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Abstract. Robots deployed to assist and collaborate with humans in complex
domains need the ability to represent and reason with incomplete domain knowl-
edge, and to learn from minimal feedback obtained from non-expert human par-
ticipants. This paper presents an architecture that combines the complementary
strengths of Reinforcement Learning (RL) and declarative programming to sup-
port such commonsense reasoning and incremental learning of the rules govern-
ing the domain dynamics. Answer Set Prolog (ASP), a declarative language, is
used to represent domain knowledge. The robot’s current beliefs, obtained by in-
ference in the ASP program, are used to formulate the task of learning previously
unknown domain rules as an RL problem. The learned rules are, in turn, encoded
in the ASP program and used to plan action sequences for subsequent tasks. The
architecture is illustrated and evaluated in the context of a simulated robot that
plans action sequences to arrange tabletop objects in desired configurations.

1 Introduction

Robots deployed in assistive roles in complex domains such as healthcare and disaster
rescue face some fundamental learning and representation challenges. For instance, it
is difficult to equip a robot assisting caregivers in an elder care home with accurate
(and complete) domain knowledge; some of the rules governing the domain dynamics
(e.g., “pain medication cannot be stacked in the top shelf”) may be unknown to the
robot or may change over time. Furthermore, the robot has to reason with qualitative
and quantitative descriptions of knowledge, and the human participants may not have
the time and expertise to provide elaborate and accurate feedback.

As a step towards addressing these challenges, this paper presents an architecture that
combines the complementary strengths of Reinforcement Learning (RL) and declar-
ative programming to support commonsense reasoning and incremental discovery of
(previously unknown) rules that govern the domain dynamics. Specifically, we use An-
swer Set Prolog (ASP), a declarative language, to represent domain knowledge in the
form of objects, relations between objects, and any known rules governing the domain
dynamics. Inference with this knowledge is used to obtain the components of an RL
formulation of the task of incrementally discovering unknown domain rules. We illus-
trate this architecture in the context of a simulated robot that plans action sequences to
arrange tabletop objects in desired configurations.
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The remainder of the paper is organized as follows. Section 2 motivates the pro-
posed architecture by briefly reviewing related work. Section 3 describes the proposed
architecture and its individual components. The experimental setup and results in a sim-
ulated domain are described in Section 4, along with directions for future research, and
Section 5 presents the conclusions.

2 Related Work

We motivate our architecture by reviewing a representative set of related work on:
(a) learning from non-expert human feedback and environmental interactions; and (b)
knowledge representation for such learning.

Reinforcement learning provides an elegant mathematical formulation for agents to
learn from repeated interactions with the environment, selecting actions that maximize
a numerical reward signal [15]. For an agent engaged in a sequential decision mak-
ing task, and occasionally receiving reinforcement signals from a human trainer, it is
challenging to learn the best possible action policy. Several RL-based algorithms have
been developed to address this interactive shaping problem [10], e.g., the use of RL and
animal training insights for clicker training to support interactive learning of synthetic
characters [4], and for action and behavior learning on a four-legged robot [9]. Other re-
searchers have used RL-based frameworks for interactive shaping [10,16]. For instance,
the TAMER framework allows an agent to receive feedback about specific tasks from
a human trainer fully aware of the agent’s state and action capabilities [11]. These al-
gorithms, however, do not consider human training in conjunction with feedback that
agents can receive by interacting with the environment.

The feedback signals obtained from non-expert humans and the environment may
differ in format and frequency; human feedback may also be a function of a set of (pre-
vious or future) states and actions. RL-based algorithms have been proposed to address
this challenge. For instance, different linear functions have been considered for com-
bining human reward and environmental reward signals in some benchmark simulated
domains [12]. A bootstrap learning algorithm has also been developed to enable agents
to incrementally and continuously estimate the relative importance of human feedback
and environmental feedback in the Tetris domain and the multiagent Keepaway Soc-
cer domain [1,14]. More recently, a policy shaping algorithm has been developed for
including human feedback in interactive RL formulations of agent domains [8]. How-
ever, these algorithms do require complete knowledge of the domain and the rules that
govern domain dynamics.

