update 2011, organization and presenta-
tion of large-scale data sets for type 1 diabetes research. Nucleic Acids Res 39:D997–D1001

Cakatay U (2005) Protein oxidation parameters in type 2 diabetic patients with good and poor 
glycaemic control. Diabetes Metab 31:551–557

Casas S, Gomis R, Gribble FM et al (2007) Impairment of the ubiquitin-proteasome pathway 
is a downstream endoplasmic reticulum stress response induced by extracellular human islet 
amyloid polypeptide and contributes to pancreatic beta-cell apoptosis. Diabetes 56:2284–2294

Codoñer-Franch P, Pons-Morales S, Boix-García L, Valls-Bellés V (2010) Oxidant/antioxidant 
status in obese children compared to pediatric patients with type 1 diabetes mellitus. Pediatr 
Diabetes 11:251–257

Cooper JD, Smyth DJ, Walker NM et al (2011) Inherited variation in vitamin D genes is associated 
with predisposition to autoimmune disease type 1 diabetes. Diabetes 60:1624–1631

Cox NJ, Hayes MG, Roe CA et al. (2004) Linkage of calpain 10 to type 2 diabetes: the biological 
rationale. Diabetes 53(Suppl 1):19–25

da Silva BS, Rovaris DL, Bonotto RM et al (2013) The influence on DNA damage of glycaemic 
parameters, oral antidiabetic drugs and polymorphisms of genes involved in the DNA repair 
system. Mutagenesis 28:525–530.

Damcott CM, Hoppman N, Ott SH et al (2004) Polymorphisms in both promoters of hepatocyte 
nuclear factor 4-alpha are associated with type 2 diabetes in the Amish. Diabetes 53:3337–3341

Dinçer Y, Akçay T, Ilkova H et al (2003) DNA damage and antioxidant defense in peripheral leu-
kocytes of patients with Type I diabetes mellitus. Mutat Res 527:49–55

Dizdaroglu M (2012) Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer 
Lett 327:26–47

Drews G, Krippeit-Drews P, Düfer M (2010) Oxidative stress and beta-cell dysfunction. Pflugers 
Arch 460:703–718

Edeas M, Attaf D, Mailfert AS et al (2010) Maillard reaction, mitochondria and oxidative stress: 
potential role of antioxidants. Pathol Biol (Paris) 58:220–225

Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M et al (2011) Inflammation, oxidative 
stress, and obesity. Int J Mol Sci 12:3117–3132

Florez JC, Hirschhorn J, Altshuler D (2003) The inherited basis of diabetes mellitus: implications 
for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet 4:257–291

Freeman H, Cox RD (2006) Type-2 diabetes: a cocktail of genetic discovery. Hum Mol Genet 15 
Spec No 2:R202–R209

Friedberg EC, Walker GC, Siede W et al (2006) DNA Repair and Mutagenesis. ASM, Washington, 
DC



1779 Expression of DNA Repair and Response to Oxidative …

Gardner BM, Walter P (2011) Unfolded proteins are Ire1-activating ligands that directly induce the 
unfolded protein response. Science 333:1891–1894

Geiger K, Leiherer A, Muendlein A et al (2011) Identification of hypoxia-induced genes in human 
SGBS adipocytes by microarray analysis. PLoS One 6:e26465

Gerich JE (1999) Is insulin resistance the principal cause of type 2 diabetes? Diabetes Obes Metab 
1:257–263

Golay A, Ybarra J (2005) Link between obesity and type 2 diabetes. Best Pract Res Clin Endocri-
nol Metab 19:649–663

Goodarzi MT, Navidi AA, Rezaei M, Babahmadi-Rezaei H (2010) Oxidative damage to DNA 
and lipids: correlation with protein glycation in patients with type 1 diabetes. J Clin Lab Anal 
24:72–76

Grey F, Tirabassi R, Meyers H et al (2010) A viral microRNA down-regulates multiple cell cycle 
genes	through	mRNA	5ʹUTRs.	PLoS	Pathog	6:e1000967

Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding 
protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

Hage Hassan R, Hainault I, Vilquin JT et al (2012) Endoplasmic reticulum stress does not mediate 
palmitate-induced insulin resistance in mouse and human muscle cells. Diabetologia 55:204–
214

Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University, 
Oxford

Hannon-Fletcher MP, O'Kane MJ, Moles KW et al (2000) Levels of peripheral blood cell DNA 
damage in insulin dependent diabetes mellitus human subjects. Mutat Res 460:53–60

Hara K, Horikoshi M, Kitazato H et al (2006) Hepatocyte nuclear factor-4alpha P2 promoter hap-
lotypes are associated with type 2 diabetes in the Japanese population. Diabetes 55:1260–1264

Hata I, Kaji M, Hirano S et al (2006) Urinary oxidative stress markers in young patients with type 
1 diabetes. Pediatr Int 48:58–61

Hayashi T, Saito A, Okuno S et al (2005) Damage to the endoplasmic reticulum and activation 
of apoptotic machinery by oxidative stress in ischemic neurons. J Cereb Blood Flow Metab 
25:41–53

Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome 
by CLASH reveals frequent noncanonical binding. Cell 153:654–665

IDF (2013) The IDF diabetes atlas. international diabetes federation. sixth edition ed. brussels. 
http://www.idf.org/diabetesatlas. Accessed 14 March 2014

Inagi R (2011) Inhibitors of advanced glycation and endoplasmic reticulum stress. Methods En-
zymol 491:361–380

Irvine KM, Gallego P, An X et al (2012) Peripheral blood monocyte gene expression profile clini-
cally stratifies patients with recent-onset type 1 diabetes. Diabetes 61:1281–1290

Ismail-Beigi F (2012) Clinical practice. Glycemic management of type 2 diabetes mellitus. N Engl 
J Med 366:1319–1327

Iwasaki Y, Suganami T, Hachiya R et al (2014) Activating transcription factor 4 links metabolic 
stress to interleukin-6 expression in macrophages. Diabetes 63:152–161

Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular 
stress response, stress tolerance, and tissue repair. Pharmacol Rev 63:218–242

Kalyanaraman B (2013) Teaching the basics of redox biology to medical and graduate students: 
oxidants, antioxidants and disease mechanisms. Redox Biol 1:244–257

Katsuoka F, Motohashi H, Ishii T et al (2005) Genetic evidence that small maf proteins are es-
sential for the activation of antioxidant response element-dependent genes. Mol Cell Biol 
25:8044–8051

Kimura K, Yamada T, Matsumoto M et al (2012) Endoplasmic reticulum stress inhibits STAT3-
dependent suppression of hepatic gluconeogenesis via dephosphorylation and deacetylation. 
Diabetes 61:61–73

Kohn LD, Wallace B, Schwartz F, McCall K (2005) Is type 2 diabetes an autoimmune-inflamma-
tory disorder of the innate immune system? Endocrinology 146:4189–4191



178 P. Takahashi et al.

Komura T, Sakai Y, Honda M et al (2010) CD14 + monocytes are vulnerable and functionally 
impaired under endoplasmic reticulum stress in patients with type 2 diabetes. Diabetes 59:634–
643

Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, func-
tion and decay. Nat Rev Genet 11:597–610

Kruger DF, Martin CL, Sadler CE (2006) New insights into glucose regulation. Diabetes Educ 
32:221–228

Lam TK, Carpentier A, Lewis GF et al (2003) Mechanisms of the free fatty acid-induced increase 
in hepatic glucose production. Am J Physiol Endocrinol Metab 284:E863–E873

Lebrun P, Van Obberghen E (2008) SOCS proteins causing trouble in insulin action. Acta Physiol 
(Oxf) 192:29–36

Lee HC, Wei YH (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. 
Exp Biol Med (Maywood) 232:592–606

Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small 
RNAs with antisense complementarity to lin-14. Cell 75:843–854

Lenzen S (2008) Oxidative stress: the vulnerable beta-cell. Biochem Soc Trans 36:343–347
Lim KS, Jeyaseelan K, Whiteman M et al (2005a) Oxidative damage in mitochondrial DNA is not 

extensive. Ann N Y Acad Sci 1042:210–220
Lim LP, Lau NC, Garrett-Engele P et al (2005b) Microarray analysis shows that some microRNAs 

downregulate large numbers of target mRNAs. Nature 433:769–773
Lin CC, Huang HH, Hu CW et al (2014) Trace elements, oxidative stress and glycemic control in 

young people with type 1 diabetes mellitus. J Trace Elem Med Biol 28:18–22
Lodovici M, Giovannelli L, Pitozzi V et al (2008) Oxidative DNA damage and plasma antioxi-

dant capacity in type 2 diabetic patients with good and poor glycaemic control. Mutat Res 
638:98–102

Lowe CE, Cooper JD, Brusko T et al (2007) Large-scale genetic fine mapping and genotype-
phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat 
Genet 39:1074–1082

Manoel-Caetano FS, Xavier DJ, Evangelista AF et al (2012) Gene expression profiles displayed 
by peripheral blood mononuclear cells from patients with type 2 diabetes mellitus focusing on 
biological processes implicated on the pathogenesis of the disease. Gene 511:151–160

Mao Y, Mohan R, Zhang S, Tang X (2013) MicroRNAs as pharmacological targets in diabetes. 
Pharmacol Res 75:37–47

Marselli L, Thorne J, Dahiya S et al (2010) Gene expression profiles of Beta-cell enriched tis-
sue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 
5:e11499

Martinon F, Glimcher LH (2011) Regulation of innate immunity by signaling pathways emerging 
from the endoplasmic reticulum. Curr Opin Immunol 23:35–40

Meyre D, Bouatia-Naji N, Tounian A et al (2005) Variants of ENPP1 are associated with childhood 
and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 
37:863–867

Moller DE (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 
414:821–827

Moynihan KA, Grimm AA, Plueger MM et al (2005) Increased dosage of mammalian Sir2 in pan-
creatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2:105–117

Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist's guide to re-
active oxygen species. Nat Rev Immunol 13:349–361

Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production 
blocks three pathways of hyperglycaemic damage. Nature 404:787–790

Nisticò L, Buzzetti R, Pritchard LE et al (1996) The CTLA-4 gene region of chromosome 2q33 
is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet 
5:1075–1080



1799 Expression of DNA Repair and Response to Oxidative …

Oslowski CM, Hara T, O'Sullivan-Murphy B et al (2012) Thioredoxin-interacting protein medi-
ates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab 
16:265–273

Pacal L, Varvarovska J, Rusavy Z et al (2011) Parameters of oxidative stress, DNA damage and 
DNA repair in type 1 and type 2 diabetes mellitus. Arch Physiol Biochem 117:222–230

Palsgaard J, Brons C, Friedrichsen M et al (2009) Gene expression in skeletal muscle biopsies 
from people with type 2 diabetes and relatives: differential regulation of insulin signaling path-
ways. PLoS One 4:e6575

Piperi C, Adamopoulos C, Dalagiorgou G et al (2012) Crosstalk between advanced glycation and 
endoplasmic reticulum stress: emerging therapeutic targeting for metabolic diseases. J Clin 
Endocrinol Metab 97:2231–2242

Planas R, Carrillo J, Sanchez A et al (2010) Gene expression profiles for the human pancreas and 
purified islets in type 1 diabetes: new findings at clinical onset and in long-standing diabetes. 
Clin Exp Immunol 159:23–44

Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 
50:567–575

Reczko M, Maragkakis M, Alexiou P et al (2012) Functional microRNA targets in protein coding 
sequences. Bioinformatics 28:771–776

Robertson RP, Harmon JS (2007) Pancreatic islet beta-cell and oxidative stress: the importance of 
glutathione peroxidase. FEBS Lett 581:3743–3748

Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. 
Nat Rev Mol Cell Biol 8:519–529

Ruiz-García A, Monsalve E, Novellasdemunt L et al (2011) Cooperation of adenosine with macro-
phage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expres-
sion of PFKFB3 gene. J Biol Chem 286:19247–19258

Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 
1833:3460–3470

Santos JH, Hunakova L, Chen Y et al (2003) Cell sorting experiments link persistent mitochondrial 
DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J Biol 
Chem 278:1728–1734

Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression 
patterns with a complementary DNA microarray. Science 270:467–470

Scheuner D, Vander Mierde D, Song B et al (2005) Control of mRNA translation preserves endo-
plasmic reticulum function in beta cells and maintains glucose homeostasis. Nat Med 11:757–
764

Schwanstecher C, Schwanstecher M (2002) Nucleotide sensitivity of pancreatic ATP-sensitive 
potassium channels and type 2 diabetes. Diabetes 51(Suppl 3):358–362

Seghrouchni I, Drai J, Bannier E et al (2002) Oxidative stress parameters in type I, type II and in-
sulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin Chim Acta 321:89–96

Sethi JK, Hotamisligil GS (1999) The role of TNF alpha in adipocyte metabolism. Semin Cell Dev 
Biol 10:19–29

Slatter DA, Bolton CH, Bailey AJ (2000) The importance of lipid-derived malondialdehyde in 
diabetes mellitus. Diabetologia 43:550–557

Song F, Jia W, Yao Y et al (2007) Oxidative stress, antioxidant status and DNA damage in pa-
tients with impaired glucose regulation and newly diagnosed Type 2 diabetes. Clin Sci (Lond) 
112:599–606

Stechova K, Kolar M, Blatny R et al (2011) Healthy first degree relatives of patients with type 
1 diabetes exhibit significant differences in basal gene expression pattern of immunocompe-
tent cells compared to controls: expression pattern as predeterminant of autoimmune diabetes. 
Scand J Immunol 75:210–219

Stolar MW, Hoogwerf BJ, Gorshow SM et al. (2008) Managing type 2 diabetes: going beyond 
glycemic control. J Manag Care Pharm 14:2–19

Storr SJ, Woolston CM, Zhang Y, Martin SG (2013) Redox environment, free radical, and oxida-
tive DNA damage. Antioxid Redox Signal 18:2399–2408



180 P. Takahashi et al.

Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and 
therapy. The Lancet 365:1333–1346

Takahashi P, Xavier DJ, Evangelista AF et al (2014) MicroRNA expression profiling and functional 
annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene 539:213–223

Takamura T, Honda M, Sakai Y et al (2007) Gene expression profiles in peripheral blood mono-
nuclear cells reflect the pathophysiology of type 2 diabetes. Biochem Biophys Res Commun 
361:379–384

Taylor SI (1999) Deconstructing type 2 diabetes. Cell 97:9–12
Tonooka N, Oseid E, Zhou H et al (2007) Glutathione peroxidase protein expression and activity 

in human islets isolated for transplantation. Clin Transplant 21:767–772
van Oostrom O, de Kleijn DP, Fledderus JO et al. (2009) Folic acid supplementation normalizes 

the endothelial progenitor cell transcriptome of patients with type 1 diabetes: a case-control 
pilot study. Cardiovasc Diabetol 8:47

von Herrath M (2009) Can we learn from viruses how to prevent type 1 diabetes?: the role of viral 
infections in the pathogenesis of type 1 diabetes and the development of novel combination 
therapies. Diabetes 58:2–11

Wållberg M, Cooke A (2013) Immune mechanisms in type 1 diabetes. Trends Immunol 34:583–
591

Wang Y, Vera L, Fischer WH, Montminy M (2009) The CREB coactivator CRTC2 links hepatic 
ER stress and fasting gluconeogenesis. Nature 460:534–537

Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-
14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

Yang J, Robert CE, Burkhardt BR et al (2005) Mechanisms of glucose-induced secretion of pan-
creatic-derived factor (PANDER or FAM3B) in pancreatic beta-cells. Diabetes 54:3217–3228

Zaccone P, Cooke A (2011) Infectious triggers protect from autoimmunity. Semin Immunol 
23:122–129

Zipitis CS, Akobeng AK (2008) Vitamin D supplementation in early childhood and risk of type 1 
diabetes: a systematic review and meta-analysis. Arch Dis Child 93:512–517



181

Chapter 10
MicroRNAs in Cancer

Adriane F. Evangelista and Marcia M. C. Marques

M. M. C. Marques () · A. F. Evangelista
Molecular Oncology Research Center, Barretos Cancer Hospital,  
14784-400 Barretos, São Paulo, Brazil
e-mail: mmcmsilveira@gmail.com

M. M. C. Marques
Barretos School of Health Sciences—FACISB, 14784-400 Barretos, São Paulo, Brazil

Abstract A frequent problem in the diagnosis of human tumors is the lack of biomark-
ers associated with biological processes that drive the initiation and progression of can-
cer. Evidences indicate that microRNAs (miRNAs) regulate the expression of different 
genes (post-transcriptional regulation) associated with carcinogenesis process. Because 
of this, small RNAs have become a crucial point in the molecular dissection of human 
cancer a few years ago. MiRNAs are small non-coding RNAs (19–24 nucleotides) 
responsible for fine-tuning of gene expression influencing the stability and efficiency of 
translation of messenger RNAs (mRNA) targets. Recently it has been proposed that the 
pathogenesis of cancer involves, among other macromolecules, miRNAs whose expres-
sion profiles are associated with prognosis and therapeutic results in various human 
cancers. The mechanisms mediating tumor progression exerted by miRNAs have been 
addressed only recently. MiRNAs exhibits a dual role in all types of cancer depend-
ing on their expression status i.e. up or down regulated. Thus, miRNAs may act as 
oncogenes (oncomirs) or tumor-suppressors. However, if the interest is to use miRNAs 
as biomarkers they should be ideally easily assayed with minimally invasive medical 
procedures but at the same time offering high sensitivity and specificity. In this context, 
recent findings suggest the potential of circulating miRNAs in the screening or monitor-
ing cancer treatment.

10.1  MicroRNAs: Characterization and Biogenesis

MicroRNAs, or miRNAs, are small, non-protein-coding RNAs (19–24 nucleotides) 
produced from precursor hairpin RNAs of approximately 60–110 nucleotides that 
are involved in the post-transcriptional regulation of gene expression (Ambros 
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2004; Bartel 2004). Canonical miRNA biogenesis occurs through the sequential 
processing of primary transcripts (pri-miRNA) that is mediated by two ribonuclease 
III (RNase III) enzymes, Dicer and Drosha (Ketting et al. 2001; Lee et al. 2003). 
In addition to the canonical pathway, several alternative biogenesis pathways have 
been described in recent years, in which other cellular ribonucleases replace Drosha 
to generate the pre-miRNA hairpins (Yang and Lai 2011). The main Drosha-inde-
pendent pathways include the splicing of mirtron derivatives (Okamura et al. 2007; 
Ruby et al. 2007) and mirtrons (Babiarz et al. 2008), miRNA biogenesis mediated 
by RNaseZ (Bogerd et al. 2010) and miRNA biogenesis mediated by integrators 
(Cazalla et al. 2011).

The mechanism of action of miRNAs involves binding of the miRNA to the 
3’ untranslated region (3’ UTR) of the target mRNA, resulting in the regulation 
of mRNA stability and protein synthesis (Ambros 2004; Bartel 2004). This post-
transcriptional regulation by miRNAs occurs through interaction (base pairing) in 
the 3’ Untranslated Region of the mRNA (3’ UTR) and depends on the degree of 
complementarity between the miRNA and the target mRNA. This interaction can 
lead to the inhibition of translation or mRNA degradation (Sevignani et al. 2006). 
Imperfect pairing leads to the inhibition of translation of the target mRNA, which 
is the major mechanism of action of miRNAs in mammals (He and Hannon 2004). 
The small size of miRNAs and their ability to function without complete base pair-
ing mean that a single miRNA can regulate several mRNA targets and that multiple 
miRNAs can cooperate to control a single mRNA (Sevignani et al. 2006).

Recent studies have reported that miRNAs can regulate gene expression by bind-
ing the 5’ UTR of target mRNAs, which can either allow or inhibit translation. This 
new mechanism of gene regulation by miRNAs has been demonstrated by several 
in vitro, in vivo and in silico approaches, and a variety of tools have been devel-
oped to predict new targets and the functions of miRNAs bound to the 5’ UTR (Da 
Sacco and Masotti 2012). The first study that demonstrated a mechanism for the 
post-transcriptional regulation of gene expression by a 5’ UTR-bound miRNA was 
conducted in Drosophila melanogaster. In this study, the authors reported that the 
interaction	of	miR-2	with	the	5’	UTR	region	of	the	human	β-globin	gene	inhibits	the	
translation of the corresponding protein. However, this inhibition is only partially 
regulated by binding in the 5’UTR and could also be a result of miR-2 binding to 
the 3’ UTR of the target mRNA (Moretti et al. 2010).

In humans, endogenous miRNAs can regulate approximately 30 % of all protein 
coding genes (Lewis et al. 2005) and thus coordinate key cellular processes such 
as cell proliferation, DNA repair, differentiation, metabolism and apoptosis (Croce 
and Calin 2005). Since the discovery of miRNAs in 1993, several studies have been 
performed to understand how these molecules are involved in normal physiological 
processes and the onset of a wide variety of diseases. Over 200 different types of 
human miRNAs have been described, and this number is increasing rapidly (http://
www.mirbase.org/).

Indeed, the deregulation of cellular miRNA expression has been consistently 
observed in several pathologies, including cancer (Lu et al. 2005). Each miRNA 
consists of a unique sequence and exhibits a cell type-dependent pattern of expres-
sion (Landgraf et al. 2007; Lu et al. 2005).



18310 MicroRNAs in Cancer

10.2  Dysregulation of miRNA Expression in Human 
Cancer

In recent years, miRNAs have become very important for the molecular understand-
ing of human cancers (He and Hannon 2004). The small size of miRNAs and their 
ability to act without complete base pairing mean that a single miRNA can regulate 
several mRNA targets and that multiple miRNAs can cooperate to control a single 
mRNA (Koturbash et al. 2011). Recently, it has been proposed that the pathogen-
esis of cancer involves, among other macromolecules, the miRNAs, the expression 
profiles of which are associated with the prognosis and therapeutic responses of a 
variety of human cancers (Ma et al. 2007).

The miRNAs involved in the neoplastic process can be divided into two groups, 
oncomiRs and anti-oncomiRs, that negatively regulate tumor suppressor genes and 
oncogenes, respectively (Fabbri et al. 2007). For example, a group of miRNAs, 
known as the miR-17-92 cluster, is considered to be potentially oncogenic because 
it is frequently overexpressed in solid tumors (Garzon et al. 2009). However, the 
miRNA let-7 is considered to be an anti-oncomiR ecause it blocks the action of the 
RAS oncogene (Johnson et al. 2005).

Approximately 50 % of miRNAs are located at fragile sites or regions associated 
with cancer (Calin et al. 2004a, b, 2002). Studies analyzing miRNA expression 
profiles on a large scale have shown that these molecules can be used as molecu-
lar biomarkers because their expression signatures can differentiate, at a molecular 
level, normal cells from neoplastic cells and can be used to classify several cancer 
types (Calin and Croce 2006).

The first studies addressing miRNAs in tumors described the identification of 
sequences encoding miR-15 and miR-16 in the chromosomal region 13q14 that are 
deleted in more than half of chronic myeloid leukemia patients (Calin et al. 2002).

Since then, altered miRNA expression has been observed in several tumors 
including breast, colorectal, prostate, lung and liver tumors. In breast cancer, Io-
rio et al. (2005) performed the first study evaluating miRNA expression in tumor 
samples from breast cancer patients using microarray technology. In this study, the 
miRNAs miR-10b, miR-125b and miR-145 were upregulated in breast cancer pa-
tients compared with normal individuals, while miR-155 and miR-21 were down-
regulated.

Another relevant study assessed the expression profiles of 540 miRNAs in 
samples of six different solid tumors (colon, lung, breast, stomach, pancreas, and 
prostate). Initially, a comparison between tumor tissues and normal tissues was per-
formed that identified 26 upregulated and 17 downregulated miRNAs. The results 
showed that miR-21 and miR-17-5p were upregulated in all cancers but that miR-
155 was upregulated only in breast, lung and colon cancers. Furthermore, it was 
observed that miR-106a was upregulated in colon cancer, but weakly expressed in 
breast cancer (Volinia et al. 2006).

Several studies showed that the expression of the miR-34 family is induced in 
response to DNA damage in a p53-dependent manner (Bommer et al. 2007; Chang 
et al. 2007). The p53 transcription factor is a tumor suppressor activated after DNA 
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damage, oxidative stress or oncogene activation that acts as a guardian of the ge-
nome (Vousden and Lane 2007).

The miR-34 family is evolutionarily conserved and, in the vertebrate genome, is 
composed of three members (miR-34a, miR-34b and miR-34c) that are expressed 
from two different loci: miR-34a is located on chromosome 1p16, while miR-34b 
and miR-34c are located on chromosome 11q23A (Bommer et al. 2007). Several 
stimuli, such as DNA damage and oncogene activation, lead to the expression of 
miR-34a and miR-34b/c, which are directly regulated by p53. Thus, the identifica-
tion of the miR-34 family as a p53 target expands the repertoire of regulation by 
this gene, indicating that p53 is important in the regulation of both protein-coding 
genes and miRNAs.

An increasing number of studies have shown that miRNAs play an important 
role in the onset, progression and subsequent invasion and metastasis of different 
types of cancers (Almeida et al. 2010; Calin and Croce 2006). The involvement of 
miRNAs in tumor metastasis has been under intense investigation in recent years. 
The role of miRNAs in metastasis was initially discovered by Ma et al. (2007) 
who found that miR-10b initiates invasion and metastasis in breast cancer. Later, 
Tavazoie et al. (2008) revealed that miR-335 suppressing metastasis and migra-
tion by targeting the transcription factor SOX4 and extracellular matriz components 
such as tenascin C. At the same time, it was reported that miR-373 and miR-520c 
stimulate tumor cell migration and invasion, which was suggested to result from the 
suppression of CD44, a gene encoding a surface receptor for hyaluronic acid that 
seems to be a candidate marker for early cancer detection (Negrini and Calin 2008).

Together, these studies revealed a balance between non-coding RNAs as both 
stimulators and inhibitors of metastasis, leading to the identification of several po-
tential targets that represent a molecular link between the loss of miRNA expression 
and the specific behavior of a given tumor.

These findings are important not only because they represent a new field of re-
search, but also because the authors finely dissected the molecular pathways that 
are involved in the metastasis of mammary tumors. The abnormal expression of 
miRNAs in tumors, which is characterized by different expression levels of the ma-
ture miRNA or miRNA precursor sequences compared to normal cells, has proven 
to be the main abnormality of the “miRNome” (the genome-wide set of miRNAs) 
in cancer cells.

10.3  Circulating miRNAs: Novel Biomarkers for Cancer

Considering that dysregulated miRNA expression is tissue specific, several studies 
have explored the potential use of miRNA expression profiles as biomarkers for 
the diagnosis, prognosis and response to treatment of several types of cancers. The 
first tumor-specific miRNAs were discovered in the serum of patients with B-cell 
lymphoma, in which the increased expression of miR-21 was associated with an in-
crease in disease-free survival (Lawrie et al. 2008). Since then, various studies have 
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assessed the potential use of serum or plasma miRNAs as potential biomarkers for 
different types of human cancers.

An interesting prospective study showed that tumor-specific microRNAs such 
as miR-195 are differentially expressed in the circulation of women with breast 
cancer when compared with women at same age in a control group. Furthermore, it 
was observed that after resection of the tumor, serum levels of miR-195 and let-7a 
were reduced (Heneghan et al. 2010). Another study showed that analysis of the 
combined expression of miR-21, miR-210, miR-155 and miR-196a in plasma could 
distinguish patients with breast adenocarcinoma from control subjects (Wang et al. 
2009).

The ability to use miRNAs as biomarkers in the diagnosis and prognosis of can-
cer is primarily due to their stability and resistance to long periods of storage and 
conditions that would normally cause degradation of other RNAs. Recent studies 
have shown that miRNAs are preserved in serum samples that have been stored for 
10 years (Patnaik et al. 2010). This stability can be partially explained by the dis-
covery of lipoprotein complexes, including small vesicles of endocytic origin called 
exosomes or microvesicles, which carry miRNAs (Valadi et al. 2007), messenger 
RNAs (El-Hefnawy et al. 2004) and proteins (Smalheiser 2007).

These microvesicles are generally characterized by size into two major classes: 
a larger class of approximately 200–1000 nm and a smaller class of microvesicles 
of approximately 30–200 nm, called exosomes. These microvesicles are formed by 
internalization of the endosomal membrane to form multivesicular bodies (MVBs) 
that can subsequently merge with the plasma membrane, releasing the exosomes to 
the outside of the cell (Théry et al. 2002). When in circulation, these exosomes can 
export their miRNAs to recipient cells through endocytosis. After entering the cell, 
the delivered miRNAs are processed by the same machinery used for their biogen-
esis and can regulate gene expression in the recipient cell, leading to a physiological 
change in that cell (Fig. 10.1).

Exosomes carrying miRNAs can be found not only in blood but also in other 
fluids, such as saliva and urine (Michael et al. 2010). Recently, exosomes have 
emerged as important mediators of cellular communication that are involved in nor-
mal physiological processes such as the immune response, lactation and neuronal 
function (Admyre et al. 2007), as well as in the development and progression of 
diseases such as cancer (Record 2013).

In the context of cancer, this mechanism was clearly demonstrated in glioblas-
toma patients in whom tumor cells exported exosomes containing mRNA, miRNA 
and angiogenic proteins that were captured through EGFRvIII receptors by normal 
cells, such as brain microvascular endothelial cells (Skog et al. 2008). In this study, 
it was shown that the messages delivered by tumor-derived exosomes containing 
miRNAs could promote tumor progression. Furthermore, the results of this study 
showed that patients with cancer had higher levels of exosomes in their plasma than 
control subjects.

The use of miRNAs as cancer biomarkers is dependent on scientific evidence 
and studies that aim to identify tissue-specific miRNAs detectable in fluids and 
to establish molecular signatures capable of characterizing the health status of pa-
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tients. Therefore, circulating miRNAs in body fluids and in extracellular compart-
ments can act as hormones, triggering changes in cellular gene expression through 
components secreted by a donor cell at the primary tumor site.

10.4  Computational Approaches for miRNA Target 
Prediction and Their Application in Cancer 
Research

As described in previous sections, miRNAs are a novel, important class of regula-
tory molecules (Sevignani et al. 2006). The study of miRNAs is in its infancy, and 
the characterization of potential targets usually provides clues to understand the 
roles of miRNAs. MiRNAs have the ability to regulate genes involved in diverse 
cellular processes such as growth, proliferation, and cellular differentiation as well 
as a variety of diseases, such as cancer (Bartel 2004).

Studies in this field have shown that each miRNA can bind to several transcripts, 
with an estimated average of approximately 200 targets per miRNA (Friedman et al. 
2009). Two main strategies have been used to identify the targets of miRNAs: direct 

Fig. 10.1  The model proposed for the biogenesis and mechanism of action of circulating miR-
NAs. The miRNAs are initially transcribed in the nucleus and subsequently processed by Dicer 
in the cytoplasm. There are at least two pathways in which the pre-miRNA can be packaged in 
microparticles: transported by exosomes and MVBs or other ways not entirely clear. After fusion 
with the plasma membrane, the exosomes are released into the circulation. When is located inside 
the recipient cell (or secondary sites), miRNAs can be processed by the same miRNA biogenesis 
machinery thereby regulating the gene expression of this new cell
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cloning and computational predictions (Bentwich et al. 2005). The computational 
strategy for target identification has been questioned because of the high rate of 
false positive results provided by the prediction algorithms. Recently, new experi-
mental methods for large-scale target validation have emerged, such as Stable Iso-
tope Labeling by Amino acids in Cell culture (SILAC), which is a mass spectrom-
etry (MS)-based quantitative proteomics used for miRNA target screening (Vinther 
et al. 2006), and Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Im-
munoprecipitation (PAR-CLIP) which is a biochemical method used for identify-
ing microRNA-containing ribonucleoprotein complexes (miRNPs) (Hafner et al. 
2012), among others. These new methods have provided more robust results in this 
field and may lead to the creation of future computational tools.

This section mainly addresses the computational tools for target prediction in 
general and strategies that have been applied to the study of cancer. In general, the 
available target prediction tools can currently be divided into two categories. The 
first includes those with pre-computed predictions, in which the user does not need 
to perform all the steps but can simply search by miRNA name or identification. 
The second consists of a server that allows the user to add their own sequences for 
the analysis, making the prediction more versatile (Lindow 2011).

The first database designed to catalog the sequences of miRNAs as soon as they 
are identified was miRBase. This database serves as a repository for sequences and 
annotations, providing access to virtually all published miRNAs (Griffiths-Jones 
et al. 2006). Currently, the database is in version 20 (June 2013) and consists of 
24521 entries representing hairpin precursor miRNAs and 30424 entries for mature 
miRNAs in 206 species (www.mirbase.org). It is important to emphasize that with 
the advance of large-scale technologies, especially next-generation sequencing, 
new miRNAs have been reported at a very high rate (Cordero et al. 2012; Stäehler 
et al. 2012).

One of the basic principles widely used by these algorithms is complementary 
base pairing. In plants, complementary base pairing between miRNAs and their 
targets is almost perfect. In mammals, only a portion of the miRNA binds directly 
to the target, making prediction more difficult. Thus, several rules have been es-
tablished to identify targets based on sequence complementarity; complementarity 
is especially important in positions 2–8 (seed region) at the 5’ end of the miRNA, 
or a high degree of similarity in the 3’ end of the miRNA can compensate for low 
complementarity in the seed region (Bartel 2009; Rajewsky 2006). Some additional 
criteria vary with the type of algorithm and may include RNA-RNA interactions 
based on thermodynamic principles or permission of G:U pairing, among others 
(Bartel 2009).

Furthermore, several algorithms use patterns of conservation for target predic-
tion. However, because not all sites are necessarily conserved, some programs are 
no longer including this step (Thadani and Tammi 2006). Nevertheless, conserva-
tion is of great relevance in cancer. MicroRNAs reported to be oncogenes or tumor 
suppressors are frequently conserved across species (Wang et al. 2010). Further-
more, the transcription of ultra-conserved regions (UCRs) among humans, rats and 
mice also appears to be related to miRNAs, and there are even databases that com-
pute this information (Goymer 2007; Taccioli et al. 2009).
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Overall, the most popular computational tools that follow these rules and pre-
dict targets based mainly on sites in the 3’ UTR of the target are DIANA-microT 
(Maragkakis et al. 2011), miRanda (Betel et al. 2010), PicTar (Krek et al. 2005), 
PITA (Kertesz et al. 2007), RNAhybrid (Rehmsmeier et al. 2004) and TargetScan 
(Grimson et al. 2007). Moreover, several tools have recently been developed to 
study the interactions between miRNAs and the 5’ UTR (or CDS) of target genes, 
such as miBridge, miRTar, miRWalk and Sfold-STarMirDB (Da Sacco and Masotti 
2012). Other widely used tools that allow the combination of several popular algo-
rithms for target prediction are MAMI (Liang 2008), MirGen (Megraw et al. 2007) 
and miRDip (Shirdel et al. 2011).

Other types of algorithms combine target prediction with gene expression data. 
Among the most popular of these tools is GenMiR, which uses a Bayesian method 
to combine results obtained from prediction algorithms, such as TargetScan, with 
expression data obtained from miRNA and mRNA microarrays (Huang et al. 2007). 
Other methods such as correlations, probabilistic methods, regression and associa-
tions with transcription factors have been proposed to assess miRNA-mRNA net-
works based on gene expression data (Joung et al. 2007; Li et al. 2010).

Therefore, the use of a variety of tools is recommended to computationally 
search for the most representative targets and avoid false-positive data. In general, 
prediction methods considered efficient contain the following steps: (i) use of sev-
eral algorithms with different methods for confirmation, (ii) comparisons between 
mRNA and microRNA expression profiles, (iii) consideration of nearby sites that 
may act synergistically, and (iv) experimental validation or subsequent functional 
assays (Witkos et al. 2011). It is important to consider that although in silico analy-
sis is extremely useful for the prediction of microRNA targets, experimental valida-
tion is necessary to evaluate the real role of these putative interactions.

Furthermore, it is important to address the large amounts of data that are gener-
ated from large-scale transcriptome studies or large-scale target prediction. Usu-
ally, they can be summarized using functional enrichment analysis. The goal of this 
strategy is to provide a statistical method to estimate the enrichment, i.e., the higher-
than-expected representation, of certain functional categories, excluding functional 
terms that could be identified by chance. Several tools use the Fisher’s exact test to 
estimate enrichment. Databases such as DAVID (Database for Annotation, Visual-
ization and Integrated Discovery) analyze data based on Gene Ontology functional 
categories and pathways from databases such as KEGG and others (Huang et al. 
2008). This strategy of enrichment has been widely applied, as seen in recent work 
from our group (Takahashi et al. 2014).

Finally, there are some databases, which are generally manually curated from the 
literature, that compile information about diseases to derive biologically relevant 
information from lists of miRNAs. Among the most well-known are miR2Dis-
ease, which addresses 163 diseases, and the Human microRNA Disease Database 
(HMDD), which provides information about microRNAs for more than 100 dis-
eases and approximately 40 tissues. In the case of cancer, there are several databases 
available such as oncomiRDB, which computes oncogenic and tumor suppressor 
miRNAs (Wang et al. 2014), miRCancer, which includes 236 miRNAs in 79 cancer 
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types (Xie et al. 2013), and TUMIR, which includes 1163 studies addressing the re-
lationship between miRNAs and cancer (Dong et al. 2013). In summary, these tools 
provide evidence of the role of microRNAs from their targets, with approaches that 
can be used in cancer research.
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Abstract The musculoskeletal system may be affected by a myriad of conditions. 
Many of them are inflammatory and chronicle diseases, with functional impairment 
and limiting pain as major symptoms. In common, these diseases have the addressing of 
immune cells to musculoskeletal system structures, leading to a persistent inflammation 
and, in some situations, autoimmune responses. This chapter will verse about rheuma-
toid arthritis and the spondyloarthritis. We discuss the knowledge according to some 
key points on their pathophysiology, attempts of phenotypic sub-classification, therapy 
response prediction and elucidations on drugs mechanisms of action, with emphasis 
on the advantages and gains from studies using microarray technology, its limitations 
and future possibilities. Moreover, we emphasize the distinct patterns obtained by gene 
expression studies according to the RNA source, like peripheral blood and synovia, the 
subjects studied, whether patients are compared with healthy controls or patients of 
mechanic-degenerative or of other autoimmune diseases, and the stage of the diseases.

Why has it been so difficult to find the place for microarray in daily medical 
decisions? Is it only regarded to the heterogeneity of autoimmune diseases, mainly 
because these are conditions highly influenced by an enormous amount of external 
and internal stimuli? The answer for this question is neither affirmative nor nega-
tive. Apart of uncertainties, we can rely on some data, like good candidates for a 
peripheral blood rheumatoid arthritis gene chip, which are summarized in the final 
section along with the authors’ opinions and the perspectives for advances in this 
intriguing and exciting field.

11.1  Introduction

The musculoskeletal system may be affected by a myriad of conditions, compro-
mising muscles and tendons, ligaments, synovia, bursas and bones (Felson 2005). 
Many of them are inflammatory and chronicle diseases, with functional impairment 
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and limiting pain as major symptoms (McCarty 2005). In common, these diseases 
have the addressing of immune cells to those structures, leading to a persistent in-
flammation and, in some situations, autoimmune responses. The dysregulation of 
immune system is a landmark and all the attempts to achieve clinical remission are 
based on the control of immune cells activity.

Unfortunately, a not negligible number of patients faces uncontrollable disease 
for months to years, resulting in persistent disabilities or fatal evolution. Much of 
the inability to control the chronic inflammatory diseases comes from some hiatus 
in their knowledge.

Recent years have brought several changes in our understanding on pathophysi-
ology and treatment possibilities, guided mainly by advances in molecular biology 
techniques. Clinicians certainly need more accurate diagnosis and classification 
criteria beside the best decision making scenarios, where patients are the more ap-
propriated candidates for previous and new therapies. Molecular approaches can 
become an outstanding tool for both, pathophysiology investigations and therapies 
best choices.

Gene expression studies offer a plenty of information on several molecular pro-
cesses occurring at the same time, being able, indeed, of giving us clues about strik-
ing features of a disease and, as crucial, how these processes change during patho-
physiological development (Lequerré et al. 2003).

Rheumatoid arthritis (RA) and the spondyloarthritis (SpA) will be the scope of 
this chapter, with emphasis to the knowledge from cDNA microarray studies.

11.2  Rheumatoid arthritis

RA is a chronic systemic autoimmune disease affecting mainly synovial tissue, 
whose etiology still remains uncertain, although some risk factors are known, like 
genetic (HLD-DRB1, PTPN22, PADI and STAT4) and environmental (trauma, to-
bacco smoke exposure and infections) (Klareskog et al. 2006).

A pre-clinic stage is recognized (Klareskog et al. 2009), when physiopathologic 
mechanisms are present but not an inflammation in such a magnitude to be assessed 
by physical examination or complimentary exams. The first clinic is an early stage 
(early rheumatoid arthritis, ERA) with distinct clinical presentation and molecular 
(cytokines, chemokines and other inflammatory mediators) pattern, but a cutting 
edge between this and the second stage, long-standing disease (LSRA), is to be 
achieved. The identification of at least these two stages is pivotal because the ther-
apy success varies widely for the drugs available with the disease progression. An 
important concept is the “window of opportunity” (O’Dell 2002), namely the first 
6 months of onset, a period with the higher chance of disease control and none or 
minimal structural damage.

