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Abstract. In this paper we study query answering and rewriting in ontology-
based data access. Specifically, we present an algorithm for computing a perfect
rewriting of unions of conjunctive queries posed over ontologies expressed in
the description logic ELHIO, which covers the OWL 2 QL and OWL 2 EL
profiles. The novelty of our algorithm is the use of a set of ABox dependencies,
which are compiled into a so-called EBox, to limit the expansion of the rewriting.
So far, EBoxes have only been used in query rewriting in the case of DL-Lite,
which is less expressive than ELHIO. We have extensively evaluated our new
query rewriting technique, and in this paper we discuss the tradeoff between the
reduction of the size of the rewriting and the computational cost of our approach.
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1 Introduction

In Ontology Based Data Access (OBDA) [1], ontologies are used to superimpose a
conceptual layer as a view to an underlying data source, which is usually a relational
database. The conceptual layer consists of a TBox, i.e. a set of axioms expressed in a
Description Logic (DL). This layer abstracts away from how that information is main-
tained in the data layer and may provide inference capabilities. The conceptual layer
and the data source layer are connected through mappings that specify the semantic
relationship between the database schema terms and the terms in the TBox.

Query rewriting is currently the most important reasoning technique for OBDA.
It consists in transforming a query posed in ontological terms into another query ex-
pressed over the underlying database schema. The rewritten query allows for obtaining
the certain answers to the original query, i.e. results explicitly stated for the query in
the database and those that are entailed by the TBox. To do so, the rewritten query
“encodes” the intensional knowledge expressed by the TBox and the mappings [1].

Recently, some approaches [2,3,4] have proposed the use of ABox dependencies,
or extensional constraints, to optimise query rewriting in OBDA. An extensional con-
straint is an axiom (in the TBox language) that the data are known to satisfy. As such,
it can be viewed as an integrity constraint for the OBDA system. Such constraints can
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be automatically derived from OBDA specifications, in particular, they can be deduced
from the mappings and from the integrity constraints in the source database [4]. Fol-
lowing [3], we call EBox a set of extensional constraints. For ontologies expressed in
the logic DL-LiteA, EBoxes can be used to optimise reasoning and query rewriting in
OBDA [2,3]. In fact, since extensional constraints express forms of completeness of the
data, they can be used during query rewriting in a complementary way with respect to
the usual TBox axioms, allowing for significant simplifications of the rewritten query.

In this paper we explore the application of an EBox to the rewriting process per-
formed by kyrie [5], which deals with the expressive DL ELHIO by performing reso-
lution in several stages with some optimisations.

The contributions of the paper are the following:

1. Extension of the kyrie algorithm. We define a new query rewriting algorithm for
ELHIO. The algorithm is based on kyrie, and takes into account, besides the
TBox, the presence of an ELHIO EBox. This extension is inspired by Prexto [3], a
query rewriting algorithm for DL-LiteR: however, such an extension is technically
challenging, due to the expressiveness of ELHIO.

2. Extension of a query rewriting benchmark. We extend an existing benchmark for
the evaluation of query rewriting in OBDA [6], considering EBoxes in addition to
TBoxes, so as to experimentally evaluate the use of EBoxes in ELHIO ontologies.

3. Implementation and experimental evaluation. We perform an experimental analysis
of the new query rewriting algorithm. Our results show the effectiveness of using
EBoxes in the optimisation of query rewriting, and highlight some interesting prop-
erties of the similarity between TBox and EBox.

This paper is structured as follows. In Section 2 we briefly recall the DL ELHIO and
extensional constraints and the state of the art is briefly summarized. In Section 3 we
present the kyrie2 query rewriting algorithm for ELHIO. The operations performed by
the algorithm are formalised as a set of propositions in Section 4. Finally, Section 5 and
Section 6 contain, respectively, the evaluation of our proposal and some conclusions
drawn from it1.

2 Preliminaries

We briefly recall Horn clauses, ELHIO, OBDA systems and extensional constraints.

Horn Clauses. Following [7,5], our technique makes use of a representation of DL
axioms as Horn clauses. A Horn clause (or Horn rule) is an expression of the form
β0 ← β1, . . . , βn, with n ≥ 0 and where each term appearing in each of the atoms
β0, β1, . . . , βn may be a constant c from an alphabet of constant symbols, a variable x
from an alphabet of variable symbols, or a unary Skolem function f(x) (where f is from
an alphabet of function symbols) whose argument is a variable. Clauses are safe, i.e.,
all variables occurring in β0 (which is called the clause head) also occur in β1, . . . , βn

(which is called the clause body). The arity of the clause is the number of arguments of

1 Due to space constraints, proofs of theorems are available at
http://j.mp/kyrieproofebox

http://j.mp/kyrieproofebox
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its head atom. A clause is Boolean if it has no variables in its head. We say that an atom
βa subsumes another atom βb (βa �s βb) if there is some unification of its variables
μ such that μβa = βb. A Horn clause subsumes another Horn clause if after some
variable renaming both of their heads are equal and there is some unification such that
all the atoms in the body of the subsuming clause unify with some atom in the body of
the subsumed clause, i.e. ∀γa, γb.(head(γa) = head(γb) ∧ ∃μ.∀βi ∈ body(γa).∃βj ∈
body(γb).μβi = βj) → γa �s γb.

Let R be the Horn clause β0 ← β1, . . . , βn and let x be the variables occurring in
R. We define FO(R) as the first-order sentence ∀x(β0 ∨ ¬β1 ∨ . . .∨ ¬βn). Moreover,
given a set of Horn clauses Σ, we define FO(Σ) as

⋃
R∈Σ FO(R).

