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Preface

ATVA 2014 was the 12th edition of the ATVA conference series. The purpose
of ATVA is to promote research on theoretical and practical aspects of auto-
mated analysis, verification, and synthesis by providing an international forum
for interaction among the researchers in academia and industry.

This year, 70 regular papers and six tool papers were submitted to the con-
ference. The Program Committee decided to accept 29 papers. The program also
included three invited talks and three invited tutorials given by Prof. Roderick
Bloem (TU Graz), Prof. Ahmed Bouajjani (University of Paris 7), and Prof.
Krishnendu Chatterjee (IST Austria).

Many worked hard and offered their valuable time generously to make ATVA
2014 successful. First of all, the conference organizers thank the 129 researchers
who worked hard to complete and submit papers to the conference. No less than
279 reviews (four for each submission on average) were written by ProgramCom-
mittee (PC) members and their sub-reviewers in order to select the papers to
be presented at the conference. Steering Committee members also deserve spe-
cial recognition. Without them, a competitive and peer-reviewed international
symposium like ATVA simply cannot take place.

Many organizations sponsored the symposium. They include: The New South
Wales Government (Trade & Investment), NICTA, Red Lizard Software, and the
University of New South Wales (UNSW).

Finally, we thank EasyChair for providing us with the infrastructure to man-
age the submissions, the reviewing process, the PC discussion and the prepara-
tion of the proceedings.

July 2014 Jean-François Raskin
Franck Cassez
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Verification of Concurrent Programs:

Decidability, Complexity, Reductions
(Tutorial)

Ahmed Bouajjani

LIAFA, Université Paris Diderot (Paris 7) & Institut Universitaire de France

abou@liafa.univ-paris-diderot.fr

Concurrency is omnipresent in computer systems, at all levels, from applications
relying on high level synchronization mechanisms and using abstract data struc-
tures, to low level code implementing concurrent/distributed data structures
and system services over multi-core architectures/large-scale networks. The au-
tomated verification of concurrent programs is a challenging problem due to
their highly complex behaviours.

We will address the problem of verifying automatically concurrent programs,
from the point of view of decidability and complexity. We will show the difficul-
ties that raise in addressing this problem in different contexts: shared-memory,
message passing, dynamic creation of tasks, recursion, relaxed memory models,
etc. We will overview existing approaches for handling these issues, and we will
show in particular how verification problems for concurrent programs can be
reduced to “simpler” problems (stated as reachability queries either on sequen-
tial programs, or on concurrent but sequentially consistent programs) for which
there are already know verification algorithms and tools.



Automatic Correctness Checking of

Implementations of Concurrent Objects
(Invited Talk)

Ahmed Bouajjani1,2, Michael Emmi3, Constantin Enea1, and Jad Hamza1

1 LIAFA, Université Paris Diderot
2 Institut Universitaire de France

3 IMDEA Software Institute

Efficient implementations of concurrent objects such as semaphores, locks, and
data structures (like sets, stacks, and queues), are essential to modern com-
puting. Clients of these libraries assume that the latter are conform to reference
implementations where typically operations are atomic, as it helps apprehending
the library behaviors. However, in order to minimize synchronization overhead
between concurrent object invocations, implementors of concurrent objects avoid
blocking operations such as lock acquisition, allowing operations to be concur-
rently intertwined. Still, they must ensure that this relaxation is fully transpar-
ent to the client, that is, the interactions of the library with the client should
be conform to his expectations. This is a notoriously hard and error prune task.
Therefore, algorithmic methods for checking conformance between implementa-
tions of concurrent objets is in high demand.

Conformance is formally captured by the concept of observational refinement:
Given two libraries L1 and L2, each of them implementing the operations of some
concurrent object, L1 refines L2 if and only if for every (library-client) program
P , every execution of P invoking L1 is also possible when P invokes L2 instead.

We address in this talk the problem of observational refinement checking.
We investigate semantical and algorithmic aspects related to this problem, es-
pecially, we show the links between observational refinement and the lineariz-
ability correctness criterion, we examine the decidability and the complexity of
this problem, and we present a new approach for efficient detection of refinement
violations.



The Complexity Landscape of

Partial-Observation Stochastic Games
(Invited Talk)�

Krishnendu Chatterjee

IST Austria (Institute of Science and Technology Austria)

Two-player games on graphs are central in many problems in computer science,
specially in analysis of reactive systems. Partial-observation games on graphs
naturally arise when not every aspect of the reactive system can be observed
(such as due to imprecision in sensors that monitor the system, or certain vari-
ables of the system are hidden). We study partial-observation stochastic games
on graphs, where the objectives of the players are complementary (i.e., the game
is zero-sum). Partial-observation games can be classified based on the infor-
mation available to the players as follows: (a) general (or two-sided) partial-
observation (both players have partial knowledge about the game); (b) one-sided
partial-observation (one player has partial-observation and the opponent player
has complete-observation); and (c) perfect-observation (both players have com-
plete knowledge of the game). The one-sided partial-observation stochastic games
subsume several important special cases such as one-player partial-observation
stochastic games (or partial-observation Markov decision processes (POMDPs))
and probabilistic automata (or blind POMDPs). The classification of strategies
based on the randomization available is as follows: (a) the players may not be
allowed to use randomization (deterministic or pure strategies), or (b) they may
choose a probability distribution over actions but the actual random choice is
external and not visible to the player (actions invisible), or (c) they may use
full randomization. We consider all these classes of games with reachability, and
parity objectives that can express all ω-regular objectives. The analysis prob-
lems are classified as follows: (a) the qualitative analysis that asks whether there
exists a strategy that ensures that the objective is satisfied with probability 1;
and (b) the more general quantitative analysis that asks whether there exists
a strategy that ensures that the objective is satisfied with probability at least
λ ∈ (0, 1].

In this talk we will cover a wide range of results that describes the complex-
ity landscape for partial-observation stochastic games: for perfect-observation
games [3, 13, 14]; for POMDPs [18, 1, 9, 15, 4, 8]; for one-sided partial-observation

* The research was partly supported by Austrian Science Fund (FWF) Grant No P
23499- N23, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307:
Graph Games), and Microsoft faculty fellows award.



XVI K. Chatterjee

games [11, 6, 17, 12]; and for general partial-observation games [2, 6, 7]. Recent
surveys [3, 10] cover many of these results.

Acknowledgements. The talk is based on joint work with several collabora-
tors, namely, Martin Chmelik, Laurent Doyen, Hugo Gimbert, Thomas A. Hen-
zinger, Marcin Jurdzinski, Sumit Nain, Jean-Francois Raskin, Mathieu Tracol,
and Moshe Y. Vardi.
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2010. LNCS, vol. 6281, pp. 258–269. Springer, Heidelberg (2010)

10. Chatterjee, K., Doyen, L., Henzinger, T.A.: A survey of partial-observation stochas-
tic parity games. Formal Methods in System Design 43(2), 268–284 (2013)

11. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-
regular games of incomplete information. Logical Methods in Computer Sci-
ence 3(3:4) (2007)

12. Chatterjee, K., Doyen, L., Nain, S., Vardi, M.Y.: The complexity of partial-
observation stochastic parity games with finite-memory strategies. In: Muscholl,
A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 242–257. Springer, Hei-
delberg (2014)
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Multidimensional Quantitative Games and

Markov Decision Processes
(Invited Tutorial)�

Krishnendu Chatterjee

IST Austria (Institute of Science and Technology Austria)

Traditionally analysis problems for reactive systems have been studied with re-
spect to Boolean properties (to specify correctness of systems). Recent trends
in analysis of embedded systems require to analyse quantitative properties such
as average success rate. We will present different reactive system models (such
as game graphs, or Markov decision processes) with several classical quantita-
tive (such as mean-payoff) objectives, as well as combination of quantitative and
Boolean objectives. We will survey many recent results of game graphs [7, 14,
12, 13, 8, 10, 3] and Markov decision processes [11, 2, 5, 4, 6, 9, 1] with respect to
the above mentioned objectives.

Acknowledgements. The talk is based on joint work with several collabora-
tors, namely, Tomas Brazdil, Vaclav Brozek, Laurent Doyen, Vojtech Forejt,
Hugo Gimbert, Thomas A. Henzinger, Marcin Jurdzinski, Antonin Kucera, Ru-
pak Majumdar, Youssouf Oualhadj, Alexander Rabinovich, Mickael Randour,
Jean-Francois Raskin, Yaron Velner, and Dominik Wojtczak.
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Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmeĺık,
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Abstract. Communicating multi-pushdown systems model networks of
multi-threaded recursive programs communicating via reliable FIFO
channels. We extend the notion of split-width [8] to this setting, improv-
ing and simplifying the earlier definition. Split-width, while having the
same power of clique-/tree-width, gives a divide-and-conquer technique
to prove the bound of a class, thanks to the two basic operations, shuffle
and merge, of the split-width algebra. We illustrate this technique on ex-
amples. We also obtain simple, uniform and optimal decision procedures
for various verification problems parametrised by split-width.

1 Introduction

This paper is about the formal verification of multi-threaded recursive programs
communicating via reliable FIFO channels. This is an important but highly
challenging problem. Recent researches have developed several approximation
techniques for the verification of multi-threaded recursive programs (abstracted
as multi-pushdown systems) and communicating machines. We continue this line
of research. We propose a generic under-approximation class, and give uniform
decision procedures for a variety of verification problems including reachability
and model-checking against logical specifications.

We model the system as a collection of finite state machines, equipped with
unbounded stack and queue data-structures. Thus, we get a faithful modelling
of programs using such data-structures. They can also be used to model im-
plicit features in a distributed setting, e.g., stack models recursion and queues
model communication channels. Such systems are called stack-queue distributed
system (SQDS) in this paper. The behaviour of an SQDS, called a stack-queue
MSC (SQMSC), is a tuple of sequences of events (one per program/process). In
addition a binary matching relation links corresponding writes (push/send) and
reads (pop/receive). These were called stack-queue graphs in [20], run graphs
in [15] and they jointly generalise nested words [1], multiply nested words [17]
and Message Sequence Charts (MSC) [16]. An example is given is Fig. 1.
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These systems are Turing powerful, and hence their verification is undecidable.
Several under-approximations [11,13,10,21,17,19,2,5] have been studied in the
literature. SQMSCs form a class of graphs, and hence bounds on clique-/tree-
width can also be used as an under-approximation, as they give decidability
for model-checking against powerful MSO logic. Since SQMSCs have bounded
degree, it follows from Courcelle’s result that a bound on tree-width is necessary
for obtaining decidability against MSO model-checking. In fact, a bound on tree-
width is established in [20] for many of the known decidable classes. Thus [20]
gives the first unified proof of decidability of reachability of these classes. In
[15], a bound on the tree-width of the run graphs of restricted communicating
pushdown systems is shown via hyper-edge replacement grammars.

We propose another measure called split-width, which is specific to SQMSCs
(as opposed to generic graphs) and hence simpler. It is based on a divide-and-
conquer decomposition mechanism1 (or dually an algebra2) for SQMSCs, and
provide a natural tree-embedding of SQMSCs. This way, every verification prob-
lem can be stated equivalently over trees, and hence can be solved efficiently.

Furthermore, split-width is as powerful as tree-width (see [7]), and the re-
spective bounds lie in a linear factor of each other. Thus bounding split-width
can also be seen as a way to bound tree-width, which is often a difficult task.
A bound on split-width has been established for many known decidable classes
in [8,7]. The systematic way of bounding the split-width helped in generalising
these classes and in discovering new decidable classes.

As said before, split-width is a measure based on decomposing an SQMSC
into atomic pieces. The atomic pieces are single events and edges linking writes
and reads. The idea is to decompose an SQMSC by the repeated application
of two operations: split and divide. Split chops the edge between neighbouring
events and divide separates such split-SQMSCs into independent parts. We may
need several splits before it can be divided, and the maximum number of such
splits on a decomposition is its width. The split-width is the width of an optimal
decomposition – one that minimises the maximum number of splits.

The above decomposition procedure can be abstracted as a term in an algebra.
This gives a natural embedding of SQMSCs into trees, similar to how parse
trees give a tree-representation for a word in a context-free language. The valid
tree-embeddings of SQMSC with split-width at most k form a regular tree-
language. Thus we can translate every problem (see below) on SQDS/SQMSC
to an equivalent one on tree-domains.

We consider several verification problems starting from reachability. We use
Monadic Second Order logic (MSO), Propositional Dynamic Logic with and
without intersection (IPDL/PDL) and Temporal Logics (TL) as specification

1 k-decompositions are a divide and conquer technique for bounding tree-width. The
role played by edges in split-width is played by vertices there. Further, split-width
decompositions are duplication free allowing us to reason about SQMSCs easily.

2 Split-width algebra is in some sense a restriction of special tree-width algebra [6]
resulting in decomposition trees where the matching edges occur at the lowest level.
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languages. Satisfiability checking, and model-checking of SQDS against specif-
cations given in these formalisms are also addressed.

With split-width as a parameter, we get uniform decision procedures with
optimal complexities for all verification problems on SQDS/SQMSC. The com-
plexities range from non-elementary for MSO to 2Exptime for IPDL to Exp-
time for PDL/TL and reachability. However, the complexity is only polynomial
in the number of states of the SQDS. Thus, if the bound on split-width is fixed
a priori, then reachability is in Ptime.

Split-width was originally introduced in [8] as a technique to prove decidability
of MSO model checking of multi-pushdown systems. In this paper, we generalise
this notion to more complex behaviours involving multiple processes with several
local stacks and queues and multiple channels between the processes for com-
munication. In another dimension, we address more verification problems, for
example model checking an SQDS against PDL. Finally, we describe a uniform
approach to address these variety of problems simplifying the original proofs and
constructions in [8].

2 Preliminaries: Systems and Behaviours

In this section we describe our formal model called Stack-Queue Distributed Sys-
tems (SQDS). Such a system consists of a finite collection of processes each of
which having finitely many control locations. Further the collection has access
to a set of stacks and queues. Each data-structure (stack/queue) is written to
by a unique process (called its writer) and read from by a unique process (called
its reader). For stacks we additionally require that the reader and writer are the
same process. Such a system is a formal model of distributed multi-threaded pro-
grams communicating via reliable FIFO channels. The call-stack of one thread is
modelled with a stack, while the reliable FIFO channels connecting the processes
are modelled with queues. In addition, processes may use stacks and queues as
local data structures, e.g. in task schedulers, in resource request managers etc.
They can also arise when a process represents the global behaviour of a collection
of distributed processes along with the channels interconnecting them.

An Architecture A is a tuple (Procs,Stacks,Queues,Writer,Reader) con-
sisting of a fintie set Procs of processes, a finite set of Stacks, a finite set
of Queues and functions Writer and Reader which assign to each stack/queue
the process that will write (push/send) into it and the process that will read
(pop/receive) from it respectively. We write DS for Stacks �Queues.

A stack d must be local to its process, so Writer(d) = Reader(d). On the
other hand, a queue d may be local to a process p if Writer(d) = p = Reader(d),
otherwise it provides a FIFO channel from Writer(d) to Reader(d).

A Stack-Queue Distributed System (SQDS) over an architecture A and
an alphabet Σ is a tuple S = (Locs,Val, (Transp)p∈Procs, �in,Fin) where Locs is
a finite set of locations, Val is a finite set of values that can be stored in the
data-structures, �in ∈ Locs is the initial location, Fin ⊆ LocsProcs is the set of
global final locations, and Transp is the set of transitions of process p. Transp
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may have write (resp. read) transitions on data-structure d only if Writer(d) = p
(resp. Reader(p) = d). For �, �′ ∈ Locs, a ∈ Σ, d ∈ DS and v ∈ Val, Transp has

– internal transitions of the form �
a−→ �′,

– write transitions of the form �
a,d!v−−−→ �′ with Writer(d) = p, and

– read transitions of the form �
a,d?v−−−→ �′ with Reader(d) = p.

For an SQDS S, by sizeof(S) we denote its number of states (|Locs|).
Intuitively, an SQDS consists of a collection of finite state automata equipped

with a collection of stacks and queues. In each step, a process uses an internal
transition to simply change its state, or uses a write transition to append a value
to the tail of a particular queue or stack, or uses a read transition to remove a
value from the head (or tail) of a queue (resp. of a stack). The transition relation
makes explicit the identity of the data-structure being accessed and the type of
the operation. As observed in [1,17,8,20] it is often convenient to describe the
semantics of such systems as a labeling of words decorated with a matching
relation per data-structure instead of using configurations and moves.

This is also consistent with the usual semantics of distributed systems given
as labelings of appropriate partial orders [23,13,11]. We now describe formally
the structures that represent behaviours of such SQDS.

A Stack-Queue MSC (SQMSC) over architecture A and alphabet Σ is a
tuple M = ((Ep)p∈Procs,→, λ, (�d)d∈DS) where Ep is the finite set of events
on process p, → relates only events within a process, i.e., → = � →p where
→p = →∩ (Ep × Ep), →p is the covering relation of a linear order on Ep, �d is
the relation matching write events on data-structure d with their corresponding
read events and λ(e) ∈ Σ is the letter labeling event e. We set pid(e) = p if
e ∈ Ep, and E = �pEp. We also let � =

⋃
d∈DS�d be the set of all matching

edges. We require the relation< = (→∪�)+ to be a strict partial order on the set
of events. Finally, the matching relations should comply with the architecture:
�d ⊆ EWriter(d) × EReader(d).
– data-structure accesses are disjoint: if e1�de2 and e3�d′

e4 are distinct edges
(d �= d′ or (e1, e2) �= (e3, e4)) then they are disjoint (|{e1, e2, e3, e4}| = 4),

– ∀d ∈ Stacks, �d conforms to LIFO: if e1 �d f1 and e2 �d f2 are different
edges then we do not have e1 < e2 < f1 < f2.

– ∀d ∈ Queues, �d conforms to FIFO: if e1 �d f1 and e2 �d f2 are different
edges then we do not have e1 < e2 and f2 < f1.

We denote by �����(A, Σ) the set of SQMSCs over A and Σ. An SQMSC over
an architecture with one process and one stack is a nested word [1]. An SQMSC
over an architecture with no stacks and at most one queue between every pair of
processes is a Message Sequence Chart [16]. An SQMSC is depicted in Figure 1.

An event e is a read event (on data-strucutre d) if there is an f such that
f �d e. We define write events similarly and an event is internal if it is neither a
read nor a write. To define the run of an SQDS over an SQMSC M, we introduce
two notations. For p ∈ Procs and e ∈ Ep, we denote by e− the unique event such
that e− → e if it exists, and we let e− = ⊥p /∈ E otherwise. We let maxp(M) be
the maximal event of Ep if it exists and maxp(M) = ⊥p otherwise.
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2

1

Fig. 1. An SQMSC over 2 processes, 3 queues and 2 stacks. Two queues form channels
from Proc. 2 to Proc. 1, while the 3rd queue is a self-queue on Proc. 1.

A Run of an SQDS S over an SQMSCM is a mapping ρ : E → Locs satisfying
the following consistency conditions (with ρ(⊥p) = �in):

– if e is an internal event then ρ(e−)
λ(e)−−−→ ρ(e) ∈ Transpid(e),

– if e�d f for some data-structure d ∈ DS then for some v ∈ Val we have both

ρ(e−)
λ(e),d!v−−−−−→ ρ(e) ∈ Transpid(e) and ρ(f−)

λ(f),d?v−−−−−→ ρ(f) ∈ Transpid(f).

The run is accepting if (ρ(maxp(M)))p∈Procs ∈ Fin. The language L (S) ac-
cepted by an SQDS S is the set of SQMSCs on which it has an accepting run.

The reachability problem asks, given an SQDS S, whether some global final
locations from Fin is reachable in S? This is equivalent to the language emptiness
problem for SQDS and is undecidable. We get decidability (cf. Theorem 9) for
the bounded split-width reachability problem: given a parameter k, does L (S)
contain at least one SQMSC with split-width at most k? The complexity of
our decision procedure is only polynomial in sizeof(S) though exponential in k
and |A|. We also obtain optimal decision procedures (cf. Theorem 16) for the
bounded split-width model-checking problems wrt. MSO (non-elementary) and
PDL (polynomial in sizeof(S), and exponential in k, |A| and the formula).

3 The Split-Width Algebra for SQMSCs

The idea is to decompose each SQMSC into atomic pieces. We begin by removing
some of the → edges to create holes which we call elastic edges. This operation
is called split. We call an SQMSC with elastic edges a split-SQMSC.

After removing some → edges it is possible that the entire split-SQMSC con-
sists of two disjoint parts with only elastic edges connecting them. At this point
we may break-up this split-SQMSC into these two parts and then continue de-
composing them separately. This operation is called divide. Our aim is to use
split and divide repeatedly until we are left with the atomic parts, which are
either internal events or an edge of the form e �d f . Figure 2a describes this
decomposition on an SQMSC where the elastic edges are dashed ( ).

For any such complete break up of an SQMSC, its width is the maximum
number of elastic edges of all the split-SQMSCs produced. The break-up de-
scribed in Figure 2a has width 2. There may be several ways of starting with
an SQMSC and breaking it down into its atomic components. A different and
somewhat more trivial decomposition with width 5 is described in Figure 2b.
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(a) – of width 2. (b) – of width 5.

Fig. 2. Two decompositions of an SQMSC (consecutive splits are contracted)

The split-width of an SQMSC is the minimum width among all possible ways
of breaking it up into its atomic parts using split and divide. A class C of
SQMSCs has split-width k if each of its members has split-width at most k.

We begin by formalizing the idea of SQMSCs with holes. As explained above,
it is done by identifying a subset of the → edges as elastic edges standing for
holes which may be filled later (or dually for a part that has been removed).
Then we describe the split-width algebra.

A Split-SQMSC is an SQMSC in which → edges are partitioned into rigid
edges (denoted r−→) and elastic edges (denoted e−→). It is a pair M = (M, e−→)
where M = ((Ep)p∈Procs,→, λ, (�d)d∈DS) is an SQMSC and e−→ ⊆ →. We let
r−→ = →\ e−→ be the rigid edges of M.

The elasticity of a split-SQMSC is the number of elastic edges
it has. A emphcomponent is a maximal connected component
of the graph when restricted to only rigid edges ( r−→). For in-
stance, the split-SQMSC on right has elasticity one, and three
components.

The Split-Width Algebra over A and Σ is given by the following syntax:

s ::= (a, p) | (a,Writer(d))�d (a′,Reader(d)) | merge(s) | s� s

where a, a′ ∈ Σ, p ∈ Procs and d ∈ DS. We use split-terms to refer to the
terms of this algebra. Note that, the binary operators �d may only be applied
to atomic terms. The operator merge denotes the dual of the split operation
while � represents the dual of the divide operation. The terms of this algebra
represent sets of split-SQMSCs (rather than SQMSCs) as there are many ways
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of shuffling together two split-SQMSCs (and also many choices for converting
some elastic edge into a rigid one).

– �(a, p)� is the SQMSC consisting of a single event labeled a on process p.

– �(a, p)�d (a′, p′)� is the split-SQMSC consisting of two events, e labeled a on
process p, and e′ labeled a′ on process p′. These events are connected by a
matching edge: e�d e′. Moreover, if p = p′, these two events are also linked
by an elastic edge: e e−→ e′.

The merge operator when applied to a split-SQMSC M returns the set of split-
SQMSCs obtained by replacing one elastic edge by a rigid edge and is extended
naturally to sets of split-SQMSCs. The � operator applied to two split-SQMSCs
M1 and M2 returns the set of split-SQMSCs that can be divided into M1 and
M2 and is once again extended naturally to an operation on sets.

Formally, �merge((M, e−→))� contains any split-SQMSC (M, e−→′
) such that

e−→′ ⊆ e−→ and | e−→′| = | e−→| − 1. The number of components and the elasticity
decrease by 1 as the result of a merge. Further, |merge(M)| = elasticity(M).

Let Mi = (Mi,
e−→i) with Mi = ((E i

p)p∈Procs,→i, λi, (�d
i )d∈DS) for i ∈ {1, 2}

be two split-SQMSCs with disjoint sets of events. Then, M1�M2 is the set of
split-SQMSCs M = (M, e−→) with M = ((Ep)p∈Procs,→, λ, (�)d∈DS) such that
– apart from the elastic edges, M is the disjoint union of M1 and M2, i.e.,

Ep = E1
p �E2

p , λ = λ1�λ2, pid = pid1�pid2, �d = �d
1��d

2 and r−→ = r−→1� r−→2,
– for each i, the order of the components of Mi, as prescribed by the elastic

edges e−→i, is preserved in M: e−→1 ∪ e−→2 ⊆ →∗.
Note that, the number of components of any split-SQMSC M ∈ (M1�M2) is
the sum of the number of components in M1 and M2.

Example 1. The tree on right depicts the split-term

s = merge(((a, 1)�s (b, 1))� (((b, 2)�q (a, 1))� (a, 2))).

�s� has 18 split-SQMSCs , of which two are shown below:

M1 =
1

2

a

ba

b a

M2 =
1

2
b

a b

a

a

merge

�

�s

(a, 1) (b, 1)

�

�q

(b, 2) (a, 1)

(a, 2)

We can easily check that all the split-SQMSC in the semantics �s� of any split-
term s have the same set of non-empty processes, denoted Procs(s), the same
number of components, hence also the same elasticity, donoted elasticity(s).

The width of a split-term s, denoted swd(s), is the maximum elasticity of all
its sub-terms. For instance, the elasticity of the split-term s of Ex. 1 is two and
its width is three. The split-width of a split-SQMSC M, denoted swd(M), is the
minimum width of all split-terms s such that M ∈ �s�. For instance, M1 and
M2 of Ex. 1 have split-width two since they are respectively in the semantics of

s1 = (merge(((a, 1)�s (b, 1))� ((b, 2)�q (a, 1))))� (a, 2)

s2 = ((a, 1)�s (b, 1))�merge(((b, 2)�q (a, 1))� (a, 2)).

Remark 2. The split-width algebra over A can generate any SQMSC M =
((Ep)p∈Procs,→, λ, (�)d∈DS) over A. In fact a sequence of shuffles of basic
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split-terms will generate a split-SQMSC M1 = (M, e−→1 = →). This will then be
followed by a sequence of merges to get the split-SQMSC M2 = (M, e−→2 = ∅).

Some classes of bounded split-width are given below. (See [8,7] for more in-
volved classes).

NestedWords have split-width bounded by 2. This follows easily since a nested

word is either the concatenation of two nested words, or of the form a w1 b

where w1 is a nested word, or a basic nested word of the form a or a b.

Message Sequence Graphs are graphs in which the edges are labelled by
MSCs from a finite set Γ . A path in an MSG generates an MSC M ∈ Γ ∗ by
concatentation of the edge labels along the path. It is easy to see that all MSCs
in Γ ∗ have split-width bounded by |Procs|+m where m the maximum size of
an MSC from Γ . Indeed, let M = M1 ·M2 · . . . · Mn = M′ · Mn ∈ Γ+. We
decompose this MSC recursively as follows: If M′ is nonempty, then remove the
→ edges added at the last concatenation by splits, and then divide into M′ and
Mn; recursively decompose each of them. If M ∈ Γ , then it can be decomposed
naively, with split-width bounded by its size.

Proposition 3. Let G be an MSG over Γ and let m = max{|M | : M ∈ Γ}.
Then the split-width of any MSC generated by G is bounded by |Procs|+m.

In fact, MSCs generated from a finite set Γ are existentially bounded. This
larger class also has bounded split-width as demonstrated below.

Existentially k-Bounded MSCs are those in which the events can be linearly
ordered (extending the partial order ≤) such that the number of unmatched
writes at any point is bounded by k. Let this linear order be denoted 
. We
decompose an existentially k bounded MSC as follows. We split the → edge
originating from the first k + 1 events in the 
 order. Let us call these events
detached events. Among the detached events, we divide 1) all read events along
with their partners (since the partner write event precedes the read, it is also
detached), and 2) all internal events, as atomic pieces from the rest of the split-
MSC. At this point, all detached events are writes. Since there cannot be more
than k unmatched writes at any point, the number of detached events is strictly
less than k + 1. Hence, we proceed by splitting more → edges in the 
 order
until there are k + 1 detached events. Then we follow with the divide operation
as before, and repeat until the whole MSC is decomposed. Thus,

Proposition 4. Existentially k-bounded MSCs have split-width at most k + 1.

4 Split-SQMSC to Trees

One key interest in defining the split-width algebra is that the class of k split-
width SQMSCs can be seen as a regular tree language and that model-checking
problems of this class can be reduced to problems on tree automata. As a first
step we show how to encode SQMSC of bounded split-width as binary trees.
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As it stands, each split-term s defines a set of split-SQMSCs �s�. In order to
reason about each split-SQMSC we decorate split-terms with additional labels
so that each such labeled term denotes a unique split-SQMSC. The reason �s� is
a set is that the operations merge and � are ambiguous. For instance, the merge
operation replaces one elastic edge by a rigid edge, but does not specify which.
By decorating each merge operation with the identity of this edge we resolve
this ambiguity. The shuffle operation permits the interleaving of the compo-
nents coming from its two operands in multiple ways and we disambiguate it by
decorating each shuffle operation with the precise ordering of these components.
The key observation is that we only need a finite set
of labels to disambiguate every split-term of width
at most k. Our labels consist of a word per process,
containing one letter per component indicating the
origin of that component. At merge nodes we use
letters m to denote that it is the result of a merge
and i to indicate that it is inherited as it is from
the operand. At a shuffle node we use letters � to
indicate it comes from the left operand and r to
indicate it comes from the right. For instance, the
figure on the right dismabiguates the split-term s of
Ex. 1 to represent M1.

merge
(mi, ii)

(�r�, rr)

�s

(�r, ε)

(a, 1)
(�, ε)

(b, 1)
(�, ε)

(�, �r)

�q

(r, �)

(b, 2)
(ε, �)

(a, 1)
(�, ε)

(a, 2)
(ε, �)

Fig. 3. A 3-DST

Consider the set of labels Lk = ({i,m}≤k+1)Procs ∪ ({�, r}≤k+1)Procs . A k-
disambiguated split-tree or k-DST is a split-term s of width at most k, treated
as a binary tree, labeled by Lk, and satisfying some validity conditions. Hence,
each node n of t corresponds to a subterm sn of s, and we denote its labeling by
(Wp(n))p∈Procs. We define simultaneously, the validity condition for the labeling
at each node n, and the split-SQMSC Mn identified by this labeling.

1. If n is a leaf with associated split-term sn = (a, p), then Mn is the unique
split-SQMSC in �sn�. We set Wp(n) = � as a convention and Wp′(n) = ε for
all p′ �= p.

2. If n is a �d node, then its children must be leaves n′ and n′′ and sn =
sn′ �d sn′′ . Again, Mn is the unique split-SQMSC in �sn�. Let p′ and p′′ be
the processes of the children. We let Wp(n) = ε for all p /∈ {p′, p′′}. If p′ = p′′

then we let Wp′(n) = �r, and otherwise we let Wp′(n) = � and Wp′′ (n) = r.
3. If n is a merge node, then it has a single child n′ and sn = merge(sn′). In

this case, there must be exactly one process p such that Wp(n) ∈ i∗mi∗ and
|Wp(n)| = |Wp(n

′)| − 1 and for all other p′ �= p, we have Wp′(n) ∈ i∗ and
|Wp′(n)| = |Wp′(n′)|. Further, Mn is the split-SQMSC obtained from Mn′

by merging on process p the component indicated by m in Wp(n) with the
next component. Clearly Mn ∈ �sn�.

4. If n is a shuffle node, it has two children n′ and n′′ and sn = sn′�sn′′ . Then,
for each process p ∈ Procs, we have Wp(n) ∈ {�, r}≤k+1 and #�(Wp(n)) =
|Wp(n

′)| and #r(Wp(n)) = |Wp(n
′′)|. Moreover, Mn is the unique split-

SQMSC (if it exists) obtained by shuffling the components of Mn′ and Mn′′

as indicated by (Wp(n))p∈Procs and once again Mn ∈ �sn�.
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Clearly, the validity conditions above for k-DSTs can be checked with a deter-
ministic bottom-up tree automaton. However, the above validity conditions are
not sufficient, as the LIFO/FIFO policies on the data-structure may be violated
at a shuffle, and hence its semantics could be empty. But we can modify this
bottom-up automaton to check whether the shuffles respect the LIFO/FIFO poli-
cies. To this end, the automaton keeps a subset of DS× {1, . . . , k} × {1, . . . , k}
in its state. If a tuple (d, i, j) is in the state labelling a node n, then it means
that there is some �d edge from the ith component of Writer(d) to the jth com-
ponent of Reader(d) in �sn�. This information can be consistently updated at
every transition, and used to forbid invalid shuffles. Thus,

Proposition 5. The set of k-DSTs is a regular tree language recognized by a
tree automaton with 2O(k|A|) many states.

We write Mt for the split-SQMSC described by the root of some DST t.
When a split-term s has width k, it is not difficult to see that, any split-SQMSC
M ∈ �s� can be obtained as Mt for some k-DST t with associated split-term s.

We can recover Mt from t and hence reason about Mt using t. Clearly the
events in Mt are in bijective correspondence with the leaves of t and we identify
the two. If n and n′ are leaves of t then n�d n′ in Mt iff there is a �d node in
t whose left child is n and right child is n′.

When is n r−→ n′ in Mt? The r−→ edge connecting them is to be found in some
merge common ancestor of n and n′. We walk up the tree starting at leaf n
tracking the identity of the component whose last event is n (this component
may grow in size as previous components are merged with it), till a merge node
x merging this component with the next is encountered. We also walk up the
tree starting at the leaf n′ tracking the identity of its component till a merge
node x′ merging this component with the previous one is encountered. These
routes from n and n′ are marked in red and blue in Fig. 3.

Clearly, n r−→ n′ iff x = x′. It is easy to build a bottom-up tree automaton to
carry out this tracking and to check if x = x′. This gives us the first part of the
following Proposition. The second part follows from the observation that having
found x one may walk down from there to the leaf n′.

Proposition 6. – There is a deterministic bottom-up tree automaton with at
most 3k|Procs|+ 2 states which accepts the set of k-DSTs t having exactly
two marked leaves n and n′ such that n r−→ n′ in the split-SQMSC Mt.

– There is a deterministic tree-walking automaton with at most 2k|Procs|
states which has an accepting run on a k-DST t from leaf n to leaf n′ iff
n r−→ n′ in the split-SQMSC Mt.

Remark 7. It is also possible to restrict Prop. 5 and Prop. 6 to k-DSTs that
identify SQMSCs (as opposed to split-SQMSCs). An analogue of Prop. 6 can

also be established for the relation r−→−1
as well as e−→ and e−→−1

.

Reachability and Other Problems on SQDS We now use the above results
to show decidability of reachability of SQDS parametrized by a bound on split-
width. Our decision procedure is only polynomial in the number of states of
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the SQDS, while it is exponential in the number of processes, number of data-
structures and split-width.

Proposition 8. Given an SQDS S over (A, Σ) and any integer k > 0, one can
effectively construct a tree automaton Ak

S with |Locs|O(k|A|) many states such
that L(Ak

S) = {t | t is a k-DST, Mt ∈ L (S)} .

Recall, from Sec. 2, that a run of an SQDS is just a labeling ρ of the events by
locations. Our aim is to construct a bottom-up tree automaton that simulates
such runs on any k-DST.

Let t be a k-DST. The events of Mt are the leaves of t. The bottom-up tree
automaton guesses a possible labeling of the events (the leaves) and verifies that
it defines a run as it walks up the DST. Actually, at each leaf e, the automaton
guesses the location labels assigned to e as well as to e−. Due to this double
labeling, if e is an internal event then consistency can be checked immediately.
Similarly, if e�df then, by nondeterministically guessing the value that is placed
and removed from the data-structure by transitions at these two events, the
automaton checks for consistency. This is done as it visits the parent of these
two nodes (labeled �d). It remains to verify the correctness of the guess about
the labeling of e− at each e.

The correctness of the guess at leaf e is verified at the unique merge node
me in the tree that adds the r−→ (or equivalently →) edge connecting e− and e.
Thus, the guessed location labels of e− and e need to be carried in the state
of the automaton till this node is reached. The key observation is that at every
node in the path from e to me, e is the left-most event in its component and
similarly, e− is the right-most event in its component along the path from e− to
me. In other words, as the automaton walks up the tree, it only needs to keep
the guesses for the first and last events in each component (in each process). The
number of such events is bounded by |Procs|(k + 1), explaining the complexity
stated in Prop. 8.

It is easy to maintain this information. At a merge node, apart from checking
the correctness as explained above, the unnecessary labels (e/e− if they are not
the first or last events of the merged component) are dropped and other labels are
inherited. At a shuffle node, the labels for each component are simply inherited.
Finally, when the automaton reaches the root, there is only one component per
process. The entire run accepts if in each process the location labeling e− of the
first event is �in and the tuple of locations labeling the last events of each process
is a final state in Fin. In all this we have assumed that the automaton reads a
k-DST, but that can be arranged using Prop. 5, completing the proof. As an
immediate application we have the following theorem.

Theorem 9. The bounded split-width reachability problem for SQDS over (A, Σ)
is Exptime-complete. The complexity is, however, only polynomial in the size
of the SQDS.

Reachability problem for S reduces to the emptiness problem for Ak
S . Notice

that an SQMSC M of split-width at most k is accepted by S iff all k-DSTs
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representing M are accepted by Ak
S . Hence, the universality problem reduces to

checking whether Ak
S accepts all k-DSTs representing SQMSCs, which is just the

equivalence problem of tree automata. Finally, the containment problem reduces
to the containment problem for associated tree automata.

Corollary 10. The universality problem for SQDS and inclusion problem for
SQDSs wrt. k-split-width SQMSCs are decidable in 2-Exptime.

5 Further Results

We now describe logical formalisms for specifying properties of SQMSCs and
we give optimal decision procedures for the satisfiability problem of these logics
as well as for model-checking SQDSs against specifications in these logics, when
the problems are parametrised by split-width.

Monadic Second Order Logic over �����(A, Σ) is denoted MSO(A, Σ). Its
syntax is given below, where p ∈ Procs, d ∈ DS and a ∈ Σ.

ϕ ::= a(x) | p(x) | x ≤ y | x ∈ X | x → y | x�d y | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃X ϕ

Every sentence in MSO defines a language of SQMSCs consisting of all those
that satisfy that sentence. Note that, for an SQDS S over A and Σ, L (S)
can be described in MSO(A, Σ). While the satisfiability and model-checking are
undecidable for MSO, it becomes decidable when parametrised by split-width.

Theorem 11. From any MSO(A, Σ) sentence ψ one can effectively construct a
tree automaton Ak

ψ such that L(Ak
ψ) = {t | t is a k-DST, Mt |= ψ} .

By Prop. 5 and Remark 7 we may assume that the input is a k-DST repre-
senting an SQMSC. The argument is quite standard: construct the automaton
inductively, using closure under union, intersection, complement and projection
to handle the boolean operators and quantifiers. This leaves the atomic formulas.
The formula a(x) is translated to a tree automaton that verifies that x is a leaf
and that it is labeled a and similarly for p(x). The formula x ∈ X is translated
to a tree automaton that verifies that x is a leaf and belongs to the set of leaves
labeled by X . x �d y just requires us to verify that the leaves labeled x and y
have a parent labeled �d. Finally, x → y is handled using Prop. 6.

As always, the combination of projection and complementation means that
the size of the constructed automaton grows as a non-elementary function wrt.
the size of the formula. Now, we examine other logics having decision procedures
with reasonable complexity.

Propositional Dynamic Logic (PDL) is a well-studied logical formalism for
describing properties of programs. As in a modal logic, formulas in PDL assert
properties of nodes in a graph, in our case events in an SQMSC. Unlike a modal
logic where modal operators only refer to neighbours of the current node, PDL
uses path modalities to assert properties on nodes reachable via paths conforming
to some regular expressions. Traditionally, PDL is used to express branching-time
properties of transition systems (or Kripke structures). However, in the study of
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concurrent systems where each behaviour has a graph-like structure, PDL may
be used to express properties of behaviours (i.e., linear-time properties of the
system under consideration) as illustrated in [14,3,4]. PDL and its extensions
with converse and intersection are studied in this sense here. The syntax of
state formulas (σ) and path formulas (π) of ICPDL(A, Σ) are given by

σ ::= � | p | a | σ ∨ σ | ¬σ | 〈π〉σ
π ::= σ | → | �d | →−1 | (�d)−1 | π + π | π ∩ π | π · π | π∗

where p ∈ Procs, d ∈ DS and a ∈ Σ. If backward edges →−1 and (�d)−1 are
not allowed the fragment is called PDL with intersection (IPDL). If intersection
π∩π is not allowed, the fragment is PDL with converse (CPDL). In simple PDL
neither backwards edges nor intersection are allowed.

The formula p asserts that current event belongs to process p, and a asserts
that it is labeled by a. The formula 〈π〉σ at e asserts the existence of an e′

satisfying σ and a path e = e1, e2, . . . , ek = e′ that conforms to π. The only
paths that conform to σ are the trivial paths from e to e for any e that satisfies
σ. Similarly → and �d identify pairs related by the corresponding edge relation
in the SQMSC. Finally ·, + and ∗ correspond to composition, union and iteration
of paths as in regular expressions.

The formula 〈→∗〉α asserts that α holds at a future event on the same process
while the formula 〈(β · →−1)∗〉α asserts that, β has been true at all the events
in the current process since the last event (on this process) that satisfied α.

The formula 〈π1 ∩ π2〉α at an event e asserts the existence of an e′ satisfying
α, a path from e to e′ conforming to π1 and a path from e to e′ conforming to
π2. For instance, the formula 〈�d ∩ (→∗ · b ·→∗)〉� holds at event e only if there
is an e′ with e�d e′ and b holds somewhere between e and e′, all 3 events being
on the same process.

Observe that PDL formulas have implicit free variables. To define languages
of SQMSC with PDL we introduce sentences with the following syntax: φ = � |
Eσ | φ ∨ φ | ¬φ where σ is an ICPDL(A, Σ) state formula. The sentence Eσ is
true on SQMSC M if M, e |= σ for some event e of M.

Decidability for MSO implies decidability for all the variants of PDL. However,
we get more efficient decision procedures by working directly on it.

Theorem 12. From any CPDL sentence φ one can effectively construct a tree
automaton Ak

φ whose size is 2O(|A|2.k2.|φ|2) such that

L(Ak
φ) = {t | t is a k-DST, Mt |= φ}.

The idea here is to use alternating 2-way tree automata (A2A). For a PDL
sentence Eσ the A2A walks down to a leaf and starts a single copy of the
A2A that will verify the formula σ. For each σ we construct an automaton Aσ

such that Aσ has an accepting run from a leaf n if and only if the event n in
the associated SQMSC satisfies σ. The automata for the atomic formulas �,
p and a are self-evident. For ∨ and ¬ we use the constructions for union and
complementation for A2A. The case where σ = 〈π〉σ′ needs a little bit of work.
Suppose π does not use any state formulas then we construct a finite automaton
Bπ equivalent to the regular expression π (over the alphabet D = {→,→−1,
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�d, (�d)−1 | d ∈ DS}). We non-deterministically guess an accepting run of Bπ,
simulating each move labeling this run using the tree-walking automata given
by Prop. 6 and Remark 7. Notice that each such simulation of a move from D
begins and ends at a leaf. Finally, when reaching a final state of Bπ, we start a
copy of the automaton Aσ′ . Checking state formulas in π adds no complication
due to the power of alternation. To verify the formula α we simply propagate a
copy of the automaton Aα at the current node (leaf). All this can be formalized
to get an A2A Aσ of size O(k · |Procs| · |σ|). We then use Vardi’s result [22] to

convert this into an ordinary tree automaton of size 2O(k2·|Procs|2·|σ|2).
The intersection operator in IPDL adds an additional level of complexity, since

the path expression π1 ∩ π2 requires that the tree walking automata propagated
to handle π1 and π2 have to end up at the same leaf. However, the technique
of [12] to decide IPDL over trees can be adapted to our setting as well. As in
[12] this results in an additional exponential increase in size. The details of this
construction is provided in a preliminary version of this paper [9].

Theorem 13. From any ICPDL sentence φ one can effectively construct a tree
automaton Ak

φ of doubly exponential size such that

L(Ak
φ) = {t | t is a k-DST, Mt |= φ}.

Theorem 14. The satisfiability problem for CPDL(A, Σ) over k-split-width
SQMSCs is Exptime-complete. The satisfiability problem for ICPDL(A, Σ) over
k-split-width SQMSCs is 2-Exptime-complete.

Temporal Logics. Another reason to study PDL over SQMSCs is that it nat-
urally subsumes an entire family of temporal logics. The classical linear time
temporal logic (LTL) is interpreted over discrete linear orders and comes with
two basic temporal operators: the next state (Xϕ) which asserts the truth of ϕ
at the next position and the until (ϕ1 Uϕ2) which asserts the existence of some
future position where ϕ2 holds such that ϕ1 holds everywhere in between. In
the setting of SQMSCs, following [14], it is profitable to extend this to a whole
family of temporal operators by parametrizing the steps used by next and until
with path expressions.

The syntax of local temporal logics TL(A, Σ) is as follows, where a ∈ Σ,
p ∈ Procs and π is a path expression:

ϕ = a | p | ¬ϕ | ϕ ∨ ϕ | Xπϕ | ϕ Uπ ϕ

For example, ϕ Uπ ψ asks for the existence of a sequence of events related by
π-steps and such that ψ holds at the last event of the sequence and ϕ holds at
intervening events in the sequence. The translation in PDL gives 〈(Φ · π)∗〉Ψ ,
where Φ and Ψ are the PDL translations of ϕ and ψ respectively. When π is →
it corresponds to the classical until along a process, and when π is → + � it
corresponds to an existential until in the partial order of the SQMSC. We may
also use backward steps such as →−1 or →−1+�−1 and thus TL(A, Σ) has both
future and past modalities. Hence, from Theorem 12 we obtain

Corollary 15. The satisfiability problem for TL(A, Σ) over k-split-width SQM-
SCs is Exptime-complete.
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Model-Checking. The k-split-width model-checking problem for a logic L de-
termines, given an SQDS and a formula ϕ in L, whether some SQMSC of split-
width at most k accepted by the SQDS satisfies ϕ.

Theorem 16. The k-split-width model-checking problem for MSO can be solved
with non-elementary complexity. The k-split-width model-checking problem for
CPDL and Temporal Logics are Exptime-complete. The k-split-width model-
checking problem for ICPDL is 2-Exptime-complete. The complexities of these
three problems are only polynomial in the size of the SQDS.

We use Prop. 8 to construct Ak
S from S, and Theorems 11, 12 and 13 to

construct from the formula ϕ a tree automaton Ak
ϕ that recognizes all k-DSTs

representing SQMSCs that satisfy ϕ. The model-checking problem then reduces
to the emptiness of the intersection of the tree automata Ak

ϕ and Ak
S .

6 Discussions

Optimal Complexities of the Decision Procedures. The PTime hardness
on the size of the SQDS follows from the PTime hardness of the emptiness
checking of nested-word automata, since nested-words have split-width bounded
by 2. The hardness wrt. size of the (ε,C,IC)PDL formula follows from the corre-
sponding case of nested words [3] (or equivalently trees [12]). The hardness wrt.
the bound on split-width is a consequence of the following facts. 1. Reachability
problem can be reduced to both satisfiability problem and model-checking prob-
lem of temporal logics. 2. Satisfiability and model-checking problems of temporal
logics reduce to the corresponding problems of PDL and MSO. 3. Split-width of
m-phase bounded multi-pushdown systems is bounded by 2m [8]. 4. Reachability
of bounded phase multi-pushdown systems is 2Etime-hard [18].

Further Optimisations. A split-term is almost a path if one operand of any
shuffle node is an atomic piece (or a subterm whose size is bounded by an a
priori fixed constant). Such split-terms are said to be word-like. If a class admits
bounded split-width via word-like decompositions, then we can obtain a better
space complexity for our procedures by using finite state word-automata instead
of tree-automata. Thus, the complexity for reachability in this case would be
only NLogSpace in the number of states of the SQDS though PSpace in A
and the bound on split-width. It would be PSpace in the size of the PDL and
temporal logic formula for model-checking, matching the lower bounds for the
case of words. The class of SQMSCs having split-width bounded via word-like
split-terms subsume interesting classes, like existentially k-bounded MSCs since
the decomposition given on page 8 yields word like split-terms.

Bag Data-Structure. We could have added bags as a possible data-structure
and extended our definition of systems and behaviours accordingly. For a discus-
sion of such systems and associated results, the reader is referred to a preliminary
version of this paper [9].

Acknowledgement. We thank Benedikt Bollig for many helpful comments.
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12. Göller, S., Lohrey, M., Lutz, C.: PDL with intersection and converse: satisfiability
and infinite-state model checking. J. Symb. Log. 74(1), 279–314 (2009)

13. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M.A., Thiagarajan,
P.S.: A theory of regular MSC languages. Inf. Comput. 202(1), 1–38 (2005)

14. Henriksen, J.G., Thiagarajan, P.S.: Dynamic linear time temporal logic. Ann. Pure
Appl. Logic 96(1-3), 187–207 (1999)

15. Heußner, A.: Model checking communicating processes: Run graphs, graph gram-
mars, and MSO. ECEASST 47 (2012)

16. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-
TS, Geneva (February 2011)

17. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS, pp. 161–170. IEEE Computer Society (2007)

18. La Torre, S., Madhusudan, P., Parlato, G.: An infinite automaton characterization
of double exponential time. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS,
vol. 5213, pp. 33–48. Springer, Heidelberg (2008)

http://www.lsv.ens-cachan.fr/~cyriac/download/Thesis_Aiswarya_Cyriac.pdf
http://www.lsv.ens-cachan.fr/~cyriac/download/Thesis_Aiswarya_Cyriac.pdf
http://hal.archives-ouvertes.fr/hal-00943690


Verifying Communicating Multi-pushdown Systems via Split-Width 17

19. La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-
bounded matching relations. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 203–218. Springer, Heidelberg (2011)

20. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Ball, T.,
Sagiv, M. (eds.) POPL, pp. 283–294. ACM (2011)

21. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

22. Vardi, M.Y.: The taming of converse: Reasoning about two-way computations.
In: Parikh, R. (ed.) Logics of Programs. LNCS, vol. 193, pp. 413–423. Springer,
Heidelberg (1985)

23. Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. — Informatique
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Abstract. We present Booster, a new framework developed for ver-
ifiying programs handling arrays. Booster integrates new acceleration
features with standard verification techniques, like Lazy Abstraction with
Interpolants (extended to arrays). The new acceleration features are the
key for scaling-up in the verification of programs with arrays, allowing
Booster to efficiently generate required quantified safe inductive invari-
ants attesting the safety of the input code.

1 Introduction

In this paper we present Booster, a tool for the verification of software systems
handling arrays. The novelty of Booster with respect to other tools supporting
array analysis [7, 10, 11, 13, 14, 17] is its being based on acceleration procedures.

Acceleration procedures target the generation of the transitive closure of rela-
tions encoding system evolution. In our case, acceleration is applied to relations
encoding loops of the analyzed program. With respect to abstraction-based pro-
cedures, acceleration offers a precise solution (not involving over-approximations)
to the problem of computing the reachable state-space of a transition system,
but on the other side has syntactic restrictions preventing its general application.
On the other side, abstraction-based solutions are usually a very general frame-
work, but they also require heuristics (and in some cases even user guidance) in
order to increase their practical effectiveness. As an example, the Lazy Abstrac-
tion with Interpolants one (lawi [3,18]), which has been shown to be one of the
most effective abstraction-based framework in verification [8], relies on Craig in-
terpolants for refining the level of abstraction. Craig interpolants, however, are
not unique, and it has been shown that different interpolants might seriously
affects the performance of the verification task [19].

Booster exploits acceleration in two different ways. Accelerations of loops
falling in decidable fragments are handled precisely, following the schema pre-
sented in [6]. Those requiring over-approximations and suitable refinement pro-
cedures (as discussed in [5]) are handled by an improved version of the mcmt
model-checker [15], the fixpoint engine integrated in Booster.
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Fig. 1. The architecture of Booster

The architecture of Booster, detailed in the next section, is structured ac-
cording to the standard compilers architecture, where the initial parsing phase
generates an intermediate representation of the code which is subject to several
optimizations before being fed to an engine for checking its safety. From this
point of view, acceleration can be viewed as the most important and distin-
guishing optimization of our approach, while an abstraction-based module acts
as the engine performing the analysis.

Our experimental evaluation, performed on a benchmark suite comprising pro-
grams with arrays selected from heterogeneous sources, attests the effectiveness
of our new tool and the impressive benefits brought by acceleration procedures.

2 The Tool

Booster is written in C++, and it is available at http://www.inf.usi.ch/
phd/alberti/prj/booster/. Fig. 1 depicts its architecture. In this section
we describe the features implemented in Booster.

Preprocessing. Given a program, Booster generates its control-flow graph
(CFG) and inlines procedure calls. From the CFG, Booster builds the cutpoint
graph (CG) of the input program [16]. A cutpoint graph is a graph-representation
of the input code where each vertex represents either the entry/exit block of the
program or a loop-head, and the edges are labeled with sequences of assump-
tions or assignments. The representation of the input code as a cutpoint graph
is extremely beneficial for applying acceleration techniques, and it is adopted to
maximize the application of acceleration procedures. Indeed, acceleration tech-
niques for code handling arrays can be applied only to transitions representing
self-loops (and matching some other syntactic patterns [5, 6]).

BMC. This module has been devised as a preliminary rather rough analysis:
Booster adopts a Bounded Model Checking approach [9] at the very beginning
of the analysis in order to detect unsafe programs before enabling analysis (like

http://www.inf.usi.ch/phd/alberti/prj/booster/
http://www.inf.usi.ch/phd/alberti/prj/booster/
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acceleration) with a high impact on the tool performances1. A low number of
unwindings constitutes, at this stage of the analysis, a good trade-off between
precision (number of unsafe programs detected) and efficiency.

Acceleration (1). This module targets the verification of simple0A-programs [6].
These kind of programs are characterized by (i) having a flat control-flow struc-
ture, i.e., each location belongs to at most one loop, and (ii) comprising only loops
that can be accelerated as a “Flat Array Properties”, i.e., ∃∀-formulæ of the the-
ory of arrays admitting a decision procedure for checking their (un)satisfiability.
If the given CG is a simple0A-program, Booster accelerates all the loops. This is
a cheap template-based pattern matching task: being a simple0A-program, all the
loops of the program match the pattern given in [6]. The loops are substituted
with their accelerated counterparts; subsequently Booster generates the proof-
obligations, which are Flat Array Properties, required to check the (un)safety
of the program. Unfortunately, this fragment is not entirely covered by decision
procedures implemented in available SMT-solvers. In practice, Booster relies
on the Z3 SMT-solver [12] for solving such queries. The SMT-solver is usually
very efficient on unsatisfiable proof obligations, but might struggle on satisfiable
ones. The BMC analysis executed before this module, however, is generally able
to find the corresponding traces, reporting the unsafety of the code before start-
ing this acceleration procedure. It is also important to notice that, at this stage
of the analysis, Booster exploits the full power of acceleration on a well-defined
class of transitions, i.e., the loops of simple0A-programs.

Transition System Generation. If the program is not a simple0A-program or
the SMT-solver exploited by the “Acceleration (1)” module times out, the CG
of the program is translated into a transition system and then fed into mcmt.

MCMTv2.5 mcmt is a model-checker based on a backward reachability anal-
ysis approach for array-based transition systems, formal models suitable for
the representation of many classes of real systems, including programs with ar-
rays. mcmt is written in C and available at http://users.mat.unimi.it/
users/ghilardi/mcmt/. The version of mcmt included in Booster extends
the previous version [15] implementing (i) the new Lazy Abstraction with In-
terpolants (LAWI) for Arrays approach [1] and (ii) acceleration procedures for
array relations [5] (this also differentiates mcmt from safari [2]).

Flattening. Flattening is a preprocessing technique exploited inside mcmt to
reduce the transition formulæ and state formulæ to a format where array vari-
ables are indexed only by existentially quantified variables. It is based on the
rewriting rule φ(a[t], ...) � ∃x(x = t ∧ φ(a[x], ...)). This format is particularly
indicated for inferring quantified predicates within the lawi framework and it is
exploited by the term abstraction heuristic [2].

1 Formulæ generated by the “Acceleration (1)” module contain alternation of quanti-
fiers and it has been proven that checking their satisfiability may be a NExpTime-
complete problem [6].

http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/
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Fig. 2. Booster performances

Acceleration (2). mcmt adopts acceleration as a preprocessing step, following
the approach described in [5]. In contrast with the “Acceleration (1)” module dis-
cussed previously, acceleration here is applied to a wider class of transitions, but
preimages along accelerated formulæ are not kept precise given their intractable
format2, but are over-approximated with their monotonic abstraction [4].
LAWI. mcmt implements the Lazy Abstraction with Interpolants for Array
framework (following the description given in [2]) enhanced with a suitable re-
finement procedure for handling the over-approximations introduced to exploit
accelerated relations [5].

Portfolio Approach. The “term abstraction” heuristic has a great impact
on the performances of the LAWI framework for arrays [2]. It leverages the
flat encoding of formulæ manipulated by the model-checker in order to gen-
erate quantified predicates for a successful array analysis. Booster nullifies
the required user ingenuity for defining a proper term abstraction list. Internal
heuristics, inherited from [2], generate some suitable term abstraction lists. The
fixpoint engine is subsequently executed adopting a portfolio approach, accord-
ing to which Booster generates several parallel instances of mcmt, each with
different settings (including different term abstraction lists).

3 Experimental Evaluation and Conclusion

We evaluated Booster on a large set of programs (both safe and unsafe) with
arrays taken from several heterogeneous sources. Fig. 2a comparesBooster run-
ning time with and without acceleration procedures3. This figure clearly shows
that acceleration is a key feature in the Booster framework: it significantly
reduces the divergence cases and allows to achieve a speed-up up to two orders

2 These ∃∀-formulæ might produce proof obligations falling outside known decidable
fragments of array theories and may invalidate the internal heuristics of mcmt.

3 Without acceleration the verification is performed entirely by the LAWI module.
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of magnitude. We also report that the (un)safety of many programs (roughly
the 50% of our benchmark suite) is detected directly by the “BMC” and “Ac-
celeration (1)” modules, remarking the importance of acceleration in a software
verification framework. We report in Table 2b some statistics about Booster
running times for challenging well-known benchmarks in array-analysis litera-
ture, observing that, to the best of our knowledge, there are no tools able to
deal with all the programs in our benchmark suite.
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Abstract. This paper discusses the design and implementation of a
bounded model checker for SPARK code, and provides a proof of concept
of the utility and practicality of bounded verification for SPARK.

Introduction. SPARK is a programming language and toolset designed for the
development of high-assurance software [4]. The language is based on a restricted
subset of Ada (see [1] for a full description), complemented by an expressive
system of contracts, to describe the specification and design of programs. The
SPARK platform provides a set of tools that allow users to reason about the
correctness of the source code, making possible the detection of problems early
in the software lifecycle. The tools are based on deductive verification and as
such give full guarantees, but they require the user to provide contracts and loop
invariants, which are often difficult to write.

We believe that Bounded Model Checking (BMC) of software can be helpful
as a complement to the existing tools, particularly for finding errors and/or
validating annotations, or in assisting with the conversion of existing Ada code
to SPARK. The key idea of BMC of software, as implemented by the flagship
CBMC tool [6] for ANSI-C code, is to encode bounded behaviors of the program as
logical formulas whose models describe executions leading to violations of some
given property. The use of assert and assume annotations provide a convenient
property specification mechanism. An assert φ statement signifies that the
property φ should hold at that point of the program. If φ does not hold, that
violation is reported and a counter-example is given. Asserts can be used, for
instance, to automatically instrument the code regarding safety properties. On
the other hand, an assume ψ annotation states that one can rely on the fact
that ψ is true at that point of the program.

This paper presents the design of a BMC tool for SPARK 2005 programs.
Rather than producing the definitive BMC tool for SPARK, which would not
make sense at the present moment of development of the language (SPARK
2014 had not been launched when our development began), the main goal of the
present paper is to provide a proof of concept of the utility and practicality of
BMC of SPARK software, as a complement to deductive verification. A bounded
model checker may also serve other purposes in addition to formal verification:
in [2] it is reported how CBMC has been used for coverage analysis of safety-
critical code, in precisely the same context in which SPARK is widely used.
Other applications of BMC of software include automated fault localization [9].

F. Cassez and J.-F. Raskin (Eds.): ATVA 2014, LNCS 8837, pp. 24–30, 2014.
c© Springer International Publishing Switzerland 2014
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� �

package Marray i s
Array Si ze : constant :=10;
subtype Ind i s I n t ege r range 1 . . Array Siz e ;
type VArray i s array ( Ind ) of In t ege r ;
procedure MaxArray (V: in VArray ; M: out Ind ) ;
−−# der iv e s M from V;
−−# post ( f o r a l l I in Ind => (V( I ) <= V(M) ) ) ;

end Marray ;

package body Marray i s
procedure MaxArray (V: in VArray ; M: out Ind ) i s
I : In t eg e r ;
Max: Ind ;

begin
Max := Ind ’ F i r s t ;
−−% notOverf low(+ , Integer , INDICES’ FIRST , 1 ) ;
I := Ind ’ F i r s t +1;
loop
−−# as s e r t ( f o r a l l J in Ind range Ind ’ F i r s t . . ( I−1) => (V(J ) <= V(Max ) ) ) ;
−−# as s e r t ( I >= Ind ’ F i r s t ) and ( I <= Ind ’ Last + 1 ) ;
exit when I > Ind ’ Last ;
−−% as s e r t ( I >= VARRAY’FIRST) and ( I <= VARRAY’LAST) ;
−−% as s e r t (MAX >= VARRAY’FIRST) and (MAX <= VARRAY’LAST) ;
i f V( I ) > V(Max) then

Max := I ;
end i f ;
−−% notOverflow(+ , Integer , I , 1 ) ;
I := I + 1 ;

end loop ;
M := Max;

end MaxArray ;
end MArray ;
� �

SPARK-BMC. SPARK-BMC1 is an open source prototype bounded model
checker for SPARK programs. It is developed in Haskell and uses as backend
the SMT solver Z3 [8]. The tool checks SPARK programs for violations of prop-
erties annotated in the code. Annotations are inserted as comments beginning
with a user predefined character, assumed distinct from SPARK annotations
(--% in this paper). The annotations that may be used are assert C; assume C;
and notOverflow(op,type,e1,e2), used to check if an overflow is originated.
These can be inserted to express useful properties for debugging, and in partic-
ular safety properties corresponding to the absence of runtime exceptions (such
as overflow, array out-of-bounds accesses and division by zero), which can be
checked without requiring invariants. The figure shows a SPARK program (in-
cluding loop invariants) containing a procedure that finds the maximum element
in an array. The annotations corresponding to overflow and array out of bounds,
to be checked by SPARK-BMC, are also included.

The reader is referred to [13] for a complete description of the implementation
details that will now be outlined. The algorithm begins with a normalization into
a subset of SPARK (e.g. transforming type attributes and enumerations into
integer expressions) and inlining of routine calls. SPARK does not allow for any
form of recursion, so no bound is applied on the length of this expansion. Loops
are then unwound a fixed number of times (which reduces them to sequences of
nested if statements), and the program is thus transformed into a monolithic
iteration-free program. To enforce soundness, an unwinding assertion can be
optionally inserted, to ensure that the loop has been sufficiently unwound.

In order to extract a logical formula from the iteration-free program one has
to first transform it into a single assignment form, in which the values of the
variables do not change once they have been used (so that assignments can be

1 Available from the repository https://bitbucket.org/vhaslab/spark-src

https://bitbucket.org/vhaslab/spark-src
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seen as logical equalities). The program is then subject to Conditional Normal
Form (CNF) normalization, which transforms it into a sequence of statements
of the form if b then S, where S is an assignment, assert or assume statement,
and the guard b encodes the path condition leading to that command. Two sets
of formulas C and P are then extracted. C describes logically the operational
contents of the program, and includes a formula b → x = e for every statement
if b then x := e. P on the other hand contains the properties to be established,
extracted from the guarded assert and assume statements of the CNF. If no assert
fails in any execution of the program one has that

∧
P is a logical consequence

of C. Any model found for the set of formulas C ∪ {¬
∧
P} corresponds to a

counter-example: an execution leading to a violation of some assertion in P .
Experiences with implementing SMT-based bounded model checkers [3,7] have

produced quite positive results, which justifies our choice of this class of solvers.
SPARK-BMC employs a bit-vector rather than an unbounded integers theory,
which has the advantage of capturing precisely the low-level fixed-width machine
semantics of program data types. The SPARK programming language includes
modular types, whose modular semantics are directly captured by fixed-size bit-
vectors. Signed integers are also conveniently encoded as bit-vectors. Finally,
arrays are modeled by a theory of arrays.

Evaluation. At the present stage of development of SPARK-BMC we can
successfully check multi-procedure programs manipulating arrays and discrete
types, and as such we are able to run SPARK-BMC on a great variety of pro-
grams. Our preliminary results clearly illustrate the positive aspects of auto-
mated verification for SPARK code. The tool scales well for certain classes of
programs, and even for other, algorithmically more complicated programs, it is
able to check for property violations in the first few iterations of loops. Let us
turn back to the MaxArray example to show how the tool can discover subtle
bugs without the need for user annotations. One common error would be to
write the exit condition as exit when I>Ind’Last+1, which would cause an
array out of bounds exception in the array access contained in the expression
V(I)>V(MAX) that could easily be missed. The SPARK tools (based on deductive
verification) would generate a Verification Condition (VC) stating that the loop
invariant is preserved by iterations of the loop, and another VC to enforce that
whenever V(I)>V(MAX) is evaluated the value of I lies within the range of the ar-
ray. For the MaxArray code both VCs are successfully discharged, but if the exit
condition is modified to the above, then the invariant preservation condition can
no longer be proved (it fails in the last iteration). If the invariant is corrected to
I<=Ind’Last+2, then the invariant preservation VC is discharged, but not the
other VC: the invariant is now correct, but does not prevent the out-of-bounds
access. This illustrates that with deductive verification it can be hard to detect
exactly what went wrong – is the program unsafe, or is the user-provided invari-
ant wrong? To use SPARK-BMC on this program, it must first be annotated as
discussed before. Depending on the user-provided bound K, SPARK-BMC will
either indicate that the unwinding assertion fails, or else (for K > 10) that an
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assert violation occurs. In this case the tool displays the violated assertion, as
well as the current values of the relevant variables.

We have assessed the behaviour of SPARK-BMC with a number of example
programs, taken both from academic papers and from problem sets proposed in
the context of program verification competitions. We have either transcribed to
SPARK an algorithm implemented in C, or, when this was not available, coded
it from scratch. All the code can be found in the project’s repository.

Experimental Results: Problem Set I. We use a first set of example programs
to illustrate that BMC can be used in practice on programs that have been
designed to be verified with deductive verification tools. Although these are all
relatively simple problems, they are algorithmically complicated, which creates
difficulties for a BMC approach. Our purpose here is to investigate the viability
of the approach for small problem sizes (bounded loops requiring up to 100 iter-
ations). Specifically, we have applied SPARK-BMC to an implementation of the
inverting an injection problem taken from [12], which we have ported to SPARK:

� �

MAXLEN: constant := 20;

subtype Index
i s In t ege r range 0 . .MAXLEN;

type ArrayType
i s array ( Index ) of I nt ege r ;

procedure Inve r t (A: in ArrayType ;
N: in In t ege r ;
B: out ArrayType) i s

begin
for I in Index range 0 . . N − 1
loop
B(A( I ) ) := I ;

end loop ;
end Inver t ;
� �

� �

procedure PropertyCheck i s
A,B: ArrayType ;
N: I n t ege r ;

begin
−−% assume (N > 0 and N <= MAXLEN) ;
for I in Index range 0 . . N − 1 loop
−−% assume (A( I ) >= 0 and A( I ) < N) ;
for J in Index range I + 1 . . N − 1 loop
−−% assume (A( I ) /= A(J ) ) ;

end loop ;
end loop ;
I nve r t (A,N,B) ;
for I in Index range 0 . . N − 1 loop
for J in Index range I + 1 . . N − 1 loop
−−% as s e r t (A( I ) /= A(J ) ) ;

end loop ;
end loop ;
for I in Index range 0 . . N − 1 loop
−−% as s e r t (B(A( I ) ) = I ) ;

end loop ;
end PropertyCheck ;
� �

The problem is described as follows: Invert an injective (and thus surjective)
array A of N elements in the subrange from 0 to N-1. The verification tasks are to
prove that the output array B is injective and that B(A(I)) = I for 0 <= I < N.
SPARK-BMC succeeds in both tasks for the given bound, with no further an-
notations in addition to the assumes and asserts shown in the PropertyCheck

procedure, which state that the properties described above hold after calls to
Invert, for executions corresponding to an injective array A.

We additionally tested the tool with the following: SUM&MAX from [12];
finding the maximum in an array and finding two duplets in an array from [5];
and finally binary search in an array from [14]. The table below shows the veri-
fication time (in seconds) vs. the number of iterations unwound, as required by
the problem size. While in all cases, for a sufficiently small number of iterations,
SPARK-BMC succeeds in the verification task in a completely automatic way,
it easily becomes impractical to reach even a modest number of iterations.
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Experimental Results: Problem Set II. We use both SPARK-BMC and CBMC
on a second set of example programs (running on the SPARK and C versions
of the same algorithm). In order to compare both tools at a purely logical level,
the times registered for CBMC were measured with the constant propagation
and simplification option switched off. We stress that our goal with these com-
parisons is not to present SPARK-BMC as competing with CBMC – we aim
merely to validate the algorithm underlying SPARK-BMC, and demonstrate
the practicality of bounded verification with a diverse set of problems.

The programs in this second set have been used to illustrate the performance
of various software model checking and symbolic execution tools [10,11]2. Al-
though we do not present results obtained with these tools, they would surely
outperform BMC tools, since the example programs are designed to illustrate
situations that are advantageous to them. The programs are algorithmically
simpler than in the previous set, and would be straightforward to verify deduc-
tively. Bounded verification scales quite well for these programs, with reasonable
verification times for up to 1000 iterations. The graphs below show that in all
programs CBMC (even with constant propagation switched off) performs better
than SPARK-BMC. However, it can be seen that in a log-lin scale the shapes of
the SPARK-BMC curves are relatively close to the CBMC curves.

In fact, when we run CBMC on the examples from the first problem set (times
not shown in the graph), SPARK-BMC behaves marginally better than CBMC
with binary search in array, and much better than CBMC with inverting an
injection (CBMC becomes impractical to use with just 15 iterations). It seems
that for algorithmically more complicated code the size of the propositional
formulas generated by CBMC increases very significantly.

2 The C code can be found online at http://map.uniroma2.it/smc/simp/ and
http://www.cfdvs.iitb.ac.in/~bhargav/dagger.php
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Conclusion. We have demonstrated the advantages of bounded SMT-based
automated verification for SPARK code, and shown that it is practical to check
for property violations with no loop invariant annotations required. In the near
future our work will focus on adapting SPARK-BMC to work with the SPARK
2014 language definition, as well as on including support for other SMT solvers.
An interesting challenge, which will certainly increase the usefulness of SPARK-
BMC as a complement to the SPARK tools, is to extend it in order to validate
and debug SPARK contracts.
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Abstract. This work addresses the computation of the set of reachable
configurations of linear hybrid automata. The approach relies on sym-
bolic state-space exploration, using acceleration in order to speed up the
computation and to make it terminate for a broad class of systems. Our
contribution is an original method for accelerating the control cycles of
linear hybrid automata, i.e., to compute their unbounded repeated effect.
The idea consists in analyzing the data transformations that label these
cycles, by reasoning about the geometrical features of the corresponding
system of linear constraints. This approach is complete over Multiple
Counters Systems (MCS), and is able to accelerate hybrid transforma-
tions that are out of scope of existing techniques.

1 Introduction

Hybrid automata [14] are a powerful formalism for modeling systems that com-
bine discrete and continuous features, in particular those depending on phys-
ical processes that involve undiscretized time. Linear hybrid automata are a
restricted form of hybrid automata that are amenable to automated analysis of
some of their properties, while not sacrificing too much expressive power, which
remains sufficient for modeling precisely enough a large range of systems.

This work addresses the general problem of analyzing reachability proper-
ties of linear hybrid automata, by computing an exact representation of their
set of reachable configurations. Since this set is generally infinite, both because
variables of hybrid automata are unbounded and take their value over a dense
domain, this computation has to be performed symbolically, representing the
manipulated sets with the help of dedicated data structures. Moreover, since
linear hybrid automata are Turing complete, the computation of their reacha-
bility set cannot be guaranteed to terminate in all cases. A possible workaround
would be to introduce approximations, such as widening operators [12], in order
to force termination. We make a different choice and aim at an exact compu-
tation algorithm without guarantee of termination, trying to make it powerful
enough for handling a relevant subclass of systems.
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Computing the reachability set of a system can be achieved by forward sym-
bolic state-space exploration: At each step, one propagates reachability informa-
tion from the current set of reachable configurations in order to make it bigger.
The procedure terminates upon reaching a fixed point. For hybrid automata,
an exploration step corresponds to letting time elapse in the current control
location, or to following a transition from one location to another.

This approach is not sufficient for analyzing all interesting case studies. One
reason is that some linear hybrid automata have configurations that are only
reached after an unbounded number of exploration steps; a typical example is
the leaking gas burner studied in [15]. This problem is tackled by acceleration
techniques, aimed at computing in finite time sets of configurations that are
reached after following arbitrarily long control paths. For instance, accelerating
a cyclic path, which corresponds to a loop in a program, amounts to computing
in one step all the configurations that can be reached by iterating this cycle
arbitrarily many times [2].

In order to be able to perform cycle acceleration with linear hybrid automata,
one first needs a symbolic representation system that is expressive enough for
the sets of values produced by unbounded loop iterations, as well as a formalism
for describing the data transformations labeling control paths. The main prob-
lems are then to decide whether the effect of unbounded iterations of such a
path can be computed over symbolically represented sets, and to carry out this
computation.

Solutions to these problems have been proposed in earlier work: Sets of reach-
able data values can be expressed in the first-order logic 〈R,Z,+,≤〉, which
generalizes Presburger arithmetic to mixed integer and real variables, and for
which usable data structures have been developed [7]. The transformations un-
dergone by variables along control paths of linear hybrid automata1 correspond
to Linear Hybrid Relations (LHR), the acceleration of which is studied in [5,6].

The cycle acceleration method proposed in [5] is able to handle a broad class
of LHR, in particular all Multiple Counters Systems (MCS) [11]. This subclass
of LHR is relevant in practice since it has been established that accelerating
arbitrary control paths of timed automata [1], reduces to the same problem over
MCS. It is actually proved in [5] that acceleration of MCS makes it possible to
compute symbolically the reachability set of timed automata with a guarantee
of termination.

The results of [5] nevertheless suffer from two weaknesses. First, when this
acceleration method is applied to purely integer transformations, which can be
seen as a particular case of LHR, it is not able to handle all instances covered by
an acceleration procedure that has been specifically developed for such transfor-
mations [2,3]. Second, the method is sensitive to the coordinate system used for
expressing data values. For instance, even though all MCS can be accelerated,
the same property does not hold for LHR obtained after applying linear variable
change operations to MCS.

1 The results of [5,6] actually consider the slightly smaller class of strongly linear
hybrid automata but their extension to linear hybrid automata is immediate.
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The goal of this work is to broaden substantially the scope of cycle accelera-
tion of linear hybrid relations, by developing a new approach that does not have
these weaknesses. For purely integer transformations, an obvious solution would
be to detect whether the considered LHR belongs to this class, and then branch
to a specific acceleration algorithm. This approach would not improve the state
of the art, and we propose instead a solution that is not only able to handle
all integer transformations that can be accelerated by the specialized algorithm
of [3], but also combinations of such discrete transformations with simple con-
tinuous ones. After studying the properties of this solution, we then generalize
it into a method that becomes powerful enough for handling all transformations
extracted from MCS, as well as their transformations by arbitrary linear variable
change operations.

2 Preliminaries

2.1 Algebra Basics

A linear constraint over variables x ∈ R
n, with n ≥ 0, is a constraint of the

form a.x#b, with a ∈ Q
n, b ∈ Q and # ∈ {<,≤,=,≥, >}. This constraint is

strict if # ∈ {<,>}, and non-strict otherwise. It is an inequality constraint if
# ∈ {<,≤,≥, >}, and an equality constraint otherwise. A constraint a.x#b is
said to be saturated by a value v ∈ R

n if this value satisfies a.v = b.
The set of points x ∈ R

n that satisfy a given finite conjunction of equality
constraints forms an affine space. An affine space S ⊆ R

n can be expressed in
the form S = AR

m + b, where 0 ≤ m ≤ n, A ∈ Q
n×m is a matrix with rank m,

and b ∈ Q
n. The value m then corresponds to the dimension of S. The affine

space of smallest dimension that contains a given set is unique, and known as
the affine hull of this set.

The set of solutions of a finite conjunction of linear constraints forms a convex
polyhedron, the dimension of which is defined as the dimension of its affine hull.
Within R

n, a convex polyhedron of dimension n can be represented by a finite
canonical conjunction of constraints, i.e., a set of constraints that is uniquely
determined by the polyhedron. For each constraint in this set, there exists at
least one point that saturates this constraint, and that satisfies all the other
ones without saturating them. Convex polyhedra of dimension m < n can be
expressed as AΠ + b, where A ∈ Q

n×m, b ∈ Q
n, and Π ⊆ R

m is a polyhedron
of dimension m that is represented canonically. In order to simplify notations,
we sometimes denote a set {v} as v, and write S1 + S2 to mean {v1 + v2 | v1 ∈
S1 ∧ v2 ∈ S2}.

2.2 Linear Hybrid Relations

A Linear Hybrid Automaton (LHA) is composed of a finite control graph ex-
tended with a given number n of variables x1, x2, . . . , xn that take their values
in R. These variables can be grouped into a vector x whose domain is R

n. We
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refer the reader to [5,6,14] for further details and formal definitions. An example
is given in Figure 2.

A configuration of a LHA is a pair (�,v) where � is a control location and
v assigns a value to each variable. The current configuration can change in
two ways. The first one (time step) is to let time elapse, in which case the
control location remains constant, and the variable values evolve according to
the invariant and evolution law of this location. Those are expressed as linear
constraints over respectively the variable values, and their first time derivative.
The second mechanism (transition step) is to follow a transition, which moves
the control location and applies a discrete transformation to the variable values.
This transformation is defined by linear constraints involving the initial and final
values of the variables, taken across the transition.

The semantics of LHA is defined as follows. A configuration c2 is reachable
from a configuration c1 if there exists a finite sequence of time and transition
steps that leads from c1 to c2. A reachable configuration is one that is reachable
from a designated initial set.

It has been shown in [6] that every finite control path of a LHA induces a
transformation over its variables that can be characterized as follows.

Definition 1. A Linear Hybrid Relation (LHR) is a relation

θ =

{

(x,x′) ∈ R
n × R

n
∣
∣
∣P

[
x
x′

]

	 q

}

,

where P ∈ Z
m×2n, q ∈ Z

m, 	∈ {<,≤}m, and m ≥ 0.

We write θ = (P, q,	) to denote a relation of this form. Given a path in a
LHA moving from a location � to a location �′, one can compute P and q such
that two values v,v′ ∈ R

n satisfy the LHR (P, q,	) iff (�′,v′) is reachable from
(�,v) by following the time and transition steps corresponding to this path.

In this work, for the sake of simplicity, we assume that all inequality con-
straints that appear in LHR are non-strict, i.e., that 	 stands for ≤m, and that
LHR are characterized by their pair (P, q). All results in this paper can straight-
forwardly be extended to the more general setting of mixed strict and non-strict
constraints.

Let θ be a LHR. Following [5], we call a constraint of this LHR static if it
involves only either x or x′. For a set S ⊆ R

n, its image θ(S) by θ is given
by {x′ ∈ R

n | ∃x ∈ S : (x,x′) ∈ θ}. This can alternatively be expressed as
θ(S) = (θ ∩ (S ×R

n))|[n+1,2n], where U |I denotes the projection of the elements
of U onto the vector components belonging to I. Given two LHR θ1 and θ2, their
composition θ2 ◦ θ1 is the LHR θ such that θ(S) = θ2(θ1(S)) for all sets S. Note
that we have θ2 ◦ θ1 = ((θ1 × R

n) ∩ (Rn × θ2))|[1,n]∪[2n+1,3n]. Finally, for every

k, the result of composing k − 1 times a LHR θ with itself is denoted θk, with
θ0 corresponding to the identity relation.
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2.3 Representation of Convex Polyhedra

In the following sections, we study the effect and repeated effect of LHR on sets.
The image θ(v) of a point v ∈ R

n by a LHR θ is the set of points v′ such that
(v,v′) satisfies the linear constraints of θ, that is, a convex polyhedron. We now
study some topological properties of such polyhedra.

Following the discussion in Section 2.1, we consider w.l.o.g. a convex poly-
hedron Π ⊆ R

n of dimension n, defined by its canonical set of inequality con-
straints. As explained in [4,13], such a polyhedron induces a finite equivalence
relation ∼Π on the points of Rn: One has v ∼Π v′ iff these two points saturate
identical subsets of constraints of Π . The equivalence classes of ∼Π correspond
to the geometrical components of Π . For each geometrical component C, its
affine hull aff(C) matches the constraints of Π saturated by C, and its dimen-
sion is defined as the one of this affine hull. The geometrical components of Π
are linked together by an incidence partial order ≺Π : One has C1 ≺Π C2 iff
aff(C1) ⊂ aff(C2), i.e., iff the constraints saturated in C1 are a superset of those
saturated in C2.

Those properties lead to a data structure for representing symbolically con-
vex polyhedra: A Convex Polyhedron Decision Diagram (CPDD) representing a
polyhedron Π is a directed acyclic graph in which:

– The nodes correspond to the geometrical components of Π , and are labeled
by the constraints of Π that they saturate, written as equalities (in other
words, by the affine hull of their geometrical component).

– If Π admits a unique minimal component with respect to the incidence order
≺Π , then the node q0 associated to this component is marked as initial.
Otherwise, the initial node q0 is an additional special node in which all
constraints are considered to be saturated (yielding an empty affine hull).

– The edges follow the incidence relation, removing those that are redundant
by transitivity. An edge from q1 to q2 is labeled by the constraints that are
saturated in q1 and not in q2, written as strict inequalities.

An example of CPDD is given in Figure 1. This data structure actually pro-
vides a simple procedure for locating the geometrical component of Π to which
a given point v ∈ R

n belongs: Starting from the initial node, one follows edges
labeled by inequality constraints that are satisfied by v. The procedure ends
upon reaching a node labeled by equality constraints satisfied by v, which then
represents the component to which v belongs. If several paths can be followed
from a given node, one of them can be chosen arbitrarily without the need for
backtracking.

This procedure illustrates an essential property of convex polyhedra: The
points contained in a geometrical component are exactly those that saturate the
constraints associated to this component, and that do not saturate the other
constraints. This property will be exploited in order to establish a key result in
Section 4.

It is worth mentioning that CPDD nodes do not correspond to all possible
combinations of saturated linear constraints, but only to those that are associ-
ated to geometrical components. For instance, the CPDD depicted in Figure 1
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x2
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x1 = 1 x1 + x2 = 3

T

Fig. 1. Example of Convex Polyhedron Decision Diagram

does not have a node corresponding to the set of constraints {x1 ≥ 1, x1 − x2 ≤
1}, since these constraints cannot be saturated while simultaneously satisfying
x1 + x2 ≥ 3.

Algorithms are available for building and manipulating polyhedra represented
by CPDD, in particular for computing their canonical form (which is unique up
to isomorphism), as well as their intersection and projection. This data structure
has been generalized to non-convex polyhedra in [4,13].

2.4 Cycle Acceleration

The cycle acceleration problem consists in checking, within a symbolic repre-
sentation system, whether the image of any representable set by unbounded
iterations of a given data transformation is representable as well. In such a case,
this transformation is said to be iterable [2]. One also needs an algorithm for
computing symbolically the image of represented sets by iterable transforma-
tions. This decision does not have to be precise: a sufficient criterion can be used
provided that it handles practically relevant transformations.

In the next section, we recall two iterability criteria, one developed for linear
transformations over integer variables and one for linear hybrid relations, and
show that they can be combined into a criterion that has a broader scope.

3 Affine Hybrid Transformations

3.1 Discrete and Hybrid Periodic Transformations

Over the domain Z
n, it has been established that transformations of the form

x �→ Ax + b, with A ∈ Z
n×n and b ∈ Z

n, are iterable within Presburger
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arithmetic, i.e., the first-order theory 〈Z,+, <〉, iff there exists p ∈ N>0 such
that A2p = Ap . This criterion can be decided using only integer arithmetic, and
a suitable value of p can be computed whenever one exists [2,3].

Transformations θ that satisfy this criterion have an ultimately periodic be-
havior: For every v ∈ Z

n, the sequence θp(v), θ2p(v), θ3p(v), . . . is such that
θ(k+1)p(v) = θkp(v) + δ for all k > 0, where δ ∈ Z

n is a constant increment
vector. It is also known that adding a linear guard Px ≤ q, with P ∈ Z

m×n,
q ∈ Z

m and m ≥ 0, to an iterable transformation produces one that is iterable
as well.

Hybrid transformations can also show a periodic behavior. It has been proved
in [6] that LHR θ over Rn in which all constraints have the form p.(x′−x) ≤ q,
with p ∈ Z

n and q ∈ Z have this property: For every v ∈ R
n, the sequence θ(v),

θ2(v), θ3(v), . . . is such that θk+1(v) = θk(v) +Δ for all k > 0, where Δ ⊆ R
n

is an increment that now takes the form of a constant convex polyhedron.
A natural idea is therefore to study hybrid transformations that have a peri-

odic behavior, but with a period that may be greater than one. The following
definition generalizes linear integer transformations to the hybrid case.

Definition 2. An Affine Hybrid Transformation (AHT) is a LHR θ ⊆ R
n×R

n

such that for every x ∈ R
n,

θ(x) = Ax+Π,

where A ∈ Q
n×n, and Π ⊆ R

n is a convex polyhedron.

The iterability criterion obtained for linear integer transformations straight-
forwardly extends to AHT.

Theorem 3. Let θ be an AHT x �→ Ax+Π, with A ∈ Q
n×n. If A is such that

A2p = Ap for some p ∈ N>0, then θ is iterable within 〈R,Z,+,≤〉. Moreover,
adding static constraints to an iterable AHT that satisfies this property produces
a LHR that is iterable as well.

Proof sketch. For every v ∈ R
n and k > 1, one has θkp(v) = Akpv+

∑kp−1
i=0 AiΠ .

If A2p = Ap, this simplifies into θkp(v) = Apv+
∑2p−1

i=0 AiΠ+(k−2)
∑2p−1

i=p AiΠ .
Using the mechanisms introduced in [6], this leads to a formula of 〈R,Z,+,≤〉
defining θk(v) for all k ≥ 0 in terms of v and k. ��

In order to be able to exploit the acceleration of AHT during symbolic state-
space exploration of linear hybrid automata, two problems need to be solved:

– Given a LHR expressed as a conjunction of linear constraints, deciding
whether it is equivalent to an AHT and, in the positive case, computing
the corresponding matrix A.

– Deciding whether a matrix A ∈ Q
n×n is such that A2p = Ap for some

p ∈ N>0, and computing such a value p.

The former problem is addressed in Section 3.2. The latter can be solved by
adapting a result from [2,3]:
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Theorem 4. A matrix A ∈ Q
n×n is such that A2p = Ap for some p ∈ N>0 if

and only if Ap is diagonalizable and has eigenvalues that belong to {0, 1}. There
exists an algorithm for deciding this criterion and computing a suitable value of
p, using only integer arithmetic.

Proof sketch. This result is established in [2,3] for matrices with integer compo-
nents, the idea being to check whether they admit a characteristic polynomial
that can be decomposed into a product of cyclotomic polynomials. The method
proposed in [2,3] for performing this operation also applies to rational matrices.

��

3.2 Detecting Affine Hybrid Transformations

We now address the problems of deciding whether a LHR is affine, that is,
whether θ = (P, q) is equivalent to some AHT x �→ Ax+Π , and of computing
the corresponding matrix A and convex polyhedron Π .

When θ is affine, the image of a set S ⊆ R
n is obtained by first applying to

each point in S a transformation x �→ Ax, where A ∈ Q
n×n is identical for each

point, and then adding a constant convex polyhedron Π to the result.
Let us assume that this polyhedron has at least one vertex, i.e., a geometrical

component of dimension 0. We can actually make this assumption without loss
of generality, since it follows from [5] that if an affine transformation θ does not
satisfy this property, then its acceleration can be reduced to that of a LHR of
smaller dimension.

The image by θ of an arbitrary point x ∈ R
n is the polyhedron Ax+Π , which

corresponds to Π translated by the vector Ax. Consider a particular vertex vi

of this polyhedron, in other words, a point that is the only one to saturate some
given subset of its constraints. The vertex vi is the translation of a vertex bi of
Π by the vector Ax, that is, vi = Ax+ bi. The same reasoning applied to other
vertices will yield the same matrix A.

Recall that the constraints defining θ are expressed over the variables x and
x′, the value of which is respectively considered before and after applying the
transformation. A transformation of the form x �→ Ax + bi thus corresponds
to the saturated form x′ = Ax + bi of some constraints of θ. Since this set of
saturated constraints is satisfiable, an important observation is that it must cor-
respond to a geometrical component of the convex polyhedron Θ ⊆ R

2n defined
by the constraints of θ. In other words, there must exist in this polyhedron a
geometrical component Ci that has an affine hull equal to x′ = Ax+ bi.

Since we have considered the vertices of Π , which are its geometrical compo-
nents of smallest dimension, the components Ci with this property must corre-
spond to the minimal non-empty components of Θ. We thus have the following
result.

Theorem 5. There exists a procedure for deciding whether a LHR θ ⊆ R
n×R

n

is an Affine Hybrid Transformation.
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Proof sketch. A simple strategy for deciding whether θ is affine consists in in-
specting the minimal non-empty geometrical components in a symbolic repre-
sentation of Θ. The following procedure can be used:

1. Build a CPDD representing Θ.
2. Select one of its minimal non-empty components.
3. Extract a matrix A from the affine hull of this component.
4. Compute Π = θ(0).
5. Check whether θ is equivalent to x �→ Ax + Π , by comparing Θ with the

polyhedra induced by the corresponding sets of constraints.

If the polyhedron Π satisfies our initial hypothesis of having at least one
vertex, then performing Step 3 simply amounts to checking that the consid-
ered affine hull is defined by constraints of the form x′ = Ax + bi, and then
syntactically extracting A from these constraints. Otherwise, if Π does not have
vertices, this operation can still be performed but after first applying to the affine
hull constraints the rank and subspace reductions of [5]. Those correspond intu-
itively to applying a linear coordinate transformation that results in constraints
expressed in terms of the smallest possible number of independent variables.
More precisely, the rank reductions amount to performing the following opera-
tions. First, the set of constraints is rewritten in the form P2x

′ = P1x+q, where
P1, P2 ∈ Z

m×n, q ∈ Z
m and m ≥ 0. If the rank r of P1 is less than n, then a

linear variable change operation is applied in order to express the transformation
in terms of only r distinct variables. The same procedure is also carried out if
the rank of P2 is less than n. In addition, subspace reductions are applied when
the set of constraints P2x

′ = P1x + q implies static constraints on either x or
x′. The reduction consists in performing a linear variable change operation onto
the largest number of distinct variables that are not statically constrained. ��

This procedure is illustrated in Section 5.1. In practice, since it follows from
Theorem 3 that static constraints do not hamper iterability, a good strategy
is to remove them before checking whether a LHR is affine. Finally, note that
the acceleration method for AHT discussed in this section is able to successfully
process all linear integer transformations that are handled by [2,3].

4 Generalized Affine Transformations

4.1 Principles

Affine hybrid transformations θ have the property that we can compute from
their set of constraints a value p ∈ N>0 such that θp has an ultimately periodic
behavior. In other words, iterating θ reduces to iterating θp, which is feasible
within additive arithmetic. We call such a value p a period of θ.

In Section 3, we have shown that such a period p can be obtained by inspecting
matrices extracted from the minimal geometrical components of the polyhedron
Θ ⊆ R

2n induced by the constraints of θ. If θ is affine, then these matrices
happen to be identical for all components, which represents the fact that they
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are similarly affected by θp, in the sense that they share the same periodic
behavior.

This sufficient condition for iterability is not at all necessary: If the geometri-
cal components of Θ correspond to matrices A1, A2, . . . that are not identical,
but yield values p1, p2, . . . such that A2pi

i = Api

i for all i, then all those com-
ponents share an ultimately periodic behavior of period p = lcm(p1, p2, . . .). A
possible acceleration procedure thus consists in computing such a value p by
inspecting the geometrical components of Θ, computing p as the least common
multiple of their detected periodicities pi, and then checking whether θp reduces
to a periodic transformation that is iterable within 〈R,Z,+,≤〉. This inspection
does not necessarily have to be carried out for all geometrical components: The
iterability of θp can be checked whenever a candidate value for p has been ob-
tained. If the analysis of a geometrical component fails to produce a periodicity
pi, the procedure can nevertheless continue with the other components.

This approach shares similarities with the solution proposed in [5] for accel-
erating Multiple Counters Systems (MCS) [11], which are a subclass of LHR in
which all constraints are of the form zi#zj + c, with zi, zj ∈ {x1, . . . , xn, x

′
1, . . . ,

x′
n}, # ∈ {<,≤,=,≥, >}, and c ∈ Z. This solution proceeds by building di-

rected weighted graphs that represent the set of constraints of a MCS θ, and
then measuring the weights p1, p2, . . . of the simple cycles in these graphs. The
value p = lcm(p1, p2, . . .) provides a (non necessarily optimal) candidate for the
periodicity of θ. It is shown in [5] that this technique is able to accelerate every
MCS.

In Section 4.2, we establish a connection between the acceleration technique
presented in this paper and the one proposed for MCS in [5], by showing that the
periodicities that are captured by the graph analysis method can also be detected
by the inspection of geometrical components. As a consequence, our technique
is complete over MCS. Compared with the method of [5], it has the important
advantage of being closed under linear variable change operations, since those do
not affect the properties of geometrical components of polyhedra. Furthermore,
our approach is not limited to handling MCS, unlike the acceleration method
developed in [11].

After a candidate periodicity value p has been obtained by inspecting the
geometrical components of Θ, it remains to check whether the transformation
θp has a periodic behavior that can be captured within 〈R,Z,+,≤〉. This problem
is addressed in Section 4.3.

4.2 Multiple Counters Systems

Let us briefly describe the method introduced in [5] for computing the periodicity
of a MCS θ. As discussed in Section 2.2, for the sake of clarity, we consider that
all inequality constraints are non-strict.

The first step is to build a finite directed graph Gθ, in which the nodes cor-
respond to the variables x1, x2, . . . , xn, and the edges (xi, (c, d), xj) are labeled
with a cost c ∈ Z and a depth d ∈ {−1, 0, 1}. This graph represents the con-
straints of θ:
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– A constraint xj ≤ xi+c or x′
j ≤ x′

i+c is represented by an edge (xi, (c, 0), xj).
– A constraint x′

j ≤ xi + c is represented by an edge (xi, (c, 1), xj).
– A constraint x′

j ≥ xi + c is represented by an edge (xj , (−c,−1), xi).

The paths of Gθ correspond to combinations of constraints of θ. The cost
and depth of such a path σ are defined as the sum of the individual cost and
depth of the edges that compose it. For every k > 0, a path σ of depth k in
Gθ represents a constraint x′

j ≤ xi + c of the transformation θk, where xi and
xj are respectively the origin and destination nodes of σ, c is the cost of σ, and
the intermediate depths reached at each node visited by σ remain in the interval
[0, k]. In the same way, the paths of Gθ of depth −k or 0 also correspond to
constraints of θk.

The main result of [5] is to show that, in order to obtain all constraints of
θk, it is sufficient to consider the paths of Gθ of suitable depth that contain
only unbounded occurrences of a single simple cycle. A periodicity p of θ, i.e.,
a value such that θp reduces to a periodic transformation, is then obtained by
computing the least common multiple of the depths of the simple cycles of Gθ.
This periodicity may not be the smallest one for θ, but this is not problematic.

We are now going to establish that such a periodicity p can also be computed
by the procedure outlined in Section 4.1. This property is a consequence of the
following result.

Theorem 6. Let k > 0, and σ be a simple cycle of Gθ of depth ±k and cost c,
representing a constraint x′

i ≤ xi + c or x′
i ≥ xi − c of θk. If this constraint can

be saturated 2 by values of x and x′ that satisfy (x,x′) ∈ θk, then there exists a
geometrical component of Θ producing a matrix A ∈ Q

n×n such that A2k = Ak.

Proof sketch. Let S be the set of constraints of θ that are represented by the
edges of Gθ composing σ. Since the constraint represented by σ can be saturated,
there exist values v,v′ ∈ R

n that can respectively be assigned to x and x′ in
order to saturate all constraints in S.

The values v and v′ may also saturate other constraints of θ. Let S′ denote
the set of constraints of θ that are necessarily saturated when S is saturated,
i.e., that are saturated by every v and v′ that saturate S. The set S′ contains
only constraints that are either saturated for all v,v′ ∈ R

n, or correspond to
one or several simple cycles of Gθ. In the latter case, it can be established that
each of these cycles shares the same depth ±k as σ.

One can thus find values v and v′ that saturate all constraints in S ∪ S′, and
do not saturate the other constraints of θ. From the discussion in Section 2.3,
it follows that the point (v,v′) ∈ R

2n belongs to a geometrical component of Θ
with an affine hull that exactly corresponds to the solutions of S ∪ S′.

The matrix A produced by this component using the procedure described in
Section 3.2 has the following property. Let X ⊆ {x1, . . . , xn} denote the set of
all variables visited by the simple cycles of Gθ that correspond to the constraints

2 This saturation requirement intuitively expresses the property that the constraint is
essential, i.e., that it is not implied by other constraints of θk.
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in S ∪ S′. Recall that these simple cycles are all of depth ±k. It follows that the
transformation x �→ Akx preserves the values of the variables in X and assigns
the value 0 to the other variables. One thus has A2k = Ak. ��

In [5], a candidate value for the periodicity p of θ is obtained by computing
the least common multiple of the depths pi of all simple cycles in Gθ. Theorem 6
shows that each such value pi will also be computed by the procedure discussed in
Section 4.1, provided that the underlying cycle represents a constraint that is not
redundant. The reciprocal property does not hold: Some geometrical components
of Θ may correspond to a set of saturated constraints of θ that does not form a
cycle. The inspection of such components may produce matrices A that do not
yield a periodicity pi, or yield a spurious one. This is not problematic, since a
transformation θ such that θp has a periodic behavior is also periodic when it is
raised to a power equal to an integer multiple of p.

4.3 Checking Periodicity

We now investigate the possibility of validating a candidate periodicity p ∈ N>0

for a LHR θ, i.e., checking whether θp has a periodic behavior that can be
accelerated. Note that, for every j ∈ [0, p − 1] and k ≥ 0, one has θj+kp =
(θp)k ◦ θj , hence accelerating θ reduces to accelerating θp.

Let θ′ be the LHR defined by the periodic constraints of θp, i.e., those of the
form p.(x′ − x)#q, with p ∈ Z

n, q ∈ Z, and # ∈ {≤,=,≥}. Following [6],
one can obtain a formula of 〈R,Z,+,≤〉 representing the relation x′ ∈ (θ′)k(x)
for all k ≥ 0 in terms of the variables x, x′, and k. The problem is thus to
check whether the acceleration of θ (or, equivalently, θp) can be reduced to the
acceleration of θ′.

We first consider the case of a MCS θ for which we have obtained a period p
by applying either the method introduced in Section 4.1, or the one given in [5].
For any k ≥ 0, we know that the constraints of θkp are represented by paths of
depth 0, k or −k in the graph Gθp . It has been shown in [5] that it is sufficient
to consider the paths of this graph that are either acyclic, or contain repetitions
of only a single cycle of length 1. Such cycles correspond to periodic constraints,
which are captured in θ′.

The transformation θp therefore satisfies two properties. The first one states
that there exists m > 0 such that m ≤ n, and every composition ofm constraints
of θp that results in a constraint of θmp necessarily includes at least one periodic
constraint from θ′. Formally, this condition can be expressed as

θmp =
⋂

i+j=m−1

[
θip ◦ θ′ ◦ θjp

]
. (1)

The second property states that, in compositions of constraints of θp, periodic
constraints do not need to be repeated at more than one place. Formally, we have

∀i < m :
[
θ′ ◦ θip ◦ θ′

]
⊇

[
(θ′)2 ◦ θip

]
∩
[
θip ◦ (θ′)2

]
. (2)



Acceleration of Affine Hybrid Transformations 43

In the case of MCS, Conditions 1 and 2 are always satisfied. For more gen-
eral LHR θ, they can be used as a sufficient criterion for validating a candidate
value p for the periodicity of θ. This is illustrated in Section 5.1 below. In prac-
tical applications, these conditions can be decided by operations over CPDD
representations of the transformations, as discussed in Section 2.3.

The last step is to show that a LHR θ that satisfies Conditions 1 and 2 can
be accelerated. These conditions imply that for all k ≥ m, we have

θkp =
⋂

i+j=m−1

[
θip ◦ (θ′)k−i−j ◦ θjp

]
.

Since θ′ can be accelerated, this expression can be turned into a formula of
〈R,Z,+,≤〉 representing the relation x′ ∈ (θ′)k(x) in terms of x, x′, and k.

5 Examples

5.1 Periodic LHR

Let us illustrate the approach proposed in this paper on the LHR θ ⊆ R
2 × R

2

defined by the set of constraints

θ :

⎧
⎨

⎩

x′
2 + x1 ≤ −1

x′
2 − x′

1 + x2 ≤ −1
2x′

2 − x′
1 + x1 + x2 ≥ −4.

First Step: Extracting a Candidate Periodic Matrix A from θ. The
convex polyhedron Θ ⊆ R

4 induced by these constraints admits three minimal
non-empty geometrical components, with the corresponding affine hulls

α1 :

{
x′
2 + x1 = −1

x′
2 − x′

1 + x2 = −1,

α2 :

{
x′
2 + x1 = −1

2x′
2 − x′

1 + x1 + x2 = −4,

and

α3 :

{
x′
2 − x′

1 + x2 = −1
2x′

2 − x′
1 + x1 + x2 = −4.