One could argue that different inflammatory and immunopathological processes 
govern each stage of RA and some data already confirm this, but we are still waiting 
for the moment when this information will be enough to clearly sub classify patients 
and, maybe the most important, guide the choice for the best individualized therapy. 
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The last assertion goes by the order of the day in RA, because for up to 50 % of the 
patients, functionality has been lost in a painful manner before they receive an effi-
cient therapy (Möttönen et al. 2002). Moreover, from a public healthy funding point 
of view, hundreds of million dollars (Schoels et al. 2010) are expended each year 
in unsuccessful treatments, especially with the advent of biological drugs—TNF-
blockers, Abatacept, Rituximab and Tocilizumab.

Based on all above exposed, it is peremptory to deepen the knowledge in each 
one of these disease aspects. Some cDNA microarray studies started contributing 
this task, as summarized in the following subsections.

11.2.1  Pathophysiology

The majority of the studies on RA pathophysiology compared the patients with 
three main groups: healthy controls, patients of other autoimmune diseases or pa-
tients of osteoarthritis (OA). Few studies bring only an RA group.

11.2.1.1   RA vs healthy control

Peripheral Blood Sampling Studies Using peripheral blood, some groups stud-
ied RA signature compared with healthy controls. Teixeira et al. (2009) selected 
RA patients in use of Disease Modifying Anti-rheumatic Drugs (DMARD) and 
healthy controls and profiled gene expression of peripheral blood mononuclear 
cells (PBMC). The dendrogram completely separated patients from controls, find-
ing some processes differentially regulated between the groups, like inflammation, 
anti-microbial activity, immunomodulatory function and cellular stress. Batliwalla 
et al. (2005a) studied PBMC from RA patients (all with active disease, 7 with no 
previous therapy and 22 non-responders to DMARD and before TNF-blocker ther-
apy) and healthy controls and found 52 upregulated genes in RA, being 21 mono-
cyte enriched transcripts. Although there was no perfect distinction into 2 groups 
by the tree view, RA patients expressed high levels of S100A12 and GAB2, both 
involved in disease-related pathways. Two groups studied B cells, Szodoray et al. 
(2006) and Haas et al. (2006). In common, they found highly expressed genes in 
RA related to functional classes like cell cycle, metabolism, cytokines and apopto-
sis, with remarkable overexpression of anti-apoptotic and underexpression of pro-
apoptotic genes.

Synovial Sampling Studies RA synovial fibroblasts (RASF) were also compared 
with healthy synovial fibroblasts under hypoxic conditions (Del Rey et al. 2010). 
This approach intended to evaluate whether RASF respond abnormally to hypoxia, 
a common environmental characteristic of RA synovia. Several genes, mainly 
related to anaerobic energy production, cytokines and chemokines were found dif-
ferentially expressed.
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11.2.1.2  RA vs other autoimmune diseas

Peripheral Blood Sampling Studies Silva et al. (2007) showed similarities in PBMC 
gene expression profile between RA and systemic lupus erythematosus (SLE), with 
some genes probably involved in the pathogenesis of both diseases. In other study, 
Maas et al. (2002), with the intention of investigate whether autoimmune diseases 
might share a gene expression signature, evaluated PBMC from patients of four 
diseases (SLE, RA, multiple sclerosis and type I diabetes mellitus) comparing to 
healthy controls before and after influenza vaccination. The comparison between 
the autoimmune response and a normal response to immunization yielded a set of 
genes (underexpressed in autoimmunity: pro-apoptotic, enzyme and cycle inhibi-
tors; overexpressed in autoimmunity: intracellular signaling, autoantigens and 
inflammatory mediators) suggesting the existence of genes primarily involved in 
autoimmunity.

A shared type I interferon (IFN) signature was described for many autoimmune 
diseases, including RA (van der Pouw Kraan et al. 2007) and SLE (Baechler et al. 
2003). Reynier et al. (2011) studied RA and SLE patients and healthy controls, find-
ing 2 subtypes of RA, one with high expression of type I INF-induced genes, com-
parable to SLE levels and other with low expression levels, comparable to healthy 
subjects.

11.2.1.3  RA vs OA

Synovial Sampling Studies Devauchelle et al. (2004) obtained by cDNA microar-
ray of synovial tissues a set of 63 genes able to separate every RA patient from OA 
patient. Galligan et al. (2007) were able to identify in RASF a signature compar-
ing them to synovial OA fibroblasts in an approach having healthy synovial fibro-
blasts as control. Several clinic and laboratory aspects (HAQ—Health Assessment 
Questionnaire score, C-reactive protein, erythrocyte sedimentation rate, rheumatoid 
factor positivity and methotrexate [MTX]/prednisone treatment) separately studied 
brought a set of genes able to separate RA from OA patients, albeit these signatures 
were shared by 30–50 % of the RA or OA patients, frustrating the possibility of a 
single gene signature for all patients and reinforcing the heterogeneity of such mul-
tifactorial conditions like the rheumatic diseases.

In an elegant study, Yoshida et al. (2012) studied the gene expression of syno-
vial specimens from RA and OA patients and correlate them with histologic tech-
niques. The samples were scored as high or low histological synovitis, which was 
related only to C-reactive protein level. The microarray showed 197 differentially 
expressed genes, being 47 related to inflammatory response (chemokines and INF-
related genes). Pathway analysis demonstrated direct or indirect relationship among 
TNF, the chemokines and type I IFN. Separation of the samples on dendrogram fit 
exactly the laboratory and histological sub-classification.
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Another possible approach for synovial tissue is to isolate RASF, culture and 
stimulate them with molecules with recognized influence on RA pathophysiology, 
e.g. TNF and IL-17. Gallagher et al. (2003) compared the gene expression of RASF 
and OA synovial fibroblasts stimulated with TNF for 4 or 24 h and these cells with 
unstimulated ones. The TNF stimulated some processes in RA comparing to OA 
cells, like cell cycle, apoptotic mediators, cytokines and inflammatory mediators. 
The authors highlighted the upregulation of IFN-induced genes. Having the primary 
aim to study apoptosis-related genes, Qingchun et al. (2008) obtained synovial tis-
sue from RA and OA patients and found 8 genes, those anti-apoptotic upregulated 
and those apoptotic downregulated.

11.2.1.4  RA Patients Only

Synovial Sampling Studies Taberner et al. (2005) isolated RASF and stimulated 
them with IL-1 or TNF for 4 h. Both stimulations resulted in many commonly regu-
lated processes, like apoptosis, chemokine and cytokines regulation, cell cycle and 
cell signaling, meaning that these two important cytokines may share distal signal-
ing pathways in RA.

Another group, Zrioual et al. (2009), using similar study design, stimulated syno-
vial fibroblasts for 48 h with IL-17A or IL-17F alone or in combination with TNF, 
finding that IL-17A and IL-17F share most of regulated genes, as demonstrated by 
unsupervised hierarchical clustering analysis, and that the typical expression pat-
terns were not significantly changed by the costimulation with TNF. These results 
may reassure the synergistic roles of the TNF and IL-17 driving the tissue damage.

11.2.2  Stage of disease comparison

As stated previously, RA persists a subclinical disease for a variable period, when 
many patients manifest arthralgia without joint inflammatory signals. If the joint 
pain is associated with Rheumatoid factors (RF) and Anti-citrullinated peptide an-
tibodies (ACPA), 40 % of these patients will develop clinical RA (Goekoop-Ruiter-
man et al. 2007). Van Baarsen et al. (2010) studied gene expression of PBMC from 
a group of subjects facing arthralgia and positive RF and/or ACPA test comparing it 
to healthy controls and established RA. Those subjects clustering with RA patients 
developed RA in a 1 year follow-up and markedly expressed genes involved in IFN-
mediated immunity, cytokine-mediated immunity and hematopoiesis, and interest-
ingly, those subjects expressing high levels of genes involved in B cell activation 
did not develop RA.

Lequerré et al. (2009) compared synovial specimens from ERA, LSRA (treated 
with MTX) and healthy control, resulting in a clear distinction between ERA and 
LSRA, being the upregulated processes in ERA more specifically involved in stress 
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responses, defense mechanisms and apoptosis, while in LSRA they were related 
to cell surface receptor-mediated signal transduction, cell cycle control, apoptosis 
inhibition, and granulocyte-mediated immunity, suggesting the involvement of a 
proliferative process. By these data, authors suggest that each stage holds different 
processes and pathways with some overlapping but with opposite regulations.

11.2.3  Phenotype sub-classification

The RA heterogeneity is confirmed molecularly by some studies in this section.

Peripheral Blood Sampling Studies Junta et al. (2008) studied the gene expres-
sion of PBMC from LSRA patients by grouping them taking into account molecu-
lar (HLA-DR shared epitope carriage), laboratory (ACPA positivity) and clinical 
aspects (disease activity and drug therapy), what resulted in different sets of genes 
specifically regulated in each evaluation and some genes and processes shared by 
these different ways of dividing patients.

With similar idea, two groups studied RA patients dividing them according to 
RF positivity (van der Pouw Kraan et al. 2007) or treatment with MTX (Bovin 
et al. 2004), comparing the gene expression levels between the RA groups and with 
healthy controls. In both cases, the patient subdivisions did not find gene expression 
correspondence. Although frustrating, it is interesting to know that in some cases 
what clinicians see is dissociated from what molecular biologists see.

Synovial Sampling Studies Studying LSRA synovial specimens, van der Pouw 
Kraan et al. (2003a) found 3 subgroups of patients, namely RA-Ia, with genes 
involved in antigen processing and presentation, profiling a high inflammatory gene 
expression signature, and RA-Ib and RA-II, with genes involved in tissue remodel-
ing, particularly through the Wnt pathway.

Ungethuem et al. (2010) proposed an RA sub-classification based on the expres-
sion of one gene, PGR4, the most distinctive gene in a set of 7 co-regulated (PRG4, 
CLU, TIMP3, TIMP4, GPX3, TXNIP and BMP4). RA samples were compared 
with OA and healthy control samples, suggesting that an RA phenotype of aggres-
sive disease correlates with low expression of PRG4.

A good panorama of the relationship among clinical presentation, histopatholog-
ic features and gene expression was found by Yoshida et al. (2012), evaluating sy-
novial tissue from RA compared with those from OA patients. All RA samples were 
scored according to a synovitis grade in high and low, which kept correlation with 
clinical score of high and low disease activity. The microarray efficiently separated 
all RA samples into 2 groups corresponding to the histological and clinical classi-
fications. The samples with high synovitis presented 48 inflammatory response re-
lated genes; the most highlighted were CCL5, CXCL9, CXCL10, STAT1 and IRF1. 
Pathway analysis showed direct or indirect relationship among these chemokines, 
TNF and type I IFN.
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Like with peripheral blood samples, not all studies are concordant. Despite of 
the finding of three subsets of RA patients based on the expression of INF-induced 
genes, van der Pouw Kraan et al. (2003b) could not associate the molecular sub-
classification to those from clinical data.

11.2.4  Therapy Outcome Prediction

Some of the most pursued aims in the rheumatology field are the disease biomark-
ers. A main issue about treatment in RA is the non-response to every therapy avail-
able at some extension. This lack of efficacy happens when treating patients either 
with MTX or the other DMARD or with biological drugs. We are hardly in need 
of biomarkers, mainly those for therapy prediction. Some gene expression studies 
tried to help this task.

About Infliximab, a TNF-blocker, the different sources of RNA brought conflict-
ing results. Two groups found a different set of 8 genes able to predict the response 
to the drug using blood cells as source of RNA. For Lequerré et al. (2006), the genes 
were MTCBP-1, AKAP9, RASGRP3, PTPN12, RSP28, HLA-DPB1, MRPL22 and 
EPS15, with 90 % sensitivity and 70 % specificity of prediction. The genes for Julià 
et al. (2009b) were HLA-DRB3, SH2D1, GNLY, CAMP, SLC2A3, IL2RB, MXD4 
and TLR5, with estimated 94.4 % sensitivity and 85.7 % specificity. In a highly 
controlled situation, Oliveira et al. (2012) used PBMC gene expression profiling 
to evaluate whether a molecular discrimination is possible between responders and 
non-responders to MTX and TNF-blockers combined therapy, what resulted in a 
group of 3 differentially expressed genes (BCL2A1, CCL4 and CD83) sharply sep-
arating patients by the response to therapy, although the set of genes was not further 
independently validated.

Data from LSRA synovial specimens showed no difference comparing gene ex-
pression profiles of responders and non-responders to Infliximab (Lindberg et al. 
2010). In the study previously cited (Reynier et al. 2011), the authors tried to corre-
late the phenotypes high and low expression of IFN-related genes with the response 
to TNF-blockers therapy, but were not able to do it.

One study tested the possibility of discriminating responders and non-responders 
to Etanercept (Koczan et al. 2008), another TNF-blocker. Twenty out of 42 dif-
ferentially expressed genes, the majority down-regulated in responders in the first 
week of therapy, were chosen for qPCR, being 8 validated (NFKBIA, CCL4, IL8, 
IL1B, PDE4B, TNFAIP3, PPP1R15A and ADM). These 8 genes were combined in 
pairs and triplets, in a model for testing the accuracy of the response prediction. It 
was not possible to predict the response by analyzing the gene expression prior to 
therapy, but only after 3 days. Even though the model may be useful, it is difficult 
to imagine the clinicians interrupting the treatment after only 3 days supported by 
a gene expression study.

The response to Rituximab, an anti-B cell therapy, was evaluated by two studies, 
both using whole-blood. Raterman et al. (2012), seeking a profile of non-responders 
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to the drug, described a set of 8 type I INF-related genes (LY6E, HERC5, IFI44L, 
ISG15, MxA, MxB, EPSTI1 and RSAD2) whose high expression was associated 
with poor clinical response. The set accuracy evaluation was performed by area 
under ROC curves, resulting in 100 % specificity and 44 % sensitivity. A high speci-
ficity is suitable when looking for the correct prediction of non-response. Julià et al. 
(2009a) found a pair of genes (ARG1 and TRAF1) with a strong inverse expression 
correlation capable of responder and non-responders separation, i.e. when ARG1 
exhibited expression levels higher than TRAF1 the patient presented poor clinical 
response to Rituximab, and when the contrary occurred, the patient achieved good 
clinical response. Although the number of patients needs to be augmented, the vali-
dation of the pair by quantitative polymerase chain reaction (q-PCR) resulted the 
same data, corroborating the potential for a biomarker.

11.2.5  Elucidations on drugs mechanisms of action

Blits et al. (2013) investigated 17 folate pathway genes in RA under MTX treatment, 
RA treatment-naïve and healthy controls. Compared to controls, RA treatment-na-
ïve patients exhibited up-regulated folate pathway genes while patients treated with 
MTX exhibited no difference, suggesting that the drug normalized the pattern of 
folate pathway up-regulation in RA. These data confirm and bring new insights to 
the MTX mechanisms of action, but a limitation should be addressed—both groups 
of RA patients had the same mean of disease activity score, i.e., the disease activity 
was comparable in individuals using and not using the drug. From this result we 
could speculate that changes in gene expression caused by MTX in folate pathway 
solely are not sufficient to explain its effects when therapy is successful.

Cutolo et al. (2011) used the gene expression profiling of PBMC to evaluate the 
effect of the treatment with Leflunomide and Prednisone in treatment-naïve ERA 
patients, comparing them to healthy controls. The most differentially expressed 
genes between patients and controls were related to inflammatory process (MAPK9 
and HIF1A), genetic susceptibility to RA (STAT4) and resistance or inhibition of 
apoptosis (MIF, STAT6, NFKB1 and TNFRSF1B), all up-regulated. The treatment 
caused a significant reduction in the expression level of all these genes, showing 
that the reversion of an anti-apoptotic state is important for the Leflunomide mecha-
nism of action.

In an in vitro condition, Häupl et al. (2007) studied the effect of culturing RASF 
and normal synovial fibroblasts with MTX in their gene expression. After 36 h of 
incubation, MTX caused differential expression of 29 genes in RASF. Ten out of 
29 genes had lowering of expression level compared to those found in untreated 
normal synovial fibroblasts, mostly genes involved in cell growth and apoptosis. 
Concomitantly, authors assessed the viability of treated RASF, finding it decreased. 
It may corroborate what was cited previously in this chapter about the apoptosis as 
an important process influenced by MTX and tightly related to its efficacy.
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11.3  Spondyloarthritis

The term spondyloarthritis encompasses a group of diseases sharing pathophysiol-
ogy, clinical and radiographic aspects, upon a common genetic inheritance (HLA-
B27) (van der Linden et al. 2008)—ankylosing spondylitis (AS), psoriatic arthritis 
(PsA), enteropathic arthropathy, reactive arthritis, undifferentiated spondyloarthri-
tis (uSpA) and juvenile-onset ankylosing spondylitis. Typical clinical features are 
the inflammatory involvement, with bone erosions and ossifications of the axial 
skeleton and enthesis, but many patients suffer with peripheral arthritis and eye 
involviment (Gladman 1998). Axial disease is treated primarily with non-steroidal 
anti-inflammatory drugs and DMARD and TNF-blockers are useful for many clini-
cal presentations (Sieper et al. 2009).

The initial microarray studies on SpA had small number of subjects and com-
parisons with RA and healthy controls. Gu et al. (2002a) used a microarray specific 
for processes like cell signaling and adhesion, cytokines, chemokines and their re-
ceptors, aiming to compare gene expression of four groups—SpA (AS, uSpA and 
reactive arthritis), PsA, RA and healthy controls. PBMC were the source of RNA. 
Although this microarray did not allow hierarchic clustering, there were some dis-
criminative	genes	comparing	pairs	of	groups,	e.g.	MNDA,	 IL-12,	 IFN-γ	and	 IL-
7Rα	for	SpA	vs	healthy;	ETR103,	PDGF,	RANTES	and	CCR1	for	PsA	vs	healthy	
and	M1P2α,	IL-2Rα	and	MAP	for	SpA	vs	PsA.	Some	of	them	were	validated	by	
qPCR. The cytokines, chemokines and related receptors highlighted in this study 
are known to take part in the pathophysiology of the SpA.

Gu et al. (2002b) studied the gene expression of synovial fluid mononuclear cells 
of SpA (all diseases) and RA patients comparing them with PBMC from healthy 
controls. From 300 differentially expressed genes, authors arbitrarily took 23, 
mainly	 cytokines	 (IL-1β,	TNF,	TGF-β,	 IL-6)	 chemokines	 (IL-8,	MCP-1),	 recep-
tors	(CCR1,	IL-2Rα,	CXCR4,	TNFR2)	and	cell	signaling	genes,	all	up-regulated	in	
the pathological samples. The qPCR validation proved the microarray results, with 
values quite similar for SpA and RA.

T cells and macrophage are the most common infiltrating cells in AS sacroili-
itis and their abundance correlates with clinic and laboratory parameters (Bollow 
et al. 2000). This was the rationale for Smith et al. (2008) to study the gene expres-
sion of monocytes-derived macrophages from SA compared with healthy controls 
in	 two	situations,	without	stimulus	and	after	stimulation	with	 INF-γ	 followed	by	
LPS stimulation. A set of 141 differentially expressed genes was found, being 78 
IFN-γ	responsive	genes.	The	authors	discuss	the	result	of	a	“reverse”	IFN	signature,	
meaning that genes normally up-regulated by IFN were underexpressed and those 
normally down-regulated were overexpressed. This differential gene expression 
was	abrogated	when	the	cells	were	treated	with	IFN-γ.	After	evaluation	of	IFN-γ	
mRNA,	found	in	low	levels,	the	authors	suggested	that	the	low	level	of	IFN-γ	may	
be	responsible	for	the	altered	gene	expression	of	INF-γ	responsive	genes.

In one study, a group evaluated gene expression of PBMC (Duan et al. 2010) 
and whole-blood (Pimentel-Santos et al. 2011) from AS patients and healthy con-
trols, using the same methods. For both cell populations, hundreds of genes were 
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differentially expressed and the most relevant were chosen, taking into account p 
value, fold-change and biological relevance. In both cases, hierarchical clustering 
was not able to segregate patients and controls and the set of genes were different, 
though many of them related to SpA pathophysiology. Still on peripheral blood 
studies, Assassi et al. (2011) compared whole-blood gene expression of AS and 
healthy subjects, finding a dysregulation of Toll-like receptors (TLRs) pathways re-
lated genes, remarkably TLR4 and TLR5. The data, like that on macrophage study, 
corroborates the importance of innate immunity in SpA.

One study sought for gene expression data using hip joint ligament specimens 
of AS patients undergoing total hip replacement compared with specimens from 
the same surgery in individuals with femoral neck fracture (Xu et al. 2012). The 
microarray generated a highly distinctive set of 43 genes involved in processes like 
cell proliferation and differentiation, cell adhesion, angiogenesis and synthesis of 
lysosomes, but their function in SpA pathogenesis is uncertain.

Similarly to RA, the search for biomarkers is an important issue in SpA. In fact, 
the situation tends to be worse for SpA than for RA, because we do not have any 
laboratory test for SpA diagnosis (although the HLA-B typing has been used now 
for diagnosis purposes). The differential diagnosis between inflammatory and non-
inflammatory low back pain is a crucial distinction in daily practice and sometimes 
difficult to achieve (Jois et al. 2008). Gu et al. (2009) used gene expression profiling 
of PBMC from AS, uSpA and individuals with non-inflammatory low back pain, 
proposing that RGS1 can become a biomarker since its expression was the most dis-
criminative in the microarray and, validated by qPCR, separated uSpA and AS from 
mechanical back pain with an area under ROC curve of, respectively, 0.99 and 0.84.

PsA had its pathophysiology investigated by Batliwalla et al. (2005b). Patients 
were compared with healthy controls by the evaluation of whole-blood gene expres-
sion, generating a set of 56 overexpressed and 257 underexpressed genes in PsA, 
mainly involved with inflammation, apoptosis, cell cycle, cell signaling and regu-
lation of transcription. Logistic regression ranked the most discriminatory gene, 
NUP62, whose expression correctly classified all controls and 94.7 % of the PsA 
patients.

11.4  Conclusions

In conclusion, microarray opened up a new era in our possibilities on understand-
ing autoimmune diseases. Differences in gene expression profiles may provide a 
unique perspective allowing us to distinguish different pathogenic mechanisms and 
biomarkers of diagnosis, prognosis and drug responsiveness.

If expression-based profiling is to be of practical importance and widely used, 
the ease of sample accessibility is crucial. In early stages of the autoimmune dis-
eases an appropriated tissue sample is not always available, making the study of 
peripheral blood cells a good and easy option to address the disease status at any 
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time. Synovial specimens used in the majority of the studies have the disadvantage 
of representing a very long-standing disease, because frequently come from joint 
replacement. The heterogeneity of the disease is reflected in peripheral blood cells, 
making them good sentinels.

By now, we can say that the studies have brought many discordances, but some 
important conclusions, in part because each disease aspect studied is able to yield a 
different gene signature, and each patient exhibits slightly different gene expression 
and, consequently, different phenotype.

Why has it been so difficult to find the place for microarray in daily medical 
decisions? Is it only regarded to the heterogeneity of autoimmune diseases, mainly 
because these are conditions highly influenced by an enormous amount of external 
and internal stimuli? The answer for this question is neither affirmative nor nega-
tive. Must be considered the fact that the study designs are so distinct—different 
probe sets, platforms, data processing, statistical programs and data processing, dif-
ferences in cell types examined, frequently small sample sizes and, in some studies, 
lack of appropriate controls. We would like to reinforce that is necessary to know 
as much as possible about clinical features in order to create the best relationship 
between clinical and molecular knowledge, because it is essential to know exactly 
for whom it will be applied. Moreover, the study group should be the most homog-
enous, with phenotypes narrowly defined.

Apart of these uncertainties, we can rely on some data.
Based on microarray studies, some gene set and equations were proposed to 

discriminate an autoimmune background.
It is possible to separate RA patients in all disease stage from healthy subjects. 

Moreover, patients with pre-clinic stage (e.g. arthralgia with positive autoantibod-
ies) that share the gene expression profile with patients with clinic stages should be 
considered for RA treatment.

The type I INF-related genes were found to be important in sub classifying RA 
patients, elucidating some pathophysiological aspects that may be predictive of the 
disease onset, response to therapy and prognosis. In some studies, STAT1 pathway 
was strictly related to type I INF, TNF and chemokines.

A tissue distinction of disease stage for RA is possible, based on gene expression 
profiling.

In a well-controlled situation it is possible to find close relationship among the 
synovitis grade, clinical scores of disease activity and synovial gene expression. 
This point should be intensely explored in the future years as it raises many pos-
sibilities for therapeutic interventions.

We have really good candidates for an AR gene chip, a therapy outcome predic-
tion on the way for the next years.

From microarray evaluation of different cells, apoptosis is a pivotal, and prob-
ably shared, process for the efficacy of many drugs. It put the intervention on apop-
tosis as a big deal for targeted therapy.

In SpA, the studies confirmed some known pathophysiological aspects, high-
lighting some cytokines/chemokines pathways. The tissue samples and whole-blood 
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gave clues on the crucial importance of innate immunity for these diseases, what 
should also be tested for therapeutic purposes. Interestingly, a possible opposite 
effect of IFN-related genes comparing with RA. The idea of biomarkers is always 
desirable, but the candidates need more accurate studies (Fig. 11.1)

References

Assassi S, Reveille JD, Arnet FC et al (2011) Whole-blood gene expression profiling in ankylosing 
spondylitis shows upregulation of toll-like receptor 4 and 5. J Rheumatol 38:87–98

Baechler EC, Batliwalla FM, Karypis G et al (2003) Interferon-inducible gene expression sig-
nature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 
100:2610–2615

Batliwalla FM, Baechler EC, Xiao X et al (2005a) Peripheral blood gene expression profiling in 
rheumatoid arthritis. Genes Immun 6:388–397

Fig. 11.1  Hierarchical clustering of differential gene expression in patients with RA stratified 
according to response to MTX plus infliximab, a TNF-blocker, combined therapy. (Figure from 
Oliveira et al. (2012) J Rheumatol 39:1524 with permission from the Publisher)

 



20711 Transcriptome Profiling in Chronic Inflammatory …

Batliwalla FM, Li W, Ritchlin CT et al (2005b) Microarray analyses of peripheral blood cells iden-
tifies unique gene expression signature in psoriatic arthritis. Mol Med 11:21–29

Blits M, Jansen G, Assaraf TG et al (2013) Methotrexate normalizes up-regulated folate pathway 
genes in rheumatoid arthritis. Arthritis Rheum 65:2791–2802

Bollow M, Fischer T, Reisshauer H et al (2000) Quantitative analyses of sacroiliac biopsies in 
spondyloarthropathies: T cells and macrophages predominate in early and active sacroiliitis—
cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. 
Ann Rheum Dis 59:135–140

Bovin LF, Rieneck K, Workman C et al (2004) Blood cell gene expression profiling in rheumatoid 
arthritis. Discriminative genes and effect of rheumatoid factor. Immunol Lett 93:217–226

Cutolo M, Villaggio B, Brizzolara R et al (2011) Identification and quantification of selected in-
flammatory genes modulated by leflunomide and prednisone treatment in early rheumatoid 
arthritis patients. Clin Exp Rheumatol 29:72–79

Del Rey MJ, Izquierdo E, Usategui A et al (2010) The transcriptional response of normal and rheu-
matoid arthritis synovial fibroblasts to hypoxia. Arthritis Rheum 62:3584–3594

Devauchelle V, Marion S, Cagnard N et al (2004) DNA microarray allows molecular profiling of 
rheumatoid arthritis and identification of pathophysiological targets. Genes Immun 5:597–608

Duan R, Leo P, Bradbury L et al (2010) Gene expression profiling reveals a downregulation in 
immune-associated genes in patients with AS. Ann Rheum Dis 69:1724–1729

Felson DT (2005) Epidemiology of the rheumatic diseases. In: Koopman WJ, Moreland LW (eds) 
Arthritis and allied conditions. Lippincott Williams & Wilkins, Philadelphia, pp 1–36

Gallagher J, Howlin J, McCarthy C et al (2003) Identification of Naf1/ABIN-1 among TNF-alpha-
induced expressed genes in human synoviocytes using oligonucleotide microarrays. FEBS Lett 
551:8–12

Galligan CL, Baig E, Bykerk V et al (2007) Distinctive gene expression signatures in rheuma-
toid arthritis synovial tissue fibroblast cells: correlates with disease activity. Genes Immun 
8:480–491

Gladman DD (1998) Clinical aspects of the spondyloarthropathies. Am J Med Sci 316:234–328
Goekoop-Ruiterman YP, de Vries-Bouwstra JK, Allaart CF et al (2007) Comparison of treatment 

strategies in early rheumatoid arthritis: a randomized trial. Ann Intern Med 146:406–415
Gu J, Märker-Hermann E, Baeten D et al (2002a) A 588-gene microarray analysis of the peripheral 

blood mononuclear cells of spondyloarthropathy patients. Rheumatology (Oxford) 41:759–766
Gu J, Märker-Hermann E, Baeten D et al (2002b) Clues to pathogenesis of spondyloarthropathy 

derived from synovial fluid mononuclear cell gene expression profiles. J Rheumatol 29:2159–
2164

Gu J, Wei YL, Wei JC et al (2009) Identification of RGS1 as a candidate biomarker for undiffer-
entiated spondylarthritis by genome-wide expression profiling and real-time polymerase chain 
reaction. Arthritis Rheum 60:3269–3279

Haas CS, Creighton CJ, Pi X et al (2006) Identification of genes modulated in rheumatoid arthritis 
using complementary DNA microarray analysis of lymphoblastoid B cell lines from disease-
discordant monozygotic twins. Arthritis Rheum 54:2047–2060

Häupl T, Yahyawi M, Lübke C et al (2007) Gene expression profiling of rheumatoid arthritis syno-
vial cells treated with antirheumatic drugs. J Biomol Screen 12:328–340

Jois RN, Macgregor AJ, Gaffney K (2008) Recognition of inflammatory back pain and ankylosing 
spondylitis in primary care. Rheumatology (Oxford) 47:1364–1366

Julià A, Barceló M, Erra A et al (2009a) Identification of candidate genes for rituximab response 
in rheumatoid arthritis patients by microarray expression profiling in blood cells. Pharmacoge-
nomics 10:1697–1708

Julià A, Erra A, Palacio C et al (2009b) An eight-gene blood expression profile predicts the re-
sponse to infliximab in rheumatoid arthritis. PLoS One 4:e7556

Junta CM, Sandrin-Garcia P, Fachin-Saltoratto AL et al (2008) Differential gene expression of 
peripheral blood mononuclear cells from rheumatoid arthritis patients may discriminate im-
munogenetic, pathogenic and treatment features. Immunology 127:365–372



208 R. D. R. de Oliveira and P. Louzada-Júnior

Klareskog L, Padyukov L, Rönnelid J et al (2006) Genes, environment and immunity in the devel-
opment of rheumatoid arthritis. Curr Opin Immunol 18:650–655

Klareskog L, Catrina AI, Paget S (2009) Rheumatoid arthritis. Lancet 373:659–672
Koczan D, Drynda S, Hecker M et al (2008) Molecular discrimination of responders and nonre-

sponders to anti-TNF alpha therapy in rheumatoid arthritis by etanercept. Arthritis Res Ther 
10:R50

Lequerré T, Coulouarn C, Derambure C et al (2003) A new tool for rheumatology: large-scale 
analysis of gene expression. Joint Bone Spine 70:248–256

Lequerré T, Gauthier-Jauneau AC, Bansard C et al (2006) Gene profiling in white blood cells pre-
dicts infliximab responsiveness in rheumatoid arthritis. Arthritis Res Ther 8:R105

Lequerré T, Bansard C, Vittecoq O et al (2009) Early and long-standing rheumatoid arthritis: dis-
tinct molecular signatures identified by gene-expression profiling in synovia. Arthritis Res 
Ther 11:R99

Lindberg J, Wijbrandts CA, van Baarsen LG et al (2010) The gene expression profile in the synovi-
um as a predictor of the clinical response to infliximab treatment in rheumatoid arthritis. PLoS 
One 5:e11310

Maas K, Chan S, Parker J et al (2002) Cutting edge: molecular portrait of human autoimmune 
disease. J Immunol 169:5–9

McCarty DJ (2005) Differential diagnosis of arthritis: analysis of signs and symptoms. In: Koop-
man WJ, Moreland LW (eds) Arthritis and allied conditions. Lippincott Williams & Wilkins, 
Philadelphia, pp 37–50

Möttönen T, Hannonen P, Korpela M et al (2002) Delay to institution of therapy and induction of 
remission using single-drug or combination-disease-modifying antirheumatic drug therapy in 
early rheumatoid arthritis. Arthritis Rheum 46:894–898

O’Dell JR (2002) Treating rheumatoid arthritis early: a window of opportunity?. Arthritis Rheum 
46:283–285

Oliveira RD, Fontana V, Junta CM et al (2012) Differential gene expression profiles may differ-
entiate responder and nonresponder patients with rheumatoid arthritis for methotrexate (MTX) 
monotherapy and MTX plus tumor necrosis factor inhibitor combined therapy. J Rheumatol 
39:1524–1532

Pimentel-Santos FM, Ligeiro D, Matos M et al (2011) Whole blood transcriptional profiling in 
ankylosing spondylitis identifies novel candidate genes that might contribute to the inflamma-
tory and tissue-destructive disease aspects. Arthritis Res Ther 13:R57

Qingchun H, Runyue H, LiGang J et al (2008) Comparison of the expression profile of apoptosis-
associated genes in rheumatoid arthritis and osteoarthritis. Rheumatol Int 28:697–701

Raterman HG, Vosslamber S, de Ridder S et al (2012) The interferon type I signature towards pre-
diction of non-response to rituximab in rheumatoid arthritis patients. Arthritis Res Ther 14:R95

Reynier F, Petit F, Paye M et al (2011) Importance of correlation between gene expression levels: 
application to the type I interferon signature in rheumatoid arthritis. PLoS One 6:e24828

Schoels M, Wong J, Scott DL et al (2010) Economic aspects of treatment options in rheumatoid 
arthritis: a systematic literature review informing the EULAR recommendations for the man-
agement of rheumatoid arthritis. Ann Rheum Dis 69:995–1003

Sieper J, Rudwaleit M, Baraliakos X et al (2009) The Assessment of SpondyloArthritis interna-
tional Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis 68(Sup-
pl. 2):ii1–44

Silva GL, Junta CM, Mello SS et al (2007) Profiling meta-analysis reveals primarily gene coex-
pression concordance between systemic lupus erythematosus and rheumatoid arthritis. Ann N 
Y Acad Sci 1110:33–46

Smith JA, Barnes MD, Hong D et al (2008) Gene expression analysis of macrophages derived 
from ankylosing spondylitis patients reveals interferon-gamma dysregulation. Arthritis Rheum 
58:1640–1649

Szodoray P, Alex P, Frank MB et al (2006) A genome-scale assessment of peripheral blood B-cell 
molecular homeostasis in patients with rheumatoid arthritis. Rheumatology 45:1466–1476



20911 Transcriptome Profiling in Chronic Inflammatory …

Taberner M, Scott KF, Weininger L et al (2005) Overlapping gene expression profiles in rheuma-
toid fibroblast-like synoviocytes induced by the proinflammatory cytokines interleukin-1 beta 
and tumor necrosis factor. Inflamm Res 54:10–16

Teixeira VH, Olaso R, Martin-Magniette ML et al (2009) Transcriptome analysis describing new 
immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis 
patients. PLoS One 4:e6803

Ungethuem U, Haeupl T, Witt H et al (2010) Molecular signatures and new candidates to target the 
pathogenesis of rheumatoid arthritis. Physiol Genomics 42A:267–282

van Baarsen LGM, Bos WH, Rustenburg F et al (2010) Gene expression profiling in autoantibody-
positive patients with arthralgia predicts development of arthritis. Arthritis Rheum 62:694–704

van der Linden S, van der Heijde D, Landewé R (2008) Classification and epidemiology of spon-
dyloarthritis. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH (eds) 
Rheumatology. Elsevier, Philadelphia, pp 1103–1107

van der Pouw Kraan TC, van Gaalen FA, Kasperkovitz PV et al (2003a) Rheumatoid arthritis is 
a heterogeneous disease: evidence for differences in the activation of the STAT-1 pathway 
between rheumatoid tissues. Arthritis Rheum 48:2132–2145

van der Pouw Kraan TCTM, van Gaalen FA, Huizinga TWJ et al (2003b) Discovery of distinc-
tive gene expression profiles in rheumatoid synovium using cDNA microarray technology: 
evidence for the existence of multiple pathways of tissue destruction and repair. Genes Immun 
4:187–196

van der Pouw Krann TC, Wijbrandts CA, van Baarsen LG et al (2007) Rheumatoid arthritis sub-
types identified by genomic profiling of peripheral blood cells: assignment of a type I inter-
feron signature in a subpopulation of patients. Ann Rheum Dis 66:1008–1014

Xu L, Sun Q, Jiang S et al (2012) Changes in gene expression profiles of the hip joint ligament 
of patients with ankylosing spondylitis revealed by DNA chip. Clin Rheumatol 31:1479–1491

Yoshida S, Arakawa F, Higuchi F et al (2012) Gene expression analysis of rheumatoid arthritis sy-
novial lining regions by cDNA microarray combined with laser microdissection: up-regulation 
of inflammation-associated STAT1, IRF1, CXCL9, CXCL10, and CCL5 Scand. J Rheumatol 
41:170–179

Zrioual S, Ecochard R, Tournadre A et al (2009) Genome-wide comparison between IL-17A- and 
IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J Immunol 182:3112–3120



211

Chapter 12
Transcriptome Profiling in Experimental 
Inflammatory Arthritis

Olga Martinez Ibañez, José Ricardo Jensen and Marcelo De Franco

M. De Franco () · O. Martinez Ibañez · J. Ricardo Jensen
Laboratory of Immunogenetics, Butantan Institute, Avenida Vital Brasil 1500,  
05503-900 São Paulo, São Paulo, Brazil
e-mail: marcelo.franco@butantan.gov.br

Abstract Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune dis-
ease that affects 0.5 to 1 % of the human population. Gene expression profiling stud-
ies of tissues from RA patients showed marked variation in gene expression profiles 
that allowed identifying distinct molecular disease mechanisms involved in RA 
pathology. The relative contribution of the different mechanisms may vary among 
patients and in different stages of disease. Thus, the broad goals of expression pro-
filing in RA are the improvement of understanding of the pathogenic mechanisms 
underlying RA, the identification of disease subsets and new drug targets and the 
assessment of disease activity, such as: responsiveness to therapy, overall disease 
severity and organ specific risk and development of new diagnostic tests. Genetic 
and environmental factors contribute to the development of this disease and numer-
ous studies have indicated the participation of the major histocompatibility complex 
(MHC) class II alleles and non-MHC genes. Therefore, identification of the major 
roles of the participating cells and of candidate genes has been an important subject 
of study to the understanding of RA pathogenesis.

12.1  Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that af-
fects 0.5 to 1 % of the human population. RA is a complex pathology character-
ized by systemic chronic inflammation with the accumulation into synovium and 
periarticular spaces of activated T and B lymphocytes, innate immune cells such 
as neutrophils, mast cells, dendritic cells, natural killer cells and macrophages, and 
endothelial cells. Rheumatoid fibroblast-like synoviocytes, which exhibit invasive 
characteristics and synovial macrophages with pro-inflammatory properties are cru-
cial for the progression of arthritis causing proliferation of synovial membranes 
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and the formation of the invasive pannus that erodes cartilage and bone. In hu-
man patients the clinical signs of RA are largely heterogeneous but the disease is 
considered to be autoimmune (You et al. 2014). RA heterogeneity is demonstrated 
by the presence of distinct autoantibody specificities, such as antibodies against 
immunoglobulins, the rheumatoid factor (RF), and anti-cyclic citrullinated peptide 
antibodies (ACPA) in the serum, the differential responsiveness to treatment, and 
by the variability in clinical signs (Silman and Pearson 2002). The precise etiology 
of RA remains poorly understood, but the main symptoms are chronic synovitis, 
joint erosion, and several immune abnormalities in both the innate and adaptive 
compartments.

Given the complexity of RA, systems biology approaches designed to give a 
general view of different aspects of the disease are required to better understand 
the basis of arthritis. Oligonucleotide-based microarray technology for global gene 
expression profiling has arisen as a powerful tool to investigate the molecular com-
plexity and pathogenesis of arthritis and other complex pathologies. This genomic 
or transcriptomic method combined with post-genomic techniques provides an op-
portunity to monitor the complex interactions between genes and environment, the 
regulation of genes and of RNA transcripts and proteins that constitute the basis for 
the etiology or progression of the diseases (Jarvis and Frank 2010).

Gene expression profiling studies of tissues from RA patients showed marked 
variation in gene expression profiles that allowed to identify distinct molecular dis-
ease mechanisms involved in RA pathology (Baechler et al. 2006). The relative 
contribution of the different mechanisms may vary among patients and in differ-
ent stages of disease. Thus, the broad goals of expression profiling in RA are the 
improvement of understanding of the pathogenic mechanisms underlying RA, the 
identification of disease subsets and new drug targets and the assessment of disease 
activity, such as: responsiveness to therapy, overall disease severity and organ spe-
cific risk and development of new diagnostic tests (Teixeira et al. 2009).