OBDA Systems. An OBDA system [1] allows for accessing a set of data sources D
using an ontology composed of TBox and ABox O = 〈T ,A〉 as a view for the data in
D. To do this, a set of mappings M is normally used to map the information in D to the
elements in the TBox T [8].

In ELHIO, concept (C) and role (R) expressions are formed according to the fol-
lowing syntax (where A denotes a concept name, P denotes a role name, and a denotes
an individual name):

C ::= A | C1 
 C2 | ∃R.C | {a}
R ::= P | P−

An ELHIO axiom is an expression of the form C1 � C2, C � ⊥, R1 � R2 or R � ⊥
where C1, C2 are concept expressions and R1, R2 are role expressions (as usual, ⊥
denotes the empty concept). An ELHIO TBox T is a set of ELHIO axioms.

An OBDA system is a pair O = 〈T ,A〉, where T is an ELHIO TBox, and A is an
ABox, i.e., a set of ground atoms, representing the pair 〈M,A〉.

Notably, each ELHIO axiom corresponds to a set of Horn clauses [7,5]. We can thus
define the semantics of OBDA systems by using the clause translation of an ELHIO
TBox into a set of clauses. More precisely, given an ELHIO axiom ψ, we denote by
τc(ψ) the set of clauses corresponding to ψ, and given a TBox T , we denote by τc(T )
the set of clauses corresponding to T . Then, the set of models of an OBDA system
〈T ,A〉 is the set of models of the first-order theory FO(τc(T )) ∪ A.

We refer the reader to [5] for more details on the translation of ELHIO axioms into
Horn clauses. From now on, we assume that the OBDA system 〈T ,A〉 is consistent,
i.e., has at least one model. The extension of our results to possibly inconsistent OBDA
systems is trivial.

The OBDA system allows for accessing the data by posing queries and returning the
certain answers to these queries. As usual in OBDA, we consider unions of conjunctive
queries. A conjunctive query (CQ) is a function-free Horn clause. As usual, we assume
that the head predicate q of the CQ does not occur in 〈T ,A〉. For ease of exposition,
we assume that constants may not occur in the head of a CQ. A union of conjunctive
queries (UCQ) is a finite, non-empty set of CQs having the same head predicate q and
the same arity.

The set of certain answers for a UCQ q posed to a system 〈T ,A〉, denoted byΦq
〈T ,A〉,

is the set of tuples of constants t1, . . . , tn such that the atom q(t1, . . . , tn) holds in all
models of FO(Σ ∪ q) ∪ A, where Σ = τc(T ).
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Query Rewriting in OBDA. The main approaches to query answering in OBDA
are based on query rewriting techniques whose goal is to compute so-called perfect
rewritings. A perfect rewriting for a UCQ q and a TBox T is a query q′ such that, for
every ABox A, Φq

〈T ,A〉 = Φq′
〈∅,A〉 (i.e., the TBox is “encoded” by the rewritten query).

In OBDA, special attention has been paid in these systems to ontology languages
that are first-order (FO) rewritable [9,10], i.e. such that UCQs always admit a perfect
rewriting expressed in first-order logic. ELHIO falls out of this expressiveness, since
recursive Datalog is sometimes needed to express perfect rewritings of UCQs, i.e., it is
Datalog-rewritable.

Related Systems. Several systems have been implemented to perform query rewrit-
ing, these systems and their main characteristics including the expressiveness for the
aforementionedΣ are summarised in Table 1. A more detailed description of these sys-
tems and the logics they handle can be found in [6]. The interest in this kind of systems
is shown by commercial applications like Stardog2, which can perform query answering
with several reasoning levels (RDFS, QL, RL, EL and DL).

Table 1. Main systems for OBDA query rewriting in the state of the art

System Input Output Year Reference
Quonto DL-LiteR UCQ 2007 Calvanese et al. [9]
REQUIEM ELHIO¬ Datalog or UCQ 2009 Pérez-Urbina et al. [7]
Presto DL-LiteR Datalog 2010 Rosati and Almatelli [11]
Rapid DL-LiteR

3 Datalog or UCQ 2011 Chortaras et al. [12]
Nyaya Datalog± UCQ 2011 Gottlob et al. [10]
Venetis’ DL-LiteR UCQ 2013 Venetis et al. [13]
Prexto DL-LiteRand EBox Datalog or UCQ 2012 Rosati [3]
Clipper Horn-SHIQ Datalog 2012 Eiter et al. [14]
kyrie ELHIO¬ Datalog or UCQ 2013 Mora and Corcho [5]

EBoxes and Query Rewriting. Description logic (DL) ontologies are usually de-
composed into ABox (assertional box) and TBox (terminological box). The former in-
cludes the assertions or facts, corresponding to the individuals, constants or values (i.e.
the extension) of some predicates. The latter is a set of DL axioms that describe the
concepts and predicates in the ontology and how they are related. These DL axioms can
be converted to rules or implications (or data dependencies) in first order logic (more
expressive) and to some extent in Datalog (adding Skolem functions when needed).