The affine hull α1 can equivalently be represented by the following constraints,
from which we deduce the matrix A below:

{
x′
1 = −x1 + x2

x′
2 = −x1 − 1

A =

[
−1 1
−1 0

]

Note that the affine hulls α2 and α3 produce the same matrix A, which hints
at the property that θ is affine.

Using the algorithm mentioned in Theorem 4, one obtains that this matrix is
such that A6 = A3 (actually, it satisfies the stronger property A3 = I2, where I2
denotes the identity matrix of size 2), which gives a candidate periodicity p = 3.
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Second Step: Checking Whether θ Is Affine. Following the procedure
given in Section 3.2, we can compute a polyhedron Π such that θ is equivalent
to x �→ Ax+Π . This yields:

Π :

⎧
⎨

⎩

x′
2 ≤ −1

x′
2 − x′

1 ≤ −1
2x′

2 − x′
1 ≥ −4.

From Theorem 3, we deduce that θ is iterable within 〈R,Z,+,≤〉.

Alternative Second Step: Checking the Candidate Period. Alternatively,
we may avoid computing Π and directly use the technique of Section 4.3 for
checking that the candidate periodicity p = 3 is valid. We obtain that θ3 is of
the form: ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−4 ≤ x′
1 − x1 ≤ 4

−4 ≤ x′
2 − x2 ≤ 4

−4 ≤ x′
1 − x′

2 − x1 + x2 ≤ 4
x′
1 + x′

2 − x1 − x2 ≤ 6
x′
1 − 2x′

2 − x1 + 2x2 ≤ 6
2x′

1 − x′
2 − 2x1 + x2 ≥ −6,

which is periodic since all its constraints are expressed over x′
1−x1 and x′

2 −x2.
For all k > 1, one thus has:

θ3k :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−4k ≤ x′
1 − x1 ≤ 4k

−4k ≤ x′
2 − x2 ≤ 4k

−4k ≤ x′
1 − x′

2 − x1 + x2 ≤ 4k
x′
1 + x′

2 − x1 − x2 ≤ 6k
x′
1 − 2x′

2 − x1 + 2x2 ≤ 6k
2x′

1 − x′
2 − 2x1 + x2 ≥ −6k.

The reflexive and transitive closure of θ3k can be obtained by quantification over
k. As a result, θ is iterable within 〈R,Z,+,≤〉.

5.2 Linear Hybrid Automaton

As a second example, consider the linear hybrid automaton H in Figure 2. The
effect of the cycle in H , starting from the leftmost location and preceding each
transition by the passage of time, is described by the LHR θH below. The variable
x has been eliminated using the reductions of [5] since, after the first iteration,
the cycle starts and ends with x = 0.

θH =

⎧
⎨

⎩

y + t− y′ + t′ ≤ 1
−2y + z − t+ 2y′ − z′ − t′ ≤ −1
y − y′ ≤ −10

The convex polyhedron ΘH ⊆ R
6 induced by θH has one minimal non-empty

geometrical component, obtained by saturating all the constraints of θH . Its
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ẋ = 1
ẏ = 1
ż = 1
ṫ = −1

0 ≤ ẋ ≤ 1
ẏ = 0
ż + ẋ = 1
ẋ ≤ ṫ ≤ ż

(x ≥ 10) → x := 0

(x ≤ 1) → x := 0; t := 1 − t

Fig. 2. Linear Hybrid Automaton H

affine hull is described by the following constraints, from which we derive the
matrix AH .

⎧
⎨

⎩

y′ = y + 10
z′ = z + 10
t′ = −t+ 11

AH =

⎡

⎣
1 0 0
0 1 0
0 0 −1

⎤

⎦

Using the algorithm mentioned in Theorem 4, we get a candidate period p = 2
since A2

H = I3 (the identity matrix of dimension 3). Following the approach of
Section 4.3 confirms that θ2H is periodic. Hence, (θ2H)∗ can be computed using
the techniques of [6]. One then obtains θ∗H = (θ2H)∗ ◦ (θH ∪ Id). Note that the
computation of θ∗H was out of scope of the techniques of [5,6], which cannot
handle periodicities greater than one.

6 Conclusions

This paper introduces an original method for accelerating the data transforma-
tions that label control cycles of linear hybrid automata. Given such a transfor-
mation θ, the idea consists in constructing a convex polyhedron from its linear
constraints, and then inspecting the geometrical components of this polyhedron
in order to compute a value p such that θp is periodic.

This method is able to accelerate all transformations that can be handled by
the specialized algorithms developed in [3,5,6,11], in particularMultiple Counters
Systems, to which the reachability analysis of timed automata can be reduced.
Compared with those solutions, our method has the advantage of being closed
under linear changes of coordinates, which naturally do not affect the geometrical
features of polyhedra. Our acceleration algorithm can also potentially be applied
to the octagonal transformations studied in [8,9,10], and an open question is to
establish whether it provides full coverage of such transformations.

We did not analyze the practical cost of our acceleration procedure, which
actually depends on the implementation details of the symbolic data structure
used for manipulating polyhedra, and on the heuristics employed for selecting
the geometrical components to be inspected. In all our case studies, considering
the minimal non-empty components for which a non-trivial matrix A can be
extracted turned out to be sufficient, but we do not know whether this property
holds in all cases.
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9. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242.
Springer, Heidelberg (2010)
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Abstract. The Ad hoc On-demand Distance Vector (AODV) routing
protocol allows the nodes in a Mobile Ad hoc Network (MANET) or a
Wireless Mesh Network (WMN) to know where to forward data packets.
Such a protocol is ‘loop free’ if it never leads to routing decisions that
forward packets in circles. This paper describes the mechanization of an
existing pen-and-paper proof of loop freedom of AODV in the interac-
tive theorem prover Isabelle/HOL. The mechanization relies on a novel
compositional approach for lifting invariants to networks of nodes. We
exploit the mechanization to analyse several improvements of AODV
and show that Isabelle/HOL can re-establish most proof obligations au-
tomatically and identify exactly the steps that are no longer valid.

1 Introduction

Mobile Ad hoc Networks (MANETs) and Wireless Mesh Networks (WMNs)
are self-configuring wireless networks for mobile devices. Their nodes are reactive
systems that cooperate to pass data packets from one node to another towards
each packet’s ultimate destination. This global service must satisfy certain cor-
rectness properties—for example, that data packets are never sent in circles.
Proofs of such properties tend to be long and complicated, often involving many
case distinctions over possible messages sent and combinations of Boolean pred-
icates over internal data structures. For example, the only prior existing proof1
of loop freedom of the Ad hoc On-demand Distance Vector (AODV) routing
protocol—one of the four protocols currently standardized by the IETF MANET
working group, and the basis of new WMN routing protocols such as HWMP in
the IEEE 802.11s wireless mesh network standard [14]—is about 18 pages long
and requires around 40 lemmas to prove the final statement [8]. This proof is
based on a process-algebraic model.

Mechanizing process calculi and process-algebraic models in an Interactive
Theorem Prover (ITP) like Isabelle/HOL [20] can now almost be considered
routine [1, 9, 11, 13]. However, a lot of this work focuses on process calculi
1 Earlier, and simpler, proofs appear in [2,22] and [26], but none of them is complete

and valid for AODV as standardized in [23]. We justify this statement in Section 9.
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themselves—for example, by treating variable binding [1] or proving that bisimu-
lation is a congruence [11,13]. While the study of security protocols has received
some attention [7], comparatively little work has been done on mechanizing the
application of such calculi to the practical verification of network protocols. In
this paper, however, we focus on an application and mechanize the proof of
loop freedom of AODV, a crucial correctness property. Our proof uses standard
transition-system based techniques for showing safety properties [15,16], as well
as a novel compositional technique for lifting properties from individual nodes
to networks of nodes [4]. We demonstrate these techniques on an example of
significant size and practical interest.

The development described in this paper builds directly on the aforementioned
model and pen-and-paper proof of loop freedom of AODV [8]. While the process
algebra model and the fine details of the original proof are already very formal,
the implication that transfers statements about nodes to statements about net-
works involves coarser reasoning over execution sequences. Our mechanization
simplifies and clarifies this aspect by explicitly stating the assumptions made of
other nodes and by reformulating the original reasoning into an invariant form,
that is, by reasoning over pairs of states rather than sequences of states.

Given that a proof already exists and that mechanization can be so time-
consuming, why do we bother? Besides the added confidence and credibility
that come with having even the smallest details fastidiously checked, the real
advantage in encoding model, proof, and framework in the logic of an ITP is
that they can then be analysed and manipulated (semi-)automatically. Section 8
describes how we exploited this fact to verify variations to the basic protocol, and
Section 9 argues that such models aid review and repeatability. We expect that
the work described will serve as a convenient and solid base for showing other
properties of the AODV protocol and studying other protocols, and, eventually,
to serve as a specification for refinement proofs. Finally, although any such work
benefits from the accumulation of technical advances and engineering improve-
ments to ITPs, we argue that it cannot yet be considered routine.

The paper is structured as follows. In Section 2 we informally describe the
AODV protocol. Section 3 briefly states the theorem of loop freedom of AODV
in the form given to Isabelle/HOL. The following three sections explain the
meaning of this statement: Section 4 describes how the model of AODV in the
process algebra AWN (Algebra for Wireless Networks) [8] is translated into Is-
abelle/HOL; Section 5 describes the formalization of network properties such as
loop freedom; and, Section 6 explains our formalization of invariance of network
properties. Section 7 summarizes how we proved the theorem in Isabelle/HOL.
Section 8 describes several improvements of AODV, proposed in [8], and illus-
trates the use of Isabelle/HOL in proving loop freedom of these variants. Once
the original proof has been mechanized, Isabelle/HOL can re-establish most
proof obligations for these improvements automatically, and identify exactly the
steps that are no longer valid and that need to be adjusted. A detailed discussion
of related work follows in Section 9, followed by concluding remarks.

There is only space to show the most important parts of our mechanization of
the process algebra AWN and of the model of AODV. Comparing these parts
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A
sn = 2

B
sn = 1

D
sn = 1

C
sn = 1

dip dsn dsk flag hops nhip prec

rtA:

dip dsn dsk flag hops nhip precrtB:

dip dsn dsk flag hops nhip precrtC :

dip dsn dsk flag hops nhip prec

rtD:

A 2 kno val 1 A ∅

A 2 kno val 1 A ∅
B 0 unk val 1 B ∅
D 0 unk val 1 D ∅

B 0 unk val 1 B ∅
A 2 kno val 2 B ∅

C 1 kno val 1 C {A}

C 1 kno val 2 B ∅

Fig. 1. Example AODV instance

before [8, §§4–6] and after mechanization in Isabelle/HOL, should give sufficient
clues about the remaining parts. By focusing mainly on the application (loop
freedom of AODV), we only show a glimpse of our proof method. A compan-
ion paper [4] presents the technical details of the mechanization of AWN and
the associated framework for compositional proof. Source files of the complete
mechanization in Isabelle/HOL are available online [5].

2 The AODV Routing Protocol

The purpose of AODV [23] is to route data packets between nodes. Figure 1
shows an example network with four nodes addressed A, B, C, and D. Each node
maintains a local sequence number (sn) and a routing table (rt). Imagine that
the former are all set to 1, that the latter are all empty, and that A wants to
send data to C. No route is known, so A increments its sn to 2 and broadcasts
a Route Request (rreq) message to its neighbours B and D. Both neighbours
immediately add a routing table entry with the destination address (dip) as A, the
destination sequence number (dsn) as 2, as sent by A, the destination-sequence-
number status (dsk) as ‘known’ (kno), the route status (flag) as ‘valid’ (val), the
number of hops to the destination (hops) as 1, the next hop address (nhip) as A,
and an empty set of precursors (nodes known to be interested in this route).

Since neither B nor D has a routing table entry for C, they both in turn forward
the rreq message to their neighbours, which causes A to add entries for B and
D, and C to add an entry for B. Since (forwarded) rreqs only include the sn of
the originating node—A in this case—the dsn and dsk fields of these new entries
are set to 0 and ‘unknown’ (unk), respectively. Node C also adds an entry for A
to its routing table, with hop count 2 and next hop B. Since C is the destination,
it replies to the request with a Route Reply (rrep) message, which is destined
for A and unicast to B. On receipt, B updates its rt with a route to C (adding
A as precursor) and forwards the message to A. When A receives this message
it updates its rt and starts forwarding data packets to C via B. All established
routing table entries are summarized in Figure 1.

Besides this basic scenario, AODV also supports early generation of rrep
messages by ‘intermediate nodes’ [23, §6.6.2]: whenever an intermediate node
has information about a route to the destination, rather than forwarding the
rreq message, it generates an rrep message and sends it back to the originator
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of the rreq message. AODV also supports Route Error (rerr) messages for
invalidating routes (sent to the ‘precursor nodes’ associated with each entry).

AODV features various timing requirements to expire packets and entries,
and to limit sending rates, as well as optional extensions, such as ‘gratuitous
rreps’ to improve bi-directional efficiency, and ‘local repair’ of routes on link
loss. The model we mechanize includes the core functionality of AODV, but not
timing details or optional features [8, §3].

3 Loop Freedom

Routing protocols must continue to correctly route data even as nodes appear,
disappear, and move. It is essential that they maintain loop freedom: the absence
of cycles across different routing tables. For instance, the example network would
have a cycle if D came into range of B, B updated its route for C to pass via
D, and D added a route for C via A. Proofs of loop freedom when route replies
are only generated by destination nodes are relatively subtle, but they become
really delicate when intermediate nodes may also generate rrep messages.

The main result shown in our mechanization is:

Theorem 1 (AODV loop freedom). For any well-formed network term n,
closed (pnet (λi. paodv i 〈〈 qmsg) n) ||= netglobal (λσ. ∀ dip. irrefl ((rt-graph σ dip)+)).

Most of this paper is concerned with explaining the various elements of this
statement and its proof in Isabelle/HOL. In sum, the variable n represents any
well formed term describing a network instance—a term is well formed iff all
nodes therein have distinct addresses. It is mapped to an automaton by the
functions pnet and closed. A node with address i comprises an instance of the
protocol, paodv i, reading messages from a queue process, qmsg. All reachable
states of this model are shown to satisfy the formula at right of the ‘||=’, which
(1) maps a state structured like the network term into a function from each
node address to that node’s local state (netglobal), (2) abstracts this map into a
directed graph with an arc from one node to another when the former has a valid
routing table entry for a given dip to the latter (rt-graph), and finally, (3) claims
that the transitive closure of each such graph is irreflexive.

4 Modelling AODV

In Isabelle/HOL we formalize AODV following the model from [8], which is
expressed in a process algebra called AWN [8, §4]. In AWN, a network instance
running a protocol is modelled in five layers, from the bottom up: (1) sequential
processes, (2) local parallel composition at a single network node, (3) nodes of the
form ip:P :R with ip the node’s address, R the set of reachable neighbours, and P
the process running on the node, (4) partial networks of nodes, and, (5) networks
closed to further interaction. The behaviour of each layer is defined by Structural
Operational Semantics (SOS) rules over either process terms or lower layers.
By including initial states, the first layer defines an automaton and the others
become functions over automata.
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p1⊕ p2 call(pn) {l}[[u]] p {l}〈g〉 p {l}unicast(sip, smsg).p � q {l}broadcast(smsg).p

{l}groupcast(sips, smsg).p {l}send(smsg).p {l}receive(umsg).p {l}deliver(sdata).p

(a) Term constructors for (’s, ’p, ’l) seqp.

ξ’ = u ξ

((ξ, {l}[[u]] p), τ , (ξ’, p))∈ seqp-sos Γ
((ξ, p), a, (ξ’, p’))∈ seqp-sos Γ

((ξ, p ⊕ q), a, (ξ’, p’))∈ seqp-sos Γ

((ξ, Γ pn), a, (ξ’, p’))∈ seqp-sos Γ
((ξ, call(pn)), a, (ξ’, p’))∈ seqp-sos Γ

((ξ, q), a, (ξ’, q’))∈ seqp-sos Γ
((ξ, p ⊕ q), a, (ξ’, q’))∈ seqp-sos Γ

((ξ, {l}broadcast(smsg).p), broadcast (smsg ξ), (ξ, p))∈ seqp-sos Γ

(b) SOS rules for sequential processes: subset of seqp-sos.

Fig. 2. Sequential processes: terms and semantics

The four node network of Figure 1 is, for example, modelled as
closed (pnet (λi. paodv i 〈〈 qmsg) (〈A; {B, D}〉 ‖ (〈B; {A, C}〉 ‖ (〈C; {B}〉 ‖ 〈D; {A}〉)))),
where the function closed models layer 5, closing a network, and pnet fabricates
a partial network from a function mapping addresses to node processes and an
expression describing the initial topology. For example, 〈A; {B, D}〉 becomes the
node 〈A : paodv A 〈〈 qmsg : {B, D}〉 with address A, initial neighbours B and D,
and running a local composition of the protocol process paodv (initialized with its
address) fed by a queue qmsg of incoming messages. The communication ranges
of nodes are independent of the structure of their composition and may change
during an execution. We now briefly describe each layer in more detail. Full
details of AWN, with all SOS rules, can be found in [8] and the source files [5].

(1) Sequential processes. Both the AODV protocol logic and the behaviour
of message queues are specified by process terms of type (’s, ’p, ’l) seqp, parame-
terized by ’s, the type of the data state manipulated by the term, ’p, the type of
process names, and ’l, the type of labels. We write ξ or ξ’ for variables of type
’s, and p, p’, q, or q’ for those of type (’s, ’p, ’l) seqp. Labels are used to refer to
particular control locations.

The term constructors are summarized in Figure 2a: assignment, {l}[[u]] p,
which transforms the data state deterministically (u has type ’s ⇒ ’s) and then
acts as p; guard/bind, {l}〈g〉 p, which returns the set of states where the guard
evaluates to true, one of which is chosen nondeterministically; network synchro-
nizations, receive/unicast/broadcast/groupcast, whose destinations and contents de-
pend on the data state; internal communications, send/receive/deliver, which do
not need specified destinations and whose contents depend on the data state;
choice (⊕), combining the possibilities of two subterms; and call (call), which
jumps to a named process. The argument smsg of broadcast is a data expression
with variables, which evaluates to a message. It thus has type ’s ⇒ msg. The
argument umsg of receive, on the other hand, is a variable that upon receipt of
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a message is evaluated to the message received. It has the type of a message-
dependent state change (msg ⇒ ’s ⇒ ’s). A guard is of type ’s ⇒ ’s set. It can
express both a construct that nondeterministically binds variables, giving a set
of possible successor states, and one that returns a singleton set containing the
current state provided it satisfies a given condition and the empty set otherwise.

The SOS rules for sequential processes, seqp-sos, define a set of transitions. A
transition is a triple relating a source state, an action, and a destination state.
The states of sequential processes pair data components of type ’s with control
terms of type (’s, ’p, ’l) seqp. A set of transitions is defined relative to a (recursive)
specification Γ of type ’p ⇒ (’s, ’p, ’l) seqp, which maps process names to terms.
Some of the rules are shown in Figure 2b.

These elements suffice to express the control logic of the AODV protocol. We
introduce six mutually recursive processes whose names are shown in Figure 3.
This figure shows the control structure of the specification Γ aodv, which maps
each name to a term. The main process is called PAodv. It can broadcast control
packets or send data packets—the two descending subtrees at the very left—or
on receiving a message descend into one of the other terms depending on the
message content—the five-pronged choice leading to the other labels. All paths
loop back to PAodv. The smallest subprocess, at bottom right, is defined as

Γ aodv PNewPkt = labelled PNewPkt (
〈λξ. if dip ξ = ip ξ then {ξ} else ∅〉
deliver(data) . [[clear-locals]] call(PAodv)

⊕〈λξ. if dip ξ 	= ip ξ then {ξ} else ∅〉
[[λξ. ξ(|store := add (data ξ) (dip ξ) (store ξ)|)]]
[[clear-locals]] call(PAodv) ).

PAodv

PNewPkt

PPkt

PRreq

PRrep

PRerr

Fig. 3. Process term graph of Γ aodv

It branches on whether or not the dip
and ip variables have the same value in
the current state, and then either deliv-
ers a message or updates the variable
store. Each branch then loops back to
the main process. The labelled function
recursively labels the control states from
PNewPkt-:0 through PNewPkt-:4.

The graph of Figure 3 summarizes
the just over 100 control locations and
shows that the model contains both sig-
nificant branching and sequencing, some
of which is exploited in the verification.
The thicker, solid lines are synchroniz-
ing actions. The dashed lines are assign-
ments or guards. Each straight sequence
of dashed lines, which correspond to a
sequence of assignments, could in fact
be replaced by a single dashed line, by
nesting state transformations. However,
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this would make the model easier to get wrong, harder to read, and less like im-
plementations in programming languages. Moreover, it is easier to verify many
small steps, especially since typically most are dispatched automatically.

The AODV data state is modelled in a standard way using records [25, §3.3].
There are five global variables:2 ip, the local address of type nat; sn, the cur-
rent sequence number, also a nat; rreqs, a set of pairs of addresses and request
identifiers that tracks already handled route requests; store, a partial map from
addresses to a status and queue of pending data packets; and rt, the routing ta-
ble, a partial map from addresses to entries of type sqn × k × f × nat × ip × ip set,
where sqn and ip are synonyms for nat. Each subprocess also has its own local
variables, which in the original process algebra [8] are often initialized from ex-
pressions during subprocess invocation. While it may seem ‘tidy’ to explicitly
model variable locality, it complicates syntactic details and the aim of working
ultimately on transition systems where there is no notion of a subprocess. Fur-
thermore, the recursion through Γ aodv induced by call already entails one or two
technical details, as we discuss in [4], even before variable assignment is con-
sidered. So, rather than stay faithful to these details in the mechanization, we
simply include the union of 12 local variables in the state record. When invoking
a subprocess, these variables are set to arbitrary values,3 by clear-locals, before
combining assignment and call. This pragmatic solution works well in our setting.

The routing table, rt, is central to AODV and thus to this verification. Sev-
eral functions are defined to access, add, update, and invalidate its entries. For
example, the function nhop of type rt ⇒ ip ⇀ ip gives the next hop for an address
if defined; update of type rt ⇒ ip ⇒ r ⇒ rt encodes the rules determining if and
how an entry is modified, invalidate of type rt ⇒ (ip ⇀ sqn) ⇒ rt marks a set of
routes as invalid (possibly individually setting sequence numbers), and addpreRT
of type rt ⇒ ip ⇒ ip set ⇀ rt adds precursors to an entry. These (partial) functions
are defined in the λ-calculus of Isabelle/HOL.

The process state is a pair of a data record and a process term. The (singleton)
set of initial states is given by a function, σaodv i = {(aodv-init i, Γ aodv PAodv)} where
i is the initial value of ip. The process term represents the control state: a sort
of a symbolic program counter. As the rules in Figure 2 indicate, process labels
have no influence on the flow of control (unlike in [16]). They exist only to aid
verification. The sets of initial states and transitions are bundled into a generic
automaton structure with two fields to model an AODV process:

paodv i = (|init = {(aodv-init i, Γ aodv PAodv)}, trans = seqp-sos Γ aodv |).
The states of this automaton (an overapproximation of the set of reachable
states) are determined by the type of the sources and targets of the transitions.

Having considered sequential processes, we now consider the other four layers.

(2) Local parallel composition. An instance of AODV must always be will-
ing to accept a message from its environment. To achieve this, and to model
2 These variables are global in that their values are maintained indefinitely; however,

they are local to each specific process running on a specific node.
3 Almost: as sip may not equal ip, we use ξ(|sip := SOME x. x 	= ip ξ|).
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asynchronous message transmission, the protocol process is combined with a
simple FIFO-queue model (modelled as a sequential process): paodv i 〈〈 qmsg.
The composition operator applies to automata:

s 〈〈 t = (|init = init s × init t, trans = parp-sos (trans s) (trans t)|).
The rules for parp-sos can be found in [5, 8].

(3–4) Nodes and partial networks. Networks of AODV instances are spec-
ified as values of an inductive type: a net-tree is either a node 〈i; Ri〉 with address
i and a set of neighbour addresses Ri, or a composition of two net-trees p1‖p2.
The function pnet maps each such value to an automaton:

pnet np 〈i; Ri〉 = 〈i : np i : Ri〉
pnet np (p1 ‖p2) = (|init = {s1� s2 | s1 ∈ init (pnet np p1) ∧ s2 ∈ init (pnet np p2)},

trans = pnet-sos (trans (pnet np p1)) (trans (pnet np p2))|),
where np is a function from addresses i to parallel process expressions, such as
λi. paodv i 〈〈 qmsg, and where

〈i : np : Ri〉 = (|init = {s i

Ri
| s∈ init np}, trans = node-sos (trans np)|).

The states of such automata mirror the structure of the original network term.
Node states are denoted s i

R and composed states are denoted s1� s2. During an
execution of a network, the tree structure and addresses remain constant, but
the neighbours, control states, and data states of nodes may evolve.

(5) Complete networks. Such a network is closed to new node interactions:

closed A = A(|trans := cnet-sos (trans A)|).

In sum, this section has presented the part of Theorem 1 to the left of the ‘||=’.

5 Stating Network Properties

Our verification exploits the inductive structure of net-trees and states. Experi-
ence taught us to keep this structure for as long as possible and only later to
transform it into a partial mapping from addresses to data records, using:

netlift sr (s i

R) = [i �→ fst (sr s)]
netlift sr (s� t) = netlift sr s ++ netlift sr t,

where sr divides the state into ‘exposed’ parts (the poadv data state) and ‘masked’
parts (the paodv control term and the states of qmsg). The fst then elides the
latter. The result of netlift is a partial function from addresses to the exposed
part of the state of the corresponding node. It is made total by mapping missing
elements to the initial (data) state before being passed to a property P:

netglobal P = λs. P (default aodv-init (netlift fst s)),

where default df f = (λi. case f i of None ⇒ df i | Some s ⇒ s). P is a property over
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a function, written σ, from addresses i to data records. It can thus speak, for
instance, of the routing table maintained by node i. The function netglobal turns
such a property into a property of network states s.

An example of P occurs in Theorem 1: λσ. ∀dip. irrefl((rt-graphσ dip)+). Here
rt-graph is a function that, given an address dip and a function σ from addresses
to data states, generates a routing graph: its vertices are all possible addresses
i and there is an arc (ip, ip′) iff ip �= dip and the entry for dip in the routing table
at node ip has the form (∗, ∗, val, ∗, ip′, ∗). An arc in this routing graph indicates
that ip′ is the next hop on a valid route to dip known by ip; a path in a routing
graph describes a route towards dip discovered by AODV. We say σ is loop free
if the routing graphs rt-graph σ dip are acyclic, for all destinations dip, i.e. if Pσ
holds. A network state s is loop free iff the function netmap s from addresses to
data records is loop free, i.e. if netglobalP s. Finally, a routing protocol, such
as AODV, is loop free iff all reachable network expressions are loop free. This
quantification over reachable network expressions is encoded in the symbol ||=.
In sum, this section has presented the part of Theorem 1 to the right of the ‘||=’.

6 Stating Invariance of Network Properties

As Theorem 1 is a safety property, we need only consider questions of invariance,
that is, properties of reachable states. The meta theory is classic [19, Part III].

Definition 1 (reachability). For an automaton A and an assumption I over
actions, reachable A I is the smallest set defined by the rules:

s∈ init A
s∈ reachable A I

s∈ reachable A I (s, a, s’)∈ trans A I a
s’∈ reachable A I

Definition 2 (invariance). For an automaton A and an assumption I over
actions, a predicate P is invariant, written A ||= (I →) P, iff ∀ s∈ reachable A I. P s.

Definition 3 (transition invariance). For an automaton A and an assump-
tion I over actions, a predicate P is transition invariant, written A ||≡ (I →) P, iff
∀ a. I a −→ (∀ s∈ reachable A I. ∀ s’. (s, a, s’)∈ trans A −→ P (s, a, s’)).

We recover the standard definition when I is λ-. True and write simply A ||= P.
In sum, this finishes the presentation of Theorem 1.

7 Our Proof

To show invariance, we follow the compositional strategy elucidated in [24,
§1.6.2]. That is, we take as a basic element automata with seqp-sos Γ aodv as
the set of transitions, show invariance using induction, and then develop proof
rules for each of the operators defined in the previous section to lift the results
to complete networks. The inductive assertion method is also classic, see, for
example, Manna & Pnueli [16, Rule inv-b]. Its core, in Isabelle, is the induction
principle associated with Definition 1.
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Both the original and mechanized proofs of Theorem 1 involve a succession of
invariants and transition invariants leading to the ultimate result. As an example,

paodv i ||= onl Γ aodv (λ(ξ, -). ∀ ip∈ kD (rt ξ). 1 ≤ the (dhops (rt ξ) ip)) (1)

states that ‘all routing table entries have a hop count greater than or equal to
one’ (kD gives the domain of a routing table; the the adds an obligation to show
that ip is in the domain of dhops (rt ξ)). This particular predicate only ranges
over the data state, ξ, but others also range over labels, for example,

paodv i ||= (recvmsg P →) onl Γ aodv (λ(ξ, l). l∈ {PAodv-:1} −→ P (msg ξ)) (2)

states that ‘if for every receive m, m satisfies P, then the msg variable also satisfies
P at location PAodv-:1’. The map onl Γ P, defined by λ(ξ, p). ∀ l∈ labels Γ p. P (ξ, l),
extracts labels from control states, which obviates the need to include and main-
tain process terms in invariants.4

Invariants like these are solved by establishing them for all possible initial
states, and showing that they are preserved by all transitions. The soundness of
this method is also formally justified in Isabelle/HOL [4].

This approach suffices for showing nearly all intermediate invariants, but not
for expressing the final invariant from which Theorem 1 follows. The authors of
the original proof [8, Theorem 7.30] introduce a notion of ‘quality’ of routing
table entries, and show that it strictly increases along any valid route to a des-
tination dip. They formalize this as

“dip ∈ vD
ip
N ∩ vD

nhip
N ∧ nhip �= dip ⇒ ξipN (rt) �dip ξnhipN (rt)”,

where N is a “reachable network state”, vDipN are the addresses for which ip has
valid routing entries, and nhip is the address of the next hop toward dip at
ip. But our basic invariants, like (1) or (2), can only refer to the local model’s
state (ξ). How can we compare the states at two nodes (ξip and ξnhip) without
immediately introducing the whole model before the ‘||=’?

Our solution is to introduce ‘open’ versions of the SOS rules and operators,
and of reachability and (transition) invariance.

The open SOS of AWN differs from the default (closed) version by mod-
elling data states as (total) functions from node addresses to data records. That
is, rather than define rules over a variable ξ of type state, they are defined over a
variable σ of type ip ⇒ state. At the level of sequential processes, the open equiv-
alent of seqp-sos (oseqp-sos) is additionally parameterized by an address i, and
the SOS rules only constrain this ith component. At the level of local parallel
compositions within a node, we simply inherit the data state from the left argu-
ment (the process aodv).5 The lifting to node expressions is unproblematic. The
composition of two partial networks effectively synchronizes the state mappings:
the only transitions that can occur are those where, given a source state (σ),
both components agree on a destination state (σ’).
4 Using labels is standard, see, for instance, [16, Chap. 1], or the ‘assertion networks’

of [24, §2.5.1]. Isabelle rapidly dispatches uninteresting cases.
5 This suffices for our work, but a symmetric solution may be preferable.
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We developed a framework for stating invariants over automata with open
transitions. These invariants differ from those like (1) and (2) in that assump-
tions are not stated over incoming messages but rather over synchronized and
interleaved transitions—that is, over communications with an environment and
over the independent actions of the environment—and properties are stated over
the entire state of the network. We show invariants at the level of a single process
(paodv i), with the additional obligation of showing their preservation under all
interleaving transitions that satisfy the stated assumption, and then ‘lift’ them
to arbitrary closed networks by applying a succession of generic lemmas, one for
each layer of AWN. The additional obligation is exploited as a hypothesis in
the induction that lifts results over partial networks (that is, when only one side
acts, the property remains invariant). The lifting rules require showing that a
process satisfies the assumptions on synchronizations and interleavings made in
the invariant statement. These assumptions must also be lifted for each layer;
care is required to avoid circularity in such assumption-guarantee invariants.

The framework includes a generic ‘transfer’ lemma that infers from an in-
variant over an open model, a similar invariant over the corresponding closed
model—in our case, the very model presented in Section 4. One need only show
a relation between the np given to pnet (see page 54) and a corresponding onp and
opnet of the open model. This transfer of results means that all of the definitions
and lemmas associated with the open model are but a proof strategy: they are
not needed to understand the statement of Theorem 1 and their soundness is
guaranteed by Isabelle/HOL. The details of this proof strategy are given in [4].
Route quality. For completeness, we include the definition used for route quality.
We write (rt1 �i rt2) = (rt1 �i rt2 ∧ ¬ rt2 �i rt1), to mean that the quality of the
route to address i in route table rt2 is strictly better than that in rt1, where,

(rt1 �i rt2) = (nsqn rt1 i < nsqn rt2 i
∨ (nsqn rt1 i = nsqn rt2 i ∧ the (dhops rt2 i) ≤ the (dhops rt1 i))),

provided i∈ kD rt1 and i∈ kD rt2. The function dhops rt i yields the number of hops
to i according to rt. We encode the notion of net sequence numbers from [8, §7.5]:

nsqn rt i = (if flag rt i = Some val ∨ sqn rt i = 0 then sqn rt i else sqn rt i - 1),

where flag states whether a route is valid (val) or invalid (inv) and sqn gives the
stored sequence number.
Results. Our mechanization of the AODV model and the proof of loop freedom
(not including the framework of [4]) involves 360 lemmas, of which 40 are invari-
ants, with a proof text spanning 80 printed pages. The pen-and-paper proof [8]
involves 40 lemmas over 18 pages. Many of the mechanized lemmas are of course
trivial, for example, simplification rules for projections from routing tables.

The pen-and-paper proof is fastidious and we did not find any major errors:
(1) type checking found a minor typo in the model, (2) one proof invoked an
incorrect invariant requiring the addition and proof of a new invariant based
on an existing one, (3) a minor flaw in another proof required the addition of
a new invariant. Of course, this was not known beforehand! Nevertheless, our
mechanized proof provides supplementary evidence for the stated property.
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8 Analysing Variants of AODV

A mechanized model and proof greatly facilitates the analysis of protocol vari-
ants, such as different interpretations of the informal text of a standard, or
proposed improvements for future versions of a standard. Since such variants
often only differ in minor details, most proofs stay the same or are adapted au-
tomatically. An ITP tries to ‘replay’ the original proof and, in case of a failure,
it indicates those proof steps that are no longer valid. One can thus concentrate
on important changes in the proof. This avoids the tedious, time-consuming,
and error-prone manual chore of establishing which steps remain valid for each
invariant, especially for long proofs. We support our claim by proving the loop
freedom property of four variants of AODV.

(1) Skipping route request identifiers. AODV uses route request identifiers
to uniquely identify rreq messages. Since it has been shown [8, §10.1] that a
combination of IP addresses and sequence numbers adequately serves the same
purpose, the identifier can be dropped and the size of the rreq messages reduced.
This very minor modification only requires a change in the type of rreq, and
related propositions and lemmas. Implementing these changes in Isabelle/HOL
only took several minutes—the invariant lemmas were re-proved automatically.

(2) Forwarding route replies. During route discovery, an rrep message
is unicast back towards the originator of the triggering rreq message. Every
intermediate node on the selected route processes the rrep message and, in
most cases, forwards it towards the originator. However, intermediate nodes
must discard rrep messages from which they cannot distil any new routing
information. As a consequence, the originator node will not receive a reply.6

An alternative is to require intermediate nodes to forward all rrep messages.
This behaviour is modelled by deleting three lines of the original specification;
including one choice operator (⊕) and two guards, potentially invalidating the
proofs of many invariants. To avoid the forwarding of outdated information, we
change three lines in the specification (including two guards) to ensure that the
best available information is always sent; see [8, §10.2] for details.

Of the 360 lemmas in the original proof, only 7 are no longer valid. Four
of these are easily repaired: since some lines of the specification are deleted,
the automatically generated labels change and references in the proofs must be
adapted—a tedious, but routine find-and-replace chore. So, in fact only three
invariants require non-trivial user interaction and a new proof—around three
hours of manual effort. This corresponds with the pen-and-paper proof, which
requires a single page [8, pp. 106–107] and a new invariant [8, Prop. 7.38].

(3) From groupcast to broadcast. Each routing table entry contains a set
of precursors (Section 2), a set of the IP addresses of all nodes that are currently
known to be potential users of the route, and that are located one hop further

6 See http://www.ietf.org/mail-archive/web/manet/current/msg05702.html

http://www.ietf.org/mail-archive/web/manet/current/msg05702.html
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away from the destination. This information is recorded so that these nodes can
be informed via rerr message if the route becomes invalid. However, precursor
lists are incomplete: nodes not handling a route reply have no information about
precursors for routes established while handling rreq messages—see [8, §10.4]
for examples. As a consequence, some nodes cannot be informed of a link break
and will use a broken route, and data packets can be lost.

One solution is to abandon precursors and to replace groupcasts by broadcasts.
The AODV specification is updated by dropping the precursor field of routing
table entries, and making minor changes to related functions and function calls.
All 7 occurrences of groupcast must also be replaced by an appropriate broadcast-
statement; in one case this necessitates the introduction of a new guard. 16
assignments dealing with the generation and maintenance of precursor lists, and
the calculation of groupcast destinations, are deleted.

Several changes ensued. (1) Around 30 definitions and lemmas about precur-
sor lists are no longer needed. (2) About 75 lemmas and proofs then require
adjustments for typing errors and references to deleted lemmas. (3) The labels
in 6 invariants must be updated. (4) One invariant requires a careful adjustment:
the removal of one case of a case distinction.

In sum, the specification changes broke many invariant proofs, but these were
easily fixed in around three hours.

(4) Forwarding route requests. During route discovery, an rreq message
is dropped if a node (destination or intermediate) replies to the sender with an
rrep message. This dropping of the rreq message may inadvertently lead to
non-optimal routes to the originator at nodes laying ‘downstream’ of the node
that sent the reply [17].

One possible solution is to make nodes forward all rreqs that they have
not handled earlier. The forwarded rreq messages must be augmented with a
Boolean flag to indicate that a reply has already been generated and sent. The
specification of this variant differs in only eight lines from the original [8, §10.5].

As before, the proof is adapted in response to feedback from Isabelle/HOL.
(1) 17 lemmas must now include the newly introduced flag. (2) The labels in 4
invariants must be updated. (3) Only one invariant proof required major changes.

9 Related Work

Bhargavan et al. [2]. Bhargavan, Obradovic, and Gunter apply a mix of manual
reasoning, interactive theorem proving, and model checking to a preliminary
draft (version 2) of AODV and show that this early draft is not loop free. They
also suggest three improvements, of which one has been incorporated into the
standard [23], and present a proof of loop freedom for the modified version. A
central role in this proof is played by an invariant stating that along a route
either sequence numbers increase, or, when they stay constant, that the hop
count decreases [2, Theorem 17]. However, this is only true for valid routes—an
assumption that is not stated. Even were the assumption adopted, it is not clear
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how the property can be shown using step-by-step reasoning which must treat
the case of invalid routes that become valid again. Looking at the proofs in [2],
it turns out that Lemma 20(1) of [2] is invalid. This failure is surprising, given
that according to [2] Lemma 20 is automatically verified by SPIN. A possible
explanation might be that this lemma is obviously valid for the version of AODV
prior to the recommendations of [2].

Bhargavan et al. concede that they do not formally prove the abstractions they
use for model checking [2, p.565], and it is not otherwise clear whether or how
they ensure consistency with their ITP models. Besides the obvious question of
soundness, these manual steps make it harder to reproduce the stated results.
If any part of the model is changed, the automatic components can be rerun,
but both the relations between them and any other manual reasoning must be
carefully re-evaluated. In contrast, our development is a complete mechanization
that is automatically validated by Isabelle/HOL in less than 15 minutes.

Zhou et al. [26]. Zhou, Yang, Zhang, and Wang model AODV as a set of fi-
nite traces—lists of events—defined inductively using a technique expounded by
Paulson [21]. The model features 15 cases for adding a new event to an existing
trace τ ; most involve conditions on ‘observation functions’ that recurse over τ
to ‘recreate’ the system state. Zhou et al. show the invariant proposed by Bhar-
gavan et al. but with an explicit assumption on route activity. They do so using
an ingenious but intricate lemma (‘l65’) that exploits the identification of states
and histories to reason across periods of route invalidity.

Both our mechanization and the original pen-and-paper proof [8] were com-
pleted without access to the details of Zhou et al.’s work. When we were able
to examine their model in detail, we were reassured to see that the two models
largely agree on the reading of the standard. But there are two crucial differ-
ences. First, we model route replies by intermediate nodes and Zhou et al. do
not. This feature is a core part of the AODV standard [23, §6.6.2] and quite
subtle—even small deviations, such as a different reading of the standard, risk
introducing loops [10]. While we think it would be possible to add such replies to
their model without introducing loops, extending the proof would not be trivial
and would likely require new invariants similar to those that we use. Second,
Zhou et al. model some timing details and we do not. But they sidestep central
issues. For example, according to the standard a route is expired in two steps:
“the Lifetime field in the routing table plays [a] dual role—for a valid route it
is the expiry time, and for an invalid route it is the deletion time” [23, §6.11].
Zhou et al. model the first step but not the second. Route deletion, however, is
fundamental to a timed model since all route information is lost; it complicates
even the basic lemma that local sequence numbers never decrease (their ‘l63’).

Apart from content, the two models also differ in style. While the model of
Zhou et al. is event-based and declarative, ours is more operational—it states
what an abstract implementation of the protocol does step-by-step. The dif-
ference is important for two reasons: validation against the standard [23] and
refinement to an implementation. Arguably, such standards are often quite op-
erational, perhaps because they are written by and for implementers. We expect
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it to be easier to state and show some kind of simulation relation between the
states and transitions of our model and those of an implementation (model).

As this discussion shows, in addition to guaranteeing soundness and facili-
tating repeatability and reuse, mechanized proofs aid detailed comparisons with
related work (provided the proof scripts are available for study). Since an ITP
checks the proofs, one can focus on comparing models and properties. Further-
more, rather than puzzle over details omitted or unclear from published ac-
counts, one can look for answers in the mechanization. AODV is an interesting
case study since at least two mechanical models exist, and the protocol is of
industrial relevance, complicated enough to be interesting, but not so large as
to pose too many engineering problems.
Mechanically verifying reactive systems. Apart from the process-algebraic work
described in the introduction, several other approaches for verifying reactive
systems have been mechanized, namely UNITY [12], I/O Automata [18], and
TLA+ [6]. The main difference with our approach is that they typically do not
distinguish control and data states—specifications are essentially flat sets of tran-
sitions. The last two frameworks, in particular, have focused on the verification
of practical protocols but not, to our knowledge, on the kind of routing protocol
exemplified by AODV.

10 Conclusion

We have presented a mechanical proof of a model that corresponds to an inter-
pretation of the current version of the AODV standard [23]; the fidelity of this
model is argued in [8]. It includes route replies from intermediate nodes but not
timing features. Such a mechanization does more than confirm the correctness
of the existing pen-and-paper proof, it provides a computerized object that can
be examined by others and serve as a foundation for analyses of variants and
extensions to, and other properties of AODV. We believe that our mechaniza-
tion of the process algebra AWN, and the general framework for compositionally
proving safety properties is also applicable to the study of other protocols.

A number of interesting questions remain. (1) What is the best way to manage
variant models in a proof assistant? (2) How suitable is such a model for showing
refinements to more detailed implementation models? (3) Can we validate our
model against a real AODV implementation as has been done for the Transmis-
sion Control Protocol [3]? (4) We have not modelled timing details, which is not
just a question of modelling, but also one of which invariants are needed to show
loop freedom when routes can be spontaneously deleted. Ideally, timing details
could also be incorporated into refinement proofs.
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Abstract. Extending formal verification techniques to handle quantita-
tive aspects, both for the models and for the properties to be checked,
has become a central research topic over the last twenty years. Follow-
ing several recent works, we study model checking for (one-dimensional)
weighted Kripke structures with positive and negative weights, and tem-
poral logics constraining the total and/or average weight. We prove de-
cidability when only accumulated weight is constrained, while allowing
average-weight constraints alone already is undecidable.

1 Introduction

Quantitative Verification. Model checking [CGP00] has been developed for
almost 40 years as a formal method for verifying correctness flushing out bugs
of computerized systems: this technique first consists in representing the system
under study as a mathematical model (a finite-state transition system, in the
most basic setting), expressing the correctness property in some logical formal-
ism, and running an algorithm that exhaustively explores the set of behaviours
of the model for proving or disproving the property. Model checking has been
successfully applied on various real-life case studies.

Though model checking has primarly concentrated on pure qualitative anal-
ysis via the development of various temporal logics [Pnu77,CE82,QS82], rich
models and logics have also been developed in order to take into account quan-
titative aspects of reactive systems and of their correctness properties.

In particular, there has been quite a lot of efforts invested in the study of
weighted discrete transition systems, like weighted Kripke structures [CC95] or
counter automata (or VASS) [EN94]. In these models, the weight gives some
quantitative information on the system, which might be timing information and
constraints, or energy consumption, or value of a discrete variable, etc. This
weight can either be some information that we observe on the system (like in
weighted Kripke structures) or its value can constrain the further behaviour of
the system (like in counter automata).

On such models, there are many interesting verification questions that can be
asked. First one can be interested in qualitative structural and logical properties
of the system, that can for instance be expressed using some logical formalism.
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Then one can be more interested in quantitative properties of the system, like
(among others) mean-payoff constraints [ZP96] (the limit-average of the weight
along an execution satisfies some constraint), or energy constraints [BFL+08] (all
along the execution, the weight satisfies some constraint). More interestingly, one
might be interested in properties that might mix qualitative logical properties
and quantitative constraints. For instance, in a robot-planning system, one would
like to verify that an autonomous robot can always go back to its home base
without running out-of-energy.

In this setting, weights in weighted transition systems have been most of-
ten restricted to range over the nonnegative integers (mostly for representing
timing information), and temporal logics have been augmented either with
constrained modalities [Koy90,EMSS92] or with explicit variables [AH94], and
efficient algorithms have been developed and implemented [BLN03,JLSØ13].
Models with both positive and negative weights have also been studied, but
mostly qualitative behaviours alone have been analyzed (this is the case in
counter automata—see [HKOW09,GHOW10,Haa12] for recent references), or
quantitative constraints have been analyzed (in weighted Kripke structures or
games [CDHR10,CRR12]). Mixing qualitative logical properties and quantita-
tive constraints has only poorly been addressed so far, and many works only
consider specifications given as a conjunction of a qualitative logical property
and a quantitative constraint: this is for instance the case of optimal reachability,
mean-payoff parity games [BMOU11], energy parity games [CD12], mean-payoff
LTL synthesis [BBFR13].

In that direction, the most relevant and advanced propositions are those
of [DG09] and of [BCHK11]. In [DG09], LTL is (roughly) extended with Pres-
burger constraints over weights and interpreted over one-counter automata (and
an extension thereof). The satisfiability and model checking problems are ad-
dressed, and it is shown that only a restriction to a single weight leads to decid-
ability. In [BCHK11], CTL and LTL are extended with (prefix) accumulative val-
ues over finitely many variables: these logics embed numerical assertions such as
Sum(x) ∼ c (e.g. to compare the accumulated amount of some resource x against
some value c) and Avg(x) ∼ c (e.g. to constrain the average consumption of some
resource x). In this context, the authors of [BCHK11] show undecidability of the
logics in general, and propose several fragments for which model checking is de-
cidable: (i) LTL with limit-average, where (roughly) a property can be rewritten
as a conjunction of a qualitative logical property and a quantitative constraint;
and (ii) CTL restricted to EF and EX modalities, with all kinds of numer-
ical assertions, but where the qualitative logical part of the formula is rather
poor. Notice that this decidability result is rather surprising, since reachabil-
ity in two-counter machines is undecidable. The difference is that here counters
can go negative, and taking the Parikh image of a path is enough for checking
properties expressed in the EF -fragment. Designing logical languages that can
express intricate properties mixing qualitative logical features and quantitative
constraints, and for which model checking remains decidable, seems therefore to
be a real challenge!
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Our Contribution. We investigate further the temporal logics with prefix
accumulation that has been proposed in [BCHK11], and we study the impact
of restricting the logic to a single weight. The logics we consider are therefore
based on CTL and LTL, and they extend the standard logics with two kinds of
numerical assertions: Sum ∼ c expresses that the accumulated weight satisfies
the constraint ∼ c, and Avg ∼ c expresses that the current average of the weight
satisfies the constraint ∼ c. The extension of CTL is called WCTL and the ex-
tension of LTL is called WLTL. Those two logics will be interpreted on weighted
Kripke structures, and we will be interested in the model checking problem.

We prove in this paper that when using only Sum constraints, model check-
ing for both CTL and LTL extensions is decidable. On the contrary, allowing
Avg constraints leads to undecidability for both branching and linear time. This
undecidability result for our logic WLTLAvg is to be compared with the decidabil-
ity of LTL with limit-average modalities of [BCHK11]: limit-average constraints
can be made disjoint from the logical property expressed by the formula of LTL,
whereas average modalities are really mixed with the logical property. Finally,
we define a flat fragment ofWLTL allowing both Sum and Avg constraints, but re-
stricting the way they can be nested in the formula; we prove that this fragment
has decidable model checking.

2 Definitions

2.1 Weighted Kripke Structures

Definition 1. Let AP be a finite set of atomic propositions. A weighted Kripke
structure over AP is a tuple K = 〈S,R, �〉 where S is a finite set of states,
R ⊆ S×W ×S (where W ⊆ Z is the set of weights1 of K, which we assume are
given in binary notation) is a weighted transition relation (which we assume total,
meaning that for all s ∈ S, there exists w ∈ Z and s′ ∈ S s.t. (s, w, s′) ∈ R),
and � : S → 2AP is a function labelling the states with atomic propositions.

A weighted Kripke structure with zero-tests is a weighted Kripke structure
with extra zero-test transitions, that is, R ⊆ S × (W ∪ {= 0})× S.

A weighted Kripke structure (with zero-tests) is unitary if its set of weights W
is included in {−1, 0,+1}.

Let K = 〈S,R, �〉 be a weighted Kripke structure, s0 ∈ S be a state of K, and
w0 ∈ Z. A run in K from (s0, w0) is a (finite or infinite) sequence π = (qi, wi)i∈I

such that q0 = s0, I is an interval of N containing 0, and for all i ∈ I \ {0},
(qi−1, wi − wi−1, qi) ∈ R. When I is finite, we write |π| for the length of π (the
cardinal of I), and we write last(π) (resp. lastq(π), lastw(π)) for the configuration
(qmax(I), wmax(I)) (resp. the state qmax(I), the weight wmax(I)). Given a path
π = (qi, wi)i∈I and k ∈ I, the prefix of π up to k is the path π≤k = (qi, wi)i∈[0,k];
the suffix of π from k is the path π≥k = (qk+i, wk+i)i∈N∩(I−k). When K has

1 Rational weights would easily be handled, after scaling the values by the least com-
mon multiple of their denominators.
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zero-tests, a run in K is a sequence π = (qi, wi)i∈I where for all i ∈ I \ {0},
either (qi−1, wi − wi−1, qi) ∈ R, or wi = wi−1 = 0 and (q,= 0, q′) ∈ R.

Weighted Kripke structures (with or without zero-tests) are related to counter
automata [Min61]. A one-counter automaton2 is a weighted Kripke structure
with zero-tests in which runs are restricted to only visit configurations with
nonnegative weight: the state space is S × N, and it is not possible to take a
transition that would make the counter (or weight) negative. It is also usual
to have branching zero-tests in one-counter automata, instead of our simple
“guarded transitions” (zero-tests transitions). However, branching tests in one-
counter automata can easily be implemented in weighted Kripke structures with
zero-tests (for instance, to test whether the value of the counter is positive, we
put in sequence a decrementation of −1 followed by an incrementation of +1).

The execution tree of a weighted Kripke structure K from some configura-
tion (s0, w0) is the (S ×Z)-tree

T = {π ∈ (S ×Z)∗ | π is a run from (s0, w0) in K}

For convenience, we label each node π of T with last(π), which then relates each
node of T with its corresponding state of K. A branch of T is an infinite run π
from (s0, w0) in K: every prefix π≤i (i ∈ N) is then an element of T . We write
B(T ) for the set of branches of T .

2.2 Weighted Temporal Logics

We extend both branching-time temporal logic CTL [CE82,QS82] and linear-time
temporal logic LTL [Pnu77] with numerical constraints on weights:

Definition 2. A numerical assertion is built on the following grammar:

α ::= Sum ∼ c | Avg ∼ c

where ∼ ranges over {<,≤,=,≥, >} and c ranges over Q.
Fix a set AP of atomic propositions. The syntax of WCTL over AP is given as

φ ::= p | α | ¬φ | φ∧φ | EXφ | AXφ | EφUφ | AφUφ | w · φ

where p ranges over AP and α ranges over numerical assertions.
The syntax of WLTL over AP is given as

φ ::= p | α | ¬φ | φ∧φ | Xφ | φUφ | w · φ

where p ranges over AP and α ranges over numerical assertions.
The operation w · φ in both logics is called the reset operation.

2 Counter automata are often required to have set of weights included in {−1, 0,+1},
which we call unitary counter automata in the sequel. The counter automata we
consider here correspond to succinct counter automata of [HKOW09,GHOW10].
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In the sequel, we write WCTLSum (resp. WCTLAvg) for the fragments of WCTL

using only Sum (resp. Avg) in numerical assertions. We also write WCTLrf ,
WCTLrfSum and WCTLrfAvg for the respective fragments with no reset operations.
Also, we write WLTLSum (resp. WLTLAvg) for the fragments of WLTL using only

Sum (resp. Avg) in numerical assertions. We also write WLTLrf , WLTLrfSum and
WLTLrfAvg for the respective fragments with no reset operations.

The semantics of numerical assertions is defined on finite runs π of a weighted
Kripke structure K as follows (boolean combinations omitted):

π |= Sum ∼ c iff lastw(π) ∼ c

π |= Avg ∼ c iff lastw(π) ∼ c · |π|

Such constraints can for instance be used to express the so-called energy con-
straints [BFL+08,CDHR10], requiring that Sum ≥ 0 all along a run. We can also
reinforce this condition by additionally requiring that, at the end of the run, the
average energy level (over the prefix) has remained within a given range.

Semantics of WCTL. The semantics of WCTL is defined inductively, on the
execution tree of a weighted Kripke structure. Let K be a weighted Kripke struc-
ture and (s0, w0) be an initial configuration. Let T be the execution tree of K
from (s0, w0); fix a branch π of T , a position i ∈ N along π (with the intended
meaning that i corresponds to the node π≤i of T ; in particular, the node at
position 0 corresponds to (s0, w0)). The semantics of WCTL is defined as follows
(atomic propositions and boolean operators omitted):

T , π, i |= α iff π≤i |= α

T , π, i |= EXφ iff ∃π′ ∈ B(T ). (π≤i = π′
≤i and T , π′, i+ 1 |= φ)

T , π, i |= AXφ iff ∀π′ ∈ B(T ). (π≤i = π′
≤i ⇒ T , π′, i+ 1 |= φ)

T , π, i |= Eφ1 Uφ2 iff ∃π′ ∈ B(T ).∃j ≥ i. (π≤i = π′
≤i and

T , π′, j |= φ2 and ∀i ≤ k < j. T , π′, k |= φ1)

T , π, i |= Aφ1 Uφ2 iff ∀π′ ∈ B(T ).∃j ≥ i. (π≤i = π′
≤i ⇒

T , π′, j |= φ2 and ∀i ≤ k < j. T , π′, k |= φ1)

T , π, i |= w · φ iff T ′, π′, 0 |= φ where T ′ is the execution tree of K
from (lastq(π≤i), 0) and π′ ∈ B(T ′)

Notice that the value of T ′, π′, 0 |= φ in the semantics of w ·φ does not depend on
the choice of the branch π′, so the semantics is well-defined. We can generalize
that remark:

Lemma 3. Pick π, π′ ∈ B(T ).

– If π≤i = π′
≤i for some position i ∈ N, then for every formula φ ∈ WCTL,

T , π, i |= φ iff T , π′, i |= φ.
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– If last(π≤i) = last(π′
≤j) for some i, j ∈ N, then for all φ ∈ WCTLSum,

T , π, i |= φ iff T , π′, j |= φ.

The value of T , π, 0 |= φ does not depend on the choice of the branch π ∈
B(T ); we then define the truth value of K, (s0, w0) |= φ as that of T , π, 0 |= φ,
where T is the execution tree of K from (s0, w0) and π is any branch of T .

Definition 4 (WCTL model-checking problem). Let φ be a WCTL formula,
let K be a weighted Kripke structure and s0 be an initial state. The model-
checking problem with fixed initial credit asks, for a given w0 ∈ Z, whether
K, (s0, w0) |= φ. The model-checking problem with unknown initial credit asks
whether there exists w0 ∈ Z such that K, (s0, w0) |= φ.

Semantics of WLTL. The semantics of WLTL is defined inductively over infi-
nite runs of a weighted Kripke structure. Let K be a weighted Kripke structure, π
be an infinite run in K from some configuration (s0, w0), and i ∈ N be a position
along π. The semantics of WLTL is defined as follows (simple cases omitted):

π, i |= α iff π≤i |= α

π, i |= Xφ iff π, i + 1 |= φ

π, i |= φ1 Uφ2 iff ∃j ≥ i. (π, j |= φ2 and ∀i ≤ k < j. π, k |= φ1)

π, i |= w · φ iff π′, 0 |= φ where π′ is the run of K from (lastq(π≤i), 0)

that follows the same transitions as π≥i.

As for WCTL, the reset operator imposes that further numerical assertions will
count from the current position only, this is why the position is reset to 0.

We write K, (s0, w0) |= φ whenever there exists an infinite run π from (s0, w0)
in K such that π, 0 |= φ. Note that the choice of an existential semantics is
arbitrary and harmless, given that the logic is closed under negation.

Definition 5 (WLTL model-checking problem). Let φ be a WLTL formula,
let K be a weighted Kripke structure and s0 be an initial state. The model-
checking problem with fixed initial credit asks, for a given w0 ∈ Z, whether
K, (s0, w0) |= φ. The model-checking problem with unknown initial credit asks
whether there exists w0 ∈ Z such that K, (s0, w0) |= φ.

Remark 6. Note that the reset operator which is used in both logics is a powerful
operator, which can be used to express multiple numerical constraints on various
portions of a run. This is a rather standard operator in temporal logics, which is
for instance in the core of linear-time timed temporal logic TPTL [AH94]. Note
nevertheless that the logics WCTL and WLTL above only allow for one weight
variable in a given formula. We will see that the reset operator does not impact
much on the model checking of WCTL, but has a strong impact on WLTL model
checking.
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q1

q2

z

−1

−1

0

= 0

= 0

−p1

−p2

Fig. 1. From WCTLrf
Sum to CTL (there is one transition from each state in the dotted

box (which is the original weighted Kripke structure) to each state qi)

3 Algorithm for Model Checking WCTLSum

In this section we prove the decidability of the model-checking of WCTLSum over
weighted Kripke structures by reducing it to the model-checking of CTL over
one-counter automata. We proceed by first removing numerical assertions from
the formulas (which requires to modify also the Kripke structure), and then by
building a one-counter automaton and a CTL formula. We then apply the results
of [Haa12,Ser06], and carefully analyze the complexity of the algorithm.

We first focus on logic WCTLrfSum, and will explain at the end of the section
how we can extend the result to WCTLSum.

3.1 Moving Quantitative Constraints into the Model

We prove that model checking WCTLrfSum is logspace-reducible to model checking
CTL on structures allowing zero-tests. This is achieved by adding “tests mod-
ules” in the model, and replacing Sum constraints with a CTL condition in the
corresponding test modules.

LetK = 〈S,R, �〉 be a weighted Kripke structure, and φ be aWCTLrfSum formula
involving integer constants P = {p1, ..., pk}. We define a new weighted Kripke
structure with zero tests K′

P = 〈S′, R′, �′〉 as follows:

– S′ = S ∪ {qi | 1 ≤ i ≤ k} ∪ {z},
– R′ = R ∪ {(s,−pi, qi), (qi,−1, qi), (qi,= 0, z), (z, 0, z) | s ∈ S, 1 ≤ i ≤ k},

– �′ :

���
��
s ∈ S �→ �(s)

s = qi �→ ai

s = z �→ zero

The ai are fresh atomic propositions. The construction is depicted on Fig. 1
for two constants p1 and p2. The intuition is as follows: whenever the formula
requires comparing the current weight with pi in a state s of K, the new formula
will query the existence of a transition to qi, and check that the value of the
weight when reaching qi is nonnegative (by testing whether state z is reachable).

Now, after an easy transformation of φ into �φ in order not to evaluate subfor-
mulas in newly-added states, we get:
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Fig. 2. From weighted Kripke structures to one-counter automata

Proposition 7. Let K = 〈S,R, �〉 be a weighted Kripke structure. Let φ be a
WCTLrfSum formula with integer constants in P, and s0 ∈ S and v ∈ Z. Let K′

P
be the weighted Kripke structure with zero test as defined above, and �φ be the
formula obtained from φ by the transformation above. Then

K, (s0, v) |= φ iff K′
P , (s0, v) |= �φ.

Note that the size of K′
P is polynomial in K and φ, and so is �φ.

3.2 From Weighted Kripke Structures to One-Counter Automata

We now reduce the model checking problem for CTL on weighted Kripke struc-
tures with zero tests to the same problem on unitary one-counter automata, in
order to invoke the algorithms for CTL model-checking of [Haa12,Ser06]. The
one-counter automaton will be made of two copies of the weighted Kripke struc-
ture: one to be used when the accumulated weight is nonnegative, and one when
it is nonpositive. We will have zero-tests between both copies. Prior to this trans-
formation, we first make the Kripke structure unitary, so that no transition will
jump from positive to negative weights, or vice-versa, without hitting zero.

We now come to the transformation of this unitary weighted Kripke structure
into a unitary one-counter automaton C. The natural idea is to consider two
copies of each state: one is used when the accumulated weight is nonnegative,
and one when the total weight is nonpositive. By considering the opposite value of
the weight in the second copy, we end up with a unitary one-counter automaton.
Fig. 2 illustrates this construction on a simple example.

Again rewriting the formula as �φ to “hide” newly added states, we get:

Proposition 8. Let K = 〈S,R, �〉 be a weighted Kripke structure with zero-tests,
φ be a CTL formula, s0 ∈ S and w0 ∈ Z. Let C be the one-counter automaton

obtained above, and �φ be the formula obtained from φ. Then

K, (s0, w0) |= φ iff C, ((s0, sign(w0)), |w0|) |= �φ
where sign(0) can be taken as either +1 or −1.
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3.3 WCTLrf
Sum Model Checking over Weighted Kripke Structures

We now come to the main result of this section:

Theorem 9. Model checking WCTLrfSum over weighted Kripke structures with
fixed initial credit is EXPSPACE-complete. It is PSPACE-complete when starting
from a unitary weighted Kripke structure.

Proof. The algorithms are obtained by applying the previous transformations
from WCTLrfSum model checking over weighted Kripke structures to CTL model
checking over unitary one-counter automata, and then relying on the PSPACE
algorithm of [Haa12,Ser06] for model checking unitary one-counter automata.

Hardness is easily proved by reducing the model-checking problem of CTL over
one-counter automata to that forWCTLrfSum over weighted Kripke structures. The
former problem was proved EXPSPACE-complete in [GHOW10], and PSPACE-
complete over unitary one-counter automata in [GL10]. The reduction is rather
straightforward, by reinforcing the CTL formula in order to enforce nonnegative
value of the accumulated weight all along the paths. �

We can now extend the above algorithm to handle the reset operator: when a
formula φ contains w · ψ as a subformula, we first evaluate ψ in all the states of
the Kripke structure, assuming initial weight zero, and apply a classical labelling
algorithm. In the end:

Theorem 10. Model checking WCTLSum over weighted Kripke structures with
fixed initial credit is EXPSPACE-complete; it is PSPACE-complete when starting
from a unitary weighted Kripke structure.

3.4 Model Checking WCTLSum with Unknown Initial Credit

The model checking of WCTLSum with unknown initial credit can be reduced to
the fixed initial credit case by adding an initial module which allows to set the
weight to any value. We can state the following result:

Theorem 11. Model checking WCTLSum over weighted Kripke structures with
unknown initial credit is EXPSPACE-complete; it is PSPACE-complete when start-
ing from a unitary weighted Kripke structure.

This result has to be compared with the lower-bound problems in weighted
timed automata which is PSPACE-complete with unknown initial credit, but
becomes undecidable with fixed initial credit [BLM14].

4 Model Checking WCTLAvg Is Undecidable

In this section, we prove that constraining the average of the weight value leads
to undecidability:

Theorem 12. Model checking WCTLrfAvg (and therefore WCTLAvg) over weighted
Kripke structures is undecidable.
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Proof. We encode the halting problem for (deterministic) two-counter machines
into our model-checking problem with fixed initial value. The values c1 and c2
of the counters at a given position along an execution is encoded by the length
of the path being of the form 2c1 · 3c2 · 5a, where a is a nonnegative integer.
Decrementing counter c1 will then amount to multiplying the length of the path
by 5/2, which will be achieved by taking a self-loop on a state until the total
average value of the weight reaches a given value.

We illustrate the construction on an example. Figure 3 depicts a module
from (q, Ak) to (q′, Ak′ ). This module will be used to modify (increment or decre-
ment) the counters. The WCTLrfAvg formula will enforce that the average weight
value of a path ending in a state labelled Ak be exactly k, for all 0 ≤ k ≤ 2.
Consider such a path, of length n, ending in state (q, Ak) of Figure 3 (so that the
accumulated weight is k ·n). With j taking values 2, 3, 5/2 or 5/3 will implement
all four instructions modifying the counters. Now, we extend this path follow-
ing the depicted module, until reaching (q′, Ak′). Write x− 2 for the number of
times we take the self-loop on state (r, k, k′). Then the length of the path when

reaching (q′, Ak′ ) is n+ x, and its total accumulated weight is k · n + (jk′−k)·x
j−1 .

The requirement that the average be k′ in (q′, Ak′ ) entails

k · n+
(jk′ − k) · x

j − 1
= k′ · (n+ x).

One easily checks that, provided k �= k′, this implies x = (j − 1) · n, so that the
length of the whole path when reaching (q′, Ak′) is j · n (assuming j > 1), and
the average is indeed k′.

(q,Ak)

(r, k, k′)

(q′, Ak′)

jk′−k
j−1

jk′−k
j−1

jk′−k
j−1

Fig. 3. Updating counters
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(r, k, 0, ok) (r, k, 0, nok) (r, k, 0, nok′)

(r,A0, ok) (r,A0, nok) (r,A0, nok
′)

(r, 0, 1, ok) (r, 0, 1, nok) (r, 0, 1, nok′)

(q′, A1) (q′′, A1)

15
11

15
11

15
11

15
11

15
11

15
11

15
11

15
11

· 5
3

15
11

· 4
3

−3k

−k −2k

−3k −3k −3k

−3k −3k −3k

Fig. 4. Testing counters (here c2)
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Similarly, Figure 4 is a module testing whether counter c2 equals zero. Starting
in state (q, Ak) with a path of length n, and total accumulated weight k · n,
it is rather clear that we can reach state (r, A0, ok) if, and only if, n is an
integer multiple of 3 (which means that c2 > 0). State (r, A0, ok) is then reached
by a path of total length 4n/3, and accumulated weight zero. Then the path
goes to (r, 0, 1, ok), and takes the loop x − 2 times, and reaches (q′, A1). The
accumulated weight then is 15x/11, and the length of the path is 4n/3+ x. The
average is 1 exactly when x = 11n/3, for which the total length of the path is 5n;
this way, the counters are back to their original value when reaching (q′, A1).

If we follow the middle branch of the module, we reach (r, A0, nok) with av-
erage zero if, and only if, n− 1 is an integer multiple of 3, which implies that n
is not, so that c2 = 0. The length of the path when reaching (r, A0, nok) is
n+1+(n−1)/3. We then reach (q”, A1) after looping x−2 times on (r, 0, 1, nok);
then the length of the path is (4n+2)/3+x, and the total weight is (x+2/3)·15/11.
Since we require the average weight to equal 1, we get x = (11n− 2)/3, which
yields a total final length of 5n, as expected. A similar computation can be con-
ducted for the rightmost branch. �

Remark 13. Notice that this can be made to work with only nonnegative and/
or integer weights, by shifting and/or multiplying all weights and average con-
straints by some constant.

5 Algorithms for Model Checking Fragments of WLTL

5.1 Decidability of WLTLrf
Sum Model Checking

It follows from the proof of Theorem 12 that model checking WLTLrfAvg is unde-
cidable: the formula we built contains a single “until” modality, and can thus
be interpreted as a WLTLrfAvg formula. We believe this result is quite surprising
since it was proven in [BCHK11] that the model checking of LTL extending with
limit-average constraints (that is, constraints speaking on the long-run value of
the average) is decidable, even for several weights.

We thus focus on WLTL with only Sum constraints, and begin with proving
the decidability of the case without reset operator:

Theorem 14. Model checking WLTLrfSum over weighted Kripke structures both
with fixed and unknown initial credit is PSPACE-complete.

Our proof closely follows the ideas of [GHOW10] and [DG09]: we apply the
same transformation as for WCTL, reducing our weighted Kripke structure into
a unitary one-counter automaton. We then plug at each state a module (as dis-
played on Fig. 5, whereM is the maximal absolute value of the constants involved
in the formula) to encode numerical assertions into plain LTL. The LTL formula
is then checked using Büchi automata.

Notice that in [DG09], the model-checking problem is proven decidable for
an extension of LTL with Presburger-defined constraints (but without atomic
propositions) over one-dimensional weighted Kripke structures with zero tests.
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r′0 r′1 · · · r′M r′M+1

+1 +1+1 +1

= 0 = 0 = 0

−1

+1

Fig. 5. From WLTLrf
Sum to LTL (notice that q′ and q′′ also have their corresponding test

modules, which we omitted to draw for the sake of readability)

How to handle atomic propositions for that problem is not addressed in [DG09].
The extension to unknown initial credit is similar to the case of WCTLSum.

5.2 WLTLSum Model Checking Is Undecidable

In this section, we prove that contrary to the case of WCTLSum, the reset opera-
tor makes model checking undecidable. This is not so surprising, and is actually
a corollary of a similar result for LTL with one register over one-counter au-
tomata [DLS10, Thm. 17].

LTL with registers extends LTL with a way of storing the current value of a
counter (or other data, depending on the underlying model), and compare the
stored value later on during the execution. For instance, ↓ φ stores the current
value of the counter before evaluating φ. Then ↑ evaluates to true at positions
where the value of the counter equals the value stored in the register. For instance,
↓ ¬XF ↑, means that it must never be the case that the value of the counter
equals its initial value.

The translation of LTL with one register intoWLTLSum is then straightforward:
↓ corresponds to setting the weight to zero, and ↑ simply means Sum = 0. In order
to encode the behaviours of a one-counter automaton as a weighted Kripke
structure, we have to additionally require that the accumulated weight remains
nonnegative, by addingG (Sum ≥ 0) as a global conjunct. The following theorem
directly follows:

Theorem 15. Model checking WLTLSum over weighted Kripke structures is un-
decidable.

5.3 Model Checking a Flat Fragment of WLTL

We conclude this part with a fragment of WLTL which forbids numerical asser-
tions on the left-hand-side of an “until” formula. As we prove below, model check-
ing our fragment is decidable, so that it offers an alternative to the fragments
EFΣ and LTLlim of [BCHK11], with a lower complexity. Also, our fragment al-
lows us to use multiple variables, as well as average assertions. The syntactic
restriction is the price to pay for this, but we believe that the fragment remains



76 P. Bouyer, P. Gardy, and N. Markey

interesting in practice when dealing with average values, as it is rarely the case
that some average value has to be constrained all along an execution. We call
this fragment flat. Notice that this adjective was already used in similar contexts,
but for different restrictions [CC00].

In this section, we consider multi-dimensional weighted Kripke structures, as
our algorithm will be able to handle them; they extend the 1-dimensional Kripke
structures in the obvious way. FlatWLTL is defined by the following syntax:

FlatWLTL � φ ::= p | ¬ p | α | φ∨φ | φ∧φ | Xφ | Gψ | ψUφ | w · φ

where α ranges over numerical assertions, ψ ranges over LTL and, and w ranges
over the set of variables. The semantics follows that of WLTL.

Notice that our fragment allows both Sum and Avg constraints, as well as
the reset operator. Also notice that our logic includes a restricted version of the
release modality, namely φRψ, which can be expressed as Gψ ∨ψU (φ∧ψ).

Additionally, using the techniques in [BCHK11], this allows us to transform
Avg-assertions into Sum-assertions (if we have to check Avg(x) ≤ c, we introduce
a new variable xc whose updates are shifted by −c compared to the updates of x,
and then check Sum(xc) ≤ 0). Hence we can assume that our formula does not
contain Avg assertions.

We first prove that a path satisfying a formula in FlatWLTL can be decomposed
into finitely many segments, delimited with positions where some numerical as-
sertions have to be checked.

Pick φ ∈ FlatWLTL, and a path π in a weighted Kripke structure K such
that π, 0 |= φ. We inductively build a finite set of positions along π at which
we may have to evaluate numerical assertions; at all other positions, only pure-
LTL formulas will need to be evaluated. For this, we consider the tree of φ,
and we proceed inductively. We first decorate the root of the tree of φ with 0
(to indicate that φ holds true at position 0). If φ is pure LTL, then we end the
labelling. Then, from a node representing subformula ψ that has been decorated
with integer i, we distinguish between the different types of nodes:

– if the node corresponds to an atomic proposition, the negation thereof, or a
numerical assertion, we are done;

– if the node corresponds a reset operator (that is, ψ = w · ψ′), we label its
successor node, which corresponds to subformula ψ′, with i;

– if the node is a conjunction of subformulas (that is, ψ = ψ1 ∧ψ2), we mark
all successors of this node with i. Notice that indeed all subformulas have to
hold true at position i of π;

– if the node is a disjunction of subformulas, then one of the disjunct has to
hold true at position i of π. We label this successor with i;

– if the node is a X-modality, we label its successor node with i+ 1;

– if the node if a G-modality, we decorate its successor node with the inter-
val [i,+∞) (hence the inductive labelling ends here for this branch, since the
formula is flat);
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– if the node is an U-modality, then there must be a position j ≥ i along π at
which the right-hand-side subformula of this U-formula holds true. We dec-
orate the right-hand-side successor node of the present node with j, and the
left-hand-side node with [i, j − 1]. The inductive labelling ends here for the
left-hand-side branch since the formula is flat.

The following trivially holds: for every node that has been labelled by an integer i,
if that node corresponds to subformula ψ, then π, i |= ψ. Conversely, if for some
run π we can label consistently the tree representation of φ with integers (or in-
tervals on pure LTL formulas) such that the root is labelled with 0, then π, 0 |= φ.

This way, we have identified sufficiently many witnessing positions where some
numerical assertions may have to be checked. Let P = {i0 = 0, i1, ..., ik} be the
set of integers (named breakpoints hereafter) labelling the tree of φ, assuming
il < im whenever l < m. By construction, we have that k ≤ |φ|. Between any
two such consecutive positions, the decorated tree gives us (conjunctions of) LTL
subformulas to be checked at every intermediary position (the above labelling
tells us that all positions between two checkpoints have to satisfy the same LTL
subformulas of φ). The tree also indicates those breakpoints where we reset some
of the weight variables. Note that given two labellings of the formula tree yielding
the same order on breakpoints and making the same choices in the disjunctions,
the very same formulas have to be verified between two breakpoints.

As a first step of our (non-deterministic) algorithm, we pick a number k + 1
of (at most |φ|) breakpoints, and guess a labelling of the formula tree with the
indices of the breakpoints (or intervals) that respects the rules defined earlier.
Then we uniquely associate with each h ∈ [0, k] an LTL “right-hand-side” sub-
formula ξh and a numerical assertion αh to be checked at breakpoint ih, and an
LTL formula ζh that has to be checked at intermediary positions before the next
breakpoint (with ζk being enforced at all positions after the last breakpoint).
As noted above, those formulas are uniquely fixed by the order of breakpoints
and the labelling of the formula tree; moreover ξh and ζh are conjunctions of
pure LTL subformulas of φ whereas αh are conjunctions of numerical assertions
appearing as subformulas of φ or negations of such subformulas. See Fig. 6 for
an example of a formula tree labelled with breakpoints.

With each formula ξh selected above, we associate a Büchi automaton Aξ′
h

where ξ′h is the formula G (bh ⇒ ξh) and bh is a fresh atomic proposition that
only holds true at breakpoint ih (note that the value of ih is not known). Simi-
larly, with formulas ζh, we associate an automaton Aζ′

h
enforcing formula ζ′h =

G (ch ⇒ ζh), where atomic proposition ch only holds true between ih and ih+1.
Our algorithm will check the existence of segments between two breakpoints

that satisfy the required properties. Each segment corresponds to a finite path
in the product L of the weighted Kripke structure K and all the Büchi au-
tomata built above. When working with the j-th segment, proposition bj is set
to true at the first step, and cj holds true all along this segment. This way, the
automata Aξ′

j
and Aζ′

j
play their roles of checking ξj at the beginning of the seg-

ment, and ζj at every position in the segment. The automata that have already
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�
(assuming ψ ∈ LTL) with breakpoints

been “activated” (at previous break-
points) keep on running, finishing their
computations, while the automata cor-
responding to later breakpoints remain
“idle”.

One configuration of L (i.e. a state
of K and a state per Büchi automaton
constructed above) can be stored using
polynomial space. However, we do not
have a bound on the length of the seg-
ments, which prevents us from guessing
the path on-the-fly. Instead, we guess the
configurations of L at each breakpoint
(there are at most |φ| breakpoints). It re-
mains to decide the existence of a path
in L from the configuration in one break-
point to the configuration in the next
one, and checking that the numerical as-
sertions at each breakpoint are satisfied.
Following the ideas of [BCHK11], we can
encode the existence of each segment by
assigning one variable with each transi-
tion of L: each variable represents the
number of times this transition will be
taken along the segment, and one can
easily write a Presburger-arithmetic formula expressing that a valuation for those
variables corresponds to a path and that the numerical assertions are fulfilled.
Notice that we can easily handle reset operators in those equations. In the end,
our formula is in the existential fragment of Presburger arithmetic, and has size
exponential, so that our procedure runs in NEXPTIME.

Theorem 16. Model checking FlatWLTL over weighted Kripke structures is de-
cidable in NEXPTIME.
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Abstract. Safety Assessment (SA) is an engineering discipline aiming at the
analysis of systems under faults. According to industrial practice and standards,
SA is based on the construction of complex artifacts such as Fault Trees, which
describe how certain faults may cause some top-level events. SA is intended to
mirror the hierarchical design of the system focusing on the safety aspects.

In this paper, we propose a formal approach where the nominal specification
of a hierarchically decomposed system is automatically extended to encompass
faults. The approach is based on a contract-based design paradigm, where compo-
nents at different levels of abstraction are characterized in terms of the properties
that they have to guarantee and the assumptions that must be satisfied by their
environment. The framework has several distinguishing features. First, the exten-
sion is fully automated, and requires no human intervention, based on the idea
that intermediate events are failures to fulfill the contracts. Second, it can be ap-
plied stepwise, and provides feedback in the early phases of the design process.
Finally, it efficiently produces hierarchically organized fault trees.

1 Introduction

Complex systems are often the result of two complementary processes. On the one
side, hierarchical design refines a set of requirements into increasingly detailed levels,
decomposing a system into subsystems, down to basic components. On the other side,
the process of safety assessment (SA) analyzes the impact of faults. This process is
intended to pinpoint the consequences of faults (e.g., a valve failing to operate) on
high-level functions (e.g., loss of thrust to engines).

In architectural design, the failure of components is typically not modeled explicitly.
Failures are typically artificially introduced in the model for safety assessment. How-
ever, the design that is later implemented in real software and hardware components
contains only the nominal interfaces and behaviors. It may contain redundancy mech-
anism or failure monitoring, but not the failure themselves. We call such architectural
design the nominal architecture. Modeling and analysis of faults is the objective of SA.
Unfortunately, there is often a gap between the design of the nominal architecture and
SA, which are carried out by different teams, possibly on out-of-sync components. This
requires substantial effort, and it is often based on unclear semantics.
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In this paper, we conceived a new formal methodology to support a tight integration
between the architectural design and the SA process. Our approach builds on two main
ingredients. First, we use Contract-Based Design (CBD) - a hierarchical technique that
provides formal support to the architectural decomposition of a system into subsystems
and subcomponents. Components at different levels of abstraction are characterized by
contracts (assumptions/guarantees). CBD can provide feedback in the early stages of the
process, by specifying blocks in abstract terms (e.g., in terms of temporal logic [17]),
without the need for a behavioral model (e.g., in terms of finite-state machines). Second,
we use the idea of fault injection (a.k.a. model extension), which enables the transfor-
mation of a nominal model into one encompassing faults. This is done by introducing
additional variables controlling the activation of faults, hence controlling whether the
system is behaving according to the nominal or the faulty specification. Within this
setting, it is possible to automatically generate Fault Trees (FTs) using model check-
ing techniques. This approach focused in the past on behavioral models [21,13], and is
flat, i.e., it generates two-level FTs corresponding to the DNF of their minimal cut sets
(MCSs) [11]; as such, it is unable to exploit system hierarchy.

The novel contribution of our approach is the extension of CBD for SA (CBSA):
given a nominal contract-based system decomposition, we automatically obtain a de-
composition with fault injections. The insight is that the failure mode variables are
directly extracted from the structure of the nominal description, in that they model the
failure of a component to satisfy its contract. The approach is proved to preserve the
correctness of refinement: the extension of a correct refinement of nominal contracts
yields an extended model where the refinements are still correct. Once the contracts are
extended, it is possible to automatically construct FTs that mimic the structure of the
architecture, and formally characterize how lower-level or environmental failures may
cause failures at higher levels. This approach has several important features. First, it is
fully automated, since SA models are directly obtained from the design models, without
further human intervention. Second, it can be applied early in the development process
and stepwise along the refinement of the design, providing a tight connection between
design and SA. Third, it allows for the generation of artifacts that are fundamental in
SA, namely FTs that follow the hierarchical decomposition of the system architecture.

The framework has been implemented extending the OCRA tool [15], which sup-
ports CBD. We show experimentally that our approach is able to produce hierarchically
organized FTs automatically and efficiently. Furthermore, when applied to behavioral
descriptions, the partitioning provided by CBD demonstrates a much better scalability
than the monolithic approach provided by previous techniques for Model-Based Safety
Assessment (MBSA) [13], which generate flat FTs.

This paper is structured as follows. In Sect. 2, we discuss some related work. In
Sect. 3, we present the state of the practice in SA. In Sect. 4, we present some back-
ground on formal verification and CBD. In Sect. 5, we discuss contract-based fault
injection, and in Sect. 6, we discuss how to generate FTs. In Sect. 7, we present the
experimental evaluation. In Sect. 8, we conclude and discuss future work.
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2 Related Work

In recent years, there has been a growing industrial interest in MBSA, see e.g., [13].
These methods are based on a single safety model of a system. Formal verification
tools based on model checking have been extended to automate the generation of arti-
facts such as FTs and FMEA tables [13,12,9,11,10], and used for certification of safety
critical systems, see e.g., the Cecilia OCAS platform by Dassault Aviation. However,
the scope of such methods is limited to the generation of the MCSs, represented as a
two-level FT. This limitation has an impact in terms of scalability, and readability of
the FTs. Our approach overcomes the previous limitations – both in terms of scalability
(compare Section 7) and significance of the generated FTs (we produce hierarchically
organized FTs, as per [4]). Moreover, as a difference with traditional MBSA, we follow
a fully top-down development approach, which closely resembles the SA process as
described, e.g., in [4], providing feedback in much earlier stages of the design.

An alternative approach for the generation of more structured FTs is based on actors-
oriented design [23,20], however these techniques do not account for a stepwise refine-
ment of SA, as outlined in [4]. Specifically, even in presence of minor changes, this
approach does not provide the possibility to refine, extend or reuse previous FTA.

Our work is similar in spirit to [5], which presents a methodology based on retrench-
ment (an extension of classical refinement), to generate hierarchical FTs from systems
represented as circuits, exploiting the system dataflow. A major difference is that re-
trenchment does not focus on top-down development, but rather on the relation between
nominal and faulty behaviors. It takes as input the system hierarchy and the behavioral
models, hence it does not support the FT generation along the stepwise refinement.
Moreover, the framework is theoretical and, although an algorithm for generation of
FTs is provided, implementation issues for its realization are not discussed.

In [6], contracts are (manually) generated after a safety and design process. The FT
is manually constructed starting from some diagrams describing the system behavior.
State machines are extended with faulty behavior to analyze the hazards. Differently
from our work, FTA and hazards analysis are used to collect information to specify the
contracts. We instead start from the contracts to derive automatically the FT.

In this paper, we based the fault-tree generation on the contract-based refinement.
There are other more mature refinement techniques such as the B Method [2], but we
are not aware of approaches to FT generation based on these refinements.

Finally, in the context of fault diagnosis, the work described in [25] constructs di-
agnoses by exploiting the hierarchy of a circuit; the health variable associated with a
region of the circuit, called cone, resembles the idea of intermediate event in a FT.
However, this work does not focus on architectural design and stepwise refinement.

3 Safety Assessment: State of the Practice

Safety assessment is an integral part of the system development of complex systems.
As an example, [3] describes the typical development process for civil aircraft as be-
ing constituted of different activities, including: a conceptual design, whereby intended
aircraft functions are identified; the system architecture design, which is responsible
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for designing the architecture down to the item level, and allocating aircraft functions
to the appropriate items; the allocation of system requirements to items; finally, the
implementation of individual items (in software and/or in hardware) and the items/sys-
tem integration activity. In practice, development may involve multiple iterative cycles,
whereby the system architecture and allocated requirements are progressively refined.

In this context, safety assessment has the goal to show that the implemented system
meets the identified safety requirements and complies with certification requirements.
Safety assessment is strictly intertwined with, and carried out across all phases of de-
velopment. For example, [4] distinguishes a preliminary aircraft- or system-level safety
assessment (PASA/PSSA), which aims at validating the proposed architecture in terms
of safety and allocating safety requirements to items, and an aircraft- or system-level
safety assessment (ASA/SSA), which systematically evaluates the implemented aircraft
and systems in order to show that they meet the safety requirements.

Fault Tree Analysis (FTA) [4,26] is a traditional safety assessment method, which
can be applied across different phases. It is as a deductive technique, whereby an un-
desired state (the so called top level event) is specified, and the system is analyzed for
the possible chains of basic events (e.g., system faults) that may cause the top event to
occur. A FT makes use of logical gates to depict the logical interrelationships linking
such events, and it can be evaluated quantitatively, e.g., to determine the probability of
a safety hazard. FTs are developed starting from the top event; causes which are con-
sidered to be elementary faults are developed as basic events, and the remaining causes
as intermediate events. This rule applies recursively to the intermediate events, which
must in turn be traced back to their causes, until the tree is fully developed [26].

Example 1 (WBS). The Wheel Braking System (WBS) case study was introduced in
[4], and later used to describe a formal specification ([19]) and refinement ([17]) of
contracts along a system architecture – it is therefore an ideal case study to evaluate
our approach. Fig. 1 shows the WBS architecture. The WBS controls the braking of the
main gear wheels for taxiing and landing phases of an aircraft. Braking is commanded
either via brake pedals or automatically. The brake is operated by two independent
sets of hydraulic pistons, supplied by independent power lines: the “green power sup-
ply” (GP), used in normal mode, and the “blue power supply” (BP), used in alternate
mode. The alternate system (AWBS) is in stand by and is selected automatically when
the normal one (NWBS) fails. An emergency brake system (EWBS) is activated when
both NWBS and AWBS fail. In normal mode, the brake is controlled by the Braking
System Control Unit (BSCU), implemented with two redundant control units. Each
sub-unit (SB1 and SB2) receives an independent pedal-position signal. Monitors detect
the failure of the sub-units, producing the “Valid” signals, and of the whole BSCU. The
Braking System Annunciation (BSA) monitors the output of the WBS, and it raises a
signal in case of every braking systems fail to operate. [4] also describes a PSSA of the
WBS, using FTA to analyze the “Unannunciated loss of all wheel braking” top event.
The resulting FT (Fig. 2) reflects how the top event depends on the unannounciated loss
of the three braking systems and develops the tree downwards, identifying the failures
contributing to the unannounciated loss of normal braking. An example of intermedi-
ate event is “Normal Brake System does not operate”, whereas “Switch failed stuck in
intermediate position” is a basic event.
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Fig. 1. WBS architecture (the names in parenthesis define the abbreviations)

4 Background Notions of Formal Methods

4.1 LTL Model Checking

States and traces are defined over a set V of state variables. A state is an assignment to
V of values in a given domain, while a trace is an infinite sequence σ = s0, s1, s2, . . .

of states. We denote with Tr(V ) the set of all traces over V . We define a language as
a set of traces. We denote with σ[i] the i-th state of σ. We use Linear-time Temporal
Logic (LTL) [24] to represent sets of traces. We assume that the reader is familiar with
LTL. Given an LTL formula φ and a trace σ, we write σ |= φ if the trace σ satisfies the
formula φ. We define the language L(φ) as the set of traces σ such that σ |= φ.

A transition system is a tuple 〈V, ι, τ 〉, where V is a set of state variables, ι is the
initial formula over V , τ is the transition formula over V and V ′ (V ′ is the set of next
versions of the variables in V ). A path of a transition system M = 〈V, ι, τ〉 is a sequence
s0, s1, . . . of assignments to V such that s0 satisfies ι and for each k ≥ 0, 〈sk, sk+1〉
satisfies τ . We denote with L(M) the set of paths of M . Given a transition system M

and an LTL formula φ, the model checking problem is the problem of checking if every
trace accepted by M satisfies φ, i.e., if L(M) ⊆ L(φ).
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Fig. 2. Fault tree of an unannounciated loss of all wheel braking developed in [3]

4.2 Cut-Sets and Fault Tree

As described in Section 3, FTA produces all possible configurations of system faults
(called fault configurations) that cause the reachability of an unwanted condition (the
Top Level Event). More formally, given a set of faults represented as Boolean failure
mode variables F ⊆ V , we call fault configuration a subset FC ⊆ F . The set FC can
be expressed with a formula over F , namely FC� =

∧
f∈FC(f =�).

A cut set represents a fault configuration that may cause the top event. Formally,
we generalize the definition in [11] to infinite traces and LTL, as follows. Let L be a
language of traces over the variables V and let TLE an LTL formula over V . We say
that FC is a cut set of TLE in L, written FC ∈ CS(L, TLE,F), iff there exists a trace
σ in L such that: i) σ |= TLE; ii) FC ⊆ F and ∀f ∈ FC ∃ i, (σ[i] |= f = �).

Intuitively, a cut set corresponds to the set of failure mode variables that are ac-
tive along a trace witnessing the occurrence of TLE. Minimal cut sets (MCSs), writ-
ten MCS(L,TLE ,F), are those that are minimal in terms of failure mode variables:
MCS(L,TLE ,F) = {cs ∈ CS(L, TLE,F) | ∀cs′ ∈ CS(L,TLE ,F) (cs′ ⊆ cs → cs′ =
cs)}. Moreover, the set MCS(L,TLE ,F) can be expressed with a formula over F in
disjunctive normal form, namely MCS�(L,TLE ,F) =

∨
FC∈MCS(L,TLE,F) FC

�.
A Fault Tree (FT) [26] can be represented as a set of Boolean formulae over Ba-

sic Events (BE) and Intermediate Events (IE). This representation defines a tree where
leaves are BE, and nodes are IE. More specifically, the Backus-Naur Form of a Fault
Tree FT is as follows: FT ::= IE �→ FT |FT ∧ FT |FT ∨ FT |BE. According to this
definition, the first level of the FT represented in Figure 2 can be then expressed as
“Unannuciated loss of all wheel braking” (the TLE) �→ “Loss of all wheel braking” (an
Intermediate Event) ∧ “Loss of annunciation capability” (a Basic Event). The second
level extends the IEs of the first one, and in this example it is as: “Loss of all wheel
braking” �→ “Alternate Brake System does not operate” ∧ “Normal Brake System does
not operate” ∧ “Emergency Brake System does not operate”. The successor levels re-
cursively define the IEs, while the Basic Events are treated as terminals, as defined by
the BNF representation of a FT.
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4.3 Contract-Based Design

Components and System Architectures. A component interface consists of a set of
ports, which are divided into input and output ports1. Input ports are those controlled
by the environment and fed to the component. The output ports are those controlled by
the component and communicated to the environment. Formally, each component S has
interface 〈IS, OS〉 of input and output ports. We denote with VS the set of ports related
to the component interface S given by the union of IS and OS .

In order to formalize decomposition, we need to specify the interconnections be-
tween the ports, i.e. how the information is propagated around. Intuitively, the input
ports of a component are driven by other ports, possibly combined by means of gen-
eralized (e.g., arithmetic) gates. These combinations, in the following referred to as
drivers, depend on the type of the port. Without loss of generality, we assume that ports
are either Boolean- or real-valued. The driver for a Boolean port is a Boolean formula;
for a real-valued port it is a real arithmetic expression. Therefore, we define a decom-
position of a component S as a pair ρ = 〈Sub, γ〉 where Sub is a non-empty set of
(sub)components such that S �∈ Sub, and the connection γ is a function that:

– maps each port in OS into a driver over the ports in IS ∪⋃
S′∈Sub OS′ , and

– for each U ∈ Sub, maps each port in IU into a driver over the ports in IS ∪
⋃

S′∈Sub OS′ .

We extend γ to Boolean and temporal formulas so that γ(φ) is the formula obtained
by substituting each symbol s in OS and IU for all U ∈ Sub with γ(s). Note that, since
φ is a Boolean or temporal formula over the ports of a single component, γ(s) does not
contain s and therefore γ(φ) is well defined (there is no circularity in the substitution).

A system architecture is a tree of components where for each non-leaf component
S a decomposition 〈SubS, γS〉 is defined such that SubS are the children of S in the
tree. Let Sub∗ be the set of components in the architecture tree. Let γ be the union
of γS with S ∈ Sub∗, i.e., γ takes an expression over

⋃
S∈Sub∗ VS and substitute s

with γS for every s ∈ OS ∪ ⋃
S′∈SubS

IS′ (we are assuming that the sets of ports of
different components are disjoint). We denote with γ∗ the iterative application of γ

until reaching a fixpoint. Thus, γ∗ takes an expression over
⋃

S∈Sub∗ VS and applies γ

until the expression contains only input ports of the root and output ports of the leaf
components.

Note that, for simplicity, we are considering only synchronous decompositions for
which we need only a mapping of symbols. The framework can be extended to the
asynchronous case by considering also further constraints to correlate the ports. In the
following, we also assume that we have only one instance for each component so that
we can identify the instance with its type to simplify the presentation. In practice, we
deal with multiple instances by renaming the ports adding the instance name as prefix.

Example 2. The WBS architecture, informally introduced in Examples 1, can be for-
malized with the notion of decomposition defined above. For example, the top-level
system component SC has two subcomponents, namely WBS and BSA. Therefore
Sub(SC) = {WBS,BSA}. The mapping γ is in most of cases just a renaming. For

1 For simplicity, we ignore here the distinction between data and event ports.
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example, the input port P1 of WBS is driven by the input port P1 of SC. Formally
γ(WBS.P1) = SC.P1 (since we avoided the distinction between component types and
instances to simplify the notation, we here use the dot notation to have a unique name
for each port). In few cases, the driver is not atomic. For example, the output port Valid
of BSCU is driven by the disjunction of the homonyms of SB1 and SB2. Formally,
γ(BSCU.V alid) = SB1.V alid ∨ SB2.V alid.

Trace-Based Components Implementation and Environment. A component S en-
capsulates a state which is hidden to the environment. It interacts with the environment
only through the ports. This interaction is represented by a trace in Tr(VS).

An input trace is a trace restricted to assignments to the input ports. Similarly, an
output trace is a trace restricted to assignments to the output ports. Given an input trace
σI ∈ Tr(IS) and an output trace σO ∈ Tr(OS), we denote with σI ×σO the trace σ such
that for all i, σ[i](x) = σI [i](x) if x ∈ IS and σ[i](x) = σO[i](x) if x ∈ OS .

For simplicity, we do not distinguish between a language (set of traces) and the
behavioral model that generates it. Therefore, both implementations and environments
of a component S are seen as subsets of Tr(VS) (note that we are considering also the
output ports for the language of the environment because this can be affected by the
component implementation).

A decomposition of S generates a composite implementation given by the composi-
tion of the implementation of the subcomponents, as well as a composite environment
for each subcomponent given by the environment of S and the implementations of the
other subcomponents. In order to define formally these notions, we extend γ to states
seen as conjunctions of equalities (assignments). Note that, if s is a state, then γ(s)

represents a set of states. Considering the example of γ introduced in Example 2, if
BSCU.V alid = �, then γ(BSCU.V alid = �) is equal to (SB1.V alid ∨ SB2.V alid) =

�. Finally, we extend γ to traces seen as sequence of states.
Given a decomposition 〈Sub, γ〉 of S with Sub = {S1, . . . , Sn} and an implementation

Mj for each subcomponent interface Sj ∈ Sub, we define the composite implementa-
tion CIγ({Mj}Sj∈Sub) of S taking the product of the traces of the subcomponents and
projecting on the ports of the component S:

CIγ({Mj}Sj∈Sub) := {σI × σO ∈ Tr(VS) | ∃σO
1 ∈ Tr(OS1), . . . , σ

O
n ∈ Tr(OSn) s.t.

σI × σO
1 × . . .× σO

n ∈ γ(M1) ∩ . . . ∩ γ(Mn) ∩ γ(σO)}

Similarly, given a subcomponent Sh ∈ Sub, an implementation Mj for each subcom-
ponent Sj ∈ Sub\ with j �= h, and an environment E for S, we define the composite
environment CEγ(E, {Mj}Sj∈Sub,j≤h) of Sh taking the product of the traces of E and
the other subcomponents and projecting on the ports of §h:

CIγ({Mj}Sj∈Sub,j �=h) := {σI
h × σO

h ∈ Tr(VSh) | ∃σI ∈ Tr(IS), σ
O
1 ∈ Tr(OS1), . . .

. . . , σO
n ∈ Tr(OSn) s.t. σI × σO

1 × . . .× σO
n ∈ γ(M1) ∩ . . . ∩ γ(Mn) ∩ γ(σI

h)}

Contracts. A component contract is a pair of properties, called the assumption, which
must be satisfied by the component environment, and the guarantee, which must be
satisfied by the component implementation when the assumption holds. We assume as
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given an assertion language for which every assertion A has associated a set of variables
VA and a semantics L(A) as a subset of Tr(VA). In practice, we will use LTL to specify
such assertions, but the approach can be applied to any linear-time temporal logic.

Given a component S, a contract for S is a pair C = 〈A,G〉 of assertions over VS

representing respectively an assumption and a guarantee for the component. Let M and
E be respectively an implementation and an environment of S. We say that M is an
implementation satisfying C iff M ∩ L(A) ⊆ L(G). We say that E is an environment
satisfying C iff E ⊆ L(A). We denote with M(C) and with E(C), respectively, the
implementations and the environments satisfying the contract C.

Two contracts C and C′ are equivalent (denoted with C ≡ C′) iff they have the
same implementations and environments, i.e., iff M(C) = M(C′) and E(C) = E(C′).
A contract C = 〈A, G〉 is in normal form iff the complement L(A) is contained in L(G).
We denote with nf(C) the assertion ¬A∨G. The contract 〈A, nf(C)〉 is in normal form
and is equivalent to (i.e., has the same implementations and environments of) C [7].

Example 3 (WBS contract). We are interested in defining the contract related to the
requirement of the WBS that, given the application of the braking pedals, must activate
the brakes. This is formalized with the LTL formula G = G((P1 ∨ P2) → F(Brake)).
The WBS component requires an environment that provides the same signal on the
pedal application and such that power is always supplied to the BSCU and hydraulic
pumps. This is formalized in the LTL formula A = G((P1 = P2) ∧GP ∧BP ∧ SP ).

Contract Refinement. Since the decomposition of a componentS into subcomponents
induces a composite implementation of S and composite environment for the subcom-
ponents, it is necessary to prove that the decomposition is correct with respect to the
contracts. In particular, it is necessary to prove that the composite implementation of S
satisfies the guarantee of S’s contracts and that the composite environment of each sub-
component U satisfies the assumptions of U’s contracts. We perform this verification
compositionally only reasoning with the contracts of the subcomponent independently
from the specific implementation of the subcomponents or the specific environment.

In the following, for simplicity, we assume that each component S has only one
contract denoted with CS and is refined by the contracts of all subcomponents (the
approach can be easily extended to the general case [17]). Given a component S and a
decomposition ρ = 〈Sub, γ〉, the set of contracts C =

⋃
S′∈Sub(S) CS′ is a refinement of

CS , written C ≤ρ CS , iff the following conditions hold:

1. given an implementation MS′ for each subcomponent S′ ∈ Sub(S) such that MS′

satisfies the contract CS′ , then CIγ({MS′}S∈Sub(S)) satisfies CS (i.e., the correct
implementations of the sub-contracts form a correct implementation of CS);

2. for every subcomponent S′′ of S, given an environment E of S satisfying CS and
an implementation MS′ for each subcomponent S′ ∈ Sub(S) such that MS′ satis-
fies the contract CS′ , then CEγ(E, {MS′}S′∈Sub(S)) satisfies CS′′ (i.e., the correct
implementation of the other subcomponents and a correct environment of CS form
a correct environment of CS′′).