Genetic and environmental factors contribute to the development of this disease. 
Numerous studies have indicated the participation of the major histocompatibility 
complex (MHC) class II alleles and non-MHC genes, such as the solute carrier 
family 11a member 1—SLC11A1 (formerly named NRAMP1- Natural resistance as-
sociated macrophage protein 1) related to macrophage activation (Runstadler et al. 
2005). Identification of the major roles of the participating cells and of candidate 
genes has been an important subject of study to the understanding of RA pathogen-
esis (Kurko et al. 2013).

12.2  Experimental Models of Rheumatoid Arthritis

The initial or preclinical stages of RA are difficult to be studied in humans but 
numerous arthritis experimental models have been developed which are valuable 
tools for in-depth investigation of pathogenic pathways that are involved in the 
several phases of the disease (Kobezda et al. 2014). Regarding ethical procedures, 
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in these models the animals can be submitted to immunizations with arthritogenic 
substances or antigens, to cell transfer or depletion, to phenotypic selective crosses, 
to genetic manipulations for the production of transgenic or knockout individuals, 
etc. Most importantly, these models have been useful for the candidacy of targets 
for preventive or therapeutic strategies (Asquith et al. 2009).

Several studies have used different animal models for arthritis, generally induced 
by the injection of adjuvants (AIA), proteoglycan (PGIA), type II collagen (CIA) or 
pristane (PIA) (Kannan et al. 2005).

Collagen-induced arthritis (CIA). Type II collagen (CII) is expressed exclusively 
in the articular joint. Although the relationship between anti-CII immunity and hu-
man rheumatoid arthritis (RA) has been studied for a long time, definitive conclu-
sions have not been established. CII, as an autoantigen, has been studied extensively 
in small animal models, such as mice and rats, and the collagen-induced arthritis 
(CIA) model has increased our understanding of the pathogenesis of human RA 
(Cho et al. 2007). The disease is class II MHC-restricted but mouse strains with 
permissive haplotypes vary in their susceptibility to CIA. Arthritis development is 
associated with B and T lymphocyte responses and the generation of anti-collagen 
antibodies and T-cells.

Collagen antibody-induced arthritis (CAIA) in mice has demonstrated the role of 
humoral immunity in arthritis development. It has been useful for the identification 
of collagen epitopes for the generation of arthritogenic antibody cocktails that rep-
resent humoral auto-immunity in RA. The disease is characterized by macrophage 
and polymorphonuclear cell infiltration and no T- and B-cell involvement and is 
non-MHC class II restricted (Hirose and Tanaka 2011).

Proteoglycan-induced arthritis (PGIA) is based in the immunization of mice with 
human cartilage-derived proteoglycans which induces the development of severe 
polyarthritis and spondylitis (Glant et al. 2003).

Pristane-induced arthritis (PIA) has proven to be a valuable experimental model 
for inflammatory RA. The natural saturated terpenoid alkane 2,4,6,10-tetramethyl 
pentadecane induces an acute inflammation followed by a chronic relapsing phase. 
The reaction is T-cell dependent with edema and articular infiltration of mononucle-
ar and polymorphonuclear cells (Potter and Wax 1981).

There are also genetically manipulated models that develop RA spontaneously. 
For	example,	transgenic	mice	over-expressing	human	TNF-α	develop	chronic	in-
flammatory erosive polyarthritis (Li and Schwarz 2003). This model highlights the 
importance	of	TNF-α	in	cytokine	network	in	RA.	Another	example	is	the	IL-1	re-
ceptor antagonist deficient mouse that develops inflammatory arthritis mediated by 
a polarized TH17 response (van den Berg 2009; Lubberts et al. 2005).

In experimental models, microarray analysis should optimally be carried out 
in isolated populations of cells. However, in complex diseases such as RA there 
is extensive tissue damage with the contribution of several cell types. Hence the 
analysis of rodent whole ankle joints or of footpads which comprise heterogeneous 
cell types, gives a better global view of differential gene expression during the sev-
eral phases of arthritis onset and development. Differential expression of genes 
encoding tissue repair factors, signal transduction molecules, transcription factors, 
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and DNA repair enzymes as well as cell cycle regulators, have been observed in 
multiple microarray experiments. An interesting observation in these experiments 
is the transcriptome map of the differentially expressed genes; in different models 
of arthritis there is a functional grouping of dysregulated genes forming clusters in 
the chromosomes. Examples are the MHC class I and class II gene clusters, known 
to affect susceptibility to a variety of autoimmune diseases and the chemoattractant 
gene clusters such as CC or CXC chemokine ligands and receptors which mediate 
infiltration of leukocytes into synovial tissue, a hallmark of RA (Fujikado et al. 
2006). Some studies attempt to link differentially expressed genes into interactive 
regulatory networks (Silva et al. 2009). This approach is quite powerful to identify 
new targets for therapy by looking at the network structures, the places (genes) with 
highest connectivity in which disruption would have a larger impact.

12.3  Loci Regulating Inflammatory Arthritis

The identification of the loci influencing inflammatory arthritis in animal models is 
important for parallel genetic studies in humans. Individual genetic constitution of 
experimental animals involving major histocompatibility complex (MHC) or non-
MHC genes has been associated with variations in rheumatoid arthritis susceptibil-
ity. In mice or rats, genome wide linkage studies with DNA polymorphism markers 
such as microsatellites or single nucleotide polymorphisms (SNPs), have been car-
ried out using intercross progenies of resistant and susceptible strains. These stud-
ies, in which environmental effects and genetic backgrounds are controlled, have 
been useful for the study of the genetic basis of RA (Ibrahim and Yu 2006).

Several QTL (Quantitative Trait Loci) were identified in different models of 
experimental arthritis. The first locus controlling pristane induced arthritis (PIA) 
detected in mice was Prtia1 on chromosome 3, in an intercross population from 
mice selected for high and low antibody production (Jensen et al. 2006). QTL were 
also mapped in other arthritis models such as those induced by Borrelia burgdor-
feri (Roper et al. 2001), PGIA (Glant et al. 2004) and by collagen (Adarichev et al. 
2003). Non overlapping sets of QTLs were identified, generating a heterogeneous 
picture of risk alleles (Besenyei et al. 2012; Kurko et al. 2013). The results evidence 
the genetic heterogeneity in the control of the different stages and phenotypes of 
the disease. Table 12.1 presents some relevant coincident susceptibility QTLs in 
rheumatoid arthritis, according to GWAS studies carried out in mice and humans.

Numerous RA QTLs have been mapped but few of the associated polymorphisms 
were identified in protein-coding regions of genes causing changes in protein struc-
ture or function. This suggests that polymorphisms in non-coding regions which 
might affect gene expression largely contribute to variations in RA susceptibility. 
In this way, transcriptome technology can also be used to detect genetic polymor-
phisms that regulate gene expression levels.
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Mouse Human
Chr Locus name Candidate gene Chr position Locus name
1 Cia14 Aff3: expressed 

in lymphoid cells, 
encodes a nuclear 
factor that contains 
transcriptional activa-
tion domains

2q11 AFF3

1 Cia9, Pgia1 Fcgr2b: a variant 
allele alters dendritic 
cell behavior, suggest-
ing a role for dendritic 
cells in RA pathology

1q23 FCGR2A

2 Cia2, Cia4, Pgia2 Traf1/Hc: Genetic 
variants associated 
to risk of anti-CCP 
antibody-positive RA

9q33 TRAF1/C5

3 Cia21, Cia22, 
Pgia26 Prtia1

Cd2: encodes a co-
stimulatory molecule 
found on natural killer 
and T cells

1p23 CD2

Ptpn22: the gene is a 
negative regulator of 
T cells. Allele variant 
affects binding to an 
intracellular signal-
ing molecule (Csk) 
resulting in a failure 
to switch off T cells or 
to delete auto-reactive 
T cells during thymic 
development

1p13 PTPN22

5 Pgia16, Cia13 Rbjp: The gene 
encodes a transcrip-
tion factor involved 
in the notch signal-
ing pathway and in 
regulation of T-cell 
development

4p15 RBJP

6 Pgia19 Irf5: transcription 
factor involved 
in antiviral and 
anti-inflammatory 
responses and in dif-
ferentiation of B cells 
regulation

7q32 IRF5

10 Pgia6, Tnfaip3: knock-out 
mice develop severe 
inflammation

6q23 TNFAIP3

Table 12.1  Common arthrtitis associated QTL (Non-MHC regions) mapped by GWAS in mice 
and humans
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12.4  Combining Transcriptome and Genome Screening  
to Identify Genes That Control Arthritis

The two genomic approaches, that is, transcriptome and genome screening (GWAS) 
have been combined in studies where the locations of differently expressed genes 
during RA are compared with those mapping at QTLs for arthritis, for immune or 
inflammatory responses or for other autoimmune diseases (Yu et al. 2007). The 
approach has been useful to candidate genes inside the QTLs. The coincidence of 
chromosomal locations of genes in QTLs in different model systems with the loca-
tions of the corresponding human orthologue is a good indicator of their implication 
in RA control.

Furthermore, the modulation of common genes during RA, irrespective of etiol-
ogy and of species indicates the importance of these mediators in the pathogenesis 
of arthritis. For example, the augmented expression of chemokines and receptors, 

Mouse Human
Chr Locus name Candidate gene Chr position Locus name

Pgia6b Prdm1: The gene 
product is a transcrip-
tion factor involved in 
B cell regulation

6q21 PRDM1

10 Cia8 Kif5a: gene encodes a 
kinesin-heavy chain

12q13 KIF5A

Pip4k2c: phosphatidyl 
inositol kinase

PIP4K2C

13 Pgia15, IL6st/Ankrd55: IL-6 5q11 ANKRD55
Cia19 Signal transduction 

gene region
IL6ST

15 Pgia9, Cia35, 
Cia37

IL2rb 22q12 IL2RB

Bik: apoptosis-
inducing,BCL2-inter-
acting killer

8p3 BIK

18 Pgia11 Ptpn2: KO mice have 
increased susceptibil-
ity to inflammatory 
diseases

18p11.3-p11.2 PTPN2

Gene names: Affr AF4/FMR2 family, member 3; Fcgr2b Fc receptor IgG, low affinity IIb; Traf1 
TNF receptor-associated factor 1; Ptpn22 protein tyrosine phosphatase, non-receptor type 22 
(lymphoid); Rbjp recombination signal binding protein for immunoglobulin kappa J region; Irf5 
interferon regulatory factor 5; Tnfaip3 tumor necrosis factor, alpha-induced protein 3; Prdm PR 
domain containing 1, with ZNF domain; Kif5a kinesin family member 5A; Pip4k2c phospha-
tidylinositol-5-phosphate 4-kinase, type II, gamma; Ankrd55 ankyrin repeat domain 55; Ptpn2 
protein tyrosine phosphatase, non-receptor type 2

Table 12.1 (continued) 
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which recruit neutrophils or naïve and memory T cells to inflammatory sites. Che-
mokines and ligands are found in the synovial tissue of patients with RA; proin-
flammatory	cytokines	and	their	cognate	receptors,	such	as	IL-1β,	IL-1RI,	TNF-α	
R,	IL-6Rα,	IL-2Rγ,	and	IL-17R,	are	up-regulated	in	several	RA	models	as	well	as	
in	arthritis	patients;	IL-1β	induces	serum	amyloid	A3	(Saa3)	and	the	matrix	metal-
loproteinases Mmp-3 and Mmp-9 that are also upregulated in several models. High 
upregulation in runt-related transcription factor 1 (RUNX1) and a group of trans-
porter	genes	such	as	solute	carrier	11	family	A1	( Slc11a1, formerly Nramp1), is also 
a common feature in RA models. In synthesis, a remarkable feature that originated 
from numerous transcriptome or genomic studies of arthritis has been the demon-
stration of gene expression signatures associated with inflammation. The results 
evidence that besides being an antigen-driven event there is an important interplay 
between innate and adaptive immunity systems in the etiology of RA (Jarvis and 
Frank 2010).

12.5  A Model to Study Inflammatory Rheumatoid 
Arthritis: Airmax and Airmin Phenotypically 
Selected Mouse Lines

Heterogeneous mice selected for maximal (AIRmax) or minimal (AIRmin) acute 
inflammatory reaction appeared to be useful models for studying the mechanisms 
involved in rheumatoid arthritis susceptibility (Vigar et al. 2000).

AIRmax and AIRmin mice were produced by bidirectional selection, starting 
from a highly polymorphic population (F0) derived from the intercrossing of eight 
inbred mouse strains (Fig. 12.1). The selection phenotypes chosen were localized 
leukocyte influx and exudated plasma proteins 24 h after the subcutaneous injec-
tion of polyacrylamide beads (Biogel), a non-antigenic, insoluble, and chemically 
inert substance (Ibanez et al. 1992). The progressive divergence of the AIRmax and 
AIRmin lines during successive generations of selective breeding reached 20- and 
2.5-fold differences in leukocyte infiltration and exudated protein concentrations 
respectively. These differences resulted from the accumulation of alleles in quanti-
tative trait loci endowed with opposite and additive effects on the inflammatory re-
sponse. Inbreeding was avoided for the selective breeding, and as such AIRmax and 
AIRmin mice are outbred mice that maintain a heterogeneous genetic background 
but are homozygous in acute inflammation modifier loci. Analysis of the selective 
processes indicated that the AIR phenotype is regulated by at least 11 QTL (Biozzi 
et al. 1998).

Pristane-induced arthritis (PIA) has proven to be a valuable experimental mod-
el for inflammatory RA for its delayed onset, chronicity and independence from 
xenoantigen administration. Thus, arthritis ensues from a sensitization over time 
and pristane has been described to improve autoimmunity by the activation of the 
immune response against cross-reactive microbiota antigens (Patten et al. 2004). 
AIRmax mice are extremely susceptible whereas AIRmin mice are resistant to PIA 
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(Fig. 12.2a). The incidence of PIA in AIRmax mice was similar to that of inbred 
DBA/1 and BALB/c mice although with higher severity. The incidence and sever-
ity were more intense than in the CBA/Igb model since 15 to 25 % of these mice 
develop inflammation of the ankle and wrist joints approximately 200 days after 
pristane injection. PIA is accompanied by markedly elevated humoral agalactosyl 
IgG levels mediated by IL6 production (Thompson et al. 1992) and CD4+ T cell 
(Th) dependent (Stasiuk et al. 1997) immune responses to mycobacterial 65-kDa 
heat shock protein (hsp65). Moreover, the protection against PIA is mediated by 
Th2-associated cytokines produced after hsp65 pre-immunization (Thompson et al. 
1998; Thompson et al. 1990). In contrast to the immune response profile observed 
in inbred mice, high IgG1 anti-hsp65 levels were observed in susceptible AIRmax 
mice, whereas IgG2a was the predominant isotype in the resistant AIRmin mice. 
Additionally, it was shown that IL-4, IL-6 and TNF secreting splenic cells were 
significantly more abundant in AIRmax than in AIRmin animals. IFNg-producing 
cells, on the other hand, increased in AIRmin mice only. Specific pathogen-free 
susceptible mice do not develop this disease, but when transferred to a conventional 
environment, they reacquire arthritis susceptibility, indicating the involvement of 
environmental factors in PIA (Thompson and Elson 1993).

The results in the AIRmax and AIRmin PIA model, when compared to those 
obtained in inbred mice, evidence the interference of genetic background in the 

Fig. 12.1  Scheme used for the production of the foundation population (F0) by the intercrossing 
of eight inbred strains of mice for the production of AIRmax and AIRmin mice by bidirectional 
phenotypic selection
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mechanisms underlying arthritis susceptibility and severity. Interaction of arthritis 
controlling genes with heterogeneous genetic backgrounds and variability in gut 
microbiota might contribute to the variable signs of arthritis occurring in humans.

The transporter gene Solute carrier 11 family a1	( Slc11a1) has been described in 
mice as a major modulator of susceptibility to infectious diseases, and is expressed 
in macrophages and neutrophils. Slc11a1 is pleiotropic, interfering with macrophage 
activation, oxidative and nitrosamine bursts, TNF, IFNg, and IL-1 production, and 
the expression of MHC class II molecules. In mice, the mutation corresponding to 
the Slc11a1 S allele associated with susceptibility determines a gly169asp substi-
tution resulting in a nonfunctional protein that promotes an accumulation of ions 
inside the phagosome of macrophages that favors pathogen replication (Vidal et al. 
1992). In the experiment for the production of AIRmax and AIRmin mouse lines, 
the frequency of the Slc11a1 S allele was 25 % in the founder population (F0), but 
shifted to 60 % in AIRmin and to 9 % in AIRmax after 30 generations of selective 

Fig. 12.2  PIA incidence in AIRmax and AIRmin mice and their sublines homozygous for the 
Slc11a1 gene R and S alleles. Mice receitved two ip injections of pristane with 60 days interval
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breeding. The results suggest that these changes in allele frequencies were the result 
of the selection process for acute inflammatory response (Araujo et al. 1998).

The effect of the Slc11a1 R and S alleles during PIA development was studied in 
AIRmax and AIRmin mice that were rendered homozygous for the Slc11a1 alleles 
by genotype-assisted breeding (Fig. 12.2b). AIRmax mice homozygous for the S 
allele (AIRmaxSS) were significantly more susceptible (80 % incidence) to RA than 
AIRmaxRR mice (30 % incidence) evidencing the influence of this polymorphism 
in RA (Peters et al. 2007). The involvement of this gene in this study as well as in 
other murine arthritis models constituted the basis for the study of Slc11a1 involve-
ment in human RA. In fact, several authors reported linkage of SLC11A1 alleles to 
human RA probably associated to a polymorphic repeat in the RUNX1-containing 
promoter region of the gene (Ates et al. 2009).

12.6  Mapping of QTL Controlling PIA in Airmax and 
Airmin Mice

A genome wide linkage study was carried out in a large F2 population of inter-
crossed AIRmax and AIRmin F2(AIRmax x AIRmin) mice through linkage analy-
sis	of	PIA	severity	phenotype	with	a	panel	of	SNPs.	Two	new	PIA	QTL	( Prtia 2 and 
Prtia3) were mapped on chromosomes 5 and 8, respectively, and three suggestive 
QTL were detected on chromosomes 7, 17 and 19 (De Franco et al. 2014). In this 
same F2(AIRmax x AIRmin) population, loci that regulate the intensity of the acute 
inflammatory response were mapped on chromosomes 5, 7, 8 and 17, which overlap 
the QTL that control PIA severity, suggesting common regulations (Vorraro et al. 
2010; Galvan et al. 2011). Co-located chromosome 5 QTL controlling arthritis se-
verity and humoral responses during B. burgdorferi infection were identified in the 
F2 intercross of C3H/HeNCr and C57BL/6NCr mice (Weis et al. 1999), suggesting 
the involvement of the chemokine Cxcl9 gene, which maps to the QTL peak in this 
model (Ma et al. 2009).

In order to candidate genes within the QTL detected in the AIRmax and AIRmin 
model, transcriptome studies were performed using tissues or cells from normal 
or arthritic individuals. In this model, the total number of up- and down-regulated 
genes in each line was distinct, as can be seen in Fig. 12.3. More genes were modu-
lated in AIRmax than in AIRmin mice, although a gene ontology analysis revealed 
an over-representation of genes related to inflammatory reaction and chemotaxis bi-
ological themes in both lines (Fig. 12.4). Global gene expression analysis indicated 
419 differentially expressed genes between AIRmax and AIRmin mice. Figs. 12.5 
and 12.6 show genes differentially expressed on chromosomes 5 and 8 respectively. 
Several genes related to inflammation, cell adhesion, and chemotaxis could be ob-
served on chromosome 5, while tissue antigens, cell differentiation, hemeoxigenase 
and scavenger receptor genes were observed on chromosome 8 (De Franco et al. 
2014).
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Ibrahim and collaborators investigated the gene expression profiles of inflamed 
paws in DBA/1 inbred mice using a similar approach for collagen-induced arthri-
tis (Ibrahim et al. 2002). In their work, inflammation resulted in increased gene 
expression of matrix metalloproteinases, and immune-related extra-cellular matrix 
and cell-adhesion molecules, as well as molecules involved in cell division and 
transcription, in a manner very similar to the AIRmax/AIRmin model. However, the 
total number of differentially-expressed genes involved in the inbred mice model 
(223) was lower than in our model (419), suggesting that the heterogeneous back-
ground of AIRmax and AIRmin mice permitted a larger genome involvement in 
this phenotype. Among the differentially-expressed genes, inflammatory and che-
mokine genes on chromosome 5 and macrophage scavenger receptor 1	( Msr1) and 
hemeoxigenase 1	( Hmox1) genes on chromosome 8 appear to be the major candi-
dates.

Fig. 12.3  Up- and down-modulated inflammatory and chemokine genes in AIRmax and AIRmin 
mice. Total RNA was extracted from arthritic paws at 160 days after pristane injection
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Fig. 12.4  Differentially expressed inflammatory and chemokine genes between AIRmax and 
AIRmin mice

 

Fig. 12.5  Differentially expressed genes between AIRmax and AIRmin mice mapping at chromo-
some 5
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Chemokines are involved in leukocyte recruitment to inflammatory sites, such 
as to synovial tissue in rheumatoid arthritis (RA). However, they may also be ho-
meostatic as these functions often overlap (Ibrahim et al. 2001). Chemokines have 
essential roles in the recruitment and activation of leucocyte subsets within tissue 
microenvironments, and stromal cells actively contribute to these networks. Mac-
rophages play a central role in the pathogenesis of rheumatoid arthritis (RA), which 
is marked by an imbalance of inflammatory and anti-inflammatory macrophages 
in RA synovium. Although the polarization and heterogeneity of macrophages in 
RA have not been fully elucidated, the identities of macrophages in RA can poten-
tially be defined by their products, including co-stimulatory molecules, scavenger 
receptors, cytokines/chemokines and their receptors, and transcription factors (Li 
et al. 2012). It has been demonstrated that inappropriate constitutive chemokine 
expression contributes to the persistence of inflammation by actively blocking its 
resolution (Filer et al. 2008). This was also observed in urethane induced lung car-
cinogenesis, where transcriptome analysis revealed that the genes involved in tran-
sendotelial migration and chemokine-cell adhesion were differently-expressed in 
normal lungs of susceptible AIRmin and resistant AIRmax mice (De Franco et al. 
2010), suggesting important roles for these phenotypes in chronic diseases.

12.7  Concluding Remarks

Recent advances in the field of genetics have dramatically changed our understand-
ing of autoimmune disease. Candidate gene and, more recently, genome-wide as-
sociation (GWA) and linkage studies have led to an explosion in the number of loci 
and pathways known to contribute to autoimmune phenotypes, confirming a major 

Fig. 12.6  Differentially expressed genes between AIRmax and AIRmin mice mapping at chromo-
some 8
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role for the MHC region and, more recently, identifying risk loci involving both 
the innate and adaptive immune responses. However, most regions found through 
GWA scans have yet to isolate the association to the causal allele(s) responsible 
for conferring disease risk. A role for rare variants (allele frequencies of < 1 %) has 
begun to emerge. The study of the abundant long intergenic non-coding RNAs and 
of small interfering RNA, (microRNAs) has also become a powerful tool to under-
stand the mechanisms that modulate the gene expression profiles in RA and other 
autoimmune diseases (Jarvis and Frank 2010; Donate et al. 2013). Future research 
will also use next generation sequencing (NGS) technology to comprehensively 
evaluate the human genome for risk variants. Whole transcriptome sequencing (e.g. 
RNA-Seq), which combines gene expression, sequence and splice variant analysis, 
will provide much more detailed gene expression data. Regardless of the current or 
future technology, the versatility of murine models will continue to be required to 
advance our understanding of human diseases.

References

Adarichev VA, Valdez JC, Bardos T et al (2003) Combined autoimmune models of arthritis reveal 
shared and independent qualitative (binary) and quantitative trait loci. J Immunol 170(5):2283–
2292

Araujo LM, Ribeiro OG, Siqueira M et al (1998) Innate resistance to infection by intracellular bac-
terial pathogens differs in mice selected for maximal or minimal acute inflammatory response. 
Eur J Immunol 28(9):2913–2920

Asquith DL, Miller AM, Mcinnes IB et al (2009) Animal models of rheumatoid arthritis. Eur J 
Immunol 39(8):2040–2044

Ates O, Dalyan L, Musellim B et al (2009) NRAMP1 (SLC11A1) gene polymorphisms that cor-
relate with autoimmune versus infectious disease susceptibility in tuberculosis and rheumatoid 
arthritis. Int J Immunogenet 36(1):15–19

Baechler EC, Batliwalla FM, Reed AM et al (2006) Gene expression profiling in human autoim-
munity. Immunol Rev 210:120–137

Besenyei T, Kadar A, Tryniszewska B et al (2012) Non-MHC risk alleles in rheumatoid arthritis 
and in the syntenic chromosome regions of corresponding animal models. Clin Dev Immunol. 
doi:10.1155/2012/284751

Biozzi G, Ribeiro OG, Saran A et al (1998) Effect of genetic modification of acute inflammatory 
responsiveness on tumorigenesis in the mouse. Carcinogenesis 19(2):337–346

Cho YG, Cho ML, Min SY et al (2007) Type II collagen autoimmunity in a mouse model of human 
rheumatoid arthritis. Autoimmun Rev 7(1):65–70

De Franco M, Colombo F, Galvan A et al (2010) Transcriptome of normal lung distinguishes 
mouse lines with different susceptibility to inflammation and to lung tumorigenesis. Cancer 
Lett 294(2):187–194

De Franco M, Peters LC, Correa MA et al (2014) Pristane-induced arthritis loci interact with the 
Slc11a1 gene to determine susceptibility in mice selected for high inflammation. PLoS One 
9(2):e88302

Donate PB, Fornari TA, Macedo C et al (2013) T cell post-transcriptional miRNA-mRNA inter-
action networks identify targets associated with susceptibility/resistance to collagen-induced 
arthritis. PLoS One 8(1):e54803

Filer A, Raza K, Salmon M et al (2008) The role of chemokines in leucocyte-stromal interactions 
in rheumatoid arthritis. Front Biosci 13:2674–2685



22512 Transcriptome Profiling in Experimental Inflammatory Arthritis

Fujikado N, Saijo S, Iwakura Y (2006) Identification of arthritis-related gene clusters by micro-
array analysis of two independent mouse models for rheumatoid arthritis. Arthritis Res Ther 
8(4):100–125

Galvan A, Vorraro F, Cabrera W et al (2011) Association study by genetic clustering detects mul-
tiple inflammatory response loci in non-inbred mice. Genes Immun 12(5):390–394

Glant TT, Finnegan A, Mikecz K (2003) Proteoglycan-induced arthritis: immune regulation, cel-
lular mechanisms, and genetics. Crit Rev Immunol 23(3):199–250

Glant TT, Adarichev VA, Nesterovitch AB et al (2004) Disease-associated qualitative and quantita-
tive trait loci in proteoglycan-induced arthritis and collagen-induced arthritis. Am J Med Sci 
327(4):188–195

Hirose J, Tanaka S (2011) Animal models for bone and joint disease. CIA, CAIA model. Clin 
Calcium 21(2):253–259

Ibanez OM, Stiffel C, Ribeiro OG et al (1992) Genetics of nonspecific immunity: I. Bidirectional 
selective breeding of lines of mice endowed with maximal or minimal inflammatory respon-
siveness. Eur J Immunol 22(10):2555–2563

Ibrahim SM, Yu X (2006) Dissecting the genetic basis of rheumatoid arthritis in mouse models. 
Curr Pharm Des 12(29):3753–3759

Ibrahim SM, Mix E, Bottcher T et al. (2001) Gene expression profiling of the nervous system in 
murine experimental autoimmune encephalomyelitis. Brain 124:1927–1938

Ibrahim SM, Koczan D, Thiesen HJ (2002) Gene-expression profile of collagen-induced arthritis. 
J Autoimmun 18(2):159–167

Jarvis JN, Frank MB (2010) Functional genomics and rheumatoid arthritis: where have we been 
and where should we go? Genome Med 2(7):44–59

Jensen JR, Peters LC, Borrego A et al (2006) Involvement of antibody production quantitative trait 
loci in the susceptibility to pristane-induced arthritis in the mouse. Genes Immun 7(1):44–50

Kannan K, Ortmann RA, Kimpel D (2005) Animal models of rheumatoid arthritis and their rel-
evance to human disease. Pathophysiology 12(3):167–181

Kobezda T, Ghassemi-Nejad S, Mikecz K et al (2014) Of mice and men: how animal models ad-
vance our understanding of T-cell function in RA. Nat Rev Rheumatol 10(3):160–170

Kurko J, Besenyei T, Laki J et al (2013) Genetics of rheumatoid arthritis—a comprehensive re-
view. Clin Rev Allergy Immunol 45(2):170–179

Li P, Schwarz EM (2003) The TNF-alpha transgenic mouse model of inflammatory arthritis. 
Springer Semin Immunopathol 25(1):19–33

Li J, Hsu HC, Mountz JD (2012) Managing macrophages in rheumatoid arthritis by reform or 
removal. Curr Rheumatol Rep 14(5):445–454

Lubberts E, Koenders MI, Van Den Berg WB (2005) The role of T-cell interleukin-17 in conduct-
ing destructive arthritis: lessons from animal models. Arthritis Res Ther 7(1):29–37

Ma Y, Miller JC, Crandall H et al (2009) Interval-specific congenic lines reveal quantitative trait 
Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12. Infect Immun 
77(8):3302–3311

Patten C, Bush K, Rioja I et al (2004) Characterization of pristane-induced arthritis, a murine 
model of chronic disease: response to antirheumatic agents, expression of joint cytokines, and 
immunopathology. Arthritis Rheum 50(10):3334–3345

Peters LC, Jensen JR, Borrego A et al (2007) Slc11a1 (formerly NRAMP1) gene modulates both 
acute inflammatory reactions and pristane-induced arthritis in mice. Genes Immun 8(1):51–56

Potter M, Wax JS (1981) Genetics of susceptibility to pristane-induced plasmacytomas in BALB/
cAn: reduced susceptibility in BALB/cJ with a brief description of pristane-induced arthritis. 
J Immunol 127(4):1591–1595

Roper RJ, Weis JJ, Mccracken BA et al (2001) Genetic control of susceptibility to experimental 
Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in 
four independent mouse crosses. Genes Immun 2(7):388–397

Runstadler JA, Saila H, Savolainen A et al (2005) Association of SLC11A1 (NRAMP1) with per-
sistent oligoarticular and polyarticular rheumatoid factor-negative juvenile idiopathic arthritis 
in Finnish patients: haplotype analysis in Finnish families. Arthritis Rheum 52(1):247–256



226 O. Martinez Ibañez et al.

Silman AJ, Pearson JE (2002) Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 4 
(Suppl 3):S265–S272

Silva GL, Junta CM, Sakamoto-Hojo ET et al (2009) Genetic susceptibility loci in rheumatoid 
arthritis establish transcriptional regulatory networks with other genes. Ann N Y Acad Sci 
1173:521–537

Stasiuk LM, Ghoraishian M, Elson CJ et al (1997) Pristane-induced arthritis is CD4+ T-cell depen-
dent. Immunology 90(1):81–86

Teixeira VH, Olaso R, Martin-Magniette ML et al (2009) Transcriptome analysis describing new 
immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis 
patients. PLoS One 4(8):e6803

Thompson SJ, Elson CJ (1993) Susceptibility to pristane-induced arthritis is altered with changes 
in bowel flora. Immunol Lett 36(2):227–231

Thompson SJ, Rook GA, Brealey RJ et al (1990) Autoimmune reactions to heat-shock proteins in 
pristane-induced arthritis. Eur J Immunol 20(11):2479–2484

Thompson SJ, Hitsumoto Y, Zhang YW et al (1992) Agalactosyl IgG in pristane-induced arthritis. 
Pregnancy affects the incidence and severity of arthritis and the glycosylation status of IgG. 
Clin Exp Immunol 89(3):434–438

Thompson SJ, Francis JN, Siew LK et al (1998) An immunodominant epitope from mycobacterial 
65-kDa heat shock protein protects against pristane-induced arthritis. J Immunol 160(9):4628–
4634

Van Den Berg WB (2009) Lessons from animal models of arthritis over the past decade. Arthritis 
Res Ther 11(5):250–259

Vidal SM, Epstein DJ, Malo D et al (1992) Identification and mapping of six microdissected ge-
nomic DNA probes to the proximal region of mouse chromosome 1. Genomics 14(1):32–37

Vigar ND, Cabrera WH, Araujo LM et al (2000) Pristane-induced arthritis in mice selected for 
maximal or minimal acute inflammatory reaction. Eur J Immunol 30(2):431–437

Vorraro F, Galvan A, Cabrera WH et al (2010) Genetic control of IL-1 beta production and inflam-
matory response by the mouse Irm1 locus. J Immunol 185(3):1616–1621

Weis JJ, Mccracken BA, Ma Y et al (1999) Identification of quantitative trait loci governing 
arthritis severity and humoral responses in the murine model of Lyme disease. J Immunol 
162(2):948–956

You S, Yoo SA, Choi S et al (2014) Identification of key regulators for the migration and in-
vasion of rheumatoid synoviocytes through a systems approach. Proc Natl Acad Sci U S A 
111(1):550–555

Yu X, Bauer K, Koczan D et al (2007) Combining global genome and transcriptome approaches to 
identify the candidate genes of small-effect quantitative trait loci in collagen-induced arthritis. 
Arthritis Res Ther 9(1):3–17



227

Chapter 13
Transcriptome in Human Mycoses

Nalu T. A. Peres, Gabriela F. Persinoti, Elza A. S. Lang, Antonio Rossi  
and Nilce M. Martinez-Rossi

N. M. Martinez-Rossi () · N. T. A. Peres · G. F. Persinoti · E. A. S. Lang · A. Rossi
Department of Genetics, Ribeirão Preto Medical School, University of São Paulo,  
14049-900 Ribeirão Preto, São Paulo, Brazil
e-mail: nmmrossi@usp.br

Abstract Mycoses are infectious diseases caused by fungi, which incidence has 
increased in recent decades due to the increasing number of immunocompromised 
patients and improved diagnostic tests. As eukaryotes, fungi share many simi-
larities with human cells, making it difficult to design drugs without side effects. 
Commercially available drugs act on a limited number of targets, and has been 
reported fungal resistance to commonly used antifungal drugs. Therefore, eluci-
dating the pathogenesis of fungal infections, the fungal strategies to overcome the 
hostile environment of the host, and the action of antifungal drugs is essential for 
developing new therapeutic approaches and diagnostic tests. Large-scale transcrip-
tional analyses using microarrays and RNA sequencing (RNA-seq), combined with 
improvements in molecular biology techniques, have improved the study of fungal 
pathogenicity. Such techniques have provided insights into the infective process by 
identifying molecular strategies used by the host and pathogen during the course 
of human mycoses. In this chapter, the latest discoveries about the transcriptome 
of major human fungal pathogens will be discussed. Genes that are essential for 
host-pathogen interactions, immune response, invasion, infection, antifungal drug 
response and resistance will be highlighted. Finally, their importance to the discov-
ery of new molecular targets for antifungal drugs will be discussed.

13.1  Introduction

Fungi are eukaryotic microorganisms widely distributed in nature, existing as 
yeasts, molds, and mushrooms. Fungi are important decomposers of biomass and 
are useful in baking and wine fermentation. However, fungi can also cause severe, 
life-threatening infections in humans, animals, and vegetables, which can result in 
enormous economic losses. Humans are constantly in contact with fungi by inhal-
ing spores in the air and ingesting them as nutritional sources. Worldwide, human 
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mycoses have increased in incidence due to the high prevalence of immunocom-
promised patients, becoming a major public-health concern. Although fungal infec-
tions are widespread, they are often overlooked, and in general, public-health agen-
cies perform little surveillance of fungal infections (Brown et al. 2012). Fungi cause 
a wide spectrum of disease, ranging from asymptomatic infection to disseminated 
and fatal diseases. Nevertheless, fungal infections are not frequently diagnosed, 
which impairs the proper epidemiological surveillance of these diseases. Therefore, 
more data about the life cycle of pathogenic fungi and the pathogenesis of their 
infections will aid the development of therapeutic approaches and diagnostic tests. 
Although research funding for human mycoses remains lower than that for other 
areas of medical microbiology, the number of publications in the field of medical 
mycology has increased over the past several decades.

Fungi can infect several anatomical sites, resulting in different clinical symp-
toms. The most prevalent are cutaneous, mucosal, and pulmonary diseases. These 
infections can be acquired from trauma to the skin and mucosa, direct or indirect 
contact with infected humans and animals, contact with contaminated fomites, or 
inhalation. Airborne fungal infections typically result in pulmonary diseases. Skin 
and nail infections affect both healthy and immunocompromised individuals, de-
creasing quality of life by causing discomfort and pruritus. Cutaneous infections are 
most commonly caused by dermatophytes, a closely related group of keratinophilic 
molds that infect humans and animals. They are directly or indirectly transmitted 
between infected organisms and contaminated objects, such as towels and manicure 
appliances (Peres et al. 2010a). Candida species can also cause skin and nail in-
fections, but they more commonly cause oropharyngeal (thrush) and vulvovaginal 
candidiasis. Many Candida species are harmless and are commensal microorgan-
isms. However, immune-system impairment favors their pathogenicity, and they 
can cause opportunistic infections. C. albicans is part of the normal microbiota of 
mucous membranes of the respiratory, gastrointestinal, and female genital tracts. 
Changes in the host’s immunological status enable its invasive behavior, leading to 
tissue damage and dissemination through the bloodstream to other organs (Mayer 
et al. 2013).

Deep fungal infections are mainly caused by Aspergillus fumigatus, Cryptococ-
cus neoformans, Coccidioides immitis, Paracoccidioides brasiliensis, Histoplasma 
capsulatum, and Blastomyces dermatitidis. Some fungal diseases are endemic, such 
as	blastomycosis	( B. dermatitidis)	and	histoplasmosis	( H. capsulatum), which are 
mainly	 found	 in	 the	United	States,	 and	paracoccidioidomycosis	 ( P. brasiliensis), 
which is primarily found in Latin America. Others are cosmopolitan and are en-
countered worldwide (Brown et al. 2012). Fungal spores are present in the environ-
ment and can be inhaled; upon reaching the lungs, they adhere to the parenchyma 
and initiate the infectious process. From the lungs, they can enter the bloodstream 
and disseminate to other organs, mainly the liver and spleen. Table 13.1 summarizes 
the major human fungal pathogens and their associated diseases. Overall, treatment 
of clinical mycoses can be a very long and expensive process that is often associated 
with uncomfortable side effects that lead to treatment interruption (Martinez-Rossi 
et al. 2008).
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Some fungal species are found as filamentous or yeast forms, while others are 
dimorphic (i.e., found in both forms). In dimorphic fungi, the yeast form repre-
sents the parasitic phase, and the hyphae form represents the saprophytic phase. 
The filament (or hyphae) is a tubular multi-cellular structure, and cells are divided 
into compartments by the formation of a septum. Yeasts are round, single cells that 
reproduce by budding and some species can form pseudohyphae, a chain of inter-
connected yeast cells. Fungi can undergo sexual or asexual reproduction, produc-
ing spores that can be inhaled or enter the body at sites of tissue damage. Once the 
spores reach their appropriate niche, they develop into hyphae that invade the tissue 
in search of nutrients.

The genomes of several fungal pathogens have been sequenced, enabling the 
design and analysis of microarrays, representing a large amount of transcriptomic 
data to be explored. Fungal transcriptomics have been used to analyze gene expres-
sion and regulation in response to antifungal exposure, environmental changes, and 

Table 13.1  Main fungal pathogens and their associated diseases in humans
Fungi Main species Disease
Aspergillus A. fumigauts Pulmonary infections 

(invasive aspergilosis and 
aspergilloma)
Allergy

Blastomyces B. dermatitis Skin lesions
Pulmonary infections

Candida C. albicans Cutaneous infections—skin 
and nails

C. glabrata Oropharyngeal candidiasis 
(thrush)

C. parapsilosis Vulvovaginal candidiasis
Coccidioides C. immitis Pulmonary infections
Cryptococcus C. neoformans Meningitis

Pulmonary infections 
(pneumonia)

Dermatophytes Trichophyton rubrum Cutaneous infections—skin, 
nail, and hair (tinea or 
ringworms)

Trichophyton mentagrophytes
Microsporum canis

Histoplasma H. capsulatum Pulmonary infections
Malassezia M. furfur Cutaneous infections—skin 

(pityriasis versicolor)
Paracoccidioides P. brasiliensis Pulmonary and systemic 

infections
Penicillium P. marneffeii Pulmonary infections
Pneumocystis P. carinii Pneumonia
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interaction with the host during infection. The transcriptional profile may help elu-
cidate several aspects of fungal biology, including signaling pathways that enable 
fungal survival, and help predict molecular targets for the development of novel an-
tifungal drugs (Peres et al. 2010b; Cairns et al. 2010). Transcriptional and proteomic 
analyses have been used to identify connections among signaling and metabolic 
pathways that govern fungal development, morphogenesis, and pathogenicity as 
well as the host’s immune response. Recent advances in molecular biology meth-
ods, especially RNA-seq by next-generation sequencing, have enabled the study 
of the whole transcriptome. These analyses provide insights into the functionality 
of the genome, revealing molecular components of cells and tissues involved in 
physiological and pathological processes. Transcriptome allows the analysis of all 
transcript species, including mRNAs, which encode proteins, as well as non-coding 
RNAs (ncRNAs) and small RNAs (sRNAs), which regulate gene expression and 
maintain cellular homeostasis. Furthermore, transcriptional profiling by RNA-seq 
is useful to determine gene structures at transcription initiation sites, 5’- and 3’-
ends, and introns as well as splicing patterns (Wang et al. 2009).

