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Abstract. This paper presents the development of a shared control sys-
tem for power mobility device users of varying capability in order to
reduce carer oversight in navigation. Weighting of a user’s joystick in-
put against a short-tem trajectory prediction and obstacle avoidance
algorithm is conducted by taking into consideration proximity to obsta-
cles and smoothness of user driving, resulting in capable users rewarded
greater levels of manual control for undertaking maneuvres that can be
considered more challenging. An additional optional comparison with a
Vector Field Histogram applied to leader-tracking provides further ac-
tivities, such as completely autonomous following and a task for the user
to follow a leading entity. Indoor tests carried out on university campus
demonstrate the viability of this work, with future trials at a care home
for the disabled intended to show the system functioning in one of its
intended settings.
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1 Introduction

Powered mobility devices (PMD) including wheelchairs and scooters are quite
widely used by aged and disabled people. The use of these aids becomes quite
frequent after the age of 65, with nearly 4.5 million powered wheelchair users
in the United States alone [1]. Combined with predictions indicating the global
population of people aged over 60 is set to double between 2000 and 2050 [2],
there is a drive to improve the methods through which services towards aged
and disabled care is delivered. In order to fulfil this need, shared autonomy has
become a well-explored research area for assisting PMD users in everyday mo-
bility tasks [3–5]. The goal of shared autonomy is to mitigate the detrimental
impact of poor vision or cognitive and physical deficiencies on PMD proficiency
through environment-sensing and decision-making rather than relying purely on
potentially dangerous user commands. Additionally, novel methods of communi-
cating intent to the PMD including force-feedback modulation of a controller’s
available range of motion [6] as well as more advanced approaches such as gaze-
tracking [7] and EEG headsets, although the latter may still present some dif-
ficulties to cognitively impaired users in cluttered living spaces [8]. These new
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tools and platforms towards enabling disabled individuals to safely undertake
everyday mobility tasks independently have the simultaneous effects of reducing
the effort on their part, while also helping to mitigate the burden on carers by
decreasing the level of supervision required for mobility oversight.

The outcomes of this work were primarily designed around the needs of
Greystanes Disability Services (GDS); a care home supporting people with dis-
abilities and complex health needs, with an aim of freeing up staff-hours better
utilised in other aspects of patient care. As a carer is required to work with
individual patients in everyday mobility activities, shared autonomy could pro-
vide a substantially less supervision-intensive alternative where one carer can
oversee multiple PMDs simultaneously. Throughout the care home, a shared
control mechanism for everyday mobility tasks will also be beneficial to prevent
collisions with people, other PMDs or structure while encouraging independent
driving on behalf of the user. Additionally, a regular activity is taking multiple
wheelchair-bound patients on outdoor excursions through the surrounding bush-
land environment; currently a rather staff-intensive activity as one staff member
is required per wheelchair for the duration of the exercise. It is hence desirable
to have a system capable of encouraging patients capable of driving to follow the
wheelchair ahead of them or the staff member leading the convoy. The remainder
of this paper is structured as follows: Section 2 outlines the test platform and
software configuration, Sections 3-4 outline the modes of operation developed,
Sections 5-6 document and discuss experimental results, and Section 7 closes
with concluding remarks.

Fig. 1. Instrumented wheelchair with mounted sensor package

2 Experiment Setup

Three distinct modes of operation have been developed:
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– Shared control driving with forward projection
– Fully autonomous leader following, disregarding user input
– A semi-autonomous leader-following ‘exercise’ with sliding-scale autonomy

At present each mode is a standalone item, designed to meet separate healthcare
mobility needs. The first encourages disabled users to drive independently, and
the second allows carers to move PMD users in cases where driving is prohibitive.
The third mode is designed as an engaging activity for users partially capable
of driving to safely follow a leader from one location to another; useful in places
such as within GDS where groups of people are often moved between areas, for
example between a recreational area and a sauna room where several users may
wish to drive themselves, but punctuality may be of some priority to carers.

Development and experimentationwas conducted on theCentre ofAutonomous
Systems instrumented wheelchair platform (Fig 1), fitted with drive motors and
wheel encoders. An additional sensor module was added, containing a MS Kinect
RGB-D camera, Hokuyo laser scanner and an Xsens inertial measurement unit.
All sensors and the motor controller interface with the on-board Fit-PC, running
Ubuntu 10.04 and utilizing the ROS (Robot Operating System - www.ros.org)
middleware. Regardless of the mode of operation selected, at all times a collision
prevention safeguard layer sits above the platform driver. Additionally, odometry
pose information is combined with laser scanner data to hold environmental infor-
mation beyond the scanner’s field of view.