Declarative languages provide appealing knowledge representation and common-
sense reasoning capabilities that have been used for simulated and physical robots de-
ployed in assistive roles in complex domains [6,18]. Algorithms have been developed
to generalize from a limited number of samples by using knowledge representation
in RL frameworks, e.g., relational RL incorporates a relational learner in a traditional
RL algorithm [5]. However, the agent still needs to be provided accurate and elaborate
knowledge about domain objects and rules. The architecture described in this paper is
a step towards enabling robots to incrementally discover the rules governing the do-
main dynamics by integrating the commonsense reasoning capabilities of declarative
programming with the incremental learning capabilities of RL.
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3 Problem Formulation

This section describes our architecture for incrementally learning the rules governing
the domain dynamics. As an illustrative example used throughout this paper, we con-
sider scenes with a simulated robot in a tabletop domain with blocks characterized
by three properties (color, shape, and size). The robot’s objective is to plan an action
sequence to achieve the desired arrangement (i.e., configuration) of blocks in collabo-
ration with human participants (if available). The perception and actuation challenges
are abstracted away to focus on the representation and learning challenges.

3.1 Architecture Overview

Figure 1 shows the proposed architecture. The robot is initially provided some domain
knowledge in the form of objects (and their properties), relations between the objects,
and some rules governing the domain dynamics. This domain knowledge is encoded
in the ASP knowledge base (KB). Incremental learning of the (previously unknown)
rules is formulated as an RL problem, and the current beliefs encoded in KB are used
to define the components of the RL formulation that supports the use of high-level
feedback (e.g., positive or negative reinforcement) that can be provided even by non-
expert humans. This formulation and the action policy computed by RL are used to
discover previously unknown rules governing the domain dynamics. These rules are
encoded in the ASP KB and used for planning action sequences for subsequent tasks.
Although the architecture’s components are described below for the tabletop domain, it
is applicable to other human-robot collaboration domains.

3.2 ASP Knowledge Base

ASP is a declarative language that can represent recursive definitions, defaults, causal
relations, special forms of self-reference, and other language constructs that occur fre-
quently in non-mathematical domains, and are difficult to express in classical logic
formalisms [3]. ASP is based on the stable model semantics of logic programs; it builds
on the research in non-monotonic logics and disjunctive databases [7].

The syntax, semantics and representation of the transition diagram of our illustra-
tive domain are described in an action language AL [7]. Action languages are formal
models of parts of natural language used for describing transition diagrams. AL has a
sorted signature containing three sorts: statics, fluents and actions. Statics are domain
properties whose truth values cannot be changed by actions, while fluents are properties
whose truth values are changed by actions. Actions are defined as a set of elementary
actions that can be executed in parallel. A domain property p or its negation ¬p is a
domain literal. AL allows three types of statements:

a causes lin if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . ,ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lin is an inertial fluent literal, and p0, . . . , pm are domain
literals. The causal law states that action a causes inertial fluent literal lin if the literals
p0, . . . , pm hold true. A collection of statements of AL forms a system description.
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Fig. 1. Proposed Architecture: the closed loop of knowledge representation, reasoning and rein-
forcement learning enables discovery of new rules and their use in subsequent tasks

The domain representation consists of a system description D and history H . D
consists of a sorted signature and axioms used to describe the transition diagram τ;
H stores the history of actions executed and observations received. The sorted signa-
ture is a tuple that defines the names of objects, functions, and predicates available for
use in the domain. The sorts of the tabletop domain include: block, location, color,
shape, and size. The domain’s fluent: on(block, location), defined in terms of the ar-
guments, states that a specific block is at a specific location; this is an inertial fluent
that obeys the laws of inertia. There are some defined fluents for block properties:
blockColor(block,color), blockShape(block,color) and blockSize(block,color). The
action put(block, location) puts a block at a specific location (table or another block).
The dynamics are defined in terms of causal laws such as:

put(b1, loc1) causes on(b1, loc1)

state constraints such as:

¬on(b1, loc1) if on(b1, loc2), loc1 �= loc2

and executability constraints such as:

impossible put(b1, loc1) if on(b2, loc1), b2 �= b1

The domain representation (D , H ) is translated into an ASP program Π , i.e., a collec-
tion of statements describing domain objects and relations between them. Π consists
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of the causal laws of D , inertia axioms, closed world assumption for defined fluents,
reality checks, and records of observations amd actions from H . The ground literals
in an answer set obtained by solving Π represent the beliefs of an agent associated
with program Π . Program consequences are statements that are true in all such belief
sets. Tasks such as planning and diagnostics in the example domain can be reduced to
computing answer sets of the corresponding ASP program and extracting the sequence
of actions to be executed at specific time steps. For more details about the translation
(from AL to an ASP program) and planning using ASP, please see [7].

It is difficult to encode all the domain knowledge in the ASP KB. However, if the KB
is incomplete, the corresponding plans may not succeed. Consider the scene in which
three blocks of the same size: red square (b1), red triangle (b2), and blue rectangle (b3),
are on the table, and the objective is to stack the blocks. One valid plan is:

put(b3,b2), put(b1,b3)

The robot should (theoretically) be able to use this plan to stack the blocks. However,
execution of this plan results in failure because unknown to the robot, a block cannot be
placed on top of a triangle in this domain. Our architecture includes an RL component
to incrementally discover such rules.

