
PeCAn: Compositional Verification of Petri Nets

Made Easy�

Dinh-Thuan Le1, Huu-Vu Nguyen1, Van-Tinh Nguyen1, Phuong-Nam Mai1,
Bao-Trung Pham-Duy1, Thanh-Tho Quan1, Étienne André2,

Laure Petrucci2, and Yang Liu3

1 HoChiMinh City University of Technology, Vietnam
2 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS,

Villetaneuse, France
3 Nanyang Technological University, Singapore

Abstract. This paper introduces PeCAn, a tool supporting composi-
tional verification of Petri nets. Beyond classical features (such as on-
the-fly analysis and synchronisation between multiple Petri nets), PeCAn
generates Symbolic Observation Graphs (SOG), and uses their compo-
sition to support modular abstractions of multiple Petri nets for more
efficient verification. Furthermore, PeCAn implements an incremental
strategy based on counter-examples for model-checking, thus improving
significantly the cost of execution time and memory space. PeCAn also
provides users with the visualisation of the input Petri nets and their
corresponding SOGs. We experimented PeCAn with benchmark datasets
from the Petri Nets’ model checking contests, showing promising results.

Keywords: Compositional verification, Petri nets, SOG.

1 Introduction

A Petri net (PN) [7] is a graphical mathematical language which efficiently sup-
ports the modelling and verification of distributed systems. Basically, a Petri
net is a directed bipartite graph, featuring transitions and places. As Petri nets
are widely used in research and industry communities, there are several tools
developed to help users specify and verify Petri nets, in particularly LoLa [10],
Snoopy [5], TAPAAL [3], CosyVerif [1], CPN Tools [12] or JPetriNet1. Although
most of the tools work with basic place/transitions PNs, some of them cater for
some advanced forms of PNs such as timed, coloured, or stochastic PNs.

In this paper, we present PeCAn (Petri net Compositional Analyser), a tool
supporting verification of Petri nets in a compositional manner. PeCAn can take
as input Petri Net models described in PNML, one of the most popular languages

� This work is partially supported by the STIC-Asie project CATS (“Compositional
Analysis of Timed Systems”).

1 http://jpetrinet.sourceforge.net

F. Cassez and J.-F. Raskin (Eds.): ATVA 2014, LNCS 8837, pp. 242–247, 2014.
c© Springer International Publishing Switzerland 2014

http://jpetrinet.sourceforge.net


PeCAn: Compositional Verification of Petri Nets Made Easy 243

to describe Petri Nets nowadays. The properties to be checked are expressed as
LTL formulae. PeCAn offers the following features:

– PeCAn allows users to compose a complex PN from multiple concurrent PNs
and then verify the composed PN against a given property.

– PeCAn is able to generate Symbolic Observation Graphs (SOG) [4] from
the actual PNs. Therefore, PeCAn supports verification of modular PNs by
composing SOGs of separate components.

– PeCAn implements the incremental strategy based on counter-examples when
verifying the generated SOG [2]. Thus, the cost of execution time and mem-
ory space is significantly reduced.

2 Modular Verification

In this section, we take the example presented in [8] to demonstrate how to use
PeCAn to verify Petri nets. Even though PeCAn can verify a single Petri net as
other existing tools do, in this paper we only focus on compositional verification
of PeCAn, i.e. verifying a Petri net composed by multiple synchronised modules.

We assume that the original Petri net is already decomposed by users into
modules. PeCAn allows users to verify an arbitrary composition of predefined
modules. In order to do so, they must define synchronised transitions by the same
name between modules. Figure 1b gives an example of a system decomposed into
three modules through synchronised transitions. This system can be described
easily in a modular style by PeCAn. In this example, modules A and B have two
transitions with the same name (F1, F3) meaning that these two transitions must
be synchronised. Similarly, a synchronised transition, F2, is shared by modules
B and C, also declared by the same name in PeCAn.

When the module composition and the LTL property are defined, users can
choose to perform the verification using one of the following methods:

Basic LTL Verification. The modules are synchronised together based on the
user specification. Then the synchronised modules are converted into an LTS
model and verified on-the-fly by the PAT model checking library [11].

SOG-based Verification. In this method, we do not directly verify the syn-
chronised modules. Instead, we produce a corresponding SOG and use it for
the verification. If a counter-example is found, it is verified again on the
original Petri net to check whether it is an actual counter-example.

Incremental SOG-based Verification. It is similar to the SOG-based Veri-
fication method. However, we do not generate the SOG for the whole syn-
chronisation of modules. Instead, we incrementally synchronise two modules
first and verify the corresponding SOG. If no counter-example is found, we
incrementally synchronise one more module and repeat the SOG-based verifi-
cation step, until a counter-example is found or all modules are synchronised
and verified (see [2]).



244 D.-T. Le et al.

(a) Architecture of PeCAn

(b) A modular PN example

(c) Full state space of the model

Fig. 1. Architecture of PeCAn and example with state space

3 Architecture

The architecture of PeCAn, given in Figure 1a, is described as follows:

Editor Layer. Allows users to describe PNs by a (i) PNML specification or (ii)
graph-based visualisation. Users can design an arbitrary number of modules
as well as any composition between them.

Parser Layer. Parses the architectures of the PNs from the Editor Layer and
converts the Petri net models as well as properties to check into an internal
representation for the Semantic Layer.

Semantic Layer. Responsible for generating the corresponding LTS of the in-
put Petri nets, in order to be model checked by the next layer. The three
approaches of Basic LTL Verification, SOG-based Verification and Incremen-
tal SOG-based Verification are then implemented as three sub-modules: Sync
PN on-the-fly, Sync PN SOG and Sync PN Modular SOG.

Model Checker Layer. We make use of the PAT model checking library [11]
for this layer. This library takes an LTS as input, and verifies the properties.

4 Functionality Comparison and Experiments

We finally present some comparative discussion and experiments of our tool
with other similar approaches. Since PeCAn takes PNML as input, we collected



PeCAn: Compositional Verification of Petri Nets Made Easy 245

Table 1. Available tools that support PNML models

No Tool
PNML format
supported

GUI
editor

Deadlock
checking

User-defined
LTL checking Simulation

1 PeCAn � � � � �
2 PNEditor2 � � × ×
3 Snoopy3 ×4 � × × �
4 PNML Framework5 � � ?6

5 ProM framework7 � � × ?8 ×
6 P39 � ×
7 ePNK10 � � ?11

8 Tina12 � × × � �

other PN verification tools also supporting PNML. We selected the tools listed at
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/ and sup-
porting PNML. As shown in Table 1, very few tools can support PNML specifi-
cation and perform full LTL verification.

We then experimented PeCAn with benchmark datasets downloaded from
the Model Checking contest [6]13. Results, as display in Table 2 showed that
PeCAn can endure some remarkably large model sizes. When a counter-example
is found, PeCAn can terminate quickly with significantly less resources usage.

Lastly, we also compared the performance of PeCAn in terms of the (symbolic)
states and transitions generated by the SOG-based approach. The results are
presented in Figures 2a and 2b respectively. Results show that the SOG-based
approach of PeCAn usually reduces the number of states, and always significantly
reduces the number of transitions when compared to the standard approach. In
fact, the number of generated transitions is always significantly reduced, leading
to a substantial gain of time when applying a model checking algorithm. The
tool and all experiments can be downloaded from [9].

2 http://www.pneditor.org/download/pneditor-0.64.jar
3 http://www-dssz.informatik.tu-cottbus.de/track/download.php?id=136
4 Claimed as coming soon
5 http://pnml.lip6.fr
6 Depends on analysis tool using PNML Framework
7 http://www.promtools.org/prom6/
8 Claimed to be done via plugins, but we could not find where.
9 http://www.sfu.ca/~dgasevic/projects/P3net/Download.htm

10 http://www.imm.dtu.dk/~ekki/projects/ePNK/
11 It could not load Eclipse after installation
12 http://projects.laas.fr/tina//download.php
13 http://mcc.lip6.fr/

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/
http://www.pneditor.org/download/pneditor-0.64.jar
http://www-dssz.informatik.tu-cottbus.de/track/download.php?id=136
http://pnml.lip6.fr
http://www.promtools.org/prom6/
http://www.sfu.ca/~dgasevic/projects/P3net/Download.htm
http://www.imm.dtu.dk/~ekki/projects/ePNK/
http://projects.laas.fr/tina//download.php
http://mcc.lip6.fr/


246 D.-T. Le et al.

Table 2. Experiments with deadlock models: PeCAn does not need to explore the
whole state space

No Model Parameter State space

Number of
Reached
Markings

Number of
Transition
Firings

Time
(s)

Memory

(KB)

1 CSRepetitions 2 7.424 32 31 0.015 8,962

2 CSRepetitions 3 1.341 × 108 117 116 0.078 10,465

3 CSRepetitions 4 unknown 291 290 0.202 16,033

4 CSRepetitions 5 unknown 1,274 1,283 0.642 43,289

5 CSRepetitions 7 unknown 2,148 2,147 2.367 135,809

6 CSRepetitions 8 unknown 7,242 7,241 20.836 1,056,194

7 Eratosthenes 10 32 12 19 0.191 8,635

8 Eratosthenes 20 2,048 28 60 0.015 8,929

9 Eratosthenes 50 1.718 × 1010 287 821 0.071 11,451

10 Eratosthenes 100 1.899 × 1022 1,236 4,099 0.539 23,446

11 Eratosthenes 200 1.142 × 1046 3,614 13,007 4.794 91,365

12 Eratosthenes 500 4.13 × 10121 24,236 88,363 76.082 899,525

13 HouseContruction 2 1,501 74 73 0.119 9,100

14 HouseContruction 5 unknown 209 208 0.031 10,095

15 HouseContruction 10 1, 664× 109 434 433 0.018 10,354

16 HouseContruction 20 1.367 × 1013 884 883 0.052 13,481

17 HouseContruction 50 unknown 2,234 2,233 0.121 17,747

18 HouseContruction 100 unknown 4,484 4,483 0.294 20,059

19 HouseContruction 200 unknown 8,984 8,983 0.471 32,975

20 HouseContruction 500 unknown 22,484 22,483 1.48 63,711

21 PermAdmissibility 1 52,537 41 40 0.183 10,437

22 PermAdmissibility 2 unknown 253 252 0.098 13,243

23 PermAdmissibility 5 unknown 1,025 1,024 0.363 25,011

24 PermAdmissibility 10 unknown 2,372 2,371 0.869 45,072

25 PermAdmissibility 20 unknown 5,027 5,026 2.021 87,138

26 PermAdmissibility 50 unknown 12,912 12,911 4.901 201,224

27 Philosopher 5 243 68 84 0.007 9,274

28 Philosopher 10 59,049 7,242 10,576 1.057 42,935

29 Philosopher 20 3.487 × 109 Time out after 7200s

(a) Number of states (b) Number of transitions

Fig. 2. Experimental results on a set of Petri nets



PeCAn: Compositional Verification of Petri Nets Made Easy 247

Acknowledgments. All our thanks to the PAT team [11] for their help in
interfacing our tool with the PAT library.

References

1. André, É., Hillah, L.-M., Hulin-Hubard, F., Kordon, F., Lembachar, Y., Linard,
A., Petrucci, L.: CosyVerif: An open source extensible verification environment. In:
ICECCS, pp. 33–36. IEEE Computer Society (2013)

2. André, É., Klai, K., Ochi, H., Petrucci, L.: A counterexample-based incremental
and modular verification approach. In: Calinescu, R., Garlan, D. (eds.) Monterey
Workshop 2012. LNCS, vol. 7539, pp. 283–302. Springer, Heidelberg (2012)

3. Byg, J., Jørgensen, K.Y., Srba, J.: TAPAAL: Editor, simulator and verifier of
timed-arc Petri nets. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799,
pp. 84–89. Springer, Heidelberg (2009)

4. Haddad, S., Ilié, J.-M., Klai, K.: Design and evaluation of a symbolic and
abstraction-based model checker. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299,
pp. 196–210. Springer, Heidelberg (2004)

5. Heiner, M., Richter, R., Schwarick, M.: Snoopy: A tool to design and ani-
mate/simulate graph-based formalisms. In: SimuTools, vol. 15 (2008)

6. Kordon, F., Linard, A., Beccuti, M., Buchs, D., Fronc, L., Hillah, L.-M., Hulin-
Hubard, F., Legond-Aubry, F., Lohmann, N., Marechal, A., Paviot-Adet, E.,
Pommereau, F., Rodŕıguez, C., Rohr, C., Thierry-Mieg, Y., Wimmel, H., Wolf,
K.: Model checking contest @ Petri nets, report on the 2013 edition. CoRR,
abs/1309.2485 (2013)

7. Kozura, V.E., Nepomniaschy, V.A., Novikov, R.M.: Verification of distributed sys-
tems modelled by high-level Petri nets. In: PARELEC, pp. 61–66 (2002)

8. Lakos, C., Petrucci, L.: Modular state spaces for prioritised Petri nets. In: Ca-
linescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp.
136–156. Springer, Heidelberg (2011)

9. Le, D.-T.: PeCAn Web page (2014),
http://cse.hcmut.edu.vn/~save/project/pn-ver/start

10. Schmidt, K.: Distributed verification with LoLA. Fund. Inf. 54(2-3), 253–262 (2003)
11. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under

fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009)

12. Westergaard, M.: CPN Tools 4: Multi-formalism and extensibility. In: Colom, J.-
M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 400–409. Springer,
Heidelberg (2013)

http://cse.hcmut.edu.vn/~save/project/pn-ver/start

	PeCAn: Compositional Verification of Petri NetsMade Easy
	1 Introduction
	2 Modular Verification
	3 Architecture
	4 Functionality Comparison and Experiments
	References