Example 4 (WBS contract refinement). As shown in Fig. 1, the WBS component is
decomposed into NWBS, AWBS and EWBS. The contracts of these subcomponents
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are Cnwbs = 〈G((P1 = P2) ∧ SP ∧ GP ),G((P1 ∨ P2) → F(BN))〉, Cawbs =

〈G(BP ),G(((P1∨P2)∧¬F(BN)) → F(BA))〉, Cewbs = 〈�,G(((P1∨P2)∧¬F(BN)∧
¬F(BA)) → F(BE))〉. The connection are defined in a straightforward way. It is easy
to see that the these contracts correctly refine the contract of the WBS component. We
remark that the implementation of the NWBS would be sufficient to ensure the guaran-
tee of the parent component i.e., AWBS and EWBS systems are redundant and play a
role only in case of failures.

5 Contract-Based Fault Injection

The goal of our approach is to take as input an architecture enriched with a correct con-
tract refinement and automatically generate a hierarchically organized FT. The idea is to
introduce, for each component and for each contract, two failure ports: one representing
the failure of the component implementation to satisfy the guarantee, the other repre-
senting the failure of the component environment to satisfy the assumption. This step is
represented by the arrow labeled 1.1 in Fig. 3. The connections among such failures are
automatically generated and they are later used to produce the FT, as illustrated by label
1.2 in Fig. 3. The successive refinement of components (i.e., layers 2 and 3 in Fig. 3)
allows us to extend the analysis and generate a more detailed FT. These characteristics
of the CBSA approach mimic the recommended practices outlined in [4].

5.1 Extension of Components and Contracts

Given a component interface 〈IS, OS〉 of the component S, we define the extended in-
terface 〈IXS , OX

S 〉 as the interface in which the inputs has been extended with the new
Boolean port fI

S and the output has been extended with the new Boolean port fO
S .

Namely, 〈IXS , OX
S 〉 is defined as 〈IS ∪ {fI

S}, OS ∪ {fO
S }〉. Intuitively, fO

S represents the
failure of the component implementation to meet its requirements, while fI

S represents
the failure of the component environment to fulfill the component’s assumptions.

The “nominal” contract of a component is extended to weaken both assumption and
guarantee, in order to take into account the possible failure of the environment and of
the implementation. Given the contract 〈AS ,GS〉 of S, we define the extended contract
〈AX

S ,GX
S 〉 as follows AX

S = (¬fI
S) → AS and GX

S = (¬fO
S ) → GS .

Note that in this simple contract extension the failure is timeless in the sense that
either there are no failures and the nominal contract holds, or nothing is assumed or
guaranteed. By convention, the failure ports are evaluated initially and the future values
are don’t cares. More complex contract extensions will be developed in the future.

5.2 Contract-Based Synthesis of Extended System Architecture

We now describe how we generate an extended system architecture given a nominal one
with a correct contract refinement. In the extended architecture, components’ interfaces
and contracts are extended as described in the previous section, while we automatically
synthesize the connections among the extended components. The synthesis ensures that
the refinement of contracts in the extended architecture is correct by construction.
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Fig. 3. Contract-based Safety Assessment Process

For each component S, we define the extended connection mapping γX so that
γX(p) = γ(p) for all original ports, i.e., for p ∈ IS ∪ OS , while for the new failure
ports γX is defined as follows:

– γX(fO
S ) := MCS�(γ((

∧
S′∈Sub(S)(AX

S′ → GX
S′)) ∧ AX

S ),¬γ(GS), {fI
S} ∪

{fO
S′}S′∈Sub(S)). Intuitively, the driver of the failure of S’s guarantee is given by

all combinations of the failures of the subcomponents and the environment that are
compatible with the violation of the guarantee of S.

– for all U ∈ Sub(S), γX(fI
U ) := MCS�(γ(

∧
S′∈Sub(S)\{U}(AX

S′ → GX
S′) ∧

AX
S ),¬γ(AU ), {fI

S} ∪ {fO
S′}S′∈Sub(S)\{U}). Intuitively, the driver of the failure of

U’s assumption is given by all combinations of the failures of the other subcom-
ponents and the environment of S that are compatible with the violation of the
assumption of U .

The resulting extended contract refinement is correct:

Theorem 1. If {CS′}S′∈Sub(S) �γ CS , then {CX
S′}S′∈Sub(S) �γX CX

S .

Example 5 (Synthesis of faults dependencies for WBS component). Given the extended
contract CX

wbs, the safety analysis will produce the dependencies formulae for each
fault port fO

wbs, fI
nwbs, fI

awbs and fI
ewbs. Specifically, the resulting faults dependency for

fO
wbs := (fO

awbs ∧ fO
nwbs ∧ fO

ewbs) ∨ (fI
wbs ∧ fO

ewbs), which means that every assignment of
such formula will cause the failure of fO

wbs. This result confirms that the braking ability
of the WBS is guarantee if at least one of NWBS, AWBS and EWBS is working, but in
case of loss of the power sources (fI

wbs) the EWBS is necessary in order to guarantee the
right behaviour. The following analysis for fI

nwbs and fI
awbs will produce respectively

fI
nwbs := fI

wbs and fI
awbs := fI

wbs. In fact, the subsystems NWBS and AWBS need for
BP, SP, and GP power lines, which functionality is part of the assumption of the WBS.
The last step addresses the verification of the proof obligation for fI

ewbs which is unsat,
expressing the fact that it has no dependencies to the other fault ports. According to this
result, Fig. 1 shows that EWBS is not dependent to any assumptions of the WBS i.e., it
does not need any power sources.
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Fig. 4. Fault tree of an unannunciated loss of all wheel braking: automatically generated

6 Contract-Based Fault Tree Analysis

6.1 Contract-Based Fault Tree Generation

Given the extension of the system contract refinement, the FT is automatically gener-
ated. The top level event is the failure fO

S of a non-leaf component S. It is labeled with
“Fail of CS”, where CS is the contract of S. The intermediate events are similarly la-
beled with the failure of the guarantees of the components that are used in the contract
refinement and are not further refined. The failure of the system environment is labeled
with “Fail of Environment”. The leaves of the tree are basic events, representing the
failure of the system’s assumption and the failures of the guarantees of contracts that
are not further refined. If the architecture is extended further in a step-wise way by de-
composing some leaves components, these basic events can become intermediate and
be refined further by exploiting the extended contract refinement.

The FT is generated starting from the top level event fO
S and linking it to the inter-

mediate events present in γX(fO
S ). Formally, if f is a basic event, then the FT is atomic:

FT (f) := f ; if f is an intermediate event, then FT (fO
S ) := fO

S �→ γX(fO
S ). Thus, the

FT is defined recursively until reaching the basic events. To simplify the tree, we do not
label the failure of the assumption of intermediate components. Therefore, if U is not
the system component and fI

U is present in the tree, we replace it with γX(fI
U ). Note

that the same failure may appear in different branches of the FT – this is standard in
FTA – hence, in the above top-down procedure we only need to expand one occurrence
of the same failure. We also assume that in the relationship among the failures there
is no circular dependency. Usually, such dependencies may be broken by introducing
time delays [26]. We leave modeling of faults with temporal dynamics and dealing with
circular dependencies to future work.

Example 6 (Automatic generation of WBS FT). By applying contract refinement to the
WBS example, we obtain the FT in Fig. 4. As it can be seen from Table 1, there is
nearly a one-to-one mapping with the FT presented in Fig. 2 – the only differences are
that: (i) in the contract-based FT the failure of the environment is considered also for
the sub-components that depends to it, and this provides a more detailed system failure
explanation; (ii) the monitoring function is more detailed in our model.
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Table 1. Failure of contracts description

Failure of Contract Description

system.annunciate braking loss Unannunciated loss of All Wheel Braking.
bsa.annunciate Loss of Annunciation Capability.

wbs.brake Loss of All Wheel Braking.
nwbs.brake Normal Brake System does not operate.
awbs.brake Alternate Brake System does not operate.
ewbs.brake Emergency Brake System does not operate.
hydr.brake Loss of Normal Brake System Hydraulic Components.

bscu.cmd valid Loss of BSCU Ability to Command Braking.
switch.select Switch Failure Contributes to Loss of Braking Commands.
bscu1.cmd Loss of BSCU sub system 1.
bscu1.valid Loss of monitoring for BSCU sub system 1.
bscu2.cmd Loss of BSCU sub system 2.
bscu2.valid Loss of monitoring for BSCU sub system 2.

6.2 CBSA Cut-Sets Semantics

We notice that, in the generated FT, the cut sets local to a single component decom-
position are minimal by construction. Here, we consider the cut sets of the whole FT
that are obtained by replacing intermediate events with their definition in the FT. We
call them flattened cut sets, since they can be represented as a two-level FT. They are
defined in terms of the failures of the basic components and of the system environment.

Let leaves be the basic components of the architecture and let root the (root) system
component. We denote with F the set of basic failure ports, i.e., F = {fO

l }l∈leaves ∪
{fI

root}, and we identify a fault configuration with an assignment to these parameters.
A cut set is therefore a fault configuration of a trace violating the top-level guarantee.

Given a failure port fS (either input or output) of a component S in the architecture,
let us define γX∗

(fS) as the iterative application of γX to fS until reaching a fixpoint,
i.e., a Boolean combination of failures in F only. γX∗

(fS) defines the set of flattened
cut sets obtained with CBSA. We prove that every cut set (in the standard sense) is also
a flattened cut set for CBSA.

Theorem 2. Let LX = L(γ∗(
∧

l∈leaves(GX
l ) ∧ AX

root)).
If FC ∈ CS(LX ,¬(GS),F), then FC� |= γX∗

(fO
S ).

Here, LX represents the extension of the system architecture in a MBSA-like fashion,
where the guarantees of leaf components and the root assumption are extended locally
without explicit constraints among component failures (hence, γ∗ is used instead of
γX∗). The converse is not true in general. In fact, for the contract refinement to be
correct, it is sufficient that the contract of the composite component is weaker than the
composition of those of the subcomponents. However, this may create cut sets that are
present considering the weaker contract, while are they ruled out by the composition.

6.3 Relationship between Contracts and Generated Fault Trees

We remark that the FT generated with the proposed approach is clearly sensitive to the
contracts and can be used to improve the CBD. For example, in the contract specifica-
tion of the WBS proposed in [19], each redundant sub-BSCU guarantees that the input
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pedal application is followed by the braking command or the Validity Monitor set to
invalid within a given time bound. Following this approach, the proposed procedure
generates a FT in which each sub-BSCU is a single point of failure. In fact, a failure of
its contract means that it can keep the Validity Monitor set to true without ever braking.
This contrasts with [4]. The FT shown in Fig. 4 is actually obtained with an improved
specification, where we separated the functional part of the contract from the monitor-
ing of safety, providing a contract that says that every pedal application is followed by
the braking command and another contract demanding that the Validity Monitor is set
to invalid if the pedal is applied but the brake is never commanded.

7 Implementation and Experiments

We implemented our methodology on top of OCRA [15], a tool for architectural design
based on CBD. The OCRA language allows the user to specify contracts (written in var-
ious temporal logics of different expressiveness, including LTL and HRELTL [16]), and
associate them to architectural components. The correctness of refinements is reduced
to a set of proof obligations (as per Section 4.3) – temporal satisfiability checks that
are carried out by nuXmv [22], the underlying verification platform, which provides
reasoning capabilities via BDD-, SAT-, and SMT-based techniques.

We extended OCRA in the following directions. First, we implemented primitives to
automatically extend the architectural description by means of symbolic fault injection,
extending the ports and the contracts. Second, we implemented the procedure for the
synthesis of the interconnections between failure ports among different levels, as per
Section 5. Finally, we implemented the procedure to extract FTs from the extended
models, as per Section 6. The algorithms are based on pure BDD [18], in addition to
a combination of Bounded Model Checking (BMC) [8] and BDD. In particular, the
BMC+BDD approach first computes MCSs up to a specific k-depth using BMC, and
then a BDD based routine is run to generate the remaining results.

We first evaluated the CBSA approach by modeling (several variants of) the WBS
case-study in OCRA2. The analysis demonstrated very useful to provide feedback on
the structure of the contracts. In fact, as described in Section 6.3, we could improve
over the first version of the WBS model described in [19,17]. We then compared our
approach with the “flat” MBSA approach implemented in xSAP- a re-implementation
of FSAP[12]. xSAP supports FTA for behavioral models (finite state machines written
in the SMV language). We refer to the xSAP approach as monolithic, since it generates
FTs that are “flat”(i.e., presented as DNF of the MCSs). In OCRA, FTs can be generated
from behavioral models, by associating each leaf component with an SMV implemen-
tation, where the activation of failure modes causes the violation of contracts. For the
evaluation, we associated concrete implementations to the leaf WBS components. We
first evaluated the tightness of the contract extension. As described in Section 6, CBSA
can provide a “pessimistic” interpretation of the system failure, due to the hierarchical
partitioning imposed by contract decomposition. Indeed, our results confirm that this
is the case for the WBS: if the concrete implementations happen to operate correctly

2 The models and the binaries necessary to reproduce the experiments described in this paper
can be download at https://es.fbk.eu/people/mattarei/dist/ATVA14/

https://es.fbk.eu/people/mattarei/dist/ATVA14/
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even if the power is not provided, then the monolithic approach provides a tighter set of
MCSs. However, if the concrete implementations are such that a loss of power implies
a loss of functional behavior, then both techniques result in the same sets of MCSs.

Table 2. Scalability comparison

M 9 10 11 12 13 . . . 29
MCS 6 11 22 42 50 . . . 3316

CBSA.BD 701 701 701 702 702 702 703
Mono.BD 619 1106 3180 T.O. T.O. T.O. T.O.
CBSA.BB 1.8 1.8 1.8 1.8 1.8 1.8 1.8
Mono.BB 3.1 3.4 4.1 4.6 4.9 ... 582

We also compared the scal-
ability of the monolithic and
the CBSA approach for FTA.
We considered a parameter-
ized version of the WBS,
by varying the total number
of faults (M), and the upper
bound for the cycles needed to
wait until performing an emer-
gency reaction (N). The experiments were run on an Intel Xeon E3-1270 at 3.40GHz.
We first varied the delay N (with M = 9). With N = 10, CBSA takes 11m40s (BDD),
and 2s (BMC+BDD, with k=20), whereas the monolithic approach takes 14m and 7s,
respectively. For N = 15, CBSA times do not vary, while the monolithic approach
requires more than 50m (BDD), and 15s (BMC+BDD). The stability in performance
shown by the CBSA approach is motivated by the fact that the time needed to compute
the FT is mainly spent during the contracts evaluation, whereas analyzing the leaves
takes always less than 1s. We then fixed N = 5 and varied M from 9 to 29. The re-
sults are reported in Table 2, where “BD” and “BB” stand for BDD and BMC+BDD
(with k=20). CBSA is subject only to a marginal degradation in performance, since the
variation is local to the computation of the FTs for the leaves. In contrast, the mono-
lithic method passes from 10m19s to timing out after one hour for M = 12 (BDD), and
from 3s to 582s (BMC+BDD). This degradation is directly correlated to the increased
number of MCSs, that are enumerated by the monolithic approach. As a final remark,
notice that the CBSA approach is fully incremental: the only variation required when
exploring different implementations is in constructing the FTs resulting from the anal-
ysis of each finite state machine with respect to its contracts. This contrasts with the
considerable efforts required in the monolithic approach, that needs to be repeated for
each different implementation.

8 Conclusions

In this paper we proposed a new, formal methodology for safety assessment based on
CBD and automated fault injection. This approach is able to generate automatically hi-
erarchical FTs mimicking system decomposition, and overcomes two key shortcomings
of traditional MBSA [13], namely the lack of structure of the generated FTs, and the
poor scalability. Moreover, it provides full support to the informal, manual state of the
practice, and it can provide important feedback in the early stages of system design.

As future work, we will investigate methods to pinpoint situations where the hier-
archical decomposition leads to over-constraining, and to generate suitable diagnostic
information. Second, we will generalize fault injection with the introduction of more
fine-grained failure dynamics based on temporal patterns and the use of specific fault
models (similar to the contract extension with “exceptional” behavior [14]). We will
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investigate aspects related to fault propagation [1] and extend the framework to con-
sider richer contract specification languages to enable quantitative evaluation of FTs.
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Abstract. We present a general framework for applying machine-learning algo-
rithms to the verification of Markov decision processes (MDPs). The primary
goal of these techniques is to improve performance by avoiding an exhaustive ex-
ploration of the state space. Our framework focuses on probabilistic reachability,
which is a core property for verification, and is illustrated through two distinct
instantiations. The first assumes that full knowledge of the MDP is available,
and performs a heuristic-driven partial exploration of the model, yielding pre-
cise lower and upper bounds on the required probability. The second tackles the
case where we may only sample the MDP, and yields probabilistic guarantees,
again in terms of both the lower and upper bounds, which provides efficient stop-
ping criteria for the approximation. The latter is the first extension of statistical
model checking for unbounded properties in MDPs. In contrast with other related
techniques, our approach is not restricted to time-bounded (finite-horizon) or dis-
counted properties, nor does it assume any particular properties of the MDP. We
also show how our methods extend to LTL objectives. We present experimental
results showing the performance of our framework on several examples.

1 Introduction

Markov decision processes (MDPs) are a widely used model for the formal verification
of systems that exhibit stochastic behaviour. This may arise due to the possibility of
failures (e.g. of physical system components), unpredictable events (e.g. messages sent
across a lossy medium), or uncertainty about the environment (e.g. unreliable sensors in
a robot). It may also stem from the explicit use of randomisation, such as probabilistic
routing in gossip protocols or random back-off in wireless communication protocols.

Verification of MDPs against temporal logics such as PCTL and LTL typically re-
duces to the computation of optimal (minimum or maximum) reachability probabilities,
either on the MDP itself or its product with some deterministic ω-automaton. Optimal
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reachability probabilities (and a corresponding optimal strategy for the MDP) can be
computed in polynomial time through a reduction to linear programming, although in
practice verification tools often use dynamic programming techniques, such as value it-
eration which approximates the values up to some pre-specified convergence criterion.

The efficiency or feasibility of verification is often limited by excessive time or space
requirements, caused by the need to store a full model in memory. Common approaches
to tackling this include: symbolic model checking, which uses efficient data structures
to construct and manipulate a compact representation of the model; abstraction refine-
ment, which constructs a sequence of increasingly precise approximations, bypassing
construction of the full model using decision procedures such as SAT or SMT; and
statistical model checking [37,19], which uses Monte Carlo simulation to generate ap-
proximate results of verification that hold with high probability.

In this paper, we explore the opportunities offered by learning-based methods, as
used in fields such as planning or reinforcement learning [36]. In particular, we focus on
algorithms that explore an MDP by generating trajectories through it and, whilst doing
so, produce increasingly precise approximations for some property of interest (in this
case, reachability probabilities). The approximate values, along with other information,
are used as heuristics to guide the model exploration so as to minimise the solution time
and the portion of the model that needs to be considered.

We present a general framework for applying such algorithms to the verification
of MDPs. Then, we consider two distinct instantiations that operate under different
assumptions concerning the availability of knowledge about the MDP, and produce
different classes of results. We distinguish between complete information, where full
knowledge of the MDP is available (but not necessarily generated and stored), and lim-
ited information, where (in simple terms) we can only sample trajectories of the MDP.

The first algorithm assumes complete information and is based on real-time dynamic
programming (RTDP) [3]. In its basic form, this only generates approximations in the
form of lower bounds (on maximum reachability probabilities). While this may suffice
in some scenarios (e.g. planning), in the context of verification we typically require
more precise guarantees. So we consider bounded RTDP (BRTDP) [30], which sup-
plements this with an additional upper bound. The second algorithm assumes limited
information and is based on delayed Q-learning (DQL) [35]. Again, we produce both
lower and upper bounds but, in contrast to BRTDP, where these are guaranteed to be
correct, DQL offers probably approximately correct (PAC) results, i.e., there is a non-
zero probability that the bounds are incorrect.

Typically, MDP solution methods based on learning or heuristics make assumptions
about the structure of the model. For example, the presence of end components [15]
(subsets of states where it is possible to remain indefinitely with probability 1) can result
in convergence to incorrect values. Our techniques are applicable to arbitrary MDPs.
We first handle the case of MDPs that contain no end components (except for trivial
designated goal or sink states). Then, we adapt this to the general case by means of on-
the-fly detection of end components, which is one of the main technical contributions
of the paper. We also show how our techniques extend to LTL objectives and thus also
to minimum reachability probabilities.
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Our DQL-based method, which yields PAC results, can be seen as an instance of
statistical model checking [37,19], a technique that has received considerable attention.
Until recently, most work in this area focused on purely probabilistic models, without
nondeterminism, but several approaches have now been presented for statistical model
checking of nondeterministic models [13,14,27,4,28,18,29]. However, these methods
all consider either time-bounded properties or use discounting to ensure convergence
(see below for a summary). The techniques in this paper are the first for statistical
model checking of unbounded properties on MDPs.

We have implemented our framework within the PRISM tool [25]. This paper con-
cludes with experimental results for an implementation of our BRTDP-based approach
that demonstrate considerable speed-ups over the fastest methods in PRISM.

Detailed proofs omitted due to lack of space are available in [7].

1.1 Related Work

In fields such as planning and artificial intelligence, many learning-based and heuristic-
driven solution methods for MDPs have been developed. In the complete information
setting, examples include RTDP [3] and BRTDP [30], as discussed above, which gen-
erate lower and lower/upper bounds on values, respectively. Most algorithms make
certain assumptions in order to ensure convergence, for example through the use of
a discount factor or by restricting to so-called Stochastic Shortest Path (SSP) problems,
whereas we target arbitrary MDPs without discounting. More recently, an approach
called FRET [24] was proposed for a generalisation of SSP, but this gives only a one-
sided (lower) bound. We are not aware of any attempts to apply or adapt such methods
in the context of probabilistic verification. A related paper is [1], which applies heuristic
search methods to MDPs, but for generating probabilistic counterexamples.

As mentioned above, in the limited information setting, our algorithm based on de-
layed Q-learning (DQL) yields PAC results, similar to those obtained from statisti-
cal model checking [37,19,34]. This is an active area of research with a variety of
tools [21,8,6,5]. In contrast with our work, most techniques focus on time-bounded
properties, e.g., using bounded LTL, rather than unbounded properties. Several ap-
proaches have been proposed to transform checking of unbounded properties into test-
ing of bounded properties, for example, [38,17,33,32]. However, these focus on purely
probabilistic models, without nondeterminism, and do not apply to MDPs. In [4], un-
bounded properties are analysed for MDPs with spurious nondeterminism, where the
way it is resolved does not affect the desired property.

More generally, the development of statistical model checking techniques for prob-
abilistic models with nondeterminism, such as MDPs, is an important topic, treated in
several recent papers. One approach is to give the nondeterminism a probabilistic se-
mantics, e.g., using a uniform distribution instead, as for timed automata in [13,14,27].
Others [28,18], like this paper, aim to quantify over all strategies and produce an ε-
optimal strategy. The work in [28] and [18] deals with the problem in the setting of
discounted (and for the purposes of approximation thus bounded) or bounded proper-
ties, respectively. In the latter work, candidates for optimal schedulers are generated
and gradually improved, but “at any given point we cannot quantify how close to op-
timal the candidate scheduler is” and “the algorithm does not estimate the maximum



Verification of Markov Decision Processes Using Learning Algorithms 101

probability of the property” (cited from [29]). Further, [29] considers compact repre-
sentation of schedulers, but again focuses only on (time) bounded properties.

Since statistical model checking is simulation-based, one of the most important dif-
ficulties is the analysis of rare events. This issue is, of course, also relevant for our
approach; see the section on experimental results. Rare events have been addressed us-
ing methods such as importance sampling [17,20] and importance splitting [22].

End components in MDPs can be collapsed either for algorithmic correctness [15]
or efficiency [11] (where only lower bounds on maximum reachability probabilities are
considered). Asymptotically efficient ways to detect them are given in [10,9].

2 Basics about MDPs and Learning Algorithms

We begin with basic background material on MDPs and some fundamental definitions
for our learning framework. We use N, Q, and R to denote the sets of all non-negative
integers, rational numbers and real numbers respectively. Dist(X) is the set of all
rational probability distributions over a finite or countable set X , i.e., the functions
f : X → [0, 1] ∩Q such that

∑
x∈X f(x) = 1, and supp(f) denotes the support of f .

2.1 Markov Decision Processes

We work with Markov decision processes (MDPs), a widely used model to capture both
nondeterminism (e.g., for control or concurrency) and probability.

Definition 1. An MDP is a tuple M = 〈S, s, A,E,Δ〉, where S is a finite set of states,
s ∈ S is an initial state, A is a finite set of actions, E : S → 2A assigns non-empty sets
of enabled actions to all states, and Δ : S×A → Dist(S) is a (partial) probabilistic
transition function defined for all s and a where a ∈ E(s).

Remark 1. For simplicity of presentation we assume w.l.o.g. that, for every action a ∈
A, there is at most one state s such that a ∈ E(s), i.e., E(s) ∩ E(s′) = ∅ for s �= s′. If
there are states s, s′ such that a ∈ E(s) ∩ E(s′), we can always rename the actions as
(s, a) ∈ E(s), and (s′, a) ∈ E(s′), so that the MDP satisfies our assumption.

An infinite path of an MDP M is an infinite sequence ω = s0a0s1a1 . . . such that
ai ∈ E(si) and Δ(si, ai)(si+1) > 0 for every i ∈ N. A finite path is a finite prefix of
an infinite path ending in a state. We use last(ω) to denote the last state of a finite path
ω. We denote by IPath (resp. FPath) the set of all infinite (resp. finite) paths, and by
IPaths (resp. FPaths) the set of infinite (resp. finite) paths starting in a state s.

A state s is terminal if all actions a ∈ E(s) satisfy Δ(s, a)(s) = 1. An end compo-
nent (EC) of M is a pair (S′, A′) where S′ ⊆ S and A′ ⊆

⋃
s∈S′ E(s) such that: (1) if

Δ(s, a)(s′) > 0 for some s ∈ S′ and a ∈ A′, then s′ ∈ S′; and (2) for all s, s′ ∈ S′

there is a path ω = s0a0 . . . sn such that s0 = s, sn = s′ and for all 0 ≤ i < n we
have ai ∈ A′. A maximal end component (MEC) is an EC that is maximal with respect
to the point-wise subset ordering.

Strategies. A strategy of MDP M is a function σ : FPath → Dist(A) satisfying
supp(σ(ω)) ⊆ E(last(ω)) for every ω ∈ FPath . Intuitively, the strategy resolves the
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choices of actions in each finite path by choosing (possibly at random) an action enabled
in the last state of the path. We write ΣM for the set of all strategies in M. In standard
fashion [23], a strategy σ induces, for any initial state s, a probability measure PrσM,s

over IPaths. A strategy σ is memoryless if σ(ω) depends only on last(ω).

Objectives and values. Given a set F ⊆ S of target states, bounded reachability for
step k, denoted by ♦≤kF , refers to the set of all infinite paths that reach a state in
F within k steps, and unbounded reachability, denoted by ♦F , refers to the set of all
infinite paths that reach a state in F . Note that ♦F =

⋃
k≥0 ♦≤kF . We consider the

reachability probability PrσM,s(♦F ), and strategies that maximise this probability. We
denote by V (s) the value in s, defined by supσ∈ΣM

PrσM,s(♦F ). Given ε ≥ 0, we
say that a strategy σ is ε-optimal in s if PrσM,s(♦F ) + ε ≥ V (s), and we call a 0-
optimal strategy optimal. It is known [31] that, for every MDP and set F , there is a
memoryless optimal strategy for ♦F . We are interested in strategies that approximate
the value function, i.e., ε-optimal strategies for some ε > 0.

2.2 Learning Algorithms for MDPs

In this paper, we study a class of learning-based algorithms that stochastically ap-
proximate the value function of an MDP. Let us fix, for this section, an MDP M =
〈S, s, A,E,Δ〉 and target states F ⊆ S. We denote by V : S × A → [0, 1] the value
function for state-action pairs of M, defined for all (s, a) where s ∈ S and a ∈ E(s):

V (s, a) :=
∑

s′∈S
Δ(s, a)(s′) · V (s′).

Intuitively, V (s, a) is the value in s assuming that the first action performed is a. A
learning algorithm A simulates executions of M, and iteratively updates upper and
lower approximations U : S ×A → [0, 1] and L : S ×A → [0, 1], respectively, of the
value function V : S ×A → [0, 1].

The functions U and L are initialised to appropriate values so that L(s, a) ≤
V (s, a) ≤ U(s, a) for all s ∈ S and a ∈ A. During the computation of A, simulated
executions start in the initial state s and move from state to state according to choices
made by the algorithm. The values of U(s, a) and L(s, a) are updated for the states
s visited by the simulated execution. Since maxa∈E(s) U(s, a) and maxa∈E(s) L(s, a)
represent upper and lower bound on V (s), a learning algorithm A terminates when
maxa∈E(s) U(s, a) − maxa∈E(s) L(s, a) < ε where the precision ε > 0 is given to
the algorithm as an argument. Note that, because U and L are possibly updated based
on the simulations, the computation of the learning algorithm may be randomised and
even give incorrect results with some probability.

Definition 2. Denote by A(ε) the instance of learning algorithm A with precision ε.
We say that A converges surely (resp. almost surely) if, for every ε > 0, the computation
of A(ε) surely (resp. almost surely) terminates, and L(s, a) ≤ V (s, a) ≤ U(s, a) holds
upon termination.

In some cases, almost-sure convergence cannot be guaranteed, so we demand that the
computation terminates correctly with sufficiently high probability. In such cases, we
assume the algorithm is also given a confidence δ > 0 as an argument.
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Definition 3. Denote by A(ε, δ) the instance of learning algorithm A with precision ε
and confidence δ. We say that A is probably approximately correct (PAC) if, for every
ε > 0 and every δ > 0, with probability at least 1 − δ, the computation of A(ε, δ)
terminates with L(s, a) ≤ V (s, a) ≤ U(s, a).

The function U defines a memoryless strategy σU which in every state s chooses all
actions a maximising the value U(s, a) over E(s) uniformly at random. The strategy
σU is used in some of the algorithms and also contributes to the output.

Remark 2. If the value function is defined as the infimum over strategies (as in [30]),
then the strategy chooses actions to minimise the lower value. Since we consider the
dual case of supremum over strategies, the choice of σU is to maximise the upper value.

We also need to specify what knowledge about the MDP M is available to the learn-
ing algorithm. We distinguish the following two distinct cases.

Definition 4. A learning algorithm has limited information about M if it knows only
the initial state s, a number K ≥ |S|, a number Em ≥ maxs∈S |E(s)|, a number 0 <
q ≤ pmin, where pmin = min{Δ(s, a)(s′) | s ∈ S, a ∈ E(s), s′ ∈ supp(Δ(s, a))},
and the function E (more precisely, given a state s, the learning procedure can ask an
oracle for E(s)). We assume that the algorithm may simulate an execution of M starting
with s and choosing enabled actions in individual steps.

Definition 5. A learning algorithm has complete information about M if it knows the
complete MDP M.

Note that the MDPs we consider are “fully observable”, so even in the limited informa-
tion case strategies can make decisions based on the precise state of the system.

3 MDPs without End Components

We first present algorithms for MDPs without ECs, which considerably simplifies the
adaptation of BRTDP and DQL to unbounded reachability objectives. Later, in Sec-
tion 4, we extend our methods to deal with arbitrary MDPs (with ECs). Let us fix an
MDP M = 〈S, s, A,E,Δ〉 and a target set F . Formally, we assume the following.

Assumption-EC. MDP M has no ECs, except two trivial ones containing distinguished
terminal states 1 and 0, respectively, with F = {1}, V (1) = 1 and V (0) = 0.

3.1 Our Framework

We start by formalising a general framework for learning algorithms, as outlined in the
previous section. We then instantiate this and obtain two learning algorithms: BRTDP
and DQL. Our framework is presented as Algorithm 1, and works as follows. Recall that
functions U and L store the current upper and lower bounds on the value function V .
Each iteration of the outer loop is divided into two phases: EXPLORE and UPDATE. In
the EXPLORE phase (lines 5 - 10), the algorithm samples a finite path ω in M from s to a
state in {1, 0} by always randomly choosing one of the enabled actions that maximises
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Algorithm 1. Learning algorithm (for MDPs with no ECs)
1: Inputs: An EC-free MDP M
2: U(·, ·) ← 1, L(·, ·) ← 0
3: L(1, ·) ← 1, U(0, ·) ← 0 � INITIALISE

4: repeat
5: ω ← s /* EXPLORE phase */
6: repeat
7: a ← sampled uniformly from argmaxa∈E(last(ω)) U(last(ω), a)
8: s ← sampled according to Δ(last(ω), a) � GETSUCC(ω,a)
9: ω ← ω a s

10: until s ∈ {1, 0} � TERMINATEPATH(ω)
11: repeat /* UPDATE phase */
12: s′ ← pop(ω)
13: a ← pop(ω)
14: s ← last(ω)
15: UPDATE((s,a), s′)
16: until ω = s
17: until maxa∈E(s) U(s, a)−maxa∈E(s) L(s, a) < ε � TERMINATE

the U value, and sampling the successor state using the probabilistic transition function.
In the UPDATE phase (lines 11 - 16), the algorithm updates U and L on the state-action
pairs along the path in a backward manner. Here, the function pop pops and returns the
last letter of the given sequence.

3.2 Instantiations: BRTDP and DQL

Our two algorithm instantiations, BRTDP and DQL, differ in the definition of UPDATE.

Unbounded Reachability with BRTDP. We obtain BRTDP by instantiating UPDATE

with Algorithm 2, which requires complete information about the MDP. Intuitively,
UPDATE computes new values of U(s, a) and L(s, a) by taking the weighted average
of the correspondingU and L values, respectively, over all successors of s via action a.
Formally, denote U(s) = maxa∈E(s) U(s, a) and L(s) = maxa∈E(s) L(s, a).

Algorithm 2. BRTDP instantiation of Algorithm 1
1: procedure UPDATE((s,a), ·)
2: U(s, a) :=

∑
s′∈S Δ(s, a)(s′)U(s′)

3: L(s, a) :=
∑

s′∈S Δ(s, a)(s′)L(s′)

The following theorem says that BRTDP satisfies the conditions of Definition 2 and
never returns incorrect results.

Theorem 1. The algorithm BRTDP converges almost surely under Assumption-EC.

Remark 3. Note that, in the EXPLORE phase, an action maximising the value of U is
chosen and the successor is sampled according to the probabilistic transition function
of M. However, we can consider various modifications. Actions and successors may
be chosen in different ways (e.g., for GETSUCC), for instance, uniformly at random,
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in a round-robin fashion, or assigning various probabilities (bounded from below by
some fixed p > 0) to all possibilities in any biased way. In order to guarantee almost-
sure convergence, some conditions have to be satisfied. Intuitively we require, that the
state-action pairs used by ε-optimal strategies have to be chosen enough times. If this
condition is satisfied then the almost-sure convergence is preserved and the practical
running times may significantly improve. For details, see Section 5.

Remark 4. The previous BRTDP algorithm is only applicable if the transition proba-
bilities are known. However, if complete information is not known, but Δ(s, a) can
be repeatedly sampled for any s and a, then a variant of BRTDP can be shown to be
probably approximately correct.

Unbounded Reachability with DQL. Often, complete information about the MDP is
unavailable, repeated sampling is not possible, and we have to deal with only limited
information about M (see Definition 4). For this scenario, we use DQL, which can be
obtained by instantiating UPDATE with Algorithm 3.

Algorithm 3. DQL (delay m, estimator precision ε̄) instantiation of Algorithm 1
1: procedure UPDATE((s,a), s′)
2: if c(s, a) = m and LEARN(s, a) then
3: if accumU

m(s, a)/m < U(s, a)− 2ε̄ then
4: U(s, a) ← accumU

m(s, a)/m+ ε̄
5: accumU

m(s, a) = 0

6: if accumL
m(s, a)/m > L(s, a) + 2ε̄ then

7: L(s, a) ← accumL
m(s, a)/m− ε̄

8: accumL
m(s, a) = 0

9: c(s, a) = 0
10: else
11: accumU

m(s, a) ← accumU
m(s, a) + U(s′)

12: accumL
m(s, a) ← accumL

m(s, a) + L(s′)
13: c(s, a) ← c(s, a) + 1

Macro LEARN(s, a) is true in the kth call of UPDATE((s, a), ·) if, since the (k − 2m)th call
of UPDATE((s,a), ·), line 4 was not executed in any call of UPDATE(·, ·).

The main idea behind DQL is as follows. As the probabilistic transition func-
tion is not known, we cannot update U(s, a) and L(s, a) with the actual values∑

s′∈S Δ(s, a)(s′)U(s′) and
∑

s′∈S Δ(s, a)(s′)L(s′), respectively. However, we can
instead use simulations executed in the EXPLORE phase of Algorithm 1 to estimate
these values. Namely, we use accumU

m(s, a)/m to estimate
∑

s′∈S Δ(s, a)(s′)U(s′)
where accumU

m(s, a) is the sum of the U values of the last m immediate successors
of (s, a) seen during the EXPLORE phase. Note that the delay m must be chosen large
enough for the estimates to be sufficiently close, i.e., ε̄-close, to the real values.

So, in addition to U(s, a) and L(s, a), the algorithm uses new variables
accumU

m(s, a) and accumL
m(s, a) to accumulate U(s, a) and L(s, a) values, respec-

tively, and a counter c(s, a) recording the number of invocations of a in s since the
last update (all these variables are initialised to 0 at the beginning of computation).
Assume that a has been invoked in s during the EXPLORE phase of Algorithm 1,
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Fig. 1. MDP M with an EC (left), MDP M{m1,m2} constructed from M in on-the-fly BRTDP
(centre), and MDP M′ obtained from M by collapsing C = ({m1, m2}, {a, b}) (right)

which means that UPDATE((s, a), s′) is eventually called in the UPDATE phase of Al-
gorithm 1 with the corresponding successor s′ of (s, a). If c(s, a) = m at that time,
a has been invoked in s precisely m times since the last update concerning (s, a) and
the procedure UPDATE((s, a), s′) updates U(s, a) with accumU

m(s, a)/m plus an ap-
propriate constant ε̄ (unless LEARN is false). Here, the purpose of adding ε̄ is to make
U(s, a) stay above the real value V (s, a) with high probability. If c(s, a) < m, then
UPDATE((s, a), s′) simply accumulates U(s′) into accumU

m(s, a) and increases the
counter c(s, a). The L(s, a) values are estimated by accumL

m(s, a)/m in a similar way,
just subtracting ε̄ from accumL

m(s, a). The procedure requires m and ε̄ as inputs, and

they are chosen depending on ε and δ; more precisely, we choose ε̄ = ε·(pmin/Em )|S|

12|S|

and m =
ln(6|S||A|(1+ |S||A|

ε̄ )/δ)

2ε̄2 and establish that DQL is probably approximately cor-
rect. The parametersm and ε̄ can be conservatively approximated using only the limited
information about the MDP (i.e. using K , Em and q). Even though the algorithm has
limited information about M, we still establish the following theorem.

Theorem 2. DQL is probably approximately correct under Assumption-EC.

Bounded Reachability. Algorithm 1 can be trivially adapted to handle bounded reach-
ability properties by preprocessing the input MDP in standard fashion. Namely, every
state is equipped with a bounded counter with values ranging from 0 to k where k is the
step bound, the current value denoting the number of steps taken so far. All target states
remain targets for all counter values, and every non-target state with counter value k
becomes rejecting. Then, to determine the k-step reachability in the original MDP, we
compute the (unbounded) reachability in the new MDP. Although this means that the
number of states is multiplied by k + 1, in practice the size of the explored part of the
model can be small.

4 Unrestricted MDPs

We first illustrate with an example that the algorithms BRTDP and DQL as presented
in Section 3 may not converge when there are ECs in the MDP.

Example 1. Consider the MDP M in Fig. 1 (left) with EC ({m1,m2}, {a, b}). The
values in states m1,m2 are V (m1) = V (m2) = 0.5 but the upper bounds are
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U(m1) = U(m2) = 1 for every iteration. This is because U(m1, a) = U(m2, b) = 1
and both algorithms greedily choose the action with the highest upper bound. Thus, in
every iteration t of the algorithm, the error for the initial state m1 is U(m1)−V (m1) =
1
2 and the algorithm does not converge. In general, any state in an EC has upper bound
1 since, by definition, there are actions that guarantee the next state is in the EC, i.e., is
a state with upper bound 1. This argument holds even for standard value iteration with
values initialised to 1.

One way of dealing with general MDPs is to preprocess them to identify all
MECs [10,9] and “collapse” them into single states (see e.g. [15,11]). These algorithms
require that the graph model is known and explore the whole state space, but this may
not be possible either due to limited information (see Definition 4) or because the model
is too large. Hence, we propose a modification to the algorithms from the previous sec-
tions that allows us to deal with ECs “on-the-fly”. We first describe the collapsing of a
set of states and then present a crucial lemma that allows us to identify ECs to collapse.

Collapsing States. In the following, we say that an MDP M′ = 〈S′, s′, A′, E′, Δ′〉 is
obtained from M = 〈S, s, A,E,Δ〉 by collapsing a tuple (R,B), where R ⊆ S and
B ⊆ A with B ⊆

⋃
s∈R E(s) if:

– S′ = (S \R) ∪ {s(R,B)},
– s′ is either s(R,B) or s, depending on whether s ∈ R or not,
– A′ = A \B,
– E′(s) = E(s), for s ∈ S \R; E′(s(R,B)) =

⋃
s∈R E(s) \B,

– Δ′ is defined for all s ∈ S′ and a ∈ E′(s) by:
• Δ′(s, a)(s′) = Δ(s, a)(s′) for s, s′ �= s(R,B),
• Δ′(s, a)(s(R,B)) =

∑
s′∈R Δ(s, a)(s′) for s �= s(R,B),

• Δ′(s(R,B), a)(s
′) = Δ(s, a)(s′) for s′ �= s(R,B) and s the unique state with

a ∈ E(s) (see Remark 1),
• Δ′(s(R,B), a)(s(R,B)) =

∑
s′∈R Δ(s, a)(s′) where s is the unique state with

a∈E(s).

We denote the above transformation, which creates M′ from M, as the COLLAPSE func-
tion, i.e., COLLAPSE(R,B). As a special case, given a state s and a terminal state s′ ∈
{0, 1}, we use MAKETERMINAL(s, s′) as shorthand for COLLAPSE({s, s′}, E(s)),
where the new state is renamed to s′. Intuitively, after MAKETERMINAL(s, s′), every
transition previously leading to state s will now lead to the terminal state s′.

For practical purposes, it is important to note that the collapsing does not need to
be implemented explicitly, but can be done by keeping a separate data structure which
stores information about the collapsed states.

Identifying ECs from Simulations. Our modifications will identify ECs “on-the-fly”
through simulations that get stuck in them. The next lemma establishes the identification
principle. To this end, for a path ω, let us denote by Appear(ω, i) the tuple (Si, Ai) of
M such that s ∈ Si and a ∈ Ai(s) if and only if (s, a) occurs in ω more than i times.

Lemma 1. Let c = exp (− (pmin/Em)
κ
/ κ), where κ = KEm + 1, and let i ≥

κ. Assume that the EXPLORE phase in Algorithm 1 terminates with probability less
than 1. Then, provided the EXPLORE phase does not terminate within 3i3 iterations, the
conditional probability that Appear (ω, i) is an EC is at least 1− 2cii3 · (pmin/Em)

−κ.
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The above lemma allows us to modify the EXPLORE phase of Algorithm 1 in such
a way that simulations will be used to identify ECs. The ECs discovered will subse-
quently be collapsed. We first present the overall skeleton (Algorithm 4) for treating
ECs “on-the-fly”, which consists of two parts: (i) identification of ECs; and (ii) pro-
cessing them. The instantiations for BRTDP and DQL will differ in the identification
phase. Hence, before proceeding to the individual identification algorithms, we first
establish the correctness of the processing phase.

Algorithm 4. Extension for general MDPs
1: function ON-THE-FLY-EC
2: M ← IDENTIFYECS � IDENTIFICATION OF ECS

3: for all (R,B) ∈ M do � PROCESS ECS

4: COLLAPSE(R,B)
5: for all s ∈ R and a ∈ E(s) \ B do
6: U(s(R,B), a) ← U(s, a)
7: L(s(R,B), a) ← L(s, a)

8: if R ∩ F �= ∅ then
9: MAKETERMINAL(s(R,B), 1)

10: else if no actions enabled in s(R,B) then
11: MAKETERMINAL(s(R,B), 0)

Lemma 2. Assume (R,B) is an EC in MDP M, VM the value before the PROCESS ECS

procedure in Algorithm 4, and VM′ the value after the procedure, then:
– for i ∈ {0, 1} if MAKETERMINAL(s(R,B), i) is called, then ∀s ∈ R : VM(s) = i,
– ∀s ∈ S \R : VM(s) = VM′(s),
– ∀s ∈ R : VM(s) = VM′(s(R,B)).

Interpretation of Collapsing. Intuitively, once an EC (R,B) is collapsed, the algo-
rithm in the EXPLORE phase can choose a state s ∈ R and action a ∈ E(s)\B to leave
the EC. This is simulated in the EXPLORE phase by considering all actions of the EC
uniformly at random until s is reached, and then action a is chosen. Since (R,B) is an
EC, playing all actions of B uniformly at random ensures s is almost surely reached.
Note that the steps made inside a collapsed EC do not count towards the length of the
explored path.

Now, we present the on-the-fly versions of BRTDP and DQL. For each case, we
describe: (i) modification of Algorithm 1; (ii) identification of ECs; and (iii) correctness.

4.1 Complete Information (BRTDP)

Modification of Algorithm 1. To obtain BRTDP working with unrestricted MDPs, we
modify Algorithm 1 as follows: for iteration i of the EXPLORE phase, we insert a check
after line 9 such that, if the length of the path ω explored (i.e., the number of states) is ki
(see below), then we invoke the ON-THE-FLY-EC function for BRTDP. The ON-THE-
FLY-EC function possibly modifies the MDP by processing (collapsing) some ECs as
described in Algorithm 4. After the ON-THE-FLY-EC function terminates, we interrupt
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the current EXPLORE phase, and start the EXPLORE phase for the i+1-th iteration (i.e.,
generating a new path again, starting from s in the modified MDP). To complete the
description we describe the choice of ki and identification of ECs.

Choice of ki. Because computing ECs can be expensive, we do not call ON-THE-FLY-
EC every time a new state is explored, but only after every ki steps of the repeat-until
loop at lines 6–10 in iteration i. The specific value of ki can be decided experimentally
and change as the computation progresses. A theoretical bound for ki to ensure that
there is an EC with high probability can be obtained from Lemma 1.

Identification of ECs. Given the current explored path ω, let (T,G) be Appear(ω, 0),
that is, the set of states and actions explored in ω. To obtain the ECs from the set
T of explored states, we use Algorithm 5. This computes an auxiliary MDP MT =
〈T ′, s, A′, E′, Δ′〉 defined as follows:

– T ′ = T ∪ {t | ∃s ∈ T, a ∈ E(s) such that Δ(s, a)(t) > 0},
– A′ =

⋃
s∈T E(s) ∪ {⊥},

– E′(s) = E(s) if s ∈ T and E′(s) = {⊥} otherwise,
– Δ′(s, a) = Δ(s, a) if s ∈ T , and Δ′(s,⊥)(s) = 1 otherwise.

It then computes all MECs of MT that are contained in T and identifies them as ECs.
The following lemma states that each of these is indeed an EC in the original MDP.

Algorithm 5. Identification of ECs for BRTDP
1: function IDENTIFYECS(M, T )
2: compute MT

3: M′ ← MECs of MT

4: M ← {(R,B) ∈ M′ | R ⊆ T}

Lemma 3. Let M,MT be the MDPs from the construction above and T be the set of
explored states. Then every MEC (R,B) in MT such that R ⊆ T is an EC in M.

Finally, we establish that the modified algorithm, which we refer to as on-the-fly
BRTDP, almost surely converges; the proof is an extension of Theorem 1.

Theorem 3. On-the-fly BRTDP converges almost surely for all MDPs.

Example 2. Let us describe the execution of the on-the-fly BRTDP on the MDP M
from Fig. 1 (left). Choose ki ≥ 6 for all i. The loop at lines 6 to 10 of Algorithm 1
generates a path ω that contains some (possibly zero) number of loops m1 am2b fol-
lowed by m1 am2 cm3 d t where t ∈ {0, 1}. In the subsequent UPDATE phase, we
set U(m3, d) = L(m3, d) = 0.5 and then U(m2, c) = L(m2, c) = 0.5; none of
the other values change. In the second iteration of the loop at lines 6 to 10, the path
ω′ = m1 am2 bm1 am2 b . . . is being generated, and the newly inserted check for
ON-THE-FLY-EC will be triggered once ω achieves the length ki.

The algorithm now aims to identify ECs in the MDP based on the part of the MDP
explored so far. To do so, the MDP MT for the set T = {m1,m2} is constructed
and we depict it in Fig. 1 (centre). We then run MEC detection on MT , finding that
({m1,m2}, {a, b}) is an EC, and so it gets collapsed according to the COLLAPSE pro-
cedure. This gives the MDP M′ from Fig. 1 (right).
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The execution then continues with M′. A new path is generated at lines 6 to 10
of Algorithm 1; suppose it is ω′′ = sCcm3d0. In the UPDATE phase we then update
the value U(sC , d) = L(sC , d) = 0.5, which makes the condition at the last line of
Algorithm 1 satisfied, and the algorithm finishes, having computed the correct value.

4.2 Limited Information (DQL)

Modification of Algorithm 1 and Identification of ECs. The modification of Algo-
rithm 1 is done exactly as for the modification of BRDTP (i.e., we insert a check after
line 9 of EXPLORE, which invokes the ON-THE-FLY-EC function if the length of path
ω exceeds ki). In iteration i, we set ki as 3	3i , for some 	i (to be described later). The
identification of the EC is as follows: we consider Appear(ω, 	i), the set of states and
actions that have appeared more than 	i times in the explored path ω, which is of length
3	3i , and identify the set as an EC; i.e., M in line 2 of Algorithm 4 is defined as the set
containing the single tuple Appear(ω, 	i). We refer to the algorithm as on-the-fly DQL.

Choice of 	i and Correctness. The choice of 	i is as follows. Note that, in iteration i,
the error probability, obtained from Lemma 1, is at most 2c�i	3i · (pmin/Em)

−κ and we
choose 	i such that 2c�i	3i · (pmin/Em)

−κ ≤ δ/2
2i , where δ is the confidence. Note that,

since c < 1, we have that c�i decreases exponentially, and hence for every i such 	i
exists. It follows that the total error of the algorithm due to the on-the-fly EC collapsing
is at most δ/2. It follows from the proof of Theorem 2 that for on-the-fly DQL the
error is at most δ if we use the same ε̄ as for DQL, but now with DQL confidence δ/4,

i.e., with m =
ln(24|S||A|(1+ |S||A|

ε̄ )/δ)

2ε̄2 . As before, these numbers can be conservatively
approximated using the limited information.

Theorem 4. On-the-fly DQL is probably approximately correct for all MDPs.

Example 3. Let us now briefly explain the execution of on-the-fly DQL on the MDP
M from Fig. 1 (left). At first, paths of the same form as ω in Example 2 will be
generated and there will be no change to U and L, because in any call to UPDATE

(see Algorithm 3) for states s ∈ {m1,m2} with c(s, a) = m the values accumulated
in accumU

m(s, a)/m and accumL
m(s, a)/m are the same as the values already held,

namely 1 and 0, respectively.
At some point, we call UPDATE for the tuple (m3, d) with c(m3, d) = m, which will

result in the change of U(m3, d) and L(m3, d). Note, that at this point, the numbers
accumU

m(s, d)/m and accumL
m(s, d)/m are both equal to the proportion of generated

paths that visited the state 1. This number will, with high probability, be very close to
0.5, say 0.499. We thus set U(m3, d) = 0.499 + ε and L(m3, d) = 0.499− ε.

We then keep generating paths of the same form and at some point also update
U(m2, c) and L(m2, c) to precisely 0.499 + ε and 0.499 − ε, respectively. The sub-
sequently generated path will be looping on m1 and m2, and once it is of length 	i, we
identify ({m1,m2}, {a, b}) as an EC due to the definition of Appear (ω, 	i). We then
get the MDP from Fig. 1 (right), which we use to generate new paths, until the upper
and lower bounds on value in the new initial state are within the required bound.
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4.3 Extension to LTL

So far we have focused on reachability, but our techniques also extend to linear temporal
logic (LTL) objectives. By translating an LTL formula to an equivalent deterministic ω-
automaton, verifying MDPs with LTL objectives reduces to analysis of MDPs with ω-
regular conditions such as Rabin acceptance conditions. A Rabin acceptance condition
consists of a set {(M1,N1) . . . (Md,Nd)} of d pairs (Mi,Ni), where each Mi ⊆ S and
Ni ⊆ S. The acceptance condition requires that, for some 1 ≤ i ≤ d, states in Mi are
visited infinitely often and states in Ni are visited finitely often.

Value computation for MDPs with Rabin objectives reduces to optimal reachability
of winning ECs, where an EC (R,B) is winning if R ∩ Mi �= ∅ and R ∩ Ni = ∅ for
some 1≤i≤d [12]. Thus, extending our results from reachability to Rabin objectives
requires processing of ECs for Rabin objectives (line 3-11 of Algorithm 4), which is
done as follows. Once an EC (R,B) is identified, we first obtain the EC in the original
MDP (i.e., obtain the set of states and actions corresponding to the EC in the original
MDP) as (R,B) and then determine if there is a sub-EC of (R,B) that is winning using
standard algorithms for MDPs with Rabin objectives [2]; and if so then we merge the
whole EC as in line 9 of Algorithm 4; if not, and, moreover, there is no action out of
the EC, we merge as in line 11 of Algorithm 4. This modified EC processing yields
on-the-fly BRTDP and DQL algorithms for MDPs with Rabin objectives.

5 Experimental Results

Implementation. We have developed an implementation of our learning-based frame-
work within the PRISM model checker [25], building upon its simulation engine for
generating trajectories and explicit probabilistic model checking engine for storing
visited states and U and L values. We focus on the complete-information case (i.e.,
BRTDP), for which we can perform a more meaningful comparison with PRISM. We
implement Algorithms 1 and 2, and the on-the-fly EC detection algorithm of Sec. 4,
with the optimisation of taking T as the set of all states explored so far.

We consider three distinct variants of the learning algorithm by modifying the GET-
SUCC function in Algorithm 1, which is the heuristic responsible for picking a successor
state s′ after choosing some action a in each state s of a trajectory. The first variant takes
the unmodified GETSUCC, selecting s′ at random according to the distribution Δ(s, a).
This behaviour follows the one of the original RTDP algorithm [3]. The second uses the
heuristic proposed for BRTDP in [30], selecting the successor s′ ∈ supp(Δ(s, a)) that
maximises the difference U(s′)−L(s′) between bounds for those states (M-D). For the
third, we propose an alternative approach that systematically chooses all successors s′

in a round-robin (R-R) fashion, and guarantees termination with certainty.

Results. We evaluated our implementation on four existing benchmark models, using
a machine with a 2.8GHz Xeon processor and 32GB of RAM, running Fedora 14.
We use three models from the PRISM benchmark suite [26]: zeroconf, wlan, and
firewire impl dl; and a fourth one from [16]: mer. The first three use unbounded prob-
abilistic reachability properties; the fourth a time-bounded probabilistic reachability.
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Table 1. Verification times using BRTDP (three different heuristics) and PRISM

Name
[param.s]

Param.
values

Num.
states

Time (s) Visited states
PRISM RTDP M-D R-R RTDP M-D R-R

zeroconf
[N,K]

20, 10 3,001,911 129.9 7.40 1.47 1.83 760 2007 2570
20, 14 4,427,159 218.2 12.4 2.18 2.26 977 3728 3028
20, 18 5,477,150 303.8 71.5 3.89 3.73 1411 5487 3704

wlan
[BOFF ]

4 345,000 7.35 0.53 0.48 0.54 2018 1377 1443
5 1,295,218 22.3 0.55 0.45 0.54 2053 1349 1542
6 5,007,548 82.9 0.50 0.43 0.49 1995 1313 1398

firewire impl dl
[delay,

deadline]

36, 200 6,719,773 63.8 2.85 2.62 2.26 26,508 28,474 22,038
36, 240 13,366,666 145.4 8.37 7.69 6.72 25,214 26,680 20,219
36, 280 19,213,802 245.4 9.29 7.90 7.39 32,214 28,463 25,565

mer
[N, q]

3000, 0.0001 17,722,564 158.5 67.0 2.42 4.44 1950 3116 3729
3000, 0.9999 17,722,564 157.7 10.9 2.82 6.80 2902 4643 4608
4500, 0.0001 26,583,064 250.7 67.3 2.41 4.42 1950 3118 3729
4500, 0.9999 26,583,064 246.6 10.9 2.84 6.79 2900 4644 4608

The latter is used to show differences between heuristics in the case of MDPs contain-
ing rare events, e.g., MDPs where failures occur with very low probability. All models,
properties and logs are available online at [39].

We run BRTDP and compare its performance to PRISM. We terminate it when the
bounds L and U differ by at most ε for the initial state of the MDP. We use ε = 10−6

in all cases except zeroconf, where ε = 10−8 is used since the actual values are very
small. For PRISM, we use its fastest engine, which is the “sparse” engine, running value
iteration. This is terminated when the values for all states in successive iterations differ
by at most ε. Strictly speaking, this is not guaranteed to produce an ε-optimal strategy
(e.g. in the case of very slow numerical convergence), but on all these examples it does.

The experimental results are summarised in Table 1. For each model, we give the
number of states in the full model, the time for PRISM (model construction, precom-
putation of zero/one states and value iteration) and time and number of visited states
for BRTDP with each of the three heuristics described earlier. Some heuristics perform
random exploration and therefore all results have been averaged over 20 runs.

We see that our method outperforms PRISM on all four benchmarks. The improve-
ments in execution time on these benchmarks are possible because the algorithm is able
to construct an ε-optimal policy whilst exploring only a portion of the state space. The
number of states visited by the algorithm is at least two orders of magnitude smaller
than the total size of the model (column ‘Num. states’). These numbers do not vary
greatly between heuristics.

The RTDP heuristic is generally the slowest of the three, and tends to be sensitive to
the probabilities in the model. In the mer example, changing the parameter q can mean
that some states, which are crucial for the convergence of the algorithm, are no longer
visited due to low probabilities on incoming transitions. This results in a considerable
slow-down, and is a potential problem for MDPs containing rare events. The M-D and
R-R heuristics perform very similarly, despite being quite different (one is randomised,
the other deterministic). Both perform consistently well on these examples.
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6 Conclusions

We have presented a framework for verifying MDPs using learning algorithms. Build-
ing upon methods from the literature, we provide novel techniques to analyse un-
bounded probabilistic reachability properties of arbitrary MDPs, yielding either exact
bounds, in the case of complete information, or PAC bounds, in the case of limited
information. Given our general framework, one possible direction would be to explore
other learning algorithms in the context of verification. Another direction of future work
is to explore whether learning algorithms can be combined with symbolic methods for
probabilistic verification.

Acknowledgement. We thank Arnd Hartmanns and anonymous reviewers for careful
reading and valuable feedback.
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Abstract. This paper is concerned with model-based testing of hybrid
systems. In our previous work [6], we proposed a test generation algo-
rithm, called gRRT, guided by a coverage measure defined using the
star discrepancy notion. An important ingredient in this algorithm is a
procedure for dynamically estimating the coverage, which is done based
on a box partition of the continuous state space. The goal of this esti-
mation is to identify the areas in the state space which have not been
sufficiently visited. A drawback of this guiding method is that its com-
plexity depends on the number of the boxes in the partition, which needs
to be fine enough to guarantee a good coverage estimate. Thus in high
dimensions the method can become very costly. To enhance the scala-
bility of the algorithm gRRT we propose in this paper a new guiding
method, motivated by the observation that trying to optimize the cov-
erage in each exploration step is, on one hand, computationally costly,
and on the other hand, not always a good choice since this may make
the system try to expand in the directions which are not reachable (due
to the controllability of the system). Instead of considering all the boxes
in the partition, we propose to use a randomized search to quickly find
a region that yields a high local discrepancy value. This randomized
search is based on threshold accepting, a well-known integer optimiza-
tion heuristic. We also present some experimental results obtained on
a challenging circuit benchmark and a number of randomly generated
examples, which shows that the new guiding method allows achieving
better time and coverage efficiency.

1 Introduction

Model-Based Development is a pervasive approach for developing and testing
embedded systems. Techniques for analyzing dynamical systems are essential for
proving correctness of safety-critical applications of embedded systems. Existing
testing and validation techniques for such systems are costly if high confidence
in the results is expected and they can still fail to discover all the behaviors
that can have a detrimental effect on safety and performance of the system.
This paper addresses the problem of efficiently testing the behaviors of hybrid
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dynamical systems (that is, systems combining continuous and discrete dynam-
ics). Hybrid systems have been widely accepted as a mathematical model for
many applications in embedded systems. The particular focus of this paper is on
enhancing the coverage-guided test generation technique proposed in [6]. This
technique combines an adaptation of the successful robotic motion planning tech-
nique RRT (Rapidly-exploring Random Tree) [15,16] with a guiding tool based
on the star discrepancy coverage. The resulting algorithm is called gRRT (for
“guided RRT”). It has been successfully applied to a number of analog circuits
and control applications. Although the algorithm can handle large systems with
complex dynamics (described for example using nonlinear differential algebraic
equations), its coverage analysis becomes computationally costly in high dimen-
sions. Indeed, an important ingredient of this coverage-guided algorithm is a
procedure for estimating the star discrepancy of a point set, which is done based
on a box partition of the continuous state space. The goal of this estimation is
mainly to identify the areas in the state space which are not sufficiently visited.
This information is then used to guide the exploration by steering the system
towards these areas. A drawback of this guiding method is that its complexity
depends on the number of boxes in the partition, which needs to be fine enough
to guarantee a good coverage estimate. Thus in high dimensions the method can
become very costly.

To enhance the scalability of the test generation algorithm gRRT we propose
in this paper a new guiding method, motivated by the observation that trying to
optimize the coverage in each exploration step is, on one hand, computationally
costly, and on the other hand, not always a good choice since this may make the
system try to expand in the directions which are not reachable (due to the con-
trollability of the system). The essence of our new guiding method is as follows.
Instead of considering all the boxes in the partition, we use a randomized search
to quickly find a region that yields a high local discrepancy value (which corre-
sponds to a low local coverage). This randomized search is based on threshold
accepting, a well-known integer optimization heuristic [7]. Although this guiding
method is less accurate in terms of coverage estimation, it can identify critical
areas and additionally consumes less computational time and thus allows the
algorithm to visit more states.

The rest of the paper is structured as follows. In the first section, we recall
our testing problem and the test generation algorithm gRRT. We then explain
our new guiding method. Finally we present some experimental results obtained
for a ring oscillator circuit, a challenging analog circuit benchmark, and for a
number of randomly generated examples.

Before continuing, we briefly discuss related works. Hybrid systems testing
has recently attracted the intention of many researchers, which is attested by
numerous publications (see for example [10,11,18,14,19] and references therein).
The RRT algorithm has been used to solve a variety of related reachability
problems, such as hybrid systems planning, control, verification and testing (see
for example [10,11,9,4,18]). Randomized testing using the cross-entropy method
is proposed in [20]. Our idea of using threshold accepting to estimate the star



Test Coverage Estimation Using Threshold Accepting 117

discrepancy is similar in spirit to a randomized approach proposed in [1]. This
approach, based on a variant of Simulated Annealing, is used to minimize the
distance of the system trajectories to some set violating a property of interest.
While our guiding procedure simultaneously exploits the spatial structure of
many different trajectories in a step-by-step manner over time, this approach
considers trajectory by trajectory. Note that threshold accepting is similar to Hill
Climbing, which has been used in test data generation for software testing [17].
In our work, due to the approximate nature of the coverage estimation and
additionally to the fact that the evolution of the coverage is constrained by the
system dynamics, we do not seek a globally optimal solution in each intermediate
step but use a local search method to quickly produce a locally optimal solution.

2 Test Generation Problem

For clarity of presentation, we explain the new guiding method only for continu-
ous systems since their extension to hybrid systems is straightforward, which will
be discussed later. We consider a continuous system described by the following
differential equation:

ẋ(t) = f(x(t), u(t))

where

– x ∈ X ⊆ R
n is the continuous state evolving inside some bounded state

space X ,
– u(·) ∈ U is the input of the form u : R+ → U ⊂ R

nu . The set U is the set
of admissible inputs. Since we are interested in implementing the tester as a
program, U contains piecewise constant functions. The input is assumed to
be controllable by the tester.

The non-determinism in the input is useful for describing disturbances from the
environment and imprecision in modelling and implementation. We use the usual
assumption that the function f is Lipschitz continuous.

A test case in our framework is represented by a tree where each node is associ-
ated with a state, and each edge of the tree is associated with the a control input
value. To execute such a test case, the tester applies a control input sequence to
the system, measures the corresponding sequence of states, and decides whether
the system under test conforms to the specification.

The main steps of the coverage-guided test generation algorithm gRRT [6] are
summarized in Algorithm 1.

Algorithm 1. Abstract Algorithm of gRRT

Step 1: a goal state xgoal is sampled from the state space;
Step 2: a neighbor state xinit of the goal state xgoal is determined;
Step 3: from xinit an appropriate control input u is applied for a time step h to steer
the system towards the goal state xgoal.
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The sampling process in Step 1 is guided so that the goal state lies in a
region where the local coverage of the visited states is still low (the notions
of coverage will be recalled in the subsequent paragraph). The above abstract
procedure can be applied to hybrid systems. Indeed, to sample a goal hybrid
state, one can first sample a location (or a discrete mode) based on the current
continuous coverage at each location. A location with low continuous coverage
has a higher probability of being sampled. Once a goal location is chosen, it
remains to sample a goal continuous state in the state space of that location,
which is the problem we want to solve more efficiently in this work. Therefore, as
mentioned earlier, for clarity of presentation, in the rest of the paper we consider
only continuous systems and the solution proposed here can be readily used in
the gRRT algorithm for hybrid systems, as described in [6].

To discuss the goal state sampling process, we first recall the coverage notion.
We assume that the state space is a box

B = [l1, L1]× . . .× [ln, Ln] ⊂ R
n.

Let P be a set of k points inside B, which represent a set of visited states. Let J
be the set of all sub-boxes J of the form J =

∏n
i=1[li, yi] with yi ∈ [li, Li]. The

local discrepancy of the point set P with respect to the sub-box J is defined as
follows:

D(P, J) =
∣
∣
∣
A(P, J)

k
− vol(J)

vol(B)

∣
∣
∣

where A(P, J) is the number of points of P that are inside J , and vol(J) is the
volume of the box J . The star discrepancy of P with respect to the box B is
defined as:

D∗(P,B) = supJ∈JD(P, J). (1)

The star discrepancy of P with respect to a box B satisfies 0 < D∗(P,B) ≤ 1.
Intuitively, the star discrepancy is a measure for the irregularity of a set of points.
A large value D∗(P,B) means that the points in P are not much equidistributed
over B, and the coverage of P is defined as: Cov(P ) = 1−D∗(P,B).

Discrepancy Estimation. The star discrepancy is an important notion in
equidistribution theory as well as in quasi-Monte Carlo techniques (see for ex-
ample [3]). Computing the star discrepancy is not an easy problem (see for
example [8]). Many theoretical results for one dimensional point sets cannot be
generalized to higher dimensions, and among the fastest algorithms, the one
proposed in [8] has time complexity O(k1+n/2) where k is the number of points
and n is the dimension. It is known that the problem of computing the star
discrepancy of arbitrary point sets is NP-hard [12].

The current version of gRRT does not try to exactly compute the star discrep-
ancy but estimate a lower bound and an upper bound. These bounds and the
information obtained from their estimation indicate the areas in the state space
that need to be explored more and the algorithm thus favors the goal state sam-
pling in these areas. This estimation is done using a method, published in [21],
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which considers a finite box partition of the box B (instead of an infinite number
of all sub-boxes as in the definition of the star discrepancy (1)). This partition
allows determining an upper bound and a lower bound of the local discrepancy
value for each box as well as of the star discrepancy. Then, a probability distri-
bution is defined for the boxes based on their local discrepancy values. Since our
new guiding method uses the same construction of box partition and the upper
bound, we recall some important definitions.

A box partition of B is a set of boxes Π = {b1, . . . , bnb} such that
⋃nb

i=1 b
i = B

and the interiors of the boxes bi do not intersect. Given a box b = [α1, β1] ×
. . .× [αn, βn] ∈ Π , we define

b+ = [l1, β1]× . . .× [ln, βn],

b− = [l1, α1]× . . .× [ln, αn].

Figure 1 provides an illustration of these definitions.

B

b+

b

b−

(α1, α2)

(β1, β2)

(l1, l2)

(L1, L2)

Fig. 1. Illustration of the boxes b− and b+

In [21] it is proven that for any finite box partition Π of B, an upper bound
B(P,Π) of the star discrepancy D∗(P,B) of the point set P with respect to B
can be determined as follows:

B(P,Π) = max
b∈Π

κ(b, P ) (2)

where

κ(b, P ) = max{A(P, b
+)

k
− vol(b−)

vol(B) ,
vol(b+)

vol(B) − A(P, b−)
k

}. (3)

3 Search for a Critical Box

To improve time efficiency of the goal state sampling process, we propose a
randomized search method, called threshold accepting [7]. The goal of this search
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method is to find a box in the partition that corresponds to a good approximate
solution of (2). We call it a critical box, that is a box with high local discrepancy.
This box is then used as the sampling space for the next goal state (since it is of
interest to reduce the local discrepancy of this critical box). It is important to
emphasize that for a system with “limited controllability”, that is from a given
state not all directions are reachable, a best solution of (2) may repeatedly lead
to the same blocking situation where the algorithm keeps adding the states close
to the previously visited ones. Hence, picking only critical boxes (representing a
sub-optimal solution) allows a more flexible expansion of the tree in the reachable
space.

Essentially, the threshold accepting algorithm [7] starts with a randomly cho-
sen feasible solution and then picks randomly a neighbor solution as a new
candidate solution. If the difference between this neighbor solution and the cur-
rent one is larger than some non-positive threshold, the algorithm moves to this
neighbor solution; otherwise, it stays with the current solution and selects again
a new neighbour. The algorithm stops after a fixed number of iterations, or if
there is no more improvement. The threshold changes during the execution of
the algorithm. Its initial absolute value is often large, so that the algorithm may
explore more freely in the search space. The threshold absolute values are then
gradually decreased; hence the algorithm accepts less new solutions and finally
works as a local search. Applying this principle to our problem (2), we derive
the following algorithm for finding a critical box.

Algorithm 2. Finding a critical box

/* Input: point set P , partition Π */
initial threshold Δ0

κ */
maximal number imax of iterations */

/* Output: critical box */

j = 0
b = urandom(Π) /* uniformly sampling an initial box */
if = 0
repeat

b′ = candidateSampling(N (b, d)) /* sampling a new candidate box
from the neighborhood of the current box */

if (κ(b′, P )− κ(b, P ) > Δj
κ) then

b = b′

if = 0
else

if ++
end if
Δj+1

κ = update(Δj
κ) /* updating the threshold Δκ */

j ++
until j = jmax

RETURN b
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First the algorithm chooses uniformly at random a box b from the partition
Π and its local bound κ(b, P ) is computed as in (3). Then a number imax of
iterations are executed. In each iteration, a neighborhood of b is determined and
within this neighborhood a box b′ is chosen at random and then its local bound
is computed. If its difference from the bound of the current box b is greater than
the current thresholdΔj

κ, the box b is replaced by b′. In the following, we explain
the important ingredients of the algorithm, namely defining the neighborhood
N (b, d), sampling a new candidate box from the neighborhood, and updating
the threshold.

3.1 Defining a Neighborhood

The coordinates of the boxes in the partition Π form a grid

G(Π) = G1 × . . .× Gn

such that for each dimension i ∈ {1, . . . , n} Gi is the sequence of all the left and
right bounds of the boxes in Π , sorted in an increasing order. Let Gi(j) denote
the jth element of Gi, and for a real number α ∈ Gi, ιi(α) is the order of α in
the sequence Gi.

Let b = [λ1, ρ1] × . . . × [λn, ρn] be a box in Π and d ∈ Z be a vector of n
positive integers, we define a box that envelops b by a grid-distance d as

E(b, d) = [G1(ι1(λ1)− d),G1(ι1(ρ1) + d)]× . . .

×[Gn(ιn(λn)− d),Gn(ιn(ρn) + d)]

Then the neighborhood of b is the set of all the boxes in Π that have non-
empty intersection with E(b, d), that is

N (b, d) = {b′ ∩ E(b, d) �= ∅ | b′ ∈ Π}.

A new candidate box b′ is then chosen from the set N (b, d). In the following
we explain the procedure of sampling such a candidate box.

3.2 Selecting a New Candidate Box

We remark that for a box b ∈ Π to be a solution to the optimization problem (2),
the coordinates of its upper bound must be sufficiently large so that the volume
of b+ is at least υ, where υ is a constant in (0,

∏n
i=1(Li − li)). Therefore, the

coordinates of the upper vertex of b+ should be at least υ1/n. Hence, in high
dimensions it is more appropriate to favor the selection of candidate boxes with
larger upper vertex coordinates. To this end, we follow a two step procedure:

1. We first sample a point in the enveloping box according to a probability
distribution that reflects the effect of dimension n. This point indicates the
candidate box in the neighborhood to select in the next step. More concretely,
let the enveloping box be denoted as

E(b, d) = [lE1 , L
E
1 ]× . . .× [lEn , L

E
n ].
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Let y be a point sampled uniformly in the unit box [0, 1]n, this point y is
then mapped to a point x in the enveloping box E(b, d) by the following
function:

∀i ∈ {1, . . . , n} : xi = ( ((LE
i )

n − (lEi )
n)yi + (lEi )

n )1/n

2. Then the box in N (b, d) that contains x is chosen as the next candidate box.
In case the box containing x is b itself, we discard this sample and start the
sampling again.

3.3 Threshold Update

Threshold accepting has already been used for approximating the star discrep-
ancy of a point set in [22,13]. These approximation techniques were developed to
study point sets (often called good lattice point sets) generated specifically for
approximating integrands using Monte Carlo and quasi-Monte Carlo methods.
They use monotonically increasing (non-positive) threshold sequences that are
generated from empirical distributions and each threshold value is used for J
iterations in order to stabilize the search at this threshold value. These thresh-
old sequences are experimentally proven to be efficient for such particular point
sets.

Nevertheless, in our problem, we do not have prior knowledge of the point sets
generated by the system under test and, in addition, the box structure of the
partition might not capture well the global contour of such point sets. Therefore,
we can relax the condition for updating the candidate box. If the current box b
does not get updated after a number of trials, the threshold sequence is slightly
decreased, which helps the algorithm to avoid being stuck in a situation where
most neighboring boxes of the current box have smaller values of κ. The amount
of decrease can grow with the number of update failures (indicated by the counter
if in the algorithm). On the other hand, whenever the box is updated, the
counter if is set to 0 and the threshold is increased. This can be captured by
the following update function:

update(Δj
κ) = ((

if
m
)p − 1)Δ(1− j

jmax
)q)

where m, p, q, Δ are parameters to fine-tune the growth rate of the threshold.
The above update function does not depend on Δj

κ but it is also possible to
define an update function that depends on the previous threshold values.

Whenever if is reset to 0, the threshold takes the most negative value, thus
giving the algorithm the possibility to move around rapidly. The threshold then
rises from this negative value until the current box is updated again. Although
using monotonic threshold sequence allows enjoying the convergence properties
of threshold accepting [7], we do not want to run too many iterations; it is thus
more important to move more freely in the search space.
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4 Goal State Sampling and Neighbor State Computation

Algorithm 2 finds a critical box with high local discrepancy. We can now exploit
this information to reduce its local discrepancy, by sampling a goal state xgoal

uniformly within this box, in Step 1 of Algorithm 1. Now we proceed with Step
2 of Algorithm 1, that is finding a neighbor state of xgoal.

Note that A(P, b) is the number of points of P which are inside b. We associate
with each box b ⊆ Π a number A∗(b) such that

vol(b)

vol(B) =
A∗(b)
k

.

We denote

ΔA(b) = A(P, b)−A∗(b). (4)

The sign of ΔA(b) reflects a ‘lack’ or an ‘excess’ of points in the box b, and its
absolute value indicates how significant the lack or the excess is. We can rewrite
the definition of the upper bound given by (2) as follows:

B(P,Π) =
1

k
max
b∈Π

Δm
A (b) (5)

where Δm
A (b) = max{Δ+

A(b), Δ
−
A(b)} and

Δ+
A(b) = A(P, b+)−A∗(b−),

Δ−
A(b) = A∗(b+)−A(P, b−).

We observe that adding a point in b increases Δ+
A(b) but does not affect Δ

−
A(b).

There are two cases:

– If Δ−
A(b) > Δ+

A(b), Δ
m
A (b) = Δ−

A(b) and it is preferable that the next point
is added to b−, that is we favor the selection of a neighbor state which is
near the set b−.

– If Δ+
A(b) > Δ−

A(b), Δ
m
A (b) = Δ+

A(b) and it is preferable that the next point
is added to the area outside b+, that is we favor the selection of a neighbor
state which is near the set B \ b+.

Before proceeding with experimental results we briefly discuss the computa-
tional complexity of the new method. In this method, the box partition Π is
used to store the visited points, as in the previous star discrepancy estimation
method. However, when a new point is added, while the previous method needs
to update the local star discrepancy bounds for all the sub-boxes that are af-
fected by the addition of the new point (see for example the equation (3)), the
randomized search method only needs to determine the local discrepancy values
for the boxes that are selected during the search. This explains an improvement
in time efficiency of the new method.
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5 Experimental Results

In this section, we describe two experiments. In the first experiment we applied
the new guiding method to a circuit which has been used as a benchmark for
evaluating circuit validation methods. The goal of the second experiment is to
evaluate the performance of the method on high dimensional systems.

The circuit benchmark in the first experiment is a variant of standard ring
oscillators. A standard ring oscillator oscillates only if it has an odd number of
stages. To obtain an oscillator with an even number of stages, a modification
is introduced in the form of additional inverter pairs which form bridges within
the original oscillator (see Figure 2). This circuit can oscillate only under the
following condition: the ratio of the sizes of the transistors comprising the main
feedback chain to the sizes of the transistors comprising the bridge must be
within certain limit. For the circuit provided by Rambus, simulation results show
that when this ratio is roughly in the interval [0.4, 2.2] periodic oscillations occur,
and when this ratio approaches the extreme values of the interval, the circuit
exhibits dampened oscillations; and when the ratio is outside the interval, the
circuit stabilizes and does not oscillate. A research challenge is to see whether
the current state of the art of verification techniques could show that with wrong
transistor sizes, the circuit does not oscillate properly. The circuit is specified as
a SPICE netlist.

Fig. 2. Rambus ring oscillator (in two different views)

We have implemented the new guiding algorithm and integrated it in the
tool HTG for test generation1. We now briefly describe the main features of the
tool. The tool can accept as input a hybrid automaton. In view of validation of
analog and mixed-signal circuits, the tool is connected to a parser that can handle
SPICE netlists, an industrial standard circuit specification formalism. The tool
can generate test cases using the gRRT algorithm combined with random walk
sampling [5]. It can also be used for test execution in practical settings with
partial observability as well as sensor and actuator imprecisions.

First we apply our new guiding method to the same circuit but with two ratio
values: 2.1 and 2.2. In this example, the input of the system is the disturbance
on the source voltage and we also generate test cases for two disturbance ranges

1 https://sites.google.com/site/htgtestgenerationtool/home

https://sites.google.com/site/htgtestgenerationtool/home
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[−0.01, 0.01] and [−0.2, 0.2]. In this experiment we set the grid-distance of the
enveloping box d to be 1/4 of the total number |P | of points in P if |P | ≥ 100,
and to be 1/8 of that total number if it is larger than 100. The parameters of
the threshold update function are m = 100, p = 2, jmax = 1000, q = 0.5 and
the initial threshold Δ0

κ = −0.1. These values are commonly used in threshold
updating.

All the figures that follow depict the evolution of the voltage output of the
first transistor. Figure 3 shows that with ratio 2.1 the circuit oscillates even
under the large range of disturbances. When the ratio is 2.2, the oscillations are
much more sensitive to the disturbances, as shown in Figure 4.

We also compared the new guiding method and the previous method, which
shows that for the same number of visited points, the new guiding method is
more time efficient and in addition achieves better coverage. Indeed, the new
guiding method detects a larger variation of the values of the low level voltage
(see Figure 5). Indeed, with the old guiding method, the computation time is
125.69s, the minimal low value is −2.975, and the maximal low value is −2.3976.
With the new method, the computation time is 116.39s, the minimal low value
is −2.9882 and the maximal low value is −2.379.

Fig. 3. Result of the new guiding method for the circuit with ratio 2.1, disturbances
on the source voltage ±0.01 (left) and ±0.2 (right), computation times 81.29s (left)
and 84.84s (right)

We proceed with the second experiment, the goal of which is to compare the
new guiding method with threshold accepting (denoted by TA for short) and the
guiding method based on the star discrepancy estimation (denoted by SDE) [6].
To this end, we created a continuous system the dynamics of which is described
by a system of linear differential equations with uncertain input. The matrices
are of Jordan form where each block has a randomly generated value between
[−1, 1]. It is important to note that the algorithm does not exploit the linearity
of the dynamics. We can observe from the results that to achieve a similar level
of coverage, the method TA is more time efficient, as shown in Table 6. In this
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Fig. 4. Result of the new guiding method for the circuit with ratio 2.2, disturbances
on the source voltage ±0.01 (left) and ±0.2 (right), computation times 83.51s (left)
and 90s (right)

Fig. 5. Results of the old (left) and new (right) guiding methods for the circuit with
ratio 2.2, disturbance on the source voltage ±0.2
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experiment, we let the number of iterations be 10000. Again the parameters for
threshold accepting are the same as in the first experiment: the grid-distance

d =
1

4
|P | if |P | ≥ 100, and d =

1

8
|P | if |P | < 100; m = 100, p = 2, jmax = 1000,

q = 0.5 and the initial threshold Δ0
κ = −0.1. The second and fourth columns

of Table 6 contain the numbers of states satisfying the condition defining the
state space. Indeed, when the reachable space is much smaller than the whole
state space, a guiding method with low coverage tends to explore the states near
the boundary of the reachable space and results in the new states which are too
close to the previously visited states and are then not included.

dim nb states time(s) nb states time(s)
TA TA SDE SDE

50 8127 4.51 6999 10.77
100 8424 13.57 5417 45.45
200 7968 32.98 6617 48.92

Fig. 6. Experimental results for a continuous system in various dimensions. The second
and third columns contain the computation times and the numbers of generated states
for the method TA, and the last two columns contain the results for the method SDE.

6 Conclusion

In this paper we presented a new method for guiding the process of test genera-
tion using the star discrepancy coverage. The method is based on the threshold
accepting heuristic. The experimental results are promising and we intend to
pursue this work further in two directions. One concerns a study of the con-
vergence of the global test generation algorithm with respect to the probability
of visiting any reachable state. In addition, we want to find the procedures for
defining the threshold sequence and neighborhood structure that reflects the
controllability of the system dynamics.
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Abstract. (Priced) timed games are two-player quantitative games in-
volving an environment assumed to be completely antogonistic. Classical
analysis consists in the synthesis of strategies ensuring safety,
time-bounded or cost-bounded reachability objectives. Assuming a ran-
domized environment, the (priced) timed game essentially defines an
infinite-state Markov (reward) decision proces. In this setting the ob-
jective is classically to find a strategy that will minimize the expected
reachability cost, but with no guarantees on worst-case behaviour. In this
paper, we provide efficient methods for computing reachability strate-
gies that will both ensure worst case time-bounds as well as provide
(near-) minimal expected cost. Our method extends the synthesis algo-
rithms of the synthesis tool Uppaal-Tiga with suitable adapted rein-
forcement learning techniques, that exhibits several orders of magnitude
improvements w.r.t. previously known automated methods.

1 Motivation

Sparse time and resources are common problems to projects in almost any do-
main, ranging from manufacturing to office work-flow and program paralleliza-
tion. In a real world setting, the duration of a process is dependent on the tasks
it is composed of. The durations and arrival pattern of tasks are not static,
but uncertain by nature. Furthermore, tasks are often solved by different agents
running in parallel, creating races for shared resources. A scheduler is needed to
handle these conflict situations.

The above type of scheduling problem may conveniently be represented as a
timed game (TG) [27], being a two-player quantitative game involving an ad-
versary (modeling the environment – here the tasks) which is assumed to be
completely antagonistic. Classical analysis consists in the synthesis of strategies
ensuring safety or time-bounded reachability objectives. In all cases, decidability
for TGs are obtained from the existence of equivalent finite-state games con-
structed using the classical notion of regions for timed automata [3]. Moreover,
efficient symbolic on-the-fly algorithms using have been developed and imple-
mented as found in Uppaal-Tiga [4]. The assignment of resources to tasks
incurs a cost – e.g. energy-consumption. This naturally leads to the extended
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setting of priced timed games [10,11] (PTG), for which – unfortunately – the
corresponding synthesis problem of cost-bounded reachability strategies is un-
decidable in general [13], with the one-clock case being a notable exception [11].

Now, assuming a randomized environment – e.g. where the duration of tasks
are stochastic – the (priced) timed game essentially defines an infinite-state
Markov (reward) decision process, here named (priced) timed Markov decision
processes (PTMDP). In this setting the objective is to find a strategy that will
minimize the expected reachability cost, but with no guarantees on worst-case
behavior.

In this paper, we provide efficient methods for synthesizing reachability strate-
gies for PTMDPs that subject to guaranteeing a given worst case time-bound,
will provide (near-) minimal expected reachability cost.

Assume a (deterministic) strategy has been synthesized guaranteeing a given
time-bound, we may – as a first attempt – apply statistical model checking as
found in Uppaal SMC [16], to estimate the expected reachability cost in the
(priced) timed game under the given strategy. Statistical model checking [26] is
a highly scalable technique which achieves its estimates by random sampling of
runs, the number of which depending on the desired precision and confidence.
However, there may be several strategies guaranteeing the given time-bound and
we want the one with minimal expected reachability cost. For this much more
ambitious goal, we apply suitable adapted reinforcement learning techniques:
starting from a uniformized version of the most permissive strategy guaranteeing
the given time bound, the learning technique iteratively improves the strategy
– by observing the effect of control-choices in sampled runs – until a strategy
with satisfactory expected reachability-cost is found. Crucial to the efficiency of
our simulation-based synthesis method is the effective and space-efficient rep-
resentation and manipulation of strategies. Besides the symbolic (zone-based)
representation used for TGs, we consider a number of techniques well-known
from Machine Intelligence (covariance matrices, logistic regression) as well as
a new splitting data-structure of ours. The resulting method is implemented
in a new version of Uppaal-Tiga that supports the statistical model-checking
techniques of Uppaal. The experimental evaluation has been performed on a
large collection of job-shop-like problems (so-called Duration Probabilistic Au-
tomata) demonstrating several order or magnitude improvements with respect
to previous exact synthesis methods [22].

Example. Consider the PTMDP of Fig. 1 modeling a process consisting of a
sequence of two uncontrollable steps (indicated by dashed edges), r, d, with a
possible control action (indicated by full edges), a, b, w being taken after the
first step. The first step r is taken between 0 and 100 time-units according to
a uniform distribution1 as can be seen by the invariant x<=100 and the absent
guard, and with cost-rate c’==0. In the next step, the controller may suggest to
play any of the time-action pairs (d, a), (d, b) with d ≤ 100 or (100, w). These

1 Following the stochastic semantics for timed automata components applied in Up-
paal SMC.
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will be in competition with the uniformly distributed choices of the environment
(e, d) with e ∈ [90, 100]. It is clear that in terms of worst-case time, the best
choice for the controller is (100, w) with 200 as worst-case overall time. In con-
trast, the worst choice for the controller is (100, b) with 340 as worst-case time.

b

d

d

x=0

d

w

x=0

a

r
CHOICE

x<=140 &&
c’==2

x<=120 &&
c’==3

END

A

B
x=0

x>=20

x==100

x>=90

x>=60

x<=100 &&
c’==4

x<=100 &&
c’==0

Fig. 1. A Priced Timed MDP

For expected cost, the optimal and
worst choices are (0, b) respectively
(90, a) with 2 ∗ 80 = 160 respectively
4 ∗ 90 + 3 ∗ 90 = 630 as expected re-
maining reachability cost due to the
uniform distributions resolving the
delays. Thus, in case there is no up-
per time bound to be guaranteed (or
it is above 240) the cost-optimal strat-
egy will be to choose b immediately,
yielding an expected cost of 160.

Now assume that the END loca-
tion must be reached within an upper
time-bound of 210. The on-the-fly method of Uppaal-Tiga (exploiting early
termination) may (in fact will) produce the strategy which deterministically
chooses (100, w). This clearly meets the given upper time-bound, and yields an
expected reachability cost of 4 ∗ 95 = 380. The most permissive strategy guar-
anteeing the time-bound 210 (also obtainable by Uppaal-Tiga) will have the
choice depend on the time-point t when CHOICE is reached: if t > 90 only (100, w)
is a legal choice; if 70 < t ≤ 90 also (d, a) with d ≤ 90− t are legal choices, and
finally if t ≤ 70 also (e, b) with e ≤ 70− t are legal. The strategy with minimal
expected reachability cost while guaranteeing the time-bound 210, will (obvi-
ously) deterministically make the “cheapest” legal choice for a given value of t,
i.e. (100, w) for t > 90, (0, a) when 70 < t ≤ 90, and (0, b) when t ≤ 70. This
yields 204 as minimum expected value

Related Work. A number of models combining continuous time and Markov
decision processes have previously been proposed. We mention some of these
below, and point out that they are all special cases of our proposed PTMDP
formalism.

Probabilistic timed automata (PrTA) [21,24] extends the fully non-determini-
stic formalism of timed automata with probabilistic resolution of discrete choices,
thus providing an infinite-state MDP with choices of dealys to be resolved by the
strategy. Decidability for PrTA w.r.t. optimal (minimum and maximum) reach-
ability probabilities as well as general model checking with respect to PCTL
are obtained using region-constructions. Tool support for analysis of PrTAs are
provided in Prism [23]. More recently, cost-bounded reachability for priced ex-
tensions of PrTAs has been considered, showing undecidability for more than 3
clocks [6] and with the semi-decision algorithmic based tool Fortuna [7].

Continuous-time Markov decision processes (CTMDPs) are also special cases
of PTMDPs, where the delay choice of the environment is always made ac-
cording to exponential distributions, and with choices of the strategy being
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instantaneous. In the setting of CTMDPs a number of bounded reachability
synthesis problems has been recently addressed. In [19] multi-dimensional max-
imal cost-bounded reachability probability over CTMDPs are considered, offer-
ing a numerical approximation algorithm. In [8] a marriage of CTMDPs with
timed automata is considered showing the existence of finite optimal schedulers
for time-bounded reachability objectives. In [12], stochastic real-time games are
considered where states are partitioned into environment nodes - where the be-
haviour is similar to CTMDPs - and control nodes - where one player chooses a
distribution over actions, which induces a probability distribution for the next
state. For this game model, objectives are given by deterministic timed automata
(DTA), with results focusing on qualitative properties.

Our real-time synthesis problem – aiming at optimal expected cost subject
to worst-case time bounds – extends the notion of beyond worst-case synthesis
in [14] introduced for finite state MDPs, with consideration of minimizing ex-
pectation of mean-payoff (shown to be in NP∩coNP) as well reachability cost
(shown to be NP-hard). The DPA formalisms considered in [22] is a proper sub-
class of PTMDP of this paper. In [22] exact methods for synthesizing strategies
with minimal expected completion time are given and implemented. However, no
worst-case guarantees are considered. As we shall demonstrate our reinforcement
learning method produces identical solutions and with an order of magnitude
time-improvement. [25] uses a version of Kearns algorithm to find a memoryless
scheduler for expecting reward, however with no implementation provided, and
no real-time consideration. Our use of statistical model checking for learning
optimal strategies of PTMDPs extends that of [20] from finite-state MDPs to
the setting of timed game automata based, infinite state MDPs requiring the
use of symbolic strategies. Finally, statistical model checking has been used for
confluent MDPs in [9].

2 Priced Timed Markov Decision Processes

Priced Timed Games [27] are two-player games played on (priced) timed
automata [3,5]. Here we recall the basic results. Let X = {x, y, ...} be a finite
set of clock. We define B(X) as the set of clock constraints over X generated by
grammar: g, g1, g2 ::= x �� n | x − y �� n | g1 ∧ g2, where x, y ∈ X are clocks,
n ∈ N and �� ∈ {≤, <,=, >,≥}.
Definition 1. A Priced Timed Automaton (PTA) A = (L, �0, X,Σ,E, P, Inv)
is a tuple where L is a finite set of locations, �0 ∈ L is the initial location,
X is a finite set of non-negative real-valued clocks, Σ is a finite set of actions,
E ⊆ L×B(X)×Σ×2X×L is a finite set of edges, P : L → N assigns a price-rate
to each location, and Inv : L → B(X) sets an invariant for each location.

The semantics of a PTA A is a priced transition system SA = (Q, q0, Σ,→),
where the set of states Q consists of pairs (�, v) with � ∈ L and v ∈ R

X
≥0 such

that v |= Inv(�)}, and q0 = (�0, 0) is the initial state. Σ is a finite set of actions,
and → ⊆ Q × (Σ ∪ R≥0) × R≥0 × Q is the priced transition relation defined
separately for action a ∈ Σ and delay d ∈ R≥0 as:
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– (�, v)
a−→0 (�′, v′) if there is an edge (�

g,α,r−−−→ �′) ∈ E such that v |= g,
v′ = v[r �→ 0] and v′ |= Inv(�′),

– (�, v)
d−→p (�, v + d), where p = P (�) · d, v |= Inv(�) and v + d |= Inv(�).

Thus, the price of an action-transition is 0, whereas the price of a delay transition
is proportional to the delay according to the price-rate of the given location.
We shall omit price-subscripts when the actual price do not matter. We shall
assume that SA is deterministic in the sense that any state q ∈ Q has at most
one successor qα for any action or delay α ∈ (Σ ∪R≥0). A run of a PTA A is an
alternating sequence of priced action and delay transitions of its priced transition

system SA: π = q0
d0−→p0 q′0

a0−→0 q1
d1−→p1 q′1

a1−→0 · · · dn−1−→pn−1 q′n−1

an−1−→0

qn · · · , where ai ∈ Σ, di, pi ∈ R≥0, and qi is a state (�qi , vqi). We denote the set

of runs ofA as ExecA, and ExecfA (ExecmA ) for the set of its finite (maximal) runs.
For a run π we denote by π[i] the state qi, and by π|i (π|i) the prefix (suffix) of π
ending (starting) at qi. For a finite run π, C(π) denotes its total accumulated cost
∑n−1

i=0 pi. Similarly T (π) denotes the total accumulated time
∑n−1

i=0 di. An infinite

run π is said to be cost-divergent provided limn→∞
∑n−1

i=0 pi = +∞. We say that
A is (cost-) non-Zeno provided every infinite run is time-(cost-)divergent.

Definition 2. A Priced Timed Game G (PTG) is a PTA whose actions Σ are
partitioned into controllable (Σc) and uncontrollable (Σu) actions.

We note, that for PTAs and PTGs with P (�) = 1 in all locations �, we obtain
standard timed automata (TA) and timed games (TG). Given a (P)TG G, a set
of goal-locations G ⊆ L and a cost- (time-) bound B ∈ R≥0, the (G,B) cost-
(time-) bounded reachability control problem for G consists in finding a strategy σ
that will enforce G to be reached within accumulated cost (time) B. Informally,
a strategy σ decides to continue a run π either by a proposed controllable action
a ∈ Σc or by a delay - indicated by the symbol λ. The formal definition of this
control problem is based on definitions of strategy and outcome.

Definition 3. A strategy σ over a PTG G is a partial function from ExecfG to
P (Σc ∪ {λ}) \{∅} such that for any finite run π ending in state q = last(π), if

a ∈ σ(π) ∩Σc, then there must exist a transition q
a−→ q′ in SG.

Given a PTG G and a strategy σ over G, the outcome Out(σ) is the subset of
ExecG defined inductively by q0 ∈ Out(σ), and:

– If π ∈ Out(σ) then π′ = π
e−→ q′ ∈ Out(σ) if π′ = ExcelG and either one of

the following three conditions hold:

1. e ∈ Σu, or
2. e ∈ Σc and e ∈ σ(π), or

3. e ∈ R≥0 and for all e′ < e, last(π)
e′−→ q′ for some q′ s.t. σ(π e′−→ q′) � λ.

Let (G,B) be a cost- (time-) bounded reachability objective for G. We say
that a maximal, finite run π is winning w.r.t. (G,B), if last(π) ∈ G × R

X
≥0 and
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C(π) ≤ B. A strategy σ over G is a winning strategy if all runs in Out(σ) are
winning (w.r.t. (G,B)).

A memoryless strategy σ only depends on the last state of a run, e.g. whenever
last(π) = last(π′), then σ(π) = σ(π′). For unbounded reachability and safety ob-
jectives for TGs, memoryless strategies suffices [27], For TGs with an additional
clock time, which is never reset (here named clocked TGs), memoryless strategies
even suffices for time-bounded reachability objectives.

The notion of strategy in Def. 3 is non-deterministic, thus inducing a natural
order of permissiveness : σ � σ′ iff σ(π) ⊆ σ′(π) for any finite run π. Deter-
ministic strategies – returning singleton-sets for each run – are least permissive.
For safety objectives – being maximal fixed-points – strategies are closed under
point-wise union, yielding (unique) most permissive strategies. For TGs being
non-Zeno, time-bounded reachability objectives are safety properties.

Theorem 1. Let G be a non-Zeno, clocked TG. If a time-bounded reachability
objective (G, T ) has a winning strategy, then it has (a) deterministic, memoryless
winning strategies, and (b) a (unique) most permissive, memoryless winning
strategy σp

G(G, T ).

The tool Uppaal-Tiga [4] provides on-the-fly, symbolic (zone-based) algo-
rithms for computing both types of memoryless safety strategies for TGs. For
PTGs, the synthesis problem for cost-bounded reachability problems is in general
undecidable [13].

Priced Timed Markov Decision Processes. The definition of outcome of
a strategy in the previous Section assumes that an environment behaves com-
pletely antagonistically. We will now assume a randomized environment, where
the choices of delay and uncontrollable actions are stochastic according to a
(delay,action)-density function for a given state.

Definition 4. A Priced Timed Markov Decision Process (PTMDP) is a pair
M = 〈G, μu〉, where G = (L, �0, X,Σc, Σu, E, P, Inv) is a PTG, and μu is a
family of density-functions, {μu

q : ∃�∃v.q = (�, v)}, with μu
q (d, u) ∈ R≥0 assigning

the density of the environment aiming at taking the uncontrollable action u ∈ Σu

after a delay of d from state q.

In the above definition, it is tacitly assumed that μu
q (d, u) > 0 only if q

d,u−→
in G. Also, we shall wlog for time-bounded reachability objectives assume that∑

u(
∫
t≥0

μu
q (t, u)dt) = 12. In case the environment wants to perform an action

deterministically after an exact delay d, μu
q will involve the use of Dirac delta

function (see [15]).
The presence of the stochastic component μu makes a PTMDP a de facto

infinite state Markov decision process. Here we seek strategies that will minimize
the expected accumulated cost of reaching a given goal set G.

2 For a time-bounded reachability objective (G,T ), we may without affecting control-
lability assume that each location has each action (controllable or uncontrollable)
action enabled after T .
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Definition 5. A stochastic strategy μc for a PTMDP M = 〈G, μu〉 is a family
of density-functions, {μc

q : ∃�∃v.q = (�, v)}, with μc
q(d, c) ∈ R≥0 assigning the

density of the controller aiming at taking the controllable action c ∈ Σc after a
delay of d from state q.

Again it is tacitly assumed that μc
q(d, c) > 0 only if q

d,c−→ in G. Now, a
PTMDP M = 〈G, μu〉 and a stochastic strategy μc defines a race between the
environment and the control strategy, where the outcome is settled by the two
competing density-functions. More precisely, the combination of M and μc de-
fines a probability measure PM,μc on (certain) sets of runs.

For �i ∈ L and Ii = [li, ui] with li, ui ∈ Q, i = 0..n, we denote the cylinder set
by C(q, I0�0I1 · · · In−1�n) consisting of all maximal runs having a prefix of the

form: q
d0−→ a0−→ (�1, v1)

d1−→ a1−→ · · · dn−1−→an−1−→ (�n, vn) where di ∈ Ii for all i < n.
Providing the basis for a σ-algebra, we now inductively define the probability
measure for such sets of runs3:

P〈G,μu〉,μc

(C(q, I0�0I1 · · · In−1�n)
)
=

∑

p∈{u,c}

∑

a∈Σp

�q
a→�1

∫

t∈I0

μp
q(t, a) ·

(
∫

τ>t

μp
q(τ )dτ

) · P〈G,μu〉,μc

(C((qt)a, C(I1 · · · In−1�n)
)
dt

The above definition requires a few words of explanation: the outermost sums
divide into cases according to who wins the race of the first action (c or u),
and which action a the winner will perform. Next, we integrate over all the legal
delays the winner may choose according to the given interval I0 using the relevant
density-function. Independently, the non-winning player (p) must choose a larger
delay; hence the product of the probability that this will happen. Finally, the
probability of runs according to the remaining cylinder I1�1, · · · , In−1�n from
the new state (qt)a is taken into account.

Now let π ∈ Execm and let G be as set of goal locations. Then CG(π) =
min{C(π|i) : π[i] ∈ G} denotes the accumulated cost before π reaches G4. Now
CG is a random variable, which for a given stochastic strategy, μc, will have ex-
pected value EM

μc (CG) given by the Lesbegue integral
∫
π∈Execm CG(π)PM,μc(dπ).

Now, we want a (near-optimal) stochastic strategy μo that minimizes this ex-
pected value, subject to guaranteeing T as a worst-case reachability time-bound
– or alternatively – subject to μo being a stochastic refinement (≺5) of the
most permissive time-bounded reachability strategy σp(G, T ) for M. That is
E
M
T (CG) = inf

{
E
M
μc (CG) | μc ≺ σp(G, T )

}
. We note that letting μc range over

deterministic strategies σd suffices in attaining E
M
T (CG).