3.3 RL Formulation and Rule Learning

A reinforcement learning problem is represented by the tuple 〈S,A,T,R〉, whose entries
correspond to: a set of states, a set of actions, an unknown state transition function (T :
S×A× S′ → [0,1]) and an unknown real-valued reward function (R : S×A× S′ → ℜ).
The objective is to find a policy π∗ : S → A that maximizes the cumulative expected
reward over a planning horizon. For the tabletop domain:

• States are the different configurations of blocks on the table. Constraints in the ASP
KB eliminate impossible states. The desired configuration is the goal state.

• Actions move a block between locations, resulting in a state transition. Constraints
in the ASP KB eliminate impossible actions and state transitions.

• The state transition and reward function are unknown to the robot; they are designed
in the simulator to mimic the robot’s interaction with the real world.

• The reward function provides a large utility (i.e., positive value) for achieving the
desired configuration of blocks; a large negative utility is provided to actions that do
not produce the desired effect.

For interactions in the real world, rewards will be assigned based on the robot’s obser-
vations of action outcomes and the feedback provided by humans (when available).

Algorithm 1 summarizes the steps to discover new rules; it is based on the observa-
tion that actions that have much lower utility than other actions did not provide desired
outcomes, and thus should not (or cannot) be performed. The algorithm takes as in-
put the domain knowledge encoded in the ASP KB. To generate additional samples,
new scenes may be created by randomly changing the property values of blocks in the
scene. This optional step may be omitted to limit exploration and/or for scenes with
a small number of blocks. For each scene, the robot generates components of the RL
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Algorithm 1. Algorithm to discover domain rules.
Input: Domain knowledge in ASP KB; N=1.
Output: ASP KB with newly discovered rules.

1 Generate scenes (and initial and goal states) by randomly changing the property values of
blocks in the scene; N= no. of scenes. // optional step

2 for i ∈ [1,N] do
3 Determine components of RL formulation from ASP KB.
4 Learn policy πi using Q-learning [15,17].
5 Create table T bi that stores the relative (numerical) utility of combinations of

property values of the blocks.
6 for each state s ∈ S do
7 Identify the best action (abest) and worst action (aworst) by selecting the highest

and lowest (Q)values of actions corresponding to s.
8 Identify property values of the blocks involved in the execution of abest and

aworst .
9 Increment the utility of entries (i.e., rows) in T bi that correspond to the property

values identified for abest .
10 Decrement the utility of entries in T bi that correspond to the property values

identified for aworst .
11 end
12 end
13 T btotal = ∑i T bi.
14 Convert rows in T btotal with larger negative utilities than other rows to ASP rules.
15 Merge with existing ASP rules and generalize.
16 return ASP KB with new rules.

problem and learns a policy to achieve the desired configuration using Q-learning; this
learning may be achieved using a combination of simulation and real-world trials. A
table is created whose rows correspond to combinations of property values of blocks
that can be involved in a put action. For each state in the set of states, the best action
and the worst action are selected based on the computed policy, and the property values
of blocks corresponding to these actions are identified. Entries in the table correspond-
ing to the property values identified for action abest (aworst) have their relative utilities
incremented (decremented). If multiple tables were created, they are summed up and
the entries in the resultant table corresponding to large negative utilities are considered
to represent actions that should not occur. The corresponding rules are encoded and
merged with existing rules in the ASP KB, and used in subsequent planning tasks.

4 Experimental Setup and Results

In the tabletop domain, the robot’s objective is to stack blocks with different properties
in desired configurations (Section 3). We use the knowledge representation language
SPARC to write the ASP programs [2]; it expands CR-Prolog that includes consistency
restoring rules in ASP [7], and uses DLV [13] to obtain answer sets.
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Fig. 2. Learning curve for three blocks with different shape (square, rectangle, triangle) but same
color and size

Fig. 3. Learning curve for three blocks with same shape (triangle), color, and size

4.1 Learning Curves

For Q-learning, we experimentally chose a learning rate α = 0.01 and a discount factor
γ = 0.8; these parameters influence the extent to which previously unseen regions of the
state-action space are explored. The corresponding learning curves, convergence rates,
and the average rewards are different based on the property values (and the number) of
the blocks. Figure 2 and Figure 3 show learning curves obtained for two different scenes
with blocks of the same size: (1) three blocks with different shapes but same color; (2)
three triangles of the same color; the objective is to stack the blocks on top of each
other. The curves are different because each initial and desired configuration of blocks
determine the possible state transitions, actions and thus the rewards obtained during
the learning phase. In all scenes, the policies are learned incrementally and efficiently.