This chapter will discuss recent advances in fungal transcriptomics arising from 
microarray and RNA-seq analyses. The contribution of these findings to the under-
standing of fungal biology and fungal diseases will be highlighted. The intrinsic 
relationship of the outcome of fungal infections and the immunological status of the 
host stresses the need to evaluate the host immune response to fungi. Furthermore, 
knowledge of the genes expressed in response to stressful environmental conditions 
and the gene networks that regulate the transcriptome during a fungal infection will 
help elucidate the pathogenesis of fungal infections and identify possible molecular 
targets for the development of novel therapeutic agents. Such information will aid 
both the treatment and prevention of fungal infections.

13.2  Host Immune Response to Fungal Infections

The host’s immunological status is the primary determinant of the severity of fungal 
infections, which can range from asymptomatic to severe and disseminated. Im-
munocompromised patients often suffer from severe, disseminated, and fatal fungal 
infections. Host-pathogen interactions are complex and involve several molecules 
on the surface of both host and fungal cells. These surface molecules participate 
in pathogen recognition, fungal adhesion to host cells, downstream intracellular 
signaling, and metabolic pathways that mediate pathogen survival and host immune 
responses. An understanding of the infective process requires molecular knowledge 
of the pathogen strategies for infecting the tissue as well as the host responses aimed 
at eliminating the pathogen and maintaining cellular integrity. The development of 
experimental models has improved the study of infectious diseases, and most of 
these models utilize immunosuppressed mice, because most fungal species cause 
opportunistic infections. However, for some pathogens, such as anthropophilic der-
matophytes, these models are not suitable and ex vivo and in vitro assays have being 
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performed, providing insights into the pathogenic process and immune response 
triggered by the fungus.

Fungal diseases can result from poor immune response or from exacerbated acti-
vation of the immune system, such as the inflammatory response. Therefore, the in-
terplay of the innate and adaptive immune systems and their appropriate activation 
are crucial for successful pathogen clearance and cellular homeostasis. Recent stud-
ies have characterized different mechanisms underlying the host’s immune response 
to fungi. The innate immune response is comprised of the epithelial barrier, mucosa, 
and phagocytes (i.e., neutrophils, macrophages, and dendritic cells [DCs]), which 
play essential roles in preventing the entry of pathogenic microorganisms and rapid-
ly killing these pathogens, as well as activating the adaptive immune response. Com-
plement and other molecules, such as antimicrobial peptides and mannose-binding 
lectin, are also important host defense mechanisms. Pattern-recognition receptors 
(PRRs) on the surface of host cells interact with pathogen-associated molecular 
patterns	(PAMPs)	on	the	surface	of	pathogens,	such	as	mannoproteins	and	β-glucan	
in fungi. The molecular interaction between PRRs and PAMPs triggers intracellular 
signaling pathways that initiate early inflammatory and non-specific responses in 
the host and upregulates virulence factors in the pathogen that enhance survival. 
PRRs include the toll-like receptors (TLRs) TLR2, TLR4, and TLR9, complement 
receptor	3,	mannose	receptor,	Fcγ	receptor,	and	Dectin-1	(Romani	2011).

In general, a Th1 response is correlated with protective immunity against fungi. 
The	Th1	response	is	characterized	by	the	production	of	interferon	gamma	(IFN-γ)	
and leads to cell-mediated immunity. Antigen-presenting cells (APCs), such as mac-
rophages and DCs, initiate the Th1 response once their PRRs engage with fungal 
PAMPS, which leads to cellular activation and elicits effector properties. Th1 cells 
are essential for optimal activation of phagocytes at the site of infection through 
producing	signature	cytokines,	such	as	 like	IFN-γ.	Moreover,	Th17	cells	support	
Th1 cellular responses in experimental mucosal candidiasis, indicating an important 
role for Th17 cells in promoting neutrophil recruitment and Th1 immune responses 
(Conti et al. 2009; Romani 2011; Bedoya et al. 2013). Whole-genome transcrip-
tional analyses have identified specific transcriptional profiles of host cells in re-
sponse to various fungal species. Different cell types respond to fungal stimuli by 
activating distinct intracellular signaling pathways downstream of different PRRs. 
This mechanism confers plasticity to immune cells, such as DCs and macrophages, 
which shapes T-cell responses during fungal infections. The distinct signaling path-
ways in phagocytes influence the balance between innate and adaptive immune 
responses and the balance between CD4+ T cells and regulatory T cells. Together, 
the balance between these processes establishes the outcome of the infection (Ro-
mani 2011).

H. capsulatum is a dimorphic fungus that causes respiratory infections and 
disseminated disease in immunocompromised hosts. The H. capsulatum hyphae 
produce spores (conidia) in the environment, which can be inhaled by humans. 
Inside the host, the conidia undergo morphological changes to form yeast cells. 
Once inhaled, the conidia are captured by phagocytic cells, such as macrophages, 
and trigger the host immune response. On the other hand, yeast cells use alveolar 
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macrophages as vehicles to spread to different organs, such as the liver, spleen, 
lymph nodes, and bone marrow (Deepe 2000). Transcriptomic analysis by microar-
rays has revealed that conidia and yeast cells induce different transcriptional re-
sponses in macrophages. In response to infection with H. capsulatum conidia, mac-
rophages	specifically	upregulated	type	I	IFN-induced	genes,	including	IFN-β	and	
a classic type 1 IFN secondary response signature, in addition to general inflam-
matory genes. This effect was dependent on interferon regulatory factor 3 (IRF3) 
and independent of the TLR signaling pathway. This expression profile suggested 
that type 1 IFN contributes to the outcome of infection with H. capsulatum. Indeed, 
although	ELISA	 failed	 to	 detect	 IFN-β	 protein,	macrophages	 lacking	 the	 type	 1	
IFN	receptor	IFNAR1	did	not	express	IFN-β	in	response	to	conidia	exposure.	Fur-
thermore, IFNAR1 knockout mice showed a decreased fungal burden in the lungs 
and spleen after intranasal infection with conidia and yeast cells as compared to 
wild type mice. Therefore, IFNAR1 signaling might contribute to the virulence and 
disease burden of H. capsulatum infection rather than conferring protection. The 
authors suggested that type 1 IFNs might modulate cytokine production, apoptosis 
of infected macrophages, or specific aspects of the adaptive immune response to H. 
capsulatum (Inglis et al. 2010).

However, in the pathogenic yeast C. neoformans, which causes severe menin-
goencephalitis in immunocompromised patients, type 1 IFN signaling directs cy-
tokine responses toward a protective type 1 pattern during murine cryptococcosis. 
IFNAR1	and	IFN-β	knockout	infected	mice	displayed	higher	fungal	burdens	in	the	
lungs and brain as well as decreased survival as compared to wild type mice (Bi-
ondo et al. 2008). Likewise, C. albicans induced the expression of type 1 IFN genes 
and proteins in DCs but not in macrophages. This pathway relied on Myd88 signal-
ing,	which	is	a	TLR	adaptor	molecule.	IFNAR1	and	IFN-β	knockout	mice	also	dis-
played a lower survival rate and increased fungal burden in the kidneys. Therefore, 
the type 1 IFN response was protective against C. albicans by stimulating the host’s 
innate immune defense mechanisms (Biondo et al. 2011). These studies highlight 
the complexity of the immune response to fungal pathogens and demonstrate the 
various roles that type 1 IFN plays.

The major virulence factor of C. neoformans is its polysaccharide capsule, which 
interferes with recognition by immune cells. Microarray analysis showed profound 
differences in gene expression profiles of DCs during phagocytosis of encapsulated 
versus non-encapsulated isogenic strains of C. neoformans opsonized with mouse 
serum. In general, the non-encapsulated strain induced the expression of genes in-
volved in DC maturation, chemokines, and cytokines, characterizing an immuno-
stimulatory response. In contrast, the encapsulated strain caused a downregulation 
or no change in the expression of these genes, indicating that the capsule prevented 
the activation of immune response-related genes. Among the proteins encoded by 
the genes upregulated in response to the non-encapsulated C. neoformans strain 
were CD86, CD83, the transcription factor Relb, ICAM1, major histocompatibility 
complex class II (MHC-II)-related genes (H2-D1, H2-Q7, and H2-Q8), and the 
pro-inflammatory	cytokines	IL-12,	TNF-α,	and	IL-1.	These	proteins	are	involved	
in DC activation, maturation, and migration through the endothelium as well as 
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induction of an inflammatory response. Several chemokines were also upregulated 
in DCs stimulated with the non-encapsulated strain, including CCL3, CCL4, CCL7, 
CCL12, CXCL10, CCL22, and the chemokine receptor CCR7, which contributes to 
the accumulation of inflammatory cells at the site of infection. Among the proteins 
encoded by the genes downregulated by the encapsulated strain were E74-like fac-
tor 1 (Elf1) and sequestosome 1 (Sqstm1), which regulate the expression of cyto-
kines	genes	and	the	induction	of	NF-κB	signaling,	respectively	(Lupo	et	al.	2008).

P. brasiliensis causes pulmonary and systemic infections. Once in the lungs, 
the yeast cells interact with resident phagocytic cells, such as macrophages and 
DCs. Microarray analyses of murine macrophages and DCs after phagocytosis of 
P. brasiliensis identified differential expression of genes encoding inflammatory 
cytokines, chemokines, signal-transduction proteins, and apoptosis-related proteins 
(Silva et al. 2008). Among the genes upregulated in macrophages were the pro-in-
flammatory chemokines CCL21, CCL22, and CXCL1. CXCL1 and CCL22 recruit 
neutrophils and monocytes, respectively, while CCL21 mediates the homing of lym-
phocytes	to	secondary	lymphoid	organs.	Upregulation	of	the	gene	encoding	NF-κB	
might account for the upregulation of pro-inflammatory chemokines and cytokines 
(e.g.,	TNF-α)	that	increase	the	cytotoxic	activity	of	macrophages	(Silva	et	al.	2008). 
Expression	of	 the	TNF-α	gene	and	protein	 increased	upon	macrophage	 infection	
with P. brasiliensis. This was consistent with previous findings that p55KO mice, 
which	are	deficient	in	TNF-α,	were	unable	to	control	P. brasiliensis infection, given 
the increased fungal burden and the absence of a well-formed granuloma (Silva 
et al. 2008; Souto et al. 2000). After exposure to P. brasiliensis, macrophages highly 
expressed apoptotic genes, including caspases 2, 3, and 8, which may represent a 
mechanism of eliminating the fungus without damaging host tissues. On the other 
hand, the fungus induced the expression of matrix metalloproteases genes, which 
may have facilitated fungal invasion, given their role in tissue remodeling (Silva 
et al. 2008).
Expression	of	the	gene	encoding	IL−12	was	downregulated	in	macrophages	in-

teracting with P. brasiliensis, which might represent a strategy of the fungi to evade 
the immune system. However, this gene was upregulated in DCs interacting with 
P. brasiliensis (Tavares et al. 2012) and C. neoformans (Lupo et al. 2008). IL-12 is 
associated with resistance to paracoccidioidomycosis and cryptococcosis by induc-
ing	IFN-γ	production	and	Th1	protective	responses.	IL-12p140	knockout	infected	
mice displayed decreased survival, higher fungal burden, and decreased production 
of	IFN-γ	(Decken	et	al.	1998; Livonesi et al. 2008). In addition to IL-12, DCs ex-
posed to P. brasiliensis expressed genes encoding other pro-inflammatory cytokine 
and	chemokine	genes,	such	as	TNF-α,	CCL22,	CCL27,	CXCL10,	and	NF-κB,	con-
comitantly	with	the	downregulation	of	the	NF-κB	inhibitor	Nκ-RF	encoding	gene.	
Both macrophages and DCs expressed CCL22 in response to P. brasiliensis, which 
might have increased the microbicidal activity of macrophages by stimulating a 
respiratory burst and the release of lysosomal enzymes. The chemokines expressed 
by macrophages and DCs in response to P. brasiliensis mediate the accumulation 
of leukocytes at the site of infection in order to control fungal invasion (Silva et al. 
2008; Tavares et al. 2012).
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Innate immune cells represent the first line of defense against pathogenic mi-
croorganisms (Mullick et al. 2004; Kim et al. 2005; Fradin et al. 2007) and include 
polymorphonuclear cells (PMNs, neutrophils), eosinophils, basophils, and mono-
cytes. Monocytes release various cytokines in response to infection in order to am-
plify and coordinate the immune response. The dynamics of the molecular response 
triggered by C. albicans was measured in human monocytes using a time-course as-
say. This analysis identified a pattern of gene expression that might account for the 
recruitment, activation, and viability of phagocytes as well as the enhancement of 
chemotaxis and inflammation (Kim et al. 2005). Increased expression of genes en-
coding	the	pro-inflammatory	cytokines	TNF-α,	IL-6,	and	IL-1α	was	correlated	with	
neutrophil infiltration at the site of infection. In addition, there was an upregulation 
of genes encoding the chemokines CCL3, CCL4, CCL20, CCL18, CXCL1, CXCL-
3, and IL-8, which are involved in the activation and recruitment of phagocytes and 
lymphocytes, as well as genes encoding the chemokine receptors CCR1, CCR5, 
CCR7, and CXCR5. This expression pattern likely favored the recruitment of in-
flammatory cells during the yeast phase of C. albicans	life	cycle.	Moreover,	TNF-α	
is essential for mounting a Th1 immune response and successfully controlling the 
infection. On the other hand, the expression of T cell-related genes was unchanged 
during the time-course analysis, suggesting that T cell regulatory molecules were 
not important in the early response of monocytes to C. albicans. It was proposed 
that in the early stages of infection, monocytes overexpress genes encoding vari-
ous pro-inflammatory cytokines, chemokines, and chemokine receptors as well 
as COX2, IL-23, which are important for inflammation, and heat-shock proteins, 
which are implicated in the induction of inflammatory cytokines and chemokines. 
Thus, these changes in gene expression allow cellular recruitment and activation. 
Along with the pro-inflammatory response, increased expression of genes encoding 
anti-apoptotic molecules (XIAP and BCL2A1) may have protected the monocytes 
from cellular damage and death. The gene encoding the transferrin receptor (CD71) 
was upregulated, suggesting that iron deprivation might be a defense mechanism 
against infection. Indeed, iron is essential to the virulence of several pathogens 
(Kim et al. 2005).

Neutrophils display a potent set of hydrolytic enzymes, antimicrobial peptides, 
and oxidative species within their intracellular granules. These cells have an imme-
diate and pronounced effect on C. albicans (Fradin et al. 2005). Granulocyte-like 
cells phagocytose and kill C. albicans and prevent hyphal growth, and undergo 
apoptosis after pathogen exposure. During this process, granulocytes upregulate 
inflammatory genes and downregulate anti-Candida-response genes, depending on 
the size of the inoculum. Among the upregulated genes were inflammatory media-
tors,	including	IL-1β,	TNF-α,	COX2,	and	the	chemokine	CCL3.	On	the	other	hand,	
genes encoding myeloperoxidase, which causes hyphal damage, and defensins, 
such as human neutrophil protein 1 (HPN1), were downregulated. These changes 
may represent mechanisms by which C. albicans survives the early stages of infec-
tion (Mullick et al. 2004).

In another study, a microarray of immune-related genes was used to evaluate the 
early response of PMN cells to C. albicans hyphal cells, UV-killed and live yeasts. 
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In PMNs, the transcriptional profiles induced by live yeasts and hyphae were more 
similar to one another than to that induced by dead yeasts. This suggested that fun-
gal viability had a more significant effect on PMN gene expression than cellular 
morphotype. The presence of C. albicans did not affect the expression of genes en-
coding granule proteins. Nevertheless, C. albicans induced the upregulation of pro-
inflammatory genes and cell-to-cell signaling (leukemia inhibitory factor [LIF]), 
signal transduction proteins, cell stimulatory factors, vascular endothelial growth 
factor, and PMN-recruitment chemokines (CCL3 and CXCL2). Importantly, these 
gene expression changes were irrespective of fungal cell type or viability. Further-
more, the few genes that were downregulated in response to C. albicans were in-
volved in the regulation of cell signaling and growth (Fradin et al. 2007). In addi-
tion, exposure to viable Candida cells upregulated genes encoding stress-response 
proteins, including heat shock proteins (HSPA8, HSPCA, HSPCB, and HSPH1). 
This demonstrated a direct effect of live cells on PMN cells and monocytes (Kim 
et al. 2005). Interestingly, these genes also regulate CXC-type chemokines, indi-
cating that this antimicrobial response amplifies the overall immune response by 
recruiting additional cells to the infection site. Overall, this transcriptional profile 
suggested that PMNs contribute to the immunological response to C. albicans by 
expressing genes involved in cellular communication, which may recruit more 
PMNs or other immune cells.

Systemic candidiasis is characterized by C. albicans entering the bloodstream, 
disseminating throughout the body, and causing microabscesses. In the blood ves-
sels, the fungus must adhere to and invade endothelial cells (ECs); thus, the ECs 
have the potential to influence the host response to vascular invasion. Microarray 
transcriptional analysis of ECs in response to C. albicans identified the upregu-
lation of genes with several functions, especially chemotaxis, angiogenesis, cell 
death, proliferation, intra- and intercellular signaling, immune response, and in-
flammation (Muller et al. 2007; Barker et al. 2008; Lim et al. 2011). These results 
support an important role for ECs in innate immunity. C. albicans induces several 
genes	 that	are	 targets	of	 the	pro-inflammatory	 transcription	factor	NF-κB,	which	
plays a central role in EC transcriptional regulation during C. albicans infection. In 
addition, the expression of chemokines, including IL-8, CXCL1, CXCL2, CXCL3, 
CXCL5, and CXCL6, indicates that ECs help recruit neutrophils and monocytes 
to the infection site (Muller et al. 2007). The overexpression of genes involved in 
stress and wound healing, coding for pro-inflammatory mediators such as IL-1, 
calgranulin C, E-selectin, and prostaglandin-endoperoxide synthase 2, correlated 
with the endothelial damage caused by C. albicans. The ECs also upregulated anti-
apoptotic genes, suggesting that ECs respond to C. albicans by undergoing cellular 
proliferation (Barker et al. 2008). However, another transcriptional profile revealed 
that apoptotic genes were upregulated in ECs infected with a high density of C. al-
bicans; the difference in the number of fungal cells may have been responsible for 
this difference in expression profile. In general, human umbilical vein ECs infected 
with high densities of C. albicans displayed a stronger and broader transcriptional 
responses than cells infected with low densities. Again, this effect may have been 
related to the number of cells or even to secreted molecules involved in quorum 
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sensing. The authors hypothesized that in microenvironments with a high density 
of yeast cells, such as microabscesses, the fungus triggers apoptosis, which disrupts 
the endothelial barrier and permits fungal dissemination to different organs and tis-
sues (Lim et al. 2011).

Given the complex and dynamic nature of host-pathogen interactions, tech-
niques that measure both the host and pathogen responses are crucial for character-
izing their interaction. Recent advances in molecular techniques have identified 
the molecular responses of the host and the pathogen during the infection. In dual 
transcriptomics, microarrays and RNA-seq have been used to identify molecular 
patterns of the pathogen and the host. These studies have provided insight into the 
dynamics of the infectious process (Westermann et al. 2012). Dual transcriptomics 
by RNA-seq was performed during DC phagocytosis of C. albicans, and gene in-
teractions were predicted using a systems biology approach. Specifically, RNA-seq 
identified 545 C. albicans and 240 DCs genes that were differentially expressed. 
The genes were clustered by their expression kinetics over the duration of the inter-
action, and selected genes were used to infer gene interactions. After experimentally 
validating one of these gene interactions, the authors proposed a model in which 
PTX3, an opsonin secreted by DCs that facilitates phagocytosis through dectin-1, 
binds to the C. albicans cell wall, leading to its remodeling, which is mediated by 
the transcription factor Hap3 during invasion of innate immune cells. Remodeling 
of the fungal cell wall compromises the ability of immune cells to recognize fungi, 
thus attenuating the immune response (Tierney et al. 2012).

Microarray-based dual transcriptomics was performed on A. fumigatus interact-
ing with bronchial epithelial cells. The resulting expression patterns indicated acti-
vation of the host’s innate immune response (Oosthuizen et al. 2011). A. fumigatus 
is a major cause of pulmonary fungal infections, including invasive aspergillosis, 
aspergilloma, and allergy. During infection, environmental conidia enter the air-
ways through inhalation. There, they germinate into hyphae and penetrate the lung 
parenchyma. Upon invasion, the fungus can disseminate to other organs and tissues. 
In response to A. fumigatus conidia, bronchial cells upregulated genes involved in 
innate immunity, chemokine activity, and inflammation. Among the overexpressed 
genes were those encoding the chemokines CCL3 and CCL5, which recruit leu-
kocytes to the site of infection, matrix metalloproteinases (MMP1 and MMP3), 
and glutathione transferase (MGST1), which protects against oxidative damage. By 
comparing the expression profiles of two different cell lines, the authors identified 
only 17 genes in common. This demonstrates the variability in gene expression 
between a cell line and primary cells resulting from exposure to the same fungus 
(Gomez et al. 2011; Oosthuizen et al. 2011). The commonly expressed genes mainly 
encoded chemokines and regulators of the innate immune response. In particular, 
IL−6,	a	potent	pro-inflammatory	cytokine,	was	highly	expressed	in	response	to	A. 
fumigatus	 conidia.	 This	 was	 consistent	 with	 earlier	 findings	 that	 IL−6-deficient	
mice were susceptible to invasive pulmonary aspergillosis and had impaired protec-
tive Th1 responses (Oosthuizen et al. 2011; Cenci et al. 2001). In addition, genes 
involved in nucleosome organization and chromatin assembly were overexpressed. 
Genes involved in mitosis and cell cycle progression were downregulated, suggest-
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ing decreased proliferation and cell cycle arrest during infection with A. fumigatus 
(Gomez et al. 2011).

Moreover, in response to A. fumigatus human monocytes presented a coordinat-
ed expression of genes involved in fungal death and invasion (Cortez et al. 2006). 
Among	the	highly	expressed	genes	were	pro-inflammatory	genes,	such	as	IL-1β,	
CCL3, CCL4, IL-8, PTX3, and SOD2, and regulators of inflammation, such as 
IL-10, COX2, and HSP40. Moreover, several anti-inflammatory genes were down-
regulated, such as CD14, which is involved in phagocytosis, and CCL5, which is 
a Th1 chemokine. This differential regulation of pro- and anti-inflammatory genes 
likely balanced the innate immune response. Furthermore, the coordinated expres-
sion of genes involved in oxidative response may have both eliminated the fungus 
and protected the cell. This was supported by the high expression of superoxide 
dismutase (SOD2) and dual phosphatase (DUSP1) and downregulation of catalase 
(CAT), glutathione peroxidase 3 (GPX3), and peroxiredoxin 5 (PRDX5) (Cortez 
et al. 2006).

Dermatophytes are highly specialized fungi that use keratin as a nutrient source, 
and thus infect keratinized structures, such as skin, hair, and nails. Upon infecting 
the skin, dermatophytes first encounter keratinocytes, which represents an impor-
tant barrier against pathogens and help mediate the immune response (Peres et al. 
2010a). The transcriptional profile of keratinocytes was measured in response to Ar-
throderma benhamiae, a zoophilic dermatophyte, and Trichophyton tonsurans, an 
anthropophilic species. During interaction, these fungi induced different cytokine 
expression profiles in keratinocytes, which were correlated with the inflammatory 
response. Arthroderma benhamiae induced the upregulation of 48 cytokine-related 
genes. In contrast, T. tonsurans induced the differential expression of only 12 cy-
tokine-related genes; 4 were upregulated, and 8 were downregulated. In infected 
keratinocytes, the zoophilic species induced the upregulation of pro-inflammatory 
genes	and	the	concomitant	secretion	of	cytokines	IL-1β,	IL-6,	IL-6R,	and	IL-17	and	
chemokines IL-8 and CCL2. This may promotes the infiltration of inflammatory 
cells in the skin during infection. Moreover, the upregulation of IL-6, IL-6R, and 
granulocyte-colony stimulating factor (G-CSF) may have promoted tissue remod-
eling and wound healing. On the other hand, the anthropophilic species induced 
limited cytokine expression and release, including exotoxin 2, IL-8, and IL-16. This 
was likely responsible for the poor inflammatory response observed in T. tonsurans 
skin infection (Shiraki et al. 2006). Moreover, mice infected with Arthroderma ben-
hamiae displayed an infiltration of PMNs, macrophages, and DCs in the skin as 
well	as	increased	levels	of	TGF-β,	IL-1β,	IL-6,	and	IL-22	mRNA	in	skin	biopsies.	
Because these cytokines are involved in the establishment of the Th17 response, 
this pathway might regulate immunity against dermatophytes (Cambier et al. 2014).

In summary, fungal pathogens induce several changes in the host’s target cells 
and innate immune cells. Studying the transcriptome of fungal-host interactions has 
elucidated the molecular patterns associated with protection from or progression 
of fungal infections. In general, fungi induce the upregulation of genes encoding 
cytokines, chemokines, and other pro-inflammatory molecules in host cells, which 
recruit inflammatory cells to the site of infection. Host cells exhibit different ex-
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pression profiles in response to different fungal pathogens, which may account for 
the differences in outcomes of these infections. Moreover, some studies have identi-
fied molecular strategies by which fungi evade the host’s immune system as well as 
host defense mechanisms that favor fungal survival. Transcriptomic analyses have 
generated hypotheses that can be further validated by reverse genetic approaches in 
order to better characterize the immune components that contribute to the outcome 
of fungal infections.

13.3  Metabolic Adaptation of Fungi During Infection

Fungal pathogens adapt to the host’s microenvironment during infection, a process 
that requires dynamic responses to constantly changing conditions. In particular, 
nutrient availability can be limited in host niches, especially inside phagocytes. 
Thus, fungi undergo metabolic adaptations in order to control, for example, gly-
colysis, gluconeogenesis, the glyoxylate cycle, and proteolysis. This allows them 
to utilize diverse substrates as nutrient sources, evade the toxic conditions trig-
gered by the immune response, and maintain their virulence despite changes in 
the physiological ambient (Brock 2009). Phagocytes produce reactive oxygen and 
nitrogen species (ROS and RNS), which induce oxidative and nitrosative stress and 
kill pathogens (Brown et al. 2009). Reactive species can alter or inactivate pro-
teins, lipid membranes, and DNA. Pathogens can survive this toxic environment by 
producing protective enzymes, such as flavohemoglobin and S-nitrosoglutathione 
(GSNO) reductase, which confer resistance to nitrosative stress (de Jesús-Berríos 
et al. 2003), and superoxide dismutases, catalases, and peroxidases, which coun-
teract oxidative stress. Non-enzymatic defenses include metabolites, such as mela-
nin, mannitol, and trehalose (Missall et al. 2004). The ability of pathogens to sense 
and appropriately respond to environmental pH is essential for their survival in 
different host niches. In pathogenic fungi, the PACC/RIM signaling pathway has 
been implicated in survival, growth, virulence, and dissemination in different host 
niches (Cornet and Gaillardin 2014). The pH affects enzymatic activities, and the 
alkaline pH of human tissues influences nutrient uptake, because the solubility of 
essential elements, such as iron, is pH-dependent (Davis 2009). Iron is an essential 
micronutrient for both the host and pathogen, as it is required for several metabolic 
processes, including respiration and DNA replication. Iron, in the form of heme and 
iron-sulfur compounds, is an essential cofactor in various cellular enzymes, oxygen 
carriers, and electron-transfer systems. Iron homeostasis plays a key role in host-
pathogen interactions. For instance, host tissues can restrict the availability of free 
iron in order to prevent infection. Accordingly, fungal pathogens have adapted strat-
egies for iron uptake, including the production of metalloreductases, ferroxidases, 
and siderophores (Silva et al. 2011), in order to survive in iron-deficient niches.

Several pathways are crucial for fungal pathogens to survive in various host 
microenvironments during infection. In vivo, ex vivo, and in vitro infection mod-
els have identified the transcriptional profiles of fungal pathogens during infection 
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and interaction with host cells. These studies have helped elucidate the pathogen-
esis of superficial, deep, and bloodstream fungal infections. An in vitro study used 
microarray to assess the transcriptional profile of C. albicans during interaction 
with human blood. There was an upregulation of genes involved in stress response, 
such as SSA4 (a member of the HSP70 gene family), and anti-oxidative response, 
such	as	those	encoding	Cu/Zn	superoxide	dismutase	( SOD1),	catalase	( CAT1), and 
thioredoxin	 reductase	 ( TRR1). There was a simultaneous upregulation of genes 
encoding	the	glycolytic	enzymes	phosphofructokinase	( PFK2), phosphoglycerate 
kinase	( PGK1),	and	enolase	( ENO1) as well as those encoding the glyoxylate cycle 
enzymes	isocitrate	lyase	( ICL1),	malate	synthase	( MLS1), and acetyl-coenzyme-A-
synthetase	( ACS1). This suggested that both pathways were important for fungal 
dissemination. Genes involved in fermentation, such as those encoding alcohol de-
hydrogenases	( ADH1 and ADH2), were also upregulated. Importantly, C. albicans 
isolated from infected mice exhibited similar transcription profiles, thus validating 
some of the in vitro results. Moreover, these data suggested that C. albicans uses 
alternative carbon sources during blood infection and dissemination (Fradin et al. 
2003).

A subsequent study investigated the utilization of the glyoxylate cycle and gly-
colysis by C. albicans interacting with different blood fractions, including eryth-
rocytes, PMNs (mainly neutrophils), PMN-depleted blood (consisting of lympho-
cytes and monocytes), and plasma. C. albicans cells were physiologically active 
and displayed rapid hyphal growth while interacting with plasma, erythrocytes, and 
PMN-depleted blood. On the other hand, growth of C. albicans cells was arrested 
when interacting with PMNs, and only 40 % of the cells interacting with whole 
blood produced hyphae. C. albicans upregulated glyoxylate cycle genes when 
interacting with PMNs, but not when interacted with plasma. During interaction 
with plasma and PMN-depleted blood, C. albicans upregulated genes related to 
glycolysis. Global cluster analysis was used to compare the transcriptional profile 
of C. albicans interacting with whole blood and blood fractions. During interaction 
with whole blood, the upregulation of genes related to glycolysis and the glyoxyl-
ate cycle resulted from mixed populations of fungal cells that were internalized 
by phagocytes, which triggers a nutrient limitation response, and not internalized 
(Fradin et al. 2005). Indeed, starvation inside the phagosome activated the glyox-
ylate cycle, which allowed nutrient uptake and survival. Accordingly, C. albicans 
deficient in the gene encoding isocitrate lyase was less virulent than the wild type 
strain in murine infection (Lorenz and Fink 2001).

While interacting with neutrophils, C. albicans also activated nitrogen- and car-
bohydrate-starvation responses, as indicated by the upregulation of genes encoding 
ammonium	permeases	( MEP2 and MEP3),	vacuolar	proteases	( PRB1, PRB2, and 
APR1),	carboxypeptidases	( PRC1 and PRC2),	glyoxylate	cycle	enzymes	( MLS1, 
ICL1, and ACS1), aminoacid transporters, and proteins involved in aminoacid me-
tabolism. Similarly, C. albicans activated the oxidative stress response, as indicated 
by the upregulation of genes encoding peroxidases and reductases, including super-
oxide	dismutases	( SOD1 and SOD5)	and	catalase	( CAT1) (Fradin et al. 2005). The 
upregulation of these genes may have contributed to fungal survival. Furthermore, 
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C. albicans internalized by murine macrophages in vitro displayed growth arrest 
and downregulation of genes associated with translation machinery and glycolysis. 
On the other hand, there was an upregulation of genes encoding enzymes involved 
in the gluconeogenesis pathway (phosphoenolpyruvate carboxykinase and fruc-
tose-1,6-bisphosphatase), glyoxylate cycle (isocitrate lyase and malate synthase), 
tricarboxylic acid cycle (aconitase, citrate synthase, and malate dehydrogenase), 
and	β-oxidation	of	fatty	acids,	as	well	as	several	transporters.	This	suggested	a	met-
abolic adaptation toward the use of alternative carbon sources. Other upregulated 
genes included those encoding proteins important for detoxification of reactive 
species (flavohemoglobin, cytochrome c peroxidase, peroxidases, and reductases), 
stress response (heat shock protein HSP78), metal homeostasis, and DNA repair 
(Lorenz et al. 2004). Moreover, enzymes such as flavohemoglobins and superoxide 
dismutases, important to counteract ROS and RNS, were also implicated in C. albi-
cans virulence (Missall et al. 2004)

Transcriptional profiling of C. albicans was performed using biopsies of in-
fected oral mucosa from 11 HIV-positive patients. The results were compared to 
those obtained after in vitro interaction with reconstituted human epithelia (RHE). 
Genes	related	to	gluconeogenesis	( PCK1),	the	glyoxylate	cycle	( MLS1 and ICL1), 
β-oxidation	of	fatty	acids,	and	aminoacid	and	phosphate	transport	( PHO84) were 
upregulated. In the in vitro model, genes involved in nitric-oxide detoxification, 
such	as	those	encoding	flavohemoglobin	( YHB5)	and	a	sulfite	transporter	( SSU1), 
alkaline	pH-responsive	genes	( PHR1 and PRA1), and alkaline pH-induced genes of 
the Rim101 pathway were also upregulated. SSU1, YHB1, YHB5, PHR1, and ICL1 
were upregulated during oral mucosa infection. These changes reflected fungal re-
sponses to nitrosative stress, innate defense of epithelial cells against microbes, 
adaptation to the neutral-alkaline pH of the oral mucosa, and the use of alterna-
tive carbon sources at the site of infection. Despite the heterogeneity of the biopsy 
samples, there was a group of genes with similar expression profiles from both 
the patient samples and the in vitro RHE model. Genes related to iron acquisition 
( CFL2 and FRE4) were upregulated in oral candidiasis but not in the in vitro model. 
In	another	study,	Δicl1 was impaired to damage RHE, suggesting the importance of 
the glyoxylate cycle in oral candidiasis (Wachtler et al. 2011). Moreover, epithelial 
escape	and	dissemination	( EED1), a unique species-specific C. albicans gene, was 
involved in hyphal elongation during infection (Zakikhany et al. 2007). A time-
course	microarray	analysis	of	wild	 type	and	Δeed1 strains interacting with RHE 
showed that transcriptional differences between the strains increased over time. 
The mutant did not upregulate any genes across the entire time course, but did 
downregulate seven genes throughout the course of infection, including the hyphae-
associated genes ECE1 and HYR1.	Other	downregulated	genes	in	the	Δeed1 strain 
included those encoding proteins involved in polarized growth, such as CDC42, 
RDI1, MYO2, CDC11, CYB2, MOB1, and MLC1. A comparison of the transcrip-
tional profile of several mutant strains suggested that EED1 was the primary com-
ponent of a regulatory network controlling hyphal extension. EED1 is positively 
regulated at the transcriptional level by EFG1, a member of the APSES family of 
transcription factors, and is repressed by NRG1, a sodium regulator. UME6, another 
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transcriptional regulator involved in hyphal extension, is transcriptionally regulated 
by EED1. Both regulators participate in a pathway that controls the extension of C. 
albicans germ tubes into hyphae and the hyphae-to-yeast transition, which allows 
fungal dissemination within epithelial tissues (Martin et al. 2011).

In order to investigate expression changes in C. albicans during liver infection, 
transcriptional profiling was performed in vivo on mice infected by intraperitoneal 
injection as well as pig livers inoculated ex vivo. The upregulated genes encoded 
enzymes	involved	in	glycolysis,	such	as	phosphofructokinase	( PFK2) and pyruvate 
dehydrogenase	 subunits	 ( PDA1 and PDX1), as well as those involved in acetyl-
CoA	biosynthesis	and	the	tricarboxylic	acid	cycle	( KGD1 and KGD2). This gene 
expression modulation reflected the availability of carbohydrates and the utilization 
of glycolysis and respiration for energy production. However, the upregulation of 
PCK1, which encodes phosphoenolpyruvate carboxykinase, a key enzyme in glu-
coneogenesis, suggested that alternative carbon sources were also used. Other up-
regulated genes included SAP2, SAP4, SAP5,and SAP6, which encode the hyphae-
associated aspartic proteases. Indeed, Sap2 is the major protease that enables the 
utilization of proteins as nitrogen sources. The upregulation of alkaline pH respon-
sive	gene	( PHR1) suggested adaptation to an alkaline environment. Similarly, up-
regulation of genes encoding stress-response proteins, including heat shock proteins 
and	molecular	chaperones	( HSP78, HSP90, DDR48, HSP104, HSP12, and SSA4), 
suggested that the heat shock response was triggered during the course of infec-
tion. However, genes related to oxidative, osmotic, and nitrosative stresses were not 
upregulated. On the other hand, genes related to iron, copper, zinc, and phosphate 
transport	( FTR1, CTR1, ZRT1, PHO84, PHO89) were upregulated during liver in-
fection, suggesting limited iron and phosphate in this environment. A comparison 
of the transcriptional profile of an invasive C. albicans strain with that of a non-
invasive strain identified genes associated with liver invasion. One of these genes 
was DFG16, which encodes a membrane sensor in the RIM101 pathway that is cru-
cial for pH-dependent hyphal formation, pH sensing, invasion at physiological pH, 
and systemic infection (Thewes et al. 2007; Martinez-Rossi et al. 2012; Rossi et al. 
2013). In another study of systemic infection, rabbits were infected through the 
marginal ear vein, and infected kidneys were subsequently collected. C. albicans 
exhibited an upregulation of genes related to alternative pathways of carbon assimi-
lation,	such	as	β-oxidation	of	fatty	acids,	the	glyoxylate	cycle	( MLS1 and ACS1), 
and	the	tricarboxylic	acid	cycle	( CIT1, ACO1, and SDH12), suggesting limited car-
bohydrate supply in the kidneys (Walker et al. 2009). Although genes involved in 
β-oxidation	of	fatty	acids	are	upregulated	in	several	models	of	infection,	fatty-acid	
degradation is not essential for virulence of C. albicans. Nevertheless, disruption of 
genes involved in the glyoxylate cycle or gluconeogenesis significantly attenuated 
its virulence in mice (Ramirez and Lorenz 2007; Barelle et al. 2006).

C. albicans colonizes medical devices, such as intravascular catheters, by form-
ing biofilms. Biofilms are comprised of heterogeneous microbial communities and 
form on biotic or abiotic surfaces embedded in an extracellular polymeric matrix. 
Such biofilms are associated with persistent infections and resistance to antifungal 
drugs and mechanical treatments. C. albicans forms a biofilm in four steps. First, 
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yeast cells attach to and colonize a surface; second, yeast cells form a basal layer 
that anchors the biofilm; third, hyphae grow and produce pseudohyphae and ex-
tracellular matrix; finally, the yeast cells disperse. In order to characterize biofilm 
formation in C. albicans, the transcriptional regulatory network was analyzed in 
mutants that are unable to form biofilms. A combination of whole-genome chroma-
tin immunoprecipitation microarray (ChIP-chip) and genome-wide transcriptional 
profiling identified six master regulators that control biofilm formation in C. albi-
cans: BCR1, TEC1, EFG1, NDT80, ROB1, and BRG1. Each regulator controlled 
the other five, and most of the target genes were controlled by more than one master 
regulator. Moreover, the biofilm network targeted approximately 15 % of the entire 
genome (Nobile et al. 2012).

Microarray analyses were used to profile C. neoformans transcription in re-
sponse to murine macrophages. C. neoformans exhibited a downregulation of genes 
encoding translational machinery and an upregulation of genes associated with lipid 
degradation and fatty-acid catabolism (lipases and acetyl coenzyme A acetyltrans-
ferase),	β-oxidation,	transport	of	glucose	and	other	carbohydrates,	response	to	ni-
trogen	starvation,	the	glyoxylate	cycle	( ICL1),	and	autophagy	( ATG3 and ATG9). 
This suggested nutritional starvation and metabolic adaptation toward the use of al-
ternative carbon sources and nitrogen uptake. Moreover, the upregulation of several 
genes encoding oxidoreductases, peroxidases, and flavohemoglobin denitrosylase 
(FHB1), which are important for nitrosative response and virulence, indicated the 
presence of oxidative and nitrosative stress (de Jesús-Berríos et al. 2003). Also, 
there was an upregulation of genes related to endocytosis, exocytosis, and synthesis 
of extracellular polysaccharides and cell wall components. Genes located in the 
mating-type (MAT) locus and several genes associated with virulence were also 
upregulated. These included those encoding inositol-phosphorylceramide synthase 
( IPC1),	laccases	( LAC1 and LAC2),	genes	involved	in	capsule	formation	( CAP10, 
CAS31, CAS32, CAS1, and CAS2), and PKA, a gene in the Gpa1-cAMP pathway, 
that is essential for virulence. In particular, the Gpa1-cAMP pathway regulates cap-
sule	formation	and	melanin	production.	Moreover,	calcineurin	gene	( CNA1), which 
is critical for virulence, was upregulated (Fan et al. 2005).