Extensional constraints, also known as ABox dependencies, are assertions that re-
strict the syntactic form of allowed or admissible ABoxes in an OBDA system. These
assertions have the form of the usual TBox axioms and are interpreted as integrity con-
straints over the ABox, i.e. under a closed-world assumption instead of the usual open-
world assumption of DLs. For example, for an ABox A that satisfies some EBox E and
expressions C1, C2 in A; if E � C1 � C2 then {x1 | C1(x1) ∈ A} ⊆ {x2 | C2(x2) ∈
A}. A set of such assertions is called an extensional constraint box (EBox) [4].

2 http://docs.stardog.com/owl2/
3 Close to OWL2 QL, B1 � ∃R.B2 axioms are supported.

http://docs.stardog.com/owl2/
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As shown in [3], extensional constraints can be used to simplify the perfect rewriting
of a query, because such constraints may imply that some parts of the query are actually
redundant. We can see this more easily with an example. For example we may have the
following TBox:
UndergradStudent � Student MasterStudent � GradStudent

PhDStudent � GradStudent IndustryMasterStudent � MasterStudent
GradStudent � Student ResearchMasterStudent � MasterStudent

BachelorStudent � UndergradStudent

And the following EBox:

IndustryMasterStudent � GradStudent Student � ⊥
ResearchMasterStudent � GradStudent BachelorStudent � ⊥

PhDStudent � GradStudent MasterStudent � ⊥

And we may want to retrieve a list of all the students.
We can consider an ABox that satisfies the previous EBox, for example an ABox

with the following individuals:

• UndergradStudent: Al
• GradStudent: Ben, Don, Ed
• ResearchMasterStudent: Ben

• IndustryMasterStudent: Cal
• PhdStudent: Don

Querying for the most general concept (Student) would yield no results. Query-
ing for the most specific concepts (BachelorStudent, ResearchMasterStudent,
IndustryMasterStudent and PhdStudent) requires four queries and yields an in-
complete answer, missing Ed and Al in the example. Finally querying for all concepts
would provide all answers, but that implies eight queries (one for each concept) and
retrieving some duplicates. In this case the duplicates are Ben and Don. Duplicated an-
swers have no impact on the correctness of the answer set, but they are a big burden in
the efficiency of the process when considering more complex queries and ontologies.
In particular, in the example we only need three queries (as opposed to eight) to retrieve
all answers, querying respectively for instances of UndergradStudent, GradStudent
and IndustryMasterStudent, since the EBox states that the ABox extension of ev-
ery other concept is either empty or contained in GradStudent. There are therefore six
queries that are only a waste of computational resources in the query answering.

A naı̈ve algorithm could generate the perfect rewriting and then reduce it by check-
ing for subsumption with the EBox. However, such a naı̈ve algorithm could have a
prohibitive cost for large rewritings and would only be applicable over non-recursive
rewritings. In the following sections we will show that it is possible to face more com-
plex scenarios and handle them better than with such a naı̈ve algorithm.

This example illustrates that the combination of ABoxes that are already (partially)
complete and a complete query rewriting on the TBox causes redundancy in the
results, which is a burden for efficiency. Hence, the characterization of ABox com-
pleteness as a set of dependencies can serve to optimise TBoxes, and create ABox
repositories that appear to be complete [2]. Additional optimisations can be done with
the Datalog query before unfolding it into a UCQ, and finally with the UCQ, reduc-
ing redundancy at every step. For instance, in our example we have in the EBox that
PhDStudent � GradStudent just like in the TBox. Therefore, we do not need to
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consider this axiom in the TBox when retrieving students: the ABox is complete in that
sense and no GradStudent needs to be obtained from PhDStudent.

Using the EBox, the perfect rewriting can be reduced along with the inference re-
quired for its generation. We can redefine the perfect rewriting in the presence of
EBoxes as follows [3]: a perfect rewriting for a UCQ q and a TBox T under an EBox
E is a query q′ such that, for every ABox A that satisfies E , Φq

〈T ,A〉 = Φq′

〈∅,A〉.

3 Using Extensional Constraints in Query Rewriting

In this section we present the kyrie2 algorithm, providing an overview of the previous
kyrie algorithm and detailing the use of extensional constraints. Extensional constraints
can be used both in the preprocessing stage, performed before queries are posed to the
system, and in the main algorithm for the rewriting of queries when they are available.
We conclude this section with the algorithm that prunes a Datalog program (or a UCQ
as a specific case of Datalog program) using the available extensional constraints.

Overview of the Technique. kyrie2 extends the earlier kyrie algorithm [5] to handle
EBoxes. The original kyrie algorithm obtains a set of clauses Σ from the TBox T and
a query q and performs resolution on this set of clauses.

The usual operations performed in these algorithms are equal to those in kyrie. Here
we briefly describe them, a more detailed description can be found in [5]:

• Saturate performs a saturation of a set of clauses using a selection function to guide
the atoms that should be unified in the resolution. The selection function may be:
◦ sfRQR is the selection function used in REQUIEM, it avoids the unification of

unary predicates with no function symbols to produce a Datalog program.
◦ sfAux selects auxiliary predicates to perform the inferences in which these pred-

icates may participate and remove them if possible.
◦ sfSel(p) selects the predicate p.
◦ sfNoRec(P) selects all predicates except those that included in the set of predi-

cates P (used to avoid infinite resolution on recursive predicates).
Additionally, the saturation algorithm has a parameter (p, s or u):
◦ p preserves the clauses that have been used in the resolution, contrarily other

modes do not preserve these clauses, e.g. clauses with functional symbols are
removed to obtain a Datalog program.

◦ s separates the clauses that are obtained anew from the old ones, returning only
those that are new, e.g. when saturating the query with the clauses derived from
the TBox all produced clauses will be query clauses.