3 With the base case, e.g. n = 0, being 1.
4 Note that CG(π) will be infinite in case π does not reach G. However, this case will
never happen in our usages.

5 μc ≺ σ iff μc
q(d, a) > 0 only if λ ∈ σ(qe) for all e < d and a ∈ σ(qd).



136 A. David et al.

maxRuns
maxGood

maxBest

Simulation

Filtering

Learning

Determinization

Evaluation

evalRuns
maxNoBetter
maxIterations
maxResets

Zonification

Fig. 2. Optimal scheduler approximation using reinforcement learning

3 Optimal Scheduler Approximation

Given a PTMDP M and a time-bounded reachability goal (G, T ), we present
a method for approximating E

M
T (CG) by computing a (deterministic) sched-

uler obtained using reinforced learning. In general, the technique of statistical
model-checking (SMC) is used to generate runs according to a given stochastic
semantics and then to analyze their outcomes w.r.t some property or expecta-
tion. In our context, given a PTMDP M and a stochastic control strategy μc,
we use SMC to generate runs that are used both to estimate E

M
μc (CG) and to

iteratively improve μc towards μo. We combine the techniques of Uppaal-Tiga
to guarantee a given time-bound and Uppaal SMC for expected-cost optimality.
The core concept is similar to [20] but differs on the goal of the scheduler. We
also differ on the termination criteria since our algorithm can reset itself to get
out of local minima. We start with an overview of the procedure:

Figure 2 shows the general flow of the algorithm. The idea is to reinforce
a current stochastic strategy representing distributions over controllable actions
noted μc. This strategy is initialized to a uniform strategy noted U(σP ) based on
a most permissive (zone-based) strategy σP obtained from Uppaal-Tiga. This
strategy allows all possible moves that still guarantee the controller to meet its
goal within the given time-bound. The algorithm reinforces μc with μc′ unless
μc′ is not improving too many times in a row, in which case it is reset to the
initial uniform strategy. When it is improving and it is better than the currently
best known strategy μc

b, then it replaces it. A strategy is better if it exhibits a
lower expected cost.

The different steps are detailed as follows. First, the simulation step uses
Uppaal SMC to generate at most maxGood good runs that are used for learning.
To do so, at most maxRuns runs in total are generated. The result is a set of runs
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Π . It may happen that Π is empty, in which case μc is reset and the simulation
is restarted. This is not depicted on the figure. Second, the set of runs Π is then
filtered where at most maxBest best runs among those are kept. We retain the
subset Π ′ ⊆ Π of runs that have minimum cost. In practice this is done with
a heap structure to keep a set of maxBest runs with their associated costs used
for ordering the runs.

Then, central to the algorithm, comes the learning phase where the actual
algorithm depends on the data structure used to represent μc. This phase com-
putes a new μc′ and we detail in the following section different ways to represent
μc. Also, the strategy σP from Uppaal-Tiga is used here to ensure that any
learned strategy still guarantees the required bound.

The resulting strategy is then determinized before being evaluated. This step
uses Uppaal SMC again to evaluate the expected time (or cost) for the rein-
forced strategy det(μc′) on a number of evalRuns runs. The resulting μc′ may
have a lower cost than μc, in which case we update μc (and possibly the best
known strategy μc

b if it is better than this one too). However, if μc′ is not better
than μc maxNoBetter times then we reset it to μc = U(σP ). This makes sure
that the reinforcement learning does not get stuck into local minima. Finally,
the algorithm loops at most maxIteration times if μc has been reset no more
than maxResets times.

When the algorithm stops, the best known deterministic strategy det(μc
b) is

outputted. It is then possible to “zonify” the strategy, meaning to approximate
it with the zone-based representation σd

z used in Uppaal-Tiga, thus allowing
for model checking of additional properties.

4 Strategies: Data Structures, Algorithms and Learning

Non-determistic Strategies. Crucial to our reinforcement learning algorithm
Fig. 2 is the efficient representation and manipulation of control strategies. In
Uppaal-Tiga, non-deterministic strategies are represented using zones, e.g. sets
Z of valuations described by a guard in B(X). In a representation R, each lo-
cation � has an associated finite set R� = {(Z1, a1), . . . , (Zk, ak)} of zone-action
pairs, where ai ∈ Σc∪{λ}. NowR represents the strategy σR where σR((�, v)) � a
iff (Z, a) ∈ R� for some Z with v ∈ Z. In Uppaal-Tiga R is efficiently imple-
mented as a hash-table with the location � as key, and using difference bounded
matrices (DBMs) [17] for representing zones.

For a non-determistic strategy σ and (l, v) a state, we write (l, v)
d→σ to

denote that σ allows a delay of d, i.e. for all d′ < d, λ ∈ σ(l, v + d′). Sim-

ilarly, we write (l, v)
c→σ to denote that the controllable action c is allowed,

i.e. c ∈ σ(l, v). Uniformization and zonification are operations between non-
deterministic and stochastic strategies. Uniformization is an operation that re-
fines a non-deterministic strategy σ into a stochastic strategy μσ, subject to the

condition that μσ
(l,v)(d, c) > 0 if and only if (l, v)

d→σ
c→σ. Several implemen-

tations of uniformization may easily be obtained from the representation of a
non-determistic strategy. Dually, zonification is an operation that abstracts a
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stochastic strategy μ into a non-determistic strategy σR, with a zone-based rep-
resentation R, and subject to the condition that whenever μ(l,v)(d, c) > 0 then

(l, v)
d→σR

c→σR .

Stochastic and Non-Lazy Strategies. For stochastic strategies, we shall in
the following restrict our attention to so-called non-lazy strategies6, μc, where
the controller either urgently decides on an action, i.e. μc

q(d, a) = 0 if d > 0, or
prefer to wait until the environment makes a move, i.e. μc

(�,v)(d, a) = 0 whenever

v(time) + d ≤ T with T being the time-bound of the reachability property in
question. We shall use w to denote such an indefinite delay choice. Thus, for non-
lazy stochastic strategies, the functionality may be recast as discrete probability
distributions, i.e. μc

q : (Σc ∪ {w}) → [0, 1]. In particular, we note that any non-
lazy, stochastic strategy can trivially be transformed to a deterministic strategy
by always selecting the action with the highest probability.

In the following we introduce three different data structuring and learning
algorithms for stochastic strategies. Given that memoryless strategies suffices,
we will learn a set of sub-strategies μc

� = {μc
q : ∃v.q = (�, v)}, where � ∈ L.

The sub-strategies are then learned solely from a set of (action,valuation) pairs.
Given a set of runs Π the relevant information for the sub-strategy μc

� is given
as In�:

In� = {(sn, v) ∈ (Σc ∪ R)× R
X
≥0 | (q0

s0→p0 . . .
sn−1→ pn−1 (�, v)

sn→pn . . . ) ∈ Π}

Thus, in the following we only describe methods for learning sub-strategies.

Sample Mean and Covariance. For each controllable action c and location �,
we approximate the set of points representing clock valuations from which that
action was successfully taken in � by its sample mean and covariance matrix.
Suppose we have N points corresponding to clock valuations v1, . . . , vN . The
sample mean vector v is the arithmetic mean, component-wise, for all the points:
v = 1

N

∑N
k=1 vk. The sample covariance matrix is defined as the square matrix

Q = [qij ] =
1

N−1

∑N
k=1(vk − v)(vk − v)T .

Intuitively, if the sample covariance qij between two clocks xi and xj is posi-
tive, then bigger (resp. smaller) values of xi correspond to bigger (resp. smaller)
values of xj . If it is negative, then the bigger (resp. smaller) values of xi corre-
spond to the smaller (resp. bigger) values of xj . If it is zero then there is no such
relation between the values of those two variables.

Note that the covariance matrix has size n2 where n is the number of clocks
but it is symmetric. Furthermore, for the matrix to be significant we need at
least n(n + 1)/2 sample points that correspond to the number of (potentially)
different elements in the matrix, otherwise we default to using only the mean
vector.

6 In [22] it is shown that non-lazy strategies suffices for optimal scheduling of so-called
DPAs.
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Distribution. The purpose of this representation is to derive a distance from an
arbitrary point to this “set” that is used to compute a weight for each controllable
action. For a given valuation, such a distance d(v) is evaluated as follows: d(v)2 =
(u−v)TQ−1(u−v). If there are too few sample points then we default to using the
Euclidian distance to the mean v. The weight is then given by w(v) = N ·e−d(v).
The weights for the different actions define a probability distribution.

Algorithm and Complexity. When generating runs using SMC, controllable ac-
tions are chosen according to the represented distribution that is initialized to
be uniform. The time complexity is O(n2), n being the number of clocks. For
the learning phase, the covariance matrix is computed using the filtered “best”
samples. Then we need to invert it (once) before the next learning phase. The
time complexity is O(n3). This is done for every action.

Logistic Regression. We consider a sub strategy μc
� where the only options are

either to take a transition (a) or wait until the environment takes a transition
(w) (the case with more options is addressed later). The goal is to learn the
weights β0, β1, . . . , β|X| ∈ R to use in the logistic function: Equation 4.

f(v) =
1

1 + e−(β0+β1·v(x1)+···+β|X|·v(x|X|))
,

where x1, . . . , x|X| ∈ X . This function, combined with the learned weights
β0, β1, . . . , β|X|, defines a stochastic sub-strategy s.t. μc

(�,v)(a) = f(v) and

μc
(�,v)(w) = 1 − f(v). Using Figure 3 we here give an intuition on how, given

an input set In�, we learn the weights β0, . . . , β|X| (for details, see [18]). We
assume that there exists only two options (a and w) in the location �, and (for
simplicity and wlog) a single clock in the system. For each input (sn, v) ∈ In�:

– If sn = a, construct a point at (v(x), 1) where x ∈ X is the clock. These are
the triangles in Figure 3.

– Otherwise, construct a point at (v(x), 0) where x ∈ X is the clock. These
are the circles in Figure 3.

We use L1-regularized logistic regression provided by LIBLINEAR [18] for
fitting the function to the constructed points. The output of this process is the
weights β0, β1, . . . , β|X| and the result is shown in Figure 3. In the case of more
than two options (e.g. if we also had an action b) we use the one-versus-all
method. This method learns a function for each action7.

Complexity. The complexity of fitting the points using this method is O(|In�|+i)
[29], where i is the number of iterations before the fitting algorithm converges
thus for multiple actions, the complexity for learning is O(c · (|In�|+ i)) where
c is the number of options. We need to store c · |X | weights per location, this is
the space complexity.

7 If e.g. we have three actions, a, b and w, we will learn three functions, one which is
a versus b and w, one which is b versus a and w, and one which is w versus a and b.
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f (v)

v(x)

f(v) =
1

1 + e−(−1.131+0.647v(x))

Fig. 3. Example of logistic regression with one clock x and two options a and w. For
valuation v, f(v) gives the probability of selecting action a (triangle) and 1−f(v) gives
the probability of selecting action w (circle). The probabilities are equal at v(x) = 1.747
because f(0.5) = 1.747.

Splitting. Here we represent a sub-strategy as a binary tree, where an internal
node is a four-tuple (x, s, low, high), where low and high are either internal nodes
or leaf nodes, x ∈ X is the clock we split on and s ∈ R>0 is the discriminating
value for the clock. A leaf node is a function W mapping actions, a, from Σc∪{w}
to weights, W (a) ∈ R>0. Figure 4 shows an example of a tree with a splitting
for the clock x at value 2. For a given clock valuation v, the tree is traversed
to the leaf node W to which it “belongs”, with W represented by the pairs
(a,W (a)) with W (a) > 0. This defines a stochastic sub-strategy μc

� s.t. μ
c
�,v)(a) =

W (a)/
∑

b∈Σc∪{w}W (b) for all a ∈ Σc ∪ {w}. Initially, the tree consists of only a
single leaf node assigning weight 1 to all actions. In each iteration of the learning
algorithm presented in Section 3, a percentage of the leaf nodes are split on one
clock according to the following algorithm:

1. Select nodes to split. Given a set In�, count how many of these did not
perform the action with the highest weight in the corresponding leaf node.
The leaf nodes over all locations with the highest counts are chosen for
splitting, the remaining have their weights updated using reinforced learning.

2. Select clock to split on. For each node to split:

(a) Let Inn
l be the runs from In l which satisfy the constraints of the tree,

to this leaf node.
(b) For every clock x ∈ X :

i. Find the minimum and maximum v(x) where (sn, v) ∈ Inn
l and call

the average of these two s.
ii. In the set {(sn, v) ∈ Inn

� | v(x) ≤ s} count for each a ∈ Σc ∪ {w}
how many runs choose a. Insert these points in a vector. Make a
corresponding vector for the set {(sn, v) ∈ Inn

� | v(x) > s}.
iii. Compute Euclidean distance of the vectors.

3. Update tree. For clock x and split s with largest Euclidian distance, split
the leaf node by replacing the node itself with internal node (x, s, low, high)
where low and high are new leaf nodes. Compute weights using reinforced
learning for the new leaf nodes.
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x, 2

{( , 3),( , 1),
( , 3)}

{( , 1),( , 6),
( , 1)}

Fig. 4. A binary tree with a splitting on clock x and value 2

Complexity. The complexity of step 1 is O(nl · |Π |) where nl is the current
number of leafs in the tree, and Π is the number of good runs in the batch. The
complexity of step 2 is O(nl · |X | · |Π |) and the complexity of step 3 is O(|Π |).
This means the complete complexity of the whole learning is O(nl · |X | · |Π |). In
step 1 we select a percentage of the clocks to split on, thus the space complexity
of this method is exponential in the worst case, however we bound this by not
allowing splitting a leaf on a clock with a range shorter than a predefined (small)
constant.

5 Experiments

We now present experiments for evaluating the algorithms proposed in Section
4. Table 1 shows a selection of results. The results are elaborated in the following
sections. The full set of results will be available in a full version of this paper to be
found on arXiv.org of Cornell University. In each of the experiments, we use 2000
runs pr. iteration. We have evaluated the learned strategies using Uppaal SMC,
also with 2000 runs.

Small Examples. The first row in Table 1 shows the statistics for the moti-
vational example in Figure 1, for obtaining the optimal strategy w.r.t. expected
cost under the constraint that END is guaranteed to be reached within 210 time
units. Recall from Section 1 that the optimal expected cost for this case is 204.
An optimal strategy according to SMC is found using all the methods, achieving
an expected cost very close to the optimal expected cost.

The second row shows the statistics for a Go-To-Work example from [14]. We
first use Uppaal-Tiga to ensure that you are guaranteed to get to work in 60
time units and then minimize the expected time for going to work under this
constraint. The three different methods find strategies with the same expected
time, the splitting is the fastest and uses slightly less memory than the others.

Duration Probabilistic Automata. In Section 1, we initially mentioned a
type of scheduling problems where tasks have uncertainty in execution time
and depends no an amount of resources. This class of job-shop-like scheduling
problems can be represented as Duration Probabilistic Automata (DPAs) [22].
A DPA is a multiset of resources and a set of Simple Duration Probabilistic
Automata (SDPAs). An SDPA is a series of tasks which cannot be executed in
parallel, be preempted and must be executed according to some order. Each task
requires a multiset of resources and has a uniformly distributed duration with a
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Table 1. Computed expected cost (1st row) and time/memory consumption for syn-
thesis (2nd and 3rd rows) for various strategies. 4th row shows resets/iterations to find
optimal strategy. For uniform strategies, only the computed expected cost is reported.
Time/memory consumption for computing exact optimal strategies by Kempf et al.
[22] reported where available.

Model Uniform Co-variance Splitting Regression Exact [22]

Motivational 404.299 205.169 206.328 203.721
example 33.78s 30.55s 42.61s

8.17MB 15.79MB 8.46MB
2/82 4/109 1/52

38.64 32.69 32.81 32.81
GoWork 9.8s 24.41s 14.18s

7.96MB 8.38MB 8.08MB
5/72 0/10 4/71

18.08 17.53 17.34 17.38
p0s3p1s4 4 28.84s 27.06s 51.92s 1062.77s

8.75MB 17.25MB 8.88MB 145.47MB
3/54 3/40 2/58

18.56 17.75 16.90 16.83
p0s3p1s4 16 36.67s 46.13s 69.51s 176.15s

8.63MB 14.38MB 9.07MB 35.60MB
6/119 0/22 0/27

19.90 19.27 19.21 19.27
p0s4p1s4 5 45.91s 47.1s 60.11s 8547.52s

9.03MB 26.11MB 9.23MB 486.92MB
1/31 3/86 5/115

3946.76 2213.35 2303.47 2218.34
ran-4-3 196.19s 242.7s 330.64s

19.65MB 124.06MB 20.28MB
2/59 1/37 3/141

8068.02 4111.77 4221.75 3641.61
ran-4-4 323.35s 281.58s 459.08s

34.46MB 167.66MB 28.88MB
5/190 6/159 5/194

3965.73 2765.19 2780.45 2765.77
tiga-ran-4-3 230.06s 351.45s 337.39s

17.44MB 127.10MB 25.23MB
4/88 5/165 6/164

8058.78 6343.45 6307.29 6358.3
tiga-ran-4-4 262.09s 323.7s 270.93s

26.37MB 170.63MB 20.76MB
2/32 5/121 2/30

given time-interval. The DPA scheduling problem is now: given a configuration of
an DPA, which SDPA should be allocated which resources at what time in order
to minimize expected completion time? For this scheduling problem, Kempf et
al. [22] provide a method for exact optimal scheduler synthesis under uncertainty.
We will use their results as a benchmark. Poulsen et al. [28] provides a method
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for translating DPA into TAs with a uniform scheduler, it is trivial to adapt this
for translating DPAs into PTMPDs.

Qualitative Comparison. Rows 3-5 show the statistics of obtaining the optimal
strategy for three small models (2 processes, 2 tasks) from Kemp et al. [22]8

using our approach. If we examine the synthesized strategies, we see that these
are in fact the same strategies as those found using the exact computation (with
decision boundaries located within 0.5 time units of the optimal boundaries).
We also observe that even though an optimal strategy is found, this does not
affect the expected time significantly. Furthermore, the exact computation of
[22] for these models took between 176 − 8547 seconds, whereas our method
synthesize optimal strategies in less than 70 seconds in each case, thus an order
of magnitude faster and less memory-consuming.

Scalability Comparison. For testing the method on larger models, we randomly
generate a number of larger DPAs (3-5 processes, 3-5 tasks). On two of these
DPAs we first ran Uppaal-Tiga to find the best possible worst case time guar-
antee (rows 8, 9 in Table 1). Then on all four (rows 6 − 9 in Table 1) we ran
the three different methods to synthesize a strategy with near-minimal expected
completion-cost subject to the possible time-bound guarantee.

Generally we observe, that it is specific to the example which method performs
the best. We observe that all three methods are able to learn a strategy which
is significantly better than the uniformly random strategy. We see that in the
examples, where we constrain the allowed strategies using Uppaal-Tiga only
little overhead is incurred, but the strategy we learn does not improve as much as
otherwise. This is natural as Uppaal-Tiga constrain the choices we are allowed
to learn.

6 Conclusion and Future Works

In this paper, we have presented a new technique that combines classical con-
troller synthesis with reinforcement learning to compute strategies that provide
near optimal expected cost and time-bound guarantees. Our experiments show
very good results on the class of DPA models. The framework presented is gen-
eral and not limited to neither DPAs or PTMDPs. In particular, if a time-bound
is not required then we can omit the Uppaal-Tiga step and apply our tech-
nique to hybrid MDPs by utilizing Uppaal SMC’s support for stochastic hybrid
systems [15]. Future works include developing suitable data structures for more
general classes of strategies than non-lazy ones. Though our method is guaran-
teed to converge to the optimal strategy (under the assumption of non-lazyness),
it would be usefull if an estimation of how close a given proposed solution is to
the optimal one. However, given the difficulty in obtaining such error-bounds in
much simpler cases such as job-shop and task-graph scheduling [2,1], we believe
that this will be very difficult.

8 Models and results available
at http://www-verimag.imag.fr/PROJECTS/TEMPO/DATA/201304_dpa/

http://www-verimag.imag.fr/PROJECTS/TEMPO/DATA/201304_dpa/
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Abstract. In addition to rigorously checking whether a system con-
forms to a specification, model checking can provide valuable feedback in
the form of succinct and understandable counterexamples. In the context
of probabilistic systems, path- and subsystem-based counterexamples at
the state-space level can be of limited use in debugging. As many prob-
abilistic systems are described in a guarded command language like the
one used by the popular model checker Prism, a technique identifying
a subset of critical commands has recently been proposed. Based on re-
peatedly solving MaxSat instances, our novel approach to computing a
minimal critical command set achieves a speed-up of up to five orders of
magnitude over the previously existing technique.

1 Introduction

Algorithmic counterexample generation is a key component of modern model
checkers. Counterexamples are pivotal for debugging—experience has shown
that counterexamples are the single most effective feature to convince system
engineers about the value of formal verification [11]. They are an essential ingre-
dient in counterexample-guided abstraction refinement [10] (CEGAR) and can
be effectively used in model-based testing. Prominent model checkers such as
Spin and NuSmv include powerful facilities to generate counterexamples in var-
ious formats. Such counterexamples are typically provided at the modeling level,
like a diagram indicating how the change of model variables yields a property
violation, or a message sequence chart illustrating the failing scenario. Substan-
tial efforts have been made to generate succinct counterexamples, often at the
price of an increased time complexity [14,17,26]. Despite the growing popular-
ity of probabilistic model checkers, such facilities are absent in tools such as
Prism [22] and Mrmc[21]. This paper presents an efficient scalable technique
for computing minimal counterexamples for the Prism modeling language.
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Counterexample generation for probabilistic models is not easy. Showing that
the reachability probability of a bad state b does not stay below a given thresh-
old λ requires a set of finite paths leading to b, whose probability mass exceeds
λ. Computing minimal sets is a k-shortest path problem [16] and can be done
using heuristics [1] or bounded model checking [29] and may be enhanced by
post-processing steps, such as building a fault-tree to better explain the causal-
ity in the model [23]. A viable alternative is to determine minimal critical sub-
systems [30,31], i. e., model fragments for which the likelihood of reaching b
already exceeds λ. The drawback of most approaches in the literature is that
they work at the state space level. As the size of sets of finite paths can be
doubly exponential in the number of states [16], and minimal critical subsys-
tems can have thousands of states [30], state-based diagnostic feedback is often
incomprehensible and not effectively usable in CEGAR approaches for proba-
bilistic systems [18,9]. Although symbolic approaches diminish this problem to
some extent, the resulting counterexamples are still too large to handle [19].

We therefore take a radically different approach, and generate counterexamples
as Prism probabilistic programs. Our approach basically deletes commands of
a Prism probabilistic program yielding a smallest Prism probabilistic program
violating the reachability property at hand. Prism uses a stochastic version of
Alur and Henzinger’s reactive modules [2] as modeling language. A module de-
scription consists of a set of guarded commands providing discrete probabilistic
choices. The semantics of a module is a probabilistic automaton [27], a com-
positional variant of Markov decision processes. A Prism probabilistic program
consists of several modules that communicate by shared variables or using syn-
chronization on common actions. (Remark that our approach is also applicable
to other modeling formalisms for probabilistic automata such as PIOA [8], pro-
cess algebra [20] and the graphical component-wise representation of systems as
possible in Uppaal [7].)

The problem considered is: determine a minimal set of guarded commands
of a given Prism probabilistic program (constituting a Prism sub-program)
that refutes the reachability property at hand. This problem is NP-hard [32].
We present an incremental approach for computing minimal critical command
sets. The basic idea of our approach is to deduce necessary conditions for an
optimal solution by a static analysis of the probabilistic program. We then use a
MaxSat solver to compute a smallest set of commands that is in accordance with
these constraints. The resulting Prism probabilistic program is model checked
against the property at hand. If the reachability property is violated, the program
constitutes the desired minimal critical command set. Otherwise, it is excluded
from the search space and further conditions on the optimal solution are de-
duced. This paper presents the technical details of the approach and establishes
its correctness. We report on a prototype implementation and show the practi-
cal applicability of our incremental MaxSat approach on a number of Prism
benchmark case studies. The experimental results show that our approach scales
to models with millions of states and achieves a speed-up of up to five orders of
magnitude in comparison to a mixed-integer linear programming approach [32].
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Whereas this paper focuses on reachability probabilities, our approach can be
easily extended to properties ϕ that are monotonic in the sense that if A is a
sub-PA of A′ and A �|= ϕ, then also A′ �|= ϕ.

2 Preliminaries

2.1 Probabilistic Automata

Let S be a countable set. A probability distribution over S is a function μ : S →
[0, 1] such that

∑
s∈S μ(s) = 1. We denote by Dist(S) the set of all probability

distributions over S. A distribution μ is called Dirac if there exists an element
s ∈ S with μ(s) = 1 and μ(s′) = 0 for all s′ ∈ S with s �= s′.

Definition 1 (Probabilistic Automaton [27]). A probabilistic automaton
(PA) is a tuple A = (S, sinit,Act ,P) where S is a finite set of states, sinit ∈ S
is the initial state, Act is a finite set of actions, and P : S → 2Act×Dist(S) is a
probabilistic transition relation such that P(s) is finite for all s ∈ S.

Intuitively, the evolution of a probabilistic automaton is as follows. Starting in
the initial state sinit, a transition (α, μ) ∈ P(sinit) is chosen nondeterministically.
Then, the successor state s′ ∈ S is determined probabilistically according to the
probability distribution μ. Repeating this process in s′ yields the next state and
so on. To prevent deadlocks, we require P(s) �= ∅ for all s ∈ S.

Let succA(s, α, μ) = {s′ ∈ S | μ(s′) > 0} for (α, μ) ∈ P(s), succA(s) =⋃
(α,μ)∈P(s) succA(s, α, μ), and predA(s) = {s′ ∈ S | ∃(α, μ) ∈ P(s′) : μ(s) > 0}.

We will omit the subscript A if the PA is clear from the context.
An (infinite) path π in a PA A is an infinite sequence s0(α0, μ0)s1(α1, μ1) . . .

such that (αi, μi) ∈ P(si) and si+1 ∈ succ(si, αi, μi) for all i ≥ 0. A finite path
ρ in A is a finite prefix s0(α0, μ0)s1(α1, μ1) . . . sn of an infinite path π in A and
its last state is denoted last(ρ) = sn. Let π[i] denote the ith state in path π.
The sets of all infinite and finite paths in A starting in s ∈ S are denoted by
PathA(s) and PathfinA (s), respectively.

Example 1. Figure 2 on page 152 shows an example PA with five states. For
instance, the state s1 has a nondeterministic choice between the two transitions
(reset, μsinit) and (proc, μproc) where μsinit is the Dirac distribution at sinit and
μproc is given by μproc(s3) = 0.99 and μproc(s4) = 0.01.

To define a suitable probability measure on PAs, the nondeterminism has to be
resolved by schedulers.

Definition 2 (Scheduler). A scheduler for a PA A = (S, sinit,Act ,P) is
a function σ : PathfinA (sinit) → Dist(Act × Dist(S)) mapping each finite path
ρ ∈ PathfinA (sinit) in A to a probability distribution over transitions such that
σ(ρ)(α, μ) > 0 implies (α, μ) ∈ P

(
last(ρ)

)
.

Intuitively, a scheduler resolves the nondeterminism in a PA by assigning proba-
bilities to the nondeterministic choices available in the last state of a given finite
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path. It therefore reduces the nondeterministic model to a fully probabilistic
one. Given a PA A and a scheduler σ for A, a standard probability measure on
paths, which we denote by Prσsinit,A (or, briefly, PrσA), can be defined [4].

In the context of this paper we are interested in probabilistic reachability prop-
erties : is the probability to reach a set T ⊆ S of target states from sinit at
most λ ∈ [0, 1]? This property is denoted by P≤λ(♦T ). Note that checking ar-
bitrary ω-regular properties can be reduced to checking reachability properties,
see [4] for details. A satisfies a probabilistic reachability property P≤λ(♦T ), de-
noted A |= P≤λ(♦T ), if PrσA(♦T ) := PrσA({π ∈ PathA(sinit) | ∃i : π[i] ∈ T }) ≤
λ for all schedulers σ. Algorithmically, the maximal reachability probability
Prmax

A (♦T ) := supσ Pr
σ
A(♦T ) is computed using standard techniques, such as

value or policy iteration [5,25], and compared against the bound λ.

2.2 Prism’s Probabilistic Guarded Command Language

For a set Var of Boolean variables, let NVar denote the set of all variable valu-
ations, i. e., the set of functions ν : Var → {0, 1}.
Definition 3 (Probabilistic Program, Module, Command). A probabilis-
tic program is a tuple P = (Var , νinit,M) where Var is a finite set of Boolean
variables1, νinit ∈ NVar is the initial variable valuation, and M = {M1, . . . ,Mk}
is a finite set of modules.

A module is a tuple Mi = (Var i,Act i, Ci) where for 1 ≤ i, j ≤ k Var i ⊆ Var
is a finite set of Boolean variables such that Var i ∩ Var j = ∅ for i �= j, Act i
is a finite set of synchronizing actions, and Ci is a finite set of commands.
Additionally, to be consistent with the program, we require Var =

⋃k
j=1 Var j.

Let τ �∈
⋃k

i=1 Acti denote the internal non-synchronizing action. A command
c ∈ Ci is of the form c = [α] g → p1 : f1 + . . . + pn : fn, where α ∈ Act i ∪̇ {τ}
is the action of c that is referred to as act(c), g is a Boolean predicate over Var
(called the guard of c), denoted by grd(c), pj ∈ [0, 1] is a rational number such
that

∑n
i=1 pi = 1, and fj : NVar → NVar i is an update function that assigns to

each variable of the module a new value based on the values of all variables in
the program for all 1 ≤ j ≤ n.

Note that each variable v ∈ Var i may be written only by the module Mi,
but the update may depend on variables of other modules. The restriction
(Var i,Act i, Ci ∩C) of module Mi to a set C of commands is denoted Mi|C and
P|C = (Var , νinit, {M1|C , . . . ,Mk|C}) is the restriction of the whole program to
this set of commands.

A model with k > 1 modules is equivalent to a model with a single module
resulting from the parallel composition M1 ‖ · · · ‖ Mk of all modules. Intuitively,
the parallel composition of two modules corresponds to a new module that en-
ables all non-synchronizing behavior of the two modules as well as the composi-
tion of all command-pairs that need to synchronize because of a common action

1 Note that for Prism, the variables do not have to be Boolean. However, as finite
variable domains are required, every program can be transformed into one only
having Boolean variables.
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module coin

f : bool init 0; c: bool init 0;
(c1)[flip] ¬f → 0.5 : (f ′ = 1)&(c′ = 1) + 0.5 : (f ′ = 1)&(c′ = 0);
(c2)[reset] f ∧ ¬c → 1 : (f ′ = 0);
(c3)[proc] f → 0.99 : (f ′ = 1) + 0.01 : (c′ = 1);

endmodule
module processor

p: bool init 0;
(c4)[proc] ¬p → 1 : (p′ = 1);
(c5)[loop] p → 1 : (p′ = 1);
(c6)[reset] true → 1 : (p′ = 0);

endmodule

Fig. 1. A probabilistic program PEx in Prism’s input language

name. Formally, the binary composition Mi ‖ Mj = (Var i∪Var j ,Act i∪Actj , C)
of two modules Mi and Mj with i �= j has the set of commands

C = {c | c ∈ Ci ∪ Cj ∧ act(c) ∈ ({τ} ∪ Act i �Actj)}
∪ {c⊗ c′ | c ∈ C1 ∧ c′ ∈ C2 ∧ act(c) = act(c′) ∈ Act i ∩ Actj}

where A�B is the symmetric difference of the sets A and B. The composition
c⊗ c′ of two commands c = [α] g → p1 : f1 + . . .+ pn : fn and c′ = [α] g′ → p′1 :
f ′
1 + . . .+ p′m : f ′

m with the same action α is defined as

c⊗ c′ = [α] g ∧ g′ →
n∑

i=1

m∑

j=1

pi · p′j : fi ⊕ f ′
j .

Here, the composition fr ⊕ fs : NVar → NVari∪Varj of two update functions
fr : NVar → NVar i

and fs : NVar → NVarj
is defined by

(fr ⊕ fs)(ν)(v) =

{
fr(ν)(v), if v ∈ Var i,

fs(ν)(v), otherwise.

Example 2. Figure 1 shows a probabilistic program PEx with two modules coin
and processor. It models a system that first does a coin flip and then processes
some data. While doing so, it may erroneously modify the coin. Depending on the
outcome of the coin flip, the system may reset to the initial configuration. The
program uses three variables VarEx = {f, c, p} that indicate whether a coin has
been flipped (f), the coin shows tails (c = 0) or heads (c = 1) and whether some
data was processed (p). Initially the module coin can do a coin flip (command
c1). Then, both modules can process some data by synchronizing on the proc

action (c3 and c4). However, the processing step can by mistake set the coin to
show heads with probability 0.01 (c3). Additionally, if the coin showed tails, the
coin flip can be undone by a reset (c2 and c6). Finally, if data has been processed
the system may loop forever (c5).
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The semantics of a probabilistic program P = (Var , νinit, {M}) with only one
moduleM = (Var ,Act , C) is defined in terms of a PAA = �P�=(S, sinit,Act ,P).
S = NVar is the set of all valuations of the program variables2. Hence, each state
s ∈ S can be seen as a bit vector (x1, . . . , xm) with xi being the value of the
variable vi ∈ Var = {v1, . . . , vm}. The initial state sinit of the PA corresponds
to the initial valuation νinit of variables in the program. A guard g defines a
subset Sg ⊆ S of states in which the guard evaluates to true. Now, a command
c = [α] g → p1 : f1+. . .+pn : fn induces a probability distribution μs,c ∈ Dist(S)
for all states s ∈ Sg by setting

μs,c(s
′) =

∑

{i | 1≤i≤n∧ fi(s)=s′}
pi

for each s′ ∈ S. The transition relation P is then defined for all s ∈ S by

P(s) =
{
(α, μs,c)

∣
∣ ∃c ∈ C : act(c) = α ∧ s ∈ Sgrd(c)} .

We say that the transition (α, μs,c) is generated by the command c. In case c
resulted from the parallel composition of a set of commands C from a proba-
bilistic program with more than one module, we say that the commands in C
(jointly) generate the transition. From now on we assume a labeling function
L : S × Act × Dist(S) → 2Lab that labels each transition (α, μ) ∈ P(s) with
a set of labels L(s, α, μ) ⊆ Lab = {�c | ∃i ∈ {1, . . . , k} : c ∈ Ci} to indicate
which commands generated the transition. Note that in case of synchronization
the labeling of a transition is a set with more than one element. In order to
distinguish the transitions generated by different commands later on, we create
different copies of the transition and label them appropriately, if a particular
transition is generated by different commands or command sets. We will abbre-
viate the set of states {s ∈ S | ∃(α, μ) ∈ P(s) : c ∈ L(s, α, μ)} that have an
outgoing transition generated by c ∈ C by src(c). Analogously, we let dst(c) be
the set of states that have an incoming transition (α, μ) from some state s′ with
c ∈ L(s′, α, μ). If a state s has no command enabled, i.e. s �∈ Sgrd(c) for any
c ∈ C, the state is equipped with a self-loop transition (αs, μs) where αs �∈ Act
is a new action and μs is the Dirac distribution on s. For all transitions added
this way, we let L(s, αs, μs) = ∅ to reflect that they were not generated by any
command, but were added to avoid deadlock states.

Example 3. A = �PEx� is depicted in Figure 2 where all unreachable states are
omitted. The states of the automaton are given by the valuations of the variables
in the form 〈f, c, p〉 and the arrows between the states define the transition
relation P, where the highlighting of arrows only becomes relevant in a following
example and can be ignored for now. Assume that the probabilistic reachability
property ϕ = P≤0.5(♦{s4}) is given. Clearly, A �|= ϕ, because, for example,

2 Actually, Prism programs also allow to specify discrete-time and continuous Markov
chains (DTMCs and CTMCs, respectively) and probabilistic timed-automata (PTA).
While this paper focuses on PAs, our technique can be readily applied to DTMCs
and PTA and also on CTMCs if the guards of commands are non-overlapping.
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〈0,0,0〉
sinit

〈1,0,0〉
s1

〈1,1,0〉
s2

〈1,0,1〉
s3

〈1,1,1〉
s4

flip

0.5

0.5

proc, 0.99

proc, 0.01

proc, 1

loop, 1

loop, 1

reset, 1

reset, 1

Fig. 2. The reachable fragment of the probabilistic automaton �PEx�

PrσA(♦{s4}) = 0.505 for the scheduler σ that chooses the proc action in both s1
and s2 and loops in s3 and s4.

Critical command sets. Consider a probabilistic program P = (Var , νinit, {M =
(Var ,Act , C)}), its associated PA A = �P� = (S, sinit,Act ,P), and the reacha-
bility property ϕ = P≤λ(♦T ) for a set of target states T ⊆ S. We assume ϕ to be
violated by �P�, i. e., A �|= ϕ. We aim at identifying a set C′ ⊆ C of commands
such that the program restricted to these commands still violates the property
ϕ, i. e., �P|C′� �|= ϕ. We call these subsets of commands critical command sets,
as they induce a critical fragment of the probabilistic automaton that already
proves the violation of the property.

Example 4. Reconsider the probabilistic automaton �PEx� and the probabilistic
reachability property ϕ = P≤0.5(♦{s4}) given in Example 3. While the program
PEx has 5 commands, the commands C∗

Ex = {c1, c3, c4} are already critical,
because �PEx|C∗

Ex
� �|= ϕ. The transitions of the restricted model are drawn as

bold arrows in Figure 2.

2.3 MaxSat

Given two finite sets Φ, Ψ of propositional formulae over variables Var such that
Ψ is satisfiable, the goal is to determine an assignment ν ∈ NVar which satisfies
all formulae in Ψ and a maximal number of formulae in Φ, i. e., MaxSat(Φ, Ψ) =
ν such that ν |= Θ ∪ Ψ where Θ ∈ argmaxΦ′⊆Φ

{
|Φ′|

∣
∣Φ′ ∪ Ψ is satisfiable

}
.

Note that by negating each formula in Φ, i. e., letting Φ = {¬ϕ |ϕ ∈ Φ},
MaxSat(Φ, Ψ) yields an assignment that satisfies a minimal number of formulae
of Φ while still satisfying all constraints in Ψ . Consequently, we let
MinSat(Φ, Ψ) := MaxSat(Φ, Ψ). There are different techniques to solve the
MaxSat problem for a given instance, but we focus on a counter-based tech-
nique that is particularly suited if an instance needs to be solved repeatedly after
adding additional constraints. For further details, we refer to [13].
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compute C =
MinSat(ΦC , ΦP)

add constraints
to ΦP

compute
Prmax

A|C (♦T ) analysis of A|C

model �P�

solution C∗

> λ

≤ λ

Fig. 3. A schematic overview of our MaxSat-based approach

3 Computing Minimal Critical Command Sets

In this section we present our novel approach to compute a critical command
set as introduced in Section 2.2. For the remainder of this section, let P =
(Var , νinit,M) withM = {M1, . . . ,Mk} be a probabilistic program with modules
Mi = (Var i,Act i, Ci) for 1 ≤ i ≤ k. Let A = �P� = (S, sinit,Act ,P) and
A|C = �P|C� for a given set C of commands. We assume that the labeling L of
transitions with command labels according to Section 2.2 is given. Furthermore,
let T ⊆ S be a set of target states and λ ∈ [0, 1] such that A �|= P≤λ(♦T ) in order
to guarantee the existence of a critical command set. The task is to compute a
minimal critical command set, i. e., a smallest set C∗ of commands such that
A|C∗ �|= P≤λ(♦T ) or, equivalently, Prmax

A|C∗ (♦T ) > λ. The fact that this problem
is NP-hard in the size of the probabilistic program can be shown by a reduction
from exact 3-cover (X3C) very similar to the one in [32]. Note that a solution C∗

of this problem is not unique as there may be more than one set of commands
of size |C∗| that suffices to violate the reachability property.

3.1 Algorithm

Basic idea. Clearly, for realistic problems, an enumeration of all possible com-
mand sets is infeasible. Hence, it is crucial to obtain additional information
from the model to rapidly guide the search. For example, if an optimal so-
lution C∗ contains a synchronizing command c of module Mi, it must also
contain at least one command of each module Mj that needs to synchronize
with c, i. e., act(c) ∈ Actj . Likewise, if a command c does not lead to a tar-
get state in T directly, adding c to the set C∗ implies that it must also con-
tain at least one command (or command combination) that may directly follow
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c in A, which in turn may trigger other implications. We therefore strive to
encode as much information as possible from the program P in the form of
a set ΦP of logical formulae. Primarily, the formulae are built over variables
ΦC := {xc | ∃i ∈ {1, . . . , k} : c ∈ Ci} whose truth values indicate whether a
certain command is included in the current hypothesis or not. We then use a
MaxSat solver to compute the smallest set C of commands that is in accor-
dance with all constraints in ΦP by solving C = MinSat(ΦC , ΦP).3 Finally, a
model checker is invoked to determine p = Prmax

A|C (♦T ). If p exceeds λ, we do not
only know that the current set C suffices to exceed λ but also that C is among
the sets of minimal size for which this holds, because smaller candidate sets are
enumerated first by the solver. If, on the other hand, p ≤ λ, we analyze why C
was insufficient, add appropriate implications to ΦP and iterate the algorithm
until a sufficient set C was found. A schematic overview of this procedure is
depicted in Figure 3.

3.2 Building the Initial Constraint System ΦP

As previously mentioned, the first step of our algorithm consists of statically
deriving information about the model A = �P� to guide the search for a minimal
critical command set C∗. Note that it suffices to consider the reachable state
space of A for all the constraints we derive.

Guaranteed commands. For typical models, some commands need to be taken
along all paths from the initial state to a target state. It is thus beneficial to
determine this set in a preprocessing step to the actual search and thereby
possibly prune large parts of the search space. We therefore compute the set of
guaranteed commands using a standard fixed point analysis [24] on A.

Example 5. All paths that lead to the target state in �PEx� must go along tran-
sitions generated by the commands c1, c3 and c4, so it is a priori known that a
solution must contain all of them.

Synchronization implications. By the semantics of the program P, it is required
that a synchronizing command c in module Mi can only generate a transition
together with synchronizing commands cj of all modulesMj , i �= j, with act(c) ∈
Actj . Consequently, we can conclude that any optimal solution C∗ with c ∈ C∗

must also contain at least one command cj of each synchronizing module such
that the commands c and cj are simultaneously enabled. Formally, we assert

xc →
∨

s∈src(c)

∨

(α,μ)∈P(s)
�c∈L(s,α,μ)

∧

�c′∈L(s,α,μ)
c 
=c′

xc′ for all Mi ∈ M and c ∈ Ci. (1)

3 Formally, this is not entirely correct, since MinSat returns a satisfying assignment.
More formally, we let C = {c | ν(xc) = 1} where ν = MinSat(ΦC , ΦP).
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Example 6. In PEx, the command c3 in the first module and c4 in the second
module need to synchronize in order to generate a transition. The synchroniza-
tion implications xc3 → xc4 and xc4 → xc3 ensure that candidate sets must
either contain both or none of the two commands.

Successor and predecessor implications. Observe that a candidate set C is surely
sub-optimal if c ∈ C only participates in generating transitions in A|C that lead
to non-target states without outgoing transitions. In this case, no path from the
initial state to a target state can visit a transition that was generated by c and,
hence, c can be dropped from C without affecting the reachability probability.
Thus, we can assert that each c ∈ C either possibly leads to a target state
directly or leads to some state that has a non-empty transition set. Hence, we
add for all Mi ∈ M and c ∈ Ci with dst(c) ∩ T = ∅ the constraint

xc →
∨

s′∈dst(c)

∨

(α,μ)∈P(s′)

∧

�c′∈L(s′,α,μ)
c 
=c′

xc′ (2)

to ΦP. Analogously, for each command c′ that is not enabled in the initial state,
i. e., sinit �∈ src(c′), we select a combination of commands that leads to some
state s ∈ src(c′) by enforcing

xc′ →
∨

s∈src(c′)

∨

s′∈pred(s)

∨

(α,μ)∈P(s′)
s∈succ(s′,α,μ)

∧

�c∈L(s′,α,μ)
c 
=c′

xc (3)

As slight variations of these implications, we can encode that at least one of the
transitions of the initial state and at least one transition that has a target state
as a direct successor are generated by (a subset of) C.

Example 7. In our running example PEx, the command c1 must be used in order
to reach states that have c3 enabled. Consequently, we can add the predecessor
implication xc3 → xc1 . Likewise, all transitions generated by c2 must be preceded
by either a transition generated by c1 or by the synchronization of c3 and c4,
so xc2 → xc1 ∨ (xc3 ∧ xc4) can be added to ΦPEx . Finally, since the initial state
must have an outgoing transition, we can assert xc1 . Note that these are only a
few of the constraints that can be constructed for PEx.

Extended backward implications. Reconsider the probabilistic programPEx. Our
previously presented backward implications assert that if a candidate set C con-
tains command c2, it also contains either c1 or both c3 and c4, because both
command combinations may directly precede c2. However, it is obvious that c1
must always be executed before c2, because otherwise the guard of c2 never be-
comes true. Put differently, only command c1 “enables” c2 and should therefore
be implied by the choice of c2.

More formally, we say that a set of commands C′ enables a non-synchronizing
command c if there is at least one state s such that (i) s �∈ src(c), (ii) there is an
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s
s′

s′′

Cs′,1

Cs′,2

Cs′′

A B

Fig. 4. A restricted model with only unreachable target states

(α, μ) ∈ P(s) with L(s, α, μ) = C′ and a successor state s′ ∈ succ(s, α, μ) such
that s′ ∈ src(c), (iii) c is not enabled in the initial state, i. e., sinit �∈ src(c). Let
enab(c) denote the set of all command sets that enable c. We can then assert

xc →
∨

C′∈enab(c)

∧

c′∈C′
xc′ (4)

for all commands c with sinit �∈ src(c) without ruling out optimal solutions. A
similar, yet more involved implication can also be asserted for synchronizing
commands, but is omitted for the sake of simplicity.

Enforce reachability of a target state. Using a similar construction as the one in
[32], reachability of a target state can be encoded in the constraints if aMaxSmt
solver is used.

3.3 Analysis of Insufficient Command Sets

After the initial constraint set was constructed, a MinSat problem is solved
to obtain a smallest command set C that adheres to these constraints. The
restricted model A|C is then dispatched to a model checker to verify or refute
P≤λ(♦T ). If the reachability probability in A|C exceeds λ, a solution for the
minimal critical command set problem has been found, because the set C is, by
construction, the smallest candidate set. However, in the more likely event of not
exceeding λ, we aim to derive additional constraints from the constrained model
that guide the solver towards a solution with a higher reachability probability.
While it is easily possible to rule out just the current (insufficient) candidate set
C by adding a formula to ΦP, we strive to rule out more insufficient candidate
sets to guide the search. We illustrate this procedure for the case where the
reachability probability is zero, i. e., the target states are unreachable altogether
(which can, of course, only happen if the constraints to enforce reachability
of a target state are not used). A similar reasoning can be applied in case the
probability is non-zero. Assume that the current candidate C induces a restricted
modelA|C in which the target states are unreachable. Figure 4 sketches the shape
of A|C in this scenario where A is the set of states reachable from the initial state
and B is formed by all states that can reach a target state. In order to increase
the probability of reaching T , any future candidate set C′

� C must generate
a path from A to B in A|C′ in order to reach a target state. More concretely,
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we do not need to consider all states in A but rather those states that are on
the border borderC(A,B) of A, meaning that they possess a transition in the
unrestricted model A that is (i) not present in A|C , (ii) leaves the set A and
(iii) is the first transition of a finite path that ends in B. The states in question
can be obtained using efficient graph searches that are essentially breadth-first
searches. Having identified these states, we perform a usually cheap analysis that
for a given state s determines the set of commands Cs�B that need to be taken
along all paths from s to some state s′ ∈ B. We could then assert

∧

c∈C

xc →
∨

s∈borderC(A,B)

∧

c∈Cs�B

xc (5)

to express that any future candidate C′
� C must contain all commands nec-

essary for reaching B from some state s ∈ borderC(A,B). However, as the sets
Cs�B are possibly empty, the above constraint does not necessarily eliminate
any candidate (not even C). Hence, to guarantee elimination of C as a candidate,
we take an intermediate step from a border state s to some state s′ �∈ A to ensure
some transition leaving A is generated. Formally, this leads to the constraint

∧

c∈C

xc →
∨

s∈borderC(A,B)

∨

(α,μ)∈P(s)

∨

s′∈succ(s,α,μ)
s′ 
∈A

( ∧

�c∈L(s,α,μ)

xc

︸ ︷︷ ︸
s→s′

∧
∧

c′∈Cs′�B

xc′

︸ ︷︷ ︸
s′�B

)
.

Example 8. Assume that the solver found the candidate set C = {c1} while
searching for a critical command set in PEx for ϕ. This would not be possible
if all previously mentioned constraints are added, but is assumed for the sake
of simplicity. Then, A|C comprises the three reachable states A = {sinit, s1, s2},
the latter two of which are on the borderC(A, {s4}). Since all transitions leaving
the two states s1 and s2 towards s4 are jointly generated by the commands c3
and c4, we add the constraint xc1 → xc3 ∧ xc4 to rule out C.

3.4 Correctness and Completeness

The correctness of our approach basically depends on the fact, that all possible
sets of commands are incrementally enumerated until one set fits the require-
ment given by the violated property. If no additional constraints are used, the
MaxSat method starts with the minimal possible subset of commands and in-
creases this size until the model checker reports the violation of the property for
the then optimal set of commands C∗. Completeness of the algorithm holds, as
all candidates are enumerated at most once and there are finitely many candidate
command sets.

What remains to be argued is that all constraints in the set ΦP are correct in
the sense that each optimal solution C∗ of the critical command set problem nec-
essarily satisfies all of these constraints. Put differently, every constraint ϕ ∈ ΦP

only restricts the solution space such that no optimal solution, i. e., no minimal
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critical command set, is ruled out. Due to the page limit, we abstain from giving
a formal proof, but refer to Sections 3.2 and 3.3 where the correctness of all
constraints is explained.

4 Evaluation

Implementation. We implemented our technique in roughly 1000 lines of C++

code. The prototype was developed in the context of a model checker under
development. We employ the counter-based MaxSat procedure described in
Section 2.3 using Z3 4.3 [12] as the underlying Sat/Smt solver. To provide a
fair comparison, we additionally implemented the MILP-based approach [32]
using the commercial solver Gurobi 5.6 [15]. We also added the detection of
guaranteed commands (see Section 3.2) as an optimization to the MILP approach
and added the resulting information to the problem encoding. As proposed in
[32], we added the so-called scheduler cuts, an additional set of constraints to
rule out suboptimal solutions, to the MILP encoding, because they strongly tend
to improve the performance of the solver. According to [32], all other cuts may
have a mixed influence on the performance of the solver and were thus omitted.

Case studies. For the evaluation of the prototype we used four benchmarks that
were all previously considered in [32]. They can be found on Prism’s website.

� Consensus Protocol. The probabilistic program coin(N,K) models the
shared coin protocol of a randomized consensus algorithm [3]. It is used to de-
termine a preference between two choices, each of which appears with a cer-
tain probability. The shared coin protocol is parametrized in the number N of
involved processes and a constantK > 1. Internally, the protocol is based on flip-
ping a coin to come to a decision. We consider the property
P<λ(♦(finished ∧ all coins equal 1)) that is satisfied if the probability to finish
the protocol with all coins showing the value 1 is below λ.

� Wireless LAN. The case study wlan(B,D) concerns the two-way handshake
mechanism of the IEEE 802.11 Wireless LAN protocol. Two stations try to send
data, but run into a collision. Therefore they enter the randomized exponential
backoff scheme. Parameter B denotes the maximally allowed value of the backoff
counter. We check the property P<λ(♦(num collisions = D)), putting an upper
bound on the probability that the maximal number of collisions D occurs.

� CSMA. The csma(N,B) model concerns the IEEE 802.3 CSMA/CD net-
work protocol with N the number of processes wanting to access a common
channel and B is the maximal value of the backoff counter. We check that the
probability of all stations successfully sending their messages before a collision
with maximal backoff occurs is less than λ, i. e., P<λ(¬collision U delivered).

� Firewire. Finally, fw(N) models the Tree Identify Protocol of the IEEE 1394
High Performance Serial Bus (called “FireWire”) [28]. It is a leader election
protocol that is executed each time a node enters or leaves the network. The
parameter N denotes the delay of the wire. We check P<λ(♦leader elected), i. e.,
that the probability of finally electing a leader is below λ.
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Table 1. The results of the experiments

MILP[32] MaxSat

model states trans. λ/p∗ comm. |C∗| Time Mem. Time Mem. enum.

coin(2, 2) 272 492 0.4 / 0.56 10 (4) 9 TO > 0.04 0.08 0.02 54%
coin(4, 4) 43136 144352 0.4 / 0.54 20 (8) 17 TO > 2.60 1876 0.07 50%
coin(4, 6) 63616 213472 0.4 / 0.53 20 (8) 17 TO > 6.70 6231 0.09 50%
coin(6, 2) 1258240 6236736 0.4 / 0.59 30 (12) – TO > 8.36 TO > 1.54 –
csma(2, 4) 7958 10594 0.5 / 0.999 38 (21) 36 31.4 0.07 2.26 0.04 0.09%
csma(4, 2) 761962 1327068 0.4 / 0.78 68 (22) 53 TO > 9.60 18272 0.92 3.9E-9%
fw(1) 1743 2199 0.5 / 1 64 (6) 24 207.25 0.16 16.14 0.05 1.4E-10%
fw(10) 17190 29366 0.5 / 1 64 (6) 24 9196 0.84 90.47 0.07 1.4E-10%
fw(36) 212268 481792 0.5 / 1 64 (6) 24 TO > 3.20 1542 0.34 1.4E-10%
wlan(0, 2) 6063 10619 0.1 / 0.184 42 (22) 33 TO > 1.99 1.6 0.03 0.02%
wlan(2, 4) 59416 119957 4E-4 / 7.9E-4 48 (26) 39 TO > 4.03 50.27 0.07 0.01%
wlan(6, 6) 5007670 11475920 1E-7 / 2.2E-7 52 (30) 43 ERR – 5035 3.86 0.01%

Experimental results. All experiments were conducted on an Intel Core i7 920
quadcore processor clocked at 2.66GHz with 12GB RAM running Mac OS 10.9.
We set a timeout of 12hours for each individual (single-threaded) experiment.
Table 1 summarizes the results of our experiments. Next to some model statis-
tics about the particular model, the considered probability bound λ and the
maximal reachability probability p∗ of the unrestricted model are shown. Fur-
thermore, we give the number of relevant commands of the probabilistic program
and how many of them are guaranteed commands (see Section 3.2). Here, rel-
evant means that they appear on at least one path from the initial to a target
state. The size of an optimal solution C∗ as well as the runtimes and memory
consumption (in seconds and gigabytes, respectively) of both the MILP- and the
MaxSat-based approach are listed in the following five columns, where TO in-
dicates a timeout. For the MILP approach [32], we performed experiments with
and without using the scheduler cuts and report on the best of these results.
Encoding reachability of a target state (see Section 3.2) tended to be rather
expensive for Z3: in almost all cases it slowed down the overall computation
and thus we list the times obtained without adding these constraints. For all
considered models the MaxSat approach significantly outperforms the MILP-
based technique. While for the fw and csma models the speed-up is about one to
two orders of magnitude, for the coin and wlan case studies it goes as high as
five orders of magnitude. Enabling the multi-threading capabilities of Gurobi (8
threads on our machine) did not change the order of improvement we obtained.
Furthermore it can be seen that the MaxSat approach consistently uses one or-
der of magnitude less memory. For the largest wlan example, Gurobi reported a
wrong result (|C∗| = 38). Performing model checking on the restricted model re-
vealed that the computed command set does not suffice to violate the property.
After careful inspection of our implementation and considering that all other
results coincide, we believe this is due to numerical instabilities in the solving
technique that could not be eliminated by setting its tolerances to the lowest
possible value. Finally, to indicate to what extent the constraints in our new
approach guide the search as opposed to an unguided enumeration of candidate
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sets, Table 1 also shows the fraction �
∑

k
i=0 (

n
i)

(column enum.) where � is the num-

ber of candidate sets enumerated, k is the number of commands in C∗ minus the
guaranteed commands, and n is the number of all relevant but not guaranteed
commands. It represents the ratio of candidate sets that were tested to all can-
didate sets with at most |C∗| commands that contain all guaranteed commands.
Hence, it indicates which fragment of the search space could be pruned. For all
case studies except the coin models, the constraints avoided huge parts of the
search space. Interestingly, despite exploring more than half of the search space,
the MaxSat approach is still much faster on the coin examples, which is due
to the efficient underlying testing procedure for candidate sets.

Further, it is noteworthy that, depending on the model, the analysis of in-
sufficient command sets (see Section 3.3) consumes the largest fraction of the
runtime: for the csma and fw examples more than 80% of the runtime is spent
on it, whereas for the other examples it only contributes a very small fraction
to the overall runtime, which is then clearly dominated by model checking.

Since it is a known characteristic of MILP solvers that good solutions are
found quickly, but the solver is unable to prove their optimality in reasonable
time, we also examined the solution progress of Gurobi on the models for which
it times out. For the smaller to medium-sized models, for example wlan(0,2) and
fw(10), the MILP solver finds a solution of optimal size in 4 and 388 seconds,
respectively, but then fails at proving optimality. However, for the largest models
of each case study that could be solved within time by the MaxSat approach,
Gurobi is unable to find any solution until the time limit is reached.

5 Conclusion

We have presented a novel technique for computing counterexamples at the mod-
eling level of probabilistic programs, which we believe to complement existing
counterexample techniques in the probabilistic setting. In contrast to the pre-
vious approach tackling the minimal command set problem, our new technique
substantially improves computation time and memory consumption and scales
to systems with millions of states. Furthermore, it can be readily applied to
the wider range of monotonic properties by introducing problem-specific con-
straints. However, the performance of the technique can still be improved. It
is easily parallelizable and could therefore benefit from accelerators like GPUs.
More sophisticated analysis techniques of candidate sets that failed to exceed
the probability threshold could be both more efficient to compute and more
beneficial with respect to the number of suboptimal sets that could be pruned.
Moreover, the computed counterexamples can be further reduced in size by ap-
plying branch minimization [32]. Future work also includes possible applications
in techniques that are guided by counterexamples, such as CEGAR [18,9] or
assume-guarantee reasoning [6].
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Poulsen, D.: Checking and distributing statistical model checking. In: Goodloe,
A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 449–463. Springer, Hei-
delberg (2012)

8. Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O.,
Segala, R.: Analyzing security protocols using time-bounded task-PIOAs. Discrete
Event Dynamic Systems 18(1), 111–159 (2008)
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31. Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J.-P., Becker, B.: Minimal coun-
terexamples for linear-time probabilistic verification. Theoretical Computer Science
(2014), doi:10.1016/j.tcs.2014.06.020 (accepted for publication)

32. Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.-P., Becker, B.:
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Abstract. We present ACME, a tool implementing algebraic techniques to solve
decision problems from automata theory. The core generic algorithm takes as in-
put an automaton and computes its stabilization monoid, which is a generalization
of its transition monoid.

Using the stabilization monoid, one can solve many problems:
determine whether a B-automaton (which is a special kind of automata with
counters) is limited, whether two B-automata are equivalent, and whether a prob-
abilistic leaktight automaton has value 1.

The dedicated webpage where the tool ACME can be downloaded is

http://www.liafa.univ-paris-diderot.fr/~nath/acme.htm .

1 Stabilization Monoids for B- and Probabilistic Automata

The notion of stabilization monoids appears in two distinct contexts. It has first been
developed in the theory of regular cost functions, introduced by Colcombet [Col09,
Col13]. The underlying ideas have then been transferred to the setting of probabilistic
automata [FGO12].

1.1 Stabilization Monoids in the Theory of Regular Cost Functions

At the heart of the theory of regular cost functions lies the equivalence between different
formalisms: a logical formalism, cost MSO, two automata model, B- and S-automata,
and an algebraic counterpart, stabilization monoids.

Here we briefly describe the model of B-automata, and their transformations to sta-
bilization monoid. This automaton model generalizes the non-deterministic automata
by adding a finite set of counters. Instead of accepting or rejecting a word as a non-
deterministic automaton does, a B-automaton associates an integer value to each input
word. Formally, a B-automaton is a tuple A = 〈A,Q, Γ, I, F,Δ〉, where A is a finite
alphabet, Q is a finite set of states, Γ is a finite set of counters, I ⊆ Q is the set of initial

� The research leading to these results has received funding from the French ANR project 2010
BLAN 0202 02 FREC, the European Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement 259454 (GALE) and 239850 (SOSNA).
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states, F ⊆ Q is the set of final states, and Δ ⊆ Q ×A × {ic, ε, r}Γ ×Q is the set of
transitions.

A transition (p, a, τ, q) allows the automaton to go from state p to state q while
reading letter a and performing action τ(γ) on counter γ. Action ic increments the
current counter value by 1, ε leaves the counter unchanged, and r resets the counter
to 0.

The value of a run is the maximal value assumed by any of the counters during
the run. The semantics of a B-automaton A is defined on a word w by [[A]](w) =
inf{val(ρ) | ρ is a run of A on w}. In other words, the automaton uses the non deter-
minism to minimize the value among all runs. In particular, if A has no run on w, then
[[A]](w) = ∞.

The main decision problem in the theory of regular cost functions is the limitedness
problem. We say that a B-automaton A is limited if there exists N such that for all
words w, if [[A]](w) < ∞, then [[A]](w) < N .

One way to solve the limitedness problem is by computing the stabilization monoid.
It is a monoid of matrices over the semiring of counter actions {ic, ε, r, ω}Γ . There
are two operations on matrices: a binary composition called product, giving the monoid
structure, and a unary operation called stabilization. The stabilization monoid of a B-
automaton is the set of matrices containing the matrices corresponding to each letter,
and closed under the two operations, product and stabilization. As shown in [Col09,
Col13], the stabilization monoid of a B-automaton A contains an unlimited witness if
and only if it is not limited, implying a conceptually simple solution to the limitedness
problem: compute the stabilization monoid and check for the existence of unlimited
witnesses.

1.2 Stabilization Monoids for Probabilistic Automata

The notion of stabilization monoids also appeared for probabilistic automata, for the
Markov Monoid Algorithm. This algorithm was introduced in [FGO12] to partially
solves the value 1 problem: given a probabilistic automatonA, does there exist (un)n∈N

a sequence of words such that limn PA(un) = 1?
Although the value 1 problem is undecidable, it has been shown that the Markov

Monoid Algorithm correctly determines whether a probabilistic automaton has value 1
under the leaktight restriction. It has been recently shown that all classes of probabilistic
automata for which the value 1 problem has been shown decidable are included in the
class of leaktight automata [FGKO14], hence the Markov Monoid Algorithm is the most
correct algorithm known to (partially) solve the value 1 problem.

As for the case of B-automata, the stabilization monoid of a probabilistic automaton
is the set of matrices containing the matrices corresponding to each letter, and closed
under the two operations, product and stabilization.

Note that the main point is that both the products and the stabilizations depend on
which type of automata is considered, B-automata or probabilistic automata.
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2 Computing the Stabilization Monoid of an Automaton

We report here on some implementation issues regarding the following algorithmic task:

We are given as input:

– A finite set of matrices S,
– A binary associative operation on matrices, the product, denoted ·,
– A unary operation on matrices, the stabilization, denoted 	.

The aim is to compute the closure of S under product and stabilization, called the
stabilization monoid generated by S.

Our choice of OCaml allowed for a generic implementation of the algorithm.
Note that if we ignore the stabilization operation, this reduces to computing the

monoid generated by a finite set of matrices, i.e. the transition monoid of a non-
deterministic automaton. It is well-known that this monoid can be exponential in the
size of the automaton, so the crucial aspect here is space optimization.

In our application, the initial set of matrices is given by matrices Ma for a ∈ A,
where A is the finite alphabet of the automaton. Hence we naturally associate to every
element of the stabilization monoid a 	-expression: (Ma · M �

b · Ma)
� is associated to

(ab�a)�. Many 	-expressions actually correspond to the same matrix: for instance, it
may be that (Ma ·Ma ·Mb)

� = M �
a; in such case, we would like to associate this matrix

to the 	-expression a�, which is “simpler” than (aab)�.
There are two data structures: a table and a queue. The table is of fixed size (a large

prime number), and is used to keep track of all the matrices found so far, through their
hash value. The queue stores the elements to be treated. The pseudo-code of the algo-
rithm is presented in Algorithm 1.

3 Minimizing the Stabilization Monoid

To test whether two B-automata are equivalent, we follow [CKL10]: for both automata
we construct its stabilization monoid, then we minimize them and check whether the
minimal stabilization monoids are isomorphic.

We do not explain in details how to check whether two stabilization monoids are
isomorphic. This is in general a very hard problem, theoretically not well understood;
for instance there is no polynomial-time algorithm to check whether two groups are
isomorphic. Our setting here makes the task much easier, as we look for an isomorphism
extending two given morphisms (associating to each letter an element), leading to a
simple linear-time algorithm.
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Data: S = {Ma | a ∈ A}
Result: The stabilization monoid generated by S
Initialization: an empty table T and an empty queue Q;
for a ∈ A do

push (a,Ma) onto Q for every a ∈ A;
add Ma to T ;

end
while Q is not empty do

let (s,M) the first element in Q;
search M in T (through its hash value);
if M is not in T (new) then

add M to T ;
for N ∈ T do

push M ·N onto Q;
push N ·M onto Q;

end
push M � onto Q;

end
end

Algorithm 1. Computing the stabilization monoid

Let M be a stabilization monoid, whose elements are denoted m1, · · · ,mn, and an
ideal I ⊆ M . The algorithm constructs an increasing sequence of partitions, starting
from the partition that separates I from M \ I .

Consider a partition P of the elements. For an element m ∈ M , we denote by [m]P
its equivalence class with respect to P . The type of m with respect to P is the following
vector of equivalence classes:

([m]P , [m
ω�]P , [m ·m1]P , · · · , [m ·mn]P , [m1 ·m]P , · · · , [mn ·m]P ) .

Note that the second component uses the ω	 operator, defined using the 	 operator. Re-
lying on the 	 operator would not be correct, as it is partial (only defined for idempotent
elements).

Using the types, we construct a larger partition P ′, such that two elements are equiv-
alent for P ′ if they have the same type with respect to P .

There are three data structures: two union-find tables to handle partitions of the ele-
ments and a table of types. We present in Algorithm 2 a pseudo-code of the minimiza-
tion algorithm.
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Data: A stabilization monoid (M, ·, 	), an ideal I ⊆ M
Result: The minimal stabilization monoid with respect to (M, I)
Initialization: a partition P separating I and M \ I and an empty table T of types;
while unstable do

Compute the types (with respect to P ) in T ;
Create a new partition P ′ such that two elements are equivalent for P ′ if they
have the same types;
P ←− P ′;

end

Algorithm 2. Minimizing the stabilization monoid
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1 Formal Methods and Tools, University of Twente, The Netherlands
2 Dependable Systems and Software, Saarland University, Germany

Abstract. Costs and rewards are important ingredients for many types
of systems, modelling critical aspects like energy consumption, task com-
pletion, repair costs, and memory usage. This paper introduces Markov
reward automata, an extension of Markov automata that allows the mod-
elling of systems incorporating rewards (or costs) in addition to nonde-
terminism, discrete probabilistic choice and continuous stochastic timing.
Rewards come in two flavours: action rewards, acquired instantaneously
when taking a transition; and state rewards, acquired while residing in
a state. We present algorithms to optimise three reward functions: the
expected cumulative reward until a goal is reached, the expected cumula-
tive reward until a certain time bound, and the long-run average reward.
We have implemented these algorithms in the SCOOP/IMCA tool chain
and show their feasibility via several case studies.

1 Introduction

The design of computer systems involves many trade offs: Is it cost-effective to
use multiple processors to increase availability and performance? Should we carry
out preventive maintenance to save future repair costs? Can we reduce the clock
speed to save energy, while still meeting the required performance bounds? How
can we best schedule a task set so that the operational costs are minimised? Such
optimisation questions typically involve the following ingredients: (1) rewards or
costs, to measure the quality of the solution; (2) (stochastic) timing to model
speed or delay; (3) discrete probability to model random phenomena like failures;
and (4) nondeterminism to model the choices in the optimisation process.

This paper introduces Markov reward automata (MRAs), a novel model that
combines the ingredients mentioned above. It is obtained by adding rewards
to the formalism of Markov automata (MAs) [15]. We support two types of
rewards:Action rewards are obtained directly when taking a transition, and state
rewards model the reward per time unit while residing in a state. Such reward
extensions have shown valuable in the past for less expressive models, for instance
leading to the tool MRMC [24] for model checking reward-based properties over
CTMCs [21] and DTMCs [1] with rewards. With our MRA model we provide a
natural combination of the EMPA [3] and PEPA [9] reward formalisms.
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By generalising MAs, MRAs provide a well-defined semantics for generalised
stochastic Petri nets (GSPNs) [13], dynamic fault trees [4] and the domain-
specific language AADL [5]. Recent work also demonstrated that MAs (and hence
MRAs as well) are suitable for modelling and analysing distributed algorithms
such as a leader election protocol, performance models such as a polling system
and hardware models such as a processor grid [31].

Model checking algorithms for MAs against Continuous Stochastic Logic (CSL)
properties were discussed in [20]. Notions of strong, weak and branching bisim-
ulation were defined to equate behaviourally equivalent MAs [15,28,12,31], and
the process-algebraic language MAPA was introduced for easily specifying large
MAs in a concise manner [32]. Several types of reduction techniques [34,33] have
been defined for the MAPA language and implemented in the tool SCOOP,
optimising specifications to decrease the state space of the corresponding MAs
while staying bisimilar [30,18]. This way, MAs can be generated efficiently in
a direct way (as opposed to first generating a large model and then reducing),
thus partly circumventing the omnipresent state space explosion. Additionally,
the game-based abstraction refinement technique developed in [6] provides a
sound approximation of time-bounded reachability over a substantially reduced
abstract model. The tool IMCA [17,18] was developed to analyse the concrete
MAs that are generated by SCOOP. It includes algorithms for computing time-
bounded reachability probabilities, expected times and long-run averages for sets
of goal states within an MA.

While the framework in place already works well for computing probabilities
and expected durations, it did not yet support rewards or costs. Therefore, we
extend the MAPA language from MAs to the realm of MRAs and extend most of
SCOOP’s reduction techniques to efficiently generate them. Further, we present
algorithms for three optimisation problems over MRAs. That is, we resolve the
nondeterministic choices in the MRA such that one of three optimisation criteria
is minimised (or maximised): (1) the expected cumulative reward to reach a set
of goal states, (2) the expected cumulative reward until a given time bound, and
(3) the long-run average reward.

The current paper is a first step towards a fully quantitative system de-
sign formalism. As such, we focus on positive rewards. Negative rewards, more
complex optimisation criteria, as well as the handling of several rewards as
multi-optimisation problem are important topics for future research. For a more
detailed version of this paper with extended proofs we refer to [19].

2 Markov Reward Automata

MAs were introduced as the union of Interactive Markov Chains (IMCs) [23]
and Probabilistic Automata (PAs) [27]. Hence, they feature nondeterminism, as
well as Markovian rates and discrete probabilistic choice. We extend this model
with reward functions for both the states and the transitions.

Definition 1 (Background). A probability distribution over a countable set S
is a function μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. For S′ ⊆ S, let
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μ(S′) =
∑

s∈S′ μ(s). We write 1s for the Dirac distribution for s determined by
1s(s) = 1. We use Distr(S) to denote the set of all probability distributions over S.

Given an equivalence relation R ⊆ S × S, we write [s]R for the equivalence
class of s induced by R, i.e., [s]R = {s′ ∈ S | (s, s′) ∈ R}. Given two probability
distributions μ, μ′ ∈ Distr(S) and an equivalence relation R, we write μ ≡R μ′

to denote that μ([s]R) = μ′([s]R) for every s ∈ S.

2.1 Markov Reward Automata

Before defining MRAs, we recall the definition of MAs. It assumes a countable
universe of actions Act, with τ ∈ Act the invisible internal action.

Definition 2 (Markov Automata). A Markov automaton (MA) is a tuple
M = 〈S, s0, A, ↪−→,�〉, where

– S is a countable set of states, of which s0 ∈ S is the initial state;
– A ⊆ Act is a countable set of actions, including τ ;
– ↪−→ ⊆ S ×A× Distr(S) is the probabilistic transition relation;
– � ⊆ S × R>0 × S is the Markovian transition relation;

If (s, α, μ) ∈ ↪−→, we write s
α

↪−→ μ and say that action α can be executed from
state s, after which the probability to go to each s′ ∈ S is μ(s′). If (s, λ, s′) ∈ �,
we write s λ� s′ and say that s moves to s′ with rate λ.

A state s ∈ S that has at least one transition s
a

↪−→ μ is called probabilistic.
A state that has at least one transition s λ� s′ is called Markovian. Note that a
state could be both probabilistic and Markovian.

The rate between two states s, s′ ∈ S is R(s, s′) =
∑

(s,λ,s′)∈� λ, and the
outgoing rate of s is E(s) =

∑
s′∈S R(s, s′). We require E(s) < ∞ for every state

s ∈ S. If E(s) > 0, the branching probability distribution after this delay is
denoted by Ps and defined by Ps(s

′) = R(s,s′)
E(s) for every s′ ∈ S. By definition of

the exponential distribution, the probability of leaving a state s within t time
units is given by 1 − e−E(s)·t (given E(s) > 0), after which the next state is
chosen according to Ps. Further, we denote by A(s) the set of all enabled actions
in state s.

MAs adhere to the maximal progress assumption, prescribing τ -transitions to
never be delayed. Hence, a state that has at least one outgoing τ -transition can
never take a Markovian transition. This fact is captured below in the definition
of extended transitions, which is used to provide a uniform manner for dealing
with both probabilistic and Markovian transitions.

Definition 3 (Extended action set). Let M = 〈S, s0, A, ↪−→,�〉 be an MA,
then the extended action set of M is given by Aχ = A ∪ {χ(r) | r ∈ R>0}.
The actions χ(r) represent exit rates and are used to distinguish probabilistic
and Markovian transitions. For α = χ(λ), we define E(α) = λ. If α ∈ A, we set
E(α) = 0. Given a state s ∈ S and an action α ∈ Aχ, we write s

α−→ μ if either
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– α ∈ A and s
α

↪−→ μ, or
– α = χ(E(s)), E(s) > 0, μ = Ps and there is no μ′ such that s

τ
↪−→ μ′.

A transition s
α−→ μ is called an extended transition. We use s

α−→ t to denote
s

α−→ 1t, and write s → t if there is at least one action α such that s
α−→ t. We

write s
α,μ−−→ s′ if there is an extended transition s

α−→ μ such that μ(s′) > 0.

Note that each state has an extended transition per probabilistic transition,
while it has only one for all its Markovian transitions together (if there are any).

We now formally introduce the MRA. For simplicity of the reward functions,
we chose to define MRAs in terms of extended actions. Hence, instead of two
separate probabilistic and Markovian transition relations, there is only one tran-
sition relation. This also simplifies the notion of bisimulation introduced later.

Definition 4 (Markov Reward Automata). A Markov Reward Automaton
(MRA) is a tuple M = 〈S, s0, A, T, ρ〉, where

– S is a countable set of states, of which s0 ∈ S is the initial state;
– A ⊆ Act is a countable set of actions;
– T ⊆ S × Aχ × R≥0 × Distr(S) is the transition relation including action

rewards;
– ρ : S → R≥0 is the state-reward function.

We require for each s ∈ S that there is at most one transition labeled with χ(·).
Further, we require that T is countable and write s

α−→r μ if (s, α, r, μ) ∈ T .

The function ρ associates a real number to each state. This number may be
zero, indicating the absence of a reward. The state-based rewards are gained
while being in a state, and are proportional to the duration of this stay. The
action-based rewards are gained instantaneously when taking a transition and
are included directly in the transition relation.

2.2 Paths, Policies and Rewards

As for traditional labelled transition systems (LTSs), the behaviour of MAs
and MRAs can also be expressed by means of paths. A path in M is a finite

sequence πfin = s0
a1,μ1,t1−−−−−→r1 s1

a2,μ2,t2−−−−−→r2 . . .
an,μn,tn−−−−−−→rn sn from some state s0

to a state sn (n ≥ 0), or an infinite sequence πinf = s0
a1,μ1,t1−−−−−→r1 s1

a2,μ2,t2−−−−−→r2

s2
a3,μ3,t3−−−−−→ . . . , with si ∈ S for all 0 ≤ i ≤ n and all 0 ≤ i, respectively.

The step si
ai,μi,ti−−−−−→ri si+1 denotes that after residing ti time units in si, the

MRA has moved via action ai and probability distribution μi to si+1 obtaining
ri action reward. We use prefix(π, t) to denote the prefix of path π up to and

including time t, formally prefix(π, t) = s0
a1,μ1,t1−−−−−→r1 . . .

ai,μi,ti−−−−−→ri si such that
t1 + · · · + ti ≤ t and t1 + · · · + ti + ti+1 > t. We use step(π, i) to denote the

transition si−1
ai−→ri μi. When π is finite we define |π| = n, last(π) = sn,

and for every path π[i] = si. Further, we denote by πj the path π up to and
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including state sj . Let paths
∗ and paths denote the set of finite and infinite paths,

respectively. We define the total reward of a finite path π by

reward(π) =

|π|∑

i=1

ρ(π[i− 1]) · ti + ri (1)

Rewards can be used to model many quantitative systems aspects, like energy
consumption, memory usage, deployment or maintenance costs, etc. The total
reward of a path (e.g, total amount of energy consumed) is obtained by adding
all rewards along that path, that is, all state rewards multiplied by the sojourn
times of the corresponding states plus all action rewards on the path.

Policies. Policies resolve the nondeterministic choices in an MRA, i.e., make a
choice over the outgoing probabilistic transitions in a state. Given a policy, the
behaviour of an MRA is fully probabilistic. Formally, a policy, ranged over by D,
is a measurable function such that D : paths∗ → Distr(T ) and D(π) chooses only
from transitions that emanate from last(π). The information on which basis
a policy resolves the choices yields different classes. Let GM denote the class
of general measurable policies. A stationary deterministic policy is a mapping
D : S → T such that D(s) chooses only from transitions that emanate from s;
such policies always take the same transition in a state s. A time-dependent
policy may decide on the basis of the states visited so far and their timings. For
more details about different classes of policies and their relations we refer to [26].
Given a policy D and an initial state s, a measurable set of paths is equipped
with the probability measure Prs,D.

2.3 Strong Bisimulation

We define a notion of strong bisimulation for MRAs. As for LTSs, PAs, IMCs
and MAs, it equates systems the are equivalent in the sense that every step of
one system can be mimicked by the other, and vice versa.

Definition 5 (Strong bisimulation). Given an MRA M = 〈S, s0, A, T, ρ〉,
an equivalence relation R ⊆ S × S is a strong bisimulation for M if for every
(s, s′) ∈ R and all α ∈ Aχ, μ ∈ Distr(S), r ∈ R≥0, it holds that ρ(s) = ρ(s′) and

s
α−→r μ =⇒ ∃μ′ ∈ Distr(S) . s′ α−→r μ′ ∧ μ ≡R μ′

Two states s, s′ ∈ S are strongly bisimilar (denoted by s ≈ s′) if there exists a
strong bisimulation R for M such that (s, s′) ∈ R. Two MAs M,M′ are strongly
bisimilar (denoted by M ≈ M′) if their initial states are strongly bisimilar in
their disjoint union.

Clearly, when setting all state-based and action-based rewards to 0, MRAs coin-
cide with MAs. Additionally, our definition of strong bisimulation then reduces
to the definition of strong bisimulation for MAs. Since it was already shown
in [14] that strong bisimulation for MAs coincides with the corresponding no-
tions for all subclasses of MAs, this also holds for our definition. Hence, it safely
generalises the existing notions of strong bisimulation.
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3 Quantitative Analysis

This section shows how to perform quantitative analyses on MRAs. We will
focus on three common reward measures: (1) The expected cumulative reward
until reaching a set of goal states, (2) the expected cumulative reward until a
given time-bound, and (3) the long-run average reward. Typical examples where
these algorithms can be used are respectively: to minimise the average energy
consumption needed to download and install a medium-size software update; to
minimise the average maintenance cost of a railroad line over the first year of
deployment; and to maximise the yearly revenues of a data center over a long
time horizon. In the following we lift the algorithms from [18] to the realm of
rewards. We focus on maximising the properties. The minimisation problem can
be solved similarly — namely, by replacing max by min and sup by inf below.

3.1 Notation and Preprocessing

Throughout this section, we consider a fixed MRA M with state space S and
a set of goal states G ⊆ S. To facilitate the algorithms, we first perform three
preprocessing steps. (1) We consider only closed MRAs, which are not subject
to further interaction. Therefore, we hide all actions (renaming them to τ),
focussing on their induced rewards. (2) Due to the maximal progress assump-
tion, a Markovian transition will never be executed from a state with outgoing
τ -transitions. Hence, we remove such Markovian transitions. Thus, each state
either has one outgoing Markovian transition or only probabilistic outgoing tran-
sitions. We call these states Markovian and probabilistic respectively, and use
MS and PS to denote the sets of Markovian and probabilistic states. (3) To
distinguish the different τ -transitions emerging from a state s ∈ PS, we assume
w.l.o.g. that these are numbered from 1 to ns, where ns is the number of outgo-
ing transitions. We write μτi

s for the distribution induced by taking τi in state s
and we write rτis for the reward. For Markovian transitions we write Ps and rs,
respectively.

3.2 Goal-Bounded Expected Cumulative Reward

We are interested in the minimal and maximal expected cumulative reward until
reaching a set of goal states G ⊆ S. That is, we accumulate the state and
transition rewards until a state in G is reached; if no state in G is reached, we
keep on accumulating rewards.

The random variable VG : paths → R
∞
≥0 yields the accumulated reward before

first visiting some state in G. For an infinite path π, we define

VG(π) =

{
reward(πj) if π[j] ∈ G ∧ ∀i < j. π[i] �∈ G

reward(π) if ∀i. π[i] �∈ G
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The maximal expected reward to reach G from s ∈ S is then defined as

eRmax(s,G) = sup
D∈GM

Es,D(VG) = sup
D∈GM

∫

paths

VG(π) Pr
s,D

(dπ) (2)

where D is an arbitrary policy on M.
To compute eRmax we turn it into a classical Bellman equation: For all goal

states, no more reward is accumulated, so their expected reward is zero. For
Markovian states s �∈ G, the state reward of s is weighted with the expected
sojourn time in s plus the expected reward accumulated via its successor states
plus the transition reward to them. For a probabilistic state s �∈ G, we select
the action that maximises the expected cumulative reward. Note that, since the
accumulated reward is only relevant until reaching a state in G, we may turn all
states in G into absorbing Markovian states.

Theorem 1 (Bellman equation). The function eRmax : S → R
∞
≥0 is the unique

fixed point of the Bellman equation

v(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(s)
E(s) +

∑

s′∈S

Ps(s
′) · (v(s′) + rs) if s ∈ MS \G

max
α∈A(s)

∑

s′∈S

μα
s (s

′) · (v(s′) + rαs ) if s ∈ PS \G

0 if s ∈ G.

A direct consequence of Theorem 1 is that the supremum in (2) is attained by
a stationary deterministic policy. Moreover, this result enables us to use standard
solution techniques such as value iteration and linear programming to compute
eRmax(s,G). Note that by assigning ρ(s) = 1 to all s ∈ MS and setting all other
rewards to 0, we compute the expected time to reach a set of goal states.

3.3 Time-Bounded Expected Cumulative Reward

A time-bounded reward is the reward gained until a time bound t is reached and
is denoted by the random variable reward(·, t). For an infinite path π, we first
find the prefix of π up to t and then compute the reward using (1), i. e.

reward(π, t) = reward(prefix(π, t)) (3)

The maximum time-bounded reward then is the maximum expected reward
gained within some interval I = [0, b], starting from some initial state s:

Rmax(s, b) = sup
D∈GM

∫

paths

reward(π, b) Pr
s,D

(dπ) (4)

Similar to time-bounded reachability there is a fixed point characterisation
(FPC) for computing the optimal reward within some interval of time. Here we
focus on the maximum case; the minimum can be extracted similarly.
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Lemma 2 (Fixed Point Characterisation). Given a Markov reward automa-
ton M and a time bound b ≥ 0. The maximum expected cumulative reward from
state s ∈ S until time bound b is the least fixed point of higher order operator
Ω : (S × R≥0 �→ R≥0) �→ (S × R≥0 �→ R≥0), such that

Ω(F )(s, b) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
rs +

ρ(s)
E(s)

)
(1− e−E(s)b)

+
∫ b

0 E(s)e−E(s)t
∑

s′∈S Ps(s
′)F (s′, b− t) dt s ∈ MS ∧ b �= 0

maxα∈A(s)

(
rαs +

∑
s′∈S μα

s (s
′)F (s′, b)

)
s ∈ PS

0 otherwise.

This FPC is a generalisation of that for time-bounded reachability [18, Lemma 1],
taking both action and state rewards into account. The proof goes along the same
lines as that of [25, Theorem 6.1].

Discretisation. Similar to time-bounded reachability, the FPC is not algorith-
mically tractable and needs to be discretised: we have to divide the time horizon
[0, b] into a (generally large) number of equidistant time steps, each of length
0 < δ ≤ b, such that b = kδ for some k ∈ N. First, we express Rmax(s, b) in terms
of its behaviour in the first discretisation step [0, δ). To do so, we partition the
paths from s into the set P1 of paths that make their first Markovian jump in
[0, δ) and the set P2 of paths that do not. We write Rmax(s, b) as the sum of

1. The expected reward obtained in [0, δ) by paths from P1

2. The expected reward obtained in [δ, b] by paths from P1

3. The expected reward obtained in [0, δ) by paths from P2

4. The expected reward obtained in [δ, b] by paths from P2

It turns out to be convenient to combine the first three items, denoted by A(s, b),
since the resulting term resembles the expression in Lemma 2:

A(s, b) = ρ(s)δe−E(s)δ +

∫ δ

0

E(s)e−E(s)t
(
ρ(s)t + rs +

∑
s′∈S

Ps(s
′)Rmax(s′, b− t)

)
dt

=
(
rs +

ρ(s)

E(s)

)(
1− e−E(s)δ

)
+

∫ δ

0

E(s)e−E(s)t
∑
s′∈S

Ps(s
′)Rmax(s′, b− t) dt (5)

where the first equality follows directly from the definition of A(s, b) and the
second equality is along the same lines as the proof of Lemma 2. It can easily
be seen that Rmax(s, b) = A(s, b) + e−E(s)δRmax(s, b− δ).

Exact computation of A(s, b) is in general still intractable due to the term
Rmax(s′, b − t). However, if the discretisation constant δ is very small, then,
with high probability, at most one Markovian jump happens in each discretisa-
tion step. Hence, the reward gained by paths having multiple Markovian jumps
within at least one such interval is negligible and can be omitted from the com-
putation, while introducing only a small error. Technically, that means that we
don’t have to remember the remaining time within a discretisation step after a
Markovian jump has happened. We can therefore discretise A(s, b) into Ãδ(s, k)
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andRmax(s, b) into R̃max
δ (s, k), just counting the number of discretisation steps k

that are left instead of the actual time bound b:

R̃max
δ (s, k) = Ãδ(s, k) + e−E(s)δR̃max

δ (s, k − 1), s ∈ MS (6)

where Ãδ(s, k) is defined by

Ãδ(s, k) =
(
rs +

ρ(s)

E(s)

)(
1− e−E(s)δ

)
+

∫ δ

0

E(s)e−E(s)t
∑

s′∈S

Ps(s
′)R̃max

δ (s′, k − 1) dt

=
(
rs +

ρ(s)

E(s)
+

∑

s′∈S

Ps(s
′)R̃max

δ (s′, k − 1)
)(

1− e−E(s)δ
)

(7)

Note that we used R̃max
δ (s, k−1) instead of bothRmax(s, b−δ) andRmax(s, b−t).

Eq. (6) and (7) help us to establish a tractable discretised version of the
FPC described in Lemma 2 and to formally define the discretised maximum
time-bounded reward afterwards:

Definition 6 (Discretised Maximum Time-Bounded Reward). Let M be
an MRA, b ≥ 0 a time bound and δ > 0 a discretisation step such that b = kδ for
some k ∈ N. The discretised maximum time-bounded cumulative reward, R̃max

δ ,
is defined as the least fixed point of higher order operator Ωδ : (S×N �→ R≥0) �→
(S × N �→ R≥0), such that

Ωδ(F )(s, k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
rs +

ρ(s)

E(s)
+

∑
s′∈S Ps(s

′)F (s′, k − 1)
)(
1− e−E(s)δ

)

+e−E(s)δF (s, k − 1) s ∈ MS ∧ k �= 0

maxα∈A(s)

(
rαs +

∑
s′∈S μα

s (s
′)F (s′, k)

)
s ∈ PS

0 otherwise.

The reason behind the tractability of R̃max
δ is hidden in Eq. (7). It brings two

simplifications to the computation. First, it implies that R̃max
δ is the conditional

expected reward given that each step carries at most one Markovian transition.
Second, it neglects to compute the reward after the first Markovian jump and
simply assume that it is zero. We have shown the formal specification of the
simplifications in [19, Lemma C1]. With the help of these simplifications, reward
computation becomes tractable but indeed inexact.

The accuracy of R̃max
δ depends on some parameters including the step size δ.

The smaller δ is, the better the quality of discretisation is. It is possible to quantify
the quality of the discretisation. To this end we need first to define some parame-
ters of MRA. For a given MRAM, assume that λ is the maximum exit rate of any
Markovian state, i. e. λ = maxs∈MS E(s), and ρmax is maximum state reward of
any Markovian state, i. e. ρmax = maxs∈MS ρ(s). Moreover we define rmax as the
maximum action reward that can be gained between two consecutive Markovian
jumps. The value can be computed via Theorem 1, where we set Markovian states
as the goal states. Given that eRmax(s,MS) has already been computed, we define
r(s) = rs+

∑
s′∈S eRmax(s′,MS) for s ∈ MS, and r(s) = eRmax(s,MS) otherwise.

Finally we have rmax = maxs∈S r(s). Note that in practice we use a value itera-
tion algorithm to compute rmax. With all of the parameters known, the following
theorem quantifies the quality of the abstraction.
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Theorem 3. Let M be an MRA, b ≥ 0 be a time bound, δ > 0 be a discretisation
step such that b = kδ for some k ∈ N. Then for all s ∈ S:

R̃max
δ (s, k) ≤ Rmax(s, b) ≤ R̃max

δ (s, k) +
bλ

2
(ρmax + rmaxλ)(1 +

bλ

2
)δ

3.4 Long-Run Average Reward

Next, we are interested in the average cumulative reward induced by a set of
goal states G ⊆ S in the long-run. Hence, all state and action rewards for states
s ∈ S \G are set to 0. We define the random variable LM : paths → R≥0 as the
long-run reward over paths in MRA M. For an infinite path π let

LM(π) = lim
t→∞

1

t
· reward(π, t).

Then, the maximal long-run average reward on M starting in state s ∈ S is:

LRRmax
M (s) = sup

D∈GM
Es,D(LM) = sup

D∈GM

∫

paths

LM(π) Pr
s,D

(dπ). (8)

The computation of the expected long-run reward can be split into three steps:

1. Determine all maximal end components of MRA M;
2. Determine LRRmax

Mi
for each maximal end component Mi;

3. Reduce the computation of LRRmax
M (s) to an SSP problem.

A sub-MRA M is a pair (S′,K) where S′ ∈ S and K is a function that assigns
to each state s ∈ S′ a non-empty set of actions, such that for all α ∈ K(s),

s
α−→ μ with μ(s′) > 0 implies s′ ∈ S′. An end component is a sub-MRA whose

underlying graph is strongly connected; it is maximal (a MEC ) w.r.t. K if it is
not contained in any other end component (S′′,K). In this section we focus on the
second step. The first step can be performed by a graph-based algorithm [8,10]
and the third step is as in [18].

A MEC can be seen as a unichain MRA: an MRA that yields a strongly
connected graph structure under any stationary deterministic policy.

Theorem 4. For a unichain MRA M, for each s ∈ S the value of LRRmax
M (s)

equals

LRRmax
M = sup

D

∑

s∈S

(
ρ(s) · LRAD(s) + rD(s)

s · νD(s)
)

where ν is the frequency of passing through a state, defined by

νD(s) =

⎧
⎨

⎩

LRAD(s) · E(s) if s ∈ MS
∑

s′∈S

νD(s′) · μD(s′)
s′ (s) if s ∈ PS

and LRAD(s) is the long-run average time spent in state s under stationary
deterministic policy D.
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Thus, the frequency of passing through a Markovian state equals the long-run
average time spent in s times the exit rate, and for a probabilistic state it is the
accumulation of the frequencies of the incoming transitions. Hence, the long-run
reward gathered by a state s is defined by the state reward weighted with the
average time spent in s and the action reward weighted by the frequency of
passing through the state. Since in a unichain MRA M, for any two states s, s′,
LRRmax

M (s) and LRRmax
M (s′) coincides, we omit the starting state and just write

LRRmax
M . Note that probabilistic states are left immediately, so LRAD(s) = 0 if

s ∈ PS. Further, by assigning ρ(s) = 1 to all s ∈ MS ∩ G and setting all other
rewards to 0, we compute the long-run average time spent in a set of goal states.

Theorem 5. The long-run average reward of a unichain MRA coincides with
the limit of the time-bounded expected cumulative reward, such that LRRD(s) =
lim
t→∞

1
tRD(s, t).

For the equation from Theorem 4 it would be too expensive to compute for all
possible policies and for each state the long-run average time as well as the fre-
quency of passing through a state and weigh those with the associated rewards.
Instead, we compute LRRmax

M by solving a system of linear inequations following
the concepts of [10]. Given a unichain MRA M, let k denote the optimal average
reward accumulated in the long-run and executing the optimal policy. Then, for
all s ∈ S there is a function h(s) that describes a differential cost per visit to
state s, such that a system of inequations can be constructed as follows:

Minimise k subject to:
⎧
⎪⎨

⎪⎩

h(si) =
ρ(si)

E(si)
− k

E(si)
+

∑

sj∈S

Psi(sj) · h(sj) if si ∈ MS

h(si) ≥ rαsi
+

∑

sj∈S

μα
si
(sj) · h(sj) if si ∈ PS ∧ ∀α ∈ A(si)

(9)

where the state and action reward of Markovian states are combined as ρ(si) =
ρ(si) + (rsi

· E(si)). Standard linear programming algorithms, e.g., the simplex
method [35], can be applied to solve the above system of linear equations.

To obtain the long-run average reward in an arbitrary MRA, we have to
weigh the obtained long-run rewards in each maximal end component with the
probability to reach those from s. This is equivalent to the third step in the
long-run average computation of [18]. Further, for the discrete time setting [7]
considers multiple long-run average objectives.

4 MAPA with Rewards

The Markov Automata Process Algebra (MAPA) language allows MAs to be
generated in an efficient and effective manner [31]. It is based on μCRL [16], al-
lowing the standard process-algebraic constructs such as nondeterministic choice
and action prefix to be used in a data-rich context: processes are equipped with a
set of variables over user-definable data types, and actions can be parameterised
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based on the values of these variables. Additionally, conditions can be used to
restrict behaviour, and nondeterministic choices over data types are possible.
MAPA adds two operators to μCRL: a probabilistic choice over data types and
a Markovian delay (both possibly depending on data parameters).

We extended MAPA by accompanying it with rewards. Due to the
action-based approach of process algebra, there is a clear separation between
the action-based and state-based rewards.Action-based rewards are just added as
decorations to the actions in the process-algebraic specification: we use
a[r]

∑
• x:D f : p to denote an action a having reward r, continuing as process

p (where the variable x gets a value from its domain D based on a probabilis-
tic expression f). We refer to [31] for a detailed exposition of the syntax and
semantics of MAPA; this is trivially generalised to incorporate the action-based
rewards.

State-based rewards are dealt with separately. They can be assigned to condi-
tions ; each state that fulfills a reward’s condition is then assigned that reward.
If a state satisfies multiple conditions, the rewards are accumulated.

4.1 MaMa Extensions

Since realistic systems often consist of a very large number of states, we do not
want to construct their MRA models manually. Rather, we prefer to specify them
as the parallel composition of multiple components. This approach was applied
earlier to generate MAs, using a tool called SCOOP [30,18,31]. It generates
MAs from MAPA specifications, applying several reduction techniques in the
process. The underlying philosophy is to already reduce on the specification, not
having to first generate a large model before being able to minimise. The parallel
composition of MRAs is described in the technical report [19] and is equivalent
to [11] for the probabilistic transitions.

We extended SCOOP to parse action-based and state-based rewards. Action-
based rewards are stored as part of the transitions, while state-based rewards
are represented internally by self-loops. Additionally, we generalised most of
its reduction techniques to take into account the new rewards. The following
reduction techniques are now also applicable to MRAs:

Dead variable reduction. This technique resets variables if their value is not
needed anymore until they are overwritten. Instead of only checking whether
a variable is used in conditions or actions, we generalised this technique to
also check if it is used in reward expressions.

Maximal progress reduction. This technique removes Markovian transitions
from states also having τ -transitions. It can be applied unchanged to MRAs.

Basic reduction techniques. The basic reduction techniques omit variables
that are never changed, omit nondeterministic choices that only have one
option and simplify expressions where possible. These three techniques were
easily generalised by taking the reward expressions into account as well.

Confluence reduction was not yet generalised, as it is based on a much more
complicated notion of bisimulation (that is not yet available for MRAs).
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SCOOP IMCA Results

MAPA spec with Rewards + Property

Goal states

MRA

reduce

GEMMA
Property

MAPA-spec

GSPN + Property

Fig. 1. Analysing Markov Reward Automata using the MaMa tool chain

SCOOP takes both the action-based and state-based rewards into account
when generating an input file for the IMCA toolset. This toolset implements
several algorithms for computing reward-based properties, as detailed before.
The connection of the tool-chain is depicted in Figure 1.

5 Case Studies

To assess the performance of the algorithms and implementation, we provide
two case studies: A server polling system based on [29], and a fault-tolerant
workstation cluster based on [22]. Rewards were added to both examples. The
experiments were conducted on a 2.2 GHz Intel� CoreTM i7-2670QM processor
with 8 GB RAM, running Linux.

Polling system. Figure 2 shows the MAPA specification of the polling system. It
consists of two stations, each providing a job queue, and one server. When the
server polls a job from a station, there is a 10% chance that it will erroneously
remain in the queue. An impulse reward of 0.1 is given each time a server takes
a job, and a reward of 0.01 per time unit is given for each job in the queue. The
rewards are meant to be interpreted as costs in this example, for having a job
processed and for taking up server memory, respectively.

Tables 1 and 3 show the results obtained by the MaMa tool-chain when
analysing for different queue sizes Q and different numbers of job types N . The

constant queueSize = Q,nrOfJobTypes = N

type Stations = {1, 2}, Jobs = {1, . . . ,nrOfJobTypes}

Station(i : Stations, q : Queue, size : {0..queueSize})
= size < queueSize ⇒ (2i + 1) · ∑

j:Jobs
arrive(j) · Station(i, enqueue(q, j), size + 1)

+ size > 0 ⇒ deliver(i, head(q))
∑•

k∈{1,9}

k
10

: k = 1 ⇒ Station(i, q, size)

+ k = 9 ⇒ Station(i, tail(q), size − 1)

Server =
∑

n:Stations

∑
j:Jobs

poll(n, j)[0.1] · (2 ∗ j) · finish(j) · Server
γ(poll, deliver) = copy // actions poll and deliver synchronise and yield action copy

System = τ{copy,arrive,finish}(∂{poll,deliver}(Station(1, empty, 0) ||Station(2, empty, 0) ||Server))

state reward true → size1 ∗ 0.01 + size2 ∗ 0.01

Fig. 2. MAPA specification of a nondeterministic polling system
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Table 1. Time-bounded rewards for
the polling system (T in seconds)

Time-bounded reward
Q N Tlim min T (min) max T (max)

2 3 1 0.626 0.46 0.814 0.46
2 3 2 0.914 1.64 1.389 1.66
2 3 10 1.005 161.73 2.189 166.59

3 3 1 0.681 4.90 0.893 4.75
3 3 2 1.121 16.69 1.754 17.11
3 3 10 1.314 1653 4.425 1687

Table 2. Time-bounded rewards for the
workstation cluster (T in seconds)

Time-bounded reward
N Q Tlim min T (min) max T (max)

4 3 10 0.0126 5.47 0.0126 5.53
4 3 20 0.0267 38.58 0.0267 38.98
4 3 50 0.0701 579.66 0.0701 576.13
4 3 100 0.143 4607 0.143 4540

4 5 10 0.0114 4.17 0.0114 4.23
4 5 20 0.0232 28.54 0.0232 28.75
4 5 50 0.0584 444.39 0.0584 442.63
4 5 100 0.1154 3520.18 0.1154 3521.70

goal states for the expected reward are those when both queues are full. The
error-bound for the time-bounded reward analysis was set to 0.1.

The tables show that the minimal reward does not depend on the number
of job types, while the maximal reward does. The long-run reward computation
is, for this example, considerably slower than the expected reward, and both
increase more than linear with the number of states. The time-bounded reward is
more affected by the time bound than the number of states, and the computation
time does not significantly differ between the maximal and minimal queries.

Workstation Cluster. The second case study is based on a fault-tolerant work-
station cluster, described as a GSPN in [25]. Using the GEMMA [2] tool, the
GSPN was converted into a MAPA specification.

The workstation cluster consists of two groups of N workstations, each group
connected by one switch. The two groups are connected to each other by a
backbone. Workstations, switches and the backbone experience exponentially
distributed failures, and can be repaired one at a time. If multiple components
are eligible for repair at the same time, the choice is nondeterministic. The overall
cluster is considered operational if at least Q workstations are operational and
connected to each other. Rewards have been added to the system to simulate the
costs of repairs and downtime. Repairing a workstation has cost 0.3, a switch
costs 0.1, and the backbone costs 1 to repair. If fewer than Q workstations are
operational and connected, a cost of 1 per unit time is incurred.