Transcriptional analyses of C. neoformans isolated from cryptococcal pulmo-
nary infection in mice revealed the upregulation of genes encoding malate syn-
thase, phosphoenolpyruvate carboxykinase, aconitase and succinate dehydrogenase 
as	well	as	 those	 involved	 in	β-oxidation	of	 fatty	acids.	These	findings	suggested	
glucose depletion and the use of alternative carbon sources in the lungs. Genes 
encoding glyoxylate cycle enzymes were strongly upregulated as well as genes 
involved in glycolysis (e.g., fructose 1,6-biphosphate, aldolase, hexokinase, and 
phosphofructokinase). In addition, there was an upregulation of genes encoding 
transporters for monosaccharides, iron, copper, acetate, trehalose, and phosphate, 
enzymes involved in the production of acetyl-CoA (e.g., acetylCoA synthetase 
[ACS1]), pyruvate decarboxylase, and aldehyde dehydrogenase. The upregulation 
of several stress-response genes, including flavohemoglobin denitrosylase, super-
oxide dismutase, HSP12, HSP90, and other virulence factors, might have protected 
against the stressful conditions in the lungs. This profile of upregulated genes sug-
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gested the importance of generating and utilizing acetyl-CoA by C. neoformans 
during infection (Hu et al. 2008). Indeed, deletion of the acs1 gene resulted in at-
tenuated virulence and impaired growth on media containing acetate as a carbon 
source. Moreover, ACS1 is regulated by serine/threonine protein kinase 1 (SNF1), 
which mediates glucose sensing, utilization of alternative carbon sources, and stress 
response. Deletion of the SNF1 gene also reduced growth on acetate medium, de-
creased melanin production and caused loss of virulence in murine model (Hu et al. 
2008). Although C. neoformans upregulated glyoxylate cycle genes during infec-
tion, ICL1 and MLS1 were not essential for establishing infection (Rude et al. 2002; 
Idnurm et al. 2007).	On	the	other	hand,	deficits	in	β-oxidation	pathways	compro-
mised the virulence of C. neoformans (Kretschmer et al. 2012).

C. neoformans var. grubii molecular type VNI and VNII were isolated from the 
cerebrospinal fluid (CSF) of two AIDS patients with cryptococcal meningitis (Chen 
et al. 2014). RNA was isolated from C. neoformans and used for transcriptome 
analyses by RNA-Seq. The in vivo transcriptomes were compared with the tran-
scriptomes of each strain after incubation in pooled human CSF ex vivo or growth 
in YPD broth in vitro. As compared with growth in YPD, growth in vivo and ex vivo 
in CSF resulted in the upregulation of genes associated with pathogenicity, such as 
CFO1, ENA1, and RIM101. CFO1 encodes a ferroxidase required for the utilization 
of transferrin, an important source of iron during brain infection and subsequent 
dissemination in infected mice (Jung et al. 2009). ENA1 is a sodium transporter 
that is important for CSF infection, intracellular survival in macrophages, and sur-
vival during meningitis in rabbits (Idnurm et al. 2009). RIM101 is a conserved pH-
responsive transcription factor that regulates iron and metal homeostasis, capsule 
production, and cell wall formation in C. neoformans (O’Meara et al. 2010). Other 
genes, such as SIT1 and SRX1, were upregulated only in vivo. SIT1 is a siderophore 
transporter that is important for growth under iron-limiting conditions, suggesting 
a role for iron in CSF infection. SRX1 is a sulfiredoxin that confers resistance to 
oxidative stress, which might improve survival in the presence of phagocytic cells 
in the CSF. Indeed, Rim101 controls the expression of several genes, including 
SIT1 and ENA1 (O’Meara et al. 2010; O’Meara et al. 2013). ICL1 was another 
gene upregulated in C. neoformans infecting human CSF. The ICL1 gene was also 
upregulated in a rabbit model of cryptococcal meningitis, although isocitrate lyase 
was not essential for infection (Rude et al. 2002). However, there was an upregula-
tion of trehalose-6-phosphate synthase (TPS1) encoding gene (Steen et al. 2003), 
which was essential for infection (Petzold et al. 2006). Thus, in human cryptococcal 
meningitis, a set of genes was similarly modulated between C. neoformans strains 
isolated from infected patients. Among the differentially modulated genes, novel 
genes with unknown functions were also identified (Chen et al. 2014).

Recently, another transcriptional profiling study using nanoString demonstrat-
ed high concordance between the downstream targets of PKA and RIM101 in C. 
neoformans.	A	pairwise	transcriptional	analysis	of	 the	Δpka	and	Δrim101 mutant 
strains revealed a strong correlation between the majority of RIM101-dependent 
and PKA1-dependent genes. This suggested that PKA1 and RIM101 interact or that 
they are in the same signaling pathway. In a murine model of lung infection, tran-
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scriptional	and	ChIPseq	analyses	of	wild	type	and	Δrim101 strains revealed genes 
regulated by RIM101, including cda1 and kre6. CDA1 regulates levels of chitosan 
in	the	cell,	and	KRE6	participates	in	β-glucan	synthesis,	consistent	with	a	role	for	
RIM101 in regulating cell wall remodeling (O’Meara et al. 2013).

In a murine model of pulmonary aspergillosis, A. fumigatus exhibited a down-
regulation of genes related to ribosomal biogenesis and protein biosynthesis and 
an upregulation of genes related to siderophore biosynthesis and transport, includ-
ing ferric-chelate reductases, aminoacid permeases, GABA and proline permeases, 
maltose permeases and transporters, and extracellular proteases. Elastinolytic me-
talloprotease, an aorsin-like serine protease, and dipeptidylpeptidases are antigenic 
virulence factors that are important for nitrogen uptake. Several genes encoding an-
tioxidant enzymes were also upregulated, including a Mn-superoxide dismutase and 
the bifunctional catalase-peroxidase CAT2. The initiation of infection was likely 
associated with aminoacid catabolism, as indicated by the induction of the enzyme 
methylcitrate synthase, which detoxifies propionyl-CoA intermediates (McDonagh 
et al. 2008). During invasive aspergillosis, propionyl-CoA is a toxic product gener-
ated from the degradation of valine, methionine, and isoleucine derived from host 
proteins. The gene encoding methylcitrate synthase was upregulated, suggesting 
that aminoacids are used as nutrients during invasive aspergillosis. Moreover, an A. 
fumigatus strain deficient in methylcitrate synthase displayed attenuated virulence 
(Ibrahim-Granet et al. 2008). During invasive aspergillosis, many of the preferen-
tially expressed genes were located in the sub-telomeric regions of chromosomes. 
The coordinated expression of clustered genes included those responsible for the 
biosynthesis of siderophores and the secondary metabolites pseurotin and gliotoxin, 
which are toxins (McDonagh et al. 2008).

While interacting with human neutrophils, A. fumigatus conidia upregulated 
genes	encoding	proteins	 involved	 in	peroxisome	biogenesis,	β-oxidation	of	 fatty	
acids (acyl-CoA dehydrogenase and enoyl-CoA hydratase), acetate metabolism 
(acetyl-coenzyme A synthetase), the tricarboxylic acid cycle (aconitate, succinate 
dehydrogenase, and malate dehydrogenase), and the glyoxylate cycle (isocitrate ly-
ase), suggesting a state of carbohydrate starvation (Sugui et al. 2008). There was a 
strong upregulation of the gene encoding formate dehydrogenase, which detoxifies 
formate, an indirect product of the glyoxylate cycle (Prigneau et al. 2003). Neutro-
phils normally produce cytotoxic ROS; however, neutrophils from patients with 
chronic granulomatous disease (CGD) are unable to damage A. fumigatus hyphae. 
Indeed, hyphae exposed to normal neutrophils expressed higher levels of the genes 
encoding glutathione peroxidase and thioredoxin reductase than those exposed to 
CGD neutrophils (Sugui et al. 2008). Despite the involvement of ROS released 
by phagocytes in killing A. fumigatus, a triple SOD1/SOD2/SOD3 mutant and the 
parental strain were similarly virulent in experimental murine aspergillosis in im-
munocompromised animals (Lambou et al. 2010).

Upon contact with bronchial epithelial cells, A. fumigatus upregulated approxi-
mately 150 genes, most of which were related to vacuolar acidification, siderophore 
biosynthesis, metallopeptidase activity, and formate dehydrogenase activity (Oost-
huizen et al. 2011; Kane 2007).	Formate	dehydrogenase	( fdh) was also significantly 
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upregulated upon incubation with neutrophils (Sugui et al. 2008) and biofilm for-
mation (Bruns et al. 2010). Moreover, incubation with A. fumigatus induced cell 
death in monocyte-derived immature dendritic cells (iDC) (Morton et al. 2011). 
This effect was coincident with growth of the fungal germ tube and fungal upregu-
lation of genes encoding enzymes related to oxidative stress response, ROS detoxi-
fication (e.g., superoxide dismutases), and pyomelanin biosynthesis. Additionally, 
A. fumigatus upregulated ASPF1, which encodes a ribotoxin that inhibits protein 
synthesis and induces apoptosis in iDCs in vitro (Ok et al. 2009).

Transcriptional profiling was performed on the dermatophyte Arthroderma 
benhamiae during an in vivo skin infection in guinea pigs. During acute infection, 
Arthroderma benhamiae upregulated genes encoding key enzymes of the glyox-
ylate cycle (MLS and ICL), formate dehydrogenase, monosaccharide transporter, 
oxidoreductase, opsin-related protein, and several proteases (Staib et al. 2010). The 
most highly upregulated gene was SUB6 that encodes subtilisin 6, a protease pre-
viously characterized as the major allergen in another dermatophyte, T. rubrum. 
Sub6 has been shown to bind human IgE antibodies (Woodfolk and Platts-Mills 
1998). The second most highly upregulated gene was that encoding an opsin-related 
protein with an unknown function. The same gene was previously shown to be up-
regulated during the parasitic phase of Coccidioides immitis, but its function is still 
unknown (Viriyakosol et al. 2013). Genes encoding proteases, such as subtilisins 
SUB1, SUB2, SUB6, and SUB7, the neutral protease NpII-1, and serine carboxy-
peptidase ScpC were also upregulated during infection (Staib et al. 2010). Proteases 
are the most commonly studied virulence factors of dermatophytes, and some pos-
sess keratinolytic activity, which allow them to infect the skin and nails (Monod 
2008). Genes encoding SUB3, SUB5, and metalloprotease 4 (MEP4) were also up-
regulated in T. rubrum grown in keratin as the sole carbon source (Maranhão et al. 
2007). Moreover, a PACC/RIM101-mutant strain of T. rubrum displayed decreased 
keratinolytic activity and impaired growth on the human nail in vitro, suggesting a 
role for RIM101 in the pathogenicity of T. rubrum (Ferreira-Nozawa et al. 2006; 
Silveira et al. 2010; Martinez-Rossi et al. 2012).

While interacting with human keratinocytes, Arthroderma benhamiae upregu-
lated the HYPA gene, which encodes a hydrophobin (Burmester et al. 2011) that in-
fluences the organism’s recognition by the immune system (Heddergott et al. 2012). 
Deletion of HYPA gene increased the susceptibility of Arthroderma benhamiae to 
human	neutrophils	and	DCs.	Compared	to	wild	type,	the	ΔhypA mutant strain acti-
vated cellular immune defenses and increased the release of IL-6, IL-8, IL-10, and 
TNF-α	to	a	higher	degree.	Moreover,	conidia	of	the	mutant	strain	were	more	easily	
killed by neutrophils (Heddergott et al. 2012). Indeed, surface expression of hydro-
phobin was shown to prevent immune recognition of A. fumigatus (Aimanianda 
et al. 2009).

Transcriptome data from various human fungal pathogens have identified global 
responses and survival strategies during interaction with host cells and infection of 
host niches. Accordingly, some pathways have been implicated in mycotic diseases, 
and fungi are able to proliferate and survive within the host by employing sophis-
ticated mechanisms to quickly modulate gene expression and adapt to changes in 
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the environment. Genes that are upregulated during the infective process or dur-
ing interaction with host cells are potentially important for virulence (Table 13.2), 
which has been evaluated by the functional characterization of mutant strains. Thus, 
genome-wide transcriptional analyses combined with genetic approaches have pro-
vided important insight into fungal responses, adaptive processes, virulence, and 
pathogenesis.

13.4  Transcriptome of Drug Response and Resistance

Microorganisms respond to sub-lethal doses of chemical and physical agents by 
synthesizing a variety of specific proteins and low molecular weight compounds 
that act to promote defenses or tolerance (Fachin et al. 2001). Fungi use numer-
ous signal transduction pathways to sense environmental stress and respond appro-
priately by differentially expressing cell-stress genes (Martinez-Rossi et al. 2008). 
Thus, analyses of transcriptional changes in response to cytotoxic drugs have elu-
cidated the mechanisms by which fungi adapt to physiological stress as well as the 
mechanisms of drug action.

Although there are several commercially available antifungal drugs, the num-
ber of cellular targets is limited. Some antifungal drugs target ergosterol, a sterol 
analogous to cholesterol that is the main component of the fungal cell membrane 
and has diverse functions, including maintaining membrane stability, integrity, and 
permeability. Other antifungal drugs target proteins involved in the biosynthesis 
of ergosterol. The ergosterol biosynthetic pathway has been well described in Sac-
charomyces cerevisiae and involves approximately 20 genes, including those that 
convert mevalonate to squalene (Fig. 13.1), which are the primary targets of anti-
fungal drugs. The polyenes are a class of antifungal drugs that include amphotericin 
B (AMB) and nystatin. They bind to ergosterol and form pores in the membrane, 
which causes the leakage of intracellular contents and fungal cell death. AMB also 
induces oxidative damage to cellular membranes through the generation of ROS.

Azoles are the most commonly used class of antifungal drugs in clinical treat-
ment and include ketoconazole, itraconazole, fluconazole, and voriconazole. They 
inhibit	 the	activity	of	 the	enzyme	cytochrome	P450	 lanosterol	14-α	demethylase	
(ERG11),	which	is	responsible	for	the	oxidative	removal	of	the	14α-methyl	group	
of lanosterol, an essential step in ergosterol biosynthesis. Azoles are first-line agents 
for the treatment of candidiasis, but their frequent use can result in resistance due 
to their fungistatic mechanism of action. Terbinafine (TRB) is another antifungal 
drug that belongs to the allylamine class and is most effective against dermato-
phytes. It inhibits ergosterol biosynthesis by inhibiting the enzyme squalene epoxi-
dase (ERG1), which is responsible for converting squalene to lanosterol. Inhibition 
of ERG1 decreases the production of ergosterol and increases the accumulation of 
squalene to toxic levels.

Other antifungal drugs target DNA/RNA metabolism. Flucytosine is a cytosine 
analogue that was first used as an antitumor agent. It showed poor efficacy in the 
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treatment of tumors but was shown to have antifungal properties. Flucytosine is 
transported to the cytoplasm of fungal cells through cytosine permease; in the cy-
toplasm, cytosine deaminase converts it to 5-fluorouracil, which blocks protein and 
DNA synthesis. When phosphorylated, 5-fluorouracil is incorporated into RNA, 
leading to miscoding and inhibition of protein synthesis. Furthermore, phosphor-
ylated 5-fluorouracil can be converted into the deoxynucleoside form by uridine 
monophosphate pyrophosphorylase; thereafter, it inhibits the enzyme thymidylate 
synthetase and consequently disrupts DNA synthesis (Vermes et al. 2000).

More recently, the fungal cell wall has become a specific target of antifungal 
drugs, since it is absent from mammalian cells. Caspofungin was the first com-
pound to target the fungal cell wall and was approved for clinical use in 2001. It is 
a	member	of	the	echinocandin	class,	which	inhibits	the	enzyme	(1,3)-β-D-glucan	
synthase	(FKS1	and	FKS2),	thus	preventing	the	synthesis	of	(1,3)-β-D-glucan	and	
disrupting cell wall biosynthesis. In addition to caspofungin, two other echinocan-
dins, micafungin and anidulafungin, are commercially available. These drugs are 
only available as intravenous infusions and are indicated to treat invasive aspergil-
losis and candidiasis. They have fungicidal activity against most Candida species 
and fungistatic activity against Aspergillus species. Although most fungal species 
encode orthologs of FKS1 and FKS2, echinocandins are not effective against Zygo-
mycetes C. neoformans, or Fusarium spp. (Denning 2003).

Fig. 13.1  Schematic representation of the ergosterol biosynthetic pathway
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Transcriptome analyses have been used to evaluate the responses of pathogenic 
fungi, such as C. albicans, A. fumigatus, and T. rubrum, to several antifungal drugs, 
including azoles, polyenes, terbinafine, and echinocandins (Liu et al. 2005; da Silva 
Ferreira et al. 2006; Cervelatti et al. 2006; Yu et al. 2007b; Paião et al. 2007; Gautam 
et al. 2008; Diao et al. 2009; Zhang et al. 2009; Peres et al. 2010b). These studies 
revealed that the modulation of genes in the ergosterol biosynthetic pathway var-
ies significantly among species and drugs (Table 13.3). For instance, in response 
to itraconazole, C. albicans upregulated the following genes related to ergosterol 
biosynthesis: erg1, erg2, erg3, erg4, erg5, erg6, erg9, erg10, erg11, and erg25 (De 
Backer et al. 2001). In contrast, T. rubrum only upregulated erg11, erg24, and erg25 
(Diao et al. 2009). Similarly, in response to voriconazole A. fumigatus only upregu-
lated erg3, erg24, and erg25 (da Silva Ferreira et al. 2006). Although caspofungin 
and flucytosine do not primarily target the ergosterol biosynthetic pathway, they 
elicited the upregulation of some ergosterol biosynthetic genes in C. albicans (Liu 
et al. 2005) (Table 13.3).

In response to ketoconazole, C. albicans upregulated genes involved in the bio-
synthesis of ergosterol, lipids, and fatty acids. Ketoconazole also induced the ex-
pression of the major transporter genes cdr1 and cdr2 (Liu et al. 2005). Similarly, in 
response to ketoconazole, T. rubrum upregulated genes involved in the metabolism 
of lipids, fatty acids, and sterols, including erg3, erg4, erg6, erg11, erg24, erg25, 
and erg26 as well as the multidrug-resistance gene encoding ABC1, which is a ho-
molog of C. albicans CDR1 (Yu et al. 2007a).

In response to AMB, C. albicans downregulated genes related to ergosterol bio-
synthesis and upregulated genes related to cell stress, including those encoding ni-
tric oxide oxidoreductase (YHB1), catalase 1 (CTA1), aldehyde oxidase 1 (AOX1), 
and superoxide dismutase 2 (SOD2) (Liu et al. 2005). A. fumigatus exposed to 
AMB upregulated erg11 and downregulated erg6. In addition, it modulated genes 
involved in cell stress, transport, oxidative phosphorylation, nucleotide metabolism, 
cell cycle control, and protein metabolism. Moreover, in response to the oxidative 
damage caused by AMB exposure, A. fumigatus overexpressed several genes en-
coding antioxidant enzymes, such as Mn-SOD, catalase, the thiol-specific antioxi-
dant protein LsfA, glutathione S-transferase (GST), and thioredoxin. A. fumigatus 
downregulated ergosterol biosynthetic genes in response to AMB, possibly in at-
tempt to use alternate sterols or sterol intermediates in the cell membrane (Gautam 
et al. 2008).

C. albicans exposed to caspofungin induced the expression of genes encoding 
cell	wall	maintenance	proteins,	including	a	target	of	caspofungin	(the	β-1,3-glucan	
synthase subunit homolog to FKS3), a pH-regulated glucan-remodeling enzyme 
(PHR1), extracellular matrix proteins (ECM21 and ECM33), and a putative fatty 
acid elongation enzyme (FEN12). Interestingly, fen12 was upregulated in response 
to caspofungin and downregulated in response to AMB. In response to flucytosine, 
C. albicans upregulated the cdc21 gene, which encodes thymidylate synthetase. This 
enzyme is the target of flucytosine and is associated with DNA synthesis; therefore, 
its upregulation may prevent fungal death. Other genes that were upreguvwhich is 
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a nucleoside diphosphate kinase, and FUR1 an uracil phosphoribosyltransferase, as 
well as genes associated with protein synthesis (Liu et al. 2005).

Terbinafine is commonly used to treat dermatophytosis. Exposure of T. rubrum 
to TRB decreased the expression of genes related to ergosterol biosynthesis, such 
as erg2, erg4, erg24, and erg25, and increased the expression of genes involved in 
lipid metabolism, such as erg10, erg13, and ino1. Although TRB primary target 
is squalene epoxidase (ERG1), T. rubrum did not differentially express erg1 after 
exposure to TRB. It did, however, upregulate multidrug-resistance (MDR) genes, 
including mdr1 and mdr2 (Zhang et al. 2009). Indeed, MDR2 is associated with 
drug susceptibility. Overexpression of mdr2 likely causes the efflux of TRB, since 
deletion of mdr2 increased T. rubrum susceptibility to TRB (Fachin et al. 2006).

The emergence of resistant strains is an important obstacle to effective antifungal 
therapy. Azoles are the first-line treatment for many fungal infections; however, 
their use may select for azole-resistant mutants. Several mechanisms contribute to 
drug resistance, including alteration of the drug target, increased drug efflux, and 
increased cellular stress responses. Both mutations in and overexpression of the 
ergosterol biosynthesis gene erg11/cyp51 confer resistance to azoles in C. albicans 
and A. fumigatus. For instance, one mutation causes the synthesis of an alternative 
protein that is insensitive to azoles and diminishes drug efficacy. At least 12 differ-
ent point mutations in erg11 have been identified in azole-resistant clinical isolates 
of C. albicans (Shapiro et al. 2011).

Overexpression of efflux pumps are associated with antifungal resistance in C. 
albicans. CDR1 and CDR2 confer resistance to multiple azoles, while MDR1 con-
fers resistance to fluconazole (White et al. 2002). Similarly, azole-resistant clinical 
isolates of C. glabrata have been shown to overexpress genes encoding CDR1 and 
CDR2 as well as SNQ2, another ATP-binding cassette ABC transporter (Sanguinetti 
et al. 2005). In response to azoles and other structurally distinct drugs, T. rubrum 
overexpressed TruMDR1 and TruMDR2, which encode ABC transporters. Thus, 
these genes may participate in drug efflux (Cervelatti et al. 2006; Fachin et al. 2006).

In order to identify genes associated with fluconazole resistance, a laboratory 
strain of C. albicans susceptible to fluconazole was subjected to successive pas-
sages in media containing fluconazole to induce resistance, and the transcriptional 
profile was subsequently analyzed. Some genes were modulated in coordination 
with the upregulation of CDR1 and CDR2. For instance, there was an upregulation 
of genes coding the glutathione peroxidase 1 (GPX1) and RTA3, a protein involved 
in 7-aminocholesterol resistance, and a downregulation of NADPH oxidoreduc-
tase (EBP1). Genes that were modulated in coordination with the overexpression 
of MDR1 included the upregulation of genes encoding aldo-keto reductase family 
proteins (IFD1, IFD4, IFD5, and IFD7), methylglyoxal reductase (GRP2), pyro-
phosphate phosphatase (DPP1), and inositol-1-phosphate synthase (INO1) and the 
downregulation of multi-copper ferroxidase (FET34), phosphatidylethanolamine 
N-methyltransferase (OPI3), and Cu and Zn-containing superoxide dismutase 
(IPF1222) (Rogers and Barker 2002, 2003).
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Genes encoding the ABC transporters CDR1 and CDR2 in azole-resistant C. 
albicans strains are regulated by the zinc cluster transcription factor TAC1. This 
transcription factor was initially identified in C. albicans in a search for genes con-
taining the cis-acting drug-responsive element (DRE) Zn(2)-Cys(6) finger, which is 
present in the promoter region of the cdr1 and cdr2 genes. Further characterization 
showed that deletion of tac1 gene prevented the upregulation of cdr genes. More-
over, introduction of a tac1 allele recovered from an azole-resistant strain into an 
azole-susceptible strain induced overexpression of CDR1 and CDR2 (Coste et al. 
2004). In addition, the TAC1 regulon contains 31 upregulated and 12 downregu-
lated genes, including those encoding IFU5, HSP12, phospholipid flippase (RTA3), 
glutathione peroxidase (GPX1), histidine kinase (CHK1), sphingosine kinase 
(LCB4), NADH dehydrogenase (NDH2), and sorbose dehydrogenase (SOU1) as 
well as TAC1, CDR1, and CDR2. Among the downregulated genes in the TAC1 
regulon are an iron transporter (FTR1), a putative glycosyl phosphatidyl inositol-
anchored protein (IHD1), and an oligopeptide transporter (OPT6), all of them en-
coding integral membrane proteins, and the superoxide dismutase SOD5, which is a 
cell wall protein. Furthermore, ChIP-chip experiments demonstrated that TAC1 di-
rectly binds to the promoter region of eight of these genes, including CDR1, CDR2, 
GPX1, LCB4, RTA3, a putative lipase, and two genes with unknown functions (Liu 
et al. 2007).

A genome-wide expression analysis of resistant clinical isolates of C. albicans 
identified a transcription factor that was upregulated in coordination with MDR1. 
This gene encodes the multidrug resistance regulator MRR1, which is a zinc cluster 
transcription factor and the main regulator of MDR1 expression. Gain-of-function 
mutations in MRR1 are responsible for overexpression of MDR1 and are associated 
with fluconazole resistance in C. albicans (Morschhauser et al. 2007). In addition to 
regulating MDR1 expression, MRR1 regulated at least 14 other genes that may also 
contribute to fluconazole resistance. These genes encoded mainly oxidoredutases. 
Notably, MRR1 does not target CDR1 or CDR2. Overall, large-scale transcriptional 
analyses have identified several genes associated with drug response and resistance 
in pathogenic fungi (Table 13.4).

Transcriptional analyses have been performed in order to identify additional 
genes associated with azole resistance. Recently, RNA-seq analyses were performed 
on two isogenic C. albicans strains that differed only in fluconazole resistance. 
These studies identified novel genes associated with azole resistance, including the 
transcription factor CZF1, which is involved in the hyphal transition and the white/
opaque switch. Inactivation of CZF1 increased the susceptibility to fluconazole as 
well as unrelated antifungal drugs, such as TRB and anisomycin. Furthermore, the 
CZF1 mutant strain displayed increased resistance to the cell-wall-disrupting agent 
Congo	red.	The	mutant	also	overexpressed	the	gene	encoding	β	1,3-glucan	synthase	
(GLS1),	suggesting	that	CZF1	represses	β-glucan	synthesis	and	regulates	cell	wall	
integrity (Dhamgaye et al. 2012).
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In pathogenic fungi, mitochondrial dysfunction has been associated with altered 
susceptibility to antifungal drugs. In C. albicans, inhibition or mutation of the mi-
tochondrial complex I (CI) increased susceptibly to fluconazole even in resistant 
clinical	isolates.	Transcriptional	analysis	was	performed	on	the	∆goa1	and	∆ndh51 
mutant strains, which are associated with CI-induced susceptibility to fluconazole. 
GOA1	is	required	for	function	of	the	electron	transport	chain,	and	the	∆goa1 mutant 
accumulates ROS, undergoes apoptosis, and is avirulent. Ndh51 encodes a 51-kDa 
subunit	of	the	NADH	dehydrogenase	of	the	electron	transport	chain,	and	the	∆ndh51 
mutant exhibits defects in morphogenesis. RNA-seq analyses of these strains dem-
onstrated downregulation of transporters, including the CDR1/CDR2 efflux pumps 
but not MDR1. Genes related to ergosterol biosynthesis were downregulated in the 
∆ndh51 mutant. In contrast, genes associated with peroxisomes, gluconeogenesis, 
β-oxidation,	and	mitochondria	were	downregulated	in	the	∆goa1 mutant (Sun et al. 
2013). NDH51 is conserved among eukaryotes, including mammals; nevertheless, 
GOA1 is only conserved in some Candida species. Therefore, fungi-specific mito-
chondrial genes may be targets for the development of novel antifungal drugs. In-
deed, acriflavine, an acridine derivative that has antibacterial, antifungal, antiviral, 
and antiparasitic properties, induces the overexpression of genes involved in the 
mitochondrial electron transport chain of T. rubrum (Segato et al. 2008).

Interestingly, chemical inhibition of fungal HSP90 improved the activity of 
azoles and echinocandins against C. albicans and echinocandins against A. fumiga-
tus (Cowen 2009). Inhibition of HPS90 prevents the stress-response cascade medi-
ated by calcineurin, which is normally activated in response to antifungal drugs. 
Blunting of the stress-response cascade enhances the fungicidal effects of drugs, 
leading to cell death (Singh et al. 2009). It will be a challenge to develop an inhibi-
tor selective for fungal HSP90 and inactive against human HSP90. Nevertheless, 
HSP90 may be a promising target for treatment of resistant fungal diseases and may 
combat the emergence of drug resistance (Cowen 2009).

In addition to the emergence of drug-resistant strains, another major clini-
cal problem is the formation of microbial biofilms. Biofilms possess specific 
traits as compared to planktonic cells, such as intrinsic resistance to drugs. In 
immunocompromised individuals, both C. albicans and A. fumigatus can form 
biofilms on implanted medical devices, such as catheters, and cause persistent 
infections. In particular, biofilms have decreased susceptibility to antifungal 
drugs, such as polyenes and azoles. In order to understand their mechanisms 
of resistance, mature biofilms cells were exposed to fluconazole, AMB, and 
caspofungin. Fluconazole exposure did not significantly alter gene expression, 
and AMB exposure resulted in only minor alterations in gene expression. On 
the other hand, biofilms exposed to caspofungin underwent more pronounced 
alteration in gene expression, including the upregulation of several genes asso-
ciated with biofilm formation, such as ALS3, a cell-wall adhesin, the transcrip-
tion factor TEC1, and genes associated with cell-wall remodeling (Vediyappan 
et al. 2010). Furthermore, AMB and fluconazole bind to the extracellular matrix 
of	the	biofilm,	which	is	comprised	of	β-glucans;	such	binding	inhibits	effective	
drug action (Vediyappan et al. 2010; Nett et al. 2007). An RNA-seq analysis 
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compared the transcriptional profile of an A. fumigatus biofilm to that of plank-
tonic cells. Thousands of genes were differentially expressed between the bio-
film and planktonic cells. Specifically, the biofilm exhibited an upregulation of 
secondary metabolism genes, cell-wall-related genes, sterol biosynthetic genes 
(e.g., erg11), transporters associated with antifungal resistance (MDR1, MDR2, 
and MDR4), and hydrophobins, which are associated with structural organiza-
tion of biofilms (Gibbons et al. 2012). The complex gene network involved in 
biofilm formation (Nobile et al. 2008) is consistent with the fact that C. albicans 
can form biofilms in different niches, such as the bloodstream and oral cavity. 
This highlights the challenge inherent to treating these infections as well as the 
importance of searching for new antifungal targets.

In conclusion, analyses of the transcriptional changes that occur in response to 
cytotoxic drugs have identified genes with known mechanisms of action. More-
over, these studies have suggested novel effects of antifungal drugs. In addition, 
responses shared across multiple classes of antifungal agents were identified in C. 
albicans (Liu et al. 2005) and T. rubrum (Fachin et al. 2006; Paião et al. 2007; Peres 
et al. 2010b). Therefore, there may be non-specific responses to a drug challenge 
that allow fungi to adapt to stress.

13.5  Concluding Remarks

The pathogenesis of fungal infections involves changes in gene expression and 
metabolic pathways, which enable fungal invasion and survival. At the same 
time, fungi elicit host responses aimed at eliminating the pathogen. Genome-
wide transcriptional profiling has identified the molecular responses of both 
host and pathogen during interaction and has provided insight into the adaptive 
responses that occur during the establishment of infection. The combination of 
large-scale transcriptomic analysis and systems biology approaches has enabled 
the development of regulatory molecular models that can assess the dynamic 
behavior of host-pathogen interactions and elucidate the pathogenesis of human 
mycoses. These regulatory models have been validated through reverse-genetic 
approaches by evaluating the physiological behavior of knockout strains in vi-
tro, ex vivo, and in vivo. Furthermore, transcriptomics is a valuable source of 
data on gene expression regulation, gene structure and function, also providing 
information regarding the mechanisms of fungal responses and resistance to 
drugs. These insights will further support the development of novel therapeutic 
approaches to prevent and control fungal infections.
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Abstract Due to a lack of molecular tools that enable gain- and loss-of-function stud-
ies, much research with the fungi of the Paracoccidioides genus has consisted of gene 
expression studies. These have addressed the direct interaction of these fungi with the 
mammalian host or their response to environmental stimuli of interest to the study of 
their adaptability to said host, such as the temperature shift that triggers dimorphic 
transition. In this chapter, we present a review of findings of host–pathogen interac-
tion studies and what evidence they found of mechanisms whereby Paracoccidioides 
is able to overcome differences in environment and establish disease, and of how 
the host responds to the pathogen. In the first part, which deals with the pathogen 
response, expression studies have identified metabolic pathways genes thereof are 
upregulated when the fungi are exposed to different organs, as well as blood and 
derivatives, of mice and humans. Of note, these studies have suggested an impor-
tant role, in the adaptation to host tissues, of a metabolic shift away from glycolysis 
and aerobic respiration and towards fermentative and non-aerobic ways of obtaining 
energy. With regard to the remarkable preference of the genus for male hosts, stud-
ies of the response of Paracoccidioides to oestradiol have suggested a role of Rho 
GTPases in the process. As for the second part, dealing with the host response to the 
fungus, despite the paucity of data, the few large-scale studies available offer evidence 
to support the model whereby Th1-driven immune responses are protective and dis-
ease is associated with Th2 and Th17 responses, in keeping with small-scale studies. 
Overall, gene expression studies have supplied a large amount of data that lack direct 
experimental confirmation but which keep revealing new research avenues.
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14.1  Introduction

Paracoccidioides brasiliensis and its sister clade P. lutzii are the causative agents of 
paracoccidioidomycosis (PCM), one of a handful of illnesses caused by thermally 
dimorphic fungi that is endemic to Latin America and constitutes the main cause of 
mortality due to primary, systemic mycoses in that region (Restrepo et al. 2012). As 
other primary mycoses such as histoplasmosis, blastomycosis and coccidioidomy-
cosis, it affects healthy, immunocompetent individuals, is fatal if untreated and its 
clinical course consists of a progressive granulomatous infection of the lungs with 
possible systemic dissemination and involvement of other organs as well as skin 
and mucosae. Even successful treatment may result in significant lifestyle impair-
ment due to lung scarring (Restrepo et al. 2012).

As all thermally dimorphic fungi, Paracoccidioides exist in the environment as 
saprophytic mycelia the spores or hypha fragments of which are inhaled by mam-
malian hosts and germinate in the lung as yeast cells that cause the illness; this 
morphologic transition can be reproduced in vitro by shifting the temperature from 
25 to 37 °C and is fully reversible (San-Blas et al. 2002). The fungi do not need to 
pass through a host to complete their life cycle and the ability to cause infection is 
considered an “evolution accident”, as possibility first postulated for Cryptococcus 
neoformans whereby the fungi, possibly in order to survive predation by environ-
mental amoeba and other protozoans, evolved mechanisms that enabled them to 
resist phagocytosis and proliferate in the interior of phagocytic cells (Steenbergen 
et al. 2001). This in turn would have allowed them to survive within macrophages in 
the host, which are one of the first lines of defence against intracellular pathogens.

A hallmark of PCM, however, is its preference for male hosts, who are infected 
in a proportion that may reach 30:1 relative to women (Shankar et al. 2011a); this 
proportion becomes more pronounced if women out of reproductive age are fac-
tored out, and the underlying mechanism has not been clarified, although there is 
evidence that oestradiol impairs the onset of the yeast phenotype (Restrepo et al. 
1984).

14.2  Pathogen Response to the Host

In contrast with Histoplasma capsulatum and Blastomyces dermatitidis, thermally 
dimorphic fungi for which a full molecular toolkit for genetic engineering is avail-
able, Paracoccidioides are yet to have their genomes successfully manipulated in a 
consistent, flexible and reproducible way: apart from sparse reports on gene silenc-
ing allowing phenotypical studies, gene deletion and introduction remain unful-
filled goals of research on these agents. Thus, much attention has been devoted to 
high-throughput studies of genetic reprogramming of Paracoccidioides in response 
to environmental cues of interest, such as the different temperatures that allow for 
each of the two phenotypes (Felipe et al. 2005), the interior of macrophages (Tavares 
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et al. 2007) and internal organs (Bailao et al. 2006) and the presence of oestradiol 
(Shankar et al. 2011b) and Fernandes et al., unpublished data). It is expected that 
indirect evidence derived of these gene expression studies will shed light on which 
genes are essential for adaptation to the mammalian host and thus point to novel 
therapeutic approaches.

Even before the release of the first full genomes of P. brasiliensis and P. lutzii, 
the transcriptome approach had identified the major differences in expression pat-
terns between the steady-state mycelium and yeast phases of both fungi (Felipe 
et al. 2005), and temporally in the process of transition from one to the other (Gold-
man et al. 2003). Since then, much work has been carried out to identify genetic 
programmes involved in the growth of the fungus in conditions that correspond to 
different niches in the host, such as blood (Bailao et al. 2006), plasma (Bailao et al. 
2007), and the liver parenchyma (Bailao et al. 2006; Costa et al. (2007); or that 
replicate in vitro aspects of them, such as the co-cultivation with peritoneal macro-
phages (Tavares et al. 2007), lung epithelial cells (Oliveira et al., unpublished data) 
or basal lamina components as collagen and fibronectin (Bailao et al. 2012). In the 
same approach, the influence of oestradiol on the transcriptome of Paracoccidioi-
des has also been investigated (Shankar et al. 2011b) and Fernandes et al., unpub-
lished data). We present here the main discoveries that resulted from this approach 
and how they fit into the global picture of the pathogenesis process.

14.2.1  The Metabolic Response to the Host Environment

At first sight, data obtained from the differential transcriptome experiments with 
Paracoccidioides conform with work hypotheses and predictions. For example, Ex-
pressed Sequence Tag (EST) on Paracoccidioides exposed to murine liver revealed 
upregulation of glycolysis-related transcripts such as those for the enzymes glucoki-
nase, acyl-phosphatase and phosphoglyceratemutase (Costa et al. 2007). This is all 
in keeping with the fact that the liver is a carbohydrate storage and as such, glucose 
derivatives would be the major carbon source available to the fungus in that site.

In other instances, though, findings are less straightforward to explain. In the 
same liver experiment, the authors found an accumulation of the quinoprotein alco-
hol dehydrogenase transcripts, and postulated that Paracoccidioides favours alco-
holic fermentation in the liver. This is similar to the metabolic response of the yeast 
cell to in vitro culture, where indeed the fungus adopts a fermentative lifestyle that 
contrasts with the mycelium, which favours glycolysis coupled with the tricarbox-
ylic acid cycle and the respiratory chain (Felipe et al. 2005). However, in the same 
hepatic environment Candida albicans, a human commensal fungus that causes 
opportunistic systemic infections, consumes its sugars aerobically rather than fer-
mentatively (Thewes et al. 2007). An explanation for this difference is can be that 
the commensal fungus evolved a more refined respiration machinery that can cope 
with the oxygen levels of the liver, whereas the free-living Paracoccidioides needs 
a higher concentration of oxygen than is found in the liver to perform respiration 
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adequately. It must be noted that hepatocytes themselves, as most cells of the body 
outside of nutritional stress, are primarily aerobic. It would be interesting, in this 
context, to investigate the transcriptional response of Paracoccidioides to the oxy-
gen-rich lung environment.

To get to other organs, Paracoccidioides need to circulate in the bloodstream, 
which prompted investigators to analyse their response to human blood and plasma 
(Bailao et al. 2006; Bailao et al. 2007). Their observations indicate that the fun-
gus responds to the blood milieu by inducing gluconeogenesis via upregulation of 
phosphoenolpyruvate carboxykinase, and fatty acid catabolism by upregulation of 
enzymes from both beta-oxidation (e.g. acyl-CoA dehydrogenase) and methylci-
trate cycle (e.g. 2-methycitrate dehydratase) pathways, which enable the fungus to 
consume even- and odd-carbon compounds. Both responses seem appropriate for 
an oxygen-rich environment such as the blood, but they are also suggestive of a 
glucose-poor niche and the blood is known to have high glucose availability. One 
of the explanations advanced to account for the apparent contradiction is that Para-
coccidioides cells travel by the blood within macrophages, and the interior of the 
phagosome and phagolysosome are poor in glucose (Lorenz et al. 2004). However, 
this does not explain why “naked” yeast cells would respond to the blood or plasma 
the same way they respond to the interior of phagocytic vesicles. It is more likely, 
given the evidence, that those observations reflect a decrease in blood glucose dur-
ing the time course of the experiment. In C. albicans, exposure to whole human 
blood resulted in upregulation of both glycolytic and gluconeogenetic enzymes, 
which reflects a population of both phagocytosed and free cells (Fradin et al. 2003). 
Cryptococcus neoformans, in contrast, maintains transcripts for both pathways and 
controls which one will predominate by posttranslational mechanisms (Price et al. 
2011). Similar scenarios might be at play in Paracoccidioides as well.