◦ u for unfolding, this method does not skip the cleaning stage and does not
separate the results.

• Condensate is used to condensate clauses, i.e. remove redundant atoms.
• RemoveSubsumed removes clauses that are subsumed in a set of clauses.

There are three main stages in which resolution is performed:

• Preprocessing is performed once for the ELHIO TBox (T ), before any query is
posed to the system. In this stage some inferences are materialised to save time later
and the set of clauses Σ is generated according to the TBox.
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• Saturation is performed when the query arrives: the query is added to Σ, then
functional symbols are removed from Σ, reducing Σ to a Datalog program (i.e.,
a function-free set of Horn clauses).

• Unfolding is performed partially or completely, depending on the respective pres-
ence or absence of recursive predicates in the Datalog rewriting.

In kyrie2, we add a further operation in each of these stages, highlighted in the cor-
responding algorithms. In this paper, we focus of this new and additional operation,
referring the reader to [5] for details on the other aspects of the algorithm. The new
operation makes use of the EBox to infer extensional subsumption between atoms and
between clauses. Atom subsumption in a conjunction of atoms means that the values
for one are a subset of the values for another (the most general atom is eliminated from
the conjunction). Clause subsumption in a disjunction of clauses means that the values
provided by a clause for a predicate are a subset of the values provided by some other
clause (the most specific clause is eliminated from the disjunction). In other words, the
new operation detects extensional redundancy in the set of clauses, thus allowing for
reducing the size of the initial set of clauses, the subsequent Datalog program, and the
final UCQ. Since, for technical reasons, the EBox is represented in two different ways
in the algorithm (both as a set of standard DL axioms and as a set of clauses), this
operation is defined and executed on both representations.

Before introducing the algorithms, we give two preliminary and analogous defini-
tions of graphs relative to an ELHIO TBox and to a set of Horn clauses, respectively.

Definition 1. We define dlgraph(T ), the axiom graph for an ELHIO TBox T , as the
directed graph (V,W ) such that: (i) for each axiom ψ ∈ T , ψ ∈ V ; and (ii) for each
pair (ψa, ψb) such that ψa, ψb ∈ T if there is a predicate p such that p ∈ RHS(ψb)
and p ∈ LHS(ψa) then (ψa, ψb) ∈ W . Where LHS and RHS are respectively the left
and the right hand sides of the axiom.

Definition 2. We define cgraph(Σ), the clause graph for a set of clauses Σ, as the
directed graph (V,W ) such that: (i) for each clause γ ∈ Σ then γ ∈ V ; and (ii) for
each pair (γa, γb) such that γa, γb ∈ Σ and ∃p.p ∈ body(γb) ∧ p ∈ head(γa) then
(γa, γb) ∈ W .

Both graph notions are equivalent for our purposes, the syntactical differences are
due to the stages in the algorithm where each of these notions will be used.

Our algorithms will use both the DL and the clause representation of TBoxes and
EBoxes (obtained from the DL syntax through the function τc). Therefore, from now on
we will use the terms TBox, EBox and OBDA system for both kinds of representations,
and will use the symbols Σ, E and Γ to denote, respectively, a TBox, an EBox, and an
OBDA system in the Horn clause representation.

Preprocessing. Algorithm 1 constitutes a preprocessing stage on the TBox and the
EBox before any query is available. The algorithm removes, through the function
delEBoxSCC, the strongly connected components (SCCs) of the TBox graph that are
implied by the EBox and do not receive incoming connections, i.e. for all axioms ψb

in the SCC there is no ψa in the TBox such that (ψa, ψb) is in the set of edges of
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Algorithm 1. kyrie2 preprocess algorithm
Input: ELHIO TBox T , ELHIO EBox E
Output: TBox Σ, EBox E, minimal sets of recursive predicates RΣ and RE

1 T ′ = delEBoxSCC(T , E)
2 Σ = τc(T

′)
3 E = saturate(p, sfNonRec(RE), τc(E), ∅)
4 〈RΣ , RE〉 = reducedRecursiveSets(Σ,E)
5 Σ = saturate(p, sfRQR,Σ, ∅)
6 Σ = saturate(s, sfAux,Σ, ∅)
7 Σ = removeSubsumed(condensate(Σ))
8 return 〈Σ,E,RΣ , RE〉

Algorithm 2. Remove extensionally implied strongly connected compo-
nents (SCCs) of axioms: delEBoxSCC

Input: ELHIO TBox T , ELHIO EBox E
Output: ELHIO TBox T without extensionally implied SCCs

1 repeat
2 forall the (C : component) ∈ SCCs(dlgraph(T )) do
3 if incomingConnections(C) = 0 ∧ ∀ψ ∈ C.E |= ψ then
4 T = T \C
5 until Fixpoint
6 return T

dlgraph(T ). We formalise in Section 4 (Proposition 1) the principles on which we
remove this type of SCCs.

Then, through the function saturate [5], Algorithm 1 computes a deductive clo-
sure of the EBox, except for recursive predicates: a reduced set of recursive predicates
is excluded from the inference to make the saturation process finite. This reduced set
is computed by Algorithm 4, where count(p, Λ) = card({λ ∈ Λ | p ∈ λ}) and
LoopsIn(Γ ) finds the loops of clauses in the given set of clauses that produce infi-
nite property paths. Excluding some predicates from the inference limits the effect of
the EBox in the reduction of the rewritten queries and the possible unfolding of these
queries. This limited effect of the EBox means some redundant answers can be pro-
duced, which has obviously no effect on the correctness of the answers.