Tables 2 and 4 show the analysis results for this example. The goal states for
the expected reward are the states where not enough operational workstations
are connected. The error bound for the time-bounded reward analysis was 0.1.
For this example, the long-run rewards are quicker to compute than the expected
rewards. The long-run rewards do not vary much with the scheduler, since mul-
tiple simultaneous failures are rare in this system. This also explains the large
expected rewards when Q is low: many repairs will occur before the cluster fails.
The time-bounded rewards also show almost no dependence on the scheduler.
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Table 3. Long-run and expected rewards for the polling system (T in seconds)

Long-run reward Expected reward
Q N |S| |G| min T (min) max T (max) min T (min) max T (max)

2 3 1159 405 0.731 0.61 1.048 0.43 0.735 0.28 2.110 0.43
2 4 3488 1536 0.731 3.76 1.119 2.21 0.735 0.93 3.227 2.01
3 3 11122 3645 0.750 95.60 1.107 19.14 1.034 3.14 4.752 8.14
3 4 57632 24576 0.750 5154.6 1.198 705.8 1.034 31.80 8.878 95.87
4 2 5706 1024 0.769 38.03 0.968 5.73 1.330 3.12 4.199 3.12
4 3 102247 32805 Timeout(2h) 1.330 63.24 9.654 192.18

Table 4. Long-run and expected rewards for the workstation cluster (T in seconds)

Long-run reward Expected reward
N Q |S| |G| min T (min) max T (max) min T (min) max T (max)

4 3 1439 1008 0.00145 0.49 0.00145 0.60 2717 158.5 2718 138.2
4 5 1439 621 0.00501 0.45 0.00505 0.61 1.714 0.56 1.714 0.59
4 8 1439 1438 0.00701 0.48 0.00705 0.64 0 0.50 0 0.50

8 6 4876 3584 0.00145 2.18 0.00145 3.71 2896 783.7 2896 786.6
8 8 4876 4415 0.00146 1.93 0.00147 3.34 285.5 57.13 285.5 54.33
8 10 4883 4783 0.00501 1.92 0.00505 3.36 1.714 2.31 1.714 2.33
8 16 4895 4894 0.00701 2.09 0.00705 3.89 0 2.43 0 2.19

6 Conclusions and Future Work

We introduced the Markov Reward Automaton (MRA), an extension of the
Markov Automaton (MA) featuring both state-based and action-based rewards
(or, equivalently, costs). We defined strong bisimulation for MRAs, and validated
it by stating that our notion coincides with the traditional notions of strong
bisimulation for MAs. We generalised the MAPA language to efficiently model
MRAs by process-algabraic specifications, and extended the SCOOP tool to au-
tomatically generate MRAs from these specifications. Furthermore, we presented
three algorithms, for computing the expected reward until reaching a set of goal
states, for computing the expected reward until reaching a time-bound, and for
computing the long-run average reward while visiting a set of states. Our mod-
elling framework and algorithms allow for a wide variety of systems—featuring
nondeterminism, discrete probabilistic choice, continuous stochastic timing and
action-based and state-based rewards—to be efficiently modelled, generated and
analysed.

Future work will focus on developing weak notions of bisimulation for MRAs,
possibly allowing the generalisation of confluence reduction. For quantitative
analysis, future work will focus on considering negative rewards, optimisations
with respect to time and reward-bounded reachability properties, as well as the
handling of several rewards as multi-optimisation problems.
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26. Neuhäußer, M.R., Stoelinga, M.I.A., Katoen, J.-P.: Delayed nondeterminism in
continuous-time Markov decision processes. In: de Alfaro, L. (ed.) FOSSACS 2009.
LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009)

27. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology (1995)

28. Song, L., Zhang, L., Godskesen, J.C.: Late weak bisimulation for Markov automata.
Technical report, ArXiv e-prints (2012)

29. Srinivasan, M.M.: Nondeterministic polling systems. Management Science 37(6),
667–681 (1991)

30. Timmer, M.: SCOOP: A tool for symbolic optimisations of probabilistic processes.
In: QEST, pp. 149–150. IEEE (2011)

31. Timmer, M.: Efficient Modelling, Generation and Analysis of Markov Automata.
PhD thesis, University of Twente (2013)

32. Timmer, M., Katoen, J.-P., van de Pol, J.C., Stoelinga, M.I.A.: Efficient modelling
and generation of Markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012)

33. Timmer, M., van de Pol, J., Stoelinga, M.I.A.: Confluence reduction for Markov au-
tomata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053,
pp. 243–257. Springer, Heidelberg (2013)

34. van de Pol, J., Timmer, M.: State space reduction of linear processes using control
flow reconstruction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799,
pp. 54–68. Springer, Heidelberg (2009)

35. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD the-
sis, Technische Universität Berlin (1996)



Extensional Crisis and Proving Identity�
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Abstract. Extensionality axioms are common when reasoning about data collec-
tions, such as arrays and functions in program analysis, or sets in mathematics.
An extensionality axiom asserts that two collections are equal if they consist of
the same elements at the same indices. Using extensionality is often required to
show that two collections are equal. A typical example is the set theory theorem
(∀x)(∀y)x∪y = y∪x. Interestingly, while humans have no problem with prov-
ing such set identities using extensionality, they are very hard for superposition
theorem provers because of the calculi they use. In this paper we show how ad-
dition of a new inference rule, called extensionality resolution, allows first-order
theorem provers to easily solve problems no modern first-order theorem prover
can solve. We illustrate this by running the VAMPIRE theorem prover with exten-
sionality resolution on a number of set theory and array problems. Extensionality
resolution helps VAMPIRE to solve problems from the TPTP library of first-order
problems that were never solved before by any prover.

1 Introduction

Software verification involves reasoning about data collections, such as arrays, sets,
and functions. Many modern programming languages support native collection types or
have standard libraries for collection types. Many interesting properties of collections
are expressed using both quantifiers and theory specific predicates and functions. Unless
these properties fall into a decidable theory supported by existing satisfiability modulo
theories (SMT) solvers or theorem provers, verifying them requires a combination of
reasoning with quantifiers and collection-specific reasoning.

For proving properties of collections one often needs to use extensionality axioms
asserting that two collections are equal if and only if they consist of the same elements
at the same indices. A typical example is the set theory theorem (∀x)(∀y)x∪y = y∪x,
asserting that set union is commutative and therefore the union of two sets x and y is the
same as the union of y and x. To prove this theorem, in addition to using the definition
of the union operation (see Section 2), one needs to use the property that sets containing
the same elements are equal. This property is asserted by the extensionality axiom of
set theory.
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Interestingly, while humans have no problem with proving such set identities us-
ing extensionality, they are very hard for superposition-based theorem provers because
of the calculi they use. The technical details of why it is so are presented in the next
section. To overcome this limitation, we need specialized methods of reasoning with ex-
tensionality, preferably those not requiring radical changes in the underlying inference
mechanism and implementation of superposition.

In this paper we present a new inference rule, called extensionality resolution, which
allows first-order theorem provers to easily solve problems no modern first-order theo-
rem prover can solve (Section 3). Our approach requires no substantial changes in the
implementation of superposition, and introduces no additional constraints on the order-
ings used by the theorem prover. Building extensionality resolution in a theorem prover
needs efficient recognition and treatment of extensionality axioms. We analyze various
forms of extensionality axioms and describe various choices made, and corresponding
options, for extensionality resolution (Section 4).

We implemented our approach in the first-order theorem prover VAMPIRE [15] and
evaluated our method on a number of challenging examples from set theory and rea-
soning about arrays (Section 5). Our experiments show significant improvements on
problems containing extensionality axioms: for example, many problems proved by the
new implementation in essentially no time could not be proved by any of the existing
first-order provers, including VAMPIRE without extensionality resolution. In particular,
we found 12 problems from the TPTP library of first-order problems [21] that were
never proved before by any existing prover in any previous edition of the CASC world
championship for automated theorem proving [22].

2 Motivating Examples

In this section we explain why theories with extensionality axioms require special treat-
ment in superposition theorem provers.

We assume some basic understanding of first-order theorem proving and the super-
position calculus, see, e.g. [3,16] or [15]. Throughout this paper we denote the equality
predicate by = and the empty clause by �. We write s �= t to mean ¬(s = t), and simi-
larly for every binary predicate written in infix notation. Superposition calculi deal with
selection functions: in every non-empty clause at least one literal is selected. Unlike [3],
we impose no restrictions on literal selection.

Set Theory. We start with an axiomatization of set theory and will refer to this axiom-
atization in the rest of the paper. The set theory will use the membership predicate ∈
and the subset predicate ⊆, the constant ∅ denoting the empty set, and operations ∪
(union), ∩ (intersection), − (difference), � (symmetric difference), and complement,
denoted by over-lining the expression it is applied to (that is, the complement of a set x
is denoted by x). An axiomatization of set theory with these predicates and operations
is shown in Figure 2. We denote set variables by x, y, z and set elements by e.

Example 1. The commutativity of union is a valid property of sets and a logical conse-
quence of the set theory axiomatization:

(∀x)(∀y) x ∪ y = y ∪ x. (1)
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(∀x)(∀y)((∀e)(e ∈ x ↔ e ∈ y) → x = y) (extensionality)
(∀x)(∀y)(x ⊆ y ↔ (∀e)(e ∈ x → e ∈ y)) (definition of subset)
(∀e)(e �∈ ∅) (definition of the empty set)
(∀x)(∀y)(∀e)(e ∈ x ∪ y ↔ e ∈ x ∨ e ∈ y) (definition of union)
(∀x)(∀y)(∀e)(e ∈ x ∩ y ↔ e ∈ x ∧ e ∈ y) (definition of intersection)
(∀x)(∀y)(∀e)(e ∈ x− y ↔ e ∈ x ∧ e �∈ y) (definition of set difference)
(∀x)(∀y)(∀e)(e ∈ x�y ↔ (e ∈ x ↔ e �∈ y)) (definition of symmetric difference)
(∀x)(∀e)(e ∈ x ↔ e �∈ x) (definition of complement)

Fig. 1. Set Theory Axiomatization

This identity is problem 2 in our problem suite of Section 5. Proving such properties
poses no problem to humans. We present an example of a human proof.

(1) Take two arbitrary sets a and b. We have to prove a ∪ b = b ∪ a.
(2) By extensionality, to prove (1) we should take an arbitrary element e and prove that

e ∈ a ∪ b if and only if e ∈ b ∪ a.
(3) We will prove that e ∈ a ∪ b implies e ∈ b ∪ a, the reverse direction is obvious.
(4) To this end, assume e ∈ a ∪ b. Then, by the definition of union, e ∈ a or e ∈ b.

Again, by the definition of union, both e ∈ a implies e ∈ b ∪ a and e ∈ b implies
e ∈ b ∪ a. In both cases we have e ∈ b ∪ a, so we are done.

The given proof is almost trivial. Apart from the application of extensionality (step 2)
and skolemization (introduction of constant a, b, e), it uses the definition of union and
propositional inferences.

What is interesting is that this problem is hard for first-order theorem provers. If
we use our full axiomatization of set theory, none of the top three first-order provers
according to the CASC-24 theorem proving competition of last year [22], that is VAM-
PIRE [15], E [20] and IPROVER [14], can solve it. If we only use the relevant axioms,
that is extensionality and the definition of union, these three provers can prove the prob-
lem, however not immediately, with runtimes ranging from 0.24 to 27.18 seconds.

If we take slightly more complex set identities, the best first-order theorem provers
cannot solve them within reasonable time. We next give such an example.

Example 2. Consider the following conditional identity:

(∀x)(∀y)(∀z)(x ∩ y ⊆ z ∧ z ⊆ x ∪ y → (x ∪ y) ∩ (x ∪ z) = y ∪ z) (2)

The above formula cannot be proved by any existing theorem prover within a 1 hour
time limit. This formula is problem 25 in our problem suite of Section 5.

It is not hard to analyze the reason for the failure of superposition provers for exam-
ples requiring extensionality, such as Example 2: it is the treatment of the extensional-
ity axioms. Suppose that we use a superposition theorem prover and use the standard
skolemization and CNF transformation algorithms. Then one of the clauses derived
from the extensionality axiom of Figure 2 is:

f(x, y) �∈ x ∨ f(x, y) �∈ y ∨ x = y. (3)
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Here f is a skolem function. This clause is also required for a computer proof, since
without it the resulting set of clauses is satisfiable.

Independently of the ordering used by a theorem prover, x = y will be the smallest
literal in clause (3). Since it is also positive, no superposition prover will select this
literal. Thus, the way the clause will be used by superposition provers is to derive a new
set identity from already proved membership literals s ∈ t by instantiating x = y. Note
that it will be used in the same way independently of whether the goal is a ∪ b = b ∪ a
or any other set identity. This essentially means that the only way to prove a∪ b = b∪a
is to saturate the rest of the clauses until x ∪ y = y ∪ x is derived, and likewise for
all other set identities! This explains why theorem provers are very inefficient when an
application of extensionality is required to prove a set identity.

Arrays. We now give an example of extensionality reasoning over arrays. The standard
axiomatization of the theory of arrays also contains an extensionality axiom of the form

(∀x)(∀y)((∀i) select(x, i) = select(y, i)) → x = y), (4)

where x, y denote array variables, i is an array index and select the standard select/read
function over arrays. Note that this axiom is different from that of sets because arrays
are essentially maps and two maps are equal if they contain the same elements at the
same indices.

Example 3. Consider the following formula expressing the valid property that the result
of updating an array at two different indices does not depend on the order of updates:

i1 �= i2 → store(store(a, i1, v1), i2, v2) = store(store(a, i2, v2), i1, v1). (5)

Here, store is the standard store/write function over arrays.
Again, this problem (and similar problems for a larger number of updates) is very

hard for theorem provers, see Section 5. The explanation of why it is hard is the same
as for sets: the extensionality axiom is used in “the wrong direction” because the literal
x = y in axiom (4) is never selected.

Solutions? Though extensionality is important for reasoning about collections, and
collection types are first-class in nearly all modern programming languages, reasoning
with extensionality is hard for theorem provers because of the (otherwise very efficient)
superposition calculus implementation.

The above discussion may suggest that one simple solution would be to select x = y
in clauses derived from an extensionality axiom. Note that selecting only x = y will
result in a loss of completeness, so we can assume that it is selected in addition to
the literals a theorem prover normally selects. It is not hard to see that this solution
effectively makes provers fail on most problems. The reason is that superposition from
a variable, resulting from selecting x = y, can be done in every non-variable term. For
example, consider the clause

e ∈ x− y ∨ e ∈ x ∨ e �∈ y, (6)
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obtained by converting the set difference axiom of Figure 2 into CNF and suppose that
the first literal is selected in it. A superposition step from the extensionality clause (3)
into this clause gives

f(x− y, z) �∈ x− y ∨ f(x− y, z) �∈ z ∨ e ∈ z ∨ e ∈ x ∨ e �∈ y. (7)

Note the size of the new clause and also that it contains new occurrences of x − y, to
which we can apply extensionality again.

From the above example it is easy to see that selecting x = y in the extensionality
clause (3) will result in a rapid blow-up of the search space by large clauses. The solu-
tion we propose and defend in this paper is to add a special generating inference rule for
treating extensionality, called extensionality resolution, which requires relatively simple
changes in the architecture of a superposition theorem prover.

3 Reasoning in First-Order Theories with Extensionality Axioms

In this section we explain our solution to problems arising in reasoning with extension-
ality axioms. For doing so, we introduce the new inference rule extensionality resolution
and show how to integrate it into a superposition theorem prover.

Suppose that we have a partial function ext rec, called extensionality recognizer,
such that for every clause C, ext rec(C) either is undefined, or returns the single posi-
tive equality among variables x = y from C. We will also sometimes use ext rec as a
boolean function, meaning that it is true iff it is defined. We call an extensionality clause
any clause C for which ext rec(C) holds. Note that every clause derived from an ex-
tensionality axiom contains a single positive equality among variables, but in general
not every clause containing such an equality corresponds to an extensionality axiom,
see Section 4.

The extensionality resolution rule is the following inference rule:

x = y ∨ C s �= t ∨D

Cθ ∨D
,

(8)

where

1. ext rec(x = y ∨ C) = (x = y), hence, x = y ∨C is an extensionality clause;
2. s �= t is selected in s �= t ∨D;
3. θ is the substitution {x �→ s, y �→ t}.

Note that, since equality is symmetric, there are two inferences between the premises
of (8); one is given above and the other one is with the substitution {x �→ t, y �→ s}.

Example 4. Consider two clauses: clause (3) and the unit clause a∪ b �= b∪a. Suppose
that the former clause is recognized as an extensionality clause. Then the following
inference is an instance of extensionality resolution:

f(x, y) �∈ x ∨ f(x, y) �∈ y ∨ x = y a ∪ b �= b ∪ a

f(a ∪ b, b ∪ a) �∈ a ∪ b ∨ f(a ∪ b, b ∪ a) �∈ b ∪ a
.
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input: init : set of clauses;
var active , passive , unprocessed:= ∅: set of clauses;
var given , new : clause;
unprocessed := init ;
loop

while unprocessed �= ∅

new:=pop(unprocessed );
if new = � then return unsatisfiable;
if retained(new ) then (* retention test *)

simplify new by clauses in active ∪ passive ; (* forward simplification *)
if new = � then return unsatisfiable;
if retained(new ) then (* another retention test *)

delete and simplify clauses in active and (* backward simplification *)
passive using new ;

move the simplified clauses to unprocessed ;
add new to passive ;

if passive = ∅ then return satisfiable or unknown;
given := select(passive); (* clause selection *)
move given from passive to active;
unprocessed:=forward infer(given , active); (* forward generating inferences *)
add backward infer(given, active) to unprocessed ; (* backward generating inferences *)

Fig. 2. Otter Saturation Algorithm

Given a clause with a selected literal s �= t, which can be considered as a request
to prove s = t, extensionality resolution replaces it by an instance of the premises
of extensionality. This example shows that an application of extensionality resolution
achieves the same effect as the use of extensionality in the “human” proof of Example 1.

Let us now explain how extensionality resolution can be integrated in a saturation
algorithm of a superposition theorem prover. The key questions to consider is when
the rule is applied and whether this rule requires term indexing or other algorithms to
be performed. The implementation is similar for all saturation algorithms; for ease of
presentation we will describe it only for the Otter saturation algorithm [15]. For an
overview of saturation algorithms we refer to [18,15].

A simplified description of the Otter saturation algorithm is shown in Figure 2. It
uses three kinds of inferences: generating, which add new clauses to the search space;
simplifying, which replace existing clauses by new ones, and deletion, which delete
clauses from the search space. The algorithms maintains three sets of clauses:

1. active: the set of clauses to which generating inferences have already been applied;
2. passive : clauses that are retained by the prover (that is, not deleted);
3. unprocessed : clauses that are in a queue for a retention test.

At each step, the algorithm either processes a clause new , picked from unprocessed ,
or performs generating inferences with the so-called given clause given , which is the
clause most recently added to active .

All operations performed by the saturation algorithm that may take considerable time
to execute are normally implemented using term indexing, that is, by building a special
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input: init: set of clauses;
var active , passive , unprocessed:= ∅: set of clauses;
var given , new : clause;

�var neg equal , ext:= ∅: set of clauses;
unprocessed := init;
loop

while unprocessed �= ∅

new:=pop(unprocessed );
if new = � then return unsatisfiable;
if retained (new) then (* retention test *)

simplify new by clauses in active ∪ passive ; (* forward simplification *)
if new = � then return unsatisfiable;
if retained (new) then (* another retention test *)

delete and simplify clauses in active and (* backward simplification *)
passive using new ;

move the simplified clauses to unprocessed ;
add new to passive ;

if passive = ∅ then return satisfiable or unknown;
given := select(passive); (* clause selection *)
move given from passive to active ;
unprocessed:=forward infer(given, active); (* forward generating inferences *)

� if given has a negative selected equality then
� add given to neg equal ;
� add to unprocessed all conclusions of extensionality resolution inferences
� between clauses in ext and given ;

add backward infer(given, active) to unprocessed ; (* backward generating inferences *)
� if ext rec(given) then
� add given to ext ;
� add to unprocessed all conclusions of extensionality resolution inferences
� between given and clauses in neg equal ;

Fig. 3. Otter Saturation Algorithm with Extensionality Resolution parts marked by �

purpose index data structure that makes the operation faster. For example, all theorem
provers with built-in equality reasoning have an index for forward demodulation.

Extensionality resolution is a generating inference rule, so the relevant lines of the
saturation algorithm are the ones at the bottom, referring to generating inferences. The
same saturation algorithm with extensionality resolution related parts marked by � is
shown in Figure 3.

As one can see from the algorithm in Figure 3, extensionality resolution is easy to
integrate into superposition theorem provers. The reason is that it requires no sophis-
ticated indexing to find candidates for inferences: extensionality resolution applies to
every extensionality clause and every clause with a negative selected equality literal.

Therefore, we only have to maintain two collections: neg equal of active clauses
having a negative selected equality literal and ext of extensionality clauses as recog-
nized by the function ext rec. Another addition to the saturation algorithm, not shown
in Figure 3, is that deleted or simplified clauses belonging to any of these collections
should be deleted from the collections too. An easy way to implement this is to ignore
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such deletions when they occur and instead check the storage class of a clause (that is
active, passive, unprocessed or deleted) when we iterate through the collection during
generating inferences. If during such an iteration we discover a clause that is no more
active, we remove it from the collection and perform no generating inferences with it.

4 Recognizing Extensionality Axioms

One of the key questions for building extensionality reasoning into a theorem prover
is the recognition of extensionality clauses, i.e. the concrete choice of ext rec. Every
clause containing a single positive equality between two different variables x = y is a
potential extensionality clause.

To understand this, we analyzed problems in the TPTP library of about 14,000 first-
order problems [21] . It turned out that the TPTP library contains about 6,000 different
axioms (mainly formulas, not clauses) that can result in a clause containing a positive
equality among variables. By different here we mean up to variable renaming. One can
consider other equivalence relations among axioms, such as using commutativity and
associativity of∧ or∨, or closure under renaming of predicate and function symbols, for
which the number of different axioms will be smaller. Anyhow, having 6,000 different
axioms in about 14,000 problems shows that such axioms are very common.

The most commonly used examples of extensionality axioms are the already dis-
cussed set and array extensionality axioms. In addition to them, set theory axiomatiza-
tions often contain the subset-based extensionality axiom x ⊆ y ∧ y ⊆ x → x = y.

Contrary to these intended extensionality axioms, there is one kind of axioms which
is dangerous to consider as extensionality: constructor axioms, describing that some
function symbol is a constructor. Constructor axioms are central in theories of al-
gebraic data types. For example, consider an axiom describing a property of pairs
pair (x1, x2) = pair (y1, y2) → x1 = y1, or a similar axiom for the successor function
succ(x) = succ(y) → x = y. If we regard the latter as an extensionality
axiom, extensionality resolution allows one to derive from any inequality s �= t the
inequality succ(s) �= succ(t), which, in turn, allows one to derive succ(succ(s)) �=
succ(succ(t)) and so on. This will clutter the search space with bigger and bigger
clauses. Hence, clauses derived from constructor axioms must not be recognized as
extensionality clauses. We achieve this by excluding clauses having a negative equality
of the same sort as x = y. However, in unsorted problems, i.e. every term has the same
sort, we would for example also lose the array extensionality axiom.

The clause i = j ∨ select(store(x, i, e), j) = select(x, j) from the axiomatization
of arrays is also certainly not intended to be an extensionality axiom. From this example
we derive the option to exclude clauses having a positive equality other than the one
among variables.

Another common formula is the definition of a non-strict order: x ≤ y ↔ x <
y ∨ x = y. We did not yet investigate how considering this axiom as an extensionality
axiom affects the search space, and consider such an investigation an interesting task
for future work.

In addition to the above mentioned potential extensionality axioms, there is a large
variety of such axioms in the TPTP library, including very long ones. One example,
coming from the Mizar library, is
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(∀x0)(∀x1)(∀x2)(∀x3)(∀x4)
((v1 funct 1 (x1) ∧ v1 funct 2 (x1, k2 zfmisc 1 (x0, x0), x0) ∧
v1 funct 1 (x2) ∧ v1 funct 2 (x2, k2 zfmisc 1 (x0, x0), x0) ∧
m1 subset 1 (x3, x0) ∧m1 relset 1 (x1, k2 zfmisc 1 (x0, x0), x0) ∧
m1 subset 1 (x4, x0) ∧m1 relset 1 (x2, k2 zfmisc 1 (x0, x0), x0)) →
(∀x4)(∀x6)(∀x7)(∀x8)(∀x9)(
g3 vectsp 1 (x0, x1, x2, x3, x4) = g3 vectsp 1 (x5, x6, x7, x8, x9) →

(x0 = x5 ∧ x1 = x6 ∧ x2 = x7 ∧ x3 = x8 ∧ x4 = x9))).

Another example comes from problems generated automatically by parsing natural lan-
guage sentences:

x4 = x6 ∨ ssSkC0 ∨ ¬in(x6, x7) ∨ ¬front(x7) ∨ ¬furniture(x7) ∨ ¬seat(x7) ∨
¬fellow(x6) ∨ ¬man(x6) ∨ ¬young(x6) ∨ ¬seat(x5) ∨ ¬furniture(x5) ∨ ¬front(x5) ∨
¬in(x4, x5) ∨ ¬young(x4) ∨ ¬man(x4) ∨ ¬fellow(x4) ∨ ¬in(x2, x3) ∨ ¬city(x3) ∨
¬hollywood(x3) ∨ ¬event(x2) ∨ ¬barrel (x2, x1) ∨ ¬down(x2, x0) ∨ ¬old(x1) ∨
¬dirty(x1) ∨ ¬white(x1) ∨ ¬car(x1) ∨ ¬chevy(x1) ∨ ¬street(x0) ∨ ¬way(x0) ∨
¬lonely(x0).

These examples give rise to an option for limiting the number of literals in an exten-
sionality clause.

Based on our analysis in this section, there are a number of options for recognizing
extensionality clauses. In Section 5 we show two combinations of these options are
useful for solving distinct problems.

5 Experimental Results

We implemented extensionality resolution in VAMPIRE. Our implementation required
about 1,000 lines of C++ code on top of the existing VAMPIRE code. The extended
VAMPIRE is available as binary at [1] and will be merged in the next official release
of VAMPIRE. In the sequel, we refer to our extended VAMPIRE implementation as
VAMPIREEX.

In this section we report on our experimental results obtained by evaluating exten-
sionality resolution on three collections of benchmarks: (i) handcrafted hard set theory
problems, (ii) array problems from the SMT-LIB library [6], and (iii) first-order prob-
lems of the TPTP library [21]. Our results are summarized in Tables 1–3, and detailed
below.

On the set theory problems our implementation significantly outperforms all theo-
rem provers that were competing in the last year’s theorem proving system competition
CASC-24 [22]. VAMPIREEX efficiently solves all the set theory problems, while every
other prover including the original VAMPIRE solves less than half of the problems (Ta-
ble 1). We also tried the SMT solver Z3, which failed to prove any of our set theory
problems.

When evaluating VAMPIREEX on array problems taken from the SMT-LIB library,
VAMPIREEX solved more problems than all existing first-order theorem provers (Ta-
ble 2). The SMT solver Z3 outperformed VAMPIREEX if we encode these array prob-
lems as problems from the theory of arrays with extensionality, in which case Z3 can
use its decision procedure for this theory.
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1. x ∩ y = y ∩ x
2. x ∪ y = y ∪ x
3. x ∩ y = ((x ∪ y)− (x− y))− (y − x)

4. (x) = x
5. x = x ∩ (x ∪ y)
6. x = x ∪ (x ∩ y)
7. (x ∩ y)− z = (x− z) ∩ (y − z)
8. x ∪ y = x ∩ y
9. x ∩ y = x ∪ y

10. x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z)
11. x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)
12. x ⊆ y → x ∪ y = y
13. x ⊆ y → x ∩ y = x
14. x ⊆ y → x− y = ∅
15. x ⊆ y → y − x = y − (x ∩ y)
16. x ∪ y ⊆ z → z − (x�y) = (x ∩ y) ∪

(z − (x ∪ y))
17. x�y = ∅ → x = y
18. z−(x�y) = (x∩(y∩z))∪(z−(x∪y))
19. (x− y) ∩ (x�y) = x ∩ y

20. x�y = (x− y) ∪ (y − x)
21. (x�y)�z = x�(y�z)
22. (x�y)�z = ((x− (y ∪ z))∪ (y− (x∪

z))) ∪ ((z − (x ∪ y)) ∪ (x ∩ (y ∩ z)))
23. ((x∪ y)∩ (x∪ z)) = (y− x)∪ (x∩ z)
24. (∃x)(((x ∪ y) ∩ (x ∪ z)) = y ∪ z)
25. (x ∩ y) ⊆ z ⊆ (x ∪ y) → ((x ∪ y) ∩

(x ∪ z)) = y ∪ z
26. x ⊆ y → (z − x)− y = z − y
27. x ⊆ y → (z − y)− x = z − y
28. x ⊆ y → z − (y ∪ x) = z − y
29. x ⊆ y → z − (y ∩ x) = z − x
30. x ⊆ y → (z − y) ∩ x = ∅
31. x ⊆ y → (z − x) ∩ y = z ∩ (y − x)
32. x ⊆ y ⊆ z → (z − x) ∩ y = y − x
33. x− y = x ∩ y
34. x ∩ ∅ = ∅
35. x ∪ ∅ = x
36. x ⊆ y → (∃z)(y − z = x)

Fig. 4. Collection of 36 handcrafted set theory problems. All variables without explicit quantifi-
cation are universally quantified.

On the TPTP library, VAMPIREEX solved 84 problems not solved by the CASC ver-
sion of VAMPIRE (Table 3). Even more, 12 of these problems have rating 1, which
means that no existing prover, either first-order or SMT, can solve them.

The rest of this section describes in detail our experiments. All results were obtained
on a GridEngine managed cluster system at IST Austria. Each run of a prover on a
problem was assigned a dedicated 2.3 GHz core and 10 GB RAM with the time limit
of 60 seconds.

Set Theory Experiments. We handcrafted 36 set identity problems given in Figure 4,
which also include the problems presented in Section 2. For proving the problems, we
created TPTP files containing the set theory axioms from Figure 2 as TPTP axioms and
the problem to be proved as a TPTP conjecture.

Table 1 shows the runtimes and the number of problems solved by VAMPIREEX com-
pared to all but two provers participating in the first-order theorems (FOF) and typed
first-order theorems (TFA) divisions of the CASC-24 competition.1 The only provers
which we did not compare with VAMPIREEX were PROVER9 and SPASS+T, for the
following reasons: PROVER9 depends on the directory structure of the CASC system
and the TPTP library, thus it did not run on our test system; SPASS+T only accepts
problems containing arithmetic. Since not all provers participating in CASC-24 sup-
port typed formulas, we have also generated untyped versions of the problems. As a

1 We used the exact programs and command calls as in the competition, up to adaptions of the
absolute file paths to our test system.
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Table 1. Runtimes in seconds of provers on the set theory problems from Figure 4. Empty entries
mean timeout after 60 seconds. The first row indicates whether the prover was run on typed (TFF)
or untyped (FOF) problems. The last row counts the number of solved problems.
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1 0.02 0.08 13.70 7.78 7.61 0.10
2 0.01 0.02 7.92 8.22 41.54
3 0.06 0.29
4 0.02 0.07 1.47 9.36 9.45 0.21 0.24 30.24 1.38 0.65
5 0.02 0.25 0.89 17.19 14.64 1.92 56.05 33.98 0.10
6 0.02 0.25 0.29 15.41 10.97 54.40
7 0.03 0.03
8 0.02 0.08
9 0.02 0.09

10 0.04 0.09
11 0.04 0.27
12 0.02 0.25 0.58 15.36 14.66 0.39 0.40 50.52
13 0.02 0.02 1.10 15.23 15.13 0.14 0.17 30.34 0.35 0.09
14 0.02 0.07 2.44 7.80 8.09 0.02 0.03 0.07 0.09 10.59 6.85 7.88
15 0.02 0.03 13.80 8.55 8.04 0.12 0.15 32.15 1.55
16 3.41 4.14
17 0.01 0.09 0.02 0.02 30.94 24.31 0.44
18 0.94 1.08
19 0.03 0.04
20 0.02 0.25
21 0.03 0.25
22 1.73 1.76
23 0.24 0.50
24 0.15 0.42 0.43 0.26
25 0.05 0.05
26 0.05 0.10
27 0.03 0.08 11.80 25.80 20.97 52.47
28 0.06 0.31 11.80 33.73 37.05 0.80 0.72 34.32
29 0.03 0.04 38.63 0.22 0.26 31.33 1.64
30 0.02 0.08 3.32 12.36 11.53 0.06 0.07 27.54 0.11 23.30
31 0.03 0.27
32 0.04 0.09
33 0.02 0.01 23.28 20.92 21.00
34 0.02 0.01 0.50 6.71 6.71 0.02 0.02 30.29 0.03 0.08 0.59 2.22 2.21
35 0.02 0.02 8.23 6.87 7.24 0.23 0.25 30.34 30.23
36 0.02 0.03 1.50 20.86 21.01 44.77

36 36 16 15 15 14 13 13 11 7 4 2 2 0

result, theorem provers supporting typed formulas were then evaluated on both typed
and untyped problems.

Our results show that only VAMPIREEX could solve all problems, and 17 problems
could not be solved by any other prover. Moreover, VAMPIREEX is very fast: out of the
36 typed problems, only 5 took more than 0.1 seconds and only 2 took more than 1
second.

In our experiments with typed formulas, type information reduces the number of
well-formed formulas and therefore the search space. Hence VAMPIREEX is gener-
ally faster on typed problems, in our experiments by 4.18 seconds in total. The total
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Table 2. Evaluation of extensionality resolution on array problems. Runtimes are in seconds.

Prover solved runtime

VAMPIREEX 154 1193.85
VAMPIRE 107 1020.76
E 81 600.01
BEAGLE 16 185.44
ZIPPERPOSITION 15 49.27
PRINCESS 10 35.02
IPROVER 9 47.13
CVC4 8 0.36
E-KRHYPER 8 1.26
MUSCADET 4 0.41

Z3 277 64.25

runtime of VAMPIREEX on all typed problems was 7.33 seconds. Among the problems
also solved by VAMPIRE, VAMPIREEX is always faster.

Finally, Table 1 does not compare VAMPIREEX with SMT solvers for the reason that
these set theory problems use both quantifiers and theories. We however note that the
use of quantifiers in the set theory axiomatization caused SMT solvers, in particular Z3,
to fail on all these examples. Z3 provides a special encoding [11] for sets that allows
some of the problems to be encoded as quantifier free and we believe that a comparison
with this encoding is unfair.

Array Experiments. For evaluating VAMPIREEX on array problems, we used all the
278 unsatisfiable problems from the QF AX category of quantifier-free formulas over
the theory of arrays with extensionality of SMT-LIB. We translated these problems into
the TPTP syntax. Table 2 reports on the results of VAMPIREEX on these problems and
compares them to the results obtained by the other first-order provers and the SMT
solver Z3, which solves all of them but one using a decision procedure for the theory.
However, we feel that arrays with extensionality are not very interesting for applica-
tions, since we failed to find natural examples of problems that require such extension-
ality, apart from those that state that the results of updating arrays at distinct indexes
does not depend on the order of updates (for example, all problems in the QF AX cate-
gory of SMT-LIB are such problems).

For array experiments we were interested whether VAMPIREEX can outperform first-
order provers without extensionality resolution. Table 2 shows that the number of array
problems it solves is significantly larger than that of all other first-order provers, thus
confirming the power of our approach to extensionality reasoning.

The TPTP Library Experiments. VAMPIRE uses a collection of strategies to prove
hard problems and our new inference rule adds new possible options in the reper-
toire of VAMPIRE. Based on the discussion of Section 4, we introduced two new op-
tions for the VAMPIRE strategies to control the recognition of extensionality clauses
in VAMPIREEX, namely known and all. The option known only recognizes clauses
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Table 3. Experiments with various options for recognizing extensionality clauses in VAMPIREEX

Strategies solved uniquely solved

original 4015 156
original+known 3870 8

}

84
original+all 3747 50

obtained from the set and array extensionality axioms, as well as the subset-based set
extensionality axiom. The option all applies the criteria given in Section 4.

We ran experiments on all 7224 TPTP problems that may contain an equality be-
tween variables. Our results are summarized in Table 3, where the first row reports on
using VAMPIREEX with the original collection of strategies of VAMPIRE. The second
row uses VAMPIREEX in the combination of the option known and the original strate-
gies of VAMPIRE, whereas the third row uses the option allwith the original strategies
of VAMPIRE.

The original strategies solved 4015 problems, and 156 were uniquely solved by
these collection of strategies. The original+known and original+all solved
3870 and 3747 problems, respectively. They uniquely solved 8 and 50 problems re-
spectively. Using however original+known and original+all in combination,
VAMPIREEX solved 84 problems which were not solved by the original collection of
strategies original. We have listed these 84 problems in Table 4. Out of these 84
solved problems, 12 problems are rated with difficulty 1 in the CASC system competi-
tion. That is, these 12 problems were never solved in any previous CASC competition
by any existing prover, including all existing first-order provers and the SMT solvers
Z3 and CVC4 [5]. VAMPIREEX hence outperforms all modern solvers when it comes
to reasoning with both theories and quantifiers.

Note that for first-order theorem provers the average number of problems solved by
a strategy does not mean much in general. The reason is that these provers show the
best performance when they treat problems by a cocktail of strategies. Normally, if a
problem is solvable by a prover, there is a strategy that solves it in nearly no time, so
running many short-lived strategies gives better results than running a small number
of strategies for longer times. When we introduce a new option to a theorem prover,
the main question is, if this option can complement the cocktail of strategies so that
more problems are solved by these strategies all together. This means that an option
that solves many unique problems is, in general, much more valuable than an option
solving many problems on the average.

Our results indicate that the use extensionality resolution in first-order theorem prov-
ing can solve a significant number of problems not solvable without it. Therefore it
is a powerful addition to the toolbox of first-order theorem proving methods. Further
extensive experiments with combining extensionality resolution with various other op-
tions are required for better understanding of how it can be integrated in first-order
provers.
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Table 4. Fields and ratings of TPTP problems only solved by VAMPIRE with extensionality
resolution

Field Subfield Problem Rating

Computer Science Commonsense Reasoning CRS075+6 0.97
Computer Science Commonsense Reasoning CRS076+2 0.97
Computer Science Commonsense Reasoning CRS076+6 1.00
Computer Science Commonsense Reasoning CRS076+7 1.00
Computer Science Commonsense Reasoning CRS078+2 1.00
Computer Science Commonsense Reasoning CRS079+6 0.97
Computer Science Commonsense Reasoning CRS080+1 0.97
Computer Science Commonsense Reasoning CRS080+2 1.00
Computer Science Commonsense Reasoning CRS081+4 0.93
Computer Science Commonsense Reasoning CRS083+4 0.90
Computer Science Commonsense Reasoning CRS083+6 0.97
Computer Science Commonsense Reasoning CRS084+2 0.93
Computer Science Commonsense Reasoning CRS084+4 0.93
Computer Science Commonsense Reasoning CRS084+5 0.93
Computer Science Commonsense Reasoning CRS088+1 0.97
Computer Science Commonsense Reasoning CRS088+2 1.00
Computer Science Commonsense Reasoning CRS088+4 0.93
Computer Science Commonsense Reasoning CRS088+6 1.00
Computer Science Commonsense Reasoning CRS089+6 1.00
Computer Science Commonsense Reasoning CRS092+6 1.00
Computer Science Commonsense Reasoning CRS093+4 0.93
Computer Science Commonsense Reasoning CRS093+6 1.00
Computer Science Commonsense Reasoning CRS093+7 1.00
Computer Science Commonsense Reasoning CRS094+6 0.97
Computer Science Commonsense Reasoning CRS109+6 0.93
Computer Science Commonsense Reasoning CRS118+6 0.97
Computer Science Commonsense Reasoning CSR057+5 0.97
Computer Science Software Creation SWC021-1 0.64
Computer Science Software Creation SWC160-1 0.93
Computer Science Software Verification SWV474+1 0.83
Computer Science Software Verification SWV845-1 0.86
Computer Science Software Verification Continued SWW284+1 0.87
Logic Combinatory Logic COL081-1 0.64
Mathematics Algebra/Lattices LAT298+1 0.90
Mathematics Algebra/Lattices LAT324+1 0.80
Mathematics Category Theory CAT009-1 0.00
Mathematics Category Theory CAT010-1 0.00
Mathematics Graph Theory GRA007+1 0.60
Mathematics Graph Theory GRA007+2 0.63
Mathematics Number Theory NUM459+1 0.70
Mathematics Number Theory NUM493+1 0.87
Mathematics Number Theory NUM493+3 0.97
Mathematics Number Theory NUM495+1 0.60
Mathematics Number Theory NUM508+3 0.63
Mathematics Number Theory NUM515+1 1.00
Mathematics Number Theory NUM515+3 1.00
Mathematics Number Theory NUM517+3 0.70
Mathematics Number Theory NUM535+1 0.63
Mathematics Number Theory NUM542+1 0.83
Mathematics Number Theory NUM544+1 0.90
Mathematics Set Theory SET018+1 0.90
Mathematics Set Theory SET041-3 0.36
Mathematics Set Theory SET066-6 1.00
Mathematics Set Theory SET066-7 1.00
Mathematics Set Theory SET069-6 0.93
Mathematics Set Theory SET069-7 0.93
Mathematics Set Theory SET070-6 0.93
Mathematics Set Theory SET070-7 0.93
Mathematics Set Theory SET097-7 0.64
Mathematics Set Theory SET099+1 0.87
Mathematics Set Theory SET128-6 0.71
Mathematics Set Theory SET157-6 0.71
Mathematics Set Theory SET262-6 0.86
Mathematics Set Theory SET497-6 0.71
Mathematics Set Theory SET510-6 0.43
Mathematics Set Theory SET606+3 0.53
Mathematics Set Theory SET613+3 0.83
Mathematics Set Theory SET634+3 0.67
Mathematics Set Theory SET671+3 0.90
Mathematics Set Theory SET673+3 0.90
Mathematics Set Theory SET674+3 0.90
Mathematics Set Theory SET831-1 0.86
Mathematics Set Theory SET837-1 0.93
Mathematics Set Theory Continued SEU007+1 1.00
Mathematics Set Theory Continued SEU049+1 0.87
Mathematics Set Theory Continued SEU058+1 0.93
Mathematics Set Theory Continued SEU059+1 0.97
Mathematics Set Theory Continued SEU073+1 1.00
Mathematics Set Theory Continued SEU194+1 0.70
Mathematics Set Theory Continued SEU205+1 0.97
Mathematics Set Theory Continued SEU265+2 0.97
Mathematics Set Theory Continued SEU283+1 0.73
Mathematics Set Theory Continued SEU384+1 0.90
Social Sciences Social Choice Theory SCT162+1 0.87
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6 Related Work

Reasoning with both theories and quantifiers is considered as a major challenge in
the theorem proving and SMT communities. SMT solvers can process very large for-
mulas in ground decidable theories [10,5]. Quantifier reasoning in SMT solvers is
implemented using trigger-based E-matching, which is not as powerful as the use of
unification in superposition calculi. Combining quantifiers with theories based on SMT
solving is described in [17,19].

Unlike SMT reasoning, first-order theorem provers are very efficient in handling
quantifiers but weak in theory reasoning. Paper [4] introduces the hierarchical superpo-
sition calculus by combining the superposition calculus with black-box style theory rea-
soning. This approach has been further extended in [7] for first-order reasoning modulo
background theories under the assumption that theory terms are ground. A similar ap-
proach is also addressed in the instantiation-based theorem proving method of [12,14],
where quantifier-free instances of the first-order problem are generated. These ground
instances are passed to the reasoning engine of the background theory for proving un-
satisfiability of the original quantified problem. In case of satisfiability, the original
problem is refined based on the generated ground model and new instances are next
generated. All mentioned approaches separate the theory-specific and quantifier rea-
soning. This is not the case with our work, where theory reasoning using extensionality
is a natural extension of the superposition calculus.

Our work is dedicated to first-order reasoning about collections, such as sets and
arrays. It is partially motivated by program analysis, since collection types are first-class
types in many programming languages and nearly every programming languages has
collection libraries. While there has been a considerable amount of work on deciding
universal theories of collection types, including using superposition provers [2] and
decidability or undecidability of their extensions [9,13], our work is different since
we consider collections in first-order logic with quantifiers. As many others, we are
trying to bridge the gap between quantifier and theory reasoning, but in a way that is
friendly to existing architectures of first-order theorem provers. Unlike [2], we impose
no additional constraints on the used simplification ordering and can deal with arbitrary
axioms on top of array axioms.

In a way, our approach is similar to the one of [8], where it is proposed to extend
the resolution calculus by theory-specific rules, which do not change the underlying
inference mechanisms. Indeed, our implementation of extensionality resolution requires
relatively simple changes in saturation algorithms.

7 Conclusion

We examined why reasoning with extensionality axioms is hard for superposition-based
theorem provers and proposed a new inference rule, called extensionality resolution, to
improve their performance on problems containing such axioms. Our experimental re-
sults show that first-order provers with extensionality resolution can easily solve prob-
lems in reasoning with sets and arrays that were unsolvable by all existing theorem
provers and, also much harder versions of these problems. Our results contribute to one
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of the main problems in modern theorem proving: efficiently solving problems using
both quantifiers and theories.
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Abstract. Separation Logic (SL) with inductive definitions is a natural formal-
ism for specifying complex recursive data structures, used in compositional ver-
ification of programs manipulating such structures. The key ingredient of any
automated verification procedure based on SL is the decidability of the entailment
problem. In this work, we reduce the entailment problem for a non-trivial subset
of SL describing trees (and beyond) to the language inclusion of tree automata
(TA). Our reduction provides tight complexity bounds for the problem and shows
that entailment in our fragment is EXPTIME-complete. For practical purposes,
we leverage from recent advances in automata theory, such as inclusion checking
for non-deterministic TA avoiding explicit determinization. We implemented our
method and present promising preliminary experimental results.

1 Introduction

Separation Logic (SL) [22] is a logical framework for describing recursive mutable
data structures. The attractiveness of SL as a specification formalism comes from the
possibility of writing higher-order inductive definitions that are natural for describ-
ing the most common recursive data structures, such as singly- or doubly-linked lists
(SLLs/DLLs), trees, hash maps (lists of lists), and more complex variations thereof,
such as nested and overlaid structures (e.g. lists with head and tail pointers, skip-lists,
trees with linked leaves, etc.). In addition to being an appealing specification tool, SL
is particularly suited for compositional reasoning about programs. Indeed, the principle
of local reasoning allows one to verify different elements (functions, threads) of a pro-
gram, operating on disjoint parts of the memory, and to combine the results a-posteriori,
into succinct verification conditions.

However, the expressive power of SL comes at the price of undecidability [6]. To
avoid this problem, most SL dialects used by various tools (e.g. SPACE INVADER [2],
PREDATOR [9], or INFER [7]) use hard-coded predicates, describing SLLs and DLLs,
for which entailments are, in general, tractable [8]. For graph structures of bounded tree
width, a general decidability result was presented in [14]. Entailment in this fragment
is EXPTIME-hard, as proven in [1].

In this paper, we present a novel decision procedure for a restriction of the decidable
SL fragment from [14], describing recursive structures in which all edges are local with
respect to a spanning tree. Examples of such structures include SLLs, DLLs, trees and
trees with parent pointers, etc. For structures outside of this class (e.g. skip-lists or trees
with linked leaves), our procedure is sound (namely, if the answer of the procedure is
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positive, then the entailment holds), but not complete (the answer might be negative
and the entailment could still hold). In terms of program verification, such a lack of
completeness in the entailment prover can lead to non-termination or false positives,
but will not cause unsoundness (i.e. classify a buggy program as correct).

The method described in the paper belongs to the class of automata-theoretic
decision techniques: We translate an entailment problem ϕ |= ψ into a language inclu-
sion problem L(Aϕ) ⊆ L(Aψ) for tree automata (TA) Aϕ and Aψ that (roughly speak-
ing) encode the sets of models of ϕ and ψ, respectively. Yet, a naı̈ve translation of
the inductive definitions of SL into TA encounters a polymorphic representation prob-
lem: the same set of structures can be defined in several different ways, and TA sim-
ply mirroring the definition will not report the entailment. For example, DLLs with
selectors next and prev for the next and previous nodes, respectively, can be de-
scribed by a forward unfolding of the inductive definition: DLL(head, prev, tail,next)≡
∃x. head �→ (x, prev)∗DLL(x,head, tail,next) | emp∧head = tail∧ prev= next, as well
as by a backward unfolding of the definition: DLLrev(head, prev, tail,next)≡∃x. tail �→
(next,x)∗DLLrev(head, prev,x, tail) | emp∧head = tail∧ prev= next. Also, one can de-
fine a DLL starting with a node in the middle and unfolding backward to the left of this
node and forward to the right: DLLmid(head, prev, tail,next)≡∃x,y,z . DLL(y,x, tail,next)
∗DLLrev(head, prev,z,x). The circular entailment: DLL(a,b,c,d) |= DLLrev(a,b,c,d) |=
DLLmid(a,b,c,d) |= DLL(a,b,c,d) holds, but a naı̈ve structural translation to TA might
not detect this fact. To bridge this gap, we define a closure operation on TA, called
canonical rotation, which adds all possible representations of a given inductive defini-
tion, encoded as a tree automaton.

The translation from SL to TA provides also tight complexity bounds, showing
that entailment in the local fragment of SL with inductive definitions is EXPTIME-
complete. Moreover, we implemented our method using the VATA [17] tree automata
library, which leverages from recent advances in non-deterministic language inclusion
for TA [4], and obtained quite encouraging experimental results.

Related Work. Given the large body of literature on logics for describing mutable data
structures, we need to restrict this section to the related work that focuses on SL [22].
The first (proof-theoretic) decidability result for SL on a restricted fragment defining
only SLLs was reported in [3], which describe a co-NP algorithm. The full basic SL
without recursive definitions, but with the magic wand operator was found to be unde-
cidable when interpreted in any memory model [6]. A PTIME entailment procedure for
SL with list predicates is given in [8]. Their method was extended to reason about nested
and overlaid lists in [11]. More recently, entailments in an important SL fragment with
hardcoded SLL/DLL predicates were reduced to Satisfiability Modulo Theories (SMT)
problems, leveraging from recent advances in SMT technology [20,18]. The work re-
ported in [10] deals with entailments between inductive SL formulae describing nested
list structures. It uses a combination of graphs and TA to encode models of SL, but
it does not deal with the problem of polymorphic representation. Recently, a decision
procedure for entailments in a fragment of multi-sorted first-order logic with reacha-
bility, hard-coded trees and frame specifications, called GRIT (Graph Reachability and
Inverted Trees) has been reported in [21]. Due to the restriction of the transitive closure
to one function symbol (parent pointer), the expressive power of their logic, without
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data constraints, is strictly lower than ours (regular properties of trees cannot be en-
coded in GRIT). However, GRIT can be extended with data, which has not been, so far,
considered for SL.

Closer to our work on SL with user-provided inductive definitions is the fragment
used in the tool SLEEK, which implements a semi-algorithmic entailment check, based
on unfoldings and unifications [19]. Along this line of work, the theorem prover CY-
CLIST builds entailment proofs using a sequent calculus. Neither SLEEK nor CYCLIST

are complete for a given fragment of SL, and, moreover, these tools do not address the
polymorphic representation problem.

Our previous work [14] gave a general decidability result for SL with inductive defi-
nitions interpreted over graph-like structures, under several necessary restrictions, based
on a reduction from SL to Monadic Second Order Logic (MSOL) on graphs of bounded
tree width. Decidability of MSOL on such graphs relies on a combinatorial reduction
to MSOL on trees (see [12] for a proof of Courcelle’s theorem). Altogether, using the
method from [14] causes a blowup of several exponentials in the size of the input prob-
lem and is unlikely to produce an effective decision procedure.

The work [1] provides a rather complete picture of complexity for the entailment in
various SL fragments with inductive definitions, including EXPTIME-hardness of the
decidable fragment of [14], but provides no upper bound. The EXPTIME-completeness
result in this paper provides an upper bound for a fragment of local definitions, and
strengthens the EXPTIME-hard lower bound as well, i.e. it is showed that even the
entailment between local definitions is EXPTIME-hard.

2 Definitions

The set of natural numbers is denoted by N. If x = 〈x1, . . . ,xn〉 and y = 〈y1, . . . ,ym〉
are tuples, x ·y= 〈x1, . . . ,xn,y1, . . . ,ym〉 denotes their concatenation, |x|= n denotes the
length of x, and (x)i = xi denotes the i-th element of x. For a partial function f : A ⇀ B,
and ⊥ /∈ B, we denote by f (x) =⊥ the fact that f is undefined at some point x ∈ A. The
domain of f is denoted dom( f ) = {x ∈ A | f (x) �=⊥}, and the image of f is denoted as
img( f ) = {y ∈ B | ∃x ∈ A . f (x) = y}. By f : A ⇀ f in B, we denote any partial function
whose domain is finite. Given two partial functions f ,g defined on disjoint domains,
i.e. dom( f )∩dom(g) = /0, we denote by f ⊕ g their union.

States. We consider Var = {x,y,z, . . .} to be a countably infinite set of variables and
nil ∈ Var be a designated variable. Let Loc be a countably infinite set of locations and
null ∈ Loc be a designated location.

Definition 1. A state is a pair 〈s,h〉 where s : Var ⇀ Loc is a partial function mapping
pointer variables into locations such that s(nil) = null, and h : Loc ⇀ f in N ⇀ f in Loc
is a finite partial function such that (i) null �∈ dom(h) and (ii) for all � ∈ dom(h) there
exists k ∈ N such that (h(�))(k) �=⊥.

Given a state S = 〈s,h〉, s is called the store and h the heap. For any l, l′ ∈ Loc, we

write �
k−→S �′ instead of (h(�))(k) = �′ for any k ∈ N called a selector. We call the

triple �
k−→S �′ an edge of S. When the S subscript is obvious from the context, we
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sometimes omit it. Let Img(h) =
⋃

�∈Loc img(h(�)) be the set of locations which are
destinations of some edge in h. A location � ∈ Loc is said to be allocated in 〈s,h〉 if
� ∈ dom(h) (i.e. it is the source of an edge). The location is called dangling in 〈s,h〉
if � ∈ [img(s)∪ Img(h)] \ dom(h), i.e. it is referenced by a store variable or reachable
from an allocated location in the heap, but it is not allocated in the heap itself. The
set loc(S) = img(s)∪ dom(h)∪ Img(h) is the set of all locations either allocated or
referenced in the state S.

For any two states S1 = 〈s1,h1〉 and S2 = 〈s2,h2〉 such that (i) s1 and s2 agree on
the evaluation of common variables (∀x ∈ dom(s1) ∩ dom(s2) . s1(x) = s2(x)) and
(ii) h1 and h2 have disjoint domains (dom(h1) ∩ dom(h2) = /0), we denote by S1�S2 =
〈s1 ∪ s2,h1 ⊕ h2〉 the disjoint union of S1 and S2. The disjoint union is undefined if one
of the above conditions does not hold.

Trees and Tree Automata. Let Σ be a countable alphabet and N
∗ be the set of se-

quences of natural numbers. Let ε ∈ N
∗ denote the empty sequence and p.q denote the

concatenation of two sequences p,q ∈ N
∗. We say that p is a prefix of q if q = p.q′ for

some q′ ∈ N
∗. A set X ⊆ N

∗ is prefix-closed iff p ∈ X ⇒ q ∈ X for each prefix q of p.
A tree t over Σ is a finite partial function t : N∗ ⇀ f in Σ such that dom(t) is a finite

prefix-closed subset of N
∗ and, for each p ∈ dom(t) and i ∈ N, we have t(p.i) �= ⊥

only if t(p. j) �= ⊥, for all 0 ≤ j < i. The sequences p ∈ dom(t) are called positions
in the following. Given two positions p,q ∈ dom(t), we say that q is the i-th successor
(child) of p if q= p.i, for some i ∈N. We denote by D(t) = {−1,0, . . . ,N} the direction
alphabet of t, where N = max{i ∈ N | ∃p ∈ N

∗ . p.i ∈ dom(t)}, and we let D+(t) =
D(t) \ {−1}. By convention, we have (p.i).(−1) = p, for all p ∈ N

∗ and i ∈ D+(t).
Given a tree t and a position p ∈ dom(t), we define the arity of the position p as #t(p) =
max{d ∈ D+(t) | p.d ∈ dom(t)}+ 1.

A (finite, non-deterministic, bottom-up) tree automaton (abbreviated as TA in the
following) is a quadruple A = 〈Q,Σ,Δ,F〉, where Σ is a finite alphabet, Q is a finite set
of states, F ⊆ Q is a set of final states, Σ is an alphabet, and Δ is a set of transition rules
of the form σ(q1, . . . ,qn)→ q, for σ ∈ Σ, and q,q1, . . . ,qn ∈ Q. Given a tree automaton
A = 〈Q,Σ,Δ,F〉, for each rule ρ = (σ(q1, . . . ,qn)−→ q), we define its size as |ρ|= n+1.
The size of the tree automaton is |A| = ∑ρ∈Δ |ρ|. A run of A over a tree t : N∗ ⇀ f in Σ
is a function π : dom(t)→ Q such that, for each node p ∈ dom(t), where q = π(p), if
qi = π(p.i) for 1 ≤ i ≤ n, then Δ has a rule (t(p))(q1, . . . ,qn) → q. We write t

π
=⇒ q

to denote that π is a run of A over t such that π(ε) = q. We use t =⇒ q to denote that
t

π
=⇒ q for some run π. The language of A is defined as L(A) = {t | ∃q ∈ F, t =⇒ q}.

2.1 Separation Logic

The syntax of basic formulae of Separation Logic (SL) is given below:

α ∈ Var \ {nil}; x ∈ Var;
Π ::= α = x | Π1 ∧Π2

Σ ::= emp | α �→ (x1, . . . ,xn) | Σ1 ∗Σ2 , for some n > 0
ϕ ::= Σ∧Π | ∃x . ϕ

A formula of the form
∧n

i=1 αi = xi defined by the Π nonterminal in the syntax above
is said to be pure. The atomic proposition emp, or any formula of the form �k

i=1αi �→
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(xi,1, . . . ,xi,ni), for some k > 0, is said to be spatial. A variable x is said to be free in ϕ if
it does not occur under the scope of any existential quantifier. We denote by FV (ϕ) the
set of free variables. A variable α ∈ FV (Σ)\ {nil} is said to be allocated (respectively,
referenced) in a spatial formula Σ if it occurs on the left-hand (respectively, right-hand)
side of a proposition α �→ (x1, . . . ,xn) of Σ.

In the following, we shall use two equality relations. The syntactic equality, denoted
σ ≡ ς, means that σ and ς are the same syntactic object (formula, variable, tuple of
variables, etc.). On the other hand, by writing x =Π y, for two variables x,y ∈ Var and
a pure formula Π, we mean that the equality of the values of x and y is implied by Π.

A system of inductive definitions (inductive system) P is a set of rules of the form
{

Pi(xi,1, . . . ,xi,ni)≡ |mi
j=1 Ri, j(xi,1, . . . ,xi,ni)

}k

i=1
(1)

where {P1, . . . ,Pk} is a set of predicates, xi,1, . . . ,xi,ni are called formal parameters,
and the formulae Ri, j are called the rules of Pi. Each rule is of the form Ri, j(x) ≡
∃z . Σ∗Pi1(y1)∗ . . .∗Pim(ym) ∧ Π, where x∩ z = /0, and the following holds:
1. Σ �≡ emp is a non-empty spatial formula1, called the head of Ri, j.
2. Pi1(y1), . . . ,Pim(ym) is a tuple of predicate occurrences, called the tail of Ri, j, where

|y j|= ni j , for all 1 ≤ j ≤ m.
3. Π is a pure formula, restricted such that, for all formal parameters β ∈ x, we allow

only equalities of the form α =Π β, where α is allocated in Σ.2

4. for all 1 ≤ r,s ≤ m, if xi,k ∈ yr, xi,l ∈ ys, and xi,k =Π xi,l , for some 1 ≤ k, l ≤ ni, then
r = s; a formal parameter of a rule cannot be passed to two or more subsequent
occurrences of predicates in that rule.3

The size of a rule R is denoted by |R| and defined inductively as follows: |α = x| =
1, |emp| = 1, |α �→ (x1, . . . ,xn)| = n+ 1, |ϕ•ψ| = |ϕ|+ |ψ|, |∃x . ϕ| = |ϕ|+ 1, and
|P(x1, . . . ,xn)| = n. Here, α ∈ Var \ {nil}, x,x1, . . . ,xn ∈ Var, and • ∈ {∗,∧}. The size
of an inductive system (1) is defined as |P | = ∑k

i=1 ∑mi
j=1 |Ri, j|. A rooted system 〈P ,Pi〉

is an inductive system P with a designated predicate Pi ∈ P .
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Fig. 1. Top: A DLL. Bottom: A TLL

Example 1. To illustrate the use of in-
ductive definitions (with the above re-
strictions), we first show how to define
a predicate DLL(hd, p, tl,n) describing
doubly-linked lists of length at least one.
As depicted on the top of Fig. 1, the for-
mal parameter hd points to the first allo-
cated node of such a list, p to the node
pointed to by the prev selector of hd, tl
to the last node of the list (possibly equal
to hd), and n to the node pointed to by the next selector from tl. This predicate
can be defined as follows: DLL(hd, p, tl,n) ≡ hd �→ (n, p) ∧ hd = tl | ∃x. hd �→
(x, p)∗DLL(x,hd, tl,n).

1 In practice, we allow frontier or root rules to have empty heads.
2 This restriction can be lifted at the expense of an exponential blowup in the size of the TA.
3 The restriction can be lifted by testing double allocation as in [14] (with an exponential cost).
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Another example is the predicate TLL(r, ll, lr) describing binary trees with linked
leaves whose root is pointed to by the formal parameter r, the left-most leaf is pointed to
by ll, and the right-most leaf points to lr as shown in the bottom of Fig. 1: TLL(r, ll, lr)≡
r �→ (nil,nil, lr) ∧ r = ll | ∃x,y,z. r �→ (x,y,nil)∗TLL(x, ll,z)∗TLL(y,z, lr). �

The semantics of SL is given by the model relation |=, defined inductively, on the
structure of formulae, as follows:

S |= emp ⇐⇒ dom(h) = /0
S |= α �→ (x1, . . . ,xn) ⇐⇒ s = {(α, �0),(x1, �1), . . . ,(xn, �n)} and

h = {〈�0,λi . if 1 ≤ i ≤ n then �i else ⊥〉}
for some �0, �1, . . . , �n ∈ Loc

S |= ϕ1 ∗ϕ2 ⇐⇒ S1 |= ϕ1 and S2 |= ϕ2 for some S1,S2 : S1 �S2 = S
S |= ∃x . ϕ ⇐⇒ 〈s[x ← �],h〉 |= ϕ for some � ∈ Loc
S |= Pi(xi,1, . . . ,xi,ni) ⇐⇒ S |= Ri, j(xi,1, . . . ,xi,ni), for some 1 ≤ j ≤ mi, in (1)

The semantics of = and ∧ are classical for first order logic. Note that we adopt here the
strict semantics, in which a points-to relation α �→ (x1, . . . ,xn) holds in a state consist-

ing of a single cell pointed to by α that has exactly n outgoing edges s(α) k−→S s(xk),
1 ≤ k ≤ n, leading either towards the single allocated location s(α) (if s(xk) = s(α)) or
towards dangling locations (if s(xk) �= s(α)). The empty heap is specified by emp.

A state S is a model of a predicate Pi iff it is a model of one of its rules Ri, j. For a state
S that is a model of Ri, j, the inductive definition of the semantics implies existence of
a finite unfolding tree: this is a tree labeled with rules of the system in such a way that,
whenever a node is labeled by a rule with a tail Pi1(y1), . . . ,Pim(ym), it has exactly m
children such that the j-th child, for 1 ≤ j ≤ m, is labeled with a rule of Pij (see the
middle part of Fig. 2—a formal definition is given in [16].

Given an inductive system P , predicates Pi(x1, . . . ,xn) and Pj(y1, . . . ,yn) of P with
the same number of formal parameters n, and a tuple of variables x where |x|= n, the en-
tailment problem is defined as follows: Pi(x) |=P Pj(x) : ∀S . S |= Pi(x)⇒ S |= Pj(x).

2.2 Connectivity, Spanning Trees and Local States

In this section, we define two conditions ensuring that entailments in the restricted SL
fragment can be decided effectively. The notion of a spanning tree is central for these
definitions. Informally, a state S has a spanning tree t if all allocated locations of S can
be placed in t such that there is always an edge in S in between every two locations
placed in a parent-child pair of positions (see Fig. 2 for two spanning trees).

Definition 2. Given a state S = 〈s,h〉, a spanning tree of S is a bijective tree t : N∗ →
dom(h) such that ∀p ∈ dom(t)∀d ∈ D+(t) . p.d ∈ dom(t)⇒∃k ∈ N . t(p)

k−→S t(p.d).

Given an inductive system P , let S = 〈s,h〉 be a state and Pi ∈ P be an inductive
definition such that S |= Pi. Our first restriction, called connectivity (Def. 3), ensures
that the unfolding tree of the definition of Pi is also a spanning tree of S (cf. Fig. 2,
middle). In other words, each location � ∈ dom(h) is created by an atomic proposition
of the form α �→ (x1, . . . ,xn) from the unfolding tree of the definition Pi, and, moreover,
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by Def. 2, there exists an edge �
k−→S �

′ for any parent-child pair of positions in this tree
(cf. the next edges in Fig. 2).

For a basic quantifier-free SL formula ϕ ≡ Σ∧Π and two variables x,y ∈ FV (ϕ), we
say that y is ϕ-reachable from x iff there is a sequence x =Π α0, . . . ,αm =Π y, for some
m ≥ 0, such that, for each 0 ≤ i < m, αi �→ (βi,1, . . . ,βi,pi) is an atomic proposition in
Σ, and βi,s =Π αi+1, for some 1 ≤ s ≤ pi. A variable x ∈ FV (Σ) is called a root of Σ if
every variable y ∈ FV (Σ) is ϕ-reachable from x.

Definition 3. Given a system P = {Pi ≡ |mi
j=1Ri, j}n

i=1 of inductive definitions, a rule
Ri, j(xi,1, . . . ,xi,k) ≡ ∃z . Σ ∗Pi1(y1) ∗ . . . ∗Pim(ym)∧Π of a predicate Pi(xi,1, . . . ,xi,k) is
connected iff there exists a formal parameter xi,� of Pi, 1 ≤ � ≤ k, such that (i) xi,� is
a root of Σ and (ii) for each j = 1, . . . ,m, there exists 0 ≤ s < |y j| such that (y j)s is
(Σ∧Π)-reachable from xi,� and xi j ,s is a root of the head of each rule of Pi j . The system
P is said to be connected if all its rules are connected.

For instance, the DLL and TLL systems from Ex. 1 are both connected. Our second

restriction, called locality, ensures that every edge �
k−→S �

′, between allocated locations
�,�′ ∈ dom(h), involves locations that are mapped to a parent-child pair of positions in
some spanning tree of S.

Definition 4. Let S = 〈s,h〉 be a state and t : N∗ → dom(h) be a spanning tree of S. An

edge �
k−→S �

′ with �,�′ ∈ dom(h) is said to be local w.r.t. a spanning tree t iff there exist
p ∈ dom(t) and d ∈ D(t)∪{ε} such that t(p) = � and t(p.d) = �′. The tree t is a local
spanning tree of S iff t is a spanning tree of S and S has only local edges w.r.t. t. The
state S is local iff it has a local spanning tree.

[ DLL2 ]

[ DLL2 ]

[ DLL2 ]

[ DLL2 ]

[ DLL1 ]

hd
p

next prev

tl
n

next prev

next prev

next prev

prev

next

Fig. 2. Two spanning trees of
a DLL. The middle one is an
unfolding tree when labeled by
DLL1 ≡ hd �→ (n, p) ∧ hd = tl
and DLL2 ≡ ∃x. hd �→ (x, p) ∗
DLL(x,hd, tl,n).

For instance, the DLL system of Ex. 1 is local, while
the TLL system is not (e.g. the n edges between leaves
cannot be mapped to parent-child pairs in the spanning
tree that is obtained by taking the l and r edges of the
TLL). In this paper, we address the locality problem by
giving a sufficient condition (a syntactic check of the
inductive system, prior to the generation of TA) able
to decide the locality on all of the practical examples
considered (Sec. 3.2). The decidability of locality of
general inductive systems is an interesting open prob-
lem, considered for future research.

Definition 5. A system P = {Pi(xi,1, . . . ,xi,ni)}
k
i=1 is

said to be local if and only if each formal parameter
xi, j of a predicate Pi is either (i) allocated in each rule
of Pi and (y) j is referenced at each occurrence Pi(y),
or (ii) referenced in each rule of Pi and (y) j is allo-
cated at each occurrence Pi(y).

This gives a sufficient (but not necessary) condition ensuring that any state S, such that
S |= Pi, has a local spanning tree, if P is a connected local system. The condition is
effective and easily implemented (see Sec. 3.2) by the translation from SL to TA.
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3 From Separation Logic to Tree Automata

The first step of our entailment decision procedure is building a TA for a given inductive
system. Roughly speaking, the TA we build recognizes unfolding trees of the inductive
system. The alphabet of such a TA consists of small basic SL formulae describing the
neighborhood of each allocated variable, together with a specification of the connec-
tions between each such formula and its parent and children in the unfolding tree. Each
alphabet symbol in the TA is called a tile. Due to technical details related to the en-
coding of states as trees of SL formulae, the most space in this section is dedicated to
the definition of tiles. Once the tile alphabet is defined, the states of the TA correspond
naturally to the predicates of the inductive system, and the transition rules correspond
to the rules of the system.

3.1 Tiles, Canonical Tiles, and Quasi-canonical Tiles

A tile is a tuple T = 〈ϕ,x−1,x0, . . . ,xd−1〉, for some d ≥ 0, where ϕ is a basic SL
formula, and each xi is a tuple of pairwise distinct variables, called a port. We further
assume that all ports contain only free variables from ϕ and that they are pairwise
disjoint. The variables from x−1 are said to be incoming, the ones from x0, . . . ,xd−1 are
said to be outgoing, and the ones from par(T ) = FV (ϕ)\ (x−1 ∪ . . .∪xd−1) are called
parameters. The arity of a tile T = 〈ϕ,x−1, . . . ,xd−1〉 is the number of outgoing ports,
denoted by #(T ) = d. We denote form(T )≡ ϕ and porti(T )≡ xi, for all −1 ≤ i < d.

Given tiles T1 = 〈ϕ,x−1, . . . ,xd−1〉 and T2 = 〈φ,y−1, . . . ,ye−1〉 such that FV (ϕ)∩
FV (φ) = /0, we define the i-composition, for some 0 ≤ i < d, such that |xi| = |y−1|:
T1�i T2 = 〈ψ,x−1, . . .xi−1,y0, . . . ,ye−1,xi+1, . . . ,xd−1〉 where ψ≡∃xi∃y−1 . ϕ∗φ∧xi =
y−1.4 For a position q∈N

∗ and a tile T , we denote by T 〈q〉 the tile obtained by renaming
each variable x in the ports of T by x〈q〉. A tree t labeled with tiles corresponds to
a tile defined inductively, for any p ∈ dom(t), as: T (t, p) = t(p)〈p〉 �0 T (t, p.0)�1

T (t, p.1) . . . �#(p)−1 T (t, p.(#t(p)−1)). The SL formula Φ(t)≡ form(T (t,ε)) is said
to be the characteristic formula of t.

Canonical Tiles. We first define a class of tiles that encode local states (Def. 4) with
respect to the underlying tile-labeled spanning trees. We denote by T = 〈(∃z) z �→
(y0, . . . ,ym−1)∧ Π,x−1, . . . ,xd−1〉 a tile whose spatial formula is either (i) ∃z . z �→
(y0, . . . ,ym−1) or (ii) z �→ (y0, . . . ,ym−1) with z ∈ par(T ). A tile T = 〈(∃z) z �→ (y0, . . . ,
ym−1)∧Π, x−1, . . . ,xd−1〉 is said to be canonical if each port xi can be factorized as
x f w

i ·xbw
i (distinguishing forward links going from the root to the leaves and backward

links going in the opposite direction, respectively) such that:

1. xbw
−1 ≡〈yh0 , . . . ,yhk〉, for some ordered sequence 0≤ h0 < .. . < hk <m, i.e. the back-

ward incoming tuple consists only of variables referenced by the unique allocated
variable z, ordered by the corresponding selectors.

2. For all 0 ≤ i < d, x f w
i ≡ 〈y j0 , . . . ,y jki

〉, for some ordered sequence 0 ≤ j0 < .. . <
jki < m. As above, each forward outgoing tuple consists of variables referenced by
the unique allocated variable z, ordered by the corresponding selectors.

4 For two tuples x = 〈x1, . . . ,xk〉 and y = 〈y1, . . . ,yk〉, we write x = y for
∧k

i=1 xi = yi.
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3. For all 0 ≤ i, j < d, if (x f w
i )0 ≡ yp and (x f w

j )0 ≡ yq, for some 0 ≤ p < q < m (i.e.
yp �≡ yq), then i < j. This means that the forward outgoing tuples are ordered by the
selectors referencing their first element.

4. (x f w
−1 ∪xbw

0 ∪ . . .∪xbw
d−1)∩{y0, . . . ,ym−1}= /0 and Π ≡ x f w

−1 = z ∧ ∧d−1
i=0 xbw

i = z.5

We denote by port f w
i (T ) and portbw

i (T ) the tuples x f w
i and xbw

i , respectively, for all
−1 ≤ i < d. The set of canonical tiles is denoted as T c.

Definition 6. A tree t : N∗ ⇀ f in T c is called canonical iff #(t(p)) = #t(p) for any p ∈
dom(t) and, moreover, for each 0 ≤ i < #t(p), |port f w

i (t(p))| = |port f w
−1(t(p.i))| and

|portbw
i (t(p))|= |portbw

−1(t(p.i))|.

An important property of canonical trees is that each state that is a model of the
characteristic formula Φ(t) of a canonical tree t (i.e. S |= Φ(t)) can be uniquely de-
scribed by a local spanning tree u : dom(t) → Loc, which has the same structure as
t, i.e. dom(u) = dom(t). Intuitively, this is because each variable yi, referenced in an
atomic proposition z �→ (y0, . . . ,ym−1) in a canonical tile, is allocated only if it belongs
to the backward part of the incoming port xbw

−1 or the forward part of some outgoing

port x f w
i . In the first case, yi is equal to the variable allocated by the parent tile, and

in the second case, it is equal to the variable allocated by the i-th child. An immediate
consequence is that any two models of Φ(t) differ only by a renaming of the allocated
locations, i.e. they are identical up to isomorphism.
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Fig. 3. The DLL from Fig. 1 with two of its canonical trees (related by
a canonical rotation r)

Example 2 (cont.
of Ex. 1). To il-
lustrate the notion
of canonical trees,
Fig. 3 shows two
canonical trees for
a given DLL. The
tiles are depicted as
big rectangles con-
taining the appro-
priate basic formula
as well as the in-
put and output ports.
In all ports, the first
variable is in the
forward and the
second in the back-
ward part. �
Quasi-canonical tiles. We next define a class of tiles that encode non-local states in
order to extend our decision procedure to handle entailments between non-local induc-
tive systems. In addition to local edges between neighboring tiles, quasi-canonical tiles

5 For a tuple x = 〈x1, . . . ,xk〉, we write x = z for
∧k

i=1 xi = z.
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Fig. 4. A quasi-canonically tiled tree for the tree with linked leaves from Fig. 1

allow to define sequences of equalities between remote tiles. This extension is used
to specify non-local edges within the state. A tile T = 〈ϕ∧Π,x−1, . . . ,xd−1〉 is said
to be quasi-canonical if and only if each port xi can be factorized as x f w

i · xbw
i · xeq

i ,

〈ϕ, x f w
−1 ·xbw

−1, . . . , x f w
d−1 ·xbw

d−1〉 is a canonical tile, Π is pure formula, and:
1. for each 0 ≤ i < |xeq

−1|, either (xeq
−1)i ∈ FV (ϕ) or (xeq

−1)i =Π (xeq
k ) j for some unique

indices 0 ≤ k < d and 0 ≤ j < |x f w
k |.

2. for each 0 ≤ k < d and each 0 ≤ j < |xeq
k |, either (xeq

k ) j ∈ FV (ϕ) or exactly one of
the following holds: (i) (xeq

k ) j =Π (xeq
−1)i for some unique index 0 ≤ i < |xeq

−1| or
(ii) (xeq

k ) j =Π (xeq
r )s for some unique indices 0 ≤ r < d and 0 ≤ s < |xeq

r |.
3. For any x,y ∈⋃d−1

i=−1 xeq
i , we have x =Π y only in one of the cases above.

We denote porteq
i (T ) ≡ xeq

i , for all −1 ≤ i < d. The set of quasi-canonical tiles is
denoted by T qc. The next definition of quasi-canonical trees extends Def. 6 to the case
of quasi-canonical tiles.

Definition 7. A tree t : N∗ ⇀ f in T qc is quasi-canonical iff #(t(p)) = #t(p) for any

p ∈ dom(t) and, moreover, for each 0 ≤ i < #t(p), |port f w
i (t(p))| = |port f w

−1(t(p.i))|,
|portbw

i (t(p))|= |portbw
−1(t(p.i))|, and |porteq

i (t(p))|= |porteq
−1(t(p.i))|.

Example 3 (cont. of Ex. 1). For an illustration of the notion of quasi-canonical trees,
see Fig. 4, which shows a quasi-canonical tree for the TLL from Fig. 1. The figure uses
the same notation as Fig. 3. In all the ports, the first variable is in the forward part, the
backward part is empty, and the rest is the equality part. �

3.2 Building a TA for an Inductive System

In the rest of this section, we consider that P is a connected inductive system (Def. 3)—
our construction will detect and reject disconnected systems. Given a rooted system
〈P ,Pr〉, the first ingredient of our decision procedure for entailments is a procedure for
building a TA that recognizes all unfolding trees of the inductive definition of Pr in
the system P . The first steps of the procedure implement a specialization of the rooted
system with respect to a tuple α = 〈α1, . . . ,αnr 〉 of actual parameters for Pr, not used
in P . For space reasons, the specialization steps are described only informally here (for
a detailed description of these steps, see [16]).

The first step is an elimination of existentially quantified variables that occur within
equalities with formal parameters or allocated variables from all rules of P . Second,
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each rule of P whose head consists of more than one atomic proposition α �→ (x1, . . . ,xn)
is split into several new rules, containing exactly one such atomic proposition. At
this point, any disconnected inductive system (Def. 3) passed to the procedure is de-
tected and rejected. The final specialization step consists in propagating the actual pa-
rameters α through the rules. A formal parameter xi,k of a rule Ri, j(xi,1, . . . ,xi,ni) ≡
∃z . Σ ∗Pi1(y1) ∗ . . . ∗Pim(ym)∧Π is directly propagated to some (unique) parameter
of a predicate occurrence Pij , for some 1 ≤ j ≤ m, if and only if xi,k �∈ FV (Σ) and
xi,k ≡ (yi j )�, for some 0 ≤ � < |yi j |, i.e. xi,k is neither allocated nor pointed to by the
head of the rule before being passed on to Pij . We denote direct propagation of parame-
ters by the relation xi,k � xi j ,� where xi j ,� is the formal parameter of Pij which is mapped
to the occurrence of (yi j)�. We say that xi,k is propagated to xr,s if xi,k �

∗ xr,s where �∗

denotes the reflexive and transitive closure of the � relation. Finally, we replace each
variable y of P by the actual parameter α j provided that xr, j �

∗ y. It is not hard to
show that the specialization procedure runs in time O(|P |), hence the size of the output
system is increased by a linear factor only.

Example 4 (cont. of Ex. 1). As an example of specialization, let us consider the pred-
icate DLL from Ex. 1, with parameters DLL(a,b,c,d). After the parameter elimination
and renaming the newly created predicates, we have a call Q1 (without parameters) of
the following inductive system:

Q1() ≡ a �→ (d,b) ∧ a= c | ∃x. a �→ (x,b)∗Q2(x,a)
Q2(hd, p) ≡ hd �→ (d, p) ∧ hd = c | ∃x. hd �→ (x, p)∗Q2(x,hd)

�

We are now ready to describe the construction of a TA for a specialized rooted sys-
tem 〈P ,Pr〉. First, for each predicate Pj(x j,1, . . . ,x j,n j) ∈ P , we compute several sets of

parameters, called signatures: sig f w
j = {x j,k | x j,k is allocated in each rule of Pj, and

(y)k is referenced in each occurrence Pj(y) of Pj}, sigbw
j = {x j,k | x j,k is referenced

in each rule of Pj, and (y)k is allocated at each occurrence Pj(y) of Pj}, and, finally,

sig
eq
j = {x j,1, . . . ,x j,n j} \ (sig

f w
j ∪sigbw

j ). The signatures of an inductive system can
be used to implement the locality test (Def. 5): the system P = {P1, . . . ,Pk} is local if
and only if sigeq

i = /0 for each 1 ≤ i ≤ k.

Example 5 (cont. of Ex. 4). The signatures for the system in Ex. 4 are: sig f w
1 = sigbw

1 =

sig
eq
1 = /0 and sig

f w
2 = {hd},sigbw

2 = {p},sigeq
2 = /0. The fact that, for each i = 1,2,

we have sigeq
i = /0 implies that the DLL system is local. �

The procedure for building a TA from a rooted system 〈P ,Pr〉 with actual parameters
α is denoted as SL2TA(P ,Pr,α) in the following. For each rule R j,� in the system, the
SL2TA procedure creates a quasi-canonical tile whose incoming and outgoing ports xi

are factorized as x f w
i ·xbw

i ·xeq
i according to the precomputed signatures sig f w

j , sigbw
j ,

and sig
eq
j , respectively. The backward part of the input port xbw

−1 and the forward parts

of the output ports {x f w
i }i≥0 are sorted according to the order of incoming selector

edges from the single points-to formula which constitutes the head of the rule. The out-
put ports {xi}i≥0 are sorted within the tile according to the order of the selector edges
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pointing to (x f w
i )0 for each i ≥ 0. Finally, each predicate name Pi is associated with

a state qi, and for each inductive rule, the procedure creates a transition rule in the TA.
The final state of the TA then corresponds to the root of the system (see Algorithm
in [16]). The invariant used to prove the correctness of this construction is that when-
ever the TA reaches a state qi it reads an unfolding tree whose root is labeled with a
rule Ri, j of the definition of a predicate Pi. The following lemma summarizes the TA
construction:

Lemma 1. Given a rooted system 〈P ,Pr(xr,1, . . . ,xr,nr)〉 where P = {Pi}k
i=1 is a con-

nected inductive system, 1 ≤ r ≤ k, and α = 〈α1, . . . ,αni〉 is a tuple of variables not in
P , let A = SL2TA(P ,Pr,α). Then, for every state S, we have S |= Pr(α) iff there exists
t ∈ L(A) such that S |= Φ(t). Moreover, |A|= O(|P |).

Δ =

⎧
⎨

⎩

〈a �→ (d,b)∧a = c, /0〉()→ q1 〈a �→ (x,b), /0,(x,a)〉(q2) → q1
〈∃hd′.hd′ �→ (d, p)∧hd = c∧hd′ = hd,(hd, p)〉() → q2
〈∃hd′.hd′ �→ (x, p)∧hd′ = hd,(hd, p),(x,hd)〉(q2) → q2

⎫
⎬

⎭

Example 6 (cont.
of Ex. 5). For the
specialized induc-
tive system P =
{Q1,Q2} from Ex. 4, we obtain the TA A = SL2TA(P ,Q1,〈a,b,c,d〉) =
〈Σ,{q1,q2},Δ,{q1}〉 where Δ is shown above. �

4 Rotation of Tree Automata

In this section we deal with polymorphic representations of states, i.e. situations when a
state can be represented by different spanning trees, with different tilings. In this section
we show that, for states with local spanning trees only (Def. 4), these trees are related
by a rotation relation.

4.1 Rotation as a Transformation of TA

We start by defining rotation as a relation on trees. Intuitively, two trees t1 and t2 are re-
lated by a rotation whenever we can obtain t2 from t1 by picking a position p ∈ dom(t1)
and making it the root of t2, while maintaining in t2 all edges from t1 (Fig. 5).

Definition 8. Given two trees t1, t2 : N∗ ⇀ f in Σ and a bijective mapping r : dom(t1)→
dom(t2), we say that t2 is an r-rotation of t1, denoted by t1 ∼r t2 if and only if: ∀p ∈
dom(t1)∀d ∈ D+(t1) : p.d ∈ dom(t1)⇒∃e ∈ D(t2) . r(p.d) = r(p).e. We write t1 ∼ t2
if there exists a bijective mapping r : dom(t1)→ dom(t2) such that t1 ∼r t2.

t1 t2
ε

0 1

00 01

ε

0
1 2

20

r

Fig. 5. An example of a rotation

An example of a rotation r of a tree t1
to a tree t2 such that r(ε) = 2, r(0) = ε,
r(1) = 20, r(00) = 0, and r(01) = 1 is
shown in Fig. 5. Note that, e.g., for p =
ε ∈ dom(t1) and d = 0 ∈ D+(t1), where
p.d = ε.0 ∈ dom(t1), we get e = −1 ∈
D(t2), and r(ε.0) = 2.(−1) = ε.

In the rest of this section, we define rotation on canonical and quasi-canonical trees.
These definitions are refinements of Def. 8. Namely, the change in the structure of the
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tree is mirrored by a change in the tile alphabet labeling the tree in order to preserve the
state which is represented by the (quasi-)canonical tree.

A substitution is an injective partial function σ : Var ⇀ f in Var. Given a basic formula
ϕ and a substitution σ, we denote by ϕ[σ] the result of simultaneously replacing each
variable x (not necessarily free) that occurs in ϕ by σ(x). For instance, if σ(x) = y,
σ(y) = z, and σ(z) = t, then (∃x,y . x �→ (y,z)∧ z = x)[σ]≡ ∃y,z . y �→ (z, t) ∧ t = y.

Definition 9. Given two canonical trees t,u : N∗ ⇀ f in T c and a bijective mapping r :
dom(t)→ dom(u), we say that u is a canonical rotation of t, denoted t ∼c

r u, if and only
if t ∼r u and there exists a substitution σp : Var ⇀ f in Var for each p ∈ dom(t) such that
form(t(p))[σp]≡ form(u(r(p))) and, for all 0 ≤ i < #t(p), there exists j ∈ D(u) such
that r(p.i) = r(p). j and:

port f w
i (t(p))[σp] ≡ if j ≥ 0 then port f w

j (u(r(p))) else portbw
−1(u(r(p)))

portbw
i (t(p))[σp] ≡ if j ≥ 0 then portbw

j (u(r(p))) else port f w
−1(u(r(p)))

We write t ∼c u if there exists a mapping r such that t ∼c
r u.

Example 7 (cont. of Ex. 2). The notion of canonical rotation is illustrated by the canon-
ical rotation r relating the two canonical trees of a DLL shown in Fig. 3. In its case, the
variable substitutions are simply the identity in each node. Note, in particular, that when
the tile 0 of the left tree (i.e., the second one from the top) gets rotated to the tile 1 of the
right tree (i.e., the right successor of the root), the input and output ports get swapped
and so do their forward and backward parts. �

The following lemma is the key for proving completeness of our entailment checking
for local inductive systems: if a (local) state is a model of the characteristic formulae of
two different canonical trees, then these trees must be related by canonical rotation.

Lemma 2. Let t : N∗ ⇀ f in T c be a canonical tree and S = 〈s,h〉 be a state such that
S |= Φ(t). Then, for any canonical tree u : N∗ ⇀ f in T c, we have S |= Φ(u) iff t ∼c u.

In the following, we extend the notion of rotation to quasi-canonical trees:

Definition 10. Given two quasi-canonical trees t,u : N∗ ⇀ f in T qc and a bijective map-
ping r : dom(t) → dom(u), we say that u is a quasi-canonical rotation of t, denoted
t ∼qc

r u, if and only if t ∼c
r u and |porteq

i (t(p))|= |porteq
j (u(r(p)))| for all p ∈ dom(t)

and all 0≤ i < #t(p), −1≤ j < #t(p) such that r(p.i) = r(p). j. We write t ∼qc u if there
exists a mapping r such that t ∼qc

r u.
The increase in expressivity (i.e. the possibility of defining non-local edges) comes

at the cost of a loss of completeness. The following lemma generalizes the necessity
direction (⇐) of Lemma 2 for quasi-canonical tiles. Notice that the sufficiency (⇒)
direction does not hold in general.

Lemma 3. Let t,u : N∗ ⇀ f in T qc be quasi-canonical trees such that t ∼qc u. For all
states S, if S |= Φ(t), then S |= Φ(u).
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Algorithm 1. Rotation Closure of Quasi-canonical TA
input a quasi-canonical TA A = 〈Q,Σ,Δ,F〉
output a TA Ar where:
L(Ar) = {u : N∗ ⇀ f in T qc | ∃t ∈ L(A) . u ∼qc t}
function ROTATETA(A)

Ar ← A
assume Ar ≡ 〈Qr,Σ,Δr ,Fr〉
for all ρ ∈ Δ do

assume ρ ≡ T (q0, . . . ,qk)→ q
assume T ≡ 〈ϕ,x−1,x0 , . . . ,xk〉
if x−1 �= /0 or q �∈ F then

assume x−1 ≡ x f w
−1 ·xbw

−1 ·x
eq
−1

if xbw
−1 �= /0 then
Qrev ←{qrev | q ∈ Q}
(Qρ,Δρ)← (Q∪Qrev ∪{qf

ρ},Δ)
p ← POSITIONOF (xbw

−1,ϕ)
xswap ← xbw

−1 ·x
f w
−1 ·x

eq
−1

Tnew ← 〈ϕ,〈〉,x0, . . . ,xp ,xswap, . . . ,xk〉
Δρ ←Δρ∪{Tnew(q0 . . .qp,qrev . . .qk)−→ qf

ρ}
(Δρ, )← ROTTR(q,Δ,Δρ, /0,F)

Aρ ← 〈Qρ,Σ,Δρ ,{qf
ρ}〉

Ar ← Ar ∪Aδ
return Ar

function ROTTR(q,Δ,Δnew ,V,F)
V← V∪{q}
for all (U(s0, . . . ,s�)→ s) ∈ Δ do

for all 0 ≤ j ≤ � such that s j = q do
assume U = 〈ϕ,x−1,x0 , . . . ,x j , . . . ,x�〉
assume x j ≡ x f w

j ·xbw
j ·xeq

j
if x−1 = /0 and s ∈ F then

xswap ← xbw
j ·x f w

j ·xeq
j

U ′ ← 〈ϕ,xswap,x0, . . . ,x j−1,x j+1 , . . . ,x�〉
Δnew ← Δnew ∪{U ′(s0 . . . s j−1 . . . s�)−→ qrev}

else
x−1 ≡ x f w

−1 ·xbw
−1 ·x

eq
−1

if xbw
−1 �= /0 then
ports← 〈x0, . . . ,x j−1 ,x j+1 , . . . ,x�〉
states← (s0, . . . ,s j−1,s j+1, . . . ,s�)

xswap ← xbw
−1 ·x

f w
−1 ·x

eq
−1

p ← INSERTOUTPORT(xswap,ports,ϕ)
INSERTLHSSTATE (srev,states, p)

Unew ← 〈ϕ,xbw
j ·x f w

j ·xeq
j ,ports〉

Δnew ← Δnew ∪{Unew(states)→ qrev}
if s �∈ V then

(Δnew,V)← ROTTR(s,Δ,Δnew,V,F)

return (Δnew,V)

4.2 Implementing Rotation as a Transformation of TA

This section describes the algorithm that produces the closure of a quasi-canonical tree
automaton (i.e. a tree automaton recognizing quasi-canonical trees only) under rota-
tion. The result is a TA that recognizes all trees u : N∗ ⇀ f in T qc such that t ∼qc u for
some tree t recognized by the input TA A = 〈Q,Σ,Δ,F〉. Algorithm 1 (the ROTATETA
procedure) describes the rotation closure whose result is a language-theoretic union
of A and the TA Aρ, one for each rule ρ of A. The idea behind the construction of

Aρ = 〈Qρ,Σ,Δρ,{q f
ρ}〉 can be understood by considering a tree t ∈ L(A), a run π :

dom(t)→ Q, and a position p ∈ dom(t), which is labeled with the right hand side of the
rule ρ = T (q1, . . . ,qk)−→ q of A. Then L(Aρ) will contain the rotated tree u, i.e. t ∼qc

r u,
where the significant position p is mapped into the root of u by the rotation function
r, i.e. r(p) = ε. To this end, we introduce a new rule Tnew(q0, . . . ,qrev, . . . ,qk) −→ q f

ρ
where the tile Tnew mirrors the change in the structure of T at position p, and qrev ∈
Qρ is a fresh state corresponding to q. The construction of Aρ continues recursively
(procedure ROTTR), by considering every rule of A that has q on the left hand side:
U(q′1, . . . ,q, . . . ,q

′
�) −→ s. This rule is changed by swapping the roles of q and s and

producing a rule Unew(q′1, . . . ,s
rev, . . .q′�) −→ qrev where Unew mirrors the change in the

structure of U . Intuitively, the states {qrev|q ∈ Q} mark the unique path from the root of
u to r(ε) ∈ dom(u). The recursion stops when either (i) s is a final state of A, (ii) The
tile U does not specify a forward edge in the direction marked by q, or (iii) all states of
A have been visited.

Lemma 4. Let A = 〈Q,T qc,Δ,F〉 be a TA, and Ar = ROTATETA(A) be the TA defining
the rotation closure of A. Then L(Ar) = {u | u : N∗ ⇀ f in T qc, ∃t ∈ L(A) . u ∼qc t}.
Moreover, |Ar|= O(|A|2).
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The main result of this paper is given by the following theorem. The entailment
problem for inductive systems is reduced, in polynomial time, to a language inclusion
problem for tree automata. The inclusion test is always sound (if the answer is yes, the
entailment holds), and complete, if the right-hand side is a local system (Def. 4).

Theorem 1. Let P =
{

Pi ≡ |mi
j=1 Ri, j

}k

i=1
be a connected inductive system. Then, for

any two predicates Pi(xi,1, . . . ,xi,ni) and Pj(x j,1, . . . ,x j,n j ) of P such that ni = n j, and
for any tuple of variables α = 〈α1, . . . ,αni〉 not used in P , the following holds for A1 =
SL2TA(P ,Pi,α) and A2 = SL2TA(P ,Pj,α):

– (Soundness) Pi(α) |=P Pj(α) if L(A1)⊆ L(Ar
2) and

– (Completness) Pi(α) |=P Pj(α) only if L(A1)⊆ L(Ar
2) provided 〈P ,Pj〉 is local.

Δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

〈a �→ (b,d)∧a = c, /0〉()→ q1 〈a �→ (x,b), /0,(x,a)〉(q2 ) → q1
〈∃hd′.hd′ �→ (d, p)∧hd = c∧hd′ = hd,(hd, p)〉() → q2
〈∃hd′.hd′ �→ (x, p)∧hd′ = hd,(hd, p),(x,hd)〉(q2 ) → q2
〈∃hd′.hd′ �→ (d, p)∧hd = c∧hd′ = hd, /0,(p,hd)〉(qrev

2 ) → qf in
〈a �→ (x,b),(a,x)〉() → qrev

2
〈∃hd′.hd′ �→ (x, p)∧hd′ = hd,(hd,x),(p,hd)〉(qrev

2 ) → qrev
2

〈∃hd′.hd′ �→ (x, p)∧hd′ = hd, /0,(x,hd),(p,hd)〉(q2 ,qrev
2 ) → qf in

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

Example 8 (cont. of
Ex. 6). When ap-
plied on the tree
automaton A, the
operation of rotation
closure produces the
tree automaton Ar = 〈Σ,{q1,q2,qrev

2 ,q f in},Δ,{q1,q f in}〉 where Δ is shown above. �

5 Complexity

In this section, we provide tight complexity bounds for the entailment problem in the
fragment of SL with inductive definitions under consideration, i.e., with the connectiv-
ity and locality restrictions. The first result shows the need for connectivity within the
system: allowing disconnected rules leads to undecidability of the entailment problem.
As a remark, the general undecidability of entailments for SL with inductive definitions
has already been proven in [1]. Our proof stresses the fact that undecidability occurs
due the lack of connectivity within some rules.

Theorem 2. Entailment is undecidable for inductive systems with disconnected rules.

The second result of this section provides tight complexity bounds for the entail-
ment problem for local connected systems. We must point out that EXPTIME-hardness
of entailments in the fragment of [14] was already proved in [1]. The result below is
stronger since the fragment under consideration is a restriction of the fragment from
[14] obtained by applying the locality condition.

Theorem 3. Entailment is EXPTIME-complete for local connected inductive systems.

6 Experiments

We implemented a prototype tool called SLIDE (Separation Logic with Inductive DEfi-
nitions) [15] that takes as input two rooted systems 〈Plhs,Plhs〉 and 〈Prhs,Prhs〉 and tests
the validity of the entailment Plhs |=Plhs∪Prhs Prhs. Table 1 lists the entailment queries
on which we tried out our tool; all examples are public and available on the web [15].
The upper part of the table contains local systems, whereas the bottom part contains



216 R. Iosif, A. Rogalewicz, and T. Vojnar

Table 1. Experimental results. The upper table contains local systems, while the lower table non-
local ones. Sizes of initial TA (col. 3,4) and rotated TA (col. 5) are in numbers of states/transitions.

Entailment LHS |= RHS Answer |Alhs| |Arhs| |Ar
rhs|

DLL(a,nil,c,nil) |= DLLrev(a,nil,c,nil) True 2/4 2/4 5/8
DLLrev(a,nil,c,nil) |= DLLmid(a,nil,c,nil) True 2/4 4/8 12/18
DLLmid(a,nil,c,nil) |= DLL(a,nil,c,nil) True 4/8 2/4 5/8

∃x,n,b. x �→ (n,b)∗DLLrev(a,nil,b,x)∗DLL(n,x,c,nil) |= DLL(a,nil,c,nil) True 3/5 2/4 5/8
DLL(a,nil,c,nil) |= ∃x,n,b. x �→ (n,b)∗DLLrev(a,nil,b,x)∗DLL(n,x,c,nil) False 2/4 3/5 9/13

∃y,a. x �→ (y,nil)∗y �→ (a,x)∗DLL(a,y,c,nil) |= DLL(x,nil,c,nil) True 3/4 2/4 5/8
DLL(x,nil,c,nil) |= ∃y,a. x �→ (nil,y)∗y �→ (a,x)∗DLL(a,y,c,nil) False 2/4 3/4 8/10

∃x,b.DLL(x,b,c,nil)∗DLLrev(a,nil,b,x) |= DLL(a,nil,c,nil) True 3/6 2/4 5/8
DLL(a,nil,c,nil) |= DLL0+(a,nil,c,nil) True 2/4 2/4 5/8

TREEpp(a,nil) |= TREErev
pp (a,nil) True 2/4 3/8 6/11

TREErev
pp (a,nil) |= TREEpp(a,nil) True 3/8 2/4 5/10

TLLpp(a,nil,c,nil) |= TLLrev
pp (a,nil,c,nil) True 4/8 4/8 13/22

TLLrev
pp (a,nil,c,nil) |= TLLpp(a,nil,c,nil) True 4/8 4/8 13/22

∃l,r,z. a �→ (l,r,nil,nil)∗TLL(l,c,z)∗TLL(r,z,nil) |= TLL(a,c,nil) True 4/7 4/8 13/22
TLL(a,c,nil) |= ∃l,r,z. a �→ (l,r,nil,nil)∗TLL(l,c,z)∗TLL(r,z,nil) False 4/8 4/7 13/21

non-local systems. Apart from the DLL and TLL predicates from Sect. 2.1, the con-
sidered entailment queries contain the following predicates: DLLrev (resp. DLLmid) that
encodes a DLL from the end (resp. middle), DLL0+ that encodes a possibly empty DLL,
TREEpp encoding trees with parent pointers, TREErev

pp that encodes trees with parent
pointers defined starting with an arbitrary leaf, TLLpp encoding TLLs with parent point-
ers, and TLLrev

pp which encodes TLLs with parent pointers starting from their leftmost
leaf. Columns |Alhs|, |Arhs|, and |Ar

rhs| of Table 1 provide information about the number
of states/transitions of the respective TA. The tool answered all queries correctly (de-
spite the incompleteness for non-local systems), and the running times were all under 1
sec. on a standard PC (Intel Core2 CPU, 3GHz, 4GB RAM).

We also compared the SLIDE tool to the CYCLIST [5] theorem prover on the exam-
ples from the CYCLIST distribution [13]. Both tools run in less than 1 sec. on the ex-
amples from their common fragment of SL. CYCLIST does not handle examples where
rotation is needed, while SLIDE fails on examples that generate an unbounded number
of dangling pointers and are outside of the decidable fragment of [14].

7 Conclusion

We presented a novel decision procedure for the entailment problem in a non-trivial
subset of SL with inductive predicates, which deals with the problem that the same
recursive structure may be represented differently, when viewed from different entry
points. To this end, we use a special operation, which closes a given TA representation
w.r.t. the rotations of its spanning trees. Our procedure is sound and complete for induc-
tive systems with local edges. We have implemented a prototype tool which we tested
through a number of non-trivial experiments, with encouraging results.
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Abstract. We present a sound static analysis technique for fighting the combi-
natorial explosion of parameterised Boolean equation systems (PBESs). These
essentially are systems of mutually recursive fixed point equations ranging over
first-order logic formulae. Our method detects parameters that are not live by
analysing a control flow graph of a PBES, and it subsequently eliminates such
parameters. We show that a naive approach to constructing a control flow graph,
needed for the analysis, may suffer from an exponential blow-up, and we define
an approximate analysis that avoids this problem. The effectiveness of our tech-
niques is evaluated using a number of case studies.