As for the macrophage, transcriptional analyses of the response of Paracoccidi-
oides to its phagosome was in keeping with expectations for a glucose-poor envi-
ronment: a decrease of the glycolytic enzyme phosphofructokinase and an upregu-
lation of the glyoxylate cycle enzymes isocitrate lyase and malate synthase, which 
enable pathogens to use fatty acid carbon chains, once reduced to acetate, to be used 
in gluconeogenesis (Tavares et al. 2007; Derengowski et al. 2008). Similar observa-
tions have been made for other pathogens (Lorenz et al. 2004; Miramon et al. 2012; 
Fukuda et al. (2013) and thus the glyoxylate cycle is of interest as a source of drug 
targets, as it appears to be important to fungal adaptation to the host.

Amino acid metabolism becomes more biased towards biosynthetic path-
ways as Paracoccidioides cells are exposed to the liver. There and within murine 
macrophages, transcripts for proteins implicated in methionine salvage and up-
take, such as the MUP1 permease and cystathionine beta-lyase, are upregulated  
(Tavares et al. 2007; Costa et al. (2007). The trend is also observed in C. albicans 
(Fradin et al. 2005) and in the systemic fungal pathogen Aspergillus fumigatus 
(Morton et al. 2011), which means that this is a common response of this class of 
infectious agents to the low availability of methionine in the host.
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14.2.2  Access to Metals in the Host

Iron, zinc and copper, and to a lesser extent some other metals, are essential co-
factors of several proteins, from respiration enzymes to transcription factors, and 
their depletion disrupts homeostasis of any cell. Fungal pathogens (Nevitt 2011) 
such as Paracoccidioides are no different, and they must cope with the host’s de-
fences, which include iron and zinc sequestration. Thus, it comes as no surprise that 
Paracoccidioides cells respond to the liver environment by upregulating iron/zinc 
and copper transporter transcription (Bailao et al. 2006), or that they activate iron-
independent, fermentative pathways such as glycolysis in response to iron depletion 
in vitro (Parente et al. 2011).

14.2.3  Biosignalling, Stress Responses and Cell Wall Biogenesis

All transcriptional and ultimately phenotypic responses of a cell to changes in its 
environment are triggered by signal transduction mechanisms and thus, it is to be 
expected that Paracoccidioides, in contact with the host, will show changes in their 
signalling cascades.

Importantly, the osmotic and oxidative stresses that are met by the fungal cells 
once in the host must be counteracted by stress response pathways. Indeed, Para-
coccidioides respond to blood and plasma by inducing the putative osmosensor 
SHO1, which is related to the Hog1 pathway of oxidative and osmotic stress re-
sponse in other fungi (Bailao et al. 2007; Bailao et al. 2006). A more consistent 
observation is the upregulation of the transcript for the Rab GTPase in response to 
several host niches (Bailao et al. 2006; Bailao et al. 2007; Costa et al. 2007). This 
monomeric GTPase has been shown to be involved in organelle biogenesis and 
vesicle trafficking in other fungal pathogens (Johnston et al. 2009), and it may be 
related to vacuole formation in response to osmotic stress, but its precise role in 
infection, if any, remains to be elucidated.

In a more hypothesis-driven approach, Fernandes et al. (unpublished data) and 
others (Shankar et al. 2011b) have investigated whether the presence of oestradiol 
changed signalling patterns involved with the dimorphic transition, given that pre-
vious studies show that Paracoccidioides has diminished formation of yeast cells 
in female hosts (Restrepo et al. 1984). Findings suggest that changes do occur in 
response to oestradiol, and they mainly involve transcriptional downregulation of 
another GTPase, Rho, and of the geranylating enzyme GGTase that adds the geranyl 
to Rho so it can be anchored in the membrane and exert its signalllng functions. 
Rho is a major regulator of fungal response to the host, and is implicated, in several 
species studied, in cell shape and polarity, osmotic integrity, cytoskeleton organisa-
tion and cell wall biogenesis (Yamochi et al. 1994; Zhang et al. 2013; Richthammer 
et al. 2012). Of note, it is a regulator of beta-1,3-glucan synthase (Fks1), the enzyme 
that synthesises the major component of the mycelium cell wall (Liu and Balasub-
ramanian 2001), and it has more generally been implicated in cell wall biogenesis. 
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Indeed, mycelium treated with oestradiol (the condition that most likely simulates 
the early events of infection in the female host) showed downregulation of not only 
the FKS1 transcript, but of other cell wall synthesis enzymes such as chitin synthase 
and alfa-1,3-glucan synthase (Shankar et al. 2011b) and Fernandes et al., unpub-
lished). These enzymes are respectively responsible for the higher chitin content 
of the yeast cell wall upon transition (Kanetsuna et al. 1969) and the replacement 
of beta-1,3-glucan by alfa-1,3-glucan in the yeast cell wall, which is hypothesised 
to impair recognition of fungal cells by the host innate immunity (Rappleye et al. 
2007). The general picture from these experiments is that oestradiol somehow im-
pairs Rho-mediated signalling and cell wall remodelling in response to the host, and 
ultimately blocks dimorphic transition.

Another important aspect of adaptation to the host is the heat shock response. 
The growth at higher temperatures than room has long been considered a hallmark 
of virulent pathogens, and heat shock proteins (Hsps) have been reported to be in-
duced by pathways independent of dimorphic transition in H. capsulatum (Nguyen 
and Sil 2008). They are also implicated in other kinds of stress, which is in keeping 
with their role as protein folding agents. In Paracoccidioides exposed to murine 
liver and human blood, Hsp70 is induced even relative to yeast cells grown in vitro 
at 37 °C; so is Hsp30, which has been implicated in the osmotic stress response, 
several components of which such as thioredoxin are also upregulated (Bailao et al. 
2006; Bailao et al. 2007). The HSP90 transcript is also induced, and the correspond-
ing protein has already been advanced as a possible drug target given its apparent 
role in fungal viability and response osmotic and thermal stress, and to survival 
within host macrophages (Nicola et al. 2008; Tamayo et al. 2013; Goldman et al. 
2003). Several chaperones were found to be downregulated in Paracoccidioides 
in response to female serum or oestradiol, which suggests that this hormone may 
cause a more widespread disruption in signalling and stress response in this fungus 
(Shankar et al. 2011b) and Fernandes et al., unpublished).

Oxidative and nitrosative stress response genes in Paracoccidioides, as one 
might expect, are upregulated in response to internalization by macrophages, the 
single most important phagocyte in containing systemic fungal infections. The most 
induced transcript of phagocytosed yeast cells is the glycosylphosphatidylinositol 
(GPI-) anchored copper-zinc (Cu-Zn) superoxide dismutase (Tavares et al. 2007), 
which, by analogy with similar proteins from closely related fungi as H. capsulatum 
(Youseff et al. 2012), is probably involved in detoxification of macrophage-derived 
superoxide. Another induced gene under the same conditions, the alternative oxi-
dase (AOX), is one of the few that have had their role in virulence analysed di-
rectly, by RNA interference (Ruiz et al. 2011). It was found necessary for resistance 
against macrophage killing and detoxification of peroxide.

Finally, the transcriptional response of Paracoccidioides during incubation with 
the lung epithelial cell immortal lineage A549 (Oliveira et al., unpublished data) 
and with extracellular matrix proteins has been analysed (Bailao et al. 2012). The 
logic of these analyses was to study the interaction of the fungus to the first host cell 
type it meets in the process of infection, as well as to basal lamina components that 
it needs to adhere to in the process of tissue penetration. The genes for two enzymes 
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with pleiotropic functions, enolase and glyceraldehyde 3-phosphate dehydrogenase, 
were found to be upregulated in this context. Both enzymes have been described as 
adhesion proteins when associated with the fungal cell wall (Barbosa et al. 2006; 
Nogueira et al. 2010), and thus the findings in Paracoccidioides add to the existing 
evidence in literature that, in addition to being key enzymes in sugar metabolism, 
they are virulence factors necessary for establishment of early infection.

In summary, as it often happens with transcriptional analysis data, much of what 
is known about the Paracoccidioides response to the host environment agrees with 
evidence from other organisms and work hypotheses. New routes of investigation 
can be opened by this kind of data upon careful mining, though; in the case of Para-
coccidioides, the role of GTPase signalling in the establishment of infection and di-
morphic transition, which could not be inferred from pre-transcriptome knowledge, 
is an example of needed confirmation with experiments at the lab bench. The wise 
application of high-throughput techniques to tangible biological questions regard-
ing the interaction of fungi with their mammalian hosts, as outlined by the above, is 
a necessity made all the more pressing in organisms that defy genetic manipulation 
such as Paracoccidioides.

14.3  Host Response to the Pathogen

14.3.1  Large Scale Transcriptomics

PCM is known to happen in only about 2 % of the people who are infected with 
Paracoccidioides spp (McEwen et al. 1995). The fact that most infected people do 
not ever develop the disease is a strong evidence that in addition to virulence fac-
tors of the pathogen, host determinants are also essential to its onset. However, in 
contrast with the numerous transcriptomic analyses made with P. brasiliensis cells, 
only a handful of published studies have dealt with the large-scale transcriptional 
response of the host upon infection with fungi from the genus Paracoccidioides 
(Table 14.1). Two papers using high-throughput microarray techniques have ana-
lysed the response of murine macrophages (Silva et al. 2008) and dendritic cells 
(Tavares et al. 2012) to in vitro infection by Paracoccidioides spp. 

Silva and colleagues used a nylon microarray containing several hundred cD-
NAs to obtain a picture of how immune-related genes in macrophages respond to 
infection by P. lutzi. In addition to phagocytosing and killing fungal cells, macro-
phages are also key players in the regulation of the immune response due to the 
cytokines they secrete. Upon infection, they increased the expression of the pro-
inflammatory	cytokine	TNF-α	and	chemokines	that	recruit	more	monocytes/mac-
rophages, lymphocytes, neutrophils, NK and dendritic cells (Godiska et al. 1997; 
Nagira et al. 1997; Moser et al. 1990; Kurth et al. 2001) and decreased expression 
of chemokines associated with IL-13-mediated inflammation (Ma et al. 2004) and 
basophil attraction and activation (Bischoff et al. 1992). The transcriptional regula-
tion of transcription factors and macrophage effectors also suggests they could be 
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preparing for augmented cellular immunity, with induction of the MHC II gene H2-
Eb1, of the interferon-responsive Stat1 transcriptional factor (Katze et al. 2002) and 
the C-type lectin receptor CLEC1b involved in macrophage activation (Mourao-Sa 
et al. 2011).

This pro-inflammatory response of infected murine peritoneal macrophages, 
however, contrasts with previous reports showing that in vitro these cells are not 
very efficient in controlling P. brasiliensis growth but may actually be niches for 
faster fungal replication (Brummer et al. 1989) unless the macrophages are activat-
ed	by	IFN-γ	(Brummer	et	al.	1988). The transcriptional response observed by Silva 
and colleagues is thus representative of a biological situation in which macrophages 
are not able to kill or restrict fungal growth.

In their recent work, Tavares and colleagues used more advanced high-through-
put techniques to analyse the modulation of thousands instead of hundreds of host 
genes in the dendritic cell response to Paracoccidioides infection (Tavares et al. 
2012). These cells responded to infection by P. brasiliensis by augmenting tran-
scription	 of	 the	 genes	 encoding	 pro-inflammatory	 cytokines	 TNF-α	 and	 IL12B,	
which are important in activating cell-mediated immunity to P. brasiliensis either 
via	macrophage	activation	or	by	inducing	production	of	IFN-γ	by	NK	and	Th1	cells.	
Other inflammatory mediators that were also transcriptionally regulated include 
chemokines Cxcl10, Ccl22 and Ccl27, all involved in chemotaxis of monocytes, 
NK and T cells (Godiska et al. 1997; Dufour et al. 2002). Another important trend 
that is noticeable in the transcriptional response to P. brasiliensis infection is the 
down-regulation	of	phagocytic	receptors	such	as	FcγRI,	CR3,	TLR4	and	DC-SIGN,	
which could indicate a process of dendritic cell maturation; however, there were no 
concomitant increases in MHC II or T-cell co-stimulatory molecules.

In addition to these two reports, we have also considered as a large scale study 
the one performed by Castro and colleagues, who studied the transcription of 17 cy-
tokines and transcriptional regulators in cells isolated from PCM patients (de Castro 
et al. 2013). The techniques used and the number of genes assessed is very differ-
ent from the two previous microarray studies, but the authors did a very thorough 
analysis of the cytokines and transcriptional factors that regulate the differentiation 
of activated Th cells into classical Th1 and Th2, the more recently proposed Th17 
and the more controversial Th9 and Th22 subsets (Zhu et al. 2010). The expression 
of the genes encoding these key proteins was measured in peripheral blood mono-
nuclear cells isolated from patients with paracoccidioidomycosis and controls after 
exposure to non-specific mitogens, a measurement of the intrinsic tendencies that 
the immune system of these patients has of polarizing to different Th phenotypes. 
The results found associations between increased expression of Th1-related genes 
and lack of clinical disease, increased Th17/Th22 responses and the adult form of 
the disease and a Th2 response with juvenile PCM. These correlations add to the 
growing body of evidence that after infection by P. brasiliensis an important factor 
in determining if and what type of disease will occur is the type of Th cells that are 
formed (reviewed by (Calich et al. 1998; Fortes et al. 2011)).

 



27314 Transcriptomics of the Host–Pathogen Interaction in Paracoccidioidomycosis

Silva et al. (2008) Tavares et al. (2012) de Castro et al. (2013)
Paracoccidioides spp. 
Used in the study

Pb01 isolate, 
described in the 
manuscript as P. 
brasiliensis but now 
know to be P. lutzi 
Teixeira et al. (2009)

Pb18 isolate, P. 
brasiliensis

Species not deter-
mined. Patients were 
confirmed to be 
infected with Para-
coccidioides spp. by 
direct observation or 
serological tests

Host component from 
which gene transcrip-
tion was analyzed

Thioglycollate-
induced peritoneal 
macrophages from 
BALB/c mice

Dendritic cells 
differentiated from 
BALB/c murine bone 
marrow using gran-
ulocyte-macrophage 
colony stimulating 
factor (GM-CSF)

Peripheral blood 
mononuclear cells 
(PBMCs) obtained 
from patients with 
paracoccidioidomy-
cosis and controls. 
PBMCs were 
stimulated with non-
specific mitogens

In vivo or in vitro 
study

In vitro In vitro In vivo

Disease type Does not apply Does not apply Adult and juvenile 
forms

Control group(s) 
against which gene 
expression was 
compared

Unifected 
macrophages

Uninfected dendritic 
cells

Healthy persons with 
asymptomatic infec-
tion or with no infec-
tion at all (determined 
by paracoccidioidin 
cutaneous test)

Time of host–patho-
gen interaction tested

6 h, 24 h and 48 h 6 h of infection Not determined

Transcriptomic 
technique(s) used

Nylon microarrays 
and real-time RT-PCR

Glass slide microar-
rays and real-time 
RT-PCR

Real-time RT-PCR

Number of genes 
tested

624 4500 17

Number of differen-
tially expressed genes

118 (105 up-
regulated and 13 
down-regulated)

299 (81 up-
regulated and 218 
down-regulated)

–

Experiments used to 
confirm transcrip-
tomic data

Cytokine ELISA Cytokine ELISA and 
receptor blockage 
assays

Cytokine ELISA, 
immunohisto-
chemistry and 
flow cytometry 
immunophenotyping

Microarray cutoff 
considered for differ-
ential expression

Fold-change of 1.5. 
q value < 0.05. FDR 
< 5 %

Fold-change of 1.2. 
q value < 0.05. FDR 
< 0.5 %

Statistically signifi-
cant difference using 
T-test	( p < 0.05)

Table 14.1  Technical details and main results of three large scale transcriptomic studies of host 
response to Paracoccidioides infection
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14.3.2  Small-Scale Transcriptional Analysis

The number of studies focusing on gene expression of host cells during or after 
fungal interaction is significantly smaller than the ones dealing with expression 
changes in P. brasiliensis. Despite two genome-wide studies (Silva et al. 2008; Ta-
vares et al. 2012) and a thorough study of cytokine- and immune response-related 
transcription factor expression in different PCM forms (de Castro et al. 2013), most 
of the other studies target only a few genes, mainly those for cytokines. For this rea-
son, we made a comprehensive search for all manuscripts presenting data on PCM, 
even when only one or just a few genes were studied, thus, we have gathered most 
of the available data on this still poorly studied subject (Table 14.2).

Most of the studies on the host immune response to P. brasiliensis suggest that 
resistance to infection is mainly due to stimulation of a Th1 response with produc-
tion of Th1 cytokines (INF-γ,	IL-2,	TNF-α)	while	susceptibility	is	linked	to	a	Th2	
polarized	response	(IL-4,	IL-5,	IL-10,	TGF-γ	(de	Castro	et	al.	2013).

14.3.2.1  Modulation of Immune Response Genes in Response to the 
Interaction with High Virulence Relative to Low Virulence P. 
Brasiliensis Strains

Some of the host transcript modulation studies deal with differences in immune 
response against highly virulent and lowly virulent strains, particularly Pb18 and 
Pb265, respectively. Kurokawa and colleagues observed that both strains induced 

Silva et al. (2008) Tavares et al. (2012) de Castro et al. (2013)
Expression of inflam-
matory mediators 
(cytokines and 
chemokines)

Increased:	TNF-α,	
Ccl21, Ccl22, Cxcl1, 
Cxcl14
Decreased: Ccl6, 
Ccl2

Increased:	TNF-α,	
IL12b, CXCL10, 
CCL22, CCL27
Decreased: CCL25

Increased:	IFN-γ	and	
IL-17 (adult form), 
IL-4 and IL-5 (juve-
nile form), IL-10, 
TGF-β,	IL-2	and	
TNF-α	(all	patients)

Pattern recognition 
receptors

Increased: Clec1b, 
Cd14

Decreased: DC-SIGN 
(CD209a), TLR4, 
CR3 (Itgam + Itgb2)

–

T-cell activation 
signals

Increased: H2-Eb1, 
CD28

– –

Immune effectors Increased: Comple-
ment C2 and C3

Increased: Comple-
ment C1

–

Transcriptional 
regulators

Increased: Ier5, 
Cnot10, Cnot2, Stat1, 
Nfκb,	Nkrf
Decreased: Pias1

Increased: PIAS1, 
NFκB,	ZFHX1
Decreased:	NκRF,	
STAT2, STAT6

Increased: T-bet, 
RORγt	and	FoxP3	
(adult form), GATA-3 
and PU.1 (juvenile 
form)

Table 14.1 (continued)
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monocyte	production	of	TNF-α,	IL-1β,	IL-6	and	IL-10.	However,	Pb18	produced	
earlier	and	higher	levels	of	IL-1β,	IL-6,	and	IL-10	transcripts	than	Pb265.	They	also	
observed a similar difference in cytokine protein levels between the two strains. 
Their results indicate that the regulation of pro and anti-inflammatory cytokines in 
response to P. brasiliensis is very complex and Pb18 early and continuous induc-
tion of pro- and anti-inflammatory cytokines can create an imbalance in monocyte 
functions favouring fungal growth and immune system evasion (Kurokawa et al. 
2007). A complementary study showed that human monocytes and neutrophils also 
modulate the expression of pattern recognition receptors (PRRs) in response to P. 
brasiliensis (Bonfim et al. 2009). TLR-2, TLR-4 and dectin-1 transcripts were dif-
ferentially modulated in response to high or low virulent strains. They observed that 
stimulation with both strains induced a general decrease in cell surface levels of 
TLRs and dectin-1 expression on monocytes, but not in neutrophils. However, tran-
script levels followed an opposite trend. TLR-2 transcripts levels were stimulated in 
response to both strains in monocytes and Pb265 induced a higher increase in TLR-
2 expression in neutrophils, although both strains had positive effects on this recep-
tor expression. The authors did not observe any effects on TLR-4 transcript levels 
on monocytes, but Pb18 showed stronger positive effects on TLR-4 expression on 
neutrophils. The expression of dectin-1 was also higher in response to Pb265 in 
monocytes and at earlier times in the interaction with neutrophils. They suggested 
that	the	high	content	of	β-glucan	in	the	cell	wall	of	Pb265	was	responsible	for	its	
interaction with dectin-1 and TLR-2 and fungal internalization; the stimulation of 
those receptors would in turn lead to IL-10 secretion, thus avoiding an excessive 
inflammatory response and favouring a protective immune response to the fungus 
(Bonfim et al. 2009). In addition, Bondon-Graciani and colleagues showed that 
Pb18 induces a decrease in the expression of iNOS mRNA was not observed when 
monocytes	had	been	previously	stimulated	with	IFN-γ,	TNF-α	or	GM-CSF.	On	the	
other hand, Pb265 induced higher levels of iNOS mRNA in all tested conditions, 
although the mRNA levels did not correlate with an actual increase in NO pro-
duction (Bordon-Graciani et al. 2012). Although production of NO is regarded as 
an important macrophage microbicidal tool, another study using iNOS-deficient 
murine macrophages showed that this compound could have deleterious effects in 
pulmonary	PCM	by	suppressing	TNF-α	production,	T	cell	 immunity	and	pulmo-
nary granuloma organization (Bernardino et al. 2013). Murine macrophages that 
lack iNOS presented reduced levels of IL-12 and increased production of arg1 and 
TGF-b transcripts suggesting an anti-inflammatory profile while WT macrophages 
expressed high levels of iNOS and IL-12. However, this early anti-inflammatory re-
sponse	was	matched	by	higher	levels	of	TNF-α	and	the	development	of	an	enhanced	
Th1 response pattern that resulted in a lower overall mortality rates of iNOS mice 
compared to WT mice (Bernardino et al. 2013).

Comparison between NK cells derived from healthy individuals and PCM pa-
tients stimulated by Pb18 and Pb265 showed that NK cells of PCM patients had 
lower cytotoxic effects in comparison with healthy individuals, although both 
strains induced higher levels of granzyme, perforin and granulysin transcripts 
(Longhi et al. 2012). They suggest that the impaired cytotoxic response despite 
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higher amounts of granzyme and perforin could result from problems in NK cell ac-
tivation, which could be overcome by treatment with IL-15. As an important com-
ponent of the innate immune response, further studies on NK cells could reveal an 
important impact of these cells on the development of the immune response to PCM 
(Longhi et al. 2012).

14.3.2.2  Differences in the Immune Response Modulation in Response to  
P. Brasiliensis: Disease-Resistant and Susceptible Murine Models

There are a few mouse strains with different degrees of susceptibility against infec-
tion by P. brasiliensis. Most of the studies comparing low and high susceptibility 
hosts employ A/J and B10.A mice strains, respectively. We found a few studies 
comparing transcriptional changes in response to fungal stimulation aiming to char-
acterise the importance of host response in the disease outcome. A study of Ferreira 
and collaborators using pulmonary dendritic cells suggested that the expression 
of PRRs might have a role in host susceptibility against P. brasiliensis infection 
(Ferreira et al. 2007). The authors observed that only dendritic cells from suscep-
tible mice expressed TLR-2 transcripts after infection. As TLR-2 could induce IL-
10 secretion in susceptible mice, they concluded that differential receptor binding 
of the fungus by dendritic cells has significant effects on cytokine production and 
host susceptibility to infection.

14.3.2.3  Modulation of Immune Response Genes by Vaccine Immunogen 
Candidates

A few groups have been investigating potential vaccine targets for P. brasiliensis as an 
alternative to the still considerably high toxicity of currently available antifungal treat-
ments. Two studies in this field evaluated the potential of P. brasiliensis antigens in the 
modulation of immune response against this fungus. In one of these studies a recombi-
nant form of a 27 kDa protein from P. brasiliensis called Pb27 which was previously 
shown to be highly immunogenic was also shown to induce a protective response in 
immunisation assays using Balb/c mice (Reis et al. 2008). Among the observed effects 
they	found	that	this	protein	induced	an	upregulation	of	TGFβ	and	IFN-γ	transcript	levels	
in the sera from immunised mice, while infection with the highly virulent Pb18 induced 
only	TGF-β	and	not	at	the	same	levels.	In	another	study	using	Pb27	in	combination	
with another protein, Pb40, the group found that immunisation with these two proteins 
induced	increased	levels	of	INF-γ	and	TNF-α	when	compared	to	a	group	of	mice	that	
was infected with a virulent clinical isolate. The association of the two proteins and 
fluconazole	treatment	also	induced	the	production	of	IFN-γ	transcripts,	an	smaller	in-
crease	in	TNF-α	and	a	significant	decrease	in	IL-10	mRNA	levels.	All	treated	groups	
(immunization and/or fluconazole) showed lower levels, relative to the infected con-
trols, of iNOS in early (70 days post infection) and later time points (120 days), and of 
the	TGF-β	mRNAs	in	the	later	one.
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14.4  Concluding Remarks

PCM still is as an important cause of morbidity and mortality in Latin America. The 
treatment remains sub-optimal, relying mostly on toxic, expensive or lengthy regi-
mens. One crucial way to overcome this scenario is to understand better how Para-
coccidioides causes disease and how the human host responds to infection, so we 
can find more efficient therapeutic strategies. The studies reviewed in this chapter 
help provide a picture of how Paracoccidioides transcription responds to the inter-
action with the host. However, the paucity of genome-wide studies on the complex 
host transcriptional response to infection by Paracoccidioides suggests that there 
is still a lot to be learnt about this host–pathogen interaction before benefits can be 
reaped by PCM patients and their healthcare professionals.
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Abstract Tuberculosis (TB) remains one of the biggest treats in public health, 
infecting approximately one-third of the human population and killing almost two 
million people per year. Prophylaxis and treatment methods present some weak-
ness, and HIV co-infection and resistant strains add complexity to the situation, 
leading WHO to declare the disease a global emergence. To change this situa-
tion, new diagnostics, therapies and prevention strategies are urgently needed, 
but their development relies on biomarker availably. TB biomarker studies have 
focused especially on diagnostics, treatment efficacy and prophylaxis success by 
vaccination. Given the multifactorial complexity of this disease, biosignatures are 
considered more adequate in TB than isolated markers. Standardizations (includ-
ing assays, definitions and protocols) could accelerate biomarkers research once it 
would reduce heterogeneous datasets. Thus, specific databanks and integrated plat-
forms of studies are precious resources to conduct broad research. Consequently, 
to reach the objective of defining TB biosignatures will demand tools from other 
areas, such as bioinformatics.

15.1  The Problematic of TB

15.1.1  Epidemiologic Aspects

TB is caused by a group of phylogenetically closely related bacteria known as the 
Mycobacterium tuberculosis complex (MTBC) (Cole et al. 1998). In humans TB is 
mainly caused by Mycobacterium tuberculosis (Mtb) and M. africanum, a phyloge-
netic variant of MTBC restricted to West Africa (de Jong et al. 2010). It is believed 
that one-third of the human population is infected with the TB bacillus, and about 
1.8 million individuals die each year from this disease (Lönnroth et al. 2010; WHO 
2010). In 2012 the incidence of the TB was 8.6 million cases (WHO 2013).
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TB is acquired by inhalation of aerosol particles containing bacilli, expelled by 
an individual with active disease, and it mainly affects the lungs (Wallis et al. 2010; 
Walzl et al. 2011). Much of the population that comes into contact with Mtb can elimi-
nate or contain the infection in a latent form due to the immune response (Wallis et al. 
2010). However, in a small group of people, bacilli overcome the immune system 
defenses, resulting in the progression of infection (active disease) (Wallis et al. 2010). 
This progression can occur soon after infection (1–5 % of cases) or years later with 
the reactivation of the disease (5–9 % of cases). In total, about 10 % of infected indi-
viduals will develop the disease during their lifetime (Sudre et al. 1992; WHO 2013).

The diagnosis is carried out by medical history, physical examination, sputum 
smear microscopy, thorax radiography and microbiological cultures, taking days 
up to months (Parida and Kaufmann 2010). Generally, treatment is performed with 
four drugs for 6 to 9 months, depending on the severity of the disease and response 
to therapy (Parida and Kaufmann 2010). The long and rigorous treatment favors 
its abandonment, which in turn cooperates to select resistant strains (multidrug re-
sistant (MDR) and extensive drug resistant (XDR)) (Parida and Kaufmann 2010). 
Moreover, according to WHO, the treatment regimen is considered effective only 
when patients are cured and remain without disease after 2 years of observation. 
The unique prophylactic measure available is the BCG vaccine, which is effective 
in the protection of severe disease in children (miliary TB and meningococcal TB) 
(Parida and Kaufmann 2010). However, it fails to protect against pulmonary TB in 
adults, the most prevalent form of the disease (Parida and Kaufmann 2010).

15.1.2  Social Aspects

TB kills people in the most economically productive period of their lives (Lopez et al. 
2006) and can leave sequelae that reduce life quality (Miller et al. 2009). The econom-
ic damage caused by mortality and morbidity deriving from the disease is 12 billion 
dollars annually (WHO 2008). Thus, the social consequences of this disease, which 
causes great loss in productivity, are often disastrous (Hanson et al. 2006).

TB treatment delay is a common problem that happens mainly due to knowledge 
lack about TB, poor access to health systems and failures of diagnosis (John and 
John 2009). Many studies have observed that approximately 50 % of individuals with 
pulmonary TB confirmed do not exhibit symptoms commonly assessed in the disease 
diagnosis (Hoa et al. 2010; Ayles et al. 2009). This scenario is principally caused by 
inadequate and inaccurate diagnostic methods (Wallis et al. 2010).

15.1.3  “To-dos” of TB

TB is a multifaceted disease. Therefore, it is not surprising that the immune re-
sponse to TB is equally complex and variable, involving a plethora of elements 
from innate and adaptative immune systems, whose number and roles has been 
constantly	enlarged	and	reviewed	(OʼGarra	et	al.	2013). In addition to contributing 
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to the understanding of the pathophysiology of TB, information about the immune 
system can also be exploited to define biomarkers of disease.

Identifying biomarkers is a mandatory step to TB control because this will help 
to development of better diagnostics, effective vaccines, new and shorter therapies 
(Wallis et al. 2010; Abu-Raddad et al. 2009) and interventions to prevent the pro-
gression of latent infection to active disease (Lönnroth et al. 2010). Biomarkers are 
described as characteristics that define a host state with respect to any disease, pro-
cess and therapeutic or prophylactic intervention (Biomakers Definition Working 
Group 2001; Parida and Kaufmann 2010; Zarate-Blades et al. 2011). In this way, 
biomarkers may provide a rational basis for TB studies (Ottenhoff et al. 2012b). In 
TB, biomarkers are mainly wanted to discriminate latent and active TB (diagnosis 
and classification), assess the reactivation/relapse risk and indicate vaccine protec-
tion and therapeutic results (Parida and Kaufmann 2010; Wallis et al. 2010).

Biomarkers could replace clinical parameters and assess the effectiveness of vac-
cine and drug at early stages of development, decreasing the risk of initiating clini-
cal trials with candidates that will not confer further advantages (Ottenhoff et al. 
2012b) and decreasing time and costs of their licensing process (Wallis et al. 2010).

In drug development, biomarkers can help in the clinical effects evaluation, drug 
selection, patient stratification and dose-response prediction and toxicity (Parida 
and Kaufmann 2010). In prophylactic studies, the biomarkers would assist in pre-
clinical and clinical trials defining the best antigen, adjuvant, dose, route, delivery 
system, the type of vaccine or combination of them (prime boost) and animal model 
(Ottenhoff et al. 2012b). And although any type of element or molecule can be a 
biomarker, RNA studies have received considerable attention.

Thus, over the past decade, the literature about transcriptomic studies in TB re-
search field has grown considerably. Taking into account the different profiles and 
backgrounds of readers interested in this chapter, we sought to address the most 
consistent studies dealing with transcriptomic studies on TB, covering such rel-
evant topics as bacilli virulence, characterization of different stages of the disease, 
therapeutic effects of drugs and vaccines and the interaction between the bacterium 
and host, including mouse models and non-human primates and also studies with 
human subjects, finally leading the reader to the most modern trends of the area.

15.2  Experimental Tuberculosis Biomarkers

15.2.1  The Mice Model

Mice are the most common in vivo model to study TB due to advantageous features 
compared to other models, like cheaper and more practical manipulation, well-
characterized genetics and abundance of reagents to research (Smith 2003). For 
these reasons, there are many transcriptomic studies in murine TB, often using lung 
samples. Usually, these articles list functionally categorized genes and some studies 
tried to set a limited list of genes that could work as biomarkers in preclinical stud-
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ies. Herein, we contemplate some examples of studies exploring the effects of BCG 
vaccination and Mtb infection in different models of murine TB.

15.2.1.1  Correlates of Protection

Thinking about the necessities of trustworthy parameters in preclinical tests, the 
differences between BCG-vaccinated and Mtb-exposed animals are important. One 
study using microarrays compared these groups at two time points. The lung tran-
scriptome from Balb/c mice revealed that gene expression alterations were signifi-
cantly higher in infected animals than in BGC-vaccinated mice, highlighting chang-
es in the expression of genes related to granulocytes. Mtb infection stimulated yet 
stronger expression of genes related to antigen processing and presentation and to 
interferon	gamma	(IFN-γ)	expression	than	BCG	vaccination	did	(Mollenkopf	et	al.	
2006). Farther, this study highlighted the importance of expression and downstream 
effects	of	IFN-γ,	which	is	an	intriguing	point	in	TB	research	because	it	is	considered	
important but not sufficient to drive the combat the infection. The relevance of in-
duction	of	IFN-γ	related	transcripts	as	a	indicative	of	protection	was	also	discussed	
in a study that investigated transcriptional changes in lungs from aerosol-challenged 
mice previously vaccinated with BCG (Rodgers et al. 2006), strengthening the im-
portance of the induction of these molecules and their effects during the establish-
ment of infection and over the latter stages of the disease.

Another study used Balb/c mice to investigate transcriptomic lung changes in 
BCG-vaccinated animals before and after infection. Six weeks after BCG admin-
istration, a clear pattern of expression differentiated vaccinated uninfected group 
from others (vaccinated infected; unvaccinated infected; unvaccinated uninfected). 
Functional analyses showed that these genes were highly related to connective tis-
sue and to the dynamic and diversified cell activities. Next, transcriptional lung 
profiles of mice vaccinated and infected were compared to mice just infected at dif-
ferent time points. There was a strong difference between groups 14 days after Mtb 
challenge, and these genes were related to the expression and signaling pathways 
of	IL-17	and	IFN-γ	cytokines	(Aranday	Cortes	et	al.	2010). Thus, the study aimed 
to identify biosignatures to predict vaccine success before challenge and to identify 
biomarkers reflecting protective response after exposition to virulent bacillus, al-
though in this case M. bovis was used instead of Mtb. Even betting on a signature 
composed by IL-17 and Th1 profile as an indication of protection, no definitive 
conclusion was possible since confirmation experiments are needed.

Thus, transcriptomic studies have increased our understanding about the mecha-
nisms underlying BCG protection or failure. Many groups are working to use this 
knowledge in rational approaches to develop new vaccines to boost or substitute 
BGC (Rosada et al. 2014). DNA-based vaccines are considered an interesting alter-
native because they can be engineered to evoke a specific type of immune response 
against a specific target and they can be employed as prophylactic or therapeutic in-
terventions (Khan 2013). As an example, we briefly expose results of transcriptomic 
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studies about DNA-hsp65, a DNA-based vaccine constructed with the 65 kDa heat-
shock protein of M. leprae (Box 15.1).

15.2.1.2  Development of Mtb Infection

Some studies investigated more comprehensively the evolution of Mtb infection us-
ing C57BL/6 mice, one of the resistant mouse strains. A transcriptional study from 
lung of C57BL/6 mice infected with Mtb was performed at early stages (12, 15 
and 21 days) after aerosol Mtb infection. Differential expression showed lung tran-
scripts related to heat shock proteins at day 12. Recognition of pathogens, immuno-
globulin receptors, activation of antigen presenting cells (APCs), inflammatory cy-
tokines,	like	tumor	necrosis	factor	alpha	(TNF-α),	and	Th1	response	induction	were	
observed mainly 21 days after infection. At that time, the authors also observed 
many differentially expressed genes. This time point also revealed the induction of 
genes that confer advantage to pathogen survival, showing that Mtb could modulate 
the immune response. Different metalloproteases transcripts were detected at dif-
ferent time points, highlighting the importance of these proteins to tissue and cell 
organization. Interestingly, this study cleverly showed the occurrence of differen-
tial expression of transcripts representing neutrophils and monocytes before Th1-
related transcripts could be detected. Confirmatory assays showed that depletion of 
neutrophils is detrimental to the posterior establishment of a Th1 immune response. 

Box 15.1—DNA-hsp65  Vaccine

During its history of development, the DNA-hsp65 vaccine proved to be 
capable of preventing or treating TB in mice (Lowrie et al. 1997; Lowrie 
et al. 1999). Moreover, as an immunotherapeutic intervention, DNA-hsp65 
shortened the duration of conventional therapy, conferring an outstanding 
adjuvant effect (Silva et al. 2005). Although DNA-hsp65 effects were related 
to induction of Th1 CD4+ helper-T cells as well as CD8+ cytotoxic T-lympho-
cytes, further characterization of the underlying immunotherapy mechanisms 
of this vaccine was performed in murine model by means of microarray and 
real-time PCR assays. The results showed that 98 genes could distinguish the 
DNA-hsp65-treated group from other groups that received saline or empty 
vector. Functional analyses of these genes suggested the enhancement of 
Th1 immunity, inhibition of Th2 cytokines, induction of regulatory media-
tors and IL-17-mediated response, and control of excessive inflammation and 
lung damage, which was confirmed by histopathologic analysis. For these 
reasons, the authors claimed that such differential gene expression could rep-
resent transcriptional biomarkers of DNA-hsp65 immunotherapy against TB 
(Zárate-Bladés et al. 2009). Taken together, the body of research about DNA-
hsp65 highlights the importance and encourages the use of DNA vaccine 
technology to prevent and treat infectious diseases such as TB.
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However, surprisingly, there was no difference in the outcome of animals depleted 
or not of neutrophils (Kang et al. 2011). This work added the important feature of 
the events after infection and prior Th1 immune response that could be useful in the 
design of new vaccines, but it did not define an early signature of TB.

If the knowledge about the early events in the immune response to TB is lack-
ing in many aspects, as we have just seen, the same is true about later stages of 
the disease. Exploring the development of chronic TB, a study evaluated transcrip-
tional lung profiles from C57BL/6 mice after 20, 40 and 100 days after aerosol 
Mtb infection. The transcriptional response observed was robust and progressive. 
Principal component analysis (PCA) indicated that gene expression profiles from 
40 and 100 days are closer to each other than they are to the response at 20 days. 
Functional analysis suggested a huge induction of transcripts related to humoral and 
cellular immune responses. Over the entire period, there was a dynamic change in 
expression of recognition receptor, which could indicate some differences between 
early	and	late	immune	response	to	TB.	This	study	also	found	IFN-γ-related	genes	
(Th1 type response) induced at 20 days, but importantly, a type of saturation was 
detected. That means that although the stimulus is present, the signaling pathway 
is limited. Here also the induction of transcripts related to proteins that favor Mtb 
survival was observed. Many cytokines and chemokines were induced over the 100 
days, supporting the inflammatory landscape. CXCL9 showed a huge induction 
again highlighting the importance of cells like neutrophils to the establishment and 
evolution of the immune response to TB. Finally, to find markers of the disease state 
and progression, tandem self-organizing mapping (SOM) analysis was applied to 
examine the distribution of genes. The final result was the segregation of 712 genes 
into five discriminative subgroups according to their trends of expression and time 
point (Gonzalez-Juarrero et al. 2009). Even so, there is not at this point a final group 
of genes that can be used as biomarkers in preclinical mice studies.

However, it is important to be aware that the genetic background of mice can 
directly influence the results and, consequently, the final conclusions. A compari-
son between susceptible (I/St) and resistant (A/Sn) mouse strains, 2 weeks after 
Mtb (H37Rv) challenge, revealed that in the resistant strain the host response is 
more complex, versatile and strong, as reflected in the number of genes whose 
expression was altered. These overrepresented genes include those related to innate 
(mast	cells,	γδ	T	cell,	NK	cells	and	immunoglobulin)	as	well	as	to	the	adaptive	im-
mune response (transcripts related to B and T cells). In contrast, genes related to 
neutrophils and nitric oxide synthesis were overrepresented in susceptible strains. 
Confirmatory experiments showed that highly susceptible animals presented a more 
intense granulocyte response, but the bacterial burden was the same in both strains 
(Shepelkova et al. 2013).

Taken together, these studies show the enormous plasticity of the mouse immune 
response to TB, the importance and influence of granulocytes at the early stages 
and their influence in the posterior Th1 type immune response. At same time, such 
plasticity poses a great challenge to define a biosignature of TB mice infection, as 
well as of vaccine protection in these models.
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15.2.2  Non-human Primate Experimental Model

Despite requiring large physical structures and high operational costs, the use of 
non-human primates (NHP) as a preclinical model for studies on TB has aroused 
attention. Monkeys are close to humans from the phylogenetic point of view, and 
their immune system is well characterized, making them an excellent model to as-
sess the immunogenicity and safety of new vaccines and drugs (Gupta and Katoch 
2009; McMurray 2000). In addition, non-human primates are susceptible to Mtb 
infection and develop most of the clinical and pathological features observed in hu-
man pulmonary TB, such as the organization of granuloma, considered a hallmark 
of the disease (Capuano et al. 2003; Flynn et al. 2003; McMurray 2000; Kita et al. 
2005; Gupta and Katoch 2005; Gupta and Katoch 2009).