4.2 Discovering New Rules

Once one or more policies are obtained, a table is constructed; each row of the table
represents possible property values for two blocks involved in a put action. Table 1
shows an illustrative example of such a table, using a policy generated for the example
in Section 3.2 with three blocks: red square (b1), red triangle (b2), and blue rectangle
(b3). The column of relative utilities (“Utility” in Table 1) is initialized to contain zeros.



Integrating RL and Declarative Programming to Learn Causal Laws 327

The subsequent steps in Algorithm 1 are executed to update values in the table. For
instance, for the best action in a specific state (abest), the corresponding property values
are identified and the utilities of the appropriate rows in the table are incremented.

Table 1. Table of relative utilities for a domain with three blocks of the same size (red square,
red triangle and blue rectangle). The numbers in the last column represent the relative utility of
placing a block of a specific shape (column 1) on another specific-shaped block (column 2) when
they are of the same color or different color.

Shape1 Shape2 Color Utility
Square Square Different 0
Square Triangle Different 0
Square Rectangle Different 5

Triangle Square Different 0
Triangle Triangle Different 0
Triangle Rectangle Different 10

Rectangle Square Different -5
Rectangle Triangle Different -20
Rectangle Rectangle Different 0

Square Square Same 0
Square Triangle Same -10
Square Rectangle Same 0

Triangle Square Same 10
Triangle Triangle Same 0
Triangle Rectangle Same 0

Rectangle Square Same 0
Rectangle Triangle Same 0
Rectangle Rectangle Same 0

In Table 1, we observe that the largest negative utility corresponds to an action that
would place a rectangle on top of a triangle of a different color. The next lowest utility
corresponds to placing a square on top of a triangle with same color. The first observa-
tion can be translated into an ASP rule:

¬occurs(put(b1,b2)) : −blockShape(b1,rectangle), blockShape(b2, triangle).

blockColor(b1,C1), blockColor(b1,C2), C1! =C2.

Each such rule is merged with existing rules by matching common predicates and gen-
eralizing across different groundings of a predicate, and the ASP KB is revised. Over
multiple experimental trials, the robot may determine, for instance, that no block can be
placed on a triangle:

¬occurs(put(b1,b2)) : −blockShape(b2, triangle).

For the task of stacking the three blocks (in Section 3.2), the revised ASP program
produces the new plan:

put(b3,b1), put(b2,b3)
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Unlike the previous attempt (in Section 3.2) before using RL to discover rules, executing
this action sequence results in the robot successfully stacking the three blocks.

4.3 Discussion and Future Work

We have evaluated our architecture on scenes with different number of blocks that have
different properties and property values. The experiments indicate that the robot is able
to incrementally and efficiently identify rules governing the domain dynamics. As the
robot acquires more (accurate) domain knowledge, the ability to use the correspond-
ing plans to complete the assigned tasks increases (and approaches 100%). Although
the architecture is demonstrated in a simplistic domain in this paper, it addresses key
knowledge representation and learning challenges in robotics. The architecture is thus
applicable to other domains in which robots collaborate with non-expert humans.

This architecture opens up multiple directions for future research. It is non-trivial
to generalize from the discovered rules and revise existing rules in the KB. Although
the domain considered in this paper simplifies this problem, it is an interesting topic
for further investigation. Another direction for future research is to explore the archi-
tecture’s extension to support formulations similar to relational reinforcement learning
(RRL). However, unlike existing RRL formulations, the use of ASP will support com-
monsense reasoning while the robot uses abstractions across different states and actions
to make learning computationally tractable. It may also be possible to use the diagnos-
tics capabilities of ASP to focus on a specific subset of the state-action space (in the RL
formulation) in response to the failure of specific steps in the plan. Finally, the current
implementation abstracts away the perception and actuation challenges in robotics. For
physical robots in real world application domains, we are investigating the architec-
ture’s extension to partially observable states and non-deterministic action outcomes,
using probabilistic belief states in the RL formulation.

5 Conclusions

This paper described an architecture that integrates the complementary strengths of RL
and declarative programming to support knowledge representation, commonsense rea-
soning, and incremental discovery of unknown rules governing the domain dynamics.
The domain knowledge encoded in the ASP KB is used to formulate the incremental
discovery of domain rules as an RL problem. The action policies obtained by RL are
used to discover rules that are, in turn, encoded in the ASP KB and used to plan action
sequences for subsequent tasks. This architecture is thus a significant step towards the
long-term objective of designing robots that can collaborate with and assist non-expert
humans in real world application domains.
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