1 Introduction

Parameterised Boolean equation systems (PBESs) [7] are systems of fixpoint equations
that range over first-order formulae; they are essentially an equational variation of Least
Fixpoint Logic (LFP). Fixpoint logics such as PBESs have applications in database
theory and computer aided verification. For instance, the CADP [6] and mCRL2 [4]
toolsets use PBESs for model checking and equivalence checking and in [2] PBESs are
used to solve Datalog queries.

In practice, the predominant problem for PBESs is evaluating (henceforth referred
to as solving) them so as to answer the decision problem encoded in them. There are a
variety of techniques for solving PBESs, see [7], but the most straightforward method
is by instantiation to a Boolean equation system (BES) [10], and then solving this BES.
This process is similar to the explicit generation of a behavioural state space from its
symbolic description, and it suffers from a combinatorial explosion that is akin to the
state space explosion problem. Combatting this combinatorial explosion is therefore
instrumental in speeding up the process of solving the problems encoded by PBESs.

While several static analysis techniques have been described using fixpoint logics,
see e.g. [3], with the exception of the static analysis techniques for PBESs, described
in [12], no such techniques seem to have been employed to simplify expressions in
fixpoint logics.

Our main contribution in this paper is a static analysis method for PBESs that signif-
icantly improves over the aforementioned techniques for simplifying PBESs. In our
method, we construct a control flow graph (CFG) for a given PBES and subsequently
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apply state space reduction techniques [5,16], combined with liveness analysis tech-
niques from compiler technology [1]. These typically scrutinise syntactic descriptions
of behaviour to detect and eliminate variables that at some point become irrelevant
(dead, not live) to the behaviour, thereby decreasing the complexity.

The notion of control flow of a PBES is not self-evident: formulae in fixpoint logics
(such as PBESs) do not have a notion of a program counter. Our notion of control flow is
based on the concept of control flow parameters (CFPs), which induce a CFG. Similar
notions exist in the context of state space exploration, see e.g. [14], but so far, no such
concept exists for fixpoint logics.

The size of the CFGs is potentially exponential in the number of CFPs. We therefore
also describe a modification of our analysis—in which reductive power is traded against
a lower complexity—that does not suffer from this problem. Our static analysis tech-
nique allows for solving PBESs using instantiation that hitherto could not be solved this
way, either because the underlying BESs would be infinite or they would be extremely
large. We show that our methods are sound; i.e., simplifying PBESs using our analyses
leads to PBESs with the same solution.

Our static analysis techniques have been implemented in the mCRL2 toolset [4] and
applied to a set of model checking and equivalence checking problems. Our experi-
ments show that the implementations outperform existing static analysis techniques for
PBESs [12] in terms of reductive power, and that reductions of almost 100% of the size
of the underlying BESs can be achieved. Our experiments confirm that the optimised
version sometimes achieves slightly less reduction than our non-optimised version, but
is faster. Furthermore, in cases where no additional reduction is achieved compared to
existing techniques, the overhead is mostly negligible.

Structure of the Paper. In Section 2 we give a cursory overview of basic PBES theory
and in Section 3, we present an example to illustrate the difficulty of using instantiation
to solve a PBES and to sketch our solution. In Section 4 we describe our construction of
control flow graphs for PBESs and in Section 5 we describe our live parameter analysis.
We present an optimisation of the analysis in Section 6. The approach is evaluated in
Section 7, and Section 8 concludes. We refer to [9] for proofs and additional results.

2 Preliminaries

Throughout this paper, we work in a setting of abstract data types with non-empty data
sorts D1, D2, . . ., and operations on these sorts, and a set D of sorted data variables. We
write vectors in boldface, e.g. d is used to denote a vector of data variables. We write
di to denote the i-th element of a vector d.

A semantic set D is associated to every sort D, such that each term of sort D, and
all operations on D are mapped to the elements and operations of D they represent.
Ground terms are terms that do not contain data variables. For terms that contain data
variables, we use an environment δ that maps each variable from D to a value of the
associated type. We assume an interpretation function � � that maps every term t of sort
D to the data element �t�δ it represents, where the extensions of δ to open terms and
vectors are standard. Environment updates are denoted δ[v/d], where δ[v/d](d′) = v if
d′ = d, and δ(d′) otherwise.
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We specifically assume the existence of a sort B with elements true and false repre-
senting the Booleans B and a sort N = {0, 1, 2, . . .} representing the natural numbers
N. For these sorts, we assume that the usual operators are available and, for readability,
these are written the same as their semantic counterparts.

Parameterised Boolean equation systems [11] are sequences of fixed-point equations
ranging over predicate formulae. The latter are first-order formulae extended with pred-
icate variables, in which the non-logical symbols are taken from the data language.

Definition 1. Predicate formulae are defined through the following grammar:

ϕ, ψ ::= b | X(e) | ϕ ∧ ψ | ϕ ∨ ψ | ∀d : D.ϕ | ∃d : D.ϕ

in which b is a data term of sort B, X(e) is a predicate variable instance (PVI) in which
X is a predicate variable of sort D → B, taken from some sufficiently large set P of
predicate variables, and e is a vector of data terms of sort D. The interpretation of a
predicate formula ϕ in the context of a predicate environment η : P → D → B and a
data environment δ is denoted as �ϕ�ηδ, where:

�b�ηδ =

{
true if δ(b)
false otherwise

�X(e)�ηδ =

{
true if η(X)(δ(e))
false otherwise

�φ ∧ ψ�ηδ = �φ�ηδ and �ψ�ηδ hold �φ ∨ ψ�ηδ = �φ�ηδ or �ψ�ηδ hold

�∀d : D. φ�ηδ = for all v ∈ D, �φ�ηδ[v/d] holds

�∃d : D. φ�ηδ = for some v ∈ D, �φ�ηδ[v/d] holds

We assume the usual precedence rules for the logical operators. Logical equivalence
between two predicate formulae ϕ, ψ, denoted ϕ ≡ ψ, is defined as �ϕ�ηδ = �ψ�ηδ for
all η, δ. Freely occurring data variables in ϕ are denoted by FV (ϕ). We refer to X(e)
occurring in a predicate formula as a predicate variable instance (PVI).

Definition 2. PBESs are defined by the following grammar:

E ::= ∅ | (νX(d : D) = ϕ)E | (μX(d : D) = ϕ)E

in which ∅ denotes the empty equation system; μ and ν are the least and greatest fixed
point signs, respectively; X is a sorted predicate variable of sort D → B, d is a vector
of formal parameters, and ϕ is a predicate formula. We henceforth omit a trailing ∅.

By convention ϕX denotes the right-hand side of the defining equation for X in a
PBES E ; par(X) denotes the set of formal parameters of X ; and we assume that
FV (ϕX) ⊆ par(X), and that par(X) is disjoint from the set of quantified variables. By
superscripting a formal parameter with the predicate variable to which it belongs, we
distinguish between formal parameters for different predicate variables, i.e., we write
dX when d ∈ par(X). We write σ to stand for either μ or ν.

The set of bound predicate variables of some PBES E , denoted bnd(E), is the set of
predicate variables occurring at the left-hand sides of the equations in E . Throughout
this paper, we deal with PBESs that are both well-formed, i.e. for every X ∈ bnd(E)
there is exactly one equation in E , and closed, i.e. for every X ∈ bnd(E), only predicate
variables taken from bnd(E) occur in ϕX .
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To each PBES E we associate a top assertion, denoted initX(v), where we require
X ∈ bnd(E). For a parameter dm ∈ par(X) for the top assertion initX(v) we define
the value init(dm) as vm.

We next define a PBES’s semantics. Let BD denote the set of functions f : D → B, and
define the ordering � as f � g iff for all v ∈ D, f(v) implies g(v). For a given pair of
environments δ, η, a predicate formula ϕ gives rise to a predicate transformer T on the
complete lattice (BD,�) as follows: T (f) = λv ∈ D.�ϕ�η[f/X ]δ[v/d].

Since the predicate transformers defined this way are monotone, their extremal fixed
points exist. We denote the least fixed point of a given predicate transformer T by μT ,
and the greatest fixed point of T is denoted νT .

Definition 3. The solution of an equation system in the context of a predicate environ-
ment η and data environment δ is defined inductively as follows:

�∅�ηδ = η

�(μX(d : D) = ϕX)E�ηδ = �E�η[μT/X ]δ

�(νX(d : D) = ϕX)E�ηδ = �E�η[νT/X ]δ

with T (f) = λv ∈ D.�ϕX�(�E�η[f/X ]δ)δ[v/d]

The solution prioritises the fixed point signs of left-most equations over the fixed point
signs of equations that follow, while respecting the equations. Bound predicate vari-
ables of closed PBESs have a solution that is independent of the predicate and data
environments in which it is evaluated. We therefore omit these environments and write
�E�(X) instead of �E�ηδ(X).

3 A Motivating Example

In practice, solving PBESs proceeds via instantiating [13] into Boolean equation sys-
tems (BESs), for which solving is decidable. The latter is the fragment of PBESs with
equations that range over propositions only, i.e., formulae without data and quantifica-
tion. Instantiating a PBES to a BES is akin to state space exploration and suffers from
a similar combinatorial explosion. Reducing the time spent on it is thus instrumental in
speeding up, or even enabling the solving process. We illustrate this using the following
(academic) example, which we also use as our running example:

νX(i, j, k, l : N) = (i �= 1 ∨ j �= 1 ∨X(2, j, k, l+ 1)) ∧ ∀m : N.Z(i, 2,m+ k, k)
μY (i, j, k, l : N) = k = 1 ∨ (i = 2 ∧X(1, j, k, l))
νZ(i, j, k, l : N) = (k < 10 ∨ j = 2) ∧ (j �= 2 ∨ Y (1, 1, l, 1)) ∧ Y (2, 2, 1, l)

The presence of PVIs X(2, j, k, l+1) and Z(i, 2,m+ k, k) in X’s equation means the
solution to X(1, 1, 1, 1) depends on the solutions to X(2, 1, 1, 2) and Z(1, 2, v + 1, 1),
for all values v, see Fig. 1. Instantiation finds these dependencies by simplifying the
right-hand side of X when its parameters have been assigned value 1:

(1 �= 1 ∨ 1 �= 1 ∨X(2, 1, 1, 1 + 1)) ∧ ∀m : N.Z(1, 2,m+ 1, 1)



Liveness Analysis for Parameterised Boolean Equation Systems 223

X(1, 1, 1, 1)
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Fig. 1. Dependency graph
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Fig. 2. Control flow graph for the running example

Since for an infinite number of different arguments the solution to Z must be computed,
instantiation does not terminate. The problem is with the third parameter (k) of Z . We
cannot simply assume that values assigned to the third parameter of Z do not matter;
in fact, only when j = 2, Z’s right-hand side predicate formula does not depend on
k’s value. This is where our developed method will come into play: it automatically
determines that it is sound to replace PVI Z(i, 2,m+ k, k) by, e.g., Z(i, 2, 1, k) and to
remove the universal quantifier, enabling us to solve X(1, 1, 1, 1) using instantiation.

Our technique uses a Control Flow Graph (CFG) underlying the PBES for analysing
which parameters of a PBES are live. The CFG is a finite abstraction of the dependency
graph that would result from instantiating a PBES. For instance, when ignoring the third
and fourth parameters in our example PBES, we find that the solution to X(1, 1, ∗, ∗)
depends on the first PVI, leading to X(2, 1, ∗, ∗) and the second PVI in X’s equa-
tion, leading to Z(1, 2, ∗, ∗). In the same way we can determine the dependencies for
Z(1, 2, ∗, ∗), resulting in the finite structure depicted in Fig. 2. The subsequent live-
ness analysis annotates each vertex with a label indicating which parameters cannot
(cheaply) be excluded from having an impact on the solution to the equation system;
these are assumed to be live. Using these labels, we modify the PBES automatically.

Constructing a good CFG is a major difficulty, which we address in Section 4. The
liveness analysis and the subsequent modification of the analysed PBES is described in
Section 5. Since the CFG constructed in Section 4 can still suffer from a combinatorial
explosion, we present an optimisation of our analysis in Section 6.

4 Constructing Control Flow Graphs for PBESs

The vertices in the control flow graph we constructed in the previous section represent
the values assigned to a subset of the equations’ formal parameters whereas an edge be-
tween two vertices captures the dependencies among (partially instantiated) equations.
The better the control flow graph approximates the dependency graph resulting from an
instantiation, the more precise the resulting liveness analysis.

Since computing a precise control flow graph is expensive, the problem is to compute
the graph effectively and to balance precision and cost. To this end, we first identify a
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set of control flow parameters; the values to these parameters will make up the vertices
in the control flow graph. While there is some choice for control flow parameters, we
require that these are parameters for which we can statically determine:

1. the (finite set of) values these parameters can assume,
2. the set of PVIs on which the truth of a right-hand side predicate formula may de-

pend, given a concrete value for each control flow parameter, and
3. the values assigned to the control flow parameters by all PVIs on which the truth of

a right-hand side predicate formula may depend.

In addition to these requirements, we impose one other restriction: control flow pa-
rameters of one equation must be mutually independent; i.e., we have to be able to
determine their values independently of each other. Apart from being a natural require-
ment for a control flow parameter, it enables us to devise optimisations of our liveness
analysis.

We now formalise these ideas. First, we characterise three partial functions that to-
gether allow to relate values of formal parameters to the dependency of a formula on
a given PVI. Our formalisation of these partial functions is based on the following ob-
servation: if in a formula ϕ, we can replace a particular PVI X(e) with the subformula
ψ ∧X(e) without this affecting the truth value of ϕ, we know that ϕ’s truth value only
depends on X(e)’s whenever ψ holds. We will choose ψ such that it allows us to pin-
point exactly what value a formal parameter of an equation has (or will be assigned
through a PVI). Using these functions, we then identify our control flow parameters by
eliminating variables that do not meet all of the aforementioned requirements.

In order to reason about individual PVIs occurring in predicate formulae we intro-
duce the notation necessary to do so. Let npred(ϕ) denote the number of PVIs occurring
in a predicate formula ϕ. The function PVI(ϕ, i) is the formula representing the ith PVI
in ϕ, of which pv(ϕ, i) is the name and arg(ϕ, i) represents the term that appears as the
argument of the instance. In general arg(ϕ, i) is a vector, of which we denote the j th

argument by argj(ϕ, i). Given predicate formula ψ we write ϕ[i �→ ψ] to indicate that
the PVI at position i is replaced syntactically by ψ in ϕ.

Definition 4. Let s : P × N× N → D, t : P × N× N → D, and c : P × N× N → N

be partial functions, where D is the union of all ground terms. The triple (s, t, c) is a
unicity constraint for PBES E if for all X ∈ bnd(E), i, j, k ∈ N and ground terms e:

– (source) if s(X, i, j)=e then ϕX ≡ ϕX [i �→ (dj = e ∧ PVI(ϕX , i))],
– (target) if t(X, i, j)=e then ϕX ≡ ϕX [i �→ (argj(ϕX , i) = e ∧ PVI(ϕX , i))],
– (copy) if c(X, i, j)=k then ϕX ≡ ϕX [i �→ (argk(ϕX , i) = dj ∧ PVI(ϕX , i))].

Observe that indeed, function s states that, when defined, formal parameter dj must
have value s(X, i, j) for ϕX ’s truth value to depend on that of PVI(ϕX , i). In the same
vein t(X, i, j), if defined, gives the fixed value of the j th formal parameter of pv(ϕX , i).
Whenever c(X, i, j) = k the value of variable dj is transparently copied to position k
in the ith predicate variable instance of ϕX . Since s, t and c are partial functions, we do
not require them to be defined; we use ⊥ to indicate this.

Example 1. A unicity constraint (s, t, c) for our running example could be one that
assigns s(X, 1, 2) = 1, since parameter jX must be 1 to make X’s right-hand side
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formula depend on PVI X(2, j, k, l+ 1). We can set t(X, 1, 2) = 1, as one can deduce
that parameter jX is set to 1 by the PVI X(2, j, k, l + 1); furthermore, we can set
c(Z, 1, 4) = 3, as parameter kY is set to lZ’s value by PVI Y (1, 1, l, 1).

From hereon, we assume that E is an arbitrary PBES with (source, target, copy) a unic-
ity constraint we can deduce for it. Notice that for each formal parameter for which
either source or target is defined for some PVI, we have a finite set of values that this
parameter can assume. However, at this point we do not yet know whether this set of
values is exhaustive: it may be that some PVIs may cause the parameter to take on ar-
bitrary values. Below, we will narrow down for which parameters we can ensure that
the set of values is exhaustive. First, we eliminate formal parameters that do not meet
conditions 1–3 for PVIs that induce self-dependencies for an equation.

Definition 5. A parameter dn ∈ par(X) is a local control flow parameter (LCFP) if for
all i such that pv(ϕX , i) = X , either source(X, i, n) and target(X, i, n) are defined,
or copy(X, i, n) = n.

Example 2. Formal parameter lX in our running example does not meet the conditions
of Def. 5 and is therefore not an LCFP. All other parameters in all other equations are
still LCFPs since X is the only equation with a self-dependency.

From the formal parameters that are LCFPs, we next eliminate those parameters that do
not meet conditions 1–3 for PVIs that induce dependencies among different equations.

Definition 6. A parameter dn ∈ par(X) is a global control flow parameter (GCFP) if
it is an LCFP, and for all Y ∈ bnd(E) \ {X} and all i such that pv(ϕY , i) = X , either
target(Y, i, n) is defined, or copy(Y, i,m) = n for some GCFP dm ∈ par(Y ).

The above definition is recursive in nature: if a parameter does not meet the GCFP
conditions then this may result in another parameter also not meeting the GCFP con-
ditions. Any set of parameters that meets the GCFP conditions is a good set, but larger
sets possibly lead to better information about the control flow in a PBES.

Example 3. Formal parameter kZ in our running example is not a GCFP since in PVI
Z(i, 2,m+ k, k) from X’s equation, the value assigned to kZ cannot be determined.

The parameters that meet the GCFP conditions satisfy the conditions 1–3 that we im-
posed on control flow parameters: they assume a finite set of values, we can deduce
which PVIs may affect the truth of a right-hand side predicate formula, and we can
deduce how these parameters evolve as a result of all PVIs in a PBES. However, we
may still have parameters of a given equation that are mutually dependent. Note that
this dependency can only arise as a result of copying parameters: in all other cases, the
functions source and target provide the information to deduce concrete values.

Example 4. GCFP kY affects GCFP kX ’s value through PVI X(1, j, k, l); likewise, kX

affects lZ’s value through PVI Z(i, 2,m+ k, k). Through the PVI Y (2, 2, 1, l) in Z’s
equation, GCFP lZ affects GCFPs lY value. Thus, kY affects lY ’s value transitively.

We identify parameters that, through copying, may become mutually dependent. To
this end, we use a relation ∼, to indicate that GCFPs are related. Let dX

n and dY
m be

GCFPs; these are related, denoted dX
n ∼ dY

m, if n = copy(Y, i,m) for some i. Next,
we characterise when a set of GCFPs does not introduce mutual dependencies.
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Definition 7. Let C be a set of GCFPs, and let ∼∗ denote the reflexive, symmetric and
transitive closure of ∼ on C. Assume ≈ ⊆ C×C is an equivalence relation that subsumes
∼∗; i.e., that satisfies ∼∗⊆≈. Then the pair 〈C,≈〉 defines a control structure if for all
X ∈ bnd(E) and all d, d′ ∈ C ∩ par(X), if d ≈ d′, then d = d′.

We say that a unicity constraint is a witness to a control structure 〈C,≈〉 if the latter can
be deduced from the unicity constraint through Definitions 5–7. The equivalence ≈ in
a control structure also serves to identify GCFPs that take on the same role in different
equations: we say that two parameters c, c′ ∈ C are identical if c ≈ c′. As a last step,
we formally define our notion of a control flow parameter.

Definition 8. A formal parameter c is a control flow parameter (CFP) if there is a
control structure 〈C,≈〉 such that c ∈ C.

Example 5. There is a unicity constraint that identifies that parameter iX is copied to
iZ in our running example. Then necessarily iZ ∼ iX and thus iX ≈ iZ for a control
structure 〈C,≈〉 with iX , iZ ∈ C. However, iX and iY do not have to be related, but we
have the option to define ≈ so that they are. The structure 〈{iX , jX , iY , jY , iZ , jZ},≈〉
for which ≈ relates all (and only) identically named parameters is a control structure.

Using a control structure 〈C,≈〉, we can ensure that all equations have the same set of
CFPs. This can be done by assigning unique names to identical CFPs and by adding
CFPs that do not appear in an equation as formal parameters for this equation. Without
loss of generality we therefore continue to work under the following assumption.

Assumption 1. The set of CFPs is the same for every equation in a PBES E; i.e., for
all X,Y ∈ bnd(E), dX ∈ par(X) is a CFP iff dY ∈ par(Y ) is a CFP, and dX ≈ dY .

From hereon, we call any formal parameter that is not a control flow parameter a data
parameter. We make this distinction explicit by partitioning D into CFPs C and data
parameters DDP . As a consequence of Assumption 1, we may assume that every PBES
we consider has equations with the same sequence of CFPs; i.e., all equations are of the
form σX(c : C,dX : DX) = ϕX(c,dX), where c is the (vector of) CFPs, and dX is
the (vector of) data parameters of the equation for X .

Using the CFPs, we next construct a control flow graph. Vertices in this graph represent
valuations for the vector of CFPs and the edges capture dependencies on PVIs. The set
of potential valuations for the CFPs is bounded by values(ck), defined as:

{init(ck)} ∪
⋃

i∈N,X∈bnd(E)
{v ∈ D | source(X, i, k) = v ∨ target(X, i, k) = v}.

We generalise values to the vector c in the obvious way.

Definition 9. The control flow graph (CFG) of E is a directed graph (V ,−→) with:

– V ⊆ bnd(E) × values(c).

– −→ ⊆ V ×N×V is the least relation for which, whenever (X,v)
i−→ (pv(ϕX , i),w)

then for every k either:
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• source(X, i, k) = vk and target(X, i, k) = wk, or
• source(X, i, k) = ⊥, copy(X, i, k) = k and vk = wk, or
• source(X, i, k) = ⊥, and target(X, i, k) = wk.

We refer to the vertices in the CFG as locations. Note that a CFG is finite since the set
values(c) is finite. Furthermore, CFGs are complete in the sense that all PVIs on which
the truth of some ϕX may depend when c = v are neighbours of location (X,v).

Example 6. Using the CFPs identified earlier and an appropriate unicity constraint, we
can obtain the CFG depicted in Fig. 2 for our running example.

Implementation. CFGs are defined in terms of CFPs, which in turn are obtained from
a unicity constraint. Our definition of a unicity constraint is not constructive. However,
a unicity constraint can be derived from guards for a PVI. Computing the exact guard,
i.e. the strongest formula ψ satisfying ϕ ≡ ϕ[i �→ (ψ ∧ PVI(ϕ, i))], is computationally
hard. We can efficiently approximate it such that ϕ ≡ ϕ[i �→ (guardi(ϕ) ∧ PVI(ϕ, i))];
i.e., PVI(ϕ, i) is relevant to ϕ’s truth value only if guardi(ϕ) is satisfiable, as follows:

Definition 10. Let ϕ be a predicate formula. We define the guard of the i-th PVI in ϕ,
denoted guardi(ϕ), inductively as follows:

guardi(b) = false guardi(Y ) = true

guardi(∀d : D.ϕ) = guardi(ϕ) guardi(∃d : D.ϕ) = guardi(ϕ)

guardi(ϕ ∧ ψ) =

{
s(ϕ) ∧ guardi−npred(ϕ)(ψ) if i > npred(ϕ)

s(ψ) ∧ guardi(ϕ) if i ≤ npred(ϕ)

guardi(ϕ ∨ ψ) =

{
s(¬ϕ) ∧ guardi−npred(ϕ)(ψ) if i > npred(ϕ)

s(¬ψ) ∧ guardi(ϕ) if i ≤ npred(ϕ)

where s(ϕ) = ϕ if npred(ϕ) = 0, and true otherwise.

Example 7. In the running example guard1(ϕX) = true∧¬(i �= 1)∧¬(j �= 1)∧ true.

A good heuristic for defining the unicity constraints is looking for positive occurrences
of constraints of the form d = e in the guards and using this information to see if the
arguments of PVIs reduce to constants.

5 Data Flow Analysis

Our liveness analysis is built on top of CFGs constructed using Def. 9. The analysis
proceeds as follows: for each location in the CFG, we first identify the data parameters
that may directly affect the truth value of the corresponding predicate formula. Then
we inductively identify data parameters that can affect such parameters through PVIs
as live as well. Upon termination, each location is labelled by the live parameters at that
location. The set sig(ϕ) of parameters that affect the truth value of a predicate formula
ϕ, i.e., those parameters that occur in Boolean data terms, are approximated as follows:
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sig(b) = FV (b) sig(Y (e)) = ∅
sig(ϕ ∧ ψ) = sig(ϕ) ∪ sig(ψ) sig(ϕ ∨ ψ) = sig(ϕ) ∪ sig(ψ)

sig(∃d : D.ϕ) = sig(ϕ) \ {d} sig(∀d : D.ϕ) = sig(ϕ) \ {d}

Observe that sig(ϕ) is not invariant under logical equivalence. We use this fact to
our advantage: we assume the existence of a function simplify for which we require
simplify(ϕ) ≡ ϕ, and sig(simplify(ϕ)) ⊆ sig(ϕ). An appropriately chosen function
simplify may help to narrow down the parameters that affect the truth value of predicate
formulae in our base case; in the worst case the function leaves ϕ unchanged. Labelling
the CFG with live variables is achieved as follows:

Definition 11. Let E be a PBES and let (V ,−→) be its CFG. The labelling L : V →
P(DDP ) is defined as L(X,v) =

⋃
n∈N

Ln(X,v), with Ln inductively defined as:

L0(X,v) = sig(simplify(ϕX [c := v]))
Ln+1(X,v) = Ln(X,v) ∪ {d ∈ par(X) ∩ DDP | ∃i ∈ N, (Y,w) ∈ V :

(X,v)
i−→ (Y,w) ∧ ∃d� ∈ Ln(Y,w) : d ∈ FV (arg�(ϕX , i))}

The set L(X,v) approximates the set of parameters potentially live at location (X,v);
all other data parameters are guaranteed to be “dead”, i.e., irrelevant.

Example 8. The labelling computed for our running example is depicted in Fig. 2. One
can cheaply establish that kZ /∈ L0(Z, 1, 2) since assigning value 2 to jZ in Z’s right-
hand side effectively allows to reduce subformula (k < 10 ∨ j = 2) to true. We have
l ∈ L1(Z, 1, 2) since we have kY ∈ L0(Y, 1, 1).

A parameter d that is not live at a location can be assigned a fixed default value. To this
end the corresponding data argument of the PVIs that lead to that location are replaced
by a default value init(d). This is achieved by function Reset, defined below:

Definition 12. Let E be a PBES, let (V,→) be its CFG, with labelling L. The PBES
ResetL(E) is obtained from E by replacing every PVI X(e, e′) in every ϕX of E by the

formula
∧

v∈values(c)(v �= e ∨ X(e,Reset
(X,v)
L (e′))). The function Reset

(X,v)
L (e′) is

defined positionally as follows:

if di ∈ L(X,v) we set Reset(X,v)
L (e′)i = e′i, else Reset

(X,v)
L (e′)i = init(di).

Resetting dead parameters preserves the solution of the PBES, as we claim below.

Theorem 1. Let E be a PBES, and L a labelling. For all predicate variables X , and
ground terms v and w: �E�(X(�v�, �w�)) = �ResetL(E)�(X(�v�, �w�)).

Proof sketch. We define a relation RL such that (X, �v�, �w�)RL(Y, �v′�, �w′�) if and
only if X = Y , �v� = �v′�, and ∀dk ∈ L(X,v) : �wk� = �w′

k�. This relation is a
consistent correlation [15]; the result then follows. See [9] for a detailed proof. ��
As a consequence of the above theorem, instantiation of a PBES may become feasible
where this was not the case for the original PBES. This is nicely illustrated by our
running example, which now indeed can be instantiated to a BES.
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Example 9. Observe that parameter kZ is not labelled in any of the Z locations. This
means that X’s right-hand side essentially changes to:

(i �= 1 ∨ j �= 1 ∨X(2, j, k, l+ 1))∧
∀m : N.(i �= 1 ∨ Z(i, 2, 1, k)) ∧ ∀m : N.(i �= 2 ∨ Z(i, 2, 1, k))

Since variable m no longer occurs in the above formula, the quantifier can be elim-
inated. Applying the reset function on the entire PBES leads to a PBES that we can
instantiate to a BES (in contrast to the original PBES), allowing us to compute that the
solution to X(1, 1, 1, 1) is true. This BES has only 7 equations.

6 Optimisation

Constructing a CFG can suffer from a combinatorial explosion; e.g., the size of the CFG
underlying the following PBES is exponential in the number of detected CFPs.

νX(i1, . . . , in : B) = (i1 ∧X(false, . . . , in)) ∨ (¬i1 ∧X(true, . . . , in))∨
· · · ∨ (in ∧X(i1, . . . , false)) ∨ (¬in ∧X(i1, . . . , true))

In this section we develop an alternative to the analysis of the previous section which
mitigates the combinatorial explosion but still yields sound results. The correctness of
our alternative is based on the following proposition, which states that resetting using
any labelling that approximates that of Def. 11 is sound.

Proposition 1. Let, for given PBES E , (V ,−→) be a CFG with labelling L, and let L′

be a labelling such that L(X,v) ⊆ L′(X,v) for all (X,v). Then for all X,v and w:
�E�(X(�v�, �w�)) = �ResetL′(E)�(X(�v�, �w�))

The idea is to analyse a CFG consisting of disjoint subgraphs for each individual
CFP, where each subgraph captures which PVIs are under the control of a CFP: only
if the CFP can confirm whether a predicate formula potentially depends on a PVI,
there will be an edge in the graph. As before, let E be an arbitrary but fixed PBES,
(source, target, copy) a unicity constraint derived from E , and c a vector of CFPs.

Definition 13. The local control flow graph (LCFG) is a graph (V l , ↪−→) with:
– V l = {(X,n, v) | X ∈ bnd(E) ∧ n ≤ |c| ∧ v ∈ values(cn)}, and

– ↪−→⊆ V l ×N×V l is the least relation satisfying (X,n, v)
i
↪−→ (pv(ϕX , i), n, w) if:

• source(X, i, n) = v and target(X, i, n) = w, or
• source(X, i, n) = ⊥, pv(ϕX , i) �= X and target(X, i, n) = w, or
• source(X, i, n) = ⊥, pv(ϕX , i) �= X and copy(X, i, n) = n and v = w.

We write (X,n, v)
i
↪−→ if there exists some (Y,m,w) such that (X,n, v)

i
↪−→(Y,m,w).

Note that the size of an LCFG is O(|bnd(E)|×|c|×max{|values(ck)| | 0 ≤ k ≤ |c|}).

Example 10. For our running example, we obtain the following LCFG.
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We next describe how to label the LCFG in such a way that the labelling meets the
condition of Proposition 1, ensuring soundness of our liveness analysis. The idea of
using LCFGs is that in practice, the use and alteration of a data parameter is entirely
determined by a single CFP, and that only on “synchronisation points” of two CFPs
(when the values of the two CFPs are such that they both confirm that a formula may
depend on the same PVI) there is exchange of information in the data parameters.

We first formalise when a data parameter is involved in a recursion (i.e., when the
parameter may affect whether a formula depends on a PVI, or when a PVI may modify
the data parameter through a self-dependency or uses it to change another parameter).
Let X ∈ bnd(E) be an arbitrary bound predicate variable in the PBES E .

Definition 14. Denote PVI(ϕX , i) by Y (e). Parameter dj ∈ par(X) is:
– used for Y (e) if dj ∈ FV (guardi(ϕX));
– used in Y (e) if for some k, we have dj ∈ FV (ek), (k �= j if X = Y ) ;
– changed by Y (e) if both X = Y and dj �= ej .

Example 11. In the running example, k is used for PVI(ϕY , 1). Parameter l is used in
PVI(ϕZ , 1) and it is changed by PVI(ϕX , 1).

The PVIs using or modifying some data parameter constitute the parameter’s dataflow.
A data parameter belongs to a CFP if its complete dataflow is controlled by that CFP.

Definition 15. CFP cj rules PVI(ϕX , i) if (X, j, v)
i
↪−→ for some v. Let d ∈ par(X) ∩

DDP be a data parameter; d belongs to cj if and only if:
– whenever d is used for or in PVI(ϕX , i), cj rules PVI(ϕX , i), and
– whenever d is changed by PVI(ϕX , i), cj rules PVI(ϕX , i).

The set of data parameters that belong to cj is denoted by belongs(cj).

Example 12. In all equations in our running example, k and l both belong to both i
and j. Consider, e.g., PVI(ϕX , 2), for which k is used; this PVI is ruled by i, which is

witnessed by the edge (X, i, 2)
2
↪−→ (Z, i, 2).

By adding dummy CFPs that can only take on one value, we can ensure that every data
parameter belongs to at least one CFP. For simplicity and without loss of generality, we
can therefore continue to work under the following assumption.

Assumption 2. Each data parameter in an equation belongs to at least one CFP.
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We next describe how to conduct the liveness analysis using the LCFG. Every live data
parameter is only labelled in those subgraphs corresponding to the CFPs to which it
belongs. The labelling itself is constructed in much the same way as was done in the
previous section. Our base case labels a vertex (X,n, v) with those parameters that be-
long to the CFP and that are significant in ϕX when cn has value v. The backwards
reachability now distinguishes two cases, based on whether the influence on live vari-
ables is internal to the CFP or via an external CFP.

Definition 16. Let (V l, ↪−→) be a LCFG for PBES E . The labelling Ll : V
l → P(DDP )

is defined as Ll(X,n, v) =
⋃

k∈N
Lk
l (X,n, v), with Lk

l inductively defined as:

L0
l (X,n, v) = {d ∈ belongs(cn) | d ∈ sig(simplify(ϕX [cn := v]))}

Lk+1
l (X,n, v) = Lk

l (X,n, v)
∪{d ∈ belongs(cn) | ∃i, w such that ∃dY

� ∈ Lk
l (Y, n, w) :

(X,n, v)
i
↪−→ (Y, n, w) ∧ d ∈ FV (arg�(ϕX , i))}

∪{d ∈ belongs(cn) | ∃i,m, v′, w′ such that (X,n, v)
i
↪−→

∧ ∃dY
� ∈ Lk

l (Y,m,w′) : dY
� �∈ belongs(cn)

∧ (X,m, v′)
i
↪−→ (Y,m,w′) ∧ d ∈ FV (arg�(ϕX , i))}

Example 13. In the LCFG for the running example, initially k occurs in the labelling
of all Y and Z nodes, except for (Z, j, 2), since when j = 2, k < 10∨ j = 2 is satisfied
regardless of the value of k. The final labelling is shown in the graph in Example 10.

On top of this labelling we define the induced labelling Ll(X,v), defined as d ∈
Ll(X,v) iff for all k for which d ∈ belongs(ck) we have d ∈ Ll(X, k,vk). This
labelling over-approximates the labelling of Def. 11; i.e., we have L(X,v) ⊆ Ll(X,v)
for all (X,v). The induced labelling Ll can remain implicit; in an implementation,
the labelling constructed by Def. 16 can be used directly, sidestepping a combinatorial
explosion. Combined with Prop. 1, this leads to the following theorem.

Theorem 2. We have �E�(X(�v�, �w�)) = �ResetLl
(E)�(X(�v�, �w�)) for all predi-

cate variables X and ground terms v and w.

Example 14. Using the labelling from Example 13, we obtain Ll(Z, v, 2) = {l} for
v ∈ {1, 2}, and Ll(X,v) = {k} for all other X,v. Observe that, for the reachable part
shown in Figure 2, this coincides with the labelling obtained using the global algorithm.
For the example, this analysis thus yields the same reduction as the analysis in Section 5.

7 Case Studies

We implemented our techniques in the tool pbesstategraphof the mCRL2 toolset [4].
Here, we report on the tool’s effectiveness in simplifying the PBESs originating from
model checking problems and behavioural equivalence checking problems: we compare
sizes of the BESs underlying the original PBESs to those for the PBESs obtained after
running the tool pbesparelm (implementing the techniques from [12]) and those for
the PBESs obtained after running our tool. Furthermore, we compare the total times
needed for reducing the PBES, instantiating it into a BES, and solving this BES.
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Table 1. Sizes of the BESs underlying (1) the original PBESs, and the reduced PBESs using (2)
pbesparelm, (3) pbesstategraph (global) and (4) pbesstategraph (local). For the original
PBES, we report the number of generated BES equations, and the time required for generating and
solving the resulting BES. For the other PBESs, we state the total reduction in percentages (i.e.,
100∗(|original|−|reduced|)/|original|), and the reduction of the times (in percentages, com-
puted in the same way), where for times we additionally include the pbesstategraph/parelm

running times. Verdict
√

indicates the problem has solution true ; × indicates it is false .

Sizes Times Verdict

Original parelm st.graph st.graph Original parelm st.graph st.graph
|D| (global) (local) (global) (local)

Model Checking Problems

No deadlock
Onebit 2 81,921 86% 89% 89% 15.7 90% 85% 90%

√
4 742,401 98% 99% 99% 188.5 99% 99% 99%

√
Hesselink 2 540,737 100% 100% 100% 64.9 99% 95% 99%

√
3 13,834,801 100% 100% 100% 2776.3 100% 100% 100%

√

No spontaneous generation of messages
Onebit 2 185,089 83% 88% 88% 36.4 87% 85% 88%

√
4 5,588,481 98% 99% 99% 1178.4 99% 99% 99%

√

Messages that are read are inevitably sent
Onebit 2 153,985 63% 73% 73% 30.8 70% 62% 73% ×

4 1,549,057 88% 92% 92% 369.6 89% 90% 92% ×
Messages can overtake one another
Onebit 2 164,353 63% 73% 70% 36.4 70% 67% 79% ×

4 1,735,681 88% 92% 90% 332.0 88% 88% 90% ×
Values written to the register can be read
Hesselink 2 1,093,761 1% 92% 92% 132.8 -3% 90% 91%

√
3 27,876,961 1% 98% 98% 5362.9 25% 98% 99%

√

Equivalence Checking Problems

Branching bisimulation equivalence
ABP-CABP 2 31,265 0% 3% 0% 3.9 -4% -1880% -167%

√
4 73,665 0% 5% 0% 8.7 -7% -1410% -72%

√
Buf-Onebit 2 844,033 16% 23% 23% 112.1 30% 28% 31%

√
4 8,754,689 32% 44% 44% 1344.6 35% 44% 37%

√
Hesselink I-S 2 21,062,529 0% 93% 93% 4133.6 0% 74% 91% ×
Weak bisimulation equivalence
ABP-CABP 2 50,713 2% 6% 2% 5.3 2% -1338% -136%

√
4 117,337 3% 10% 3% 13.0 4% -862% -75%

√
Buf-Onebit 2 966,897 27% 33% 33% 111.6 20% 29% 28%

√
4 9,868,225 41% 51% 51% 1531.1 34% 49% 52%

√
Hesselink I-S 2 29,868,273 4% 93% 93% 5171.7 7% 79% 94% ×

Our cases are taken from the literature. We here present a selection of the results.
For the model checking problems, we considered the Onebit protocol, which is a com-
plex sliding window protocol, and Hesselink’s handshake register [8]. Both protocols
are parametric in the set of values that can be read and written. A selection of proper-
ties of varying complexity and varying nesting degree, expressed in the data-enhanced
modal μ-calculus are checked.1 For the behavioural equivalence checking problems, we

1 The formulae are contained in [9]; here we use textual characterisations instead.
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considered a number of communication protocols such as the Alternating Bit Protocol
(ABP), the Concurrent Alternating Bit Protocol (CABP), a two-place buffer (Buf) and
the aforementioned Onebit protocol. Moreover, we compare an implementation of Hes-
selink’s register to a specification of the protocol that is correct with respect to trace
equivalence (but for which currently no PBES encoding exists) but not with respect to
the two types of behavioural equivalence checking problems we consider here: branch-
ing bisimilarity and weak bisimilarity.

The experiments were performed on a 64-bit Linux machine with kernel version
2.6.27, consisting of 14 Intel R© Xeon c© E5520 Processors running at 2.27GHz, and
1TB of shared main memory. In this system 7 servers are aggregated to appear as a
single machine using vSMP software (each node has 2 CPUs and 144GB of main mem-
ory). In our experiments we run up to 24 tools simultaneously, but within each tool no
multi-core features are used. We used revision 12637 of the mCRL2 toolset.2

The results are reported in Table 1; higher percentages mean better reductions/-
smaller runtimes. The experiments confirm our technique can achieve as much as an
additional reduction of about 97% over pbesparelm, see the model checking and
equivalence problems for Hesselink’s register. Compared to the sizes of the BESs un-
derlying the original PBESs, the reductions can be immense. Furthermore, reducing the
PBES using the local stategraph algorithm, instantiating, and subsequently solving it
is typically faster than using the global stategraph algorithm, even when the reduction
achieved by the first is less. For the equivalence checking cases, when no reduction is
achieved the local version of stategraph sometimes results in substantially larger run-
ning times than parelm, which in turn already adds an overhead compared to the origi-
nal; however, for the cases in which this happens the original running time is around or
below 10 seconds, so the observed increase may be due to inaccuracies in measuring.

8 Conclusions and Future Work

We described a static analysis technique for PBESs that uses a notion of control flow to
determine when data parameters become irrelevant. Using this information, the PBES
can be simplified, leading to smaller underlying BESs. Our static analysis technique
enables the solving of PBESs using instantiation that so far could not be solved this
way as shown by our running example. Compared to existing techniques, our new static
analysis technique can lead to additional reductions of up-to 97% in practical cases, as
illustrated by our experiments. Furthermore, if a reduction can be achieved the tech-
nique can significantly speed up instantiation and solving, and in case no reduction is
possible, it typically does not negatively impact the total running time.

Several techniques described in this paper can be used to enhance existing reduction
techniques for PBESs. For instance, our notion of a guard of a predicate variable in-
stance in a PBES can be put to use to cheaply improve on the heuristics for constant
elimination [12]. Moreover, we believe that our (re)construction of control flow graphs
from PBESs can be used to automatically generate invariants for PBESs. The theory on
invariants for PBESs is well-established, but still lacks proper tool support.

2 The complete scripts for our test setup are available at
https://github.com/jkeiren/pbesstategraph-experiments

https://github.com/jkeiren/pbesstategraph-experiments
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Abstract. We present a tool for translating LTL formulae into deter-
ministic ω-automata. It is the first tool that covers the whole LTL that
does not use Safra’s determinization or any of its variants. This leads to
smaller automata. There are several outputs of the tool: firstly, deter-
ministic Rabin automata, which are the standard input for probabilistic
model checking, e.g. for the probabilistic model-checker PRISM; secondly,
deterministic generalized Rabin automata, which can also be used for
probabilistic model checking and are sometimes by orders of magnitude
smaller. We also link our tool to PRISM and show that this leads to a sig-
nificant speed-up of probabilistic LTL model checking, especially with
the generalized Rabin automata.

1 Introduction

The automata-theoretic approach to model checking is a very successful concept,
which found its way to real industrial practice. The key idea is that a property to
be checked on a given system is transformed into an automaton and the product
of the automaton and the original system is then examined. Since real systems
are often huge it is important that the automata used are very small, so that the
product is not too large to be processed or even fit in the memory. Therefore, a
lot of effort has been invested in transforming popular specification languages,
such as linear temporal logic (LTL) [Pnu77], to small automata [Cou99, DGV99,
EH00, SB00, GO01, GL02, Fri03, BKŘS12, DL13].

The property automata are usually non-deterministic Büchi automata (NBA)
as they can express all LTL properties and are quite succinct. However, for pur-
poses of quantitative probabilistic LTL model checking or of LTL synthesis,
deterministic automata are needed [BK08]. To this end, we can transform NBA
to deterministic Rabin automata (DRA) using Safra’s determinization procedure
or its variants [Saf88, Pit06, Sch09] implemented in [Kle, KNP11, TTH13]. The
disadvantage of this approach is that the blow-up is often exponential even for
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simple formulae despite various heuristics [KB07]. Therefore, practically more
efficient procedures have been designed for fragments of LTL [KE12, KLG13,
BBKS13]. A comparison of currently available translators into deterministic au-
tomata [Kle, GKE12, KLG13, BBKS13] can be found in [BKS13].

While our technique for the (F,G)-fragment [KE12, GKE12] was extended to
some larger fragments [KLG13], an occurrence of the U operator in the scope of
the G operator posed a fundamental problem for the approach. Recently [EK14],
we have shown how to modify the techniques of [KE12] to the whole LTL, using
a more complex procedure. In this paper, we present its implementation together
with several optimizations: Rabinizer 3, the first tool to translate LTL formulae
directly to deterministic automata not employing any automata determinization
procedure. Thus after partial solutions of Rabinizer [GKE12] based on [KE12],
and Rabinizer 2 [KLG13], we finally reach our ultimate goal set up from the
very start.

Firstly, we optimize the construction of the state space given in [EK14]. We
also implement the construction of the acceptance condition of the automata.
As the condition is defined by an exponentially large description, several op-
timizations were needed to compute it efficiently and to obtain an equivalent
small condition. Our optimizations lead to automata and acceptance conditions
no larger than those generated by tools for fragments of LTL.

Furthermore, we provide an interface between our tool and PRISM [KNP11],
the leading probabilistic model checker, resulting in a faster tool for probabilistic
LTL model checking. While PRISM uses DRA produced by a re-implementation
of ltl2dstar [Kle], our tool produces not only DRA, but also generalized DRA
(DGRA). They are often much smaller and can also be used for probabilis-
tic model checking for virtually no extra cost [CGK13]. Moreover, since the
algorithm for probabilistic LTL model checking through DGRA has the same
structure as for DRA, it was possible to implement it reusing the PRISM code.

Rabinizer 3 as well as the extended PRISM are available at [R3].

2 Tool and Experimental Results

Principles and Optimizations. The key idea of the approach of [EK14] is
to have (i) one “master” automaton monitoring the formula that at each step
needs to be satisfied, and (ii) one “slave” automaton for each subformula of the
form Gψ monitoring whether ψ holds true at all but finitely many positions
in the word.1 They all run synchronously in parallel; the slaves are organized
recursively, providing information to the slaves of larger formulae and finally also
to the master.

Example 1. Consider ϕ = (a ∧ FGb) ∨ (Fa ∧ FGc). Upon reading {a, b}, the
master moves to FGb∨FGc and the slave for FGb records it has seen a b. If we
1 This approach bears some similarity with temporal testers [KPoR98, PZ08], which
non-deterministically guess satisfaction at each point and later check the guesses. In
contrast, Mojmir automata [EK14] used here are deterministic and thus can provide
the information to the master only through acceptance.
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read ∅ instead, the master would move to Fa ∧ FGc. Apparently, in this state,
it makes no sense any more to monitor whether FGb holds or not. Moreover, we
can postpone checking FGc until we see an a.

Both observations of the previous example lead to optimizations saving unneces-
sary states. The former was considered already in [KLG13]. The latter is similar
to [BBDL+13], where a similar effect is achieved by graph analysis of the au-
tomata. In contrast, here we can detect the same situation much more easily
using the logical structure of the state space. Thus for instance, for the formula
Fa∧GF(b∧XXXb) the size drops from 16 states in [EK14] to 9 here. Further,
an optimization of the initial states of slaves leads to a similar saving, e.g., for
GF((a ∧XXXa) ∨ (¬a ∧XXX¬a)) from 15 to 8 states.

A major advantage of our approach is that it can generate deterministic gen-
eralized Rabin automata [KE12, CGK13].

Definition 1 (DGRA). A deterministic generalized Rabin automaton (DGRA)
is a deterministic ω-automaton with an acceptance condition of the form

k∨

i=1

(Fin i,

ki∧

j=1

Inf ji )

A run visiting exactly set S of states infinitely often is accepting, if for some i,
S ∩ Fin i = ∅ and S ∩ Inf ji �= ∅ for all j = 1, . . . , ki.

Hence, DRA are DGRA with all ki equal to 1. Similarly, we can define transition-
based DGRA (DTGRA), where the acceptance sets Fini, Inf

j
i are sets of tran-

sitions. We use both variants and the transition-based acceptance often saves
even more, see Table 1 for examples of fairness constraints. The lower part of
the table illustrates the effect of the optimizations: the size of DTGRA due to
unoptimized [EK14] for ψ1 and ψ2 is 11 and 32, respectively, compared to 3 and
16 using the new optimizations. For more experiments, see the web-page of the
tool [R3].

The generalized Rabin acceptance condition arises naturally from the prod-
uct of Rabin conditions for each slave and one global co-Büchi condition. Un-
fortunately, due to the global consition it is a disjunction over all subsets of
G-subformulae and various subsets of slaves’ states. Therefore, it is large. How-
ever, after simplifying the pairs, removing pairs simulated by other pairs and
several other steps, we often decrease the number of pairs down to the actual
Rabin index [KPB95], i.e. the minimal possible number for the given language,
as illustrated in Table 1.

Outputs. Given a formula, Rabinizer 3 can output the corresponding DTGRA,
DGRA and DRA. Several output formats are available, such as the ltl2dstar

format, the dot format for visualization, or the PRISM format. Optional labels
on states display the internal logical structure of the automaton. Transitions can
be displayed either explicitly or more compactly using BDDs, e.g. a + b stands
for three transitions, namely under {a}, {b}, and {a, b}.
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Table 1. Experimental comparisons on fairness constraints (upper part) and two for-
mulae of [EK14] (lower part). We display number of states and acceptance pairs for
ltl2dstar and Rabinizer 3 producing different types of automata, all with the same
number of pairs. Here ψ1 = FG(((a ∧ XXb) ∧ GFb)UG(XX!c ∨ XX(a ∧ b))) and
ψ2 = G(!q ∨ (((!s∨ r)∨X(G(!t∨ r)∨!rU(r∧ (!t∨ r))))U(r∨ p)∨G((!s∨XG!t)))), the
latter being ϕ40 “1 cause-2 effect precedence chain” of Spec Patterns [SP].

Formula
ltl2dstar Rabinizer 3

DRA states pairs DRA st. DGRA st. DTGRA st. pairs

FGa ∨GFb 4 2 4 4 1 2

(FGa ∨GFb) ∧ (FGc ∨GFd) 11324 8 21 16 1 4
∧3

i=1(GFai → GFbi) 1 304 706 10 511 64 1 8
∧3

i=1(GFai → GFai+1) 153 558 8 58 17 1 8

ψ1 40 4 4 4 3 1

ψ2 314 7 21 21 16 4

Probabilistic Model Checking. We follow up on our experimental imple-
mentation of [CGK13] for DGRA and DRA. We provide Java classes allowing
for linking any tool with an appropriate output text format to be used in PRISM.

Since we also produce transition-based DGRA, our experimental results reveal
an interesting observation. Although state-based DGRA are larger than their
transition-based counterpart DTGRA, the respective product is not much larger
(often not at all), see Table 2. For instance, consider the case when the only extra
information that DGRA carries in states, compared to DTGRA, is the labeling
of the last transition taken. Then this information is absorbed in the product,
as the system’s states carry their labeling anyway. Therefore, in this relatively
frequent case for simpler formulae (like the one in Table 2), there is no difference
in sizes of products with DGRA and DTGRA.

Table 2. Model checking Pnueli-Zuck mutex protocol with 5 processes (altogether
308 800 states) from the benchmark set [KNP11] for the property that either all pro-
cesses 1-4 enter the critical section infinitely often, or process 5 asks to enter it only
finitely often

ltl2dstar DRA R.3 DRA R.3 DGRA R.3 DTGRA

Automaton size (and nr. of pairs) 196 (5) 11 (2) 33 (2) 1 (2)

Product size 13 826 588 1 100 608 308 800 308 800

Further, notice that the DGRA in Table 2 is larger than the DRA obtained
by degeneralization of DTGRA and subsequent transformation to a state-based
automaton. However, the product with the DGRA is of the size of the original
system, while for DRA it is larger! This demonstrates the superiority of general-
ized Rabin automata over standard Rabin automata with respect to the product
size and thus also computation time, which is superlinear in the size. For details,
further experiments, and the implementation, see [R3].



Rabinizer 3: Safraless Translation of LTL to Small Deterministic Automata 239

3 Conclusion

We present the first tool translating the whole LTL directly to deterministic ω-
automata, while not employing any automata determinization procedure. This
often results in much smaller DRA. Moreover, the power of DGRA is now avail-
able for the whole LTL as well. Together with our modification of PRISM, this
allows for further speed up of probabilistic model checking as demonstrated by
experimental results.

Acknowledgement. We would like to thank Javier Esparza, Vojtěch Forejt,
Mojmı́r Křet́ınský, Marta Kwiatkowska, and Dave Parker for discussions and
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Abstract. This paper introduces PeCAn, a tool supporting composi-
tional verification of Petri nets. Beyond classical features (such as on-
the-fly analysis and synchronisation between multiple Petri nets), PeCAn
generates Symbolic Observation Graphs (SOG), and uses their compo-
sition to support modular abstractions of multiple Petri nets for more
efficient verification. Furthermore, PeCAn implements an incremental
strategy based on counter-examples for model-checking, thus improving
significantly the cost of execution time and memory space. PeCAn also
provides users with the visualisation of the input Petri nets and their
corresponding SOGs. We experimented PeCAn with benchmark datasets
from the Petri Nets’ model checking contests, showing promising results.

Keywords: Compositional verification, Petri nets, SOG.

1 Introduction

A Petri net (PN) [7] is a graphical mathematical language which efficiently sup-
ports the modelling and verification of distributed systems. Basically, a Petri
net is a directed bipartite graph, featuring transitions and places. As Petri nets
are widely used in research and industry communities, there are several tools
developed to help users specify and verify Petri nets, in particularly LoLa [10],
Snoopy [5], TAPAAL [3], CosyVerif [1], CPN Tools [12] or JPetriNet1. Although
most of the tools work with basic place/transitions PNs, some of them cater for
some advanced forms of PNs such as timed, coloured, or stochastic PNs.

In this paper, we present PeCAn (Petri net Compositional Analyser), a tool
supporting verification of Petri nets in a compositional manner. PeCAn can take
as input Petri Net models described in PNML, one of the most popular languages

� This work is partially supported by the STIC-Asie project CATS (“Compositional
Analysis of Timed Systems”).

1 http://jpetrinet.sourceforge.net
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to describe Petri Nets nowadays. The properties to be checked are expressed as
LTL formulae. PeCAn offers the following features:

– PeCAn allows users to compose a complex PN from multiple concurrent PNs
and then verify the composed PN against a given property.

– PeCAn is able to generate Symbolic Observation Graphs (SOG) [4] from
the actual PNs. Therefore, PeCAn supports verification of modular PNs by
composing SOGs of separate components.

– PeCAn implements the incremental strategy based on counter-examples when
verifying the generated SOG [2]. Thus, the cost of execution time and mem-
ory space is significantly reduced.

2 Modular Verification

In this section, we take the example presented in [8] to demonstrate how to use
PeCAn to verify Petri nets. Even though PeCAn can verify a single Petri net as
other existing tools do, in this paper we only focus on compositional verification
of PeCAn, i.e. verifying a Petri net composed by multiple synchronised modules.

We assume that the original Petri net is already decomposed by users into
modules. PeCAn allows users to verify an arbitrary composition of predefined
modules. In order to do so, they must define synchronised transitions by the same
name between modules. Figure 1b gives an example of a system decomposed into
three modules through synchronised transitions. This system can be described
easily in a modular style by PeCAn. In this example, modules A and B have two
transitions with the same name (F1, F3) meaning that these two transitions must
be synchronised. Similarly, a synchronised transition, F2, is shared by modules
B and C, also declared by the same name in PeCAn.

When the module composition and the LTL property are defined, users can
choose to perform the verification using one of the following methods:

Basic LTL Verification. The modules are synchronised together based on the
user specification. Then the synchronised modules are converted into an LTS
model and verified on-the-fly by the PAT model checking library [11].

SOG-based Verification. In this method, we do not directly verify the syn-
chronised modules. Instead, we produce a corresponding SOG and use it for
the verification. If a counter-example is found, it is verified again on the
original Petri net to check whether it is an actual counter-example.

Incremental SOG-based Verification. It is similar to the SOG-based Veri-
fication method. However, we do not generate the SOG for the whole syn-
chronisation of modules. Instead, we incrementally synchronise two modules
first and verify the corresponding SOG. If no counter-example is found, we
incrementally synchronise one more module and repeat the SOG-based verifi-
cation step, until a counter-example is found or all modules are synchronised
and verified (see [2]).
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(a) Architecture of PeCAn

(b) A modular PN example

(c) Full state space of the model

Fig. 1. Architecture of PeCAn and example with state space

3 Architecture

The architecture of PeCAn, given in Figure 1a, is described as follows:

Editor Layer. Allows users to describe PNs by a (i) PNML specification or (ii)
graph-based visualisation. Users can design an arbitrary number of modules
as well as any composition between them.

Parser Layer. Parses the architectures of the PNs from the Editor Layer and
converts the Petri net models as well as properties to check into an internal
representation for the Semantic Layer.

Semantic Layer. Responsible for generating the corresponding LTS of the in-
put Petri nets, in order to be model checked by the next layer. The three
approaches of Basic LTL Verification, SOG-based Verification and Incremen-
tal SOG-based Verification are then implemented as three sub-modules: Sync
PN on-the-fly, Sync PN SOG and Sync PN Modular SOG.

Model Checker Layer. We make use of the PAT model checking library [11]
for this layer. This library takes an LTS as input, and verifies the properties.

4 Functionality Comparison and Experiments

We finally present some comparative discussion and experiments of our tool
with other similar approaches. Since PeCAn takes PNML as input, we collected
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Table 1. Available tools that support PNML models

No Tool
PNML format
supported

GUI
editor

Deadlock
checking

User-defined
LTL checking Simulation

1 PeCAn � � � � �
2 PNEditor2 � � × ×
3 Snoopy3 ×4 � × × �
4 PNML Framework5 � � ?6

5 ProM framework7 � � × ?8 ×
6 P39 � ×
7 ePNK10 � � ?11

8 Tina12 � × × � �

other PN verification tools also supporting PNML. We selected the tools listed at
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/ and sup-
porting PNML. As shown in Table 1, very few tools can support PNML specifi-
cation and perform full LTL verification.

We then experimented PeCAn with benchmark datasets downloaded from
the Model Checking contest [6]13. Results, as display in Table 2 showed that
PeCAn can endure some remarkably large model sizes. When a counter-example
is found, PeCAn can terminate quickly with significantly less resources usage.

Lastly, we also compared the performance of PeCAn in terms of the (symbolic)
states and transitions generated by the SOG-based approach. The results are
presented in Figures 2a and 2b respectively. Results show that the SOG-based
approach of PeCAn usually reduces the number of states, and always significantly
reduces the number of transitions when compared to the standard approach. In
fact, the number of generated transitions is always significantly reduced, leading
to a substantial gain of time when applying a model checking algorithm. The
tool and all experiments can be downloaded from [9].

2 http://www.pneditor.org/download/pneditor-0.64.jar
3 http://www-dssz.informatik.tu-cottbus.de/track/download.php?id=136
4 Claimed as coming soon
5 http://pnml.lip6.fr
6 Depends on analysis tool using PNML Framework
7 http://www.promtools.org/prom6/
8 Claimed to be done via plugins, but we could not find where.
9 http://www.sfu.ca/~dgasevic/projects/P3net/Download.htm

10 http://www.imm.dtu.dk/~ekki/projects/ePNK/
11 It could not load Eclipse after installation
12 http://projects.laas.fr/tina//download.php
13 http://mcc.lip6.fr/

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/
http://www.pneditor.org/download/pneditor-0.64.jar
http://www-dssz.informatik.tu-cottbus.de/track/download.php?id=136
http://pnml.lip6.fr
http://www.promtools.org/prom6/
http://www.sfu.ca/~dgasevic/projects/P3net/Download.htm
http://www.imm.dtu.dk/~ekki/projects/ePNK/
http://projects.laas.fr/tina//download.php
http://mcc.lip6.fr/
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Table 2. Experiments with deadlock models: PeCAn does not need to explore the
whole state space

No Model Parameter State space

Number of
Reached
Markings

Number of
Transition
Firings

Time
(s)

Memory

(KB)

1 CSRepetitions 2 7.424 32 31 0.015 8,962

2 CSRepetitions 3 1.341 × 108 117 116 0.078 10,465

3 CSRepetitions 4 unknown 291 290 0.202 16,033

4 CSRepetitions 5 unknown 1,274 1,283 0.642 43,289

5 CSRepetitions 7 unknown 2,148 2,147 2.367 135,809

6 CSRepetitions 8 unknown 7,242 7,241 20.836 1,056,194

7 Eratosthenes 10 32 12 19 0.191 8,635

8 Eratosthenes 20 2,048 28 60 0.015 8,929

9 Eratosthenes 50 1.718 × 1010 287 821 0.071 11,451

10 Eratosthenes 100 1.899 × 1022 1,236 4,099 0.539 23,446

11 Eratosthenes 200 1.142 × 1046 3,614 13,007 4.794 91,365

12 Eratosthenes 500 4.13 × 10121 24,236 88,363 76.082 899,525

13 HouseContruction 2 1,501 74 73 0.119 9,100

14 HouseContruction 5 unknown 209 208 0.031 10,095

15 HouseContruction 10 1, 664× 109 434 433 0.018 10,354

16 HouseContruction 20 1.367 × 1013 884 883 0.052 13,481

17 HouseContruction 50 unknown 2,234 2,233 0.121 17,747

18 HouseContruction 100 unknown 4,484 4,483 0.294 20,059

19 HouseContruction 200 unknown 8,984 8,983 0.471 32,975

20 HouseContruction 500 unknown 22,484 22,483 1.48 63,711

21 PermAdmissibility 1 52,537 41 40 0.183 10,437

22 PermAdmissibility 2 unknown 253 252 0.098 13,243

23 PermAdmissibility 5 unknown 1,025 1,024 0.363 25,011

24 PermAdmissibility 10 unknown 2,372 2,371 0.869 45,072

25 PermAdmissibility 20 unknown 5,027 5,026 2.021 87,138

26 PermAdmissibility 50 unknown 12,912 12,911 4.901 201,224

27 Philosopher 5 243 68 84 0.007 9,274

28 Philosopher 10 59,049 7,242 10,576 1.057 42,935

29 Philosopher 20 3.487 × 109 Time out after 7200s

(a) Number of states (b) Number of transitions

Fig. 2. Experimental results on a set of Petri nets
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Abstract. Bounded languages have recently proved to be an important
class of languages for the analysis of Turing-powerful models. For in-
stance, bounded context-free languages are used to under-approximate
the behaviors of recursive programs. Ginsburg and Spanier have shown
in 1966 that a bounded language L ⊆ a∗

1 · · · a∗
d is context-free if, and only

if, its Parikh image is a stratifiable semilinear set. However, the question
whether a semilinear set is stratifiable, hereafter called the stratifiability
problem, was left open, and remains so. In this paper, we give a par-
tial answer to this problem. We focus on semilinear sets that are given
as finite systems of linear inequalities, and we show that stratifiability
is coNP-complete in this case. Then, we apply our techniques to the
context-freeness problem for flat counter systems, that asks whether the
trace language of a counter system intersected with a bounded regular
language is context-free. As main result of the paper, we show that this
problem is coNP-complete.

1 Introduction

The class of bounded languages was introduced in 1964 by Ginsburg and Spanier
to study context-free languages [11]. Nowadays, this class plays an important role
in the analysis of Turing-powerful models. Recall that a language is bounded if it
is contained in σ∗

1 · · ·σ∗
d for some words σ1, . . . , σd. The restriction of a model to

behaviors contained in a bounded language produces a so-called flat model that is
often amenable to automatic verification. Indeed, the reachability sets of such re-
strictions are usually computable through acceleration techniques [3,4,8,1,10,2,5].
Following the same approach, bounded languages have recently been used for the
analysis of recursive concurrent systems, and more generally as a way to unify
various recent and promising “bounded verification” techniques [9].

In these applications, the class of semilinear bounded languages is central. Re-
call that a semilinear set is a finite union of sets of the form b+Np1+ · · ·+Npk

where b,p1, . . . ,pk are vectors in N
d. Semilinear sets coincide with the sets defin-

able in Presburger arithmetic [13]. A semilinear bounded language is a language
of the form {σn1

1 · · ·σnd

d | (n1, . . . , nd) ∈ S} where σ1, . . . , σd are words and
S is a semilinear set. The class of semilinear bounded languages admits several
� This work was supported by the ANR project ReacHard (ANR-11-BS02-001).

F. Cassez and J.-F. Raskin (Eds.): ATVA 2014, LNCS 8837, pp. 248–263, 2014.
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characterizations through language acceptors [6,16,9]. From a language-theoretic
viewpoint, semilinear bounded languages are incomparable with context-free lan-
guages. Indeed, the language {anbncn | n ∈ N} is well-known to be non-context-
free, and, conversely, the language {a, b}∗ is not a bounded language. However,
bounded context-free languages are semilinear bounded languages, by Parikh’s
theorem and closure under inverse morphism of context-free languages.

Ginsburg and Spanier have established in [13,14] a characterization of bounded
context-free languages in terms of semilinear sets satisfying a “stratification”
requirement. We call such semilinear sets stratifiable. The existence of a deci-
sion procedure for determining whether a given semilinear set is stratifiable was
left open in [13,14], and has remained open since then. Rephrased in terms of
languages, this decision problem is equivalent to the question whether a given
semilinear bounded language is context-free. The latter problem is known to be
decidable for some subclasses of semilinear bounded languages, with a notable
example being the trace languages of flat Petri nets. In fact, the context-freeness
problem is decidable for trace languages of arbitrary Petri nets [22,18], and was
recently shown to be ExpSpace-complete for them [19].

Contributions. In this paper, we provide a partial answer to the question whether
a given semilinear set is stratifiable, hereafter called the stratifiability problem.
We focus on semilinear sets that are integral polyhedra, in other words, that are
given as finite systems of linear inequalities. Our contributions are twofold.

As main technical result of the paper, we show that the stratifiability prob-
lem for integral polyhedra is coNP-complete. The proof is decomposed in two
steps. First, we reduce the stratifiability of an integral polyhedron {x ∈ N

d |
Ax ≥ b} to a stratification-like property, called nestedness, that only involves
the matrix A. We then provide a criterion for nestedness, and show how to ex-
press this criterion by a polynomial-size quantifier-free formula in the first-order
theory of the rational numbers with addition and order. This way, we obtain
that the stratifiability problem for integral polyhedra is solvable in coNP. The
proof of coNP-hardness is by reduction from the emptiness problem for integral
polyhedra.

Building on this result, we then investigate the context-freeness problem for
flat counter systems, that asks whether the trace language of a counter sys-
tem intersected with a bounded regular language is context-free. In our setting,
counter systems are a generalization of Petri nets where transitions are guarded
by integral polyhedra. Such guards can express zero tests, so counter systems
are Turing-powerful since they subsume Minsky machines. By exploiting the
restriction to bounded languages required by flatness, we show that the context-
freeness problem for flat counter systems is coNP-complete, and remains so for
flat Petri nets.

Related Work. The class of semilinear bounded languages was recently character-
ized through various language acceptors, namely, Parikh automata [6], reversal-
bounded counter machines [16], and multi-head pushdown automata [9]. The
class of semilinear sets was shown in [20] to coincide with the finite intersections
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of stratifiable semilinear sets. It follows that the class of bounded context-free
languages is a generating class for the semilinear bounded languages. In [17], the
stratifiability problem is shown to be equivalent to the existence of a
0-synchronized n-tape pushdown automaton equivalent to a given n-tape finite-
state automaton whose language is contained in a∗1 × · · · × a∗n. In a recent
paper [18], we proved that the trace language of a Petri net is context-free if, and
only if, it has a context-free intersection with every bounded regular language.
Building on this characterization, we then established in [19] that the context-
freeness problem for Petri nets is ExpSpace-complete, but the complexity was
left open for the subcase of flat Petri nets. Here, we show that the context-
freeness problem for flat Petri nets is coNP-complete. Related to our work is the
question whether a given model is a posteriori flat, in other words, whether the
set of all its behaviors is a bounded language. This question is shown in [7] to be
decidable for the class of complete and deterministic well-structured transition
systems.

Outline. The paper is organized as follows. Preliminary notations are given in
Section 2. We recall the definition of stratifiable semilinear sets in Section 3.
The stratifiability problem for integral polyhedra is shown to be decidable in
Section 4, and it is proved to be coNP-complete in Section 5. We then address
the context-freeness problem for flat counter systems, and show in Section 6 that
it is coNP-complete. Section 7 concludes the paper with directions for future
work.

2 Preliminaries

We let N, Z and Q denote the usual sets of nonnegative integers, integers and
rational numbers, respectively. We write N1 for the set of positive integers and
Q≥0 for the set of nonnegative rational numbers. Vectors (of rational numbers),
sets of vectors and matrices are typeset in bold face. The ith component of a
vector v is written v(i). The support of a vector v, written supp(v), is the set
of indices i such that v(i) �= 0. We let ei denote the ith unit vector, defined by
ei(i) = 1 and ei(j) = 0 for all indices j �= i.

A partial-order on a set S is a binary relation � on S that is reflexive, an-
tisymmetric and transitive. As usual, we write s ≺ t when s � t and t �� s. A
well-partial-order on S is a partial-order � on S such that every infinite sequence
s0, s1, s2, . . . in S contains an increasing pair si � sj with i < j.

3 Stratifiable Semilinear Sets

Building on earlier work with Spanier [13], Ginsburg provides, in his book [14],
a characterization of bounded context-free languages in terms of semilinear sets
satisfying a “stratification” requirement. We call such semilinear sets stratifiable.
The existence of a decision procedure for determining whether a given semilinear
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set is stratifiable was left open in [13,14], and has remained open since then. We
provide a partial answer to this problem in Sections 4 and 5. Before that, we
recall in this section the definition of stratifiable semilinear sets, and how they
can be used to characterize bounded context-free languages.

Given a finite set P = {p1, . . . ,pk} of vectors in N
d, we let P � denote the set

of finite sums of vectors in P , i.e., P � = Np1 + · · ·+ Npk. A linear set is a set
of the form b+P � where b is a vector in N

d and P is a finite subset of Nd. The
vector b is called the basis, and the vectors in P are called periods. A semilinear
set is a finite union of linear sets. Recall that semilinear sets coincide with the
sets definable in FO (N, 0, 1,+,≤), also known as Presburger arithmetic [13].

Definition 3.1 ([13,14]). A finite subset P of Nd is stratified if every vector
in P has at most two non-zero components, and it holds that

p(r) �= 0 ∧ p(t) �= 0 ∧ q(s) �= 0 ∧ q(u) �= 0 ⇒ ¬(r < s < t < u)

for every vectors p, q ∈ P and indices r, s, t, u ∈ {1, . . . , d}.

Example 3.2. The following examples are from [14]. The set {(2, 1, 0), (0, 3, 3)} is
stratified, but the set {(1, 1, 1), (1, 0, 2)} is not stratified, since (1, 1, 1) has three
non-zero components. The set {(3, 0, 0, 2), (0, 1, 5, 0), (4, 7, 0, 0)} is stratified, but
the set {(2, 0, 3, 0), (0, 3, 0, 2)} is not stratified. 
�

We call a semilinear set stratifiable when it is a finite union of linear sets,
each with a stratified set of periods. Formally, a semilinear set S is stratifiable
if there exits a finite family {(bi,P i)}i∈I of vectors bi in N

d and finite stratified
subsets P i of Nd such that S =

⋃
i∈I(bi+P �

i ). The following lemma shows that
stratifiable semilinear sets enjoy nice closure properties.

Lemma 3.3. The class of stratifiable semilinear sets is closed under union, un-
der projection, under inverse projection, and under intersection with Cartesian
products of intervals.

Proof. These closure properties are easily derived from the definition of stratifi-
able semilinear sets. 
�

The stratifiability problem asks whether a given semilinear set S is stratifi-
able. The decidability of the stratifiability problem was raised in [13,14], and
has been open for nearly fifty years. Stratifiability is linked to the following
characterization of bounded context-free languages.

We consider words over a finite alphabet Σ. Recall that a language L ⊆ Σ∗

is bounded if L ⊆ σ∗
1 · · ·σ∗

d for some words σ1, . . . , σd in Σ∗. In his book [14],
Ginsburg characterizes which bounded languages are context-free, in terms of
semilinear sets. The reader is referred to [14] for further details.

Theorem 3.4 ([14, p. 162]). Consider a language L ⊆ σ∗
1 · · ·σ∗

d, where each
σi ∈ Σ∗. Then L is context-free if, and only if, the set of all vectors (n1, . . . , nd)
in N

d such that σn1
1 · · ·σnd

d ∈ L is a stratifiable semilinear set.
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Example 3.5. Take Σ = {a, b, c}. The language {anbmcn | n,m ∈ N} is context-
free since the set {(n1, n2, n3) ∈ N

3 | n1 = n3} is the linear set P � where
P = {(1, 0, 1), (0, 1, 0)} is stratified. The language {anbncn | n ∈ N} is known to
be non-context-free. This means the semilinear set N(1, 1, 1) is not stratifiable.


�

4 Decidability of Stratifiability for Integral Polyhedra

In this section, we show that stratifiability is decidable for a subclass of semilinear
sets, namely the sets of integral solutions of finite systems of linear inequalities.
Formally, an integral polyhedron is a set of the form {x ∈ N

d | Ax ≥ b} where
A ∈ Z

n×d is a matrix and b ∈ Z
d is a vector. Every linear system Ax ≥ b can

be encoded into Presburger arithmetic, so integral polyhedra are semilinear sets.
The stratifiability problem for integral polyhedra asks, given a matrix A ∈ Z

n×d

and a vector b ∈ Z
d, both encoded in binary, whether the integral polyhedron

{x ∈ N
d | Ax ≥ b} is stratifiable. The remainder of this section reduces this

problem to a decision problem that only involves the matrix A ∈ Z
n×d.

First, we show that stratifiability for integral polyhedra can be reduced to the
particular case of homogeneous linear inequalities. Formally, an integral cone is
a set of the form {x ∈ N

d | Ax ≥ 0} where A ∈ Z
n×d is a matrix. The following

lemma shows that every integral cone is a linear set, and provides a way to
decompose integral polyhedra into integral cones.

Lemma 4.1 ([21, p. 237]). For every matrix A ∈ Z
n×d and every vector

b ∈ Z
d, there exists two finite subsets B and P of Nd such that:

{x ∈ N
d | Ax ≥ b} = B + P � and P � = {x ∈ N

d | Ax ≥ 0}

We have considered so far integral solutions of finite systems of linear inequal-
ities. To simplify our analysis, we now move from integers to rational numbers.
A cone is a set of the form {x ∈ Q

d
≥0 | Ax ≥ 0} where A ∈ Z

n×d is a matrix.
Given a finite set P = {p1, . . . ,pk} of vectors in N

d, we let P � denote the set of
linear combinations of vectors in P with nonnegative rational coefficients, i.e.,
P � = Q≥0p1 + · · · + Q≥0pk. Put differently, P � is defined as P � except that
Q≥0pi replaces Npi. Observe that P � = Q≥0P

� for every finite subset P of Nd.
Let us recall the following well-known property.

Property 4.2 (Farkas-Minkowski-Weyl Theorem). A subset X of Qd
≥0 is a cone

if, and only if, X = P � for some finite subset P of Nd.

In order to extract the asymptotic directions of an integral polyhedron, we
associate to every finite subset P ⊆ N

d a partial-order 
P on N
d defined by

x 
P y if y ∈ x+ P �. Observe that when P = {e1, . . . , ed}, the partial-order

P coincides with the classical partial order ≤ on N

d, which is known to be a
well-partial-order on N

d = N
d ∩ P �, by Dickson’s lemma. This observation can

be generalized to any finite subset P of Nd, as follows. We refer the reader to
the proof of Lemma 1.2 from [15] for details.
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Lemma 4.3 ([15]). The partial-order 
P on N
d is a well-partial-order on N

d∩
P �, for every finite subset P of Nd.

To show that the stratifiability problem for integral polyhedra is decidable,
we decompose cones into “maximal stratifiable parts”. The formal definition of
these parts requires some additional notations. A binary relation R on {1, . . . , d}
is called nested if it satisfies the two following conditions:

(s, t) ∈ R ⇒ s ≤ t (1)
(r, t) ∈ R ∧ (s, u) ∈ R ⇒ ¬(r < s < t < u) (2)

An example of a nested relation is depicted in Figure 1a. Given a cone X ⊆ Q
d
≥0

and a nested binary relation R on {1, . . . , d}, we introduce the set XR defined
as follows:

XR =
∑

r∈R

Xr

where, for each pair r = (s, t) of indices satisfying 1 ≤ s ≤ t ≤ d, the set Xr is
given by:

Xr =

⎧
⎨

⎩
x ∈ X

∣
∣
∣
∣
∣
∣

∧

j �∈{s,t}
x(j) = 0

⎫
⎬

⎭

Intuitively, the “maximal stratifiable parts” mentioned previously are the sets
XR. The “stratification” property of XR is expressed by the following lemma.

Lemma 4.4. For every cone X ⊆ Q
d
≥0 and every nested binary relation R on

{1, . . . , d}, it holds that XR = P �
R for some finite stratified subset PR of Nd.

Proof. Consider a cone X = {x ∈ Q
d
≥0 | Ax ≥ 0} and a nested binary relation

R on {1, . . . , d}. First, notice that Xr is a cone for every r = (s, t) in R. Indeed,
every constraint x(j) = 0 may be expressed as the conjunction of x(j) ≥ 0 and
−x(j) ≥ 0. By adding these inequalities to the matrix A for every j �∈ {s, t}, we
obtain a matrix witnessing that Xr is a cone. It follows from Property 4.2 that
Xr = P �

r for some finite subset P r ⊆ N
d. Therefore, XR = P �

R where PR is
the finite subset of Nd defined by PR =

⋃
r∈R P r. Since R is nested, we derive

that PR is stratified, which concludes the proof of the lemma. 
�

We are now ready to provide a decidable characterization of stratifiable inte-
gral polyhedra. Given a cone X ⊆ Q

d
≥0, we say that X is nested if X =

⋃
R XR.

It is understood that the union ranges over nested binary relations on {1, . . . , d}.
Observe that each XR is contained in X, since cones are closed under addition.
So nestedness only requires that X is contained in

⋃
R XR. The cone nestedness

problem asks, given a matrix A ∈ Z
n×d encoded in binary, whether the cone

{x ∈ Q
d
≥0 | Ax ≥ 0} is nested.

Theorem 4.5. An integral polyhedron {x ∈ N
d | Ax ≥ b} is stratifiable if, and

only if, it is empty or the cone {x ∈ Q
d
≥0 | Ax ≥ 0} is nested.
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Proof. For brevity, we let S denote the integral polyhedron {x ∈ N
d | Ax ≥ b},

and X denote its associated cone {x ∈ Q
d
≥0 | Ax ≥ 0}.

We first prove the “if” direction of the theorem. If S is empty then it is
trivially stratifiable. Let us assume that X is nested. According to Lemma 4.1,
the integral polyhedron S can be decomposed into a sum S = B + H where
B ⊆ N

d is a finite set and H is the integral cone {x ∈ N
d | Ax ≥ 0}. Observe

that X =
⋃

R XR since X is nested, and that H ⊆ X by definition. We derive
that H can be decomposed into H =

⋃
R HR where HR = H ∩ XR. By

Lemma 4.4, there exists a finite stratified set PR ⊆ N
d such that XR = P �

R.
Lemma 4.3 entails that 
PR

is a well-partial-order on N
d∩XR. It follows that the

set of minimal elements of HR for this well-partial-order is a finite set. Moreover,
writing BR this finite set, we obtain that HR ⊆ BR +P �

R. We have proved the
inclusion H ⊆ ⋃

R(BR + P �
R). Since the converse inclusion is immediate, the

set H is stratifiable. From S = B +H, we deduce that S is stratifiable.
We now prove the “only if” direction of the theorem. Let us assume that S

is non-empty and stratifiable. Since S is stratifiable, it can be decomposed into
⋃

i∈I(bi + P �
i ) where I is finite, bi ∈ N

d and P i ⊆ N
d is a finite stratified set.

Let us first show that P �
i ⊆ ⋃

R XR. Define Ri to be the set of pairs (s, t),
with 1 ≤ s ≤ t ≤ d, such that p(s) �= 0 ∧ p(t) �= 0 for some vector p ∈ P i.
It is readily seen that Ri is a nested binary relation on {1, . . . , d}, since P i

is stratified. Let p ∈ P i. For each n ∈ N, it holds that bi + np ∈ S. Thus,
Abi + nAp ≥ b for every n ∈ N. We deduce that Ap ≥ 0, hence, p ∈ X. By
definition of Ri, we get that p ∈ XRi . Since XRi is closed under addition, we
obtain that P �

i ⊆ XRi .
To prove that X ⊆ ⋃

R XR, it is enough to show that N
d ∩ X ⊆ ⋃

R XR,
since cones are closed under multiplication with nonnegative rational numbers.
Let x ∈ N

d ∩ X. Since S is non-empty, there exists s ∈ S. For every n ∈ N,
we have A(s + nx) ≥ b, hence, s + nx ∈ S. By the pigeon-hole principle,
there exists i ∈ I and an infinite set N ⊆ N such that s + nx ∈ bi + P �

i for
every n ∈ N . Lemma 4.3 entails that 
P i

is a well-partial-order on N
d ∩ P �

i .
Since xn = s − bi + nx is in P �

i ⊆ N
d ∩ P �

i for every n ∈ N, we deduce
that there exists n,m ∈ N such that n < m and xn 
P i

xm. It follows that
(m − n)x = xm − xn ∈ P �

i . Since P �
i ⊆ ⋃

R XR, we obtain that x ∈ ⋃
R XR.

We have shown that N
d ∩X ⊆ ⋃

R XR, and we conclude that X is nested. 
�
Given a cone X = {x ∈ Q

d
≥0 | Ax ≥ 0}, we may compute from the matrix A

a formula in the theory FO (Q, 0, 1,+,≤) expressing the equality X =
⋃

R XR.
Since this theory is decidable by Fourier-Motzkin quantifier elimination, we ob-
tain that the cone nestedness problem is decidable. It follows from Theorem 4.5
that the stratifiability problem for integral polyhedra is decidable. We show, in
the next section, that this problem is coNP-complete.

5 A Criterion for Cone Nestedness Decidable in coNP

We provide, in this section, a criterion for checking whether a given cone is
nested. This criterion leads to a coNP decision procedure for the cone nestedness
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↑
pivot p

(a) Nested relation
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x

y z

(b) Reducible vector

Fig. 1. Decomposition of nested relations and of reducible vectors

problem, and similarly for the stratifiability problem for integral polyhedra. We
also show that the latter upper bound is tight.

To every cone X ⊆ Q
d
≥0, we associate the set �X =

⋃
R XR. Recall that X is

non-nested precisely when X �⊆ �X. We show that non-nestedness of a cone X
can always be witnessed by a vector in X \�X of a special form. We will need
the following easy facts. An illustration of the first lemma is given in Figure 1a.

Lemma 5.1. Assume that d ≥ 3. A binary relation R on {1, . . . , d} is nested if,
and only if, there exist a pivot p with 1 < p < d and two nested binary relations U
and V on {1, . . . , p} and {p, . . . , d}, respectively, such that R ⊆ {(1, d)}∪U ∪V .

Lemma 5.2. For every x ∈ �X, there exists a nested binary relation R on1

supp(x) such that x ∈ XR.

Proof (sketch). If x ∈ �X then x =
∑

r∈R xr for some nested binary relation R
on {1, . . . , d} and some vectors xr ∈ Xr. We can assume, w.l.o.g., that xr(s) �= 0
and xr(t) �= 0 for each pair r = (s, t). Indeed, if xr = 0 then r can be removed
from R, and, otherwise, if xr(s) = 0 or xr(t) = 0 then r can be replaced by (t, t)
or (s, s), respectively. It follows that R is a nested binary relation on supp(x). 
�

Consider a cone X ⊆ Q
d
≥0. Given a pair r = (s, t) of indices with 1 ≤ s ≤ t ≤

d, we call r-decomposition2 any triple (a,y, z) of vectors in Xr ×X ×X such
that supp(y) ⊆ {s, . . . , p} and supp(z) ⊆ {p, . . . , t} for some pivot p satisfying
s < p < t. Since cones are closed under addition, the vector a + y + z is in X
for every decomposition (a,y, z). The following lemma shows that membership
in �X is also preserved by decomposition.

Lemma 5.3. For every r-decomposition (a,y, z), it holds that (a+y+z) ∈�X
if y ∈�X and z ∈�X.

Proof. Assume that y ∈�X and z ∈�X . By Lemma 5.2, there exists two nested
binary relations U on supp(y) and V on supp(z) such that y ∈ XU and z ∈ XV .
1 Recall that supp(v) denotes the support of v, i.e, the set of indices i with v(i) �= 0.
2 This notion is defined relative to a cone X, which is left implicit to reduce clutter.



256 J. Leroux, V. Penelle, and G. Sutre

Since (a,y, z) is an r-decomposition, there exists a pivot p with s < p < t,
where r = (s, t), such that supp(y) ⊆ {s, . . . , p} and supp(z) ⊆ {p, . . . , t}. It
follows that the field3 of U and the field of V are contained in {s, . . . , p} and
{p, . . . , t}, respectively. We derive from Lemma 5.1 that the binary relation R =
{(s, t)} ∪ U ∪ V is nested. Observe that a, y and z are all in XR. Since XR is
closed under addition, we obtain that (a + y + z) ∈ XR, which concludes the
proof of the lemma. 
�

We call a vector x ∈ X reducible4 when supp(x) has cardinality at most two,
or there exists a pair (s, t) of indices in supp(x), with 1 ≤ s ≤ t ≤ d, and an
(s, t)-decomposition (a,y, z) such that x = a + y + z. The latter condition is
depicted in Figure 1b. Note that this condition entails that supp(x) ⊆ {s, . . . , t}.
A vector x ∈ X is called irreducible4 when it is not reducible. The following
theorem characterizes which cones are nested, in terms of irreducible vectors.
Before that, we illustrate these notions on a few examples.

Example 5.4. Let X and Y be the cones given by X = {x ∈ Q
3
≥0 | x(1) = x(3)}

and Y = {x ∈ Q
3
≥0 | x(1) = x(2) = x(3)}. The vector (1, 0, 1) is reducible for

both cones, since it contains only two non-zero components. The vector (1, 1, 1)
is reducible for X. This is witnessed by the (1, 3)-decomposition (a,y,y) where
a = (1, 0, 1) and y = (0, 0.5, 0). The same vector (1, 1, 1) is irreducible for Y . 
�
Theorem 5.5. A cone is nested if, and only if, it contains no irreducible vector.

Proof. Consider a cone X ⊆ Q
d
≥0. We first prove the “only if” direction of the

theorem. Assume that X is nested, and let x ∈ X. If supp(x) has cardinality at
most two, then x is trivially reducible. Suppose, on the contrary, that x contains
at least three non-zero components. Since X ⊆ �X, we obtain from Lemma 5.2
that there exists a nested binary relation R on supp(x) such that x ∈ XR.
Moreover, R is not empty since x �= 0. Let F denote the field5 of R, and define
s = minF and t = maxF . Observe that both s and t are in supp(x). Notice
also that t ≥ s + 2 since x contains at least three non-zero components. We
derive from Lemma 5.1 that there exist a pivot p with s < p < t, a nested binary
relation U on {s, . . . , p} and a nested binary relation V on {p, . . . , t}, such that
R ⊆ {(s, t)} ∪ U ∪ V . We derive that x ∈ (X(s,t) + XU + XV ), which entails
that x is reducible.

Let us now prove the “if” direction of the theorem. Assume that X is not
nested. This means that X �⊆ �X . Among the vectors x in X \ �X, pick one
such that supp(x) is minimal for inclusion. Let us show that x is irreducible. By
contradiction, suppose that x is reducible. Observe that supp(x) has cardinality
at least three since x ∈ (X \�X). Therefore, there exists a pair (s, t) of indices
in supp(x), with 1 ≤ s ≤ t ≤ d, and an (s, t)-decomposition (a,y, z) such that
x = a + y + z. It is readily seen that supp(y) and supp(z) are both strictly
contained in supp(x). By minimality of x, we get that y and z are in �X . We
derive from Lemma 5.3 that x ∈�X, which contradicts the assumption that x is
in X \�X. 
�
3 The field of a binary relation is the union of its domain and range.
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The previous theorem allows us to reduce the cone nestedness problem to the
question whether a given cone contains only reducible vectors. In the remainder
of this section, we explain how to solve the latter problem in coNP. Consider a
matrix A ∈ Z

n×d encoded in binary, and let X = {x ∈ Q
d
≥0 | Ax ≥ 0}. We

build, in time polynomial in the size of A, a quantifier-free formula4 ρ(x) in
FO (Q, 0, 1,+,≤) that is valid if, and only if, X contains only reducible vectors.
This will entail a coNP upper bound for the cone nestedness problem, since
satisfiability of quantifier-free formulas in FO (Q, 0, 1,+,≤) is solvable in NP
(see, e.g., [21, p. 120]). First, we build a formula ϕ(x), containing quantifiers,
whose models are precisely the vectors in X that are reducible. Let B be the
the matrix in Z

(n+d)×d obtained from A by appending the identity matrix to
the bottom of A. Note that X = {x ∈ Q

d | Bx ≥ 0}. The formula ϕ(x) is:

Bx ≥ 0 ∧
∨

1≤s≤t≤d

⎡

⎣

�
∧

i�∈{s,t}
x(i) = 0

�
∨ (x(s) > 0 ∧ x(t) > 0 ∧ ψB,s,t(x))

⎤

⎦

where, for each pair (s, t) of indices with 1 ≤ s ≤ t ≤ d, the formula ψB,s,t(x),
given below, expresses that there exists an (s, t)-decomposition (a,y, z) such
that x = a+ y + z. The formula ψB,s,t(x) is:

(
∧

i<s∨ i>t

x(i) = 0

)

∧
t−1∨

p=s+1

∃μ ∃ν ∃π

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B(μes + νet) ≥ 0

B

�
∑

s≤i<p

x(i)ei − μes + πep

�
≥ 0

B

�
∑

p≤i≤t

x(i)ei − πep − νet

�
≥ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here, it is understood that the sub-formula in brackets stands for the conjunction
of the three systems of linear inequalities. It is routinely checked that, for every
vector x ∈ Q

d, the formula ϕ(x) holds if, and only if, x is a reducible vector
of X. Notice that each disjunct ∃μ∃ν∃π [· · · ] contains a constant number of
quantifiers, namely three. So, with Fourier-Motzkin quantifier elimination, we
can transform, in polynomial time, each formula ψB,s,t(x) into an equivalent
quantifier-free formula ψ′

B,s,t(x). Let ϕ′(x) denote the formula obtained from
the definition of ϕ(x) by replacing each ψB,s,t(x) by ψ′

B,s,t(x). The desired
formula ρ(x) is (Bx ≥ 0) ⇒ ϕ′(x). We have shown the following theorem.

Theorem 5.6. The cone nestedness problem is solvable in coNP.

We now have all the necessary ingredients to prove the following corollary,
which is the main technical result of the paper.

Corollary 5.7. The stratifiability problem for integral polyhedra is
coNP-complete.
4 In this paper, we assume that all integer constants in formulas are encoded in binary.
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Proof. We start by recalling that the emptiness problem for integral polyhedra
is coNP-complete (see, e.g., [21, p. 245]). This problem asks, given a matrix
A ∈ Z

n×d and a vector b ∈ Z
d, both encoded in binary, whether the integral

polyhedron {x ∈ N
d | Ax ≥ b} is empty.

Let us now prove the corollary. The upper bound follows from Theorem 4.5,
Theorem 5.6, and closure under union of coNP. The lower bound is obtained
by reduction from the emptiness problem for integral polyhedra. First of all, we
observe that by increasing d by 3 and by slightly modifying the pair (A, b), the
emptiness problem for integral polyhedra can be reduced, in linear time, to the
particular case of integral polyhedra X satisfying the following condition:

X = ∅ or {(x(1),x(2),x(3)) | x ∈ X} = N(1, 1, 1) (3)

Recall that the linear set N(1, 1, 1) is not stratifiable (see Example 3.5). It follows
from Lemma 3.3 that every integral polyhedron satisfying (3) is empty if, and
only if, it is stratifiable. We have thus reduced, in linear time, the emptiness
problem for integral polyhedra to the stratifiability problem for them. 
�

6 Application to Flat Counter Systems

In this section, we investigate the context-freeness problem for flat counter sys-
tems. This problem asks whether the trace language of a given counter system
intersected with a given bounded regular language is context-free. In our setting,
counter systems are a generalization of Petri nets where transitions are guarded
by integral polyhedra. Such guards can express zero tests, so counter systems
subsume Minsky machines and, therefore, are Turing-powerful. We show that the
context-freeness problem for flat counter systems is coNP-complete, and remains
so for flat Petri nets.

We exploit the restriction to bounded languages required by flatness to re-
duce the context-freeness problem for flat counter systems to the stratifiability
problem for integral polyhedra. This reduction is performed in two steps. It
is well-known that bounded regular languages are finite unions of languages
of the form w1σ

+
1 · · ·wdσ

+
d [12]. As a first step, we consider a subproblem of

the context-freeness problem for flat counter systems, where the given bounded
regular language is of the form w1σ

+
1 · · ·wdσ

+
d . We provide a reduction of this

subproblem to the stratifiability problem for integral polyhedra. The context-
freeness problem for flat counter systems is then reduced to this subproblem by
providing polynomial bounds on the size of the languages w1σ

+
1 · · ·wdσ

+
d .

A counter system is a formal model manipulating a finite set of counters rang-
ing over the natural numbers. Given a number of counters c ∈ N, a configuration
is a vector x ∈ N

c, and a transition is a triple θ = (A, b,v) where A ∈ Z
m×c

is a matrix, and b ∈ Z
m and v ∈ Z

c are two vectors. Informally, a transition
(A, b,v) represents the guarded translation “Ax ≥ b ; x := x+ v ; x ≥ 0”.

Formally, a counter system is a triple S = 〈c, Θ,xinit〉 where c ∈ N is a number
of counters, Θ ⊆ Z

m×c × Z
m × Z

c is a finite set of transitions, and xinit ∈ N
c is
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an initial configuration. The operational semantics of S is given by the labeled

transition relation → ⊆ N
c × Θ × N

c, defined by x
(A,b,v)−−−−−→ y if Ax ≥ b and

y = x + v. A run is a finite, alternating sequence (x0, θ1,x1, . . . , θk,xk) of
configurations and transitions, satisfying xi−1

θi−→ xi for all i. The word θ1 · · · θk
is called the label of the run. We introduce, for every word σ ∈ Θ∗, the binary
relation σ−→ between configurations, defined by x

σ−→ y if there exists a run from
x to y labeled by σ. A trace from a configuration x is the label of some run
that starts with x. We let T (S,x) denote the set of all traces from x. The set
T (S,xinit) of all traces from the initial configuration, shortly written T (S), is
called the trace language of S. The context-freeness problem for counter systems
asks whether the trace language of a given counter system is context-free. This
problem is easily shown to be undecidable, by reduction from the reachability
problem for (deterministic) Minsky machines.

For the subclass of Petri nets, the context-freeness problem was shown to be
decidable by Schwer in [22]. In our settings, a Petri net is a counter system
〈c, Θ,xinit〉 where Θ is a set of transitions of the form (A, b,v) such that A is
the identity matrix. Informally, Petri net transitions are guarded translations
“x ≥ b ; x := x+ v ; x ≥ 0”. In a recent paper [18], we revisited the context-
freeness problem for Petri nets, and gave a simpler proof of decidability based
on bounded regular languages. We showed that the trace language of a Petri
net is context-free if, and only if, it has a context-free intersection with every
bounded regular language. Based on this characterization, the context-freeness
problem for Petri nets was then shown to be ExpSpace-complete [19]. However,
the complexity of the context-freeness problem for flat Petri nets was left open.

This motivates our study of the context-freeness problem for flat counter sys-
tems. Formally, we define this problem as follows:

Input: a counter system S = 〈c, Θ,xinit〉, and a finite-state automaton5 A
recognizing a bounded regular language L(A) ⊆ Θ∗,

Output: whether the language T (S) ∩ L(A) is context-free.

The size of the input is the obvious one, where integers are encoded in binary. In
the sequel, this problem is reduced to a subproblem, called the context-freeness
problem for flat-linear counter systems, which is defined as follows:

Input: a counter system S = 〈c, Θ,xinit〉, and a finite sequence w1, σ1, . . . , wd, σd

of words in Θ∗,
Output: whether the language T (S) ∩ w1σ

+
1 · · ·wdσ

+
d is context-free.

The size of the input is, again, the obvious one, with integers encoded in binary.
The decidability of this last problem requires the following variant of Ginsburg’s
characterization of bounded context-free languages (cf. Theorem 3.4).
5 Recall that a finite-state automaton is a quintuple A = 〈Q, I, F,Σ,→〉 where Q is

a finite set of states, I ⊆ Q and F ⊆ Q are finite sets of initial and final states, Σ
is a finite alphabet, and → ⊆ Q × Σ × Q is a finite set of transitions. We let L(A)
denote the language recognized by A.
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Lemma 6.1. Consider a language L ⊆ w1σ
+
1 · · ·wdσ

+
d , where each wi ∈ Σ∗

and each σi ∈ Σ∗. Then L is context-free if, and only if, the set of all vectors
(n1, . . . , nd) in N

d
1 such that w1σ

n1
1 · · ·wdσ

nd

d ∈ L is a stratifiable semilinear set.

The context-freeness problem for flat-linear counter systems is shown to be
decidable in coNP by a polynomial-time reduction to the stratifiability problem
for integral polyhedra, which is solvable in coNP by Corollary 5.7. Let us con-
sider an input of this problem, namely a counter system S = 〈c, Θ,xinit〉 and a
finite sequence w1, σ1, . . . , wd, σd of words in Θ∗. By Lemma 6.1, the language
L = T (S) ∩ w1σ

+
1 · · ·wdσ

+
d is context-free if, and only if, the following set is

stratifiable:

N = {(n1, . . . , nd) ∈ N
d
1 | w1σ

nd
1 · · ·wdσ

nd

d ∈ T (S)}

This set is shown to be an integral polyhedron in Corollary 6.3. This result
follows from the following “acceleration” lemma.

Lemma 6.2. There exists a polynomial-time algorithm that, given a counter
system S = 〈c, Θ,xinit〉 and a word σ ∈ Θ∗, computes a matrix A ∈ Z

n×c and
three vectors a, b ∈ Z

n and v ∈ Z
c such that:

x
σn

−−→ y ⇐⇒ Ax+ na ≥ b ∧ y = x+ nv

for every x,y ∈ N
c and n ∈ N1.

Proof (sketch). By encoding the effect of a word σ ∈ Θ∗ into a single transition,
we deduce the lemma thanks to [2]. The crucial observation is the convexity of
the guard of this transition. 
�

Corollary 6.3. There exists a polynomial-time algorithm that, given a counter
system S = 〈c, Θ,xinit〉 and a sequence w1, σ1, . . . , wd, σd of words in Θ∗, com-
putes a matrix A ∈ Z

n×d and a vector b ∈ Z
n such that:

w1σ
n1
1 · · ·wdσ

nd

d ∈ T (S) ⇐⇒ A(n1, . . . , nd) ≥ b

for every n1, . . . , nd ∈ N1.

Proof. We derive in polynomial time from Lemma 6.2, a tuple (Ai,ai, bi,vi)

such that for every n ∈ N1 and any x,y ∈ N
c we have x

σn
i−−→ y if, and only if,

Aix+ nai ≥ bi and y = x+ nivi. In polynomial time, we compute transitions
θi = (Bi, ci,ui) such that the binary relation wi−→ is equal to θi−→. The word
w1σ

n1
1 · · ·wdσ

nd

d is a trace from xinit with n1, . . . , nd ∈ N1 if, and only if, the
following linear system is satisfiable where yi = xinit +

∑
1≤j<i(uj + njvj) and

xi = yi + ui:
d∧

i=1

Biyi ≥ ci ∧Aixi + niai ≥ bi

Now, just observe that such a linear system can be written as a linear system of
the form A(n1, . . . , nd) ≥ b. 
�
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We deduce the following theorem.

Theorem 6.4. The context-freeness problem for flat-linear counter systems is
coNP-complete.

Proof. Since the language L is context-free if, and only if, the integral polyhedron
N is stratifiable, it follows from Corollary 5.7 that the context-freeness problem
for flat-linear counter systems is in coNP. The problem is shown to be coNP-
hard by a direct reduction from the stratifiability problem for integral polyhedra,
which is coNP-hard by Corollary 5.7. 
�

The context-freeness problem for flat counter systems can be reduced to the
flat-linear case thanks to the following lemma, which provides polynomial bounds
on the decomposition of bounded regular languages into languages of the form
w1σ

+
1 · · ·wdσ

+
d .

Lemma 6.5. Let A be a finite-state automaton. If L(A) is bounded then it is
the union of the languages w1σ

+
1 · · ·wdσ

+
d such that A contains an accepting run

q0
w1−−→ q1

σ1−→ q1 · · · qd−1
wd−−→ qd

σd−→ qd with d+ |w1σ1 · · ·wdσd| ≤ 6|Q|3.

Proof (sketch). The proof is obtained by first proving that |w1σ1|, . . . , |wdσd|
are bounded by |Q|. The lemma follows from the bound d ≤ |Q|2 + 1 with a
pigeon-hole argument. 
�

Now, consider an instance (S,A) of the context-freeness problem for flat
counter systems. Recall that L(A) is bounded. We derive from the previous
Lemma that T (S) ∩ L(A) is not context-free if, and only if, there exists an ac-
cepting run q0

w1−−→ q1
σ1−→ q1 · · · qd−1

wd−−→ qd
σd−→ qd in A of polynomial length

such that T (S)∩w1σ
+
1 · · ·wdσ

+
d is not context-free. Since non-context-freeness of

T (S)∩w1σ
+
1 · · ·wdσ

+
d can be checked in NP, we obtain that the context-freeness

problem for flat counter systems is in coNP. A matching lower bound is obtained
by reduction from 3-Sat.