3 Shared Control Navigation

3.1 Local Planning

As users of PMDs may suffer from involuntary movements such as jerkiness or
tremoring [9] it becomes necessary to filter out inputs which may not be in-
dicative of desired platform behaviour. Noise reduction can be done through a
multitude of signal processing methods such as weighted average [10] or Kalman
filters [11]. There also exist advanced mechanisms for screening out of involuntary
yet seemingly fluent input actions through learning frameworks [12], however for

Fig. 2. Weighted average filter (blue to red)
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Fig. 3. Trajectory modulation of platform footprint pose from input (grey) to safe
(white) when driving and turning in a corridor, indicated by the thicker white lines

nframes = fproj ×Δtproj
project footprint poses based on joystick inputs
while platform collision predicted do

increment angular velocity away from direction of collision
if joystickangular% ≥ joysticklinear% then

if joysticklinear ≥ 0 then
decrement linear velocity

else
increment linear velocity

end

end
re-project footprint poses until collision predicted
velocities are acceptable if platform is collision-free for nframes

end

Algorithm 1: Forward-projection pseudocode

the scope of this work filtering was carried out through more conventional noise
mitigation approaches under the assumption of tremor suppression. Figure 2
demonstrates the output of a weighted moving-average filter showing significant
noise reduction at the cost of a slight time delay. These filtered input velocities
are then applied to the PMD’s footprint for a brief forward-projection (Algo-
rithm 1), as shown in Figure 3. This allows for responsive local control without
prior map-building, enabling functionality in environments often subject to fre-
quent change and/or have many other moving entities, such as a shopping area.

4 Leader Following

A blob-tracking algorithm was developed to be used with the laser scanner read-
ings. After seeding with an initial pose, a cluster of closely spaced points can be
tracked through sequential scans. ‘Merging’ with other objects in the environ-
ment such as walls is mitigated by a maximum search radius heuristic. Figure 4
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Fig. 4. Tracking (red contour with corresponding dot) using laser scanner

shows a sample frame from the tracking with the leader highlighted in red. These
poses are directly fed as inputs into a Vector Field Histogram [13] (VFH), cho-
sen for its suitability in planning to local goals. A VFH determines safe control
speeds based on a polar obstacle grid of the platform’s immediate surroundings.
In the case of autonomous following, the resultant velocity commands are fed
directly to the safeguard layer. For the following exercise, the user weight η (Sec-
tion 4.1) is applied between the VFH output v, wvfh and the user’s filtered input
v, wfilter (Eqns 1-2). Full autonomy is enabled if the user releases the joystick,
in order to avoid interruptions to the platform’s movement which the leader may
not be able to notice immediately.

v =

{
vvfh if vfilter = ωfilter = 0

η × vfilter + (1− η)× vvfh otherwise
(1)

ω =

{
ωvfh if vfilter = ωfilter = 0

η × ωfilter + (1 − η)× ωvfh otherwise
(2)

4.1 Weighting

ηsa = 1− e−α×dmin (3)

ηsm = e−β×δaxis (4)

ηob = e−γ×|ωtrack−ωfilter | (5)

η = min(ηsa, ηsm, ηob) (6)

η =

{
0 if η ≤ η0

1 if η ≥ η1
(7)
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The user weight is primarily determined using two or three proficiency met-
rics [14, 15] of safety (Eqn 3), smoothness (Eqn 4) and ‘obedience’ (Eqn 5). dmin

represents the closest obstacle to the platform footprint and δaxis represents a
percentage change in joystick axis position per second. Obedience is determined
by the difference between the angular velocities of the VFH and the filtered joy-
stick input, only taken into account when leader tracking is active. The gains
α, β and γ were roughly determined from desired values of η at specific val-
ues; for instance β was chosen to be 0.0035 from a desired ηsm of 0.5 at 200%
axis movement per second. A higher weighting gives the user a greater level of
permitted deviation from what is considered a safe local trajectory to permit
closer proximity to hazards, and a lower weighting tends to limit the user to a
more conservative style of driving. Weighting (Eqns 6-7) is then used to blend
filtered input velocities with the outputs from the local planner (Eqns 8-9). In
our experiments, cutoff values for η0 and η1 were 0.25 and 0.75 respectively.

