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Abstract. We present a tool for translating LTL formulae into deter-
ministic ω-automata. It is the first tool that covers the whole LTL that
does not use Safra’s determinization or any of its variants. This leads to
smaller automata. There are several outputs of the tool: firstly, deter-
ministic Rabin automata, which are the standard input for probabilistic
model checking, e.g. for the probabilistic model-checker PRISM; secondly,
deterministic generalized Rabin automata, which can also be used for
probabilistic model checking and are sometimes by orders of magnitude
smaller. We also link our tool to PRISM and show that this leads to a sig-
nificant speed-up of probabilistic LTL model checking, especially with
the generalized Rabin automata.

1 Introduction

The automata-theoretic approach to model checking is a very successful concept,
which found its way to real industrial practice. The key idea is that a property to
be checked on a given system is transformed into an automaton and the product
of the automaton and the original system is then examined. Since real systems
are often huge it is important that the automata used are very small, so that the
product is not too large to be processed or even fit in the memory. Therefore, a
lot of effort has been invested in transforming popular specification languages,
such as linear temporal logic (LTL) [Pnu77], to small automata [Cou99, DGV99,
EH00, SB00, GO01, GL02, Fri03, BKŘS12, DL13].

The property automata are usually non-deterministic Büchi automata (NBA)
as they can express all LTL properties and are quite succinct. However, for pur-
poses of quantitative probabilistic LTL model checking or of LTL synthesis,
deterministic automata are needed [BK08]. To this end, we can transform NBA
to deterministic Rabin automata (DRA) using Safra’s determinization procedure
or its variants [Saf88, Pit06, Sch09] implemented in [Kle, KNP11, TTH13]. The
disadvantage of this approach is that the blow-up is often exponential even for
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simple formulae despite various heuristics [KB07]. Therefore, practically more
efficient procedures have been designed for fragments of LTL [KE12, KLG13,
BBKS13]. A comparison of currently available translators into deterministic au-
tomata [Kle, GKE12, KLG13, BBKS13] can be found in [BKS13].

While our technique for the (F,G)-fragment [KE12, GKE12] was extended to
some larger fragments [KLG13], an occurrence of the U operator in the scope of
the G operator posed a fundamental problem for the approach. Recently [EK14],
we have shown how to modify the techniques of [KE12] to the whole LTL, using
a more complex procedure. In this paper, we present its implementation together
with several optimizations: Rabinizer 3, the first tool to translate LTL formulae
directly to deterministic automata not employing any automata determinization
procedure. Thus after partial solutions of Rabinizer [GKE12] based on [KE12],
and Rabinizer 2 [KLG13], we finally reach our ultimate goal set up from the
very start.

Firstly, we optimize the construction of the state space given in [EK14]. We
also implement the construction of the acceptance condition of the automata.
As the condition is defined by an exponentially large description, several op-
timizations were needed to compute it efficiently and to obtain an equivalent
small condition. Our optimizations lead to automata and acceptance conditions
no larger than those generated by tools for fragments of LTL.

Furthermore, we provide an interface between our tool and PRISM [KNP11],
the leading probabilistic model checker, resulting in a faster tool for probabilistic
LTL model checking. While PRISM uses DRA produced by a re-implementation
of ltl2dstar [Kle], our tool produces not only DRA, but also generalized DRA
(DGRA). They are often much smaller and can also be used for probabilis-
tic model checking for virtually no extra cost [CGK13]. Moreover, since the
algorithm for probabilistic LTL model checking through DGRA has the same
structure as for DRA, it was possible to implement it reusing the PRISM code.

Rabinizer 3 as well as the extended PRISM are available at [R3].

2 Tool and Experimental Results

Principles and Optimizations. The key idea of the approach of [EK14] is
to have (i) one “master” automaton monitoring the formula that at each step
needs to be satisfied, and (ii) one “slave” automaton for each subformula of the
form Gψ monitoring whether ψ holds true at all but finitely many positions
in the word.1 They all run synchronously in parallel; the slaves are organized
recursively, providing information to the slaves of larger formulae and finally also
to the master.

Example 1. Consider ϕ = (a ∧ FGb) ∨ (Fa ∧ FGc). Upon reading {a, b}, the
master moves to FGb∨FGc and the slave for FGb records it has seen a b. If we
1 This approach bears some similarity with temporal testers [KPoR98, PZ08], which
non-deterministically guess satisfaction at each point and later check the guesses. In
contrast, Mojmir automata [EK14] used here are deterministic and thus can provide
the information to the master only through acceptance.
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read ∅ instead, the master would move to Fa ∧ FGc. Apparently, in this state,
it makes no sense any more to monitor whether FGb holds or not. Moreover, we
can postpone checking FGc until we see an a.

Both observations of the previous example lead to optimizations saving unneces-
sary states. The former was considered already in [KLG13]. The latter is similar
to [BBDL+13], where a similar effect is achieved by graph analysis of the au-
tomata. In contrast, here we can detect the same situation much more easily
using the logical structure of the state space. Thus for instance, for the formula
Fa∧GF(b∧XXXb) the size drops from 16 states in [EK14] to 9 here. Further,
an optimization of the initial states of slaves leads to a similar saving, e.g., for
GF((a ∧XXXa) ∨ (¬a ∧XXX¬a)) from 15 to 8 states.

A major advantage of our approach is that it can generate deterministic gen-
eralized Rabin automata [KE12, CGK13].