Lemma 6.6. The context-freeness problem for flat Petri nets6 is coNP-hard.

Proof (sketch). Given a 3-Sat formula ϕ, an instance (S,A) of the context-
freeness problem for flat Petri nets is computed in polynomial time in such a
way that the language T (S) ∩ L(A) is non-empty, and in this case not context-
free, if, and only if, the formula ϕ is satisfiable. Since 3-Sat is NP-hard, the
context-freeness problem for flat Petri nets is coNP-hard. 
�

We have shown the following theorem, which is the second main result of the
paper.

Theorem 6.7. The context-freeness problem for flat counter systems is coNP-
complete, and remains so for flat Petri nets.
6 The context-freeness problem for flat Petri nets is defined exactly as the context-

freeness problem for flat counter systems except that the input counter system is
required to be a Petri net.
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Remark 6.8. Our setting requires a single initial configuration. Let us consider a
variant without any specific initial configuration. An uninitialized counter system
is a pair S = 〈c, Θ〉 where c ∈ N is a number of counters and Θ is a finite set
of transitions. Its trace language is defined by T (S) = ⋃

xinit∈Nc T (S,xinit). The
context-freeness problem for uninitialized flat counter systems is defined exactly
as the context-freeness problem for flat counter systems except that it takes an
uninitialized counter system as input. This problem can be shown to be decidable
by adapting techniques developed in this paper. In fact, just observe that the
set N = {(n1, . . . , nd) ∈ N

d
1 | w1σ

n1
1 · · ·wdσ

nd

d ∈ T (S)} can be denoted by a
Presburger formula ϕ(n1, . . . , nd) = ∃xinit A(xinit, n1, . . . , nd) ≥ b for a matrix
A and a vector b that are both computable in polynomial time. Decidability
of the context-freeness problem for uninitialized flat counter systems follows by
quantifier elimination on ϕ. However, the complexity is open. 
�

7 Conclusions and Future Work

The decidability of the stratifiability problem for semilinear sets was raised
in [13,14] almost fifty years ago, and is still open. Rephrased in terms of lan-
guages, this decision problem is equivalent to the question whether a given semi-
linear bounded language is context-free. In this paper, we have shown that the
stratifiability problem for the subclass of integral polyhedra is coNP-complete.
Building on this result, we have then established that the context-freeness prob-
lem for flat counter systems is coNP-complete, and remains coNP-hard for the
subcase of flat Petri nets.

To solve the stratifiability problem for integral polyhedra, we have reduced
it to the particular case of integral cones. While the latter is in coNP, its exact
complexity is open.
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Abstract. The physical time order information can help verifying the
memory model of a multiprocessor system rather efficiently. But we find
that this time order based approach is limited to the sequential consis-
tency model. For most relaxed memory models, an incompatible time
order may possibly result in a false negative verdict. In this paper, we
extend the original time order based approach to synchronized consis-
tency models, and propose an active frontier approach to rule out such
false verdicts based on a reasonably relaxed time order. Our approach
can be applied to most known memory models, especially to those with
non-atomic write operations, while nevertheless retaining the efficiency
of the original time order based approach. We implement our approach in
a Memory Order Dynamic Verifier (MODV). A case study with an indus-
trial Godson-T many-core processor demonstrates the effectiveness and
efficiency of our approach. Several bugs of the design of this processor
are also found by MODV.

1 Introduction

With the increasingly aggressive development of hardware optimization tech-
nologies, most multi-core processors support relaxed memory models for the sake
of high performance. Synchronized consistency models, such as release consis-
tency [1] and scope consistency [2], were usually deployed in software Distributed
Shared Memory (DSM) systems. Recently, these models have been implemented
at the hardware level by many-core systems [3] and network-on-chip based multi-
core systems [4,5]. These systems allow out-of-order executions of the memory
access operations within lock protected code sections. Such relaxation would
trigger more nondeterministic executions dramatically, hence making it more
difficult to verify these relaxed memory models. The verification problem of
synchronized consistency models has been rarely studied so far due to its high
complexity.
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A common way to verify the memory model of a multiprocessor system is
by running concurrent test programs on the system and then checking whether
their executions comply with the memory model under concern. Test programs
can be pre-specified or generated randomly. A directed constraint graph can be
constructed on the memory access operations in an execution. The edges of the
graph represent the order between these operations as permitted by the memory
model under concern. In this way, a cycle in the graph would mean a violation
of the memory model under concern.

The problem of verifying an execution against a memory model is NP-complete
in general [6]. It has been shown that for a constant number of processors, it
can take just linear time (in the number of operations) to solve this problem
with the aid of the pending period information of operations [7,8]. The pending
period of an operation is the interval between the time when the operation is
issued and the time when the operation is committed. Intuitively, two operations
in an execution can be ordered in the physical time if one of them is committed
before the other one is issued.

w11 : st A,1

r12 : ld B,0

w21 : st B,1

r22 : ld A,0

P1 P2(Initially A=B=0)

Fig. 1. A False Cycle

However, we find that this time order based
approach does not even apply to the total
store order (TSO) memory model [9] because
it implicitly assumes that the time order along
an execution is compatible with the memory
model under concern. This underlying assump-
tion does not apply to the TSO/x86 memory
model. Fig. 1 shows a typical execution on an
x86 microprocessor [10]. In this execution, the
write operation w11 (respectively, w21) writes
the value 1 to the memory address A (respec-
tively, B) on processor P1 (respectively, P2). But the read operation r12 (respec-
tively, r22) still reads the initial value 0 at the memory address B (respectively,
A). In Fig. 1, the solid edges represent the TSO edges, while the dashed boxes
indicates the pending periods of the operations. These dashed boxes are not over-
lapped, hence inducing the time order edges (represented by the dashed edges
in Fig. 1). The original time order based approach in [7,8] would treat the cycle
of edges in Fig. 1 as a violation of the TSO/x86 memory model. This would
also happen to synchronized consistency models, which neither guarantee write
operations to be atomic. Therefore, the original time order based approach is
limited to the sequential consistency (SC) memory model.

In this paper, we extend the original time order based approach to synchro-
nized consistency models. Given an execution, the synchronization operations
accessing the same locks are mutually exclusive to each other under synchro-
nized consistency models. Therefore, these operations need to be executed in a
sequentially consistent way. This also applies to the write operations accessing
the same addresses. Our approach aims to find total orders between these syn-
chronization operations and between these write operations, in order to justify
the execution against the synchronized consistency model under concern. To
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avoid the above false negative results by the original time order based approach,
we relax the notion of time order so that the write operations in an execution
can be ordered approximately in the time when these operations are globally
visible to all processors. In this way, the relaxed time order along the execu-
tion is compatible with the relaxed memory models that do not guarantee write
operations to be atomic.

We then propose an active frontier approach to deal with synchronized consis-
tency models based on the notion of relaxed time order. Those operations that
should be executed sequentially are identified in separate and composed into ac-
tive frontiers based on their relaxed pending period information. Our approach
is proved to be sound and complete, in the sense that it can indeed find the
necessary total orders as a witness if the given execution complies with the syn-
chronized consistency model under concern, and vice versa. As far as we know,
our approach provides the first efficient solution for the verification problem of
synchronized consistency models.

A precise implementation of our approach would require extra dedicated hard-
ware support for retrieving the time information of executions. For the sake of
generality and cost-effectiveness, we implement an over-approximation of our ap-
proach in a Memory Order Dynamic Verifier (MODV). As the main case study,
we use this tool to verify the memory model of Godson-T, a many-core archi-
tecture of industrial size. Memory accesses inside any region were assumed to be
coherent for Godson-T. MODV finds that such coherence is actually not guar-
anteed for regions with multiple locks. This ambiguity has been confirmed by
the designers of Godson-T and corrected in its programming manual based on
the results of our work. This case study shows that MODV can handle hundreds
of thousands of operations on 16 cores in minutes.

2 Related Work

We refer to [11] and [12] for a survey on memory consistency models. Synchro-
nized consistency models such as release consistency [1], entry consistency [13],
scope consistency [2] and location consistency [14] have also been uniformly de-
fined in [12] in an axiomatic style.

An empirical approach was presented in [15] to generate litmus tests automat-
ically for multi-core processors. Formal verification techniques have been applied
to verify concurrent programs for memory models. To name a few, [16] used the
explicit model checker Murϕ for operational memory models; while [17] used a
SAT solver for axiomatic memory models. [18] presented a verification approach
for store buffer safety by non-intrusively monitoring the sequential consistent
executions of concurrent programs. However, these techniques still suffer from
the scalability issue.

Dynamic analysis has gained more attention for the verification problem of
memory consistency models. It can be broadly classified into two categories:
hardware-assisted and software-based methods. In hardware-assisted methods,
the runtime information such as read mapping and write order can be directly
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collected through auxiliary hardware. Consequently, efficient verification algo-
rithms can be developed with the time complexity of O(n), where n is the num-
ber of the operations in the given execution [19,20,21]. However, this advantage
is often offset by extra design effort and silicon area consumption, as well as
performance loss, on the hardware level.

On the contrary, software-based methods avoid such nontrivial hardware sup-
port by deriving the runtime information from the given execution. The first
software-based method was the frontier graph method presented in [6] for the
SC memory model. Its time complexity is O(np), where p is the number of pro-
cessors. A sound but incomplete algorithm for the TSO memory model was first
proposed in [22] with the time complexity of O(n5). This algorithm was extended
in [23] based on the concept of vector clocks, with the time complexity reduced
to O(pn3). The vector clocks in [23] is computed out by splitting the given exe-
cution into virtual SC processors. Another more efficient implementation of [22]
was presented in [24] with the time complexity of O(n4). Furthermore, a back-
tracking algorithm was proposed in [25] to make the software-based methods
complete. The time complexity of this backtracking algorithm is O(np/pp×pn3).

The most closely related work to ours are [7,8], where the additional pending
period information was exploited for the sake of efficiency. But their approaches
are sound only for the SC memory model and may report false negative results
for the memory models that do not guarantee write operations to be atomic.

3 Synchronized Consistency Models

In this section, we introduce the memory orders of synchronized consistency
models [12]. Herein, we consider four types of operations: read, write, acquire
and release. Suppose a multiprocessor system consists of p ≥ 1 processors with
a shared memory. Let A,B denote a memory address, and l denote a lock.

A read operation r in the form of “ld A, i” reads the value i from the memory
address A, while a write operation w in the form of “st B, i” writes the value i
to the memory address B.1 Let add(r) and val(r) be the memory address that
r accesses and the value that r reads, respectively. Similarly, let addr(w) and
val(w) be the memory address that w accesses and the value that w writes,
respectively. Read and write operations are referred to as memory operations in
this paper.

An acquire operation sa in the form of “acq l” acquires the lock l, while a
release operation sr in the form of “rel l” releases it. Let lock(sa) and lock(sr)
be the locks that sa and sr access, respectively. Acquire and release operations
are referred to as synchronization operations, denoted s, in this paper. These
operations can be used together to implement other atomic synchronization op-
erations, such as barrier operations.

Let u, v denote an operation in general, and O be the set of all operations.
An execution of the system is a tuple σ = (σ1, . . . , σp), where σi = ui,1 . . . ui,ni

is a finite sequence of operations on the i-th processor with 1 ≤ i ≤ p, ni ≥ 1.

1 Without loss of generality, we assume that all written values are different.



268 Y. Lv et al.

On each σi, acquire and release operations should appear in pairs for the same
locks. A fragment of σi from an acquire operation sa to its accompanying release
operation sr constitutes a synchronization session, denoted S = (sa, sr). Sim-
ilarly, let lock(S) be the lock that protects the synchronization session S, i.e.,
lock(S) = lock(sa) = lock(sr).

An execution of the system is obtained typically by running a concurrent
test program on the system. In an execution σ, two operations u and v of the

same processor constitute a program order pair, denoted u
P−→ v, if u is executed

before v as dictated by the program. We use the notion of constraint function
[24] to specify the program order that must be abided under a memory model.
A constraint function cf : O×O → Boolean of a memory model is defined such
that cf (u, v) = true if u must be executed before v under the memory model.
In weak consistency, two write operations w1 and w2 with addr(w1) = addr(w2)
must be executed in their program order. In release consistency, an acquire

operation sa must be executed before any read operation r such that sa
P−→ r;

while in scope consistency, this only happens when sa and r belong to the same
synchronization session.

With the above notations, we now define the axioms of memory orders of
synchronized consistency models. A synchronized consistency model with its
constraint function cf requires the following partial orders to be satisfied by any
execution σ of the system:

Writes-to Order. A write operation w and a read operation r of two different

processors constitute a writes-to order pair, denoted w
Wt−−→ r, if r reads the

value that w writes, i.e., val(r) = val(w).
Local Order. Two operations u and v of the same processor constitute a local

order pair, denoted u
L−→ v, if u

P−→ v and one of the following two conditions
holds:
– cf (u, v) = true if either u or v is a memory operation;
– u and v are both synchronization operations with lock(u) = lock(v).

Synchronization Order. Given two synchronization sessions S = (sa, sr) and
S′ = (s′a, s′r) with lock(S) = lock(S′), S and S′ must be mutually exclusive

to each other. This can be formally defined as (sr
Syn−−→ s′a)⊕ (s′r

Syn−−→ sa),
where ⊕ is the exclusive disjunction operator. Consequently, the synchro-
nized sessions protected by the same lock should be able to be serialized in
a total synchronization order.

Coherence Order. Given two write operations w1 and w2 with addr(w1) =
addr(w2), w1 and w2 should be able to be serialized. This can be formally

defined as (w1
Co−−→ w2)⊕ (w2

Co−−→ w1). Then, a read operation r and a write
operation w with addr(r) = addr(w) constitute an inferred coherence order

pair, denoted r
Co−−→ w, if there is a write operation w′ such that w′ Co−−→ w

and val(w′) = val(r).
This axiom of coherence order was referred to as write atomicity in [11],

coherence in [12,26,27] and store atomicity in [7]. Similarly, a total coher-
ence order should exist between the write operations that access the same
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memory address. In this paper, we include this axiom for the generality of
our approach. It is not supported by all synchronized consistency models.

Whenever this axiom is included, a local order pair w
L−→ w′ should hold for

any write operations w and w′ such that w
P−→ w′ and addr(w) = addr(w′).

Global Order. The transitive closure of the above orders is referred to as global
order in this paper. Two operations u and v constitute a global order pair,

denoted u
G−→ v, if (u

Wt−−→ v), or (u
L−→ v), or (u

Syn−−→ v), or (u
Co−−→ v),

or there exists an operation u′ along the execution such that u
G−→ u′ and

u′ G−→ v.

Herein, the axiomatic definitions of Local Order and Synchronization Order
are similar to those in [12]. Alternatively, synchronized consistency models can
be defined by a “view” method, where each processor has its own view of memory
orders of operations [12]. This method has been applied to characterize POWER
processors [27]. The memory orders defined in this section can be easily trans-
formed as a linear view order for each processor over all of its operations, together
with all the write and synchronization operations of the other processors. In this
case, all the processors would share the same view of inter-processor writes-to,
synchronization and coherence orders.

4 Baseline Algorithm

Given an execution of a multiprocessor system and a synchronized consistency
model with its constraint function, we aim to develop an algorithm that can
decide whether the execution complies with the synchronized consistency model.
In this section we propose a baseline algorithm for this purpose with an extended
notion of frontier.

As in [22,23,24,25], we model the given execution as a constraint graph (V,E),
where V is a finite set of nodes representing the operations in the given execution,
and E ⊆ V × V is a finite set of edges representing the ordered pairs of these
operations. For brevity, we refer to the operations and the corresponding nodes

by the same notation. Then, for two operations u and v, (u, v) ∈ E if u
G−→ v.

For the orders defined in Section 3, the corresponding edges can be catego-
rized into two classes: static and dynamic edges. The writes-to and local order
edges are static in the sense that these edges are fixed in the constraint graph
and can be determined directly by the given execution. On the contrary, the
synchronization and coherence order edges have to be constructed tentatively in
order to establish the necessary total synchronization and coherence orders.

We extend the notion of frontier [6] to present the search routine for the
dynamic edges that can fit in certain total synchronization and coherence orders.
For an execution σ = (σ1, . . . , σp), let addr(σ) and lock(σ) be the set of the
addresses and locks accessed in σ, respectively. Let σi|A be the projection of
σi on the write operations accessing the address A ∈ addr(σ), and σi|l be the
projection of σi on the synchronization operations accessing the lock l ∈ lock(σ).
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Without loss of generality, let Aj and lk range over the addresses in addr(σ) and
the locks in lock(σ), respectively, with 1 ≤ j ≤ |addr(σ)| and 1 ≤ k ≤ |lock(σ)|.
Then, a frontier is a tuple f = (w11, . . . , wp|addr(σ)|, s11, . . . , sp|lock(σ)|), where
wij is a write operation on the i-th processor with addr(wij ) = Aj and sik
is a synchronization operation on the i-th processor with lock(sik) = lk for
1 ≤ i ≤ p, 1 ≤ j ≤ |addr(σ)|, 1 ≤ k ≤ |lock(σ)|.

Intuitively, in a frontier f , there is one and only one write operation on each
processor that accesses each memory address, as well as one and only one syn-
chronization operation on each processor that accesses each lock. A next frontier
f ′ = f{u′/u} results from f by replacing u in f with u′ such that u and u′ belong
to the same i-th processor (for some 1 ≤ i ≤ p) and u′ is the follow-up operation
of u on σi|addr(u) (if u is a write operation) or σi|lock(u) (if u is a synchronization
operation). Then, u′ is referred to as the active operation of f ′. Especially, we
attach the beginning operation ⊥ before the first operation of each σi|Aj and
σi|lk , and the ending operation 	 after the last operation of each σi|Aj and σi|lk .
The beginning frontier (denoted f⊥) and the ending frontier (denoted f�) are
the ones consisting of p(|addr(σ)|+ |lock(σ)|) beginning and ending operations,
respectively.

The baseline algorithm is shown in Algorithm 1. In this algorithm, the static
edges are added first and then checked for a possible cycle (Lines 1-2). It can
be seen that the constraint graph is acyclic at Line 4. Then, dynamic edges are
searched for through a recursive function ExploreFrontier (Line 5).

Algorithm 1. Baseline Algorithm

Input: an execution and the constraint function of a memory model
Output: true if no cycle has been detected, and false otherwise

1 Add writes-to and local order edges;
2 if the above static edges result in a cycle then
3 return false;
4 f0 ← the beginning frontier;
5 sat ← ExploreFrontier(f0);
6 return sat;

The function ExploreFrontier, shown in Function 2, explores all the possi-
ble frontiers in a depth-first manner. At Line 8, a synchronization order edge
is added tentatively between the two latest visited synchronization sessions ac-
cessing lock(u′); while at Line 12, a coherence order edge is added tentatively
between the two latest visited write operations accessing addr(u′), together with
the coherence order edges inferred from it. Then, the newly added dynamic edges
are checked for a possible cycle in the current constraint graph (Line 13). Such
a cycle would invalidate the newly added dynamic edges. Hence, if a cycle is
detected, the newly added dynamic edges are then removed (Line 14). If all the
next frontiers of f have been explored without achieving an acyclic constraint
graph, then the function ExploreFrontier returns back to its caller with the
negative result at Line 19. If this means to return to Algorithm 1, then there
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is no way to establish a total synchronization order and a total coherence order
over the given execution.

Function 2. ExploreFrontier(f)

Input: a frontier f
Output: true if no cycle has been detected, and false otherwise

1 if f is the ending frontier then
2 return true;
3 res ← false;
4 for each next frontier f ′ of f do
5 u′ ← the active operation of f ′;
6 switch (u′) do
7 case u′ is an acquire operation

8 Add the edge sr
Syn−−→ u′, where sr is the last active release

operation with lock(sr) = lock(u′);
9 case u′ is a write operation

10 w ← the last active write operation with addr(w) = addr(u′);
11 for each r such that val(r) = val(w) do

12 Add the edges w
Co−−→ u′ and r

Co−−→ u′;
13 if FindPath(u′, u′) then
14 Remove the newly added edge(s);
15 else
16 res ← ExploreFrontier(f ′);
17 if res then
18 break;

19 return res;

If the ending frontier is eventually reached, then the function ExploreFrontier
returns directly the positive result (Line 2), which will be carried over to Algo-
rithm 1 through Line 18. In this case, the necessary total synchronization and
coherence orders have just been established for the given execution.

As shown in Function 3, we implement the cycle checking function
FindPath(u, v) in a straightforward way for the baseline algorithm. It is meant to
find a path from u to v in the current constraint graph. A cycle passing through
an operation u′ can then be detected by calling this function with (u′, u′).

Function 3. FindPath(u, v)

Input: operations u and v
Output: true if there is a path from u to v, and false otherwise

1 for each v′ such that u
G−→ v′ do

2 if v′ = v or FindPath(v′, v) then
3 return true;

4 return false;

It can be seen that the baseline algorithm is sound and complete for syn-
chronized consistency models, in the sense that it returns false if and only if
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the given execution does not satisfy the memory model under concern. This can
be proved in the similar way as in [25]. But the baseline algorithm would scale
poorly because of the combinatorial explosion of the number of frontiers to be
explored. Suppose the given execution σ contains n operations on p processors.
Then, the baseline algorithm needs to explore at most O(np(|addr(σ)|+|lock(σ)|))
frontiers. Each time a frontier is confronted, it takes at most O(n) time to check
if the newly added dynamic edge(s) would cause a cycle. Moreover, it takes at
most O(n2) time to check whether static edges may result in a cycle. Hence, the
worst time complexity is O(n2 + np(|addr(σ)|+|lock(σ)|)+1) in total.

5 Exploiting Time Order Information

Apparently the baseline algorithm can not deal with large executions efficiently.
In this section we first recall and relax the definition of time order for syn-
chronized consistency models. Then, we present an improvement of the baseline
algorithm by taking into account the relaxed time order of the given execution.

In a multiprocessor system with a unique global physical clock, an operation
can neither affect others before being issued (namely, entering the instruction
window of a processor); nor can be affected after having been committed (namely,
having retired from the instruction window of the processor). For an operation u,
let te(u) and tc(u) denote the enter time when u is issued and the commit time
when u is committed, respectively. Obviously, te(u) < tc(u) for any operation u.
The pending period of the operation u is the time interval [te(u), tc(u)]. Then,
two operations with disjoint pending periods can be ordered in physical time.

This can be formalized as the time order T such that u
T−→ v if tc(u) ≤ te(v),

otherwise u � T−→ v.
The notion of time order defines a natural order between the operations along

the given execution. The time order edges can be determined implicitly by check-
ing the enter and commit time of the related operations.

However, as shown in Fig. 1, the time order is not naturally compatible with
the global order in general. According to the definitions in Section 3, the two
solid edges in Fig. 1 are actually coherence order edges, which are inferred from
the fact that r22 and r12 read the initial value 0 of A and B, respectively. Then,
w11 (respectively, w21) is committed when it writes to the internal write buffer
of the processor P1 (respectively, P2). At this moment, w11 (respectively w21)
has not been performed globally. Hence, the values written by w11 and w21 are
not yet visible to all the processors.

Let tp(u) denote the performed time when the operation u is performed glob-
ally and is visible to all processors. A read operation is performed globally when
it fetches a value from the specified memory address, while a write operation is
performed globally when it stores the specified value to the main memory (or the
L2 cache for a multi-core processor). A synchronization operation is performed
globally when it gets the access to the specified lock. Hence, it can be seen that
all but non-atomic write operations would take effect before being committed.
Obviously, te(u) < tp(u) for any operation u.
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w11 : st A,1

r12 : ld B,0

w21 : st B,1

r22 : ld A,0

P1 P2(Initially A=B=0)

Co Co

Fig. 2. False Cycle is Eliminated

If the time order can be rectified by replac-
ing the commit time of an operation with its
performed time, the cycle in Fig. 1 can then
be eliminated, as shown in Fig. 2 (where the
dashed boxes surrounding the write operations
are enlarged to indicate their expanded pending
periods).

However, the performed time of a write op-
eration can not be observed directly from the
given execution. We choose to approximate it
based on the pending period information of
the related read operations and its follow-up
operations.

Definition 1 (Relaxed Time Order). The relaxed commit time of an oper-
ation u, denoted trc(u), is defined as follows:

– if u is a read or synchronization operation, trc(u) = tc(u);
– if u is a write operation, trc(u) = minv∈N(u) trc(v) if N(u) �= ∅, where

N(u) = {v | u Wt−−→ v, or u
L−→ v}; otherwise, trc(u) = t∞, where t∞ is a

sufficiently large time constant such that any operation in the given execution
will be performed by then.

Accordingly, the relaxed pending period of the operation u is the time interval
[te(u), trc(u)]. Any operations u and v constitute a relaxed time order pair,

denoted u
RT−−→ v, if trc(u) ≤ te(v); otherwise, u �

RT−−→ v.

The following lemma shows that the relaxed pending period of an operation u
covers its performed time, i.e., te(u) < tp(u) ≤ trc(u). The details of its proof
can be found in the technical report [28].

Lemma 1. tp(u) ≤ trc(u) for any operation u.

Moreover, it is generally accepted that a multiprocessor system should be de-
signed to be able to guarantee certain physical time constraints under its memory
model [7,8]. Definition 2 summarizes the time constraints for the implementation
mechanisms of multiprocessor systems.

Definition 2 (Preconditions of Time Order). For any operations u and v:

1. If u
P−→ v, then u is issued no later than v, i.e., te(u) ≤ te(v).

2. If u
G−→ v, then u is performed no later than v, i.e., tp(u) ≤ tp(v).

These preconditions are defined following the same principles as in the original
time order based approach [7,8]. For a read operations r and a write operation

w, if w
Wt−−→ r , then r can only fetch the value val(w) after w stores it into

the main memory. Hence, tp(w) ≤ tp(r). Similarly, synchronization operations
accessing the same locks, as well as write operations accessing the same memory
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addresses, should also be managed in a serializable manner. If a multiproces-
sor system supports a synchronized consistency model, then any execution of
the system should satisfy the synchronized consistency model without violating
these preconditions. The following theorem shows that the relaxed time order is
compatible with the global order under the preconditions in Definition 2.

Theorem 1. For any operations u and v, u
G−→ v implies v �

RT−−→ u.

Proof. If u
G−→ v, then tp(u) ≤ tp(v) by Definition 2. Since tp(v) ≤ trc(v) (by

Lemma 1) and te(u) < tp(u), we have te(u) < trc(v), i.e., v �
RT−−→ u. 
�

We now present the final algorithm that can take advantages of the relaxed
time order. In addition to the given execution and the constraint function of
the memory model under concern, the time information of the execution is re-
quired as part of the input to the final algorithm. This time information will
be preprocessed by the final algorithm to compute the relaxed pending periods
of the operations. Then, the final algorithm proceeds as the baseline algorithm,
except replacing the function ExploreFrontier of the baseline algorithm with
the function ExploreActiveFrontier, shown in Function 4.

Function 4. ExploreActiveFrontier(f)

Input: a frontier f
Output: true if no cycle has been detected, and false otherwise

1 if f is the ending frontier then
2 return true;
3 res ← false;
4 for each next active frontier f ′ of f do
5 u′ ← the active operation of f ′;
6 switch (u′) do
7 case u′ is an acquire operation

8 Add the edge sr
Syn−−→ u′, where sr is the last active release

operation with lock(sr) = lock(u′);
9 case u′ is a write operation

10 w ← the last active write operation with addr(w) = addr(u′);
11 for each r such that val(r) = val(w) do

12 if u′ RT−−→ r then
13 return res;

14 for each r such that val(r) = val(w) and u′ �
RT−−→ r do

15 Add the edges w
Co−−→ u′ and r

Co−−→ u′;
16 if FindTimedPath(u′, u′) then
17 Remove the newly added edges;
18 else
19 res ← ExploreActiveFrontier(f ′);
20 if res then
21 break;

22 return res;
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At Line 4 of Function 4, only active frontiers need to be explored. Given
an execution σ, the active period of a write operation w on the i-th processor
is the time interval [te(w), trc(w

′)], where w′ is the follow-up write operation
of w in σi|addr(w); while the active period of a synchronization operation s on
the i-th processor is the time interval [te(s), trc(s

′)], where s′ is the follow-up
synchronization operation of s in σi|lock(s). Then, a frontier f is active if each
operation in f is in the active period of each other operation in f . The notion of
active frontier is inspired by the notion of feasible frontier in [8]. But [8] concerns
only the SC memory model and assumes the pending periods of two consecutive
operations on the same processor are always overlapped.

In this way, the frontiers that are not active under the physical time can be
ignored without missing any chance to establish the correctness of the given

execution. At Line 13 of Function 4, a cycle is detected with r
Co−−→ u′ and

u′ RT−−→ r. This is contrary to Theorem 1, which directly means a violation of
the given memory model under the preconditions in Definition 2. At Line 16 of
Function 4, a new cycle checking function FindTimedPath is called to check for
a possible cycle in the current constraint graph under the relaxed time order.

The function FindTimedPath (u, v), shown in Function 5, only needs to ex-
amine the operations within the relaxed pending period of the operation v. For

any operation v′ such that u
G−→ v′, if it is committed before the relaxed pending

period of the operation v, then there exists a relaxed time order edge from v′ to
v, i.e., v′ RT−−→ v. Thus, a timed path u

G−→ v′ RT−−→ v is resulting from the current
constraint graph (at Line 3 of Function 5). If u = v, this path constitutes a cycle
that invalidates the newly added dynamic edges. In this way, the subsequent
global order edges from v′ need not to be further checked. For an operation v′

issued after the relaxed pending period of the operation v, the global order edge

u
G−→ v′ would be considered as a time order edge for later cycle checking.

Function 5. FindTimedPath(u, v)

Input: operations u and v
Output: true if there is a path backing to u from v, and false otherwise

1 for each v′ such that u
G−→ v′ and v �

RT−−→ v′ do
2 if v′ = v or v′ RT−−→ v or FindTimedPath(v′, v) then
3 return true;

4 return false;

Since the relaxed time order is compatible with the global order, it can be
seen that the final algorithm is sound and complete, as stated in the following
theorem. The details of its proof can be found in the technical report [28].

Theorem 2 (Soundness and Completeness of the Final Algorithm).
The final algorithm presented in this section returns false if and only if the given
execution does not satisfy the given synchronized consistency model under the
preconditions in Definition 2.
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Time Complexity. Suppose in the relaxed pending period of an operation,
there are C operations running on each processor. C is usually a hardware-
dependant constant [7]. Then, at most O(nCp(|addr(σ)|+|lock(σ)|)−1) active fron-
tiers need to be explored. Similarly, when an active frontier is confronted, it
would only take O(pC) time to check for a possible cycle within the relaxed pend-
ing period of the latest active operation. So the upper bound of the time com-
plexity of active frontier traversal is O(npCp(|addr(σ)|+|lock(σ)|)). Furthermore, it
would take at most O(n2) time to relax the pending periods of write operations.
Recall that it would also take at most O(n2) time to check whether static edges
may cause a cycle. Hence, the worst time complexity of this final algorithm is
O(2n2 + npCp(|addr(σ)|+|lock(σ)|)) in total. Obviously, the final algorithm would
scale much better with large executions than the baseline algorithm.

6 Experimental Results

It can be seen that a precise implementation of the final algorithm would closely
depend on the time information of executions. However, it requires extra hard-
ware support with specific internal registers to retrieve the enter time and com-
mit time of each operation. Similar to [8], we uses the general performance
counter sampling mechanism to over-approximate the pending period informa-
tion of operations. Hence, the soundness of the final algorithm is preserved un-
der this approximation. We have developed a Memory Order Dynamic Verifier
(MODV) to implement our algorithms.2 Through combining different constraint
functions and axiomatic rules of memory orders, MODV can support various
memory models, including SC, TSO/x86 and typical synchronized consistency
models.

Performance counters have been supported by most industrial processors. In
a multiprocessor system, the values of performance counters can be scanned
out from its internal registers through certain debug interface. The pending
period information of each operation can be computed out through scanning
performance counters periodically, though the actual time order information
may be lost partially during the consecutive scans. The tighter the performance
counter scan period is, the more precise the pending period information obtained
can be. But, a tight scan period would exert too much pressure on the system
performance. The performance counter scan period is set to be 600 cycles per
scan in the following experiments.

As the main case study, we use MODV to verify the memory model of the
Godson-T many-core architecture [3]. Godson-T is a many-core processor with
64 homogeneous processing cores, each of which has a 16KB private instruction
cache and a 32KB local memory. Moreover, a dedicated synchronization manager
provides architectural support for mutual exclusion and barrier synchronization.
The memory model of Godson-T is a variant of scope consistency. Godson-
T uses a region-based cache coherence (RCC) protocol to support large-scale
parallelism. A region is exactly a synchronization session defined in this paper.

2 MODV is available at http://lcs.ios.ac.cn/~lvyi/MODV/index.html

http://lcs.ios.ac.cn/~lvyi/MODV/index.html
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MODV has found several bugs in the design of Godson-T. One of them is
related to Godson-T’s memory model. Memory accesses inside any region were
assumed to be coherent for Godson-T. But actually this is not guaranteed for
regions with multiple locks. MODV finds this bug through an execution shown

in Fig. 3 (with simplification for clarity). In this execution, w13
Wt−−→ r22 because

r22 reads the value of w13; Similarly, w12
Wt−−→ r33. Then, since w12

L−→ w13,

an inferred coherence order edge exists between r33 and w13, i.e., r33
Co−−→ w13.

Moreover, r22
RT−−→ r33 because trc(r22) < te(r33). Hence, the cycle w13

Wt−−→
r22

RT−−→ r33
Co−−→ w13 is detected.

P1 P2

Co

sa
11 : acq l1

w12 : st A,1 

w13 : st A,2 

sr
14 : rel l1

L

P3

sa
21 : acq l1

r22 : ld A,2 

sr
23 : rel l1

sa
31 : acq l2

r32 : ld A,1 

sr
34 : rel l2

r33 : ld A,1 RT
Wt

Wt

Wt

Fig. 3. A Bug of Godson-T

The reason of this cycle is as follows.
When a processor writes a value into
a memory address in a region, it first
stores the value into its internal cache,
and then writes through into the mem-
ory (L2 cache) immediately. If a pro-
cessor reads a memory address for the
first time in a region, it first invalidates
its cache, and then reads the value from
the memory directly. For the subsequent
read operations to the same memory ad-
dress in the same region, it will read the value from its cache. Therefore, r32 and
r33 reads the value 1 from the memory and from P3’s cache, respectively. In the
meanwhile, the values of the same memory address at the memory and at P2’s
cache are both 2. Hence, the memory system of Godson-T is not cache coherent
for regions with multiple locks.

We then illustrate the performance of our algorithms with large scale test
programs. All the experiments have been carried out on a Linux server with four
8-core 2.4GHz Intel Xeon processors and 48GB memory. To validate synchro-
nization and coherence orders together, we randomly generate concurrent test
programs with 60% load instructions and 30% store instructions for 2 different
addresses, and 10% synchronization instructions for one lock. Branch instruc-
tions are not used in these programs.

Fig. 4 shows the average performance of the baseline and final algorithms
for up to 100K operations on 2 cores. It can be seen that the final algorithm
performs much better than the baseline algorithmwhen the number of operations
increases. As a matter of fact, for no less than 4K operations on no less than 4
cores, the baseline algorithm often cannot return within 8 hours. Fig. 5 shows
the average performance of the final algorithm on 2, 4, 8 and 16 cores. It can be
seen that with the aid of the relaxed time order, the final algorithm also scales
well with the increasing numbers of cores.

The fluctuations in Fig. 5 are because the information derived from consec-
utive scans is an over-approximation of the pending periods of the operations.
The lost time order information would result in extra backtracking during the
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exploration of active frontiers. This makes the time consumption of MODV fluc-
tuate, especially for more than 4 cores.

7 Conclusion

We present in this paper a relaxed time order based active frontier approach
for verifying synchronized consistency models. The original notion of frontier is
expanded with the memory addresses and the locks accessed along an execution.
Then, we integrate this extended frontier approach with the pending period
information of operations. The notion of active frontier is introduced to reduce
the number of frontiers to be explored and the number of operations to be
examined for cycle checking. In literature, the notion of time order has not yet
been widely appreciated due to its incompatibility issue. Our approach addresses
this issue by relaxing the time order of the given execution in a conservative way.
On one hand, our approach is sound in the sense that it would not produce false
negative results for memory models with non-atomic write operations. On the
other hand, our approach is also complete in the sense that it can guarantee to
detect a cycle if the given execution does not comply with the memory model
under concern.

Without loss of generality and cost-effectiveness, we have implemented an
over-approximation of our approach in a verification tool MODV. The tool pre-
serves the soundness of our approach, and can be easily customized to support
various memory models with user-defined constraint functions and user-selected
memory orders. We have used MODV to verify the memory model of the Godson-
T many-core processor, and found that Godson-T does not support the coherence
order for regions with multiple locks. This bug has been confirmed by the de-
signers of Godson-T. Its programming manual has been revised based on the
results of our work. This case study shows that our approach is very efficient in
practice for detecting subtle bugs in multiprocessor systems.

Our approach exploits the advantages of time order for verifying a wider range
of memory models. As the future work, we will investigate the memory models
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of the POWER and ARM architectures, where write operations are also not
guaranteed to be atomic.
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Abstract. Symmetry reductions have been applied extensively for the
verification of finite-state concurrent systems and hardware designs us-
ing model-checking of temporal logics such as LTL,CTL and CTL∗, as
well as real-time and probabilistic-system model-checking. In this paper
we extend the technique to handle infinite-state games on graphs with
finite branching where the objectives of the players can be very general.
As particular applications, it is shown that the technique can be ap-
plied to reduce the state space in parity games as well as when doing
model-checking of the temporal logic ATL∗.

1 Introduction

Symmetry reduction techniques have been introduced in model-checking around
twenty years ago for combatting the state-space explosion in systems that posses
some amount of symmetry [6,9,11,5]. The idea is to merge states of a system
that behave in the same way with respect to a given property ϕ. This provides
a smaller model of the system which exhibits the same behaviors as the origi-
nal model with respect to ϕ; therefore model-checking can be performed on the
smaller model, yielding a more efficient verification procedure since the origi-
nal model need not be constructed. While the technique does not guarantee a
great efficiency improvement in general, it has been applied to a large number
of practical cases with great success [11,5,6,10,13,15]. These applications include
extensions from traditional model-checking of finite-state transition systems to
real-time systems [10] and probabilistic systems [13]. It seems that many natu-
rally occuring instances of model-checking of concurrent and hardware systems
contain symmetry and therefore the technique is very applicable.

In this paper, we extend symmetry reduction for transition systems to sym-
metry reduction of games. Games can be used to naturally model concurrent and
reactive systems and have applications in the synthesis of programs. We expect
that on practical instances, symmetry reduction in games should be as applicable
as it has been in model-checking of temporal logics. Our contribution is to ex-
tend the symmetry reduction technique introduced in [9,6] to games. A central
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result in these papers is a correspondence lemma that describes a correspon-
dence between paths in an original model M and in a reduced model MG. This
correspondence is used to conclude that CTL∗ model-checking can be performed
in the reduced model instead of the original model. In our setting, the corre-
spondence lemma describes a correspondence between strategies in an original
game M and in a reduced game MG. This lemma can then be used to establish
a correspondence between winning strategies in the original game and in the re-
duced game for many different types of objectives. In particular, it follows from
this that ATL∗ model-checking can be performed in the reduced game, and that
parity games can be reduced while preserving existence of winning strategies.
However, the technique is applicable for a much more general set of objectives.
The proof that the reduction works for games is technically more involved than
for finite-state transition systems, due to the possible irregular behaviours of
an opponent player. This phenomenon leads us to apply König’s Lemma [12] in
order to prove the correspondence between the original game and the reduced
game. In addition, our approach does not restrict to finite-state games but also
works for games played on infinite graphs, provided that they have finite branch-
ing. This includes weighted games (e.g. with energy or mean-payoff objectives),
pushdown games, games played on VASS, etc.

2 Preliminaries

In this paper, we consider turn-based games played by two players I and II on a
graph with finite branching.

Definition 1. A 2-player turn-based game structure is a tuple M = (S,R,
SI, SII) where

– S is a set of states;
– R ⊆ S × S is a total transition relation such that for each state s ∈ S there

is only a finite number of states t ∈ S such that (s, t) ∈ R;
– SI and SII is a partition of S, i.e. SI ∪ SII = S and SI ∩ SII = ∅.

Whenever we write game structure (or simply game) in the following, we
mean 2-player turn-based game structure with finite branching, unless otherwise
stated. We say that a state s is owned by player P ∈ {I, II} if s ∈ SP . A game is
played by placing a token on an initial state s0. Then it proceeds for an infinite
number of rounds where in each round, the player owning the current state (the
state on which the token is currently placed) must choose to move the token to
a state t such that (s, t) ∈ R.

We denote by S∗, S+ and Sω the set of finite sequences of states, the set of
non-empty finite sequences of states and the set of infinite sequences of states
respectively. For a sequence ρ = s0s1 . . . of states we define ρi = si, ρ≤i = s0 . . . si
and ρ≥i = sisi+1 . . . When ρ is finite, i.e. ρ = s0 . . . s� we write last(ρ) = s� and
|ρ| = �. A play is a sequence s0s1 . . . ∈ Sω such that (si, si+1) ∈ R for all
i ≥ 0. The set of all plays is denoted PlayM. For s0 ∈ S, the set of plays with
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initial state s0 is denoted PlayM(s0). A history is a prefix of a play. The set of all
histories (resp. histories with initial state s0) is denoted HistM (resp. HistM(s0)).
A strategy for player P ∈ {I, II} is a partial mapping σP : HistM → S defined
for all histories h ∈ HistM such that last(h) ∈ SP , with the requirement that
(last(h), σP (h)) ∈ R. We say that a play (resp. history) ρ = s0s1 . . . (resp.
ρ = s0 . . . s�) is compatible with a strategy σP for player P ∈ {I, II} if σP (ρ≤i) =
ρi+1 for all i ≥ 0 (resp. 0 ≤ i < �) such that ρi ∈ SP . We write Play(s0, σP )
(resp. Hist(s0, σP )) for the set of plays (resp. histories) starting in s0 that are
compatible with σP . An objective is a set Ω ⊆ PlayM of plays. A play ρ satisfies
an objective Ω iff ρ ∈ Ω. We say that σP is a winning strategy for player
P ∈ {I, II} from state s0 with objective Ω if Play(s0, σP ) ⊆ Ω. If such a strategy
exists, we say that s0 is a winning state for player P with objective Ω. The set
of winning states for player P with objective Ω in game M is denoted WP

M(Ω).

3 Symmetry Reduction

In the following we fix a game M = (S,R, SI, SII).

Definition 2. A permutation π of S is a symmetry for M if for all s, s′ ∈ S

1. (s, s′) ∈ R ⇔ (π(s), π(s′)) ∈ R

2. s ∈ SI ⇔ π(s) ∈ SI

Let SymM be the set of all symmetries in M. We call a set G of symmetries a
symmetry group if (G, ◦) is a group, where ◦ is the composition operator defined
by (f ◦ g)(x) = f(g(x)). We consider G to be a fixed symmetry group in the rest
of this section.

Definition 3. The orbit θ(s) of a state s induced by G is given by

θ(s) = {s′ ∈ S | ∃π ∈ G. π(s) = s′}.

Notice that when s′ ∈ θ(s), then also s ∈ θ(s′). The orbits induce an equiva-
lence relation ∼G defined by s ∼G s′ if, and only if, s ∈ θ(s′). The reason for ∼G

being an equivalence relation is that G is a group. The orbit θ(s) can be thought
of as a set of states that have the same behavior as s with respect to the symmetry
defined by G. For a sequence ρ = s0s1 . . . of states we define θ(ρ) = θ(s0)θ(s1) . . .
From each orbit θ(s), we choose a unique state rep(θ(s)) ∈ θ(s) as a represen-
tative of the orbit. For a strategy σ of player P ∈ {I, II}, an initial state s0
and a sequence t0 . . . t� of orbits, we choose a unique representative history
reps0,σ(t0 . . . t�) = s0 . . . s� that is compatible with σ and such that si ∈ ti for all
0 ≤ i ≤ �, provided that such a history exists; notice that the sequence t0 . . . t�
is arbitrary, so that it could be the case that no such representative exists. In
the later case, we let reps0,σ(t0 . . . t�) = ⊥.
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M

s1

s2
s3

MG

θ(s1)θ

rep

Fig. 1. Schematic representation of symmetry reduction, with three states s1, s2 and s3
being in the same orbit in M, and identified as the same state θ(s1) in MG, with s2
as its representative

s0

s1s′1

s2

s3s′3

Notice that representative histories can not al-
ways “respect” prefixes (in the sense that the k-
th prefix of the representative of a history is the
representative of k-th prefix of that history): con-
sider the game opposite, and the strategy σ that
in s2 goes to s3 if s1 was visited and to s′3 oth-
erwise. There is a symmetry exchanging states s1
and s′1 (and leaving the other states unchanged).
Now, consider the sequence h = θ(s0)θ(s1)θ(s2),
and fix some representative for it (either s0s1s2
or s0s

′
1s2). Then the extensions of h with θ(s3)

and θ(s′3) both have σ-compatible representatives,
but one of them will not respect prefixes.

We are now ready to define the notion of a quotient game.

Definition 4. Given a game M = (S,R, SI, SII) and a symmetry group G,
we define the quotient game MG = (SG, RG, SG

I , SG
II ) by

– SG = {θ(s) | s ∈ S}
– RG = {(θ(s), θ(s′)) | (s, s′) ∈ R}
– SG

P = {θ(s) | s ∈ SP } for P ∈ {I, II}

Notice that MG is indeed a game structure: symmetries respect the partition
of S into SI and SII, and therefore SG

I and SG
II also constitute a partition of SG.

Also, RG is total and has finite branching.

Example 1. Consider the gameM = (S,R, SI, SII) to the left in Fig. 2 and define

G =

⎧
⎪⎪⎨

⎪⎪⎩

π ∈ SymM

∣
∣
∣
∣
∣
∣
∣
∣

π(s0, s1, s2, s3, s4, s5) = (s0, s1, s2, s3, s4, s5)
π(s0, s1, s2, s3, s4, s5) = (s0, s4, s2, s3, s1, s5)
π(s0, s1, s2, s3, s4, s5) = (s0, s1, s3, s2, s4, s5)
π(s0, s1, s2, s3, s4, s5) = (s0, s4, s3, s2, s1, s5)

⎫
⎪⎪⎬

⎪⎪⎭
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s0

s1 s2 s3 s4

s5

M s0

s1, s4 s2, s3

s5

MG

Fig. 2. A game M to the left that has symmetric properties and the quotient game
MG induced by G on the right

It is easy to see that G is a symmetry group. G now induces the orbits
{s0}, {s5}, {s2, s3}, {s1, s4}. This gives rise to the quotient game MG to the
right in Fig. 2. Note how the construction gives us a smaller game that still has
many of the structural properties of the original game.

We begin with two simple lemmas, which are not particular to our game
setting and actually correspond to Lemma 3.1 of [9]. We reprove them here for
the sake of completeness.

The first lemma shows a correspondence between transitions in the reduced
game and transitions in the original game:

Lemma 1. Let (t, t′) ∈ RG be a transition in MG, and s ∈ t. Then there is a
state s′ of M such that s′ ∈ t′ and (s, s′) ∈ R.

Proof. By definition of RG, from the transition (t, t′) in RG, we get the existence
of a transition (u, u′) in R, with u ∈ t and u′ ∈ t′. Now, since s and u are in t,
there is a symmetry π such that s = π(u). By definition of a symmetry, we then
have (π(u), π(u′)) ∈ R and π(u′) ∈ t′ (because u′ ∈ t′), so that letting s′ = π(u′)
proves the lemma.

We can extend the above correspondence to plays:

Lemma 2. Let M = (S,R, SI, SII) be a game and G be a symmetry group. Then

1. For each play ρ ∈ PlayM, there exists a play ρ′ ∈ PlayMG such that ρi ∈ ρ′i
for all i ≥ 0;

2. For each play ρ′ ∈ PlayMG , and for each s ∈ ρ′0, there exists a play ρ ∈
PlayM(s) such that ρi ∈ ρ′i for all i ≥ 0.

Proof. (1) Suppose ρ ∈ PlayM. Then for every i ≥ 0 we have (ρi, ρi+1) ∈ R.
This implies that (θ(ρi), θ(ρi+1)) ∈ RG. Thus, θ(ρ) ∈ PlayMG . Since ρi ∈ θ(ρi)
the result follows.
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(2) Pick ρ′ ∈ PlayMG , and s ∈ ρ′0. We construct a play ρ as follows. First,
we let ρ0 = s. Next, suppose that the history ρ≤i has been constructed for some
i ≥ 0 such that ρj ∈ ρ′j for all 0 ≤ j ≤ i. We have that (ρ′i, ρ

′
i+1) ∈ RG, and

ρi ∈ ρ′i; applying Lemma 1, there must exist a state s′ such that s′ ∈ ρ′i+1 and
(ρi, s

′) ∈ R. Letting ρi+1 = s′, we have extended our prefix ρ≤i by one transition.
This entails our result. ��

We now show a correspondence lemma between strategies in the original
game M and the quotient game MG.

Lemma 3. Let M = (S,R, SI, SII) be a game, G be a symmetry group, s0 ∈ S
be an initial state, t0 = θ(s0) and P ∈ {I, II}. Then

1. For any strategy σ of player P in M, there exists a strategy σ′ of player P
in MG such that, for all t0t1 . . . ∈ PlayMG(t0, σ

′), there exists s0s1 . . . ∈
PlayM(s0, σ) where si ∈ ti for all i ≥ 0;

2. For any strategy σ′ of player P in MG, there exists a strategy σ of player P
in M such that, for all s0s1 . . . ∈ PlayM(s0, σ), there exists a play t0t1 . . . ∈
PlayMG(t0, σ

′) where si ∈ ti for all i ≥ 0.

Proof. (1) Let σ be a strategy for player P ∈ {I, II} in the original game M.
From this we construct a strategy σ′ for player P in the quotient game MG by

σ′(h) = θ(σ(reps0,σ(h)))

for all h ∈ HistMG such that reps0,σ(h) �= ⊥ and arbitrarily when reps0,σ(h) = ⊥.
This strategy is well-defined, i.e., it is coherent with the transition relation.
Indeed, when reps0,σ(h) �= ⊥, we have

(last(reps0,σ(h)), σ(reps0,σ(h))) ∈ R

⇒ (θ(last(reps0,σ(h))), θ(σ(reps0,σ(h)))) ∈ RG

⇒ (last(h), σ′(h)) ∈ RG.

This means that there is a legal transition to the successor state prescribed by
the strategy σ′.

Now, let ρ = t0t1 . . . ∈ PlayMG(t0, σ
′) be an arbitrary play compatible with σ′

in MG from t0. We construct a directed tree T where the root is labelled
by u0 = s0 and where the labelling of the infinite paths in T are exactly the
plays compatible with σ in M from s0. From this tree we obtain a new tree Tρ

by cutting away from T part of the branches labelled u0u1 . . . on which there
exists i ≥ 0 such that ui �∈ ti. If j is the smallest number such that uj �∈ tj then
the nodes labelled ujuj+1 . . . are removed. The situation is illustrated in Fig. 3.

We assume for a contradiction that Tρ has finite height �. This means that
there must be a branch in the tree labelled by the history reps0,σ(t0, . . . , t�) =
u0 . . . u�, because if we had reps0,σ(t0, . . . , t�) = ⊥ then Tρ would have had height
smaller than �. There are now two cases to consider:
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s0

s1 s2

s3

s0

s1, s2

s3

s0

s2

s3

s3

s3

s2

s0

s0 s3
...

...
...

M MG T, Tρ

Fig. 3. From left to right is drawn the original game M, the quotient arena MG and
the trees T, Tρ where G = {(s0, s1, s2, s3), (s0, s2, s1, s3)}, σ(h) = s2 for all histories h
ending in s0, and ρ = θ(s0)θ(s1)θ(s3)

ω. T and Tρ are drawn together: T is the whole
tree, while Tρ only consists of the solid black nodes.

– Suppose u� ∈ SP . Then due to the definition of σ′ we get

σ(u0 . . . u�) = σ(reps0,σ(t0 . . . t�)) ∈ σ′(t0 . . . t�) = t�+1.

Since u0 . . . u�σ(s0 . . . s�) is compatible with σ and ui ∈ ti for 0 ≤ i ≤ � then
u0 . . . u�σ(s0 . . . s�) is the labelling of a path in Tρ, which gives a contradiction
since it has length �+ 1.

– Suppose u� �∈ SP . Applying Lemma 1 for (t�, t�+1) ∈ RG and ul, we get
a state v ∈ t�+1 such that (u�, v) ∈ R. Since u� is not in SP , we get that
u0 . . . u�v is compatible with σ, so that it is the labelling of a path in Tρ of
length �+ 1. This gives a contradiction as well.

This means that the height of Tρ is unbounded. Still, it could be the case that
all branches are finite, in case the tree has infinite branching. Assuming Tρ is
finitely branching, it must have an infinite path according to König’s Lemma.
Let the labelling of such a path be s0s1 . . . Since s0s1 . . . is the labelling of an
infinite path in Tρ, it is a play compatible with σ, since all infinite paths in Tρ

are infinite paths in T . Moreover, since it is an infinite path in Tρ, it satisfies
si ∈ ti for all i ≥ 0, because otherwise it would not be present in Tρ. This proves
the first part since t0t1 . . . was an arbitrary play compatible with σ′.

(2) Let σ′ be a strategy for player P in MG. Define σ from this in such a way
that

σ(s0 . . . s�) ∈ σ′(θ(s0) . . . θ(s�))

for all histories s0 . . . s� in M with s� ∈ SI. Note that when s0 . . . s� is a history
in M then θ(s0) . . . θ(s�) is a history in MG. Further, we need to check that there
exists a state s ∈ σ′(θ(s0) . . . θ(s�)) such that (s�, s) ∈ R in order for the definition
to make sense. This can be seen as follows. Since (θ(s�), σ

′(θ(s0) . . . θ(s�))) ∈ RG
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there exists (u, v) ∈ R such that u ∈ θ(s�) and v ∈ σ′(θ(s0) . . . θ(s�)). This means
that there exists π ∈ G with π(u) = s�. Now, (u, v) ∈ R ⇒ (π(u), π(v)) ∈ R ⇒
(s�, π(v)) ∈ R. Since π(v) ∈ θ(v) = σ′(θ(s0) . . . θ(s�)) the state s = π(v) satisfies
the property.

Now, suppose that s0s1 . . . ∈ PlayM(σ). We prove that θ(s0)θ(s1) . . . ∈
PlayMG(σ′), which entails (2) since si ∈ θ(si) for all i ≥ 0. For any prefix
θ(s0) . . . θ(s�) we have that

– If θ(s�) �∈ SG
P then (s�, s�+1) ∈ R implies that (θ(s�), θ(s�+1)) ∈ RG.

– If θ(s�) ∈ SG
P then s�+1 = σ(s0 . . . s�) ∈ σ′(θ(s0) . . . θ(s�)) ⇒ θ(s�+1) =

σ′(θ(s0) . . . θ(s�))

This means that θ(s0)θ(s1) . . . is indeed compatible with σ′. ��

This lemma leads to desirable properties of the quotient game when certain
types of objectives are considered.

Definition 5. A symmetry group G preserves the objective Ω if for any two
plays s0s1 . . . and s′0s

′
1 . . . in PlayM, if s0s1 . . . ∈ Ω and si ∼G s′i for all i ≥ 0,

then also s′0s
′
1 . . . ∈ Ω.

If Ω is an objective and G is a symmetry group that preserves it, then
we denote by ΩG the objective in the quotient game MG defined as ΩG =
{θ(s0)θ(s1) . . . | s0s1 . . . ∈ Ω}. Lemma 3 gives us the following.

Theorem 1. Let M be a game, G be a symmetry group that preserves the ob-
jective Ω, P ∈ {I, II} and s0 ∈ S. Then

s0 ∈ WP
M(Ω) if, and only if, θ(s0) ∈ WP

MG(ΩG).

Proof. (⇒) Suppose player P has a winning strategy σ in M with objective Ω
from state s0. Then PlayM(s0, σ) ⊆ Ω. According to Lemma 3 there is a strat-
egy σ′ for player P in MG such that for a given play t0t1 . . . ∈ PlayMG(θ(s0), σ

′)
there exists a play s0s1 . . . ∈ PlayM(s0, σ) with si ∈ ti for all i ≥ 0. Since G pre-
serves Ω and PlayM(s, σ) ⊆ Ω this means that t0t1 . . . ∈ ΩG. Since t0t1 . . . is an
arbitrary play compatible with σ′ from θ(s0) we have PlayMG(θ(s0), σ

′) ⊆ ΩG

and thus θ(s0) ∈ WP
MG(θ(s0), σ

′).
(⇐) Suppose player P has a winning strategy σ′ in MG with objective ΩG

from state θ(s0). Then PlayMG(θ(s0), σ
′) ⊆ ΩG. According to Lemma 3 there is

a strategy σ for player P in M such that for a given play s0s1 . . . ∈ PlayM(s0, σ)
there exists a play t0t1 . . . ∈ PlayMG(θ(s0), σ

′) with si ∈ ti for all i ≥ 0. Since
G preserves Ω and PlayMG(θ(s0), σ

′) ⊆ ΩG this means that s0s1 . . . ∈ Ω. Since
s0s1 . . . is an arbitrary play compatible with σ from s0 we have PlayM(s0, σ) ⊆ Ω
and thus s0 ∈ WP

M(s0, σ). ��

Corollary 1. Let M be a game, G be a symmetry group that preserves the
objective Ω, P ∈ {I, II} and s, s′ ∈ S be such that s ∼G s′. Then

s ∈ WP
M(Ω) if, and only if, s′ ∈ WP

M(Ω).
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We have now shown the main result of this paper, namely that a winning
strategy exists in the original game if, and only if, it exists in the quotient game.
This also implies that there is a winning strategy from a state s in the original
game if, and only if, there is a winning strategy from another state s′ that belongs
to the same orbit. For transition systems the correspondence between existence
of paths in the original system and the quotient system as shown in Lemma 2 was
enough to show that model-checking of a CTL∗ formula in the original system
can be reduced to model-checking the same formula in the quotient system if
the symmetry group preserves the labelling [9,6]. However, due to the possible
behaviors of an opponent player we have had to generalize this result in Lemma 3
which directly leads to Theorem 1. It will be used in Section 4 to show that we can
extend the symmetry reduction approach to ATL∗, even for infinite-state games.
Since we apply König’s Lemma in the proof, we have assumed that the games
are finitely branching. We leave it as an open problem whether the technique
can be generalized to infinitely branching games as well.

4 Applications

In this section we illustrate some examples of applications of Theorem 1. We look
at symmetry reductions for parity games and games with properties defined
in temporal logics. We also consider an example of an infinite game with a
corresponding quotient game that is finite. This makes it possible for us to decide
existence of winning strategies in the original game by using standard techniques
on the quotient game. Notice that this could be applied to infinite-state games
such as games on counter- or pushdown systems, etc. (provided that we have a
suitable symmetry group at hand).

4.1 Parity Games

Let M = (S,R, SI, SII) be a game and let c : S → {0, . . . , k} be a coloring
function that assigns a color to each state of the game. From this, the corre-
sponding parity objective is given by Ωc = {s0s1 . . . ∈ PlayM | min Inf{c(si) |
i ∈ N} is odd}, where Inf takes as input an infinite sequence and returns the set
of items that appear infinitely many times in this sequence. A parity game is a
game with a parity objective [8]. We say that a symmetry group G preserves c if
for all s, s′ ∈ S we have s ∼G s′ ⇒ c(s) = c(s′). When G preserves c, we define
a coloring function cG on the set of orbits by cG(t) = c(rep(t)) for all orbits t.
Using Theorem 1 we now get the following result for parity games when we have
a symmetry group preserving the coloring function.

Proposition 1. Let M = (S,R, SI, SII) be a game, c : S → {0, . . . , k} be a
coloring function, G be a symmetry group that preserves c, s ∈ S, and P ∈ {I, II}.
Then

1. G preserves the objective Ωc,
2. ΩG

c = {θ(s0)θ(s1) . . . ∈ PlayMG | min Inf{cG(θ(si) | i ∈ N} is odd},
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3. s ∈ WP
M(Ωc) if, and only if, θ(s) ∈ WP

MG(Ω
G
c ).

Proof. (1) Suppose s0s1 . . . ∈ Ω and s′0s
′
1 . . . ∈ PlayM satisfy si ∼G s′i for all

i ≥ 0. Then min Inf{c(s′i) | i ∈ N} = min Inf{c(si) | i ∈ N} is odd since G
preserves c. Thus, s′0s′1 . . . ∈ Ωc and G preserves Ωc.
(2) This can be seen as follows

ΩG
c = {θ(s0)θ(s1) . . . ∈ PlayMG | s0s1 . . . ∈ Ωc}
= {θ(s0)θ(s1) . . . ∈ PlayMG | min Inf{c(si) | i ∈ N} is odd}
= {θ(s0)θ(s1) . . . ∈ PlayMG | min Inf{c(rep(θ(si))) | i ∈ N} is odd}
= {θ(s0)θ(s1) . . . ∈ PlayMG | min Inf{cG(θ(si)) | i ∈ N} is odd}

(3) From (1), we have that G preserves Ωc and thus, we get the result by
applying Theorem 1. ��

This means that if we have a symmetry group that preserves the coloring
function we can decide existence of winning strategies in a parity game by de-
ciding existence of winning strategies in the quotient game. Furthermore, the
quotient game is also a parity game and it has the same number of colors as the
original game.

Example 2. Consider again the game M from Example 1. Let a coloring func-
tion c be defined by c(s0) = c(s1) = c(s5) = 0 and c(s2) = c(s3) = c(s4) = 1.
Then the symmetry group G defined in the example does not preserve c since
s1 ∼G s4 but c(s1) �= c(s4). However, we can define a (smaller) symmetry
group G′ that preserves c by

G′ =
{

π ∈ SymM

∣
∣
∣
∣
π(s0, s1, s2, s3, s4, s5) = (s0, s1, s2, s3, s4, s5)
π(s0, s1, s2, s3, s4, s5) = (s0, s1, s3, s2, s4, s5)

}

This does not give as great a reduction as G, but on the other hand it preserves
the existence of winning strategies for parity conditions defined by c.

4.2 Alternating-Time Temporal Logic

We will show that the symmetry reduction technique can be applied for model-
checking of the alternating-time temporal logic ATL∗ [1,2] as well. In this section
let Agt = {I, II} be a fixed set of players and let AP be a finite set of proposition
symbols. Then ATL∗ state formulas are defined by the grammar

ϕ ::= p | ¬ϕ1 | ϕ1 ∨ ϕ2 | 〈〈A〉〉ψ1

where p ∈ AP is a proposition symbol, A ⊆ Agt is a set of players, ϕ1, ϕ2 are
ATL∗ state formulas and ψ1 is an ATL∗ path formula. ATL∗ path formulae are
defined by the grammar

ψ ::= ϕ1 | ¬ψ1 | ψ1 ∨ ψ2 | Xψ1 | ψ1Uψ2
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where ϕ1 is an ATL∗ state formula and ψ1 and ψ2 are ATL∗ path formulas.
State formulas are interpreted over states of a game whereas path formulas are
interpreted over plays of a game. For all games M = (S,R, SI, SII), labelling
functions L : S → 2AP, all states s ∈ S, all plays ρ ∈ PlayM, all propositions
p ∈ AP, all state formulas ϕ1, ϕ2 and all path formulas ψ1, ψ2 and all coalitions
A ∈ Agt define the satisfaction relation |= by

M, s |= p if p ∈ L(s)

M, s |= ¬ϕ1 if M, s �|= ϕ1

M, s |= ϕ1 ∨ ϕ2 if M, s |= ϕ1 or M, s |= ϕ2

M, s |= 〈〈A〉〉ψ1 if there exist strategies (σi)i∈A so that

for all ρ ∈ PlayM(s, (σi)i∈A), we have M, ρ |= ψ1

M, ρ |= ϕ1 if M, ρ |= ϕ1

M, ρ |= ¬ψ1 if M, ρ �|= ψ1

M, ρ |= ψ1 ∨ ψ2 if M, ρ |= ψ1 or M, ρ |= ψ2

M, ρ |= Xψ1 if M, ρ≥1 |= ψ1

M, ρ |= ψ1Uψ2 if ∃i ≥ 0.M, ρ≥i |= ψ2 and ∀0 ≤ j < i.ρ≥j |= ψ1

As usual, we define the abbrevations ψ1 ∧ ψ2 = ¬(¬ψ1 ∨ ¬ψ2), Fψ1 = �Uψ1

and Gψ1 = ¬F¬ψ1 where � is a special proposition that is true in all states.
We say that a symmetry group G preserves the labelling function L if, for all
s, s′ ∈ S, we have s ∼G s′ ⇒ L(s) = L(s′). When G preserves L we define a
labelling function LG on the set of orbits by LG(t) = L(rep(t)) for all orbits t.
By applying Theorem 1 we can now show that the symmetry reduction works
for ATL∗.

In order to prove this result, we rely on a characterization of ATL∗ equivalence
in terms of alternating bisimulation [3].

Definition 6. Let AP be a finite set of atomic propositions. Let M = (S,R,
SI, SII) be a game, with a labelling function L : S → 2AP. Two states s and s′

of S are alternating bisimilar if there exists a binary relation B over S such that

– (s, s′) ∈ B;
– for every (t, t′) ∈ B, it holds that L(t) = L(t′);
– for every (t, t′) ∈ B, if it holds that t ∈ SI if and only if t′ ∈ SI then

• for every u s.t. (t, u) ∈ R, there exists u′ such that (t′, u′) ∈ R and
(u, u′) ∈ B;

• for every u′ s.t. (t′, u′) ∈ R, there exists u such that (t, u) ∈ R and
(u, u′) ∈ B;

– for every (t, t′) ∈ B, if it holds that t ∈ SI if and only if t′ ∈ SII then
• for every u, u′ s.t. (t, u) ∈ R and (t′, u′) ∈ R it holds that (u, u′) ∈ B;

Proposition 2. Let AP be a finite set of atomic propositions. Let M = (S,R,
SI, SII) be a game, with labelling function L : S → 2AP. Let G be a symmetry
group that preserves L, and LG be the quotient labelling function for SG. Then
for any s ∈ S, s and θ(s) are alternating bisimilar.
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Proof. Consider the disjoint union of M and MG, and the relation B defined by

(s, s′) ∈ B if, and only if, s′ = θ(s).

Then the first two conditions in the definition of alternating bisimilarity are
fulfilled.

Now, pick (t, t′) ∈ B, assuming that t (hence also t′ = θ(t)) belongs to Player I.
First, pick a successor u of t, i.e. (t, u) ∈ R. Then (θ(t), θ(u)) ∈ RG and since
(u, θ(u)) ∈ B the first condition is satisfied. Second, pick a successor u′ of t′,
i.e. (t′, u′) ∈ RG. Then there exists v, w ∈ S such that (v, w) ∈ R, v ∈ t′

and w ∈ u′. Then there exists π ∈ G such that π(v) = t. This means that
(π(v), π(w)) = (t, π(w)) ∈ R. Since π(w) ∈ u′ we also have (π(w), u′) ∈ B which
means the second condition is satisfied. The proof is the same if t belongs to
Player II. ��

Proposition 3. Let M = (S,R, SI, SII) be a game, L : S → 2AP be a labelling
function and G be a symmetry group that preserves L. Then for every s ∈ S,
every ρ ∈ PlayM, every ATL∗ state formula ϕ and every ATL∗ path formula ψ
over AP we have

– M, s |= ϕ if, and only if, MG, θ(s) |= ϕ
– M, ρ |= ψ if, and only if, MG, θ(ρ) |= ψ

where the satisfaction relation |= in MG is defined with respect to the labelling
function LG.

Proof. This is a consequence of the results of [3] for the case of finite state games
since s and θ(s) are alternating bisimilar acccording to Prop. 2. This can also
be proven directly by induction on the structure of the formula, using Lemma 3
for infinite games with finite branching.

The most interesting case is ψ = 〈〈{P}〉〉ψ1 with P ∈ {I, II}; define the objec-
tive Ωψ1 = {ρ ∈ PlayM | M, ρ |= ψ1} as the set of plays in M satisfying ψ1. We
will first show that G preserves Ωψ1 . Suppose ρ ∈ Ωψ1 and ρ′ ∈ PlayM is a play
such that ρ ∼G ρ′. According to the induction hypothesis, M, ρ |= ψ1 if and
only if MG, θ(ρ) |= ψ1 but also that M, ρ′ |= ψ1 if and only if MG, θ(ρ′) |= ψ1.
Since θ(ρ) = θ(ρ′) we have that ρ′ satisfies ψ1 since ρ does. Thus, ρ′ ∈ Ωψ1 which
means that G preserves Ωψ1 . Then by the induction hypothesis we have

ΩG
ψ1

= {θ(ρ) ∈ PlayMG | ρ ∈ Ωψ1}
= {θ(ρ) ∈ PlayMG | M, ρ |= ψ1}
= {θ(ρ) ∈ PlayMG | MG, θ(ρ) |= ψ1}

Using this and Theorem 1 we have for all s ∈ S

M, s |= 〈〈{P}〉〉ψ1 iff s ∈ WP
M(Ωψ1)

iff θ(s) ∈ WP
MG(Ω

G
ψ1
)

iff MG, θ(s) |= 〈〈{P}〉〉ψ1 ��
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Remark 1. Even though the result for ATL∗ was only proved in two-player games
above, this can easily be extended to handle n-player games for n ≥ 3 as well.
This is the case since formulas of the form 〈〈A〉〉ψ can be evaluated at a state
by letting one player control the players in coalition A and let another player
control the players in coalition Agt \A.

Remark 2. Notice that the result of Prop. 3 does not extend to Strategy Logic [4,
14] or ATL with strategy contexts [7]. Considering the game depicted on Fig. 2,
assume that s2 and s3 are labelled with p and s5 is labelled with q. One can
notice that there is a strategy of the circle player (namely, playing from s2 to s3
and from s3 to s5) under which the following two propositions hold in s0:

– there is a strategy for the square player to end up in a p-state after two steps
(namely, playing to s2),

– there is a strategy for the square player to end up in a q-state after two steps
(namely, playing to s3).

This obviously fails in the reduced game.

Example 3. Consider the infinite game illustrated in Fig. 4 which is played on an
infinite grid. Player I controls the circle states and player II controls the square
states. The games starts in (0, 0) and in each state the player controlling the state
can move up, down, left or right. The proposition p is true exactly when the first
coordinate is odd. Formally, the game is defined by M = (S,R, SI, SII) where

– S = Z
2

– R = {((x1, y1), (x2, y2)) ∈ S × S | |x1 − x2|+ |y1 − y2| = 1}
– SI = {(x, y) ∈ S | y is even}
– SII = {(x, y) ∈ S | y is odd}

The labelling is defined by L((x, y)) = {p} if x is odd and L((x, y)) = ∅ if x is
even. Suppose we want to check if some ATL∗ formula ϕ over the set AP = {p}
is true in (0, 0). This is not necessarily easy to do in an automatic way since M
is infinite. However, we can use symmetry reduction to obtain a finite quotient
game as follows. Let us define

G = {π ∈ SymM | ∃a, b ∈ Z. ∀(x, y) ∈ S. π(x, y) = (x′ + 2 · a, y′ + 2 · b)}.

It is simple to show that G is a group and also that it preserves the labelling L.
Further, G induces four orbits θ((0, 0)), θ((0, 1)), θ((1, 0)) and θ((1, 1)). The cor-
responding quotient game can be seen in Fig. 5.

According to Prop. 3 we can just do model-checking in the quotient game since
M, (0, 0) |= ϕ if and only ifMG, θ((0, 0)) |= ϕ. This shows how the original game
can be infinite but still have a finite quotient game.
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Fig. 4. Game on an infinite grid
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p

θ((1, 1))

Fig. 5. Finite quotient game

5 Where Do the Symmetry Groups Come from?

Until now we have just assumed that a symmetry group G was known, but
we have not mentioned how to obtain it. The short answer is that it is not
tractable to find the symmetry group that gives the largest reduction in general.
Indeed, even for the special case of finite-state transition systems, this problem is
computationally hard. For a detailed discussion of this, see Section 6 in [6]. There
it is shown that the orbit problem is as hard as the Graph Isomorphism problem
when the transition system is finite: the orbit problem is to decide, for a given
group G generated by a set {π1, . . . , πn} of permutations, whether two states
s and s′ belong to the same orbit. According to the knowledge of the authors,
there is still no known polynomial time algorithm for the graph isomorphism
problem. Unless the aim is to apply algorithms having high complexity in the
size of the model, computing symmetries this way might not be so interesting.

While this may look quite negative, the approach has given very large speed-
ups on practical verification instances. Here, it is typically the responsibility of
the engineer designing the system to provide the symmetry groups as well as the
orbits to the program. The main reason why this is possible is that many natural
instances of embedded, concurrent and distributed systems have a number of
identical components or processes. A simple example of this can be seen in Fig. 6.
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request

access

request

access

request

access

request

access

Fig. 6. A simple game M modeling a situation with a server and three clients is shown
to the left. The smallest quotient game MG such that G preserves the labelling of the
propositions {request, access} is shown to the right.

This gives rise to symmetry in the model which is quite easy to detect for a
human with some amount of experience. Another approach is to design modeling
languages and data structures where certain forms of symmetry can be detected
automatically. For discussions of this in different contexts, see [11,10,13]. We have
no reason to believe that the symmetry reduction technique will be less applicable
for model-checking properties of games.

6 Concluding Remarks

We have proved that the symmetry reduction technique can be generalized to
infinite-state turn-based games with finite branching and provided particular ap-
plications of this result in the areas of parity games and model-checking of ATL∗.
The technique has not yet been implemented and tested on practical examples,
but we expect that it should be as applicable as it has been in the context
of model-checking of temporal logics, model-checking of real-time systems and
probabilistic systems. It is still open whether the technique can be generalized to
games with infinite branching since our application of König’s Lemma requires
that the games have finite branching.
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Abstract. Traditional SAT-based MaxSAT solvers encode cardinality
constraints directly as part of the CNF and solve the entire optimiz-
ation problem by a sequence of iterative calls of the underlying SAT
solver. The main drawback of such approaches is their dependence on
the number of soft clauses: The more soft clauses the MaxSAT instance
contains, the larger is the CNF part encoding the cardinality constraints.
To counter this drawback, we introduce an innovative encoding of cardin-
ality constraints: Instead of translating the entire and probably bloated
constraint network into CNF, a divide-and-conquer approach is used to
encode partial constraint networks successively. The resulting subprob-
lems are solved and merged incrementally, reusing not only intermediate
local optima, but also additional constraints which are derived from solv-
ing the individual subproblems by the back-end SAT solver. Extensive
experimental results for the last MaxSAT evaluation benchmark suitew
demonstrate that our encoding is in general smaller compared to existing
methods using a monolithic encoding of the constraints and converges
faster to the global optimum.

1 Introduction

Recently, MaxSAT, a SAT-related optimization problem, gained large interest
due to a wide range of applications [1,2,3] which can be expressed with this
formalism. Many different variations and applicable techniques have been de-
veloped [4] leading not only to significant advances in terms of scalability but
also extending the problem formulations with variations like weighted and partial
MaxSAT.

One very popular approach to solve MaxSAT problems is the iterative SAT-
based [5] approach. This technique prunes the bounds for the number of satisfied
maximization constraints by iterative (and incremental) SAT solver calls. The
cardinality constraints are directly encoded into the SAT instance usually given
by a network of sorters, adders, counters, or networks explicitly designed for such
constraint systems. However, these data structures are growing with the number
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of maximization constraints – usually at least with O(n log2 n) where n is the
number of constraints [6] – and hence limit the applicability of such approaches.

In this paper we present an incremental divide-and-conquer approach for the
construction of cardinality constraints using a partial encoding. Instead of build-
ing the entire supporting data structure at once we divide the construction into
smaller steps to obtain locally optimal results that are merged together incre-
mentally until the global optimal solution is found. This approach provides sev-
eral advantages compared to the traditional method. Most notably, during the
construction of each part, information gained from solving previous parts can be
extracted and reused. This allows us not only to reduce the overall size of the
encoding but also to improve the scalability of the approach.

Hence, our approach goes beyond standard incremental SAT solving and is
able to yield early results which are close to the global optimum. While some
presented optimizations are also applicable to classical approaches, our proposed
method is in particular suitable for networks with divide-and-conquer approaches
where parts of the network already fulfill the given sorter invariant, i. e. a network
where firstly subsets are correctly sorted and afterwards merged together. In our
implementation we use a bitonic sorting network [7] meeting these requirements.

Related work focuses on finding more efficient encodings for the cardinality
constraints in CNF [6,8,9,10]. These approaches introduce new encodings, but
in contrast to our approach do not consider a partial view. In [11] the authors
formulate a synthesis problem in order to find an optimal sorting network with
SAT for a small number of inputs. There is also some work on comparison of
different existing encoding strategies [12,13]. The closest SAT-based approaches
to our work are presented in [14,15]. In [14] a core-guided [16] MaxSAT approach
is used, which does not use networks to encode cardinality constraints. Instead
the solver seeks for unsatisfiability cores which are successively refined. The al-
gorithm partitions the formula and starts with one subpart of the formula in
order to find a local optimal solution. New parts are added incrementally refin-
ing the local solutions until all parts are added. [15] uses adders and/or BDDs
for the encoding, partitions the instance and solves it incrementally by success-
ive adding more subparts. As in our approach learnt information concerning the
cardinality network and the original instance are shared and reused between the
solver calls. However, in contrast to our work these approaches do not add addi-
tional information or utilize explicitly the partial composition of the cardinality
network.

In our experiments we demonstrate the applicability of our method using
recent benchmarks from the MaxSAT Evaluation [17]. Results show that our
approach dominates the classical monolithic approach in all benchmark series
not only in terms of the solved benchmarks, but also in quality of the (partial)
results for not completely solved benchmarks. Additionally, the effectiveness of
the individual optimizations is highlighted and evaluated.

The remaining paper is structured as follows: In Section 2 we briefly introduce
the MaxSAT problem and its variations as well as the bitonic sorting network
used in our approach. The basic algorithm computing partial optimal solutions
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and details on the encoding are presented in Section 3. In Section 4 we discuss
several enhancements and optimizations of the implementation. Furthermore,
we evaluate each extension using the MaxSAT evaluation benchmark set and
compare our method with existing work. The paper is concluded in Section 5.

2 Preliminaries

In this section we introduce the main solving techniques for SAT and (partial)
MaxSAT. For a deeper insight the reader is also referred to [18]. Furthermore,
the bitonic sorting network [7] used in our approach is introduced.

2.1 SAT and MaxSAT

The SAT problem poses the question whether a propositional formula ϕ evaluates
to 1 (or true). In this case we call ϕ satisfiable with an assignment A : V → {0, 1}
(also referred to as model) of the Boolean variables V of ϕ. If there is no such
model ϕ is unsatisfiable. We consider SAT formulae in conjunctive normal form
(CNF), which is a conjunction of clauses, whereas a clause is a disjunction of
literals. A literal l is either a variable v ∈ V or its negation v. A clause containing
only one literal is called a unit clause.

Algorithms for solving the SAT problem are predominated by the extensions
of the DPLL algorithm [19], called Conflict Driven Clause Learning (CDCL),
where reasons for unsatisfiable assginments are derived. These are added to ϕ in
order to prevent the algorithm from choosing the same set of assignments again.

In recent years the concept of incremental SAT solving [20] became more and
more popular, which is motivated by applications requiring repeated solving of
similar instances. For instance, in SAT-based BMC [21] clauses are repeatedly
added and deleted. Usually incremental solving is driven by assumptions, where
additional constraints are added to the instance which are only valid for the
current consideration of the instance. This allows to de-/activate clauses (prop-
erties) between different solver calls by relaxation variables.

MaxSAT is a SAT-related optimization problem which seeks for an assignment
for a propositional formula ϕ in CNF maximizing the set of simultaneously
satisfied clauses. In this paper, we focus on a variation of the MaxSAT problem
called partial MaxSAT, where the formula is separated in soft and hard clauses.
The objective is to satisfy all hard clauses (as in SAT) and to maximize the
number of satisfied soft clauses (as in MaxSAT).

Iterative SAT-based approaches [22] use an incremental SAT solver as back-
end and encode the cardinality constraints via additional networks. In this paper
we rely on such an approach using a bitonic sorting network [7] which is intro-
duced in the following section.

2.2 Bitonic Sorting Networks

A Bitonic Sorting Network BSN is based on a divide-and-conquer principle.
Formally BSN(i1, . . . , im) = (o1, . . . , om) sorts the input i = (i1, . . . , im) into
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Fig. 1. BSN for eight inputs
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Fig. 2. Partial encoding and solving

an output o = (o1, . . . , om) with ascending order. Fig. 1 shows an example with
eight inputs (left-hand side i = (1, 0, 1, 0, 0, 0, 0, 1)) returning eight lines sor-
ted by a monotonically increasing sequence of 0 and 1 (right-hand side o =
(0, 0, 0, 0, 0, 1, 1, 1)). Every arrow stands for a comparison between two lines,
where the direction of the arrow indicates the direction of sorting. The colored
boxes illustrate the divide-and-conquer principle. The outputs of the boxes are
sorted according to the sorting direction indicated by green/red color. On the
left-hand side at the first level (L1) the base case is shown, where only two lines
have to be compared (i. e. there are four BSN with two inputs on this level).
There are two BSN with four inputs each on L2 representing the first merge
step, where two sorted base cases are merged to a combined block of four sorted
lines. Finally, L3 merges these sorted four lines into one final BSN with eight
output. Note, that the number of inputs does not necessarily has to be a power
of two and moreover any arbitrary number of inputs can be handled.

Related implementations are odd-even sorting networks [7] and pairwise sort-
ing networks [23]. The latter ones turn out to be one of the most effective sorting
network encodings for SAT [9]. Unfortunately, the sorting invariant is lost, i. e.,
the intermediate subparts are not sorted anymore. Therefore this network type
cannot be utilized as effective as the other types for our approach.

The comparison operator can be expressed in CNF using six clauses, or by
the following relation: comparator(a, b, c, d) ↔ (

(c ↔ a ∨ b) ∧ (d ↔ a ∧ b)
)
. The

inputs a and b are sorted resulting in two outputs c and d.

2.3 Usage of Cardinality Networks in MaxSAT Solvers

Usually, network-based MaxSAT solvers introduce a new auxiliary relaxation
literal r for each soft clause. If r is set to 0 the corresponding soft clause has
to be satisfied, otherwise (r = 1) the clause is relaxed, i. e., it is satisfied by the
relaxation literal and hence, the (original) soft clause does not have to be satisfied
by the variables belonging to the original CNF. In the following we denote ϕ as
the original MaxSAT instance including a unique relaxation literal (r1, . . . , rm)
for each soft clause. Moreover we write β(i1, . . . , im) for the CNF encoding of the
bitonic sorting network with m inputs. In an iterative approach the relaxation
literals are connected to the inputs of the sorting network and the instance
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ϕ∧β(r1, . . . , rm)∧(oi) is handed over to a SAT solver. If it is satisfiable there are
at least i simultaneously satisfied soft clauses, otherwise there exists no solution
with i satisfied soft clauses. The solution is narrowed by the incremental usage
of the underlying SAT solver until a value k is identified with ϕ∧β(r1, . . . , rm)∧
(ok) being satisfiable and ϕ ∧ β(r1, . . . , rm) ∧ (ok+1) being unsatisfiable. In the
following we abbreviate the incremental search for k over m relaxation variables
with σ(r1, . . . , rm) and denote opt[1,m] as the (locally) optimal result for the
relaxation variables r1, . . . , rm. There are several approaches for choosing and
narrowing the values for i. In our approach we start with i = 1 and increase
the value successively until k + 1. Between two incremental SAT solver calls we
examine the returned model and count the number of relaxation literals j set to
0. Thus we narrow the solution interval by j (not by just incrementing i). In the
following we call this procedure the baseline approach.

3 Incremental Encoding and Solving

In this section we present our approach based on partial sorter building for
MaxSAT. At first the basic divide-and-conquer concept partitioning the entire
sorting network into smaller subparts is presented (cf. Sec. 3.1). This technique
has an increased number of incremental solver calls compared to the baseline
approach, but allows new possibilities of information sharing over the subparts
which is not possible in a traditional monolithic implementation of the network.

A schematic overview of the process is shown in Fig. 3. First, we select the
next relaxation variables rl, . . . , rn (cf. Sec. 3.3), which are encoded locally into
BSN(rl, . . . , rn). Finally the instance σ(rl, . . . , rn) is tackled by a MaxSAT
solver returning the local optimum opt[l, n]. Afterwards local bounds are used to
create additional information for the following computational steps (cf. Sec. 3.2)
and the next relaxation variables are chosen until the global optimum opt[1,m] is
found.

3.1 Concept

Given a MaxSAT instance ϕ the basic idea is to split the sorter into presorted
subparts which are encoded and solved separately. In particular, the inputs of the
network (i. e. the relaxation literals of the soft clauses) r = (r1, . . . , rm) are split
into uniformly distributed subparts: (r1, . . . , rd), (rd+1, . . . , rd+d), . . . , rm−d, . . . ,
rm where d denotes the number of considered relaxation variables per subpart.
Instead of encoding the entire network, we only consider ϕ∧β(r1, . . . , rd) by solv-
ing the instance σ(r1, . . . , rd) (w.l.o.g. we always tackle the relaxation variables in
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ascending order). The MaxSAT solver will return the local optimum opt[1,d]. Af-
terwards the next part is encoded resulting in ϕ∧β(r1 , . . . , rd)∧β(rd+1, . . . , rd+d).
We call the MaxSAT solver incrementally in order to solve σ(rd+1, . . . , rd+d) and
obtain the local optimum opt[d+1,d+d]. Note, that although BSN(r1, . . . , rd) and
BSN(rd, . . . , rd+d) are encoded in the same instance, both parts are not con-
nected. In order to merge these parts we have to encode BSN(r1, . . . , rd+d),
for which we reuse BSN(r1, . . . , rd) and BSN(rd+1, . . . , rd+d) by encoding only
the merge step (L3 in Fig. 1). A MaxSAT solver call for σ(r1, . . . , rd+d) will
return the local optimum opt[1,d+d]. This partial composition is repeated until
BSN(r1, . . . , rm) is encoded and we finally obtain opt[1,m] by solving σ(r1, . . . ,
rm). An example is given in Fig. 2 for eight relaxation variables and d = 4.

Splitting the instance into smaller parts, whose locally optimal solution is
computed, eventually leads to the global optimum. However, as we will demon-
strate in the following sections, this approach allows optimizations that are not
possible otherwise leading to an increase in efficiency.

3.2 Reuse Local Bounds

We observed two main cases allowing to set global bounds derived from local
partial bounds, which can be determined after solving a subpart.

Consider the example in Fig. 4 where at first σ(r1, . . . , r4) is tackled, followed
by σ(r5, . . . , r8). The result for σ(r1, . . . , r4) can be reused for latter solving steps.
In particular, the number of non-satisfied soft clauses of this part indicated by
the red 1 in the example, can be fixed permanently by adding a corresponding
unit clause (oopt[1,d]+1). Since we solved σ(r1, . . . , r4) without any further restric-
tions, there is no solution with more satisfied soft clauses possible. Generally, this
observation applies to all MaxSAT instances σ(r) where r contains (r1, . . . , rd)
(i. e. the part which is encoded and solved at first). Hence, in the example in
Fig. 4, also the number of non-satisfied clauses for σ(r1, . . . , r8) can be fixed for
possible further computations. For all other parts we are not allowed to fix the
result, but instead of the unit clause we add appropriate assumptions represent-
ing the same bounds. We do this in order to speed up calculations and dismiss
the assumption whenever this subpart is tackled after a merge step. Note, that
the number of satisfied soft clauses cannot be fixed, since in the global optimum
the subpart may contain less satisfied clauses.

Furthermore, we analyze the number of soft clauses satisfied so far. Solving a
partial instance also implies assignments among other relaxation variables whose
BSN is not encoded so far. Before we tackle the instance σ(rl, . . . , rn), we count
the number of all non-relaxed soft clauses nr, in particular, clauses for which the
BSN is not encoded so far. This value nr represents a lower bound for the global
optimum, and we use it in order to 1) provide early compelling global bounds
and 2) fix an initial lower bound for solving the following subparts. Consider
again the example in Fig. 4 with overall eight soft clauses. Assume, we have
already obtained the result for σ(r1, . . . , r4) with opt[1,4] = 3. In this example
two additional soft clauses are satisfied by chance within the second part (whose
cardinality constraints are not encoded so far) resulting in a lower bound nr = 5.



Incremental Encoding and Solving of Cardinality Constraints 303

Before encoding β(r5, . . . , r8) and solving σ(r5, . . . , r8) we can fix a-priori a lower
bound of one soft clause which has to be satisfied in the second part (indicated
by the red 0 at the output). Generally, we evaluate whether we can set a lower
bound of satisfied soft clauses for the current subpart using previous results.
To do so, before solving σ(rl, . . . , rn), we check whether the term lb, defined as
lb = m − nr − sc evaluates to a value smaller than 0, where sc is the number of
soft clauses in σ(rl, . . . , rn) and m is the overall number of soft clauses. In the
example lb = 8− 5− 4 = −1 holds. If so, abs(lb) indicate a lower solution bound
for the currently considered subpart, which is added by a suitable unit clause.

Setting unit clauses and assumptions for non-satisfied soft clauses is bene-
ficial if the subpart containing σ(r1, . . . , rd) is considered as early as possible.
In contrast, the second technique presented in this section benefits from early
near optimal results which are close to the overall number of satisfiable soft
clauses. By applying these techniques the subparts are not solved independently
anymore, since local optima are reused for further steps. While the identified
global optimum is not influenced, this will potentially decrease the quality of
local optima, but may speed up later calculations due to additional constraints.

3.3 Size and Ordering

One further major aspect for the effectiveness of the encoding of partial con-
straint networks is the size of the subparts d. If the size is too large the ad-
vantages of considering easy to solve instances are reduced, whereas a too small
splitting width will produce too much solving overhead (due to an unfavorable
number of calls of the underlying SAT solver). Furthermore, a property of the
BSN is that only parts of the same size (±1) can be merged together. The
latter issue can be solved in general by introducing fake inputs to the network,
i. e., inputs which are not connected to the MaxSAT problem and assigned to
a constant value. But an unbalanced choice of the subpart sizes will lead to a
large overhead in fake inputs resulting in deeper and therefore inefficient network
structures. Hence, we choose a splitting width which is balanced with respect to
the number of sorter inputs as follows: If possible 1) all subparts have the same
size of input lines and 2) merging all subparts adds up such that in all merging
steps the number of fake lines is minimized. The splitting size is calculated a-
priori and bounded by a user-defined width w. The value d is chosen as close
as possible below w fulfilling the properties given above. In our experiments, we
have identified w = 64 as a bound leading to the best trade-off between easy to
solve instances and solver call overhead for the given benchmarks.

Another important aspect is the ordering in which the individual subparts
should be processed. We implemented two approaches: 1) depth-first and 2)
breadth-first ordering. The depth-first method tries to merge the deepest (ac-
cording to the level in the BSN) two subparts whenever possible/available.
Breadth-first always calculates a complete level of subparts first and if all sub-
parts of a level have been processed the next level is tackled. The depth-first
approach is mainly motivated in conjunction with the re-usage of local bounds
as described in the previous section: After solving σ(r1, . . . , rd), we are allowed
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to set unit clauses to fix the found bound, which is not possible for the other
subparts. By traversing the network in a depth-first manner this first part is
always included as early as possible, whereas breadth-first method potentially
allows to set early local lower bounds by unit clauses according to the second
technique described in Sec. 3.2.

3.4 Experimental Evaluation

We implemented all of the methods described in this paper in our solver
antom [24] which contains both, a SAT solver and MaxSAT solver. All meas-
urements were performed on a machine using one core of a 3.3 GHz Intel Xeon,
limiting the memory to 4 GB and the run time to 30 CPU minutes for each
instance. We used the crafted and industrial partial MaxSAT instances from
the MaxSAT Evaluation 2013 [17] with 1004 instances in total. All log files and
further informations about the experiments can be found at [24].

All results are shown in Table 1. In the first four columns the benchmark
family name, the number of instances per family and the average number of
soft clauses and hard clauses are shown. The following columns indicate the
results for the different approaches, where the average run time in CPU seconds
(“time”) and the number of solved instances (“#”) is given for each method.

First, we discuss the effects of our newly introduced incrementally encoded
and solved network (“ies”) compared to the monolithic baseline approach
(“baseline”). In the basic “ies” version we use a splitting width bound of w = 64
and breadth-first ordering. The results are a reference point for the optimizations
in the following section, which could not be performed without the basic “ies”.
The “ies” method solves slightly more benchmarks than the “baseline” approach,
mainly in the benchmark family “close solutions” consisting of a huge number
of soft clauses (up to over 1,000,000). In particular, in many cases “baseline”
ran out of memory during the sorting network encoding (25 out of 50 instances).
Thanks to the partial consideration, “ies” obtains early locally optimal results
(see also Sec. 4.5) and solves eight more instances in this family (and overall 11).

Furthermore, we analyzed the number of comparators which have to be used.
To do so, we measured the number of actually encoded comparators for those
instances where both the baseline and the compared approach were able to build
the complete cardinality network. Fig. 8 shows the average number of all these
instances for different approaches in relation to “baseline”. Due to the partition
of the network there is a small overhead (∼ 1%) in the encoding size for “ies”.
This overhead is dissolved by the techniques presented in the following section
leading to an overall increasing of encoding and solving efficiency.

4 Optimizations

In this section we discuss several optimization which can be employed between
the basic steps (cf. Fig. 3). Before the network encoding we first check whether
some constraints are trivially contradicting (cf. Sec. 4.3) and during the con-
struction we skip unnecessary comparators (cf. Sec. 4.1). When the network is
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encoded we are able to add additional information into the network (cf. Sec. 4.2).
Finally, before the instance is solved we set relaxation variables in advance in
order to speed up calculations (cf. Sec. 4.4). For every optimization we present
experimental results to show the implications and interactions of these methods.

In Sec. 4.5 we discuss related work and compare our MaxSAT solver with and
without our presented approach against state-of-the-art MaxSAT solver.

4.1 Skip Comparisons

In many cases the encoding of the comparator between two lines within the
sorting network can be skipped, as the result can be statically determined. This
may appear due to the introduction of fake lines which are set to a constant
or fixed values caused by the techniques described in Sec. 3.2, Sec. 3.3 and 4.3
or by conflict unit clauses derived by incremental SAT solver calls. In case of a
constant line we do not have to encode the corresponding comparison operator,
e. g. comparator(a, 1, c, d) ↔ (c = 1 ∧ d = a).

In Fig. 5 an example is given where two lines (r3 and r6) are already fixed to
values 1 and 0. The remaining six lines (ri’s) are not known so far. Furthermore,
all (newly introduced) variables of the first level are shown (yj ’s) – the remain-
ing levels are left out for readability reasons. Standard encoding introduces an
unnecessarily large network representation with 42 variables and 89 clauses for
this small example. If the value of at least one line is already fixed (e. g., the
third and forth input lines 1 and r4) the comparison operation can be skipped
(as indicated by the red cross in the figure). If the fixed value is 1 it will be set
to c of comparator(a, b, c, d), accordingly a fixed value 0 is always set to d (e. g.,
r5 and 0 are swapped). In this small example where only two inputs are fixed, 11
out of 24 comparisons can be skipped leading to only 32 variables and 69 clauses
for the representation of this network. Without this technique a modern SAT
solver will keep one auxiliary variable and one encoded identity function per
regular variable for each comparison with at least one fixed value. The remain-
ing variables and clauses are removed by unit propagation of the fixed values,
but in particular, the clauses representing the identity functions lead to longer
implication chains.
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By implementing and using this technique (“ies+skip”) about 7% of used
comparators could be saved compared to the “baseline” approach (cf. Fig. 8).
Moreover three instances could be solved in addition to “ies” (cf. Table 1).

4.2 Bypass Grid

This technique introduces additional constraints, which we call bypasses, indic-
ated by a red dotted arrow in Fig. 6. We distinguish between horizontal and
vertical bypasses, building up together a bypass grid. Every bypass consists of
just one additional binary clause. The basic idea is to add redundant inform-
ation to the encoding in order to speed up the Boolean deduction within the
sorting network and to improve the quality of learned conflicts due to shorter
implication graphs.

Fig. 6a demonstrates vertical bypasses. In general these bypasses can be added
after each merging step of the sorter (indicated by the light blue boxes). The
output values of these subparts are already correctly sorted, and hence y1 ≤ y2 ≤
y3 ≤ y4 as well as y5 ≥ . . . ≥ y8 and y9 ≤ . . . ≤ y16 hold. For each neighboring
line of an output we add an appropriate binary bypass clause, e. g., (y1 ∨ y2) for
the first two lines.

Horizontal bypasses are illustrated in Fig. 6b, where we distinguish between
forward horizontal bypasses (indicated by arrows pointing from left to right) and
backward horizontal bypasses (right to left). Like vertical bypasses they can be
applied after each merging step and for each line – for the sake of readability
the bypasses for the variables y10, y11, y14 and y15 are excluded in the figure.
The forward bypasses for y16 are: y4 ≤ y16 and y5 ≤ y16, since there is at least
one output equal to 1 in BSN(r1, . . . r8) if either one output of BSN(r1, . . . , r4)
or BSN(r5, . . . , r8) is equal to 1. The corresponding bypasses are (y4 ∨ y16) and
(y5 ∨ y16), and analogously for y13 (c.f. Fig. 6b). The backward bypasses for y12
are y12 ≤ y4 and y12 ≤ y5: if there are at least 5 outputs of BSN(r1, . . . r8) set
to 1, there is also at least 1 output of BSN(r1, . . . , r4) and BSN(r5, . . . , r8) set
to 1. This results in two clauses (y12 ∨ y4) and (y12 ∨y5), and analogously for y9.

Potentially, one could add more such bypasses, e. g., if y4 = y5 = 1, then
y15 = 1 holds, but we omit this kind of bypasses since they require at least a
ternary clause. Many modern SAT solvers treat binary clauses separately for
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even faster computation and therefore a binary clause is easier to handle for a
SAT solver and also more constraining than ternary (or even larger) clauses.

In our experiments we apply both types of bypasses between each merge
step: All possible vertical bypasses are considered, but we observed that there
is too much overhead applying all horizontal bypasses. Instead we add both
forward and backward horizontal bypasses only every four lines (as represented
in Fig. 6b).

The results using the bypass grid (“ies+skip+grid”) are shown in Tab. 1.
The solver is now able to process faster the implications within the cardinality
network and therefore also the soft clauses, such that pruning on hard clauses
happens earlier within the solver. In classes with many hard clauses (“des”,
“Multiple path”) more instances could be solved. The number of saved com-
parators increases by ∼ 2% compared to “ies+skip”, since the bypasses deduce
more constant lines within the network.

4.3 Contradicting Soft Clauses

This method is a quick check whether two soft clauses are contradicting each
other. To do so we check all soft clauses pairwise by activating both relaxation
literals by according assumptions. Instead of solving the instance we force the
solver only to deduce the resulting implications. If the result is already unsat-
isfiable we can ensure that these two soft clauses can never be satisfied simul-
taneously which is added as an additional constraint. Moreover, we collect for
each soft clause the number of conflicting soft clauses, which is added to the
output of a sorting network subpart. For example, suppose an overall number
of m soft clauses and a particular soft clause c conflicting with n other soft
clauses. By activating c we are never able to satisfy more than m−n soft clauses
simultaneously. This property is added as a binary constraint to the solver.

Like bypasses (cf. Sec. 4.2) this technique produces additional redundant in-
formation which aims at improving the deduction and conflict analysis routines.
The checks are done for every partial and merged network. Additionally, we
also check whether two soft clauses are always satisfied together or ϕ gets un-
satisfiable activating a soft clause. Although these cases rarely take place, the
corresponding checks are almost for free by checking the contradictions.

We use this method additionally to all techniques in the previous sections.
The result are shown in Tab. 1 (“ies+skip+grid+csc”). Overall four instances
more in different families could be solved due to the additional information.

4.4 Relaxing Soft Clauses

We additionally relax soft clauses a-priori that are not part of the current partial
computation to a specific value in order to avoid unnecessary computational
overhead. In contrast to Sec. 3.2 this technique is a heuristic method in order to
speed up computations. We have established two kinds for relaxing those values,
which are illustrated in Fig. 7.

The forward relaxation disables soft clauses which are not considered so far by
setting the corresponding relaxation literals to 1. An example is given in Fig. 7a.
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Fig. 7. Relaxation of soft clauses

Assume that we currently consider σ(r1, . . . , r4). As forward relaxation step r5
to r8 are set to 1, such that the corresponding soft clauses are already satisfied.

As backward relaxation step (cf. Fig. 7b) we set relaxation literals due to the
model computed in an earlier step. In the example we assume that the result
of σ(r1, . . . , r4) has deduced r2 = r3 = 0 and r1 = r4 = 1. When solving
σ(r5, . . . , r8) we fix these values by assumptions, such that the solver does not
have to compute the assignment of r1 to r4 again. Note that the relaxation
variables rl to rn are never set when the instance σ(rl, . . . , rn) is solved. The
solver is always free in setting the currently considered relaxation literals in
order to obtain locally optimal results.

This technique allows to speed up the calculation of the partial sorter net-
works due to relaxed values. However, the solver is not able to recognize whether
forward relaxed soft clauses may be satisfied by chance. The solver may also run
into a local optimum when a backward relaxed literal is fixed 0, but needs to be 1
for the global optimum and vice versa. Both issues may decrease the effect of the
method described in Sec. 3.2. To counter these side-effects of forward relaxation
an additional satisfied-by-chance examination is employed. We check whether
the soft clause is satisfied without the relaxation literal, if the relaxation literal
is set to 1 (i. e., indicating that the soft clause is not satisfied). If this is the case
we treat the soft clause as satisfied. We accept the drawback of backward muted
relaxation variables, as experimental results show that the loss in quality is less
than the benefit of the faster computation time.