General Algorithm. The result of the preprocessing stage is then used by the general
kyrie2 algorithm (Algorithm 3). This algorithm preserves the same stages and optimi-
sations of kyrie to obtain the Datalog program and the unfolding. The main difference
with kyrie is the call to the function useEBox (Algorithm 5).

Pruning the Rewriting with the EBox. The useEBox function, defined by Algo-
rithm 5, uses the EBox to reduce a Datalog program. This can be done by removing
clauses or by replacing some of the clauses with other shorter ones. This algorithm
performs a set of stages iteratively to reduce the Datalog program considered, until a
fixpoint is reached. These stages are:

• Predicates with no extension (p � ⊥ in the EBox) are removed, if possible, af-
ter saturating the inferences where they participate. A reduced set of recursive
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Algorithm 3. General kyrie2 algorithm
Input: TBox Σ, EBox E, recursive predicates in Σ (RΣ), recursive predicates in E

(RE), UCQ q, working mode mode ∈ {Datalog, UCQ}
Output: Rewritten query qΣ
1 q = removeSubsumed(condensate(q))
2 Σr = reachable(Σ, q)
3 Σq = saturate(s, sfRQR, q,Σr)

4 Σq = useEBox(Σq, E,RΣ , RE)
5 if mode = Datalog then return Σq Σq = {qi ∈ Σq | head(qi) 
= head(q)}
6 Σq = {qi ∈ Σq | head(qi) = head(q)}
7 Σq = saturate(u, sfNonRec(RΣ), Σq, Σq)

8 Σq = useEBox(Σq, E,RΣ , RE)
9 return Σq

Algorithm 4. Find reduced sets of recursive predicates:
reducedRecursiveSet

Input: Datalog program Σq , EBox E
Output: Recursive predicates in Σq (RΣq ), recursive predicates in E (RE)

1 ΛΣq = loopsIn(Σq)
2 ΛE = loopsIn(E)
3 RΣq = ∅
4 RE = ∅
5 while ΛΣq 
= ∅ ∧ ΛE 
= ∅ do
6 if ΛΣq ∩ ΛE 
= ∅ then
7 p = pi ∈ ΛΣq ∩ ΛE/count(pi, ΛΣq ) + count(pi, ΛE) =

max(count(pj, ΛΣq ) + count(pj , ΛE))∀pj ∈ ΛΣq ∩ ΛE

8 RΣq = RΣq ∪ {p}
9 RE = RE ∪ {p}

10 ΛΣq = ΛΣq\{λ ∈ ΛΣq | p ∈ λ}
11 ΛE = ΛE\{λ ∈ ΛE | p ∈ λ}
12 else
13 if ΛΣq 
= ∅ then
14 p = pi ∈ ΛΣq/count(pi, ΛΣq ) = max(count(pj, ΛΣq ))∀pj ∈

ΛΣq

15 RΣq = RΣq ∪ {p}
16 ΛΣq = ΛΣq\{λ ∈ ΛΣq | p ∈ λ}
17 if ΛE 
= ∅ then
18 p = pi ∈ ΛE/count(pi, ΛE) = max(count(pj, ΛE))∀pj ∈ ΛE

19 RE = RE ∪ {p}
20 ΛE = ΛE\{λ ∈ ΛE | p ∈ λ}
21 return 〈RΣq , RE〉

predicates (selected according to Algorithm 4) needs to be kept. We formalise the
conditions for removal in Proposition 4.

• Clauses whose answers are subsumed by other clauses are removed. The subsump-
tion of the answers according to the algorithm is formalised in Proposition 5 and
therefore they are redundant, as Proposition 6 states.
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Algorithm 5. Prune Datalog program Σq: useEBox
Input: EBox E, TBox Σq , recursive predicates in E (RE), recursive predicates

in Σq (RΣq )
Output: Pruned TBox program Σq

1 repeat
2 Pe = {pi | pi ∈ predicates(Σq) ∧ (pi � ⊥) ∈ E ∧ pi /∈ RΣq}
3 Σq = saturate(u,sfSel(Pe), Σq , ∅)
4 Ee = {γi ∈ E | ∀p ∈ γi.∀γj ∈ Σq.p 
∈ head(γj)}
5 EΣq = ∅
6 forall the clauses γ1 ∈ Σq ∪EΣq do
7 forall the clauses γ2 ∈ Ee do
8 Γ = resolve(γ1, γ2,sfNoRec(RE))
9 forall the γi ∈ Γ, γi 
= γ1 do

10 forall the γj ∈ Σq do
11 if subsumes(γi, γj) then
12 Σq = Σq\{γj}
13 if ¬subsumes(γj, γi) then
14 Σq = Σq ∪ {γi}
15 EΣq = EΣq ∪ Γ

16 forall the C ∈ stronglyConnectedComponents(cgraph(Σq)) do
17 if (incomingConnections(C) = 0 ∧ ∀γ ∈ C.γ ∈ Ee then
18 Σq = Σq\C
19 Σq = reachable(Σq)

20 until Fixpoint
21 return Σq

• Clauses where an atom subsumes another atom are condensed. We use resolution to
find the condensed version of the clause, which subsumes the original clause. Due
to propositions 2 and 7 we know that we can keep any of both clauses. We keep
the condensed version, the subsuming clause, since this clause will more likely
subsume some other clauses.

• SCCs that are implied by the EBox and receive no connections are removed. This
is done again according to Proposition 3.