15.2.2.1  Characterizing Mtb Infection in Non-human Primates

Using microarrays, a study compared the transcriptome profiles of early (4 weeks) 
and late stage (13 weeks) of disease from granulomas of rhesus macaques (Mehra 
et al. 2010). In this work it was observed that around 1200 rhesus genes, from 
excised granulomas, presented differential expression between 4 and 13 weeks 
post infection, exhibiting an intense proinflammatory profile at early stage that is 
reversed at the late weeks of infection. This rapid and profound change in tran-
scriptional scenario was associated with the previous knowledge that Mtb presents 
several mechanisms for persistence in the host that are increased in late stages of 
infection, forcing the host to reprogram the immune response dramatically (Mehra 
et al. 2010).

A stress response factor named Sigma H (sigH) is the major factor expressed by 
Mtb in response to stress conditions, phagocytosis, cell wall damage and hypoxia, 
and modulates the host immune response (Kaushal et al. 2002; Graham and Clark-
Curtiss 1999; Mehra and Kaushal 2009; Dutta et al. 2012). A mutant Mtb deleted 
for	sigH	region	(Δ-sigH)	was	generated,	 infected	in	NHP	and	compared	to	wild-
type Mtb infection (Mehra et al. 2012). Using global transcriptomics, the study 
found that the expression of MMP9, CCL5, LTA and FOSB was higher in lesions 
from wild-type-Mtb-infected animals and at normal levels in mutant-Mtb-infected 
animals; nonetheless, SOCS3, FOXJ1, BAX and CCL14 were increased in mu-
tant compared to the wild-type-Mtb-infected group. The overall scenario indicated 
that proinflammatory genes were induced at higher levels in wild-type compared to 
mutant-Mtb-infected animals (Mehra et al. 2012).

Taken together, these are great examples how transcriptomics could refine and 
accelerate the description of a given phenomenon, allowing biomarker discovery 
and ultimately providing data to extrapolate to humans.
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15.2.2.2  Correlates of Protection

Considering that the NHP model infected with Mtb resembles what occurs in hu-
man TB, it is desirable to describe in this model biomarkers indicating the efficacy 
or inefficacy of new vaccines or therapeutic agents. These studies could drive future 
work to develop new vaccines/therapy against TB for the human population. In 
BCG-vaccinated cynomolgus macaques, Mtb post-infection results in reductions 
in bacterial load, clinical signs of TB and immunopathology when compared to 
non-vaccinated but infected macaques (Mehra et al. 2013). Transcriptional data 
from lung lesions showed that this was accompanied by similar expression levels 
of α-chemokines as CXCL1, CXCL2, CXCL3, CXCL6, and CXCL8, which attract 
neutrophils, and higher expression levels of β-chemokines related to macrophage 
and lymphocyte recruitment, named CCL2, CCL3, CCL4, CCL5, in vaccinated ani-
mals. This study confirmed suggestions from some authors that the recruitment of 
more neutrophils compared to macrophage numbers leads to intense immunopa-
thology (Lowe et al. 2012; Eum et al. 2010). Furthermore, this work showed that 
indoleamine 2,3-dioxygenase (IDO), which exerts a strong inhibitory effect on T 
cells (Blumenthal et al. 2012), was highly expressed on the ring walls of granulo-
mas from non-vaccinated animals, supporting the worst scenario seen, most likely 
related to the suppression of T cell enrollment.

Because BCG vaccination is effective in macaques challenged with Mtb, a study 
employing large-scale real-time quantitative PCR to test 138 genes associated with 
immune response on circulating lymphocytes showed up to a 600-fold increased 
network activity, with at least 78 up-regulated genes, which maintained the high 
expression level for more than 6 weeks. These up-regulated genes were grouped 
by immune function including: cytokines and their receptors associated with T cell 
responses; chemokines and their receptors for tissue migration and T cell activa-
tion; signal costimulators related to T cells elicited by vaccination; transcription 
and transactivation; T helper assignments; cytotoxic effectors; and innate and other 
immune factors (Huang et al. 2007).

In this sense, the high cost and extensive resources necessary to perform an en-
tire experiment with NHP are still worth the effort because this animal model of 
infection could generate a reliable basis to search for biomarkers, shortening the 
pathway to address human TB disease mechanisms.

15.3  Human TB

15.3.1  Assessing the Complexity of TB in Humans

Although mice and NHPs are valuable models to study TB, it is important to con-
sider some gaps between those models and human disease, which could delay the 
transference of knowledge to the clinical use. For this reason, many research groups 
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have opted to work directly with human samples. Peripheral blood mononuclear 
cells (PBMCs) have been chosen as the preferred sample for several studies due 
to their easy accessibility compared to the lung and their sufficient complexity to 
reflect the changes caused by the infection. Quantitation of gene expression by 
high-throughput methods is one of the best tools available to evaluate and discrimi-
nate between the diversity of TB patients’ statuses (Maertzdorf et al. 2012). Sev-
eral studies have shown that TB patients exhibit chronic immune system activation 
with	increased	pro-inflammatory	signaling,	expression	of	Fc-γ	receptors	and	related	
downstream activation, and apoptosis involvement (Mistry et al. 2007; Jacobsen 
et al. 2008; Berry et al. 2010; Maertzdorf et al. 2011a; Maertzdorf et al. 2011b; 
Lesho et al. 2011).

Therefore, the current potential to investigate TB human samples through tran-
scriptomics is vast and some of the most relevant questions will be addressed below.

15.3.2  Disease Biomarkers and Diagnosis Development

It is clear that there is an urgent need to classify patients presenting active TB, latent 
Mtb infection (LTBI) or without disease, ensuring the correct treatment according 
to patient status (McNerney and Daley 2011; Wallis et al. 2010). However, there is 
growing knowledge in the field that these compartmentalized profiles do not exist 
in humans, resulting in a plastic range of several states presented by TB patient 
(Walzl et al. 2011). In this sense, only very accurate biomarkers that correlate with 
the clinical condition could prove if it is possible to discriminate between those 
three states (McNerney et al. 2012).

In that context, a study compared the gene expression of patients with active TB, 
LTBI and non-infected individuals using blood samples (Jacobsen et al. 2007). Us-
ing microarrays, the authors detected a set of genes that could discriminate between 
the three groups, including lactoferrin, Rab33A and CD64. Additionally, this work 
provided evidence to allocate and discriminate 4 groups—LTBI, active TB, recur-
rent disease and cured TB patients—through a set of 9 genes (NOLA3, ATP5G1, 
ASNA1, KIAA2013, SOCS3, C14orf2, TEX264, LY6G6D and RIN3) (Mistry et al. 
2007).

In an elegant and complex work, a 393-transcript signature was identified in 
the blood of patients using unsupervised analysis and statistical filter that could 
discriminate between active disease from latent and healthy patients (Berry et al. 
2010). The active TB signature was dominated by genes related to type I interferon 
produced by neutrophils. Furthermore, exploring transcriptomic data from blood by 
applying analyses of significance and a modular data mining approach (Chaussabel 
et al. 2005; Chaussabel et al. 2008), the authors could separate patients with ac-
tive TB from those with streptococcal and staphylococcal infections and autoim-
mune diseases (Berry et al. 2010). Other authors also validated those transcriptional 
patterns independently (Cliff et al. 2013; Ottenhoff et al. 2012a; Maertzdorf et al. 
2011b).
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Through literature review, a study pointed the immunologic markers interferon-
inducible protein (IP-10), interleukin (IL)-6, IL-10, IL-4, forkhead box P3 (FOXP3) 
and IL-12, as the main candidates of TB biomarkers (John et al. 2012). However, 
it was not clear whether these markers have the potential to distinguish TB from 
several other pulmonary infectious diseases or merely between individuals infected 
or not with Mtb.

The transcriptomic approach is increasing and accelerating the knowledge of 
human TB, allowing the description of reliable biomarkers for disease condition 
and/or diagnosis. Further studies focusing on integration of those data will able to 
describe biosignatures of TB.

15.3.3  Therapy and Vaccine Efficacy

Searching for early biomarkers of therapeutic efficacy is of interest for assessment 
of therapeutic success as well as to accelerate the evaluation of new drugs in clinical 
trials. Changes in the peripheral blood transcriptome detected during the treatment 
of successfully cured patients could be correlated to bacterial clearance and used as 
biomarkers or biosignatures to indicate the efficacy of therapies shortly after their 
initiation, saving time and money. Analyzing blood samples of effectively treated 
patients at different time points, a study found 780 genes differentially expressed 
just 1 week after regular TB therapy, which remained significantly different over 
time, and 373 genes whose expression changed in late stages of therapy. Based on 
these sets, the application of neural network modeling showed efficiency at clas-
sifying patients according their status and to predict treatment response based on a 
combined list of 62 genes (Cliff et al. 2013).

Analyzing blood samples from South African TB patients, differential transcripts 
profiles were detected between 2 weeks, 2 months, 6 months and 12 months after 
antituberculosis treatment start (Bloom et al. 2012). Through expression profiles 
of 15837 transcripts, the authors compiled a TB signature with 664 transcripts rep-
resenting a fast transcriptional change that was observed at 2 weeks of treatment, 
maintaining similar pattern during 2 and 6 months of treatment. Furthermore, a 
comparison between latent TB with active TB patients 6 and 12 months after the 
beginning of treatment showed that were no transcriptional differences among these 
groups, most likely due to the efficacy of treatment and cure of TB-active patients 
(demonstrated by other routine techniques). More importantly, the authors pointed 
that 2 weeks was sufficient to evaluate if a treatment would be successful or not 
because in the later time points the transcriptional profile was maintained (Bloom 
et al. 2012). These findings are extremely important since in some TB patients, the 
classical treatment is not effective, and a prompt and strategic modification in the 
therapeutic scheme could be pivotal to a successful treatment.

Using microarray analysis, the gene-expression profile from blood of patients 
with active disease, in the treatment phase (four drugs, standard protocol), after 
treatment finished (“cured”), and in healthy controls were compared. Interestingly, 
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using a total of 875 obtained transcripts, they observed that while the gene expres-
sion pattern from individuals with active disease and under treatment were similar, 
the expression of healthy and cured patients exhibited similar pattern (Ottenhoff 
et al. 2012a). In this sense, transcriptomic pattern comparison studies like that one 
could be helpful to interrogate and follow up the length of new therapeutic strate-
gies on a time course manner.

Regarding the evaluation of vaccination strategies by transcriptomic profiling, a 
study involving different strains of BCG showed that, from 16 immune system genes 
evaluated by qRT-PCR, vaccinated children exhibited in blood samples abundant 
Th1 and Treg profile–related genes. Additionally when the transcriptomic profiles 
induced by BCG in neonates from Denmark or Brazil were compared whit those 
from Japan, the result was a Th1 and an inflammatory profile of immune response, 
respectively (Wu et al. 2007). In this sense, these results show that transcriptomics 
is a relevant tool to investigate the effect of a given vaccine on humans, allowing 
a feasible interrogation of the desired strategy. More importantly, this work could 
help to understand the benefits of BCG vaccination in children, which is correlated 
with TB-meningitis protection, and the mechanism remains somewhat unanswered 
(Roth et al. 2006; Sierra 2006).

15.4  Mtb: Revisiting the Causative Agent from New 
Perspectives

Since the publication of the Mtb genome, many studies investigated gene expres-
sion to understand drug effects on bacilli in the search for new drug targets as well 
as the mechanisms behind the development of drug resistance (Boshoff et al. 2004; 
Wilson et al. 1999; Waddell et al. 2004; Keren et al. 2011; Tudó et al. 2010; Wei 
et al. 2013). Although our comprehension of the host response is becoming clearer, 
the necessity of exploring bacillus gene expression in the context of modern ap-
proaches is evident. Transcriptional changes promoted by different concentrations 
and exposure times to rifampicin in susceptible and mutant resistant H37Rv Mtb 
were investigated using microarrays. The results showed that the cluster Rv0559c-
Rv0560c was up-regulated in the resistant strain, suggesting the significant par-
ticipation of these genes in resistance to rifampicin, but their role remains to be 
clarified (de Knegt et al. 2013).

Microarrays also became a valuable tool to study transcriptional changes in Mtb 
after macrophage internalization (Domenech et al. 2001) and under diverse phago-
somal conditions (Schnappinger et al. 2003). In a temporal serial approach, the im-
portance of acidification of the phagocytic vacuole to the expression of Mtb genes 
and its difference from non-pathogenic strains were observed, opening new perspec-
tives for understanding the host-pathogen interaction (Rohde et al. 2007). Another 
study comparing MTBC clinical isolates identified strain-specific transcriptomes in 
vitro and also identified a highly conserved transcriptome among the strains com-
posed of a set of 280 genes related to adaptation to intracellular environment and 
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reduction of growth and metabolism after 24 h of infection in murine macrophages 
(Homolka et al. 2010). These similarities and differences can be relevant to trials of 
new vaccines and drugs.

The origin of resistance was investigated by microarray transcriptomic analysis 
of longitudinal samples of Mtb from patients under supervised therapy that devel-
oped resistance during the treatment. Resistant strains underexpressed genes related 
to protein synthesis, including transcription factors, cell wall biosynthesis and other 
pivotal metabolic pathways, while genes encoding trans-membrane proteins, trans-
porters, stress response transcriptional factors and drug efflux pumps were overex-
pressed in the MDR isolates compared to their sensitive counterparts (Chatterjee 
et al. 2013). Interestingly, mutations were not related to drug target genes, suggest-
ing that metabolic alterations associated with lower DNA repair could be a com-
bined phenomena favoring the survival of resistant strains. Investigation of H37Rv 
transcriptome at different time points during host infection by deep sequencing 
showed that genes whose expression products are also related to bacillus metabo-
lism and to adaptation to immune host response were upregulated in susceptible and 
resistant mice strains (Skvortsov et al. 2013).

As observed, Mtb transcriptomic studies have revealed a remarkable plasticity of 
gene expression representing the broad range of mechanisms necessary for patho-
gen adaptation to live inside the host and also metabolic responses to the actions 
of drugs. Although studies can be more or less divergent in their approaches and, 
consequently, in their results, it is clear that this enormous amount of data can lead 
to identify new potential target to drugs, antigens to vaccines as well as prospection 
of biomarkers, accelerating the path to new solution to fight TB.

15.5  New Perspectives

As we have explored here, the interpretation of results from transcriptomic stud-
ies about TB and the prospection and definition of different types of biomarkers 
are hard tasks, although impressive progress has been achieved. However, to reach 
the ambitious propositions presented here, it will be necessary to develop new and 
sophisticated ways to interrogate the transcriptome. Important innovations include 
considering microRNAs as elements of the transcriptome that could improve our 
understanding of the disease (Box 15.2). Additionally, it is becoming clearer that 
developing and applying tools to integrate different types of studies is a fundamen-
tal approach and a strategy that should not be abandoned (Box 15.3).

Box 15.2—microRNAs

As microRNAs regulate the expression of a variety of genes in different con-
texts, including infectious diseases such as TB (Singh et al. 2013a; Guo et al. 
2010), the hypothesis that differences in their expression levels could be used 
as biomarkers gained traction and motivated a series of transcriptomic studies.
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In a murine model of TB, from the differential expression investigated 
by microarray, it was found that the suppression of microRNA (miR)-99b 
increased	TNF-α	production	in	Mtb-infected	dendritic	cells,	with	consequent	
bacterial growth reduction (Singh et al. 2013b). Using the Mtb-infected 
murine cell line RAW264.7 and bone marrow-derived macrophages, another 
study revealed that the ESAT-6 antigen secreted by Mtb upregulates miR-
155, which represses Bach1 and Ship1 translation, responsible for bacillus 
“dormancy” and survival, respectively, contributing to abrogate the infection 
(Kumar et al. 2012). Another study demonstrated that deletion of miR-223 
in bacillus-infected mice caused susceptibility to TB, due to excessive poly-
morphonuclear cell migration and exacerbated lung inflammation, resulting 
in the death of these animals. Notably, the increased of miR-223 expression 
was also observed in blood and lung parenchyma of TB patients, and the cor-
respondence among markers to be used in pre-clinical and clinical studies is 
highly desirable to accelerate new findings (Dorhoi et al. 2013).

Regarding human infection, some works used microarrays to analyze the 
expression levels of microRNAs presented in blood patients with active pul-
monary TB compared to healthy controls. A study detected 92 differentially 
expressed microRNAs, from which miR-29a was detected in plasma and spu-
tum of patients and pointed as a possible marker of disease (Fu et al. 2011). In 
serum of TB patients 97 differentially expressed microRNAs were identified 
and the authors claimed that miR-361-5p, miR-889 and miR-576-3p could be 
considered markers for a rapid diagnosis (Qi et al. 2012). Comparing PMBCs 
from pulmonary TB patients and healthy controls, other study pointed miR-
144* as one of the most differentially expressed, which is associated with the 
decrease	of	TNF-α	and	IFN-γ	production	and	T	cell	proliferation,	highlighting	
miR-144* as an interesting target for further investigations (Liu et al. 2011).

Finally, researching the relationship between virulence and microRNA 
expression, a study found that human macrophages infected or stimulated 
with molecules from Mtb present miR-125b upregulation with a consequent 
reduction	in	the	TNF-α	production,	while	M. smegmatis, a less virulent strain, 
caused the opposite effects (Rajaram et al. 2011).

Consequently, microRNAs have the potential to contribute as biomarkers 
as well as for understanding the establishment and evolution of infection and 
mechanisms of pathogen virulence.

Box 15.3—The power of integrative studies

Integrative studies, meaning here the use of transcriptomic data associated 
with another approach, has been productive to explore underappreciated 
aspects of Mtb. Studying mechanisms of virulence and persistence of Mtb, an 
algorithm called Differential Producibility Analysis (DPA) was used to infer 
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Moreover, the TB research community is investing in integrative platforms, which 
include databanks covering any study and data related to the gene expression of TB 
bacilli and/or hosts, as well as tools useful to their analysis, like the TB Database 
(TBDB), as well as new approaches to investigate Mtb in the most comprehensive 
way, like SysteMTb. Briefly, TBDB (http://www.tbdb.org) offers access to “micro-
array and RT-PCR data as well as genomic data for Mycobacterium tuberculosis 
organism along with several other relevant host organisms and similar model or-
ganisms. Such data can be visualized, annotated, analyzed and shared using TBDB 
tools.” The platform has interesting resources related to systems biology (Reddy 
et al. 2009). The SysteMTb initiative (http://www.systemtb.org) intends go deep 
into the research about Mtb, supporting a complex and integrated platform of proj-
ects, designed in a complementary way. Its aim is produce the more complete pos-
sible Systems Biology analysis of Mtb under the same set of standard conditions. 

alteration in bacilli metabolism based on available data from transcriptomic 
microarrays studies (Bonde et al. 2011). The resultant analysis indicated that 
alterations in bacilli gene expression are heavy related to remodeling of cell 
envelope. This study brought an interesting way to fill the gap of knowledge 
about metabolites of Mtb under diverse conditions using an abundant source 
of data, like transcriptomic studies.

Also investigating virulence in Mtb complex, a study used previously 
available data from microarray studies to confirm the importance of polymor-
phic genes from predicted genomic islands in virulent strains. Data mining 
was used to explore transcriptional profiles of Mtb that were exposed to dif-
ferent antibiotics to identify potential ribosomal proteins with extraribosomal 
functions, acting as regulatory proteins or taking part in other cellular process 
that could help pathogen adaptation (Fan et al. 2013). If confirmed, this set of 
genes could be useful in the screening of drugs and to explore their mecha-
nisms of action.

Seeking to confirm and to find new drug targets, gene co-expression net-
work analysis of microarray studies of Mtb in log-phase growth showed 
overlapped clustering of transcripts related to diverse metabolic process from 
the pathogen. Further extraction of co-expressed connections resulted in the 
confirmation of known drug targets and in the identification of potential new 
ones (Puniya et al. 2013).

Text mining brings the exciting prospect of using automated methods for 
exploration of large amounts of information in texts, as available in the sci-
entific literature, to provide a conceptual network of relationships that have 
not been established by more conventional research methods even though 
the information is already available. Plato (http://platao.fmrp.usp.br) is an 
example of this approach. Figure 15.1 illustrates an example of a concep-
tual network constructed with this platform to explore the TB literature using 
important findings from studies explored in this chapter.
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Mtb will be studied in diverse experimental conditions using a broad range of tech-
nologies, including transcriptomics. One interesting study from this consortium re-
ported a surprisingly elevated number of leaderless transcripts whose expression 
was elevated when Mtb was submitted to starvation, indicating that in this condition 
leaderless transcripts could have important functions (Cortes et al. 2013).

15.6  Concluding Remarks

As we have seen, although TB transcriptomic signatures remain an open question, 
undeniable progress has been made. Moreover, defining biomarkers that do not 
overlap with other diseases is a hard task, and such biomarkers should most likely 
be adjusted to regional characteristics because studies usually are conducted with 
limited-size cohorts, even though some studies are becoming more ambitious.

Fig. 15.1  Conceptual network constructed with Plato data mining platform. This network 
was constructed from the central node “pulmonary tuberculosis”. Additional layers were added, 
searching for the terms “lymphocytes”, “macrophages”, and “neutrophils”, in that order. To avoid 
an excessive number of nodes and to obtain a readable picture, we limited the outcomes to nodes 
with high edge strengths and to the following semantic types: organisms, diseases, macromol-
ecules and phenomena and processes. By clicking on the lines, the platform retrieves the articles 
where the relationships between the terms or concepts were described. The result is a practical and 
insightful way to search the tuberculosis literature, especially for the correlations between terms 
representing disease, genes, proteins, cells, etc. This tool could help to save time and increase the 
accuracy of looking for TB articles describing related events
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Understanding the infectious nature of Mtb, almost a human commensal, and its 
interactions with hosts has shed light on its biology. In Fig. 15.2, we summarize the 
major progress made with the transcriptomic studies in TB as well as the challenges 
that still need to be overcome. Deep-sequencing RNA technologies as well as the 
development of new bioinformatic tools hold great promise for future advances 
because they could be used to describe the complexities of the transcriptomes of the 
host and pathogen at the same time during infection. The next decade surely will be 
revolutionary in the study of TB infection.

Fig. 15.2  Advances and challenges in TB transcriptomic studies. Over the past few years, 
transcriptomic studies about TB, exploring the pathogen and its interactions with experimental 
hosts (such as mice and non-human primates) and humans, have been conducted to advances in 
the knowledge about this pathology, such as comprehension of disease establishment, its develop-
ment and also the different stages of immune response. Transcriptomic research has shed light also 
on molecular mechanisms behind virulence, resistance to drugs and effectiveness of therapeutical 
and prophylactic interventions. However, the interpretation and exploration of this huge amount of 
transcriptomic data available to define biosignatures are still great challenges. Specifically, these 
challenges include determining biomarkers that can be used in pre-clinical and clinical studies and 
also translated to humans, standardizations of experiments and studies to enable direct compari-
sons and distinguish candidate biosignatures in TB from other diseases with similar characteristics. 
Data banks and integrated platforms of studies, which include transcriptomic experiments associ-
ated with other ‘omic’ approaches and biostatistics tools, promise to open a pathway to solve these 
questions
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Abstract The most fundamental level at which the genome information gives rise 
to the phenotype is by the expression of its genes. Recent results from the ENCODE 
project, a 10-year effort by hundreds of scientists to characterize the human genome 
in depth, have indicated that a much larger proportion of our DNA is likely to be 
expressed and functional than previously estimated. This has put the focus back on 
RNA as a key component of organism development, meaning that the measurement 
of gene expression continues to be a critical tool employed across drug discov-
ery, and life science research. Microarray technology has yielded much important 
information about the ‘transcriptome’ (or the entire profile of transcripts in a spe-
cies) and as such has been invaluable in providing the link between information 
encoded in the genome and phenotype. The great benefit of this approach is that it 
allows a researcher to investigate the expression of every gene in the genome in a 
single experiment. This technology has helped scientists to understand biological 
mechanisms of complex diseases, as Chagas disease or American trypanosomiasis, 
caused by an intracellular parasite, Trypanosoma cruzi, and it is a leading cause of 
heart failure in Latin America. In this chapter, we will explore the basic aspects of 
Chagas disease and how research based on genome and trasncriptome exploration 
has been helping our understanding about different aspects and clinical outcomes 
of the disease.

16.1  Epidemiology of Chagas Disease

Chagas disease, also called Human American trypanosomiasis, was named after the 
Brazilian medical doctor Carlos Chagas (Fig. 16.1a), who discovered the disease in 
1909 during a campaign to fight malaria in Brazil (Moncayo 2010). Carlos Chagas 
identified, associated with diseased individuals living in poor dwellings (Fig. 16.1b), 
a triatomine blood-sucking insect (Fig. 16.1c). He found in the intestine of the bug, 
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flagellated parasites, which he named Trypanosoma cruzi (T. cruzi) (Fig. 16.1d). 
He also found T. cruzi parasites in the blood of sick people, and soon correlated the 
parasitaemia (level of parasites in the blood) with some symptoms of the disease, 
such as fever, anemia, lymphadenopathy, splenomegaly and a cardiac form of the 
disease (Kropf 2011; Kropf and Sa 2009; Pays 2009).The disease, begins with a 
short acute phase characterized by high parasitemia followed by a life-long chronic 
phase maintained with scarce parasites (Golgher and Gazzinelli 2004). T. cruzi is re-
sponsible for the infection of ~ 10 million individuals worldwide. The World Health 
Organization (WHO) estimates that over 25 million people are at risk of the disease, 
and that more than 10,000 people died from it in 2008 alone (Hotez et al. 2012). 
Natural transmission of Chagas disease has been controlled in many countries by 
insecticide targeting of haematophagus bug populations, as well as improved so-
cioeconomic status and quality of dwelling in Latin America. The list of possible 
infection routes of Chagas disease includes vectorial, transfusional (through T. cruzi 
infected blood), congenital, through organ transplantation, oral transmission and 
accidental, through laboratory accidents. In 2006 WHO certified Brazil as being 
free of transmission through Triatoma infestans, the main intradomicilliary vec-
tor of Chagas disease (Committee 2002). However, there were new reports of oral 
transmission and oral outbreaks in the Amazon region showing that this victory was 
only partial (Dias 2009). Chagas disease has even spread outside endemic countries 
and it has been estimated that 700,000 infected people are living outside of Latin 
America (Hotez et al. 2012). It has been estimated that in 2007 there were > 300,000 

Fig. 16.1  Chagas disease, also called human American trypanosomiasis, was named after the Bra-
zilian medical doctor Carlos Chagas (a), he identified, associated with diseased individuals living 
in poor dwellings (b), a triatomine blood-sucking insect (c), he found flagellated parasites in the 
intestine of the bug, which he named Trypanosoma cruzi (T. cruzi trypomastigote in a thin blood 
smear stained with Giemsa (d). (Image credits: a Public domain. b José Eduardo R. Camargo. c 
and d Public Health Image Libray—Centers for Disease Control and Prevetion—CDC and Labo-
ratory Identification of Parasitic Diseases of Public Health Concern—DPDx)
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individuals infected with T. cruzi in the United States, > 5500 in Canada, > 80,000 in 
Europe and in the western Pacific region, > 3000 in Japan and > 1500 in Australia, 
thus, transmission by blood transfusion and organ transplants are becoming a new 
threat for T. cruzi infection in non-endemic countries (Hotez et al. 2012; Lescure 
et al. 2010; Diaz 2007). The pathogenesis of Chagas disease remains largely un-
known, and there are still no effective vaccines or drugs to prevent or treat chronic 
infection with T. cruzi.

16.2  T. cruzi Life Cycle and Triatomine Vectors

T. cruzi is known to infect eight different mammalian orders including humans and 
it is transmitted by insect vectors of the Reduviidae family and the subfamily of 
Triatomines (Committee 2002). There are many popular names for the vector. In 
Brazil the common name for the vector is Barbeiro—“the barber” and the English 
name is the kissing bug. Around 100 different triatomine species are susceptible to 
infection with the T. cruzi parasite but the principal vector specie has been Triatoma 
Infestans and in Brazil, the species Triatoma sordida and Panstrongylus megistus 
are also prevalent (Moncayo and Ortiz Yanine 2006; Siqueira-Batista et al. 2011; 
Dias 2009). T. cruzi has different developmental stages in its life cycle: Epimas-
tigotes are the form stage that proliferates by cell division in the stomach of the 
triatomine bugs, they migrate to the distal part of the bug’s intestine, and by a pro-
cess called metacyclogenesis, they transform into metacyclic trypomastigotes, the 
infective form for the vertebrate host. The insects feed on mammals by sucking 
blood, and T. cruzi is transferred via their faeces, deposited on the skin of the host 
after feeding. The metacyclic trypomastigotes are able to penetrate through mucous 
membranes as well as skin injuries, when the host scratches the skin after being 
bitten or rub their eye. The parasites then invade host cells, transforming into amas-
tigotes which replicate and differentiate into trypomastigotes, disrupting host cells 
and infecting various cell types with a particular tropism for cardiac, skeletal and 
smooth muscle cells (de Souza et al. 2010). Finally, the bugs are infected by ingest-
ing trypomastigotes in the blood from infected hosts, thus completing the T. cruzi 
life cycle (Fig. 16.2).

16.3  Clinical Features of Chagas Disease: Acute  
and Chronic Phases of Infection

The parasite T. cruzi produces pathological processes in mammals that can occur 
in various organs and tissues. When T. cruzi is transmitted, it invades the victim’s 
bloodstream and the lymphatic system. Hereafter it nestles in many tissues includ-
ing the skeletal muscle and cardiac tissue, which causes immune responses and in-
flammation. Chagas disease has an acute as well as a chronic phase. Morbidity and 
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mortality are higher in the acute phase for children under five, immune-suppressed 
people or people with high parasitemia as in patients from outbreaks of food-borne 
Chagas disease. The acute phase can occur at any age in disease endemic areas, 
however, the highest frequency is before the age of 15, typically starting in the age 
group 1–5 years. The acute phase of Chagas disease usually lasts 6–8 weeks, and 
most frequently is oligo- or asymptomatic and after these phase, most patients ap-
pear to be healthy (Moncayo and Ortiz Yanine 2006). The infection by T. cruzi can 
then only be detected by serological or parasitological tests. In the acute phase, if 
the transmission is vectorial, visible port of entry can be identified, such as the cha-
goma, a skin lesion in exposed areas of the body, or the Romaña’s sign, a purplish 
edema on the lids of one eye (Fig. 16.3). The sign occurs only in about 10 % of 
infected persons, and can easily be misdiagnosed with conjunctivitis, for example, 
which is common in rural areas (Dias 1997; Delaporte 1997; Roveda 1967). Other 

Fig. 16.2  T.cruzi life cycle: An infected triatomine insect vector takes a blood meal and releases 
trypomastigotes in its feces near the site of the bite wound. Trypomastigotes enter the host through 
the wound or through intact mucosal membranes, such as the conjunctiva 1. Inside the host, the 
trypomastigotes invade cells near the site of inoculation, where they differentiate into intracellular 
amastigotes 2. The amastigotes multiply by binary fission 3 and differentiate into trypomastigotes, 
and then are released into the circulation as bloodstream trypomastigotes 4. The “kissing” bug 
becomes infected by feeding on human or animal blood that contains circulating parasites 5. The 
ingested trypomastigotes transform into epimastigotes in the vector’s midgut 6. The parasites mul-
tiply and differentiate in the midgut 7 and differentiate into infective metacyclic trypomastigotes 
in the hindgut 8. (Life cycle image and information credit: Laboratory Identification of Parasitic 
Diseases of Public Health Concern—DPDx (http://www.cdc.gov/dpdx))
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clinical features of the acute phase is an excessive activation of the immune system 
that includes cytokinaemia (high plasma levels of cytokines), intense activation of 
B and T cells. Generic and unspecific symptoms include diarrhea, vomiting, head-
ache, muscle pain, loss of appetite and extreme fatigue. These symptoms are not 
very specific, and can easily be confused with other disease etiologies (Coura and 
Borges-Pereira 2010). Shortly after the acute infection starts, T. cruzi components—
including its DNA and membrane glycoconjugates—trigger innate immunity via 
Toll-like receptors in macrophages and dendritic cells, among other cell types. Upon 
activation, cells from monocytic lineage produce high levels of proinflammatory 
cytokines	like	interferon	gamma	(IFN-γ),	interleukin	12	(IL-12)	and	Tumor	necrosis	
factor	alpha	(TNF-α).	The	high	level	of	IFN-γ-induced	chemokines	and	adhesion	
molecules play an important role in promoting the inflammatory environment in the 
heart of animals infected with T. cruzi.	In	fact,	mice	lacking	the	functional	IFN-γ	
gene display major changes in the CD4+ T and CD8+ T lymphocytes composi-
tion of inflammatory infiltrates, as well as enhanced tissue parasitism in the heart 
(Campos et al. 2004). The essential role of some of these cytokines (e.g. IL-12 and 
TNF-α)	and	reactive	nitrogen	intermediates	(RNI)	in	the	control	of	parasitemia	and	
tissue parasitism is evidenced during the early stages of infection in the murine 
model (Junqueira et al. 2010).

More precisely, the cells from the macrophage lineage exposed to T. cruzi will 
produce	IL-12	that	 is	responsible	for	 initiating	IFN-γ	synthesis	by	Natural	Killer	
(NK)	cell.	IFN-γ	plays	a	major	role	in	resistance	through	the	activation	of	macro-
phages to produce high levels of RNI that will effectively control parasite replica-
tion (Fig. 16.4). If not controlled by the innate immune system of the host, the infec-
tion is fatal as shown in experimental models employing mice lacking functional 
genes	for	the	IL-12,	IFN-γ,	IFN-γ	receptor,	TNF-α	receptor	or	inducible	nitric	oxide	

Fig. 16.3  Romaña’s sign, a 
purplish edema on the lids of 
one eye that is formed during 
T.cruzi infection. (The illus-
trations of chagasic patient 
was obtained from: Public 
Health Image Libray—Cen-
ters for Disease Control and 
Prevetion—CDC/Dr. Mae 
Melvin)
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(NO) synthase (iNOS) genes (Junqueira et al. 2010; Gazzinelli and Denkers 2006; 
Golgher and Gazzinelli 2004).

The chronic phase starts with an effective acquired immunity leading to para-
sitemia drop to a level where it is undetectable with direct parasitological tests, 
and when symptoms and clinical manifestations typically disappear. However, de-
pending on different factors 10–40 % of patients in the chronic phase will develop 
lesions in target organs, like the intestine (intestinal mega syndrome), esophagus 
(mega esophagus) and heart (cardiomyopathy), however, up to 70 % of infected 
people remain in an indeterminate asymptomatic form (ASY) for their whole life. 
The most important clinical consequence of chronic Chagas disease is the chronic 
Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy that de-
velops in up to 30 % of infected individuals. A significant proportion of those pa-
tients subsequently develop dilated cardiomyopathy with a fatal outcome. Heart 
failure of Chagasic aetiology has a worse prognosis and 50 % lower survival rate 
than cardiomyopathies of non-inflammatory aetiology, like ischemic and idiopathic 
dilated cardiomyopathy (Machado et al. 2012; Bilate and Cunha-Neto 2008). The 
pathogenesis of CCC is still matter of intense debate. The susceptibility factors that 
lead to 30 % of individuals to develop CCC after T. cruzi infection remain unknown. 

Fig. 16.4  Immune response to T.cruzi infection. In the initial stage of T. cruzi invasion cells from 
the innate immune system [dendritic cell, macrophages and natural Killer cells (NK cells)] pro-
duce	cytokines	 (IL-12,	TNF-α	and	 IFN-γ)	and	effector	molecules	 [reactive	nitrogen	 intermedi-
ates (RNIs)] that lead to parasite destruction. At the same time, innate immune cells, particularly 
dendritic cells, make the bridge between the innate and acquired immunity, producing cytokines 
(IL-12)	necessary	for	differentiation	and	clonal	expansion	of	T	helper	1	(Th1)	CD4+.	IFN-γ	pro-
duced by CD4+ activates effector mechanisms in macrophages to destroy both amastigotes and 
phagocytosed trypomastigotes. IFN interferon, IL interleukin, Thp Th precursor cell, TNF tumour 
necrosis factor
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However, there are three main pathogenetic mechanisms to explain CCC develop-
ment: cardiac dysautonomy, disorders of the microvascular circulation and inflam-
matory/immunological tissue damage. Regardless of the mechanisms underlying 
the initiation and maintenance of the myocarditis, the bulk of the evidence indicates 
that the inflammatory infiltrate is a significant effector of heart tissue damage. In-
flammatory cytokines are produced during the chronic phase of Chagas disease. 
Mononuclear cells increase their cytokine production, leading to increased plasma 
levels	 of	TNF-α	 and	 IFN-γ,	 and	 are	 even	 detected	 in	 infected	ASY	 individuals,	
probably in response to parasite persistence. The subset of patients that develop 
CCC displays an array of immunological alterations consistent with an exacerbated 
Th1	immune	response;	The	predominance	of	production	of	IFN-γ	and	TNF-α	(Abel	
et al. 2001) associated to the increased expression of the Th1 transcription fac-
tor T-bet in the heart, which is not controlled by regulatory T cells in situ is evi-
dence corroborating that the Th1 response is involved in tissue damage in CCC.
Chagas thus remains a neglected disease, with no vaccines or anti-parasitic drugs 
proven efficient in chronically infected adults, when most patients are diagnosed. 
Development of effective drugs for CCC is hampered by the limited knowledge of 
its pathogenesis. T cell migration to the myocardium and inflammation, cytokine/
chemokine-induced modulation of myocardial gene and protein expression, and 
genetic components controlling such processes are clearly key events (Nogueira 
et al. 2012). Available data suggests that investigation of the affected heart will 
yield the most complete insights on pathogenetic events that are crucial for CCC 
development.

16.4  Understanding Chagas Disease by Trascriptome 
Analysis in Patients, in Vitro and in Animal Models

Fundamental questions regarding the pathogenesis of Chagas disease remain unex-
plained like why different patients develop the cardiac, digestive, cardiodigestive 
or asymptomatic clinical forms of the disease. A powerful approach to pursue these 
questions is using different tools to compare and identify genes and/or pathways 
implicated in the establishment of the infection and pathogenesis. The first gene 
expression analyses were performed primarily based on observations from immu-
noblotting, polymerase chain reaction and/or Northern blotting. These techniques 
were limited only allowing the evaluation of a few pre-selected genes at one time. 
Another limitation was the access to human heart samples from the acute phase of 
the disease, so the majority of data available is based on murine models and/or using 
cells from in vitro T. cruzi infection. Several reports have been published with these 
approaches with a high variability in parasite strains, host cells, mammalian species 
and times of infection generating a complex picture and few general conclusions. 
Transcriptome analysis and other high throughput technologies have revolutionized 
the field of molecular biology and afforded the opportunity to profile the expression 
of thousands of genes.
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16.5  Transcriptome Analysis in Vitro Models

In 2002, Burleigh et al., have performed the first microarray analysis to identify 
differences in gene expression using an in vitro model of human fibroblasts infected 
with T. cruzi (Vaena de Avalos et al. 2002). For this experiment, they used a glass 
slides high-density microarrays consisting of ~ 27,000 human cDNAs that were hy-
bridized with fluorescent probes generated from T. cruzi-infected human fibroblasts 
(HFF) at early time points following infection (2–24 h). Surprisingly, they observed 
that no genes were induced ≥ 2-fold in HFF cDNA between 2 and 6 h post-infection 
(hpi). A significant increase in transcript abundance for 106 host cell genes was 
observed only at 24 hpi. Among the most highly induced was a set of interferon-
stimulated genes, indicative of a type I interferon (IFN) response to T. cruzi. The 
authors concluded that the delay of T. cruzi to induce host cell transcriptional re-
sponses is indicative that changes in host cell gene expression may correlate with 
a particular parasite-dependent event such as differentiation or replication. These 
events are performed by T. cruzi silently without eliciting major changes in the host 
fibroblasts gene expression.

Because cardiac myocytes are important targets of initial infection with T. cru-
zi, in 2009 another study compared gene profiling of primary cultures of cardiac 
myocytes infected for 48 h with T. cruzi (Goldenberg et al. 2009). They employed 
microarray analysis with glass slides containing a total of 31,769 70mer oligonucle-
otide probes. As expected, the results are diverse from the study done using fi-
broblasts and show a substantial alteration in expression of more than 5 % of the 
sampled genome with major alterations in genes related to inflammation, immuno-
logical responses and cell adhesion. Among the pathways most affected from the 
list of up-regulated genes were those involved in enzymatic activity, immune and 
stress responses, apoptosis and activation of the proteasome, and calcium-activated 
potassium channel activity. Down-regulated pathways included calcium and second 
messenger signaling, cytoskeleton elements (actin filaments, stress fibers, myosin), 
enzymatic degradation (lysozyme, trypsin, metallopeptidases) and extracellular 
matrix. This study showed that the cardiac myocytes themselves contribute to the 
remodeling process even in the absence of other confounding factors, even though 
in vivo models show contributions by fibroblasts and heart-infiltrating inflamma-
tory cells.