We implemented the relaxation of soft clauses and use it additionally to
all techniques presented so far (“ies+skip+grid+csc+rsc” in Tab. 1). With this
heuristic we could solve eight benchmarks in addition and one which could not
be solved anymore compared to (“ies+skip+grid+csc”). In the family “des”
(containing a large number of soft constraints) five instances more could be
solved, due to the problem simplification. The number of encoded comparators
slightly decreases compared to the previous version (cf. Fig. 8), since the quality
of the local optima decreases – and therefore the number of skipped comparators
due to Sec. 3.2 – as trade-off for the faster computation of the incremental steps.

Furthermore we used all techniques with a depth-first ordering as described
in Sec. 3.3 (“ies dfo+skip+grid+csc+rsc”). This approach is comparable to the
breadth-first method. It dominates in the “haplotype” family needing only half
of the run time as breadth-first ordering in average. More detailed result for the
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Fig. 9. Evolution of satisfied soft clauses

depth-first approach have to be excluded from the paper due to lack of space.
The depth-first ordering variant leads to a large amount of skipped comparators
(∼ 18% on average) in the networks which can be built completely (cf. Fig. 8).
This is caused by the as-early-as-possible consideration of the first partition
leading to more local bounds which can be fixed permanently than the breadth-
first approach (cf. Sec. 3.2). Differently, the breadth-first ordering is able to
provide early intermediate results considering all soft clauses, leading to overall
two solved instances more than the depth-first approach.

Overall both variants clearly dominates the monolithic baseline approach in
almost all benchmark families in terms of solved instances, average run time and
encoding size of the cardinality network.

4.5 Related Work and Summary

In contrast to previous work on incremental solving of cardinality constraints [15]
our approach is able to extract (Sec. 4.3) and set (Sec. 4.2) additional information
going beyond standard reasoning on CNF. Furthermore, the cardinality network
is optimized during the construction (Sec. 4.1), and we developed heuristics to
speed up the incremental calculations (Sec. 4.4).

We compared our approach by using two available state-of-the-art MaxSAT
solver: QMaxSAT0.21 [25] and MSUnCore [26] using bcd2, hardening and biased
techniques (cf. Tab. 1). QMaxSAT0.21 is also an iterative method, but it uses
a different SAT-solver as back-end as well as another type of cardinality net-
work [8]. MSUnocre is an unsat-based MaxSAT solver, thus our approach can-
not be adapted for this solver. Our best variant and the two competitors are
quite close in the number of solved instances. As the results show our baseline
implementation is already competitive, but including the proposed methods our
solver performs on the same level as state-of-the-art solvers.

Finally, we logged whenever our solver was able to improve the current solu-
tion internally, i. e., the number of satisfied soft clauses. The results for “baseline”,
“ies”, “ies+skip+grid+csc+rsc” and “ies dfo+skip+grid+csc+rsc” are shown in
Fig. 9. The plot represents the total number of satisfied soft clauses for all 1004
benchmarks on the y-axis over time in seconds on the x-axis. All incremental
approaches were able to satisfy impressively more (almost an order of magnitude)
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constraints than the baseline approach within the given time limit. Especially for
instances with a large number of soft constraints the baseline approach is often
not able to either build the network efficiently or provide applicable results.

One reason is that in 48 cases the “baseline” approach is not able to yield any
intermediate result, which is comparable with the result of QMaxSAT0.21 (45 in-
stances).This appears only for 12 instances considering “ies+skip+grid+csc+rsc”.
MSUnCore (which does not have to encode any cardinality network) is not able to
return any intermediate result in 20 cases.

The number of satisfied soft clauses of the incremental approach is also higher
than the bound of the reference solvers. MSUnCore was able to prove the sat-
isfiability of overall 5, 790, 880 soft clauses within the given time limit, i. e.,
about 2, 500, 000 soft clauses less than the incremental methods. The result of
QMaxSAT0.21 (1, 449, 246) is comparable with our “baseline” approach and
therefore also almost an order of magnitude smaller than for the incremental
approaches (∼ 8, 300, 000). I. e., the number of solved instances are comparable,
but all incremental methods converge much faster to the global optimum in the
long-term than the reference solvers (and the “baseline” approach).

5 Conclusions

We proposed an incremental approach for encoding and solving cardinality con-
straints based on divide-and-conquer networks. The method allows to profit from
additional information learned during the search for partial results leading to a
more efficient encoding of the network. This allows a fresh view on cardinality
networks and its CNF encoding which would not be possible without the in-
cremental view. Experiments using partial MaxSAT instances [17] show the ap-
plicability of the approach and demonstrate the effectiveness of the introduced
optimizations compared to the standard encoding, especially for instances with
a high number of soft clauses. The results also show that the incremental ap-
proach is able to prove lower bounds faster than the standard approach – even
compared to unsat core based approaches, leading to a more robust method.

As future work we want to develop further heuristics for splitting the parts in
terms of size and the order in which the individual parts get solved. Moreover,
we like to extend the concept of incremental encoding to other sorting networks,
since all presented methods are quite naturally adaptable to other divide-and-
conquer-based networks. Hence, we also plan to use different networks like adders
in [15] and counters, or even a mixture of those.
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Formal Verification of Skiplists

with Arbitrary Many Levels�
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Abstract. We present an effective method for the formal verification of
skiplists, including skiplists with arbitrary length and unbounded size.
The core of the method is a novel theory of skiplists with a decidable
satisfiability problem, which up to now has been an open problem.

A skiplist is an imperative software data structure used to imple-
ment a set by maintaining several ordered singly-linked lists in memory.
Skiplists are widely used in practice because they are simpler to im-
plement than balanced trees and offer a comparable performance. To
accomplish this efficiency most implementations dynamically increment
the number of levels as more elements are inserted. Skiplists are diffi-
cult to reason about automatically because of the sharing between the
different layers. Furthermore, dynamic height poses the extra challenge
of dealing with arbitrarily many levels. Our theory allows to express the
memory layout of a skiplist of arbitrary height, and has an efficient deci-
sion procedure. Using an implementation of our decision procedure, we
formally verify shape preservation and a functional specification of two
source code implementations of the skiplist datatype.

We also illustrate how our decision procedure can also improve the
efficiency of the verification of skiplists with bounded levels. We show
empirically that a decision procedure for bounded levels does not scale
beyond 3 levels, while our decision procedure terminates quickly for any
number of levels.

1 Introduction

A skiplist [13] is a data structure that implements a set, maintaining several
sorted singly-linked lists in memory. Each node in a skiplist stores a value and at
least the pointer corresponding to the list at the lowest level, called the backbone
list. Some nodes also contain pointers at higher levels, pointing to the next node
present at that level. The skiplist property establishes that: (a) the backbone list
is ordered; (b) lists at all levels begin and terminate on special sentinel nodes
called head and tail respectively; (c) tail points to null at all levels; (d) the list
at level i+1 is a sublist of the list at level i. Search in skiplists is probabilistically
logarithmic.

� This work was funded in part by Spanish MINECO Project “TIN2012-39391-C04-01
STRONGSOFT”.

F. Cassez and J.-F. Raskin (Eds.): ATVA 2014, LNCS 8837, pp. 314–329, 2014.
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5 22 25 53 70 88

head

level 0

level 1

level 2

level 3

tail

−∞ +∞

Fig. 1. A skiplist with 4 levels and the traversal searching 88 (heavy arrow)

Consider the skiplist layout in Fig. 1. Higher-level pointers allow to skip many
elements during the search. A search is performed from left to right in a top
down fashion, progressing as much as possible in a level before descending. For
instance, in Fig. 1 a lookup for value 88 starts at level 3 of node head . The
successor of head at level 3 is tail , which stores value +∞, greater than 88.
Consequently, the search continues at head by moving down to level 2. The
expected logarithmic search follows from the probability of a node being present
at a certain level decreasing by 1/2 as the level increases.

Contributions. Most practical implementations of skiplists either can grow
dynamically to any height or limit the maximum height of any node to a large
value like 32. Both kinds of implementations use a variable to store the current
highest level in use. In this paper we introduce TSL, a theory that captures skip-
list memory layouts, and we show that the (quantifier-free) satisfiability problem
for TSL is decidable, which has been up to now an open problem. This theory
builds non-trivially from the family of theories TSLK (see [17]) that allow to
reason about skiplists of a bounded number of levels. TSL is a decidable theory
which solves the following two open problems : (a) verification of skiplist imple-
mentations with an unbounded/growing number of levels; and (b) verification
of skiplist implementations for any bounded number of levels, even beyond the
practical limitation of 3 levels suffered by current verification techniques. With
our implementation of the decision procedure for TSL, we verify two implemen-
tations of the skiplist datatype: one, part of the industrial open source project
KDE [1,2], and a full implementation developed internally. In this paper we also
show, empirically, that TSLK does not scale beyond K = 3 levels but TSL allows
to verify skiplist implementations of arbitrarily many levels (bounded by some
value like 32 or not).

Related Work. Reasoning about skiplists requires to deal with unbounded
mutable data stored in the heap. One popular approach to the verification
of heap programs is Separation Logic [15]. Skiplists, however, are problematic
for separation-like approaches due to the aliasing and memory sharing between
nodes at different levels. Most of the work in formal verification of pointer pro-
grams are based on program logics in the Hoare tradition enriched to deal with
the heap and pointer structures [4, 9, 20]. Our approach is complementary, con-
sisting of the design of specialized decision procedures for memory layouts which
can be incorporated into a reasoning system for proving temporal properties, in
the style of Manna-Pnueli [10]. Proofs (of both safety and liveness properties)
are ultimately decomposed into verification conditions (VCs) in the underlying
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theory used for state assertions. This paper studies the automatic verification
of VCs involving the manipulation of skiplist memory layouts. For illustration
purposes we restrict the presentation in this paper to safety properties.

Logics like [4,9,20] are very powerful to describe pointer structures, but they
require the use of quantifiers to reach their expressive power. Hence, these logics
preclude their combination with methods like Nelson-Oppen [12] or BAPA [8]
for other aspects of the program state. Other alternatives based on shape anal-
ysis [19], like forest automata [3, 7] can only handle skiplists only of a bounded
height (empirical evaluation also suggest a current limit of 3). Unlike [7] our
approach is not fully automatic in the sense that it requires some user provided
annotations. On the other hand, our approach can handle skiplists of arbitrary
and growing height. The burden of additional annotation can be alleviated with
methods like invariant generation, but this is out of the scope of this paper.

Instead, we borrow from [14] a model-theoretic technique to deal with reach-
ability to define the theory TSL and build its decision procedure. Our solution
uses specific theories of memory layouts [16, 17] that allow to express powerful
properties in the quantifier-free fragment through the use of built-in predicates.
For example, in [17] we presented a family of theories of skiplists of fixed height,
based on a theory of ordered singly-linked lists [16]. However, handling dynamic
height was still an open problem that precluded the verification of practical
skiplist implementations. We solve this open problem here.

The rest of the paper is structured as follows. Section 2 presents a running
example of two implementations of the skiplists datatype. Section 3 introduces
TSL. Section 4 contains the decidability proof. Section 5 provides some examples
of the use of TSL in the verification of skiplists. Finally, Section 6 concludes the
paper.

2 An Implementation of Skiplists

Fig. 2 shows the pseudo-code of a sequential implementation of a skiplist, whose
basic classes are Node and SkipList . Each Node object contains a key field for
keeping the list ordered, a field val for the actual value stored, and a field next :
an array of arbitrary length containing the addresses of the following nodes at
each level. The program in Fig. 2 implements an unbounded skiplist. The local
variables lvl in Insert, i in Search and removeFrom in Remove maintain the
maximum level that these algorithms should consider.

An object sl of class SkipList , maintains fields sl.head , sl.tail and sl.maxLevel
to keep the data members storing the addresses of the head and tail sentinel
nodes, and the maximum level in use (resp). When the SkipList object sl is
clear from the context, we use head , tail and maxLevel instead of sl.head , sl.tail
and sl.maxLevel . The head node has key = −∞ and tail has key = +∞. These
nodes are not removed during the execution and their key field is not modified.
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1: procedure MGC(SkipList sl)
2: while true do
3: v := NondetPickValue
4: nondet

5:

⎡
⎢⎢⎢⎢⎣

call Insert(sl, v)
or

call Search(sl, v)
or

call Remove(sl, v)

⎤
⎥⎥⎥⎥⎦

6: end while
7: end procedure

8: procedure Insert(SkipList sl, Value v)
9: Array〈Node∗〉 [sl.maxLevel + 1]upd

10: Bool valueWasIn := false
11: Int lvl := randomLevel
12: if lvl > sl.maxLevel then
13: i := sl.maxLevel + 1
14: while i ≤ lvl do
15: sl.head .next [i] := sl.tail
16: sl.tail .next [i] := null
17: sl.maxLevel := i
18: i := i+ 1
19: end while
20: end if
21: Node∗pred := sl.head
22: Node∗curr := pred .next [sl.maxLevel ]
23: Int i := sl.maxLevel
24: while 0 ≤ i ∧ ¬valueWasIn do
25: curr := pred .next [i]
26: while curr .val < v do
27: pred := curr
28: curr := pred .next [i]
29: end while
30: upd [i] := pred
31: i := i− 1
32: valueWasIn := (curr .val = v)
33: end while
34: if ¬valueWasIn then
35: x := CreateNode(lvl , v)
36: i := 0
37: while i ≤ lvl do
38: x.next [i] := upd [i].next [i]
39: upd [i].next [i] := x

if i = 0 then
sl.reg := sl.reg ∪ {x}
sl.elems := sl.elems ∪ {v}

40: i := i+ 1
41: end while
42: end if
43: return ¬valueWasIn
44: end procedure

45: procedure Search(SkipList sl, Value v)
46: Node∗ pred := sl.head
47: Node∗ curr := pred .next [maxLevel ]
48: Int i := sl.maxLevel
49: while 0 ≤ i do
50: curr := pred .next [i]
51: while curr .val < v do
52: pred := curr
53: curr := pred .next [i]
54: end while
55: i := i− 1
56: end while
57: return curr .val = v
58: end procedure

59: procedure Remove(SkipList sl, Value v)
60: Array〈Node∗〉[sl.maxLevel + 1] upd
61: Int removeFrom := sl.maxLevel
62: Node∗ pred := sl.head
63: Node∗ curr := pred .next [sl.maxLevel ]
64: Int i := sl.maxLevel
65: while i ≥ 0 do
66: curr := pred .next [i]
67: while curr .val < v do
68: pred := curr
69: curr := pred .next [i]
70: end while
71: if curr .val �= v then
72: removeFrom := i− 1
73: end if
74: upd [i] := pred
75: i := i− 1
76: end while
77: Bool valueWasIn := (curr .val = v)
78: if valueWasIn then
79: i := removeFrom
80: while i ≥ 0 do
81: upd [i].next [i] := curr .next [i]

if i = 0 then
sl.reg := sl.reg \ {curr}
sl.elems := sl.elems \ {v}

82: i := i− 1
83: end while
84: free (curr)
85: end if
86: return valueWasIn
87: end procedure

class Node { Value val ; Key key ; Array〈Node∗〉 next ; Int @level ; }
class SkipList { Node∗ head ; Node∗ tail ; Int @maxLevel ; Set〈Addr〉 @reg ; Set〈Value〉 @elems; }

Fig. 2. On top, the classes Node and SkipList . Below, the most general client MGC,
and the procedures Insert, Search and Remove.
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Finally, Node objects also maintain a “ghost field” level for the highest rele-
vant level of next . SkipList objects maintain two ghost fields: reg for the region
(set of addresses) managed by the skiplist and elems for the set of values stored
in the skiplist. We use the @ symbol to denote a ghost field, and boxes (see
Fig. 2) to describe “ghost code”. These small extra ghost annotations are only
added for verification purposes and do not influence the execution of the real
program.

Fig. 2 contains the algorithms for insertion (Insert), search (Search) and
removal (Remove). Fig. 2 also shows the most general client MGC that non-
deterministically performs calls to skiplist operations, and can exercise all
possible sequences of calls. We use MGC to verify properties like skiplist preser-
vation. The execution begins with an empty skiplist containing only head and
tail nodes at level 0, that has already been created. New nodes are then added
using Insert. To maintain reg and elems : (a) a new node becomes part of the
skiplist when it is connected at level 0 in Insert; and (b) a node stops being
part of the skiplist when it is disconnected at level 0 in Remove. For simplicity,
we assume in this paper that val and key contain the same object. We wish
to prove that in all reachable states of MGC the memory layout is that of a
“skiplist”. We will also show that this datatype implements a set.

3 TSL: The Theory of Skiplists of Arbitrary Height

We use many-sorted first order logic to define TSL, as a combination of theories.
We begin with a brief overview of notation and concepts. A signature Σ is a
triple (S, F, P ) where S is a set of sorts, F a set of functions and P a set of
predicates. If Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2), we define Σ1 ∪ Σ2 =
(S1 ∪ S2, F1 ∪ F2, P1 ∪ P2). Similarly we say that Σ1 ⊆ Σ2 when S1 ⊆ S2, F1 ⊆
F2 and P1 ⊆ P2. Let t be a term and ϕ a formula. We denote with Vσ(t) (resp.
Vσ(ϕ)) the set of variables of sort σ occurring in t (resp. ϕ). Similarly, we denote
with Cσ(t) (resp. Cσ(ϕ)) the set of constants of sort σ occurring in t (resp. ϕ).

A Σ-interpretation is a map from symbols in Σ to values (see, e.g., [6]). A Σ-
structure is a Σ-interpretation over an empty set of variables. A Σ-formula over
a set X of variables is satisfiable whenever it is true in some Σ-interpretation
over X . A Σ-theory is a pair (Σ,A) where Σ is a signature and A is a class of Σ-
structures. Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation
A such that AΣ ∈ A, where AΣ is A restricted to interpret no variables. Given
a Σ-theory T , a Σ-formula ϕ over a set of variables X is T -satisfiable whenever
it is true on a T -interpretation over X .

Formally, the theory of skiplists of arbitrary height is defined as TSL =
(ΣTSL,TSL), where ΣTSL is the union of the following signatures, shown in Fig. 3
ΣTSL = Σlevel ∪Σord ∪Σarray ∪Σcell ∪Σmem ∪Σreach ∪Σset ∪Σbridge , and TSL is
the class of ΣTSL-structures satisfying the conditions listed in Fig. 4.

Informally, sort addr represents addresses; elem the universe of elements that
can be stored in the skiplist; level the levels of a skiplist; ord the ordered keys
used to preserve a strict order in the skiplist; array corresponds to arrays of ad-
dresses, indexed by levels; cell models cells representing objects of class Node;
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mem models the heap, a map from addresses to cells; path describes finite se-
quences of non-repeating addresses to model non-cyclic list paths; finally, set
models sets of addresses—also known as regions.

Σset is interpreted as finite sets of addresses. Σlevel as natural numbers with
order and addition with constants. Σord models the order between elements, and
contains two special elements −∞ and +∞ for the lowest and highest values in
the order �. Σarray is the theory of arrays [5, 11] with two operations: A[i] to
model that an element of sort addr is stored in array A at position i of sort level,
and A{i ← a} for an array update, which returns the array that results from A
by replacing the element at position i with a. Σcell contains the constructors and
selectors for building and inspecting cells, including error for incorrect derefer-
ences. Σmem is the signature of heaps, with the usual memory access and single
memory mutation functions. The signature Σreach contains predicates to check
reachability of addresses using paths at different levels. Finally, Σbridge contains
auxiliary functions and predicates to manipulate and inspect paths as well as a

Signt Sort Functions Predicates

Σlevel level
0 : level
s : level → level <: level× level

Σord ord −∞,+∞ : ord � : ord× ord

Σarray

array
level
addr

[ ] : array × level → addr

{ ← } : array × level× addr → array

Σcell

cell
elem
ord
array
addr
level

error : cell
mkcell : elem× ord× array × level → cell
.data : cell → elem
.key : cell → ord
.arr : cell → array
.max : cell → level

Σmem

mem
addr
cell

null : addr
rd : mem× addr → cell
upd : mem× addr × cell → mem

Σreach

mem
addr
path

ε : path

[ ] : addr → path

append : path× path× path
reach : mem× addr× addr

× level× path

Σset
addr
set

∅ : set

{ } : addr → set

∪,∩, \ : set× set → set

∈ : addr × set
⊆ : set× set

Σbridge

mem
addr
set
path
level

path2set : path → set
addr2set : mem× addr × level → set
getp : mem× addr × addr× level → path

ordList : mem× path
skiplist : mem× set× level

× addr × addr

Fig. 3. The signature of the TSL theory
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Each sort σ in ΣTSL is mapped to a non-empty set Aσ such that:
(a) Aaddr and Aelem are discrete sets (b) Alevel is the naturals with order

(c) Aord is a total ordered set (d) Aarray = AAlevel

addr

(e) Acell = Aelem ×Aord ×Aarray ×Alevel (f) Apath is the set of all finite sequences of

(g) Amem = AAaddr

cell (pairwise) distinct elements of Aaddr

(h) Aset is the power-set of Aaddr

Signature Interpretation

Σlevel • 0A = 0 • sA(l) = s(l), for each l ∈ Alevel

Σord

• x�Ay ∧ y�Ax → x = y • x�Ay ∨ y�Ax

• x�Ay ∧ y�Az → x�Az • −∞A�Ax ∧ x�A+∞A

for any x, y, z ∈ Aord

Σarray

• A[l]A = A(l)
• A{l ← a}A = B, where B(l) = a and B(i) = A(i) for i 
= l

for each A,B ∈ Aarray, l ∈ Alevel and a ∈ Aaddr

Σcell

• mkcellA(e, k, A, l) = 〈e, k, A, l〉 • errorA.arrA(l) = nullA

• 〈e, k, A, l〉.dataA = e • 〈e, k, A, l〉.keyA = k

• 〈e, k, A, l〉.arrA = A • 〈e, k, A, l〉.maxA = l

for each e ∈ Aelem, k ∈ Aord, A ∈ Aarray, and l ∈ Alevel

Σmem
• rd(m, a)

A
= m(a) • updA(m, a, c) = ma �→c • mA(nullA) = errorA

for each m ∈ Amem, a ∈ Aaddr and c ∈ Acell

Σreach

• εA is the empty sequence
• [a]

A
is the sequence containing a ∈ Aaddr as the only element

• ([a1 .. an] , [b1 .. bm] , [a1 .. an, b1 .. bm]) ∈ appendA iff ak 
= bl.
• (m, ainit, aend, l, p) ∈ reachA iff ainit = aend and p = ε, or there
exist addresses a1, . . . , an ∈ Aaddr such that:

(a) p = [a1 .. an] (c) m(ar).arr
A(l) = ar+1, for r < n

(b) a1 = ainit (d) m(an).arr
A(l) = aend

Σbridge

for each m ∈ Amem, p ∈ Apath, l ∈ Alevel, ai, ae ∈ Aaddr, r ∈ Aset

• path2setA(p) = {a1, . . . , an} for p = [a1, . . . , an] ∈ Apath

• addr2setA(m, a, l) =
{
a′ | ∃p ∈ Apath . (m, a, a′, l, p) ∈ reachA}

• getpA(m, ai, ae, l) = p if (m, ai, ae, l, p) ∈ reachA, and ε otherwise

• ordListA (m, p) iff p = ε or p = [a], or p = [a1, . . . , an] with n ≥ 2 and
m(aj).key

A � m(aj+1).key
A for all 1 ≤ j < n, for any m ∈ Amem

• skiplistA(m, r, l, ai, ae) iff

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ordListA(m, getpA(m, ai, ae, 0)) ∧
r = addr2setA(m, ai, 0) ∧

0 ≤ l ∧ ∀a ∈ r . m(a).maxA ≤ l ∧
m(ae).arr

A(l) = nullA ∧
(
0 = l

)
∨

(
∃lp . sA(lp) = l ∧ ∀ i ∈ 0, . . . , lp .

m(ae).arr
A(i) = nullA ∧

path2setA(getpA(m, ai, ae, s
A(i))) ⊆

path2setA(getpA(m, ai, ae, i))
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 4. Characterization of a TSL-interpretation A
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native predicate for the skiplist memory shape. In the paper, for a variable l of
sort level, we generally use l + 1 for s(l).

4 Decidability of TSL

In this section we prove the decidability of the satisfiability problem of quantifier-
free TSL formulas. We first start with some preliminaries.

Preliminaries. A flat literal is of the form x = y, x 
= y, x = f(y1, . . . , yn),
p(y1, . . . , yn) or ¬p(y1, . . . , yn), where x, y, y1, . . . , yn are variables, f is a function
symbol and p is a predicate symbol defined in the signature of TSL. We first
identify a set of normalized literals. All other literals can be converted into
normalized literals.

Lemma 1 (Normalized Literals). Every TSL-formula is equivalent to a dis-
junction of conjunctions of literals of the following list, called normalized TSL-
literals:

e1 
= e2 a1 
= a2 l1 
= l2
a = null c = error c = rd(m, a)
k1 
= k2 k1 � k2 m2 = upd(m1, a, c)
c = mkcell(e, k, A, l) l1 < l2 l = q

s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3
a = A[l] B = A{l ← a}
p1 
= p2 p = [a] p1 = rev(p2)
s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)
s = addr2set(m, a, l) p = getp(m, a1, a2, l)
ordList(m, p) skiplist(m, s, a1, a2)

For instance, e = c.data can be rewritten as c = mkcell (e, k, A, l) for fresh
variables k, A and l. The predicate reach(m, a1, a2, l, p) can be similarly trans-
lated into a2 ∈ addr2set(m, a1, l) ∧ p = getp(m, a1, a2, l). Similar translations
can be defined for ¬ordList(m, p), ¬skiplist(m, r, l, ai, ae), etc.

We will use the following formula ψ as a running example:

ψ : i = 0 ∧ A = rd(heap, head).arr ∧ B = A{i ← tail} ∧ rd(heap, head).max = 3.

This formula establishes that B is the array obtained from the next pointers
of node head , by replacing the pointer at the lower level by tail . To check the
satisfiability of ψ we first normalize it, obtaining ψnorm:

ψnorm : i = 0 ∧

⎛

⎜
⎝

c = rd(heap, head) ∧
c = mkcell (e, k, A, l) ∧

l = 3

⎞

⎟
⎠ ∧ B = A{i ← tail}.

4.1 A Decision Procedure for TSL

Fig. 5 sketches a decision procedure for the satisfiability problem of TSL for-
mulas, by reducing it to the satisfiability of quantifier-free TSLK formulas and
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To decide whether ϕin : TSL is SAT:

STEP 1. Sanitize:
ϕ := ϕin ∧

∧

B=A{l←a}∈ϕin

(lnew = l + 1)

STEP 2. Guess arrangement α of Vlevel(ϕ).

STEP 3. Split ϕ into (ϕPA ∧ α), (ϕNC ∧ α).

STEP 4. Check SAT of (ϕPA ∧ α).
If UNSAT → return UNSAT

STEP 5. Check SAT of (ϕNC ∧ α) as follows:

5.1 Let k = |Vlevel(ϕ
NC ∧ α)|.

5.2 Check �ϕNC ∧ α� : TSLK(k):
If SAT → return SAT

else return UNSAT.

l = q

l 
= l2

l = l + 1

Σord

Σarray

Σcell

Σmem

Σreach

Σbridge

l < l2

ϕPA
ϕNC

Fig. 5. A decision procedure for the satisfibility of TSL formulas (left). A split of ϕ
obtained after STEP 1 into ϕPA and ϕNC (right).

quantifier-free Presburger arithmetic formulas. We start from a TSL formula ϕ
expressed as a normalized conjunction of literals. The main idea is to guess a fea-
sible arrangement between level variables, and then extract from ϕ the relevant
levels, generating a TSLK formula using only relevant levels. To show correct-
ness, we will see that from the resulting model of the TSLK formula we can create
a model of the original TSL formula by replicating relevant levels into missing
intermediate levels.

STEP 1: Sanitization. The decision procedure begins by sanitizing the nor-
malized collection of literals received as input. A formula is sanitized when the
level right above array updates is named explicitly by a level variable. Saniti-
zation serves to infer the existence of large models from smaller models where
only named levels are populated, in Theorem 1 below.

Definition 1 (Sanitized). A conjunction of normalized literals is sanitized if
for every literal B = A{l ← a} there is a literal of the form l2 = l + 1.

A formula can be sanitized by adding a fresh variable lnew and a literal lnew = l+1
for every literal B = A{l ← a} in case there is no literal l2 = l + 1 already in
the formula. Sanitizing a formula does not affect its satisfiability because it only
adds an arithmetic constraint (lnew = l + 1) for a fresh new variable lnew. For
example, sanitizing ψnorm we obtain ψsanit : ψnorm ∧ lnew = i+ 1.

STEP 2: Order Arrangements, and STEP 3: Split. A model of a formula
assigns a natural number to every level variable. Hence, every two variables are
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either assigned the same value or are ordered by <. An order arrangement is an
arithmetic formula that captures this relation between level variables.

Definition 2 (Order Arrangement). Given a sanitized formula ϕ, an order
arrangement is a collection of literals containing, for every pair of level variables
l1, l2 ∈ Vlevel(ϕ), exactly one of (l1 = l2), (l1 < l2), or (l2 < l1).

For instance, an order arrangement of ψsanit is {i < lnew, i < l, lnew < l}.
Since there is a finite number of level variables in a formula ϕ, there is a finite
number of order arrangements. Note also that a formula ϕ is satisfiable if and
only if there is an order arrangement α such that ϕ ∧ α is satisfiable. STEP 2 of
the decision procedure consists of guessing an order arrangement α.

STEP 3 of the decision procedure first splits the sanitized formula ϕ into
ϕPA, which contains precisely all those literals in the theory of arithmetic Σlevel,
and ϕNC containing all literals from ϕ except those involving constants (l = q).
Clearly, ϕ is equivalent to ϕNC ∧ ϕPA. In our running example, ψsanit is split
into ψPA and ψNC:

ψPA : i = 0 ∧ l = 3 ∧ lnew = i+ 1

ψNC :

(
c = rd(heap, head) ∧
c = mkcell(e, k, A, l)

)

∧B = A{i ← tail} ∧ lnew = i+ 1.

STEP 3 uses the order arrangement to reduce the satisfiability of a sanitized
formula ϕ that follows an order arrangement α into the satisfiability of a Pres-
burger Arithmetic formula (ϕPA ∧ α), checked in STEP 4, and the satisfiability
of a sanitized formula without constants (ϕNC ∧ α), checked in STEP 5. An
essential notion to show the correctness of this split is that of a gap, which is a
level in a model that is not named by a level variable.

Definition 3 (Gap). Let A be a model of ϕ. We say that a number n is a gap
in A if there are variables l1, l2 in Vlevel(ϕ) such that lA1 < n < lA2 , but there is
no l in Vlevel(ϕ) with lA = n.

Consider ψsanit for which Vlevel(ψsanit) = {i, lnew, l}. A model Aψ of ψ that
interprets variables i, lnew and l as 0, 1 and 3 respectively has a gap at 2.

Definition 4 (Gap-less model). A model A of ϕ is a gap-less model whenever
it has no gaps, and for every array C in arrayA and level n > lA for all l ∈
Vlevel(ϕ), C(n) = null.

We will prove the existence of a gap-less model given that there is a model.
But, before, we need one last auxiliary notion to ease the construction of similar
models, by setting a condition under which reachability at different levels is
preserved.

Definition 5. Two interpretations A and B of ϕ agree on sorts σ whenever
(i) Aσ = Bσ,
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(ii) for every v ∈ Vσ(ϕ), v
A = vB,

(iii) for every function symbol f with domain and co-domain from sorts in σ,
fA = fB and for every predicate symbol P with domain in σ, PA iff PB.

Lemma 2. Let A and B be two interpretations of a sanitized formula ϕ that
agree on sorts {addr, elem, ord, path, set}, and s.t. for every l ∈ Vlevel(ϕ), m ∈
Vmem(ϕ), and a ∈ addrA, the following holds: mA(a).arrA(lA) = mB(a).arrB(lB)
Then,

(
reachA(mA, aAinit, a

A
end, l

A, pA)
)

iff
(
reachB(mB, aBinit, a

B
end, l

B, pB)
)
.

Proof (Sketch). The proof follows an inductive argument on the length of the
paths returned by reach.

We show now that if a sanitized formula without constants, as the one ob-
tained after the split in STEP 3, has a model then it has a model without gaps.

Lemma 3 (Gap-reduction). Let A be a model of a sanitized formula ϕ with-
out constants, and let A have a gap at n. Then, there is a model B of ϕ such
that, for every l ∈ Vlevel(ϕ): l

B = lA − 1 if lA > n, and lB = lA if lA < n. The
number of gaps in B is one less than in A.

Proof. (Sketch) We only show here the construction of the model B. Let A be a
model of ϕ with a gap at n. We build a model B with the condition in the lemma.
B agrees with A on addr, elem, ord, path, set. In particular, vB = vA for variables
of these sorts. For the other sorts we let Bσ = Aσ for σ = level, array, cell,mem.
We define transformation maps for elements of the corresponding domains as
follows:

βlevel(j) =

{
j if j < n

j − 1 otherwise
βarray(A)(i) =

⎧⎨
⎩
A(i) if i < n

A(i+ 1) if i ≥ n

βcell((e, k, A, l)) = (e, k, βarray(A), βlevel(l)) βmem(m)(a) = βcell(m(a))

Now, for variables l : level, A : array, c : cell and m : mem, we simply let
lB = βlevel(l

A), AB = βarray(A
A), cB = βcell(c

A), and mB = βmem(m
A).

The interpretation of all functions and predicates is preserved from A. An
exhaustive case analysis on the normalized literals allows to show that B is
indeed a model of ϕ. ��

For instance, consider formula ψsanit and model Aψ above. We can construct

model B reducing one gap from Aψ by stating that iB = iAψ , lnew
B = lnew

Aψ

and lB = 2, and completely ignore arrays in model Aψ at level 2.
Similarly, by a simple case analysis of the literals of ϕ and Lemma 2 the

following Lemma holds, and the corollary that shows the existence of gapless
models.

Lemma 4 (Top-reduction). Let A be a model of ϕ, and n a level such that
n > lA for all l ∈ Vlevel(ϕ) and A ∈ arrayA be such that A(n) 
= null . Then the
interpretation B obtained from A by replacing A(n) = null is also a model of ϕ.
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Corollary 1. Let ϕ be a sanitized formula without constants. Then, ϕ has a
model if and only if ϕ has a gapless model.

We show now that STEP 2 and the split in STEP 3 preserve satisfiability.

Theorem 1. A sanitized TSL formula ϕ is satisfiable if and only if for some
order arrangement α, both (ϕPA ∧ α) and (ϕNC ∧ α) are satisfiable.

Proof. (Sketch) The “⇒” direction follows immediately, since a model of ϕ con-
tains a model of its subformulas ϕPA and ϕNC, and a model of ϕPA induces a
satisfying order arrangement α.

For “⇐”, let α be an order arrangement for which both (ϕPA ∧ α) and (ϕNC ∧
α) are satisfiable, and let B be a model of (ϕNC ∧ α) and A be a model of (ϕPA ∧
α). By Corollary 1, we assume that B is a gapless model. The obstacle in merging
the models is that the values for levels in A and in B may differ. We will build a
model C of ϕ using B and A. In C, all levels will receive lC = lA, but all other sorts
will be filled according to B, including the contents of cells at level l, which will
be the corresponding cells of B at level lB. The remaining issue is how to fill inter-
mediate levels, not existing in B. Levels can be populated cloning existing levels
from B, illustrated in Fig. 6 (a) below. The two reasonable candidates to popu-
late the levels between lC1 and lC2 , are level l

B
1 and level lB2 , but without sanitation

both options can lead to a predicate changing its truth value between models B
and C, as illustrated in Fig. 6 (b) and (c). With sanitation, level lnew can be used
to populate the intermediate levels, preserving the truth values of all predicates
between models B and C. ��

STEP 4: Presburger Constraints. The formula (ϕPA ∧ α) contains only
literals of the form l1 = q, l1 
= l2, l1 = l2 + 1, and l1 < l2 for integer variables
l1 and l2 and integer constant q, a simple fragment of Presburger Arithmetic.

STEP 5: Deciding Satisfiability of FormulasWithoutConstants. In STEP
5we reduce a sanitized formulawithout constantsψ into an equisatisfiable formula
�ψ� in the decidable theory TSLK, for a finite value K = |Vlevel(ψ)| computed from
the formula. This bound provides the number of levels required in necessary to
reason about the satisfiability of ψ. We use [K] as a short for the set 0 . . .K − 1.
For ψsanit, we have K = 3 and thus we construct a formula in TSL3.

l2

l1l1

l2
?

l1

lnew

l2

(a) (b) (c) (d)

Fig. 6. Pumping a model of ϕNC to a model of ϕ is allowed thanks to the fresh level
lnew. In (b) the truth value of A = B{l1 ← e} is not preserved. In (c) A = B{l2 ← e} is
not preserved. In (d) all predicates are preserved.
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The translation from ψ into �ψ� works as follows. For every variable A of
sort array appearing in some literal in ψ we introduce K fresh new variables
vA[0], . . . , vA[K−1] of sort addr. These variables correspond to the addresses from
A that the decision procedure for TSLK needs to reason about. All literals from
ψ are left unchanged in �ψ� except (c = mkcell(e, k, A, l)), (a = A[l]), (B =
A{l ← a}), B = A and skiplist(m, s, a1, a2) that are changed as follows:
– c = mkcell(e, k, A, l) is transformed into c = (e, k, vA[0], . . . , vA[K−1]).
– a = A[l] gets translated into:

∧

i∈[K]

l = i → a = vA[i].

– B = A{l ← a} is translated into:

( ∧

i∈[K]

l = i → a = vB[i]

)
∧

( ∧

j∈[K]

l 
= j → vB[j] = vA[j]

)

– skiplist(m, r, a1, a2) gets translated into:

ordList(m, getp(m, a1, a2, 0)) ∧ r = path2set(getp(m, a1, a2, 0)) ∧
∧

i∈[K]

rd(m, a2).arr [i] = null ∧
∧

i∈[K−1]

path2set(getp(m, a1, a2, i+ 1)) ⊆ path2set(getp(m, a1, a2, i))

Note that the formula �ϕ� obtained using this translation belongs to the
theory TSLK. For instance, in our running example,

�ψNC� :

⎡
⎢⎣
i = 0 → tail = vB[0] ∧ i = 1 → tail = vB[1] ∧ i = 2 → tail = vB[2] ∧
i �= 0 → vB[0] = vA[0] ∧ i �= 1 → vB[1] = vA[1] ∧ i �= 2 → vB[2] = vA[2] ∧
c = rd(heap, head) ∧ c = mkcell(e, k, vA[0], vA[1], vA[2]) ∧ lnew = i+ 1

⎤
⎥⎦

The following lemmas establishes the correctness of the translation.

Lemma 5. Let ψ be a sanitized TSL formula with no constants. Then, ψ is
satisfiable if and only if �ψ� is also satisfiable.

The main result of this paper is the following decidability theorem, which
follows from Lemma 5, Theorem 1 and the fact that every formula can be nor-
malized and sanitized.

Theorem 2. The satisfiability problem of QF TSL-formulas is decidable.

5 Shape and Functional Verification

In this section we report an empirical evaluation of the verification of two im-
plementations of a skiplist, including an implementation from the open-source
project KDE. The TSL decision procedure has been integrated in Leap1, a theo-
rem prover being developed at IMDEA, based on parametrized proof rules [18]. A
TSL query is ultimately decomposed into simple Presburger arithmetic formulas

1 Leap and all examples can be downloaded from http://software.imdea.org/leap

http://software.imdea.org/leap
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and TSLK formulas. We use the decidability theorem for TSLK formulas, which
essentially computes a cardinality bound on a small model. Then, the TSLK
procedure encodes in SMT the existence of one such small model by unrolling
predicates (like e.g., reach) up to the computed bound.

We verified two kinds of properties: skiplist memory shape preservation and
functional correctness. Memory preservation is stated using the predicate skiplist
from TSL, and verified using the most general client from Fig. 2. For functional
verification we use the simple spec in Fig. 7.

The proof of shape preservation requires some auxiliary invariants region, next
and order (skiplistKDE, nodesKDE, pointersKDE and valuesKDE in the KDE imple-
mentation) that capture the separation between the skiplist region and new cells
and the relation between the pointers used to traverse the skiplist. The precise
definitions can be found in the web page of Leap. Fig. 8 reports an evaluation

1: procedure FuncSearch(SkipList sl)
2: Set〈Value〉 elems before := sl.elems
3: v := NondetPickValue
4: result := call Search(sl, v)

5: assert

(
elems = elems before ∧
result ↔ v ∈ elems

)

6: end procedure

1: procedure FuncInsert(SkipList sl)
2: Set〈Value〉 elems before := sl.elems
3: v := NondetPickValue
4: result := call Insert(sl, v)
5: assert (elems = elems before ∪ {v})
6: end procedure

1: procedure FuncRemove(SkipList sl)
2: Set〈Value〉 elems before := sl.elems
3: v := NondetPickValue
4: result := call Remove(sl, v)
5: assert (elems = elems before \ {v})
6: end procedure

Fig. 7. Functional specification

of the performance of the decision proce-
dure described in this paper for these two
implementations with unbounded num-
ber of levels (first 8 rows of the table)
compared with the performance of us-
ing only TSLK on implementations with
bounded levels (for bounds 1, 2, 3 and
4). The results for proving skiplist and
its auxiliary invariants appear in the first
four rows, and for skiplistKDE in the fol-
lowing four. The corresponding invariants
for bounded levels are reported in rows
labeled skiplisti, regioni, nexti and orderi
for i = 1, 2, 3, 4. Column #VC shows
the number of VCs generated. Column
#ϕ shows the number of formulas gen-
erated from these VCs (after normaliza-
tion, etc). Column TSL shows the number
of queries to the TSL decision procedure,
and column TSLi the number of queries
to TSLK for K = i. A query to TSL can result in several queries to TSLi. In some
cases there are fewer queries than formulas, because some formulas are trivially
simplified. Finally, the columns labeled “avg” and “slowest” report the average
and slowest running time to prove all VCs. The time reported in the column
Leap corresponds to the total verification time excluding the invocation to the
DPs. The column DP reports the total running time used in invoking all DPs.

This evaluation demonstrates that our decision procedure is practical to ver-
ify implementations with a variable number of levels, and allows to scale the
verification of implementations with a fixed number of levels where previously
known decision procedures time out. In the case of functional verification, Leap
using the TSL decision procedure was capable of verifying all three specifications
for the skiplist of unbounded height in less than one second.
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¡
Formulas #Calls to DPs VC time (s.) Total time (s.)
#VC #ϕ TSL TSL1 TSL2 TSL3 TSL4 slowest avg Leap DP

skiplist 80 560 28 45 92 38 14 5.40 0.24 0.15 19.64
region 80 1583 56 111 185 76 − 22.66 0.54 1.35 42.93
next 80 1899 30 39 55 22 − 0.32 0.02 1.59 1.60
order 80 2531 57 167 286 116 4 2.35 0.84 4.44 6.75

skiplistKDE 54 214 14 37 61 32 12 5.93 0.24 0.05 13.14
nodesKDE 54 585 32 99 174 76 − 3.10 0.17 0.31 9.36

pointersKDE 54 1115 27 38 42 16 − 0.22 0.01 0.86 0.76
valuesKDE 54 797 34 120 194 76 − 0.64 0.06 0.69 3.06

skiplist1 77 119 − 32 − − − 0.10 0.01 0.20 0.32
region1 77 119 − 27 − − − 0.14 0.01 0.37 0.28
next1 77 79 − 19 − − − 0.02 0.01 0.15 0.14
order1 77 79 − 25 − − − 0.02 0.01 0.58 0.11

skiplist2 79 137 − − 47 − − 2.15 0.05 0.35 4.13
region2 79 122 − − 27 − − 1.08 0.03 0.46 2.44
next2 79 82 − − 19 − − 0.06 0.01 0.18 0.27
order2 79 82 − − 25 − − 0.68 0.01 0.95 0.95

skiplist3 80 154 − − − 62 − 776.45 15.27 0.45 1221.52
region3 80 124 − − − 27 − 17.36 0.34 0.58 26.92
next3 80 84 − − − 19 − 0.09 0.01 0.20 0.47
order3 80 84 − − − 25 − 7.80 0.10 1.31 8.35

skiplist4 81 171 − − − − 77 T.O. T.O. 0.80 T.O.
region4 81 126 − − − − 27 226.08 4.30 0.79 348.44
next4 81 86 − − − − 19 0.22 0.01 0.25 0.83
order4 81 86 − − − − 25 43.97 0.56 1.83 45.28

Fig. 8. Number of queries and running times for the verification of skiplist shape
preservation. T.O. means time out, ’−’ means no calls to DP were required.

6 Conclusion and Future Work

We have presented TSL, a theory of skiplists of arbitrary many levels, useful
to automatically prove the VCs generated during the verification of skiplist im-
plementations. We showed that TSL is decidable by reducing its satisfiability
problem to TSLK, a decidable family of theories restricted to a bounded collec-
tion of levels. Our reduction illustrates that the decision procedure only needs
to reason those levels explicitly mentioned in the (sanitized) formula. We have
implemented our decision procedures on top of off-the-shelf SMT solvers (Yices
and Z3), and integrated it into our prototype theorem prover. Our empirical
evaluation demonstrates that our decision procedure is practical not only to
verify unbounded skiplists but also to scale the verification of bounded imple-
mentations to realistic sizes.

Our main line of current and future work is the verification of liveness prop-
erties of concurrent skiplist implementations, as well as improving automation
by generating and propagating invariants.
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Abstract. We consider the problem of verifying deadlock freedom for symmet-
ric cache coherence protocols. While there are multiple definitions of deadlock
in the literature, we focus on a specific form of deadlock which is useful for the
cache coherence protocol domain and is consistent with the internal definition of
deadlock in the Murphi model checker: we refer to this deadlock as a system-wide
deadlock (s-deadlock). In s-deadlock, the entire system gets blocked and is unable
to make any transition. Cache coherence protocols consist of N symmetric cache
agents, where N is an unbounded parameter; thus the verification of s-deadlock
freedom is naturally a parameterized verification problem.

Parametrized verification techniques work by using sound abstractions to re-
duce the unbounded model to a bounded model. Efficient abstractions which work
well for industrial scale protocols typically bound the model by replacing the state
of most of the agents by an abstract environment, while keeping just one or two
agents as is. However, leveraging such efficient abstractions becomes a challenge
for s-deadlock: a violation of s-deadlock is a state in which the transitions of all
of the unbounded number of agents cannot occur and so a simple abstraction like
the one above will not preserve this violation. Authors of a prior paper, in fact,
proposed using a combination of over and under abstractions for verifying such
properties. While quite promising for a large class of deadlock errors, simultane-
ously tuning over and under abstractions can become complex.

In this work we address this challenge by presenting a technique which lever-
ages high-level information about the protocols, in the form of message sequence
diagrams referred to as flows, for constructing invariants that are collectively
stronger than s-deadlock. Further, violations of these invariants can involve only
one or two interacting agents: thus they can be verified using efficient abstrac-
tions like the ones described above. We show how such invariants for the German
and Flash protocols can be successfully derived using our technique and then be
verified.

1 Introduction

We consider the problem of verifying deadlock freedom for symmetric cache coherence
protocols. Consider a cache coherence protocol P (N) where the parameter N repre-
sents an unbounded number of cache agents. The protocol implements requests sent by
the agents using messages exchanged in the protocol. For a protocol designer, the main
property of interest is the request-response property, i.e., every request from an agent
eventually gets a response. Since this property is a liveness property which is hard for

F. Cassez and J.-F. Raskin (Eds.): ATVA 2014, LNCS 8837, pp. 330–347, 2014.
c© Springer International Publishing Switzerland 2014
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existing model checking tools, designers resort to identifying causes for response prop-
erty failure, such as deadlock-style failures, and verify against them.

The literature is abundant with various definitions of deadlock [8, 22]. We focus on
deadlock errors in which the entire protocol gets blocked, i.e., no agent of the pro-
tocol can make any transition. We refer to such an error as a system-wide deadlock
(s-deadlock). If we model each transition τ of the protocol to have a guard τ.g, which
is false if the transition is not enabled, the s-deadlock error occurs if the guards of all
the transitions are false, i.e.,

∧
τ ¬(τ.g) is true. This kind of failure, while weaker than

other broader classes of deadlock failures, is commonly observed in industrial com-
puter system designs and is consistent with the internal definition for deadlock used
by the Murphi model checker as well [23]. This class of deadlocks is well motivated
for parameterized cache coherence protocols as these use a centralized synchroniza-
tion mechanism (e.g. a directory) and thus any deadlock results in the directory getting
blocked. It is highly likely that such a deadlock in the shared directory will end up
involving all of the agents of the protocol getting blocked, i.e., unable to make any
transition.

Since an s-deadlock error involves all of the unbounded number of agents getting
blocked and unable to make any transition, verification of s-deadlock freedom naturally
is a parameterized verification problem. Parameterized verification techniques work by
using sound abstractions to reduce the unbounded model to a finite bounded model that
preserves the property of interest. These abstractions typically tend to be simple over-
abstractions such as data-type reduction [30]. This abstraction keeps a small number
of agents (1 or 2) as is and replaces all the other agents with an abstract environment.
Such abstractions along with parameterized techniques like the CMP (CoMPositional)
method [11] have had considerable success in verifying key safety properties like mu-
tual exclusion and data integrity even for industrial scale protocols [11, 32, 38].

1.1 Challenge in Verifying S-deadlock

While parameterized techniques are successful for safety properties such as mutual
exclusion and data integrity, the application of such abstractions for parameterized ver-
ification of properties such as s-deadlock is hard. The key challenge arises from the
fact that an s-deadlock violation is a state in which all the guards are false, i.e., when∧

τ ¬(τ.g) holds; simple over-abstractions such as data-type reduction will easily mask
this violation due to the discarded state of agents other than 1 and 2 and the extra tran-
sitions of the environment.

One approach to address the above issue is to use a combination of over and under
abstractions (i.e., a mixed abstraction) instead of data-type reduction, as described in
a prior deadlock verification work [8]. While promising for verifying a large class of
deadlock errors, the use of mixed abstraction requires reasoning about over and under
abstraction simultaneously and easily becomes fairly complex.

In this paper we take a different approach. We show how high-level information
about the protocols, in the form of message sequence diagrams referred to as flows, can
be leveraged to construct invariants which are collectively stronger than the s-deadlock
freedom property. These invariants are amenable to efficient abstractions like data-type
reduction which have been used in the past for verifying industrial scale protocols.
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1.2 Leveraging Flows for Deadlock Freedom

Cache coherence protocols implement high-level requests for read (termed Shared) or
write (termed Exclusive) access from cache agents, or for invalidating access rights
(termed Invalidate) of some agent from the central directory. The implementation of
these requests is done by using a set of transitions which should occur in a specific
protocol order. This ordering information is present in diagrams referred to as message
flows (or flows for brevity). These flows are readily available in industrial documents in
the form of message sequence charts and tables [38].

Fig. 1 shows two of the flows for the German cache coherence protocol describing
the processing of the Exclusive and Invalidate requests. Each figure has a directory
Dir, and two agents i and j. The downward vertical direction indicates the passage of
time. The Exclusive request is sent by the cache agent i to the directory Dir to re-
quest a write access. The Exclusive flow in Fig. 1(a) describes the temporal sequence
of transitions which occur in the implementation in order to process this request: each
message is a transition of the protocol. The message SendReqE(i) is sent by the agent
i to Dir which receives this message by executing the transition RecvReqE(i). Next, if
the directory is able to grant Exclusive access, it sends the message SendGntE(i) to
agent i which receives this grant by executing RecvGntE(i). However, in case the di-
rectory is unable to send the grant since another agent j has access to the cache line, the
directory sends a request to invalidate the access rights of j. The temporal sequence of
transitions which occurs in the implementation in this case is shown in the Invalidate
flow in Fig. 1(b). This flow proceeds by the directory sending the SendInv(j) message,
the agent j sending the acknowledgment message SendInvAck(j), and the directory
receiving it by executing RecvInvAck(j) transition.

(a) Exclusive flow (b) Invalidate flow

Fig. 1. Flows for the German protocol
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Freedom from S-deadlock. At a high-level, our method tries to exploit the fact that
if the protocol is s-deadlock free, when none of the transitions of an agent are enabled,
another agent can be identified which must have a transition enabled. This identifica-
tion leverages the key insight that in any state of the protocol, if all the transitions of
some agent, say a1, cannot occur, then, some flow of that agent must be blocked since
it depends on another flow of another agent, say a2, to finish. Then, there are two pos-
sibilities: (1) the agent a2 is enabled, in which case the state is not an s-deadlock state,
or (2) the agent a2 is blocked as well, in which case it depends on another agent a3. If
this dependence chain is acyclic, with the final agent in the chain enabled, the protocol
is s-deadlock free. However, if the final agent is not enabled, or if the dependence chain
has a cycle, the protocol may either have an s-deadlock error or there may be an error
in the flow diagrams used.

As an example, for the German protocol, if the Exclusive flow of agent i is blocked
since the transition SendGntE(i) cannot occur, it is waiting for j to get invalidated. In
the protocol, at least some transition of the Invalidate flow on agent j can occur. This
enables proving freedom from s-deadlock for the protocol.

Using the above insight, by analyzing the dependence between blocked agents, our
method is able to point to an agent which must have at least one transition enabled in
every reachable state of the protocol. Specifically, our method enables the derivation
of a set of invariants I which collectively partition the reachable state of the protocol.
Each invariant then points to the agents which must have at least one transition enabled
when the protocol is in a state belonging to its partition. These invariants are derived in
a loop by iteratively model checking them on a protocol model with c agents, where c
is heuristically chosen as discussed in Section 3.

Verifying for an Unbounded Number of Agents. Once the invariants in I are derived,
they hold for a model with c agents. These invariants use just one index (i.e., they are of
the form ∀i : φ(i)) and thus, they can be verified for an unbounded number of agents by
using efficient parameterized verification techniques such as data-type reduction along
with the CMP (CoMPositional) method [11]. This technique has previously been suc-
cessful for verifying mutual exclusion for industrial protocols [32]. We note that our
approach is not limited to the CMP method: the invariants derived may be verified by
using any parameterized safety verification technique [15, 27, 34, 35].

1.3 Key Contributions

Our method proves s-deadlock freedom for parameterized protocols (formalized in Sec-
tion 2). It takes a Murphi model of the protocol as input. As shown in Fig. 2, first, a set
of invariants I which collectively imply s-deadlock freedom are derived on a model
with c agents (Section 3). These invariants are verified for an unbounded number of
agents by using state-of-the-art parameterized verification techniques (Section 4). We
verified Murphi implementations of two challenging protocols, the German and Flash
protocols using our method (Section 5).

Limitation: The key limitation of our approach is that the invariants have to be derived
manually by inspecting counterexamples. This can be automated if additional informa-
tion about conflicting flows is available in the flow diagram itself.
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Fig. 2. Experimental Flow

1.4 Relevant Related Work

Deadlock Verification: The work closest to ours is by Bingham et al. [7, 8]. They
formally verify deadlock as a safety property for protocols by specifying it using user-
identified Quiescent states (i.e., a state in which no resources are held): they specify
a protocol state to be a deadlock state if no Quiescent state is reachable from it. They
prove freedom from such a deadlock by using a combination of over and under abstrac-
tions (i.e., a mixed abstraction [16]). Their approach is promising for verifying deadlock
freedom and scales to the Flash protocol. However, the required tuning of both under
and over abstractions simultaneously can be complex. In contrast, we take the flow-
based alternative to enable simpler abstractions like data-type reduction.

Since the ultimate goal of any deadlock verification effort is to verify the response
property (i.e. every high-level request eventually gets a response), we contrast our work
with liveness verification efforts as well. Among techniques for parameterized verifica-
tion of liveness, McMillan has verified liveness properties of the Flash protocol [28,29].
The proof is manual and works on the basis of user supplied lemmas and fairness as-
sumptions. In contrast, our method reduces manual effort by leveraging information
from flows along with the CMP method. Among automatic approaches for verifying
liveness properties, Baukus et al. verified liveness properties of the German protocol [6]
using a specialized logic called WSIS. Fang et al. used automatically deduced ranking
functions [21] and, in a prior work, counter abstraction [35] to verify liveness prop-
erties. While fully automatic, these approaches tend to exhibit limited scalability for
larger protocols such as Flash, due to the inherent complexity of the liveness verifica-
tion problem. In contrast to these, our approach, while requiring some user guidance,
achieves much greater scalability and enables us to verify the Flash protocol.

Parameterized Verification Techniques: We note that the invariants derived using our
method can be verified for an unbounded number of caches by any parameterized safety
verification technique, it is not dependent on the CMP method which we used. Our
choice of using the CMP method was motivated by the fact that it is the only state-of-
the-art method we are aware of which has been used successfully for verifying protocols
like Flash and other industrial scale protocols. Among other techniques, an important
technique by Conchon et al. [15] uses a backward reachability algorithm to automat-
ically prove a simplified version of the Flash protocol. Next, there are numerous other
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prior approaches in literature for parameterized verification of safety properties. The
CMP method falls in the broad category of approaches which use compositional rea-
soning [1, 2] and abstraction based techniques to verify parameterized systems; the lit-
erature is abundant with examples of these [13, 14, 17, 20, 27, 28, 34, 35]. Next, another
category of approaches work by computing a cutoff bound k and showing that if the ver-
ification succeeds for k agents, then the protocol is correct for an arbitrary number of
agents [3,5,12,18,19,24]. Finally, there are approaches based on regular model check-
ing which use automata-based algorithms to verify parameterized systems [4,9,10,36].
To the best of our knowledge, the CMP method is the state-of-the-art for protocol ver-
ification in contrast to these methods and has been used to successfully verify larger
protocols such as Flash with minimal manual effort. (Other key methods which verify
Flash protocol in full complexity are by Park et al. [17, 33]. However, as described by
Talupur et al. [38], these are significantly manual and take more time to finish verifica-
tion of the Flash protocol compared to the CMP method.)

2 Protocols, Flows and S-deadlock Freedom: Background

2.1 Preliminaries

A protocol P (N) consists of N symmetric cache agents, with ids from the set NN =
{1, 2, 3, . . . , N}. We follow our prior approach [38] (which was inspired by the ap-
proach of Kristic [25]) in formalizing cache coherence protocols.

Index Variables: The protocol uses index variables quantified over the set of index
values NN . Thus, if i is an index variable, then i takes values from the domain NN .

State Variables: The state of the protocol is encoded as local variables and global
variables shared between the agents. These variables either are Boolean variables, or,
are pointers which can hold agent ids and thus have values in NN ∪ {null} where
null represents that the variable does not hold any index value. The global Boolean
variables are denoted by GB and pointers by GP . The local Boolean variables of agent
i are denoted by LB[i] and the local pointer variables by LP [i].

Expressions: An expression is a, possibly quantified, propositional formula with
atoms GB , GP = j, LB[i] and LP [i] = j, where, i and j are index variables.

Assignments: Assignments are of the form GB := b, or GP := j, LB[i] := b or
LP [i] := j, where, b is a variable with Boolean value and i, j are index variables.

Rules: Each agent i consists of a set of rules rl1(i), rl2(i), rl3(i), . . . , rlk(i). Each
rule rlj(i) can be written as: rlj(i) : rlj(i).ρ → rlj(i).a, where, rlj(i) is the rule name,
the guard rlj(i).ρ is an expression, and rlj(i).a is a list of assignments, such that these
assignments are restricted to only update the global variables or the local variables of
agent i. The local variables and rules for all agents i are symmetric.

Protocol: The above defined variables and rules naturally induce a state transition
system. A protocol, then, is a state transition system (S,Θ, T ), where S is the set of
protocol states, Θ ⊆ S is the set of initial states, and T ⊆ S × S is the transition
relation. Each protocol state s ∈ S is a valuation of the variables GB , GP , and LB[i],
LP [i] for each agent i. There exists a transition τ(iv) = (s, s′), (s, s′) ∈ T from state
s to s′ if there is a rule rlj(i) and value of index variable i = iv, s.t. rlj(iv).ρ holds in
s, and s′ is obtained by applying rlj(iv).a to s. In state s, we say that the rule rlj(i)
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is enabled for agent with id iv if the guard rlj(iv).ρ is true. When the enabled rule is
executed, its action is applied to update the state and we say that the rule rlj(i) has fired
for agent iv. The action is applied atomically to update the state, thus the transitions of
the protocol have interleaving semantics. Finally, we define an execution trace of the
protocol as a series of transitions where each transition is a fired rule. Thus, a trace can
be represented by a series (rla(i0), rlb(i1), . . . , rls(ik)), where the transition rlm(in)
is the rule rlm fired for the agent with id in.

S-deadlock Definition. We define a protocol state s to be an s-deadlock state if no rule
in that state is enabled. Then, a protocol is s-deadlock free if in all states, there exists at
least one rule which is enabled. This can be expressed as the invariant:

∨
i

∨
j rlj(i).ρ,

i.e., the protocol is s-deadlock free if the disjunction of the guards of all the rules of all
the agents is true for all the reachable states.

Flows. Flows describe the basic organization of rules for implementing the high-level
requests in a protocol (for example a request for Exclusive access or an Invalidate).
We model a flow as a set of rules F(i) of the form {rla(i), rlb(i), rlc(i), . . . , rln(i)}
which accomplish a high-level request of agent i.1 The rules in a flow are partially or-
dered, with the partial order relation denoted as ≺F(i). For example, in the Exclusive
flow in Fig. 1(a), the rules (arrows) are totally ordered along the downward direc-
tion. Thus SendReqE(i) ≺FE(i) RecvReqE(i), where FE denotes the set of rules
for Exclusive flow. For every rule rlk(i) in the flow F(i), the partial order naturally
induces the following precondition: for the rule rlk(i) to fire, all the rules preceding that
rule in the partial order of the flow F(i) must have already been fired. This precondition
is denoted by rlk(i).pF(i) and, formally, can be written as:

rlk(i).pF(i)=∀j :
(
{(rlj(i) ∈ F(i))∧(rlj(i)≺F(i)rlk(i))} ⇒ (rlj(i).f ired= true)

)
,

where rlj(i).f ired is an auxiliary variable which is initially set to false when the flow
F(i) starts and is set to true when the rule rlj(i) has fired for that flow.

Designs of protocols are presented in industrial documents as a set of flows F1(i),
F2(i), F3(i), . . ., Fk(i). In order to process a high-level request, a protocol may use a
combination of these flows, e.g. in order to execute a request for Exclusive access the
German protocol uses the Exclusive and Invalidate flows. Each flow in a protocol
represents an execution scenario of the protocol for processing some high-level request.
Thus many of the flows of a protocol tend to exhibit a lot of similarity as they are
different execution scenarios of the same high-level request. This makes them fairly
easy to understand. In Section 3, we show how a set of invariants collectively implying
s-deadlock freedom can be derived from these flows.

Some Definitions: We define the union of all the flows of agent i by R(i), i.e., R(i) =⋃
k Fk(i). Next, we define the operator ên which is true for a set of rules, if at least

one rule in the set is enabled, else it is false. Thus, for example, ên(R(i)) holds if at

1 For ease of exposition we assume that the guard and action of a rule are over the variables of
a single agent. Thus, a flow containing such rules also involves a single agent. In general, a
rule and thus a flow can involve a larger but fixed number of interacting agents as well. Our
approach can be easily generalized to that case.
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least one of the rules in R(i) is enabled. In this case, we say that the agent i is enabled.
Similarly, we say that a flow F(i) is enabled if at least one of its rules is enabled, i.e.,
ên(F(i)) holds. In case a flow F(i) is not enabled, we say that it is blocked on some
rule rlj(i) ∈ F(i) if the precondition of the rule rlj(i).pF(i) holds but the guard of the
rule rlj(i).ρ is false.

2.2 German Protocol Implementation

The German protocol consists of agents such that each agent can have Exclusive
(E), Shared (S) or Invalid (I) access to a cache line, as stored in the variable
Cache[i].State. An agent i requests these access rights by sending messages on a chan-
nel ReqChannel[i] to a shared directory which sends corresponding grants along the
channel GntChannel[i]. The directory is modeled as a set of global variables which
serves one agent at a time: it stores the id of the agent being served in the variable
CurPtr. It also stores the nature of the request in the variable CurCmd with values
in {ReqE,ReqS,Empty}, where ReqE represents a request for Exclusive access,
ReqS for Shared and Empty for no request. Finally, the directory tracks if Exclusive
access is granted to some agent or not using the variable ExGntd: it is true if access is
granted and false otherwise. A simplified version of the code for the Exclusive request
is shown in Fig. 3 (full version available in [11]).

In processing the Exclusive request, before sending the grant SendGntE(i), the
directory checks if there are any sharers of the cache line (by checking ShrSet =
{}). If there are sharers, the Invalidate flow is invoked for each agent in ShrSet.
Upon invalidation of all the agents in ShrSet, the ShrSet becomes empty and so
the SendGntE(i) rule becomes enabled for execution. We show the code for the
SendInv(i) rule below.

∀ i : NN; do Rule SendInv(i)
InvChannel[i].cmd = Empty ∧ i ∈ ShrSet ∧
((CurCmd = ReqE) ∨ (CurCmd = ReqS ∧ ExGntd = true))

→
InvChannel[i].cmd := Invalidate;

End;
We note a condition Inv Cond, which must be true for invoking the Invalidate

flow and can be identified from the guard of SendInv(i); Inv Cond :
((
(CurCmd =

ReqE) ∨ ((CurCmd = ReqS) ∧ (ExGntd = true))
)
∧ (ShrSet �= {})

)
.

3 Deriving Invariants for Proving S-deadlock Freedom

In this section, we show how a set of invariants I can be derived from flows such
that the invariants in I collectively imply s-deadlock freedom. At a high-level, our
method tries to show s-deadlock freedom by partitioning the global state of the protocol
using predicates, such that for each partition, some agent i has at least one transition
enabled. Each invariant inv is of the form inv.pred ⇒

(
∀i ∈ Ininv : ên(R(i))

)
,

where inv.pred is a predicate on the global variables of the protocol, Ininv ⊆ NN

s.t. ¬(Ininv = {}) (this is discharged as a separate assertion for model checking) and
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∀ i : NN; do Rule SendReqE(i)
ReqChannel[i].cmd=Empty ∧
(Cache[i].State=I ∨ Cache[i].State=S)

→
ReqChannel[i].cmd := ReqE;

End;

∀ i : NN; do Rule RecvReqE(i)
ReqChannel[i].cmd=ReqE ∧ CurCmd=Empty
→
CurCmd := ReqE; CurPtr := i;
ReqChannel[i].cmd := Empty;

End;

∀ i : NN; do Rule SendGntE(i)
CurCmd=ReqE ∧ CurPtr=i ∧
GntChannel[i]=Empty ∧ Exgntd=false

∧ ShrSet={}
→
GntChannel[i] := GntE; ShrSet := {i};
ExGntd := true; CurCmd := Empty;
CurPtr := NULL;

End;

∀ i : NN; do Rule RecvGntE(i)
GntChannel[i]=GntE
→
Cache[i].State := E; GntChannel[i] := Empty;

End;

Fig. 3. Implementation of the Exclusive Request

ên(R(i)) denotes a disjunction of the guards of the rules in R(i). The key insight is that
since ên(R(i)) has transitions from a single agent, the abstractions required for model
checking inv for an unbounded number of agents are significantly simpler than those
for checking the original s-deadlock property,2 as discussed in Section 4.

Our method iteratively model checks each invariant in I to refine it. Suppose, the
invariant inv ∈ I fails on model checking with the state of the protocol at failure being
sf . Then, there exists some agent if such that when inv.pred holds in sf , if ∈ Ininv is
true and ên(R(if )) is false in sf . This can happen due to two reasons: first, there may
be a mismatch between the flow specification and the rule-based protocol description.
Thus ên(R(if )) can be false due to a missing rule in some flow, a missing flow all
together, or an implementation error: the cause for the mismatch can be discovered from
the counterexample. As an example, the counterexample may show that all flows of the
agent if are not enabled even when the agent has some rule rle(if ) enabled. This rule
may be a part of a flow missing from the specification. Second, the invariant inv may

2 In the case of rules involving more than one agent (say c), the corresponding invariants may
involve transitions from c agents as well. Since c is small for practical protocols, the abstraction
constructed for verifying such invariants will be simple as well.
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fail as some flow F of the agent if is blocked (i.e., it has a rule with precondition true
but with guard false) as it is waiting for another flow F ’ of another agent is to complete.
As an example, for the German protocol, the Exclusive flow may be blocked for agent
if with the rule SendGntE(if ) having precondition true but guard false and waiting
for an Invalidate request to complete for another agent is in the set Sharers. In this
case, the set I is refined by splitting the invariant inv.

The invariant inv is split by, (1) splitting the predicate inv.pred to further partition
the global state, and (2) updating the set Ininv for each partition. To accomplish this,
the user identifies a pointer variable from GP or LP [i] (or an auxiliary variable) ŵ, such
that it has the value is in the failing state sf (and so acts as a witness variable for is). The
user also identifies a conflict condition conf on the global state which indicates when
is is enabled and if fails. This is done by using the heuristic that if the rule rlf (if ) of
flow F of agent if is blocked, conf can be derived by inspecting the guard of rlf (if );
the condition conf generally is the cause for the falsification of rlf (if ).ρ. For example,
for the German protocol, conf is derived from the guard of SendGntE and ŵ points
to some sharer which is being invalidated.

Using conf and ŵ, the invariant can be split into two invariants. (1) The first in-
variant excludes the case when conflict happens from the original invariant, i.e., inv1 :
(inv.pred ∧ ¬conf) ⇒

(
∀i ∈ Ininv1 : ên(R(i))

)
, where Ininv1 = Ininv . (2) The

second invariant shows that when a conflict happens, the agent pointed to by ŵ must be
enabled and so the protocol is still s-deadlock-free, i.e., inv2 : (inv.pred ∧ conf) ⇒(
∀i ∈ Ininv2 : ên(R(i))

)
, where Ininv2 = {i| (i ∈ NN ) ∧ (i = ŵ)}. For both the in-

variants, assertions which check that the corresponding set of indices are non-empty are
also verified. For example, for inv1, this assertion is (inv.pred ∧ ¬conf) ⇒ Ininv1.

Our method derives these invariants by iteratively model checking with a small num-
ber c (3 for German protocol) of agents. (Once the invariants are derived for c agents,
they are verified for an unbounded number of agents, as shown is Section 4.) This num-
ber c needs to be chosen to be large enough such that the proof of s-deadlock freedom is
expected to generalize to an unbounded number of agents. For the protocols we verified,
we found that as a heuristic, c should be one more than the maximum number of agents
involved in processing a high-level request. For the German protocol, an Exclusive
request may involve two agents, a requesting agent i and an agent j getting invalidated,
so we chose c to be equal to 3.

Fig. 4 shows the details of the method. It starts with an initial broad guess invariant,
true ⇒

(
∀i ∈ NN : ên(R(i))

)
(line 1). This indicates that in all reachable states, every

agent has at least one transition enabled. As this invariant is false, this broad guess
invariant is refined into finer invariants, using the loop. On finishing, the user is able to
derive a set of invariants, I, which collectively imply s-deadlock freedom. Further, the
user is also able to derive an assertion set, A, such that for each invariant inv in I, an
assertion in A checks if the set of indices Ininv is non-empty when inv.pred holds.

Soundness of the Method. The following theorem (proof in the extended version [37])
shows that the invariants in I along with the assertions in A collectively imply s-
deadlock freedom.



340 D. Sethi, M. Talupur, and S. Malik

DERIVE INVARIANTS(P(c)):
1: I = {true ⇒ (∀i ∈ NN : ên(R(i))

)}
2: A = {}
3: while P(c) �|= I do
4: Let inv ∈ I : P(c) �|= inv and

inv : inv.pred ⇒ (∀i ∈ Ininv : ên(R(i))
)
, where, Ininv ⊆ NN

5: Inspect counterexample cex and failing state sf :
6: Case 1: mismatch between flows and protocol
7: Exit loop and fix flows or protocol
8: Case 2: identify conflicting agents if and is s.t.
9: (1) if :

(
(if ∈ Ininv) ∧ (¬ên(R(if )))

)
holds in sf .

10: (2) ∃rlf ∈ F(if ) s.t.
(
rlf (if ).pF(if ) ∧ ¬(ên(F(if )))

)
holds in sf .

11: (3) ên(R(is)) holds in sf .
12: Identify conf and witness ŵ from above information
13: inv1 : (¬conf ∧ inv.pred) ⇒ (∀i ∈ Ininv : ên(R(i))

)

14: inv2 : (conf ∧ inv.pred) ⇒ (∀i ∈ Ininv2 : ên(R(i))
)
, where,

Ininv2 = {i| i = ŵ}
15: I = {I \ inv} ∪ {inv1, inv2}
16: A =

(A \ (inv.pred ⇒ (Ininv �= {}))) ∪
{(inv1.pred ⇒ (Ininv1 �= {})), (inv2.pred ⇒ (Ininv2 �= {}))}

Fig. 4. Method for Deriving Invariants from Flows

Theorem. If the set of invariants I along with the set of assertions A hold, they col-
lectively imply s-deadlock freedom, i.e.,

((∧
inv∈I(P |= inv)

)
∧

(∧
asrt∈A(P |=

asrt)
))

⇒
(
P |= (

∨
i

∨
j rlj(i).ρ)

)
.

3.1 Specifying Invariants for the German Protocol

We derive the invariants for a model of the German protocol with 3 cache agents. We
start with the initial invariant that for all agents, some flow is enabled, i.e., INV-1:
true ⇒

(
∀i ∈ NN : ên(R(i))

)
.

Iteration 1: Model checking the invariant INV-1 returns a counterexample trace
(SendReqE(1), RecvReqE(1), SendReqE(2)). Since the index of the last rule in
the trace is 2, ên(R(2)) must be false. This is because the rule RecvReqE(2) of the
Exclusive flow of cache 2 is not fired and thus has precondition true but guard false.
The user identifies the conflict condition conf = ¬(CurCmd = Empty) from the
guard of the blocked rule RecvReqE(2). Since CurPtr is the witness pointer in the
protocol for the variable CurCmd, the witness ŵ is set to CurPtr. Thus, the invariant
is split as follows:

– INV-1.1: (CurCmd = Empty) ⇒ (∀i ∈ NN : ên(R(i))).
– INV-1.2: ¬(CurCmd = Empty) ⇒ (∀i ∈ Ininv−1.2 : ên(R(i))), where
Ininv−1.2 = {i| (i ∈ NN ) ∧ (i = CurPtr)}. The assertion ¬(CurCmd =
Empty)⇒ ¬(Ininv−1.2 = {}) is also checked.

Iteration 2: Next, on model checking the invariants INV-1.1 and INV-1.2, the invariant
INV-1.2 fails. The counterexample trace returned is (SendReqE(1), RecvReqE(1),
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SendGntE(1), SendReqE(2), RecvReqE(2), SendReqE(2)). Since the last rule of
the counterexample is from cache 2, ên(R(2)) must be false even when CurPtr =
2. Further, there are two flows for two Exclusive requests by cache 2 active in the
counterexample, the first with SendReqE(2) fired and the second with SendReqE(2),
RecvReqE(2) fired. Since the first flow is blocked on the rule RecvReqE(2), the guard
of this rule is inspected. The guard is false as CurCmd is not empty. However, since
the corresponding witness variable for CurCmd is CurPtr which is already 2 (due to
the processing of the second flow), this is not a conflict with another cache. The conflict
must then be for the second Exclusive flow. The second flow is blocked on the rule
SendGntE(2) with precondition true but guard false: the user identifies the conflict
condition conf from the guard of SendGntE to be Inv Cond. Now, if Inv Cond is
true, the Invalidate flow for some sharer cache (cache 1 in this trace) must be active.
Thus, the user identifies ŵ to point to a sharer which must be invalidated: this is done
using the auxiliary variable Sharer, which points to the last sharer to be invalidated in
ShrSet. Thus, the invariant INV-1.2 is split as follows:

– INV-1.2.1:
(
¬(CurCmd = Empty) ∧ (¬Inv Cond)

)
⇒ (∀i ∈ Ininv−1.2.1 :

ên(R(i))), where, Ininv−1.2.1 = Ininv−1.2. An assertion that the precondition im-
plies the index set is non-empty is also checked.

– INV-1.2.2:
(
¬(CurCmd = Empty) ∧ (Inv Cond)

)
⇒ (∀i ∈ Ininv−1.2.2 :

ên(R(i))), where, Ininv−1.2.2 = {i| (i ∈ NN)∧ (i ∈ ShrSet)}. An assertion that
the precondition implies the index set is non-empty is also checked.

Iteration 3: Next, on model checking, the invariants INV-1.1, INV-1.2.1, INV-1.2.2,
along with the added assertions hold for a model with 3 caches. Then, to prove s-
deadlock freedom, this set of invariants form a candidate set to verify a protocol model
with an unbounded number of agents. The property is checked for unbounded agents
using techniques described in Section 4.

4 Verifying Flow Properties for Unbounded Agents

We now show how to verify the invariants in I for an unbounded number of agents by
leveraging the data-type reduction abstraction along with the CMP method.

Abstraction: Data-Type Reduction. Since the invariant is of the form inv.pred ⇒(
∀i ∈ Ininv : ên(R(i))

)
, by symmetry, it is sufficient to check: inv.pred ⇒

(
(1 ∈

Ininv) ⇒
(
ên(R(1))

))
. In order to verify this invariant, just the variables of agent 1

are required. Then, our abstraction keeps just the agent 1, and discards the variables of
all the other agents by replacing them with a state-less environment agent. We refer to
agent 1 as a concrete agent and the environment as Other with id o.

In the original protocol, since all the agents other than agent 1 interact with it by
updating the global variables, the actions of these agents on the global variables are
over-approximated by the environment agent. This environment agent does not have
any local state. The construction of this agent Other is automatic and accomplished
syntactically: further details on the automatic construction are available in [38]. The
final constructed abstraction then consists of: (1) a concrete agent 1, (2) an environment
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agent Other with id o, and (3) invariants specified on variables of agent 1 and global
variables. This abstraction is referred to as data-type reduction. If the original protocol
is P , and invariant set I, we denote this abstraction by data type and thus the abstract
model by data type(P) and the abstracted invariants on agent 1 by data type(I).
Abstraction for German Protocol. We now describe how the rule SendGntE(i) gets
abstracted in data type(P). In the abstract model, there is one concrete agent 1,
which has the rule SendGntE(1). Next, SendGntE(o) is constructed as follows.
(1) The guard is abstracted by replacing all atoms consisting of local variables (e.g.
GntChannel[i] = Empty) with true or false depending on which results in an
over-abstraction and by replacing any usage of i in atoms with global variables (e.g.
CurPtr = i) with o (i.e. CurPtr = o). (2) The action is abstracted by discarding any
assignments to local variables. Further, assignments to global pointer variables are ab-
stracted as well: any usage of i (e.g. CurPtr := i) is replaced by o (i.e. CurPtr := o).
The rule for agent Other is shown below:

Rule SendGntE(o)
CurCmd = ReqE ∧ CurPtr = o ∧ true ∧ Exgntd = false ∧
ShrSet = {}

→
no-op; ShrSet := {o}; ExGntd := true;
CurCmd := Empty; CurPtr := NULL;

End;

The Abstraction-Refinement Loop of the CMP Method. The CMP method works
as an abstraction-refinement loop, as shown in Fig. 5. In the loop, the protocol and in-
variants are abstracted using data-type reduction. If the proof does not succeed, the
user inspects the returned counterexample cex and following possibilities arise. (1)
Counterexample cex is real, in which case an error is found and so the loop exits.
(2) Counterexample cex is spurious and so the user refines the protocol by adding a
non-interference lemma lem. The function strengthen updates the guard rlj(i).ρ of ev-
ery rule rlj(i) of the protocol to rlj(i).ρ ∧ lem(j); this way, on re-abstraction with
data type in line 1, the new abstract protocol model is refined. Additional details on
the CMP method are available in [11, 25].

CMP(P(N),I)
1: P# = P(N); I# = I
2: while data type(P#) �|= data type(I#) do
3: examine counterexample cex
4: if cex is real, exit
5: if spurious:
6: find lemma lem = ∀i.lem(i)
7: P# = strengthen(P#, lem)
8: I# = I# ∪ lem

Fig. 5. The CMP method
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5 Experiments

Using our approach, we verified Murphi (CMurphi 5.4.6) implementations of the Ger-
man and Flash protocols (available online [31]). Our experiments were done on a 2.40
GHz Intel Core 2 Quad processor, with 3.74 GB RAM, running Ubuntu 9.10.

German Protocol. We verified the invariants discussed in Section 3.1, in order to prove
s-deadlock freedom. We chose to use an abstraction with 2 agents and an environment
agent, so that the mutual exclusion property can also be checked.

The proof finished in 217s with 7M states explored. No non-interference lemmas
were required to refine the model, in order to verify the invariants presented in Sec-
tion 3.1. Since typically protocols are also verified for properties like data integrity (i.e.
the data stored in the cache is consistent with what the processors intended to write) and
mutual exclusion, we model checked the above invariants along with these properties.
In this case, the abstract model was constrained and model checking this model was
faster and took 0.1 sec with 1763 states explored.

Buggy Version. We injected a simple error in the German protocol in order to intro-
duce an s-deadlock. In the bug, an agent being invalidated drops the acknowledgement
SendInvAck it is supposed to send to the directory. This results in the entire protocol
getting blocked, hence an s-deadlock situation. This was detected by the failing of the
invariant INV-1.2.2, discussed in Section 3.1.

Flash Protocol. Next, we verified the Flash protocol [26] for deadlock freedom. The
Flash protocol implements the same high-level requests as the German protocol. It also
uses a directory which has a Boolean variable Pending which is true if the directory is
busy processing a request from an agent pointed to by another variable CurSrc (name
changed from original protocol for ease of presentation). However, the Flash protocol
uses two key optimizations over the German protocol. First, the Flash protocol enables
the cache agents to directly forward data between each other instead of via the directory,
for added speed. This is accomplished by the directory by forwarding incoming requests
from the agent i to the destination agent, FwDst(i), with the relevant data. Second, the
Flash protocol uses non-blocking invalidates, i.e, the Exclusive flow does not have
to wait for the Invalidate flow to complete for the sharing agents in ShrSet. Due to
these optimizations, the flows of the Flash protocol are significantly more complex than
those of German protocol. Further, due to forwarding, some rules involve two agents
instead of one for the German protocol: thus the flows involve two agents as well.
Each flow then is of the form Fk(i, j), where i is the requesting agent for a flow and
j = FwDst(i) is the destination agent to which the request may be forwarded by the
directory. Then, we define R(i) to be equal to

⋃
k Fk(i, FwDst(i)).

We derived the invariants from the flows by keeping c to be equal to 3, as each re-
quest encompasses a maximum of 2 agents (forwarding and invalidation do not happen
simultaneously in a flow). The final invariants derived using our method are as follows:

Directory Not Busy: If the directory is not busy (i.e., Pending is false), any agent i can
send a request. Thus the invariant INVF-1: ¬(Pending) ⇒

(
∀i ∈ NN : ên(R(i))

)
.

However, if the directory is busy (i.e., Pending is true), two possibilities arise. (1)
It may be busy since it is processing a request from agent CurSrc. Or, (2) in case
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the request from CurSrc requires an invalidate, the directory may remain busy with
invalidation even after the request from CurSrc has been served. This is because Flash
allows the request from CurSrc to complete before invalidation due to non-blocking
invalidates. Hence the following invariants:

Directory Busy with Request: Invariant INVF-2:
(
(Pending) ∧ (ShrSet = {})

)
⇒(

∀i ∈ IninvF−2ên(R(i))
)
, where IninvF−2 = {i| (i ∈ NN ) ∧ (i = CurSrc)}.

Directory Busy with Invalidate: Invariant INVF-3:
(
(Pending)∧¬(ShrSet = {})

)
⇒(

∀i ∈ IninvF−3ên(R(i))
)
, where IninvF−3 = {i| (i ∈ NN ) ∧ (i ∈ ShrSet)}.

Runtime: We verified the above invariants along with the mutual exclusion and the data
integrity properties for an unbounded model abstracted by keeping 3 concrete agents
(one agent behaves as a directory) and constructing an environment agent Other. The
verification took 5127s with about 20.5M states and 152M rules fired. In this case we
reused the lemmas used in prior work by Chou et al. [11] for verifying the mutual
exclusion and data integrity properties in order to refine the agent Other.

Verifying Flash vs German Protocol: The flows of the Flash protocol involve two in-
dices: we eliminated the second index by replacing it with the variableFwDst(i) which
stores information of the forwarded cache and thus made the verification similar to the
German protocol case. Next, Flash protocol uses lazy invalidate: even if the original
request has completed, the directory may still be busy with the invalidate. As explained
above, this was in contrast to the German protocol and resulted in an additional invariant
INVF-3.

Comparison with Other Techniques: The only technique we are aware of which han-
dles Flash with a high degree of automation is by Bingham et al. [8]. While a di-
rect comparison of the runtime between their approach and ours is infeasible for this
paper, we note that the invariants generated using our approach only require an over-
abstraction in contrast to theirs which requires a mixed-abstraction. This is an advan-
tage since development of automatic and scalable over-abstraction based parameterized
safety verification techniques is a promising area of ongoing research (e.g. [15]) which
our approach directly benefits from.

6 Conclusions and Future Work

In this paper we have presented a method to prove freedom from a practically motivated
deadlock error which spans the entire cache coherence protocol, an s-deadlock. Our
method exploits high-level information in the form of message sequence diagrams—
these are referred to as flows and are readily available in industrial documents as charts
and tables. Using our method, a set of invariants can be derived which collectively
imply s-deadlock freedom. These invariants enable the direct application of industrial
scale techniques for parameterized verification.

As part of future work, we plan to take up verification of livelock freedom by exploit-
ing flows. Verifying livelock requires formally defining a notion of the protocol doing
useful work. This information is present in flows—efficiently exploiting this is part of
our ongoing research.
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Abstract. This work focuses on data-parameterized abstract systems that ex-
tend standard modelling by allowing atomic propositions to be parameterized by
variables that range over some infinite domain. These variables may range over
process ids, message numbers, etc. Thus, abstract systems enable simple mod-
elling of infinite-state systems whose source of infinity is the data. We define and
study a simulation pre-order between abstract systems. The definition extends
the definition of standard simulation by referring also to variable assignments.
We define VCTL� – an extension of CTL� by variables, which is capable of speci-
fying properties of abstract systems. We show that VCTL� logically characterizes
the simulation pre-order between abstract systems. That is, that satisfaction of
VACTL�, namely the universal fragment of VCTL�, is preserved in simulating
abstract systems. For the second direction, we show that if an abstract system
A2 does not simulate an abstract system A1, then there exists a VACTL formula
that distinguishes A1 from A2. Finally, we present a game-theoretic approach
to simulation of abstract systems and show that the prover wins the game iff A2

simulates A1. Further, if A2 does not simulate A1, then the refuter wins the game
and his winning strategy corresponds to a VACTL formula that distinguishes A1

from A2. Thus, the many appealing practical advantages of simulation are lifted
to the setting of data-parameterized abstract systems.

1 Introduction

In system verification, we check that an implementation satisfies its specification. Both
the implementation and the specification describe the possible behaviors of the system
at different levels of abstraction. If we represent the implementation I and the specifi-
cation S using Kripke structures, then the formal relation that captures satisfaction in
the linear approach is trace containment: S trace-contains I iff it is possible to gener-
ate by S every (finite and infinite) sequence of observations that can be generated by
I. The notion of trace containment is logically characterized by linear temporal logics
such as LTL in the sense that S trace-contains I iff every LTL formula that holds in S
holds also in I. Unfortunately, it is difficult to check trace containment (complete for
PSPACE [29]). The formal relation that captures satisfaction in the branching approach
is tree containment: S tree-contains I iff it is possible to embed in the unrolling of S
every (finite and infinite) tree of observations that can be embedded in the unrolling of
I. The notion of tree containment is equivalent to the notion of simulation, as defined
by Milner [24]: S tree-contains I iff S simulates I; that is, we can relate each state of
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I to a state of S so that two related states i and s agree on their observations and every
successor of i is related to some successor of s [26].

Simulation has several theoretical and practical appealing properties. First, like trace
containment, simulation is robust: for universal branching temporal logics (where only
universal path quantification is allowed) such as ACTL and ACTL� (the universal frag-
ments of the computation tree logics CTL and CTL�), we have that S simulates I iff
every formula that holds in S holds also in I [2,15]. Second, unlike trace containment,
the definition of simulation is local, as the relation between two states is based only on
their successor states. As a result, simulation can be checked in polynomial time [7,1].
The locality advantage is so compelling as to make simulation useful also to researchers
that favor trace-based specification: in automatic verification, simulation is widely used
as an efficiently computable sufficient condition for trace containment [19]; in manual
verification, trace containment is most naturally proved by exhibiting local witnesses
such as simulation relations or refinement mappings (a restricted form of simulation
relations) [20,22,23,8].

In addition to the use of simulation in step-wise refinement, where a pre-order be-
tween an implementation and its specification is checked, simulation is helpful in cop-
ing with the state-explosion problem, as it enables the verification process to proceed
with respect to an over-approximation of the implementation: instead of verifying I,
we abstract some of its details and generate a (typically much smaller) system I ′ that
simulates I. Verification then proceeds with respect to I ′, either proving that it satisfies
the specification (in which case we can conclude that so does I) or not, in which case
the abstraction is refined [6].

Abstraction and simulation have turned out to be key methods in coping with the
state-explosion problem. In particular, by abstracting elements of the system that have
an infinite domain, one can verify infinite-state systems. Often, the source of infinity
in a system is data that range over an unbounded or infinite domain, such as content
of messages, process ids, etc. Traditional abstraction methods either hide the data or
abstract its value by finite-domain predicates [27]. In [12,13], we introduced abstract
systems, which finitely and naturally represent infinite-state systems in which the source
of infinity is data that range over an infinite domain. Formally, an abstract system is a fi-
nite Kripke structure whose atomic propositions are parameterized by variables ranging
over the infinite domain. A transition of the system may reset a subset of the variables,
freeing them of their previous assignment. The different concrete computation trees, or
concretizations, of an abstract system are obtained by legally assigning concrete domain
values to the variables along an unwinding of the abstract system.

For example, consider the system presented in Figure 1. It represents a simple com-
munication protocol, where the variable x represents the message id. The concretization
presented in Figure 1 is obtained by assigning values to x in a way that agrees with the
resets in the protocol: when the transition from the timeout state is taken, the message
is resent with the same message id. When the transition from the ack state is taken, x is
reset and may be reassigned, as reflected in the concretization.

Evidently, abstract systems are capable of describing communication protocols with
unboundedly many processes, systems with interleaved transactions each carrying a
unique id, buffers of messages with an infinite domain, and many more.
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Fig. 1. A simple communication protocol and a possible concretization

In this paper we combine the clean treatment of data over infinite domain with the
theoretical and practical advantages of simulation. We define simulation between ab-
stract systems, study its properties, and describe a logical characterization for it.

The challenge of specifying behaviors with an infinite component has led to the
development of various formalisms. One class of formalisms consists of variants of au-
tomata over infinite alphabets. Types of such automata include register automata [28],
which have a finite set of registers, each of which may contain a letter from the infinite
alphabet. Register automata have been extensively studied and may include features
like alternation, two-wayness, a nondeterministic change of the content of registers,
and further generalizations [25,18,13]. Pebble automata [25,30] place pebbles on the
input word in a stack-like manner, and in data automata [4,3], the infinite alphabet
consists of pairs – a letter from a finite alphabet and a data value from some infinite
domain. The finite alphabet is accessed directly and the data is accessed indirectly via
the equivalence relation it induces on the set of positions. Finally, closest to our abstract
systems are nondeterministic finite automata with variables [11].

The second class of formalisms consists of extensions of temporal logics. An exten-
sion in which atomic propositions are parameterized by a variable that ranges over the
set of processes ids was studied in [5,10]. These works are tailored for the setting of
parameterized systems, and are also restricted to systems in which (almost) all com-
ponents are identical. In Constraint LTL [9], atomic propositions may be constraints
like x < y, and formulas are interpreted over sequences of assignments of variables to
values in N or Z. Unlike our approach, the focus is on reasoning about sequences of
numerical values. In [21,16], LTL and CTL have been extended with a freeze quantifier,
which is used for storing values from an infinite domain in a register.

In [12], we introduced variable LTL (VLTL), a first-order extension of LTL. Like ab-
stract systems, VLTL uses atomic propositions parameterized with variables to describe
the behaviors of computations that may carry infinitely many values. For example, the
VLTL formula ψ = ∀x; G(send.x → Freceive.x) states that for every value d in the
domain, whenever a message with content d is sent, then a message with content d is
eventually received. In this work, we define the logic VCTL�, a first-order extension of
CTL�. Similarly to CTL�, the logic VCTL� has existential and universal path quantifi-
cation. Similarly to VLTL, it also has existential and universal quantification over vari-
ables. While VLTL is interpreted over infinite computations of abstract systems, VCTL�

is interpreted over their computation trees.
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As an example, consider a variable x that ranges over process ids. The VCTL� for-
mula ϕ1 = ∃x; AFAG¬idle.x states that there exists a process that is eventually not
idle along all paths. The formula ϕ2 = AF∃x; AG¬idle.x states that every path even-
tually reaches a point where there exists a process that is never idle from that point on
along all paths. The formulaϕ3 = AFA∃x; G¬idle.x states that along every path, from
some point on, there exists a process that is never idle. Finally,ϕ4 = AFAG∃x;¬idle.x
states that from some point on, in every step of every path, there exists a process that is
never idle. Note that the formulas are not equivalent, and they demonstrate the power of
the ability to nest the variable quantifiers within the formula.1 In particular, in ϕ3 (and
not in ϕ2) different paths may have different non-idle processes, and in ϕ4 (and not in
ϕ3), this may be a different process at each step.

Our goal is to define a simulation relation for abstract systems in a way that pre-
serves their behaviors. Preserving the behavior of the variables raises some challenges.
Consider two states q1 and q2 of abstract systems A1 and A2. In standard simulation,
q1 and q2 may be matched only if they agree on the labeling of the atomic propositions.
In the abstract systems setting, we need, in addition, to make sure that the variables that
parameterize these atomic propositions can be matched. For example, if q1 is labeled
by a.x1 and q2 is labeled by a.x2, where a is an atomic proposition and x1, x2 are vari-
ables, then a simulation that matches q1 with q2 must make sure that every value that
is assigned to x1 can also be assigned to x2. This latter condition is no longer local, as
the value assigned to an occurrence of x2 depends both on the history of the behavior
before reaching q2, and on the behavior of other states in which x2 occures. Thus, a
simulation relation between A1 and A2 must keep a memory component for the vari-
ables, and the challenge is to keep the definition of simulation as local as possible, with
the global elements being restricted to the variables only.

We manage tracking the behavior of the variables locally by adding a function that
maps the variables of A2 to the variables of A1 to each tuple in the simulation relation.
Thus, our simulation relation consists of triplets: a state of A1, a state of A2, and a
function over the variables. We present an algorithm for computing a maximal simula-
tion from A1 to A2. The function component may create a simulation relation of size
that is exponential in the number of variables. While this is worse than the polynomial
size of standard simulation, one should bear in mind that trace containment for abstract
systems is undecidable, as opposed to the PSPACE complexity of standard trace con-
tainment. We argue that our definition is indeed robust with respect to VACTL� – the
universal fragment of VCTL�. First, if A2 simulates A1, denoted A1 � A2, then every
VACTL� formula that is satisfied in A2 is also satisfied in A1. The second direction is
much harder, and we show that if A1 � A2, then we can construct a VACTL formula
that A2 satisfies, and A1 does not.

A simulation game for (non-abstract) systems A1 and A2 is played between two
players: a prover, who wishes to prove that A2 simulates A1, and a refuter, who wishes
to prove the contrary. In each round of the game, the refuter advances along A1 and
the prover advances along A2, aiming to match every move of the refuter by moving
to a state with the same label. A simulation relation from A1 to A2 induces a winning
strategy for the prover. Also, if A2 does not simulate A1, then a winning strategy for

1 In VLTL, variable quantification is restricted to appear only at the head of the formula.
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the refuter exists, and it induces an ACTL formula that holds only in A2. We define
a game-theoretic approach to simulation between abstract systems A1 and A2. As in
the standard setting, the game proceeds in rounds along both abstract systems, where
in every step the prover attempts to match the state it chooses in A2 with the state in
A1 chosen by the refuter. Here, however, matching refers also to the variables, and the
prover must make sure that the variables in the states it chooses can be assigned the
same values that can be assigned to the variables in the states that the refuter chooses.
As explained above, this property is not local, making the game more sophisticated:
While in the traditional setting the game proceeds along a single path in each system,
in our setting the refuter may split the game to continue temporarily along two different
paths – those along which he plans to force the prover to use inconsistent assignments.

As in the traditional setting, a simulation relation induces a winning strategy for
the prover. Also, if A2 does not simulate A1, then a winning strategy is induced by a
VACTL formula that holds only in A2. The need to refer to the variables makes the game
and its correctness proof complicated. In particular, in case the refuter wins thanks to
the inability of the prover to correctly handle the variables, the distinguishing formula
captures this by requirements that refer to variable assignments. The construction of
the formula relies on our algorithm for computing a simulation relation from A1 to
A2. The time complexity of our algorithm is exponential in the number of variables,
and accordingly, so is the depth of the formula. Still, the appealing properties of the
game in the traditional setting are preserved, in particular the fact that the players have
memoryless strategies.

In Section 7 we discuss directions for future research and the practical applications
of defining the simulation pre-order in the setting of abstract systems.

2 Preliminaries

Kripke Structures and Simulation. Let AP be a finite set of atomic propositions. A
Kripke structure is a tuple A = 〈Q, q0, AP,R, L〉, where Q is a finite set of states, q0

is an initial state, R ⊆ Q × Q is a total transition relation, and L : Q → 2AP maps
each state to the set of atomic propositions that hold in the state. We sometimes refer to
Kripke structures as systems.

Let A1 = 〈Q1, q
0
1 , AP,R1, L1〉 and A2 = 〈Q2, q

0
2 , AP,R2, L2〉 be two Kripke

structures over the same set of atomic propositions. A simulation [24] fromA1 to A2 is a
relation H ⊆ Q1×Q2 such that for every 〈q1, q2〉 ∈ H , we have that L1(q1) = L2(q2),
and for every 〈q1, q′1〉 ∈ R1 there exists 〈q2, q′2〉 ∈ R2 such that 〈q′1, q′2〉 ∈ H . If
〈q01 , q02〉 ∈ H , then we say that A2 simulates A1, denoted A1 � A2.

It is well known [14] that if A1 � A2, then for every ϕ ∈ ACTL�, if A2 |= ϕ then
A1 |= ϕ. If A1 � A2, then there exists an ACTL formula ϕ such that A2 |= ϕ and
A1 � ϕ. We call such a formula a distinguishing formula for A1 and A2.

A simulation game [17] for A1 and A2 is a protocol for two players: a proverP , who
wishes to prove that A1 � A2, and a refuter R, who wishes to prove that A1 � A2.
A position in the game is a pair 〈q1, q2〉 ∈ Q1 ×Q2, where q1 is the location of R and
q2 is the location of P . A play in the game starts in 〈q01 , q02〉. If L1(q

1
0) 
= L2(q

2
0), then

R wins. Otherwise, the play continues as follows. Let 〈q1, q2〉 be the current position.
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In each round, R chooses a transition 〈q1, q′1〉 ∈ R1, and P responds by choosing a
transition 〈q2, q′2〉 ∈ R2, such that L1(q

′
1) = L2(q

′
2). The play then continues from

position 〈q′1, q′2〉. Hence, a play in the game induces two paths, one in A1 and one in
A2. If at some point in the play, P is unable to respond with a suitable move, then R
wins. Otherwise, the play continues forever and P wins.

It holds that A1 � A2 iff P has a winning memoryless strategy in the game. Equiva-
lently, A1 � A2 iff R has a winning strategy. The latter corresponds to a distinguishing
formula for A1 and A2.

Abstract Systems. An abstract system is a tuple A = 〈Q, q0, AP,X,R, L, S〉, where
Q, q0, and R are as in Kripke structures, and

– X is a set of variables.
– AP is a set of atomic propositions that may be parameterized by variables from X .
– L : Q → 2AP∪(AP×X) maps each state to the set of atomic propositions that hold

in the state. We require that for every q ∈ Q and a ∈ AP , the set L(q) contains at
most one occurrence of a.

– S : R → 2X maps each transition to the set of variables that are reset along the
transition.

A concretization of A, which is a concrete computation tree of A, is obtained by
assigning values to the variables, as we explain next.

A Σ-labeled tree is a pair 〈T, l〉 where T = 〈V,E〉 is a directed tree with a set of
nodes V and a set of edges E, and l : V → Σ is a function that labels each node in the
tree by a letter from Σ.

Let 〈T, l〉 be the 2AP∪(AP×X)-labeled tree obtained by unwinding A from q0. For-
mally, T = 〈V,E〉 is such that V ⊆ Q∗, where q0 ∈ V is the root of T , and w · q · q′
is in V , for w ∈ Q� and q, q′ ∈ Q, iff w · q ∈ V and 〈q, q′〉 ∈ R, in which case
〈w · q, w · q · q′〉 ∈ E. Also, l(w · q) = L(q). Note that we can associate with each edge
in the tree the set of variables that are reset along it, namely these reset in the transition
in A that induces the edge.

Let D be an infinite domain. A D-concretization of A is an infinite 2AP∪(AP×D)-
labeled tree 〈T, lf〉 obtained from 〈T, l〉 by assigning values from D to the occurrences
of the variables in every node in T in a way that agrees with the resets along the tran-
sitions of A. That is, for every node s of T we assign a function fs : X → D. The
labeling lf (s) of s is obtained by replacing every variable x in l(s) by fs(x). The func-
tions fs satisfy the following property. Let s be a node in T , let x be a variable, and let
s′ be a node in the subtree rooted in s. If x is not reset along the path from s to s′, then
fs(x) = fs′(x). That is, all the occurrences of x in a subtree of T with root s that are
not reset along the path in the abstract system that leads from s to them, are assigned
the same d ∈ D in 〈T, lf〉. Note that the