4 Formalisation

In this section we provide a formalisation for the operations of our algorithms. In par-
ticular, we formalise the optimisations of the original kyrie algorithm presented in Sec-
tion 3. For an easier explanation we introduce two definitions: the contributions of a
clause (ϕΓ (γ)) and the values for a predicate (υΓ (p)). We recall we denote γa sub-
sumes γb with γa �s γb.

Definition 3. ϕΓ (γ) Contributions of a clause γ in a OBDA system Γ = 〈Σ,A〉. Let
p be the predicate in the head of γ, we define the contributions of γ on Γ as the set
ϕΓ (γ) = {t1, . . . , tn | ∃μ.(Γ |= μ body(γ)) ∧ (μ head(γ) = p(t1, . . . , tn))} where
μ is a substitution of the variables in γ with the constants t1, . . . , tn. Please note that
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Γ |= μ body(γ) means that Σ ∪ A |= μ body(γ), i.e. the values for the contribution
may be implied by other clauses in Σ.

Definition 4. υΓ (p) Values for a predicate p on Γ . For a given OBDA system 〈Σ,A〉 =
Γ , we define as the values for a predicate p ∈ Γ the set υΓ (p) = {t1, . . . , tn | Γ |=
p(t1, . . . , tn)}.

Moreover, the values for a predicate p on Γ , υΓ (p) are divided into the extensional
values (υe

Γ (p)) and the intensional values (υi
Γ (p)), so that υΓ (p) = υe

Γ (p) ∪ υi
Γ (p)

where υe
Γ (p) = {t1, . . . , tn | A |= p(t1, . . . , tn)} and υi

Γ (p) = {t1, . . . , tn | ∃γ, μ.γ ∈
Γ ∧ μ head(γ) = p(t1, . . . , tn) ∧ t1, . . . , tn ∈ ϕΓ (γ)} where μ is the most general
unifier (MGU) applied to head(γ), from the variables in γ to the constants in t1, . . . , tn.

Informally, the intensional values for a predicate p are the contributions of the clauses
where p is in the head, while the contributions of a clause are a projection and selection
of the values for the predicates in its body.

For instance, consider the example in Section 2 and more specifically two of the
clauses that can be extracted from its axioms:
γ1: GradStudent(x) :- MasterStudent(x) and
γ2: GradStudent(x) :- PhDStudent(x)

We keep the ABox as in the example in Section 2. In this example, the extensional
values for GradStudent on our system Γ (υe

Γ (GradStudent)) are Ben, Don and Ed.
The intensional values for GradStudent on our system Γ (υi

Γ (GradStudent)) are
Ben, Cal and Ed. The values for the predicate p are therefore the union of both sets:
Ben, Cal, Don and Ed. The contributions from clause γ1 (ϕΓ (γ1)) are Ben and Cal.
The contributions from clause γ2 (ϕΓ (γ2)) are just Don.

Proposition 1. Let A be an ABox, Σ and Σ′ be two sets of Datalog clauses such that
Σ′ = Σ ∪ {γr} with pr as the predicate in the head of γr. For the two corresponding
OBDA systems Γ ≡ 〈Σ,A〉 and Γ ′ ≡ 〈Σ′,A〉 if ϕΓ ′(γr) ⊆ υΓ (pr) then υΓ (p) =
υΓ ′(p) for every predicate p in Σ.

Proposition 2. Let Γ = 〈Σ,A〉 be a OBDA system and let γa, γb be two clauses in Σ
such that γa �s γb. Then, ϕΓ (γb) ⊆ ϕΓ (γa). For Γ ′ = Γ \{γb} holds that Φq

Γ = Φq
Γ ′ .

We also know that clauses γr in the previous context such that ϕΓ∪{γr}(γr) ⊆
υΓ\{γr}(pr) can be added or removed safely from the OBDA system Γ

Proposition 3. Let Γ = 〈Σ,A〉 be an OBDA system, let E be an EBox satisfied by A
and cgraph(Σ) = {VΣ ,WΣ}. Let C be a set of clauses in Σ such that cgraph(C) is a
SCC in cgraph(Σ) that receives no connections from other SCCs (∀(γa, γb) ∈ W.γb ∈
cgraph(C) → γa ∈ cgraph(C)), and ∀γ ∈ V.E |= γ. Then, Φq

〈Σ,A〉 = Φq
〈Σ\C,A〉.

The removal of SCCs for dlgraph(T ) is analogous to the previously described re-
moval of SCCs for cgraph(Σ).

Proposition 4. Let Γ = 〈Σ,A〉 be an OBDA system where Σ is a set of Datalog
clauses, let q be a query, let Γq = q ∪ Γ be a Datalog program and let P be a set of
non-recursive predicates in Γq that have no extensional values, i.e. ∀p ∈ P.υe

Γq
(p) = ∅
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and no p ∈ P is the query predicate. Let Γb be the set of clauses in Γq such that
∀γ ∈ Γq.∃p ∈ P.p ∈ body(γ) and let Γh be the set of clauses in Γq such that ∀γ ∈
Γq.∃p ∈ P.p ∈ head(γ). Let Γr be the set of clauses that do not contain p and are
generated through resolution from Γb and Γh with a selection function that selects the
predicates p ∈ P . Let Γs be the set of clauses {γ ∈ Γq ∪ Γr | γ /∈ Γh ∪ Γb}. Then,
Φq
Γ = Φq

Γq∪Γr
= Φq

Γs
.