16.6  Transcriptome and Proteome Analysis in Rodent 
Models

The study of chagasic heart disease has been aided by the use of the mouse model 
which recapitulates many of the functional and pathological alterations of the hu-
man disease. In 2003 two different groups have performed microarray analysis to 
detect differences in gene expression in the heart of mice experimentally infected 
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with T. cruzi. They have used different microarray platforms i.e., Garg et al., have 
used commercial nylon membranes microarrays containing a repertoire of 1176 
mouse genes printed on the arrays to evaluate the gene expression in whole heart 
of mice infected with SylvioX10/4 strain of T. cruzi for 3, 37 and 110 days post 
infection (dpi) Garg et al. 2003 and Mukherjee et al., have used glass microarrays 
containing ~ 27,400 mouse cDNAs clones to evaluate gene expression also in whole 
heart from C57BL/6 129sv mice infected for 100 days with the Brazil strain of T. 
cruzi (Mukherjee et al. 2003).

Garg et al., showed that out of a total of 1176 genes printed on the arrays, 31, 89, 
and 66 genes were differentially regulated in the context of their expression trends at 
3, 37, and 110 dpi, respectively. They showed that all of the differentially expressed 
genes in the myocardium at 3 dpi were up-regulated and encoded immune-related or 
host defense/stress proteins. During the acute phase (37 dpi), mRNA species for 77 
of the 89 differentially regulated genes were increased by at least twofold. Of these, 
27 transcripts were increased by > 10-fold, and 18 of the 27 transcripts encoded the 
immune-related proteins. Out of the 12 transcripts that were reproducibly repressed 
at 37 dpi, eight were characterized to encode proteins involved in mitochondrial 
energy metabolism. Surprisingly, a majority of the differentially expressed genes 
(> 63 %) in the myocardium of infected mice at 110 dpi were repressed relative 
to normal controls. From the 66 differentially expressed gene at 110 dpi, 42 were 
repressed and of these, 26 (60 %) transcripts have implications in sustaining the 
mitochondrial energy metabolism and maintaining the cytoskeletal and extracel-
lular matrix (ECM) structure and function. The study performed by Murkherjee 
et al. also demonstrated the induction of several genes important to cardiac re-
modeling, like cytokines and growth factor genes, including growth differentiation 
factor 3 and insulin-like growth factor-binding proteins, a family of structurally 
homologous secreted proteins that specifically bind and modulate the activities of 
insulin-like growth factors (IGF-1 and IGF-2), enhance cellular differentiation and 
stimulate cell proliferation and muscle cell differentiation. Results from both stud-
ies are in accordance showing changes in oxidative phosphorylation and depressed 
energy metabolism. Soares et al., in 2010 also analysed gene expression profiling in 
total heart from C57Bl/6 mice chronically infected (8 months of infection) with T. 
cruzi (Colombiana strain) (Soares et al. 2010). They used, for their analysis, glass 
slides microarrays spotted with 32,620 mouse 70mer oligonucleotides. Their results 
showed some similarities to the previous studies. As expected, mice chronically in-
fected with T. cruzi have intense myocarditis, with a inflammatory infiltrate mainly 
composed by mononuclear cells, including CD4+ and CD8+ T lymphocytes and 
macrophages. So the arrays showed alterations in a great number of genes related 
to inflammation and immune responses. Genes coding for the macrophage cell sur-
face marker CD68 and lymphocytes antigens CD38 and CD 52 had their expression 
increased, a finding compatible with the presence of these cells in the inflammatory 
infiltrate. The expression of genes coding for adhesion molecules, such as galec-
tin-3,	P-selectin	 ligand	 (CD162),	 integrin	β3	 (CD61),	 and	 ICAM-1	 (CD54),	was	
increased in hearts of chagasic mice. Cytokine-associated genes were differentially 
expressed	in	hearts	of	chagasic	mice	like	IFNγ	and	TNF-α.	Another	characteristic	
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of hearts in chronically chagasic mice is fibrosis. The results showed up-regulation 
of genes related to synthesis of extracellular matrix components and a increased 
expression of lysyl oxidase, an enzyme that promotes the cross-linking of collagen 
fibers. The tissue inhibitor of metalloproteinase 1 (TIMP-1), an inhibitor of col-
lagen degradation, was also up-regulated in chronic chagasic hearts. Bilate et al. 
have performed a proteomic analysis in hearts of acutely T. cruzi infected Syrian 
hamsters and have shown that severe acute infection is associated to differential ex-
pression of structural/contractile and stress response proteins that may be associated 
with alterations in the cardiomyocyte cytoskeleton (Bilate et al. 2008).

16.7  Gene Expression Profiling Using CCC Patient  
Heart Samples

In 2005, Cunha-Neto et al. showed the first gene expression profiling study in hu-
man heart samples from Chagas patients and controls, obtained at transplantation 
(Cunha-Neto et al. 2005). They used a 10,386-element cDNA microarray, built 
from cardiovascular cDNA libraries, in combination with real-time reverse tran-
scriptase polymerase chain reaction analysis to compare the gene expression fin-
gerprint of five patients with CCC (serological diagnosis, positive epidemiology), 
seven with DCM (dilated cardiomyopathy in the absence of ischemic disease, and 
negative epidemiology) and four normal adult heart tissue (obtained from four non 
failing donor hearts not used for cardiac transplantation due to size mismatch with 
available recipients). They found that gene expression patterns are markedly dif-
ferent in CCC and DCM, with significant activity of IFN-inducible genes in CCC 
patients. Indeed, it showed that immune response, lipid metabolism, and mitochon-
drial oxidative phosphorylation genes were selectively up-regulated in myocardial 
tissue	of	the	tested	Chagas’	cardiomyopathy	patients.	Interferon	(IFN)-γ-inducible	
genes represented 15 % of genes specifically up-regulated in Chagas’ cardiomyopa-
thy	myocardial	tissue,	indicating	the	importance	of	IFN-γ	signaling	also	in	the	hu-
man	model.	They	also	tested	whether	IFN-γ	can	directly	modulate	cardio-myocyte	
gene	expression	by	exposing	fetal	murine	cardiomyocytes	to	IFN-γ	and	the	IFN-γ-
inducible chemokine monocyte chemoattractant protein-1. Atrial natriuretic factor 
expression	 increased	15-fold	 in	 response	 to	 IFN-γ	whereas	 combined	 IFN-γ	and	
monocyte chemoattractant protein-1 increased atrial natriuretic factor expression 
400-fold.	The	authors	concluded	that	IFN-γ	and	chemokine	signaling	may	directly	
up-regulate cardiomyocyte expression of genes involved in pathological hypertro-
phy, which may lead to heart failure. Another important result was similar to what 
was observed in the gene expression analysis in the murine model of T. cruzi infec-
tion:	They	saw	that	IFN-γ	and	T. cruzi infection can depress energy metabolism, 
thus reducing myocardial ATP generation, which has potential consequences for 
myocardial contractility, electric conduction and rhythm.
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16.8  Important Factors That Influence Gene Expression 
in CCC: Genetic Polymorphisms and MicroRNAs

16.8.1  Genetic Polymorphisms

Various studies have attempted to identify the factors that cause CCC to devel-
op in only a fraction of the population exposed to parasites. Much attention has 
been given to the environment because parasite transmission depends markedly 
on environmental factors including vector density, vector distribution, and parasite 
virulence. However, host genetic polymorphisms are also factors that determine 
infection and disease phenotypes. Familial aggregation of CCC has been described, 
suggesting that there might be a genetic component to disease susceptibility. This 
is also supported by the fact that only one third of T. cruzi-infected individuals de-
velop CCC. Despite these difficulties, major advances have been made in the field 
of genetics of some of the parasitic diseases, and provided important insights into 
the mechanisms of pathogenesis. Genetic polymorphisms can determine specific 
gene expression profiles and activate specific disease pathways which are funda-
mental factors to the increased aggressiveness of CCC. So far, several susceptibility 
loci were mapped on the human genome and some susceptibility genes were identi-
fied. It is likely that these studies will yield extremely useful information for drug 
and vaccine development. Studies has been performed in Chagas disease in order 
to identify single- nucleotide polymorphisms showing differential rates of T. cruzi 
infection and disease progression correlating susceptibility to infection (presence of 
antibody to T. cruzi) with genetic factors. Moreover, previous case-control studies 
have already identified several genes associated to human susceptibility to CCC. 
These studies have compared polymorphism frequencies in patients with CCC and 
ASY individuals. Due to the obvious importance of the Th1 T cell-rich myocarditis 
in the pathogenesis of CCC, the focus has been on genes involved in the innate and 
adaptive immune responses However, these studies were usually small and led to 
conflicting results when populations of different ethnicity were studied. Deng et 
al., in 2013 performed a GWAS study in Chagas disease, obtaining genome-wide 
genotypes for 580 Chagas seropositives e donors and cases from Brazil (Deng et al. 
2013). More than 675,000 SNPs were directly genotyped. They detected important 
SNPs associated with cardiomyopathy.One of them is the SNP rs4149018 located 
in the SLCO1B1 gene, a membrane transporter that belongs to a solute carrier fam-
ily and plays a role in drug metabolism. It is expressed in the liver, brain, heart 
and kidney, and transports organic anions, such as digoxin, bilirubin, methothrexate 
and statins. Another important SNP detected was one located in the gene HSPB8, 
a small heat shock protein whose heart specific overexpression in transgenic mice 
induces myocardial hypertrophy.
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16.8.2  MicroRNAs

Small, non-coding RNA, known as microRNA (miRNA), play a key role in de-
termining which genes are expressed. MiRNA regulate tissue-specific protein 
expression and are involved in virtually all cellular processes; up to one-third of 
mammalian mRNAs are susceptible to miRNA-mediated regulation. So far, 2042 
human miRNAs have been registered at miRBase in release 19.0 (http://microrna. 
sanger.ac.uk/). MiRNAs bind to partially complementary sequences present in the 
3’ untranslated regions (UTR) of specific “target” mRNA. This pairing between 
the miRNA and its target mRNA leads to cleavage of the target mRNA or transla-
tion inhibition, resulting in silencing of gene expression. It has been shown that 
miRNA are determinants of the physiology and pathophysiology of the cardiovas-
cular system and altered expression of muscle- and/or cardiac-specific miRNAs 
such as the miRNAs named miR-1, miR-208 and miR-133 in myocardial tissue is 
involved in heart development and cardiovascular diseases (CD), including myo-
cardial hypertrophy, heart failure and fibrosis (Bostjancic et al. 2010; Chen et al. 
2006; Divakaran 2010; Oliveira-Carvalho et al. 2012). Several targets of these three 
miRNAs are related to CD, among them RhoA and Thrap1, which are involved in 
cardiac hypertrophy, and connective tissue growth factor (CTGF), related to the 
development of fibrosis and cardiac remodeling. In 2014, Ferreira et al. published 
the first description of miRNA expression dysregulation in diseased myocardium of 
CCC patients (Ferreira et al. 2014). The most important finding was that five mus-
cle specific miRNAs, miR-1, miR-133a-2, miR-133b, and the myocardial-specific 
miR-208a and miR-208b were downregulated in CCC myocardium as compared to 
control myocardium. Importantly, this study identified putative targets of the dif-
ferentially expressed microRNA using an in silico analysis. They identified 2226 
mRNA transcripts as putative targets of these five miRNAs tested, of which 221 had 
already been experimentally validated as targets. In order to have a preliminary as-
sessment whether myocardial expression patterns of the 5 miRNAs was associated 
with concordant (i.e.inverse) expression of target miRNAs in the same tissue, they 
tested mRNA target matches from the gene expression microarray profiling done by 
Cunha-neto et al. in 2005. Among 91 mRNAs whose expression was upregulated 
in CCC myocardium, 11 were targets of the concordantly downregulated miRNAs 
tested; they also found 3 mRNA targets that were upregulated only in DCM (out 
of 47) and also 3 target mRNAs up-regulated simultaneously both in CCC and 
DCM (out of 31 genes). From the gene targets regulated by theses miRNAs there 
are one transcription factor, i.e., the inflammatory transcription factor and a known 
mediator	in	cardiac	dysfunction,	NF-κB	and	protein	kinases,	i.e.,	mitogen-activated	
protein kinases (MAPK) including p38MAPK, ERK1/2, c-Jun N-terminal kinases 
(JNK), Phosphatidylinositide 3-kinases (PI3 K), and the Protein Kinase B (AKT), 
enzymes that play important roles in signaling pathways leading to cardiac hyper-
trophy. Another important gene, direct target of miR-1 is Cyclin D 1 (CDND1). 
This protein, along with other D-type cyclins (D2 and D3) is a positive cell cycle 
regulator that plays an important role in controlling proliferation of cardiomyocytes 
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during normal heart development. Importantly, the expression of D-type cyclins is 
generally low in the adult heart and is increased in the diseased heart, where their 
upregulation may promote cardiac hypertrophy instead of cell proliferation (Hotch-
kiss et al. 2012). Accordingly, a previous study has shown that CCND1 expression 
is upregulated during T. cruzi acute infection in mice and that the expression of 
CDND1 and other types of cyclins like A1, B1 and E1 are increased in heart lysates 
of mice acutely infected with T. cruzi compared with uninfected controls (Nagajyo-
thi et al. 2006). The study showed that miR-1 controlled CDND1 might also be a 
key element in CCC.

Even with all this information generated little progress was made to determine 
efficient markers that can predict the population most at risk to develop CCC. Now-
adays, studies based on genome-wide approaches such as microarrays and RNA 
sequencing technologies have been markedly improved. The measurement of gene 
expression continues to be a critical tool employed across drug discovery, life sci-
ence research. The study of genes differentially expressed during CCC will be im-
proved and different insights linking the information encoded in the genome, and 
expressed in the transcriptome of the disease phenotype will be achieved in the near 
future.
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Abstract Expression profiling has proved itself as a discovery tool, and has gen-
erated great expectations for use in molecular diagnostics. Microarray technol-
ogy, available in robust industrial-strength implementation since the late 1990s, 
appeared well adapted to assess properties of tumours through expression profiling, 
and received much attention in the last decade. It was expected to provide prognos-
tic information (how is the condition likely to develop) as well as predictive indica-
tions on the therapy most likely to succeed. However, requirements for a clinical test 
are quite different from those applying to a research tool. The test must demonstrate 
analytical validity (technical quality of the assay, reproducibility, robustness…) as 
well as clinical validity, strong correlation between the result of the test and clini-
cal outcomes such as progression-free survival. The test also needs approval by 
regulatory authorities, and proven clinical utility: demonstrated improvement of the 
outcome for the patient in terms of survival, or reduction of toxic side effects. Cost 
considerations also enter the picture, since these are expensive tests. Thus the road 
from a scientific result to a successful diagnostic tool is long and arduous, and the 
number of expression signatures actually used in medical practice is limited. Differ-
ent approaches can be implemented: for small sets of genes, RT-PCR is the method 
of choice. For larger numbers, hundreds or thousands of genes, microarrays are the 
preferred tools. In addition, approaches based on new-generation sequencing will 
undoubtedly play a role in the future.

17.1  Introduction

17.1.1  A Very Successful Research Tool

Expression profiling has abundantly proved itself as a discovery tool, to delineate 
genes potentially involved in a process by virtue of their differential expression and 
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to investigate the mechanisms at work in physiological or pathological situations. 
The power of this technology has also generated great expectations concerning its 
use as a molecular diagnostic tool: an expression profile can be expected to pro-
vide important information on the aggressiveness of a given tumour or on the state 
of a patient’s immune system, and the microarray technology, available in robust 
industrial-strength implementation since the late 1990s, appeared very well adapted 
to assess this at the level of a few tens or hundreds of genes. Thus the use of expres-
sion signatures as clinically valuable diagnostic tools has been the subject of much 
attention since the beginning of the current century, with the hope of providing 
significant medical information on the prognosis (how is the condition likely to 
develop) as well as prediction on which therapy is most likely to be effective. To 
take one of the best known examples, expression analysis of resected tissue from 
a breast tumour can be expected to indicate how aggressive this particular tumour 
is (prognostic information) as well as whether or not chemotherapy is likely to be 
necessary (predictive information).

17.1.2  Specific Requirements for Clinical Tests

However, the requirements for a clinical test are quite different from those applying 
to a research tool. A test based on measurement of an expression signature must 
demonstrate analytical validity (technical quality of the assay, reproducibility, ro-
bustness…) as well as clinical validity, that is, conclusive demonstration of the 
correlation between the result of the test and clinical outcomes such as progression-
free survival or objective response to treatment. To be approved in most regulatory 
systems (such as the Food and Drug Administration (FDA) in the USA), and to be 
actually used in practice, the test must also meet the more difficult requirement 
of clinical utility (Simon 2008). It must be shown that its use in clinical practice 
actually improves the outcome for the patient, providing a better cure rate, longer 
survival, and/or a reduction of toxic side effects. This demonstration usually neces-
sitates a prospective clinical trial, a long and expensive undertaking. Cost consider-
ations also enter the picture, since these are expensive tests and there has to be some 
kind of economic justification to their use. Thus the road from a scientific result to 
a widely used molecular diagnostic tool is long and arduous (Koscielny 2010), and 
accordingly, the number of expression signatures actually used in medical practice 
is limited (Jordan 2010, for a list of tests used in oncology see Raman et al. 2013).

17.1.3  Different Technical Approaches

In terms of technology, three different approaches can be used to obtain an expres-
sion profile: if the number of genes to be assessed is limited, RT-PCR, an industry 
gold standard, is the method of choice. For larger sets, hundreds or thousands of 
genes, microarrays are the preferred tools. Finally, sequencing approaches based 
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on new-generation sequencing represent a promising newcomer: they have not yet 
achieved much penetration in this application, but they will undoubtedly play an 
increasingly important role. In the following parts I will use examples from each of 
these categories to show the issues involved and then conclude on the outlook for 
the future.

17.2  A Successful Low-Complexity Expression test: 
Oncotype Dx—and Others

17.2.1  An Unmet Need in Breast Cancer Management

This example, as well as the following one, concerns diagnostic tools used in breast 
cancer management (Arango et al. 2013; Kittaneh et al. 2013). Breast cancer is a 
frequent affection (lifetime risk ∼13 % for women), fairly serious (5-years survival 
rate of the order of 85 %, depending on subtype and stage), and in need of better 
prognostic and predictive biomarkers. One important issue, in the case of early-
stage breast cancer1 is whether or not to perform chemotherapy after resection of the 
tumour. Retrospective studies show that chemotherapy improves (moderately) the 
5-years survival rate of women that undergo it, at the expense of fairly severe side 
effects; they also demonstrate that this is only effective in approx. 25 % of the pa-
tients, so that most are treated unnecessarily. Thus a test that would provide strong 
prognostic information could be used to avoid chemotherapy for those women 
whose prognosis is very good and, if it was predictive of the effect of the treatment, 
could lead to treat only those in which chemotherapy can be expected to be useful.

17.2.2  An RT-PCR Test that Works with Fixed Samples

A number of laboratories have accordingly studied expression profiles in breast 
tumour samples, hoping to derive expression signatures with prognostic and pos-
sibly predictive values—in fact, more than 50 expression signatures have been pub-
lished for breast cancer (see Venet et al. 2011 for a list), and several of them are 
offered as clinical tests (Raman et al. 2013). The Oncotype Dx breast cancer test 
marketed by the company Genomic Health is based on the study of 250 candidate 
genes in samples from 447 patients, resulting in the selection of a set of 16 genes 
(plus 5 reference genes) whose expression levels combined according to an alge-
braic formula define a “recurrence score” for each sample (Paik et al. 2004). This 
signature demonstrated clinical validity in an additional set of 668 tumours and 
allowed classification of patients into low-risk (51 % of patients, recurrence rate 
6.8 %), intermediate risk (22 %, 14.3 % recurrence rate) and high-risk (27 %, 30.5 % 

1 Defined as a small tumour ( < 2 cm) with no axillary node involvement.
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recurrence rate) (Fig. 17.1). It is important to note that expression was measured by 
real-time RT-PCR and that the method had been adapted to work on formalin-fixed, 
paraffin-embedded (“FFPE”) tumour tissue. This allowed the authors to use FFPE 
samples for retrospective studies, a very significant advantage since this is by far 
the most widely used storage method for tumour samples—only a small fraction are 
preserved as fresh-frozen tissue, especially in the USA.

17.2.3  Successful Clinical and Commercial Development  
of Oncotype Dx

The test has been marketed by Genomic Health since 2004 as a “laboratory-devel-
oped test” (i.e. performed by the company on samples sent to it, not marketed in kit 
form), thus not requiring formal FDA registration, although the laboratory itself had 
to be certified. It has been shown to be predictive for the effect of chemotherapy 
in low-risk patients, allowing avoidance of this treatment for that category. It has 
also been shown to have prognostic value in some categories of more advanced 
breast cancer. An extensive prospective clinical trial called TAILORx (Trial As-
signing IndividuaLized Options for Treatment (Rx)) is underway to more precisely 
evaluate its predictive value in several situations, with final results expected in 2017 
(Zujewski et al. 2008).

In spite of its cost (over US$ 3000), Oncotype has been quite successful, with an-
nual sales now approaching 100,000 per year. It is actually, by far, the most success-
ful gene expression test. This is because it answers a real medical need (avoiding 

Fig. 17.1  Performance of the Oncotype test developed by Genomic Health: percentage of patients 
remaining free from distant recurrence of breast cancer (ordinate) as a function of time post-treat-
ment	(years,	abscissa)	for	patients	whose	recurrence	score	according	to	the	test	is	less	than	18	( low 
risk),	between	18	and	31	( intermediate risk)	and	above	31	( high risk). The difference between the 
groups is significant at p < 0.001. (Data from Paik et al. 2004)
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unnecessary chemotherapy) in a frequent type of cancer. It was also first on the mar-
ket for this application, and the use of samples embedded in paraffin blocks (FFPE, 
Formalin-Fixed Paraffin-Embedded) enabled early validation on retrospective sam-
ples and facilitates performance of the test in the normal clinical environment. The 
test has not been approved by the FDA, but since it is a “laboratory-developed test” 
(LDT) performed in-house by the company on samples received from hospitals, it 
does not need such registration, although the facilities had to be approved under 
the Clinical Laboratory Improvement Amendments (CLIA) regulations. Special-
ised expert panels such as, in 2011, the 12th St Gallen International Breast Cancer 
Conference Expert Panel have agreed that Oncotype DX could be used where avail-
able to predict chemotherapy responsiveness in certain situations (Goldhirsch et al. 
2011; Goldhirsch et al. 2013). According to the company, essentially all insurance 
companies in the USA have agreed to reimburse the test, resulting in a covered 
population exceeding 200 million. Interestingly, the National Institute for Health 
and Care Excellence (NICE) in the UK, an official body charged with evaluating 
tests for their cost-to-effectiveness ratio before inclusion in the national health ser-
vice, agreed to approve Oncotype only after its price was reduced by a considerable 
(but undisclosed) amount. This was necessary as NICE requires treatment to cost no 
more than £ 20,000–30,000 per “quality-adjusted life year” (“QUALY”) saved—an 
illustration of how cost considerations can be taken into account for such expensive 
tests…

17.2.4  Other Low-Complexity (RT-PCR) Expression Tests

A number of other expression tests using RT-PCR technology to assess a relatively 
small number of genes are marketed for clinical use, although none of them has 
(so far) achieved really wide acceptance. In the breast cancer area, the PAM50 test 
uses expression values from 50 genes to classify breast cancer into four subtypes 
that respond differently to standard therapies (Parker at al. 2009), and is marketed 
as ProSigna by Nanostring (Seattle, USA). Oncotype Dx prostate, another expres-
sion assay from Genomic Health, combines the expression of 17 genes measured 
on needle biopsies with other clinical variables to suggest the best treatment for 
prostate cancer (Knezevic et al. 2013).

A whole category of tests is still under development, but shows good promise: 
profiling microRNA (miRNA) expression. MiRNAs are very much involved in gene 
regulation and expression, and show differential expression in cancer cells (Lorio 
and Croce 2009). They are being developed as diagnostic and prognostic tools, and 
it seems that small sets of miRNAs (assessed by PCR methods) have good predic-
tive value for several types of cancer affecting lung, ovaries or pancreas (Schultz 
et al. 2014). Corresponding tests should soon be available for clinical purposes.

In all cases the expression tests performed by RT-PCR can be performed on 
FFPE samples, and benefit both from the recognition of RT-PCR as the gold stan-
dard and from the availability of many fixed samples for retrospective studies. This 
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has certainly played an important part in the success of Oncotype Dx Breast, to-
gether with its “first-player” status and with the avoidance of lengthy FDA approval 
procedures thanks to its performance as a laboratory-developed test (LDT).

17.3  An Array-Based Expression Test: Mammaprint  
(and Some Others)

17.3.1  An Early, High-Impact Study

The aim of the Mammaprint test is similar to that of Oncotype: obtaining prognostic 
information in the case of early breast cancer, with the objective of avoiding un-
necessary chemotherapy. It is based on some of the most significant early papers 
on expression profiling in oncology, published in 2002 (van ’t Veer et al. 2002; 
van de Vijver et al. 2002). This was one of the first studies using oligonucleotide 
arrays representing the whole set of human genes (manufactured at the time by 
Rosetta Inpharmatics, Kirkland, USA), done at the Netherlands Cancer Institute 
on an extensive set of fresh-frozen samples from patient tumours. It delineated a 
set of 70 genes that gave good discrimination between “good prognosis” and “bad 
prognosis” patients (Fig. 17.2). The test was later validated in an independent set of 

Fig. 17.2  Performance of the Mammaprint test developed by Agendia: Overall survival (ordinate) 
for lymph-node negative breast cancer patients as a function of years after treatment (abscissa). 
Top curve, patients with a “good prognosis” expression signature; bottom curve, patients with a 
“poor prognosis” expression signature (60 and 91 patients initially). (Data from Fig. 2D of van de 
Vijver et al. 2002)
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patients, and a company called Agendia (Amsterdam, the Netherlands), was spun 
off the academic centre in 2003 to commercialize the test.

17.3.2  A Long Path to Wide Commercialization

The test, using a custom microarray manufactured by Agilent, was launched in Eu-
rope in 2004, and it was later incorporated into a long-term prospective study called 
MINDACT (Microarray In Node-negative and 1–3 positive lymph node Disease 
may Avoid ChemoTherapy), that aims to find out whether or not the test has clinical 
utility—this clinical trial is still ongoing (Cardoso et al. 2007). Meanwhile, Agendia 
began commercialisation of the test in the USA and was soon ordered by the FDA to 
obtain clearance from that agency (although the test was technically an LDT, being 
performed at the Agendia laboratories on frozen samples sent to them). The FDA 
developed	 a	 new	 formalism	 for	 such	 tests,	 called	 IVDMIA	 ( In Vitro Diagnostic 
Multivariate Index Assay), and meant to apply to complex tests whose interpretation 
depends on non-transparent, proprietary bioinformatics algorithms that cannot be 
independently derived or verified by the end user. Mammaprint was finally cleared 
by FDA in 2007 and marketed in the USA, at a price similar to that of Oncotype 
(4,200 USD). The test has been recognized as providing prognostic (Goldhirsch 
et al. 2011) and possibly predictive value (Goldhirsch et al. 2013). Since Agendia 
is a privately held company (in contrast to Genomic Health, listed on Nasdaq and 
therefore providing financial reports), sales figures are not available, but the uptake 
seems to have been slow, and the number of tests sold per year is probably in the 
low thousands, much less than for Oncotype. From 2011 on, Agendia has been 
able to accept fixed (FFPE) samples (Mittempergher et al. 2011), with a significant 
impact on sales that have more than doubled year over year. In the US, a number of 
insurance companies have agreed to reimburse the Mammaprint test, with a cover-
age claimed by Agendia to represent most of the potential patients.

17.3.3  Other Microarray-Based Expression Tests

Other companies have developed expression tests with clinical validity and in some 
cases have obtained FDA approval. The TOO test developed by Pathwork Diagnos-
tics (Redwood City, USA) is an interesting example. This aims to define the tissue 
of origin for cancer that is discovered only once it has metastasized to several loca-
tions: knowing the organ in which the original tumour appeared can have important 
implications for therapy. Accordingly, the test examines a 1500-gene expression 
profile using an Affymetrix gene chip, and determines its similarity with expression 
profiles for 15 tissues or organs (Dumur et al. 2008). Results are fairly clear-cut, as 
the original expression profiles are largely conserved in metastatic cells (Fig. 17.3). 
The test was commercially launched in 2006, as a laboratory-developed test using 
fresh-frozen samples. It received FDA approval in 2008, and a version using fixed 
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samples was subsequently approved in 2010. A large validation study including 
1100 samples was conducted, and coverage by Medicare was obtained in 2012. 
However, after spending more that 50 million USD on test development over almost 
a decade, the company went out of business in April 2013. This illustrates the “stay-
ing power” needed to achieve successful marketing of a complex test; it may also 
reflect the fact that the origin of a tumour is now considered less important than was 
believed 10 years ago2.

Another clinical test based on RNA profiles is marketed by the Dutch company 
Skyline Dx (Rotterdam, the Netherlands) and is aimed at characterising subtypes 
of acute myeloid leukaemia. Using an Affymetrix array and analysing RNA from 
a bone marrow sample, it assays for the presence of several specific translocations 
(through presence or absence of mRNA from the corresponding fusion genes) while 
measuring expression levels for several other genes. Called the AML profiler, this 
test is CE-marked in Europe and awaiting FDA approval for the US.

Additional array-based expression test worth mentioning are Coloprint (from 
Agendia), assessing an 18-gene expression profile to indicate the prognosis of colon 
cancer, myPRS from Signal Genetics (New York, USA) that assesses 700 genes on 
an Affymetrix array to provide risk stratification of multiple myeloma patients… 
and quite a few others (Raman et al. 2013), none of which however have achieved 
the visibility and commercial success of Oncotype or Mammaprint.

2 The traditional, organ-based classification of cancers tends to be replaced by characterization in 
terms of mutations present in the tumor cells.

Fig. 17.3  Performance of the Tumor Of Origin (TOO) test developed by Pathwork diagnostics. 
The diamonds show the similarity score between the patient’s (secondary) tumour and 15 tumour 
types, and clearly point to colorectal cancer as the tumour of origin in the case presented. Adapted 
from the company’s Web site, accessed May 2012 (no longer active as the company has failed)
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17.4  The (Limited?) Promise of RNA-Seq

17.4.1  Profiles by RNA-Seq in Research and in the Clinic

For research applications, sequence-based approaches have essentially displaced 
microarrays: they provide digital information, can reach any required sensitivity 
by adjusting the sequencing depth, identify novel transcripts, and their cost is now 
competitive with a microarray experiment (Wang et al. 2009; McGettigan 2013). 
In terms of clinical applications, however, these advantages are less evident, and 
indeed no expression test based on RNA-seq technology has yet been commercially 
offered for clinical use. The sheer amount of data produced by NGS approaches, a 
definite advantage in research, can be detrimental in the clinical situation; regula-
tory issues are still somewhat unclear for NGS data, and the need for extensive 
bioinformatics processing of the results is a serious issue, both in terms of infra-
structure and for regulatory purposes.

17.4.2  Tumour Profiling at the DNA (and RNA?) Level

New-Generation Sequencing (NGS) is indeed penetrating in the clinical space, for 
the purpose of characterising the mutations present in tumours using either sets 
of relevant genes (“panels” comprising from 50 to several hundred genes), whole 
exomes (a complete set of coding sequences) or in some cases whole-genome se-
quencing (Desai and Jere 2012). The aim here is to characterise the tumour by its 
mutation pattern and to find “actionable mutations”, that is, mutations that are as-
sociated with an approved or experimental drug targeted at the corresponding pro-
tein. Such clinical applications are actively pursued and the various issues raised by 
their introduction into routine clinical practice are being dealt with—for example, 
the Illumina MiSeq sequencing system has recently been validated by the FDA for 
clinical use. In a few cases, the schemes being implemented also include character-
ization of the tumour by its expression pattern, naturally obtained in this context by 
RNA-seq (Balko et al. 2013). This may develop in the future, but the complexity of 
the data and the regulatory issues involved will probably limit the extent to which 
RNA-seq will become clinically significant.

17.5  Some Important Points Applying to All Expression-
Based Clinical Tests

As can be gathered from this chapter, the road to actual clinical implementation 
of expression profiles (mostly in oncology) has been rather bumpy, with a limited 
number of successes and many failures. Now that we have described some of the 
actual implementations, let us review the issues involved.
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17.5.1  Validity of Signatures

In the initial period of expression profiling for clinical purposes (done at that time 
essentially with microarrays), there have been some serious issues with the design 
of the studies. In experiments profiling a hundred samples on arrays representing 
25,000 genes, with relatively noisy data, the opportunity for false discovery is high. 
This is called the “curse of dimensionality”: with many more features than samples, 
there is a high risk of over fitting the data, i.e. finding classifications that have no 
foundation and will not hold on a new set of samples. Avoiding this requires rigor-
ous statistical methods and, for example, a complete separation between the “train-
ing set” of samples (used to derive a clinically meaningful expression signature) 
and the “test set” on which validation is performed. This was not always the case in 
the first publications, where, for example, the test set was sometimes used to choose 
between alternative models derived using the training set—thus resulting in circular 
reasoning (Simon et al. 2003; Campbell 2004).

In addition, and even when there is no issue with the statistical methods, the set 
of genes included in the signature is not unique: alternative choices are possible 
with essentially equivalent results, as demonstrated in particular for the 70-gene 
signature used in the Agendia test (Ein-Dor et al. 2005). In fact, signatures based 
on randomly chosen sets of genes often turn out to have good predictive value for, 
e.g. breast cancer outcome! (Venet et al. 2011; Jordan 2012). Such profiles are still 
medically useful, if they conclusively identify groups of patients with clinically 
different prognosis; however, they cannot be used to draw conclusions on the in-
volvement of particular genes in the properties of the cancer cells. In other words, 
these profiles may be clinically valid without having any particular scientific sig-
nificance, and their biological interpretation should be extremely cautious.

17.5.2  Clinical Utility: Essential, but Hard to Prove

Even when the test has shown analytical validity (good experimental performance) 
and clinical validity (proven correlation between the test result and important clini-
cal features such as duration of metastasis-free survival), its clinical utility remains 
to be demonstrated (Simon 2008; Koscielny 2010). Fig. 17.4 shows a simple ex-
ample in which a test appears to have clinical utility according to the classification 
achieved with the training sample, but loses this potential when the test sample is 
used (Chen et al. 2007). A real assessment of clinical utility requires a prospective 
clinical trial, in which the outcome of cancer management with and without the 
test is ascertained over a period of 5–10 years, in order to determine if the use of 
the test results in significant improvement for the patient, in terms of disease-free 
survival and/or reduction of toxic side effects. Economic factors, such as savings 
due to avoidance of costly chemotherapies are also considered. These studies are 
very long and expensive, and in fact the first two aimed at Oncotype (TAILORx, 
Zujewski et al. 2008) and at Mammaprint (MINDACT, Cardoso et al. 2007) are still 
ongoing at this time.
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17.5.3  Assay Technology: The Comeback of RT-PCR

The major application of DNA microarrays, as introduced in the mid-1990s, was 
the determination of expression profiles. Extensive clinical applications, notably 
in oncology, were expected, and sophisticated diagnostic tests were predicted to 
represent a major field of application for this technology in the 2000s. As outlined 
above, this has not happened and expression profiling for clinical purposes is cur-
rently dominated by quantitative RT-PCR approaches. In fact, tests are quite often 
developed using microarrays but the final assay is adapted for PCR. This is due to 
a number of factors: increased sophistication of PCR assay systems, through the 
introduction of microfluidic devices that make multiplex measurements practical 
(Ballester et al. 2013), growing reliance on FFPE samples (that are very difficult to 
profile on microarrays), and familiarity of the RT-PCR method that is recognized 
as the gold standard for expression and is “FDA-friendly”, that is, well recognised 
by the agency that has defined procedures to deal with tests using this approach. In 
addition, it is now clear that the value added by including many genes (hundreds 
or thousands) in the signature is very limited, and that a small set of genes pro-
vides essentially equivalent performance (Haibe-Kains et al. 2012)—so that there 
is no incentive to perform the test in high multiplex mode. Given this, it also seems 
unlikely that RNA-seq approaches will have a great impact in this field, except 
possibly as part of extensive, integrated genomic profiling exercises. Expression 
profiling diagnostics will be dominated by RT-PCR approaches performed on a 
few tens of genes. Current efforts at performing diagnostic tests in a non-invasive 
fashion, using blood or urine samples rather than biopsies (Bidard et al. 2013), may 
eventually apply to expression tests. In fact some of the work currently performed 

Fig. 17.4  An example of vanishing clinical utility (data from Chen et al. 2007). A five-gene 
expression signature separates non-small cell lung cancer patients into two groups with different 
prognosis	(overall	survival	(%)	versus	time	in	months).	As	seen	on	the	training	cohort	( left), the 
survival for patients with the low-risk signature is so good that further treatment could be omitted 
for these individuals, suggesting clinical utility for the test. However the results obtained on the 
testing cohort (that was not used to derive the signature, and provides the only valid test of the 
profile) do not confirm this hope: while the signature still has some clinical validity (predicting a 
differential prognosis), the survival curve for the low-risk patients is not good enough to forego 
treatment, thus the test cannot be expected to have clinical utility
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on miRNA profiling is already done on blood samples (Schultz et al. 2014). Another 
possible avenue is the use of circulating tumour cells found in blood samples of 
patients (Pierga et al. 2012).

17.5.4  Moving Closer to Functional Information

For all its value, expression profiling is still steps away from actual biological func-
tion. It has been widely used, with some significant success, as a proxy for protein 
abundance and protein activities that could only be measured with difficulty and at 
low multiplex factors. The situation has however changed, and protein abundance 
can now be determined at high sensitivity and in multiplex fashion, using either 
aptamer or antibody arrays, or mass spectrometry (see for example Li et al. 2013). 
Effective multiplex methods are also now available for some types of enzymatic 
activities, for example for kinase activities that are extremely important in the con-
text of oncology (Arsenault et al. 2011; Hilhorst et al. 2013). Such approaches can 
provide invaluable information, for example allowing testing of a drug on patient 
samples prior to treatment to find out if that particular drug is likely to be effective 
on that particular individual—a step toward real personalised medicine. Tests based 
on these methodologies can be expected in the coming years, and they are quite 
likely to be successful.

17.6  Conclusion

Expression profiling has not proven as medically useful as anticipated in the 
late 1990s—and its major implementation today involves quantitative RT-PCR, 
not arrays as initially anticipated. This is due to under-appreciated difficulties in 
developing tests that have proven clinical utility—part of the general problem with 
biomarkers, very few of which have actually resulted in useful diagnostics tools 
(Hayes et al. 2013). It is compounded, in the case of cancer, by the newly rec-
ognised genomic complexity of the disease, both from patient to patient and also 
within a given patient with the realisation of the common genetic heterogeneity of 
cancer cells that is probably to most serious hindrance to effective targeted treat-
ment. However, the trend towards using more and more genomic information to 
evaluate prognosis and guide treatment is bound to continue, and gene expression 
will undoubtedly be an important facet of this “precision medicine” in the future.
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Concluding Remarks and Perspectives

I hope this book has served as an overview of transcriptomics, from the fundamental 
concepts and methodology, its use in health and human disease, to the interpretation 
of the results. Following the completion of the human genome, transcriptomics has 
entered a new realm of research, including research that was traditionally conducted 
via reductionist approaches, in particular, immunology (Chaussabel and Baldwin 
2014). Because the transcriptome of a cell, tissue or organs change according to the 
strict conditions set forth at any given moment, the study of the transcriptome holds 
tremendous promise for health and disease research. Even disciplines that rarely 
adopt genetic approaches, such as physiology or pharmacology, are now examining 
their model systems from a transcriptomics perspective. What was once an exclu-
sive task for geneticists and molecular biologists, i.e., sequencing the genome, has 
been largely engaged by transcriptomics in the post-genome era and has opened 
doors for the entire biomedical research community, including mathematicians, bio-
statisticians and computer scientists. These fields have contributed to the construc-
tion of algorithms, programs for data analysis and improvement of bioinformatics 
pipelines, without which, we would be unable to interpret the enormous quantities 
of data being generated by these experiments. And of course, clinicians themselves 
have seen the potential of transcriptomics in diagnosis and prognosis. Unraveling 
the code of life no longer involves deciphering three-letter codons (as developed by 
scientists in the 1960s) or sequencing all 3 billion bp of the human genome (mid-
1980–2000), but deciphering the human transcriptome in response to normal physi-
ological conditions as well as different disease states. The mouse ( Mus musculus) 
is often used as a model system to answer questions of human interest, which must 
then be validated in humans. This is another challenge of comparative transcrip-
tomics, which although not explicitly discussed in this book, is currently making its 
mark in the literature. In fact, the core concept of the central dogma of molecular 
biology has not changed over the last several decades. Instead, what has happened 
is a reinterpretation of the data, such that the “dogma” can now become genome → 
transcriptome → proteome.

Geraldo A. Passos, Ribeirão Preto, August 2014

Chaussabel D, Baldwin N (2014) Democratizing systems immunology with modu-
lar transcriptional repertoire analysis. Nature Rev Immunol 14:271–280
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