v = η × vfilter + (1− η)× vplanner (8)

ω = η × ωfilter + (1− η)× ωplanner (9)

5 Results

Preliminary tests were conducted on the University of Technology, Sydney cam-
pus. As navigating areas such as doorways and narrow hallways presents partic-
ular difficulty [16] to the average PMD user, experimentation focused on suitably
constrained spaces such as those that may be found in a ‘normal’ interior space
not necessarily configured to accomodate PMDs. Figure 5 shows the trajectory
difference in trajectories between the joystick input (red) and the output of
the shared control algorithm (green) when roughly aimed at a doorway with
∼5 cm clearance on either side. Figure 6 shows the trajectories from the VFH
(green) against the leader’s path from laser scanner tracking (red) through an-
other doorway with ∼10 cm clearance twice, with a tight on-the-spot turn in

Fig. 5. Assisted driving through nar-
row doorway (green) compared to raw
input (red)

Fig. 6. Autonomous following (green)
through doorway via VFH behind
leader entity (red)
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Fig. 7. Leader (blue) following exercise in counter-clockwise indoor loop

Fig. 8. User weighting results for following exercise

between. Trajectories and maps were produced via Hector mapping [17]; map
regions are as follows: light grey represents known vacant space, black repre-
sents known surfaces and dark grey represents unknown space; the grid cells are
1 metre square.

Figure 7 shows the trajectory taken by the wheelchair (green) when the user
attempts to follow a leader (blue). Figure 8 shows the corresponding control
weight allocated to the user. When driving is erratic or tight spaces are encoun-
tered, the weighting is reduced to allow mediation from the VFH in order to
stay truer to the leader trajectory or to safely bypass the potential hazard. The
test user also allowed the VFH to fully take over momentarily in a few areas by
releasing the joystick, resulting in the lengthier 0% weighting periods visible.
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6 Discussion

Despite a major drawback of these results being that the manual driving com-
ponents were conducted by an able-bodied user attempting to emulate a PMD
user unable to smoothly or confidently maneuvre through tight spaces, the early
results appear to positively address the project’s needs. The modes of opera-
tion evaluated in these experiments all feature distinct value in healthcare, from
enabling patients to safely move themselves or a single staff to convoy several
PMDs, to a mobility exercise providing engagement to users while guiding them
to their destination. The benefits of the latter extend beyond its intrinsic value
by additionally providing a potential means of PMD training or basic proficiency
assessment. Providing users accustomed to staff supervision with the opportu-
nity to use intelligent PMDs unsupervised may likely require some training and
initial acclimation, however the benefits to the patients’ self-esteem from main-
tained independence and to staff by reducing time spent guiding PMD users
would be considerable.

Testing these solutions at Greystanes Disability Services with disabled pa-
tients is presently of high priority to assess the system’s performance in real test
cases, as well as to obtain feedback and suggestions from the system’s intended
users when comparing the system’s outputs to raw user driving. The develop-
ment of a simple GUI to handle the execution of relevant softwares for each
mode would be highly beneficial to staff and some PMD users, and to unify
these solutions into a single utility. Other future planned developments include
a more sophisticated noise mitigation algorithm for involuntary movements that
may not be simple tremors, and an improved planner for more complex local
trajectories beyond basic forward projection. Different sensors may be required
to detect hazards on the ground or objects below the 2D laser scanner’s height
such as furniture items or household utilities. Obstacles on the ground may not
be a significant concern indoors, however as outdoor use is intended a smooth
traversable surface cannot always be ensured. Outdoor applications must also
take into account obstacles identified by PMD users to be difficult to pass [18]
such as groups of people. Downward-pitched stereo cameras or an IR depth im-
ager could be used to provide height-maps and additional stability/traversability
information [19, 20] for planning algorithms; a study left for future development
and investigation.

7 Conclusions

This paper describes several solutions to assist caregiver staff by reducing the
need to monitor PMD users in everyday mobility tasks related to patient care.
Each approach has been demonstrated to be capable of providing navigational
support across several different scenarios including safeguarded driving, au-
tonomous following and a hybrid driving exercise. The reduced requirement for
manual oversight would provide staff with more time towards less rudimentary
tasks, while additionally enhancing the self-esteem and personal independence
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of disabled PMD users. Despite the shortcomings of the experiments conducted
we believe the outcomes are relevant in the context of this work, and hope to
follow these developments with a larger trial at a care home involving several
disabled users under adequate supervision from qualified care staff.
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research project.
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