Proposition 5. Let Γ = 〈Σ,A〉 be an OBDA system, let E be an EBox such that A
satisfies E and let Ee the part of the EBox E that contains only predicates with no
intensional definition in Σ. For every pair γ, γr such that γ ∈ Σ and Ee ∪ γ � γr then
ϕΓ (γr) ⊆ ϕΓ (γ).

Proposition 6. Let Γ = 〈Σ,A〉, E and Ee be defined as in Proposition 5. Then, for
every pair γ, γr such that γ ∈ Σ and Ee ∪ γ � γr, and for every query q, Φq

Γ = Φq
Γ ′ ,

where Γ ′ = Γ\{γr}.

Proposition 7. Let Γ = 〈Σ,A〉, E and Ee be defined as in Proposition 5. Then, for
every triple γ, γr, γs such that (γ, γs ∈ Σ)∧ (Ee ∪ γ � γr)∧ (γr �s γs), and for every
query q, Φq

Γ = Φq
Γ ′ , where Γ ′ = ({γr} ∪ Γ )\{γs}.

5 Evaluation

Having formalised the proposal, we have performed an empirical evaluation to check
our query rewriting optimisations. There is no benchmark in the state of the art to test
query rewriting with EBoxes, therefore we have decided to use some of the most widely
used ontologies for the evaluation of query rewriting systems [6], in particular we used:
Several real world ontologies used in independent projects like Adolena (A), Vicodi
(V) and StockExchange (S). Benchmark ontologies, like a DL-LiteR version of LUBM
(U). Artificial ontologies to test the impact of property paths, path1 and path5 (P1, P5).
Previous ontologies with auxiliary predicates for DL-Lite compliance [9] (UX, P5X).
Additionally, we consider the extension of previous ontologies with axioms in ELHIO
and beyond DL-Lite (UXE, P5XE).

We have have expanded previous assets with a set of synthetically-generated EBoxes,
using a randomized and parametrised algorithm, with parameters:

size: the size of the EBox relative to the size of the TBox: zero is an empty EBox, and
one is an EBox with as many axioms as the TBox.

cover: how much of the TBox is covered by the EBox: zero means that all the axioms
in the EBox will be randomly generated, one means that all the axioms in the EBox
will come from the TBox.

reverse: how many of the axioms obtained from the TBox (cover) are reversed in the
EBox (the reverse of A � B being B � A) wrt the original form in the TBox:
zero means that no axioms are reversed, one means that all axioms are reversed.
The reversed axioms belong to the cover, i.e. if the cover is zero this number has no
effect.
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Table 2. Results for ontology V (original size 222 clauses) with EBoxes I, II, III and IV

Query independent

qu
er

y

Datalog Datalog UCQ UCQ
information time(ms) size time(ms) size

EBox I II III IV I II III IV I II III IV I II III IV I II III IV
PT 109 2047 24266 2859 1 0 0 157 235 15 13 14 9 0 0 516 672 15 13 14 9
PS 222 195 171 111 2 16 16 157 234 10 10 10 10 16 16 500 656 10 10 10 10
size 0.0 0.2 0.8 0.8 3 0 0 125 235 35 30 28 15 31 15 485 813 72 57 54 15
cover 0.0 0.8 0.2 0.8 4 0 16 219 188 41 38 22 16 63 94 735 719 185 170 3 42
rev 0.0 0.0 0.0 0.0 5 16 16 172 250 8 5 7 1 32 31 609 719 30 9 15 1
PT: preprocess time (ms) 6 0 15 234 188 18 14 14 11 0 15 578 641 18 14 14 11
PS: preprocessed size 7 0 0 125 172 27 23 23 20 94 125 1359 1359 180 140 140 110

All these parameters can be any real number between zero and one, except for size,
which can be greater than one (e.g. a size of two means the EBox is twice the size
of the TBox). Of course, the latter parameters are only significant when previous ones
are greater than zero. If the cover is less than one then axioms up to one are generated
by selecting randomly the LHS or RHS of other rules, adding an axiom A1 � A2 for
each pair A1, A2 found this way. For the Ai that are classes, nothing else is done. If
some of them is a property P then the axiom ∃P is added and with a probability of 1/2
some other LHS or RHS A3 of some other rule is selected. If A3 is selected then ∃P is
expanded into ∃P.A3. This is repeated recursively until (1) a class is selected or (2) a
property is selected and not expanded (expansion probability: 1/2).

The “size” is the main parameter. It is meant to help to evaluate the impact of the
EBox on the results. The “cover” specifies how much of the EBox is related to the TBox
and how much is random. It is meant to help to evaluate how the relation between EBox
and TBox impacts on the results. The “reverse” specifies how many of the EBox axioms
that are obtained from the TBox remain unaltered and how many are reversed. If the
axiom is unaltered then the subconcepts are redundant, otherwise the superconcept is
redundant. This parameter helps to evaluate the impact of redundancy in these cases.
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Fig. 1. Average rewriting times relating size and cover. All queries and ontologies considered.
“Reverse” is zero in all cases.
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We have run the tests with a set of EBoxes, selecting the values 0.0, 0.2, 0.4, 0.6,
0.8 and 1.0 for each of the parameters described above. When the size is zero all the
other parameters are zero, and when cover is zero reverse is zero as well. This involves
a total of 1 + 5 ∗ (1 + 5 ∗ 6) = 156 EBoxes, for each ontology, used for all queries.
Due to space limitations, we present a small excerpt of the results for a single ontology
in Table 2: the full results for all the ontologies and the EBoxes can be found online4.