Definition 1 (DGRA). A deterministic generalized Rabin automaton (DGRA)
is a deterministic ω-automaton with an acceptance condition of the form

k∨

i=1

(Fin i,

ki∧

j=1

Inf ji )

A run visiting exactly set S of states infinitely often is accepting, if for some i,
S ∩ Fin i = ∅ and S ∩ Inf ji �= ∅ for all j = 1, . . . , ki.

Hence, DRA are DGRA with all ki equal to 1. Similarly, we can define transition-
based DGRA (DTGRA), where the acceptance sets Fini, Inf

j
i are sets of tran-

sitions. We use both variants and the transition-based acceptance often saves
even more, see Table 1 for examples of fairness constraints. The lower part of
the table illustrates the effect of the optimizations: the size of DTGRA due to
unoptimized [EK14] for ψ1 and ψ2 is 11 and 32, respectively, compared to 3 and
16 using the new optimizations. For more experiments, see the web-page of the
tool [R3].

The generalized Rabin acceptance condition arises naturally from the prod-
uct of Rabin conditions for each slave and one global co-Büchi condition. Un-
fortunately, due to the global consition it is a disjunction over all subsets of
G-subformulae and various subsets of slaves’ states. Therefore, it is large. How-
ever, after simplifying the pairs, removing pairs simulated by other pairs and
several other steps, we often decrease the number of pairs down to the actual
Rabin index [KPB95], i.e. the minimal possible number for the given language,
as illustrated in Table 1.

Outputs. Given a formula, Rabinizer 3 can output the corresponding DTGRA,
DGRA and DRA. Several output formats are available, such as the ltl2dstar

format, the dot format for visualization, or the PRISM format. Optional labels
on states display the internal logical structure of the automaton. Transitions can
be displayed either explicitly or more compactly using BDDs, e.g. a + b stands
for three transitions, namely under {a}, {b}, and {a, b}.
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Table 1. Experimental comparisons on fairness constraints (upper part) and two for-
mulae of [EK14] (lower part). We display number of states and acceptance pairs for
ltl2dstar and Rabinizer 3 producing different types of automata, all with the same
number of pairs. Here ψ1 = FG(((a ∧ XXb) ∧ GFb)UG(XX!c ∨ XX(a ∧ b))) and
ψ2 = G(!q ∨ (((!s∨ r)∨X(G(!t∨ r)∨!rU(r∧ (!t∨ r))))U(r∨ p)∨G((!s∨XG!t)))), the
latter being ϕ40 “1 cause-2 effect precedence chain” of Spec Patterns [SP].

Formula
ltl2dstar Rabinizer 3

DRA states pairs DRA st. DGRA st. DTGRA st. pairs

FGa ∨GFb 4 2 4 4 1 2

(FGa ∨GFb) ∧ (FGc ∨GFd) 11324 8 21 16 1 4
∧3

i=1(GFai → GFbi) 1 304 706 10 511 64 1 8
∧3

i=1(GFai → GFai+1) 153 558 8 58 17 1 8

ψ1 40 4 4 4 3 1

ψ2 314 7 21 21 16 4

Probabilistic Model Checking. We follow up on our experimental imple-
mentation of [CGK13] for DGRA and DRA. We provide Java classes allowing
for linking any tool with an appropriate output text format to be used in PRISM.

Since we also produce transition-based DGRA, our experimental results reveal
an interesting observation. Although state-based DGRA are larger than their
transition-based counterpart DTGRA, the respective product is not much larger
(often not at all), see Table 2. For instance, consider the case when the only extra
information that DGRA carries in states, compared to DTGRA, is the labeling
of the last transition taken. Then this information is absorbed in the product,
as the system’s states carry their labeling anyway. Therefore, in this relatively
frequent case for simpler formulae (like the one in Table 2), there is no difference
in sizes of products with DGRA and DTGRA.

Table 2. Model checking Pnueli-Zuck mutex protocol with 5 processes (altogether
308 800 states) from the benchmark set [KNP11] for the property that either all pro-
cesses 1-4 enter the critical section infinitely often, or process 5 asks to enter it only
finitely often

ltl2dstar DRA R.3 DRA R.3 DGRA R.3 DTGRA

Automaton size (and nr. of pairs) 196 (5) 11 (2) 33 (2) 1 (2)

Product size 13 826 588 1 100 608 308 800 308 800

Further, notice that the DGRA in Table 2 is larger than the DRA obtained
by degeneralization of DTGRA and subsequent transformation to a state-based
automaton. However, the product with the DGRA is of the size of the original
system, while for DRA it is larger! This demonstrates the superiority of general-
ized Rabin automata over standard Rabin automata with respect to the product
size and thus also computation time, which is superlinear in the size. For details,
further experiments, and the implementation, see [R3].
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3 Conclusion

We present the first tool translating the whole LTL directly to deterministic ω-
automata, while not employing any automata determinization procedure. This
often results in much smaller DRA. Moreover, the power of DGRA is now avail-
able for the whole LTL as well. Together with our modification of PRISM, this
allows for further speed up of probabilistic model checking as demonstrated by
experimental results.
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Mojmı́r Křet́ınský, Marta Kwiatkowska, and Dave Parker for discussions and
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In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
248–263. Springer, Heidelberg (2000)

[Sch09] Schewe, S.: Tighter bounds for the determinisation of Büchi automata.
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