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Abstract. Classical conditioning is important in humans to learn and
predict events in terms of associations between stimuli and to produce
responses based on these associations. Social robots that have a classical
conditioning skill like humans will have an advantage to interact with
people more naturally, socially and effectively. In this paper, we present a
novel classical conditioning mechanism and describe its implementation
in ASMO cognitive architecture. The capability of this mechanism is
demonstrated in the Smokey robot companion experiment. Results show
that Smokey can associate stimuli and predict events in its surroundings.
ASMO’s classical conditioning mechanism can be used in social robots
to adapt to the environment and to improve the robots’ performances.

Keywords: Classical Conditioning, Maximum Likelihood Estimation,
ASMO Cognitive Architecture.

1 Introduction

Classical conditioning is a cognitive skill crucial to learn and predict events in
terms of associations between stimuli, and to produce responses based on these
associations. People are expected to develop a classical conditioning when a right
condition is presented repeatedly. If social robots have a similar cognitive skill
to develop a classical conditioning like people, then people will know how they
behave and can interact with them more naturally, socially and effectively. Social
robots require cognitive skills that support the necessary social intelligence to
engage with people and other robots effectively [15].

In this paper, we present a novel classical conditioning mechanism for so-
cial robots. This mechanism is implemented in ASMO cognitive architecture [6].
Section 2 first describes a definition of classical conditioning. Section 3 discusses
existing computational models of a classical conditioning proposed in the liter-
ature and how they are different to this work. Section 4 describes the design
and implementation of the classical conditioning mechanism in ASMO cognitive
architecture. Section 5 evaluates ASMO’s classical conditioning mechanism in
the ‘Smokey robot companion’ experiment and shows that the robot can predict
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users’ requests. Finally, Section 6 summarises the benefit and future work of
ASMO’s classical conditioning mechanism.

2 Definition of Classical Conditioning

Classical conditioning (or Pavlovian conditioning) [10, p.109–110] [9] is an associ-
ation of a neutral stimulus that does not elicit a response (called the conditioned
stimulus or CS) with another stimulus that elicits a response (called the uncon-
ditioned stimulus or US), such that the presence of the CS will elicit the same
response that would be elicited by the US, despite the US not actually being
present. For example, if John repeatedly asks Mary to cook him the same dish
every time he visits Mary, then Mary may develop the association between his
visit and the dish, such that his presence will trigger Mary to accidentally start
cooking the dish, even though John had asked Mary to go to a restaurant.

A classical conditioning is different to an operant conditioning. They are both
a form of associative learning. However, a classical conditioning creates an asso-
ciation between involuntary behaviours and a stimulus before the behaviours are
performed, whereas an operant conditioning creates an association between vol-
untary behaviours and their consequences after the behaviours are performed [2,
pp. 141–142].

3 Existing Computational Models

Computational models of classical conditioning can be divided into models based
on neural network and models that are not based on neural network. They can
also be divided into trial-level and real-time models [3]. In trial-level models, the
association between the stimuli is computed after all relevant stimuli have been
observed and terminated. In real-time models, the association between stimuli is
computed at every time-frame and the computation can cope with those frames
being arbitrarily small.

In Furze’s dissertation [3], he has reviewed a large number of trial-level and
real-time computational models of classical conditioning (for both neural net-
work and non-neural network models):

– The trial-level neural network models reviewed were the Pearce and Hall
model and the Kehoe model.

– The trial-level non-neural network models reviewed were the Stimulus Sub-
stitution model, the Rescorla–Wagner model and the Mackintosh’s Attention
model.

– The real-time neural network models reviewed were the Grossberg model,
the Grossberg–Schmajuk (G.S) model, the Klopf model (also called the
drive-reinforcement model), the Schmajuk–DiCarlo (S.D) model and the
Schmajuk–Lam–Gray (S.L.G) model.

– The real-time non-neural network models reviewed were the Sometimes-
Opponent-Process (SOP) model, the Temporal Difference (TD) model and
the Sutton–Barto (S.B) model.
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In this paper, we focus more details on the real-time non-neural network mod-
els: SOP, TD and S.B models. This is because robots are required to operate in
real-time. In addition, non-neural network models allow robots to learn without
the need to be trained based on some prior input stimuli. Thus, they allow robots
to predict stimuli that have not been trained previously.

The SOP model [14] represents a stimulus in one of three states: A1 (high acti-
vation), A2 (low activation) or I (inactive). A stimulus in the A1 state will elicit a
primary A1 response (observed as an unconditioned response) whereas a stimulus
in the A2 state will elicit a secondary A2 response. Two stimuli that are both in
the A1 state will become associated and cause the strength of their association to
increase. A stimulus that is either in the A1 or A2 state will induce its associated
stimuli to enter their A2 states, which will then elicit their A2 responses (observed
as conditioned responses). This inducement occurs in proportion to the strength
of the association between the two stimuli. This model supports different phenom-
ena of classical conditioning. However, it requires a stimulus to be represented in
one of the three states and it is not implemented in robots.

The Temporal Difference (TD) model [13] is an extension of the Sutton–
Barto model [12] proposed by the same authors. These two models rely on re-
inforcement (or rewards) and eligibility to determine the association strength
of a stimulus (1). They have the same operations and equations, except that
the reinforcement is determined by RTD for the TD model (2) or RSB for the
SB model (3). Unconditioned stimuli have a starting association strength of a
positive value. Other stimuli have a starting association strength value of zero.

ΔVt(i) = βR× α(i)X(i)

Xt+1(i) = δXt(i) + (1− δ)Xt(i)
(1)

RTD = λt + γYt − Yt−1 (2)

RSB = Ẏt = Yt − Yt−1 (3)

Where:
R ∈ RTD, RSB, 0 < β < 1, 0 < α < 1
V (i) and ΔV (i) are the association strength and the change of the association
strength of stimulus i respectively
β and α are the constant reinforcement and eligibility learning rates respectively
Xt(i) and Xt(i) are the strength and the weighted average strength (called
eligibility trace) of conditioned stimulus i at time t respectively
δ is the decay rate of the eligibility trace
λt is the strength of the unconditioned stimulus at time t
γ is the discount factor
Yt is the prediction made at time t of the unconditioned stimulus being associated

This paper presents the novel ASMO’s classical conditioning mechanism based
on attention and manipulation of memory. This mechanism differs from previ-
ous works in the following: (i) it does not require reinforcement values to learn
and does not require specific representations of stimuli and responses, (ii) it is
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embedded in a cognitive architecture, (iii) it is not based on neural network, (iv)
it is a real-time model and (v) it is implemented in a robot.

4 Design and Implementation in ASMO Cognitive
Architecture

In this section, we describe the design and implementation of ASMO’s classical
conditioning mechanism based on the inspiration of human classical condition-
ing. We first review the overview of ASMO cognitive architecture. We follow by
describing the mechanism and how it fits in the architecture.

4.1 Overview of ASMO Cognitive Architecture

ASMO [4,5,7] is a flexible cognitive architecture that orchestrates and integrates
a diversity of artificial intelligence components based on bio-inspired model of
attention. It can be used to explain and understand human cognition, however it
does not aim to imitate the human cognitive architecture (i.e. it is bio-inspired
rather than biomimetic).

ASMO cognitive architecture contains a set of self-contained, autonomous and
independent processes (also calledmodules) that can run concurrently on separate
threads (see Fig.1). Each module requests ‘actions’ to be performed. An action
can be a low-level command to actuators, such as move head to a ball or walk to a
specific location, or it can be a high-level function, such as store data to a memory,
recognise objects (i.e. percept) or find the shortest path (i.e. plan).

Fig. 1. Attention election in ASMO cognitive architecture
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Actions can only be performed if the resources required by the actions are
available (e.g. hand, leg, CPU, memory, virtual resource, etc). They can be
performed simultaneously when there is no conflict in using the resources. Oth-
erwise, modules with actions that require the same resources have to compete for
‘attention’ to use the resources. The winner of the competition is chosen based
on the modules’ types and attention levels.

Modules are divided into few types, including supervisor and ordinary mod-
ules. The supervisor and ordinary modules are non-reflex modules that have a
‘attention value’ attribute and ‘boost value’ attribute to determine their total
attention levels (used to compete for attention). The ‘attention value’ attribute
captures the degree of attention the module seeks based on the demand of the
tasks whereas the ‘boost value’ attribute represents the bias associated with the
module as a result of learning [6] or subjective influence [8]. Supervisor and ordi-
nary modules are similar, except that supervisor modules can influence the total
attention levels of ordinary modules but not vice versa.

Currently, modules that have the highest total attention levels will win the
competition. The total attention level is given by the sum of boost and attention
values. Under ordinary operation, attention values are (by convention) bounded
between 0.0 and 100.0, equivalent to scaled values between 0.0 and 1.0. Modules
with attention values of 0 demand the least attention whereas modules with
attention values of 100 demand full or maximum attention. The boost value will
bias this demand in the competition.

4.2 ASMO’s Classical Conditioning Mechanism

ASMO’s classical conditioning mechanism is created to trigger non-reflex mod-
ules to propose actions when the conditional stimulus is present even though the
unconditional stimulus is not actually present. This mechanism is implemented
in a supervisor module and its algorithm is described in the following five steps:

1. Capture sequences of stimuli
ASMO’s classical conditioning mechanism will capture sequences of stimuli.
It represents each sequence of stimuli using a Markov chain where each node
represents a stimulus.

2. Calculate probabilities of stimuli will occur given an occurring
stimulus
For every occurring stimulus, ASMO’s classical conditioning mechanism will
calculate the probabilities of other stimuli will occur (i.e. called ‘candidates’)
given this occurring stimulus. In other words, it will calculate the proba-
bilities of unconditioned stimuli being associated with a given conditioned
stimulus. It calculates these probabilities by using the maximum likelihood
estimation algorithm [1, p. 615]. These probabilities represent the strengths
(or rather the confidences) of the associations between stimuli.

3. Pick associated stimuli
ASMO’s classical conditioning mechanism will pick the candidates that have
significant probabilities as the stimuli being associated with the occurring
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stimulus (i.e. pick the likely unconditioned stimuli). A candidate is signifi-
cantly different if its root mean square deviation is above a threshold (4).

RMSD(c) =

√
√
√
√

1

n

n∑

i=1

(Pc − Pi)
2

Significance(c) =

{

True if RMSD(c) ≥ TRMSD
False otherwise

(4)

Where:
Significance(c) is the significance function of candidate c
RMSD(c) is the root-mean-square deviation of candidate c
TRMSD is the threshold of a candidate being significant
n is the number of candidates
Pi is the probability of candidate i

4. Trigger modules to propose actions
ASMO’s operant conditioning mechanism will add the likely unconditioned
stimuli to ASMO’s memory as if these stimuli are currently occurring. This
addition will cause non-reflex modules to believe that these stimuli are
present, despite the fact that these stimuli are not physically present. As
a result, it will trigger non-reflex modules to compete and propose actions in
order to respond to these stimuli. Hence, the conditioned stimulus has trig-
gered actions that are associated with the unconditioned stimuli without the
unconditioned stimuli being physically present. This implementation allows
a conditioned stimulus to be paired with a single unconditioned stimulus or
multiple unconditioned stimuli.

5. Repeat step 2 to step 4 for other occurring stimuli
ASMO’s operant conditioning mechanism will repeat step 2 to step 3 if there
are other stimuli that are currently occurring.

The Markov chain model used by ASMO’s operant conditioning mechanism
may require many observations to provide an accurate estimation of reality.
However, many observations are often not available and can be difficult to obtain.
Thus, this mechanism uses a smoothing technique, such as the Laplace smoothing
(also called additive smoothing) [11], to smoothen the observations in order to
provide a better estimation.

5 Evaluation

ASMO’s classical conditioning mechanism is experimented in Smokey robot com-
panion project using a bear-like robot called Smokey [6,8,7]. This project aims
to bring Smokey to ‘life’ and explores the meaning of life by interacting socially
with people. It has potential applications in nursing, healthcare and entertain-
ment industries by providing companionship to people with disabilities, people
with autism, the elderly and children.
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As part of the experiment, in a simplified scenario, Smokey has to accompany
or entertain a person (i.e. the target user) while simultaneously regulating the
person’s rest. Smokey can play either a red ball game or drums to accompany
the user. It can also go to sleep to encourage the user to rest (since it will not
interact with the user when it is sleeping). When playing, Smokey will also pay
attention to any motion in the environment from people other than the user.

Smokey can receive a request from the user through a graphical user interface
to either play the red ball game, play the drums or go to sleep. It will consider
this request, but does not necessarily have to perform this request. In addition,
Smokey is desired to learn to predict the request that the user tends to ask
and to perform this request before the user asks (i.e. to be conditioned by the
appearance of the user so as to perform his/her request). Conditioning to the ap-
pearance of the user is similar to the example of classical conditioning described
in Section 2. It will make Smokey more personalised to the user, which results
in better companionship.

In summary, our hypothesis in this experiment was that ASMO’s classical
conditioning mechanism could model a classical conditioning: it could learn the
association between the appearance of a user and the user’s request. The method-
ology to validate this hypothesis was to show that after learning Smokey would
perform the request that a user tended to ask (if any) when the user was seen.
In addition, we would show the probability of the request compared to other
requests. This experiment involved five users (i.e. participants) with different
requests.

There were four ordinary modules and two supervisor modules created in this
experiment to govern Smokey’s behaviours:

– The ‘attend motion’ ordinary module
The ‘attend motion’ module proposed an action when Smokey was not sleep-
ing to look at the fastest motion in the environment. Its attention value was
set to the average speed of the motion scaled between 0.0 and 100.0. The
faster the motion, the more attention demanded by the module to look at
the motion.

– The ‘play ball’ ordinary module
The ‘play ball’ module proposed an action when Smokey was not sleeping
either to track or to search for the ball depending on whether the location
of the ball was known or not respectively. Its attention value was set to a
constant value of either 60.0 when the user preferred Smokey to play the
ball than to do other things, or 50.0 when the user preferred Smokey to do
other things than to play the ball.

– The ‘play drums’ ordinary module
The ‘play drums’ module proposed an action when Smokey was not sleeping
either to play, track or search for the drums depending on whether the loca-
tion of the drums was known and within reach, known but not within reach
or unknown respectively. Similar to the ‘play ball’ module, its attention value
was set to a constant value of either 60.0 when the user preferred Smokey to
play drums than to do other things, or 50.0 when the user preferred Smokey
to do other things than to play the drums.
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– The ‘go sleep’ ordinary module
The ‘go sleep’ module proposed an action to go to sleep and wake up in every
defined period. Its attention value was linearly increased until either it won
an attention competition or its attention value reached 100.0 (i.e. maximum
value of attention). This module then reset back its attention value to 0.0
after Smokey had enough sleep (i.e. predefined time).

– The ‘attend request’ supervisor module
The attend request module proposed an action to increase the boost value
of the play ball, play drums or go sleep module when Smokey was not sleep-
ing and requested to play the red ball game, play the drums or go to sleep
respectively. It increased these boost values proportionally to the probabil-
ity of the request (5). This probability was set to 1.0 when a request was
received through a graphical user interface, or set to a value calculated by
ASMO’s classical conditioning mechanism when an associated stimulus was
determined.
The attend request module did not require any resource. Its attention value
was set to a constant arbitrary value of 10.0. This value does not hold any
significant meaning. It does not have to be 10.0 and could be any value be-
tween 0.0 to 100.0. The reason is because the attend request module did not
need to compete for attention to gain access to resources since this mod-
ule did not require any resource. Thus, this module will always be selected
regardless of its attention value.

BV (pb) = P (b)× 20.0

BV (pd) = P (d)× 20.0

BV (gs) = P (s)× 20.0

(5)

Where:
BV (pb) is the boost value of the play ball module
BV (pd) is the boost value of the play drums module
BV (gs) is the boost value of the go sleep module
P (b) is the probability that the request to play the ball is received
P (d) is the probability that the request to play the drums is received
P (s) is the probability that the request to go to sleep is received

– The ‘classical conditioning’ supervisor module
The classical conditioning module performed the five steps described in the
previous section to learn the associations between the appearance of a user
and his/her request. This module was specified by developers to observe
users’ requests. It calculated the probability of a user requesting Smokey to
play the ball, to play the drums and to go to sleep. It determined requests
with significant probabilities and added these requests into ASMO’s memory
every time the user was appear. This addition caused the attend request
module to believe that the user had made a request even though the user
did not ask. As a result, the attend request module increased the boost value
of either the play ball, play drums or go sleep module as if the user made
an actual request.
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Table 1 shows the requests received when interacting with the five users where
-, b, d and s denote no request, play the ball request, play the drums request and
go to sleep request respectively. Table 2 shows the probability of each request that
might be asked by each user given when the user was seen. These probabilities
were calculated based on the users’ requests in Table 1 using the expectation
maximization algorithm and Laplace smoothing with k of 1.0. Note that the
probability of the request (or no request) that a user tended to ask was higher
than other requests.

Table 1. Users’ Requests

User Requests

Anshar b,s,d,d

Ben d,d,d,d,d

Evelyn -,-,-

Michelle b

Xun s,d,b,-,s

Table 2. Probability of Requests Asked by Users

User Probability of Request Given User is Seen
Play Ball Play Drums Go to Sleep No Request

Anshar 0.25 0.375 0.25 0.125

Ben 0.1111 0.6666 0.1111 0.1111

Evelyn 0.1429 0.1429 0.1429 0.5714

Michelle 0.4 0.2 0.2 0.2

Xun 0.2222 0.2222 0.3333 0.2222

Figure 2 shows the result of the experiment without and with ASMO’s classical
conditioning learning mechanism when Smokey was interacting with Evelyn and
then replaced by Ben. Both Evelyn and Ben preferred Smokey to play the ball
rather than the drums. Thus, the total attention level of the play ball module
was initially higher than the total attention level of the play drums module.

Without ASMO’s classical conditioning mechanism, the total attention level
of the play drums module did not change when Smokey saw Ben. Thus, Smokey
still chose to play the ball instead of the drums when interacting with Ben (i.e.
no change of behaviour).

With ASMO’s classical conditioning mechanism, the total attention level of
the play drums module was increased when Smokey saw Ben. This increase
caused the total attention level of the play drums module to be higher than
the total attention level of the play ball module. Thus, Smokey chose to play
drums instead of the ball when interacting with Ben (i.e. change of behaviour).
This change of behaviour showed that Smokey was classically conditioned to the
appearance of Ben: it could learn the association between Ben’s appearance and
his requests.
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(a) Without Classical Conditioning Learning

(b) With Classical Conditioning Learning

Fig. 2. Smokey’s Classical Conditioning Learning

6 Conclusion

This paper has demonstrated the capability of ASMO’s classical conditioning
mechanism to learn in real-time in a physical robot without requiring reinforce-
ment values. This mechanism is not based on neural network and has been
embedded in ASMO cognitive architecture. It allows social robots to learn and
predict events in the environment and to respond to those events.

For future work, ASMO’s classical conditioning mechanism can be extended to
further match the characteristics of human classical conditioning (with the aim
to improve the mechanisms instead of imitating human classical conditioning).
In addition, it can be extended to accommodate different types of learning, such
as operant conditioning.
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