The results have been obtained on cold runs, by restarting the application after every
query (passed in the application invocation parameters). The consistency of the results
regardless of how the system is run has been ensured by measuring the query rewriting
time and discarding operations done before and after it. The hardware used in the eval-
uation is a Intel R©CoreTM2 6300 @1.86GHz with 2GB of RAM, Windows R© XP and
JavaTMversion 1.6.0 33, with default settings for the Java Virtual Machine.
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Fig. 2. Average rewriting sizes relating size and cover. All queries and ontologies considered.
“Reverse” is zero in all cases.

With the evaluation results we can observe that:

• In the computation of Datalog rewritings, using the EBox allows for obtaining equal
or smaller Datalog programs for all queries, with negligible effects on the query
rewriting time.

• For UCQ rewritings, our results show that, in general, the number of clauses is re-
duced as the EBox increases in size and similarity (”cover”) with the TBox. This
reduction in the number of clauses usually implies a reduction in the time required
for the query rewriting process, as we can see in Figure 1. This figure shows the av-
erage time to produce a UCQ or a Datalog rewriting and how EBoxes with different
sizes and TBox coverage influence this time. More precisely:
◦ We can notice that EBoxes with both a high value for cover and size tend to

reduce the query rewriting time when compared with other EBoxes or no EBox.

4 http://purl.org/net/jmora/extensionalqueryrewriting

http://purl.org/net/jmora/extensionalqueryrewriting
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◦ When the EBox involves more random axioms (e.g. EBox III in Table 2 with
0.8 for ”size” and 0.2 for ”cover”) the results are less predictable. More specif-
ically, we can see that for UCQ size the EBox III behaves better than EBox
IV in query 4 and it behaves worse than EBox II in query 5. This variation de-
pends on the query, the EBox may contain axioms that imply the subsumption
of atoms in the query. If these axioms are in the TBox, their presence in the
EBox has no impact in the results (EBox IV). However, if these axioms are not
in the TBox, this can lead to further clause condensation, with the elimination
of subsumed clauses and the ones generated from these. This elimination of
clauses means a potentially strong reduction in the size of the results and the
time required to produce them.

• Even in the cases where the query rewriting times are higher, we can see an im-
portant reduction in the number of clauses generated, in the Datalog and UCQ
rewritings, as Figure 2 shows. This reduction in the number of clauses implies a
reduction in the redundancy of the queries that are generated. This simplifies the
computation required for answering the query by the other layers of the OBDA
system.

6 Conclusions and Future Work

We can conclude from the evaluation that the impact of EBoxes is clearly noticeable
and generally positive. This is especially relevant when the EBox is similar to the TBox
in size and contents, which may imply a reduction in query rewriting time. An EBox
that is randomly generated can have a strong positive impact in query rewriting time if it
implies subsumption between the atoms in the query. Even for EBoxes that increase the
query rewriting time, the reduction of redundancy in the generated queries and answers
should produce an improvement in the execution of these queries.

Among the possibilities for future work we consider the extension to Datalog± [15].
The Datalog± family of languages provides interesting opportunities to explore the
expressiveness that can be achieved while dealing with recursion [16].

Another line to explore in the future is considering only the part of the EBox that is
similar to the TBox, which is guaranteed to have a positive impact. For example, the
axioms or clauses in the EBox that are not related with the TBox could be discarded
during the preprocessing. By doing this, the results would be more predictable and the
impact of a large EBox not related with a TBox would be the same as for a small EBox
that is very related to the TBox.

We also consider exploring whether it is possible to extend the input and output
query language to SPARQL. The expressiveness of SPARQL 1.1 allows for a limited
recursion, e.g., property paths. The possibility of using subqueries is also interesting to
limit the combinatorial explosion implied by the unfolding.

Finally, we plan to experiment our technique on some real-world use cases [17],
which would provide information about the relation between the TBox and the corre-
sponding ABox and EBox. This would allow further optimisations that would address
specific characteristics of the EBoxes that are more usual in the use cases. With popu-
lated ABoxes, obtaining the answers to the queries would allow a better quantification
and evaluation of the impact in the whole query answering process.



Extensional Query Rewriting in ELHIO 583

Acknowledgements. The work presented in this paper has been funded by a PIF grant
(Personal Investigador en Formación) from UPM (RR01/2008) and by the EU FP7
project Optique – Scalable End-user Access to Big Data (grant n. FP7-318338).

References

1. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900,
pp. 133–173. Springer, Heidelberg (2008)

2. Rodrı́guez-Muro, M., Calvanese, D.: Dependencies: Making ontology based data access
work in practice. In: Alberto Mendelzon Workshop on Foundations of Data Management
(2011)

3. Rosati, R.: Prexto: Query rewriting under extensional constraints in DL − lite. In: Simperl,
E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295,
pp. 360–374. Springer, Heidelberg (2012)

4. Console, M., Lenzerini, M., Mancini, R., Rosati, R., Ruzzi, M.: Synthesizing extensional
constraints in ontology-based data access. In: Description Logics, pp. 628–639 (2013)

5. Mora, J., Corcho, O.: Engineering optimisations in query rewriting for OBDA. In: I-
SEMANTICS 2013, Austria, pp. 41–48. ACM (2013)

6. Mora, J., Corcho, O.: Towards a systematic benchmarking of ontology-based query rewriting
systems. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 376–391.
Springer, Heidelberg (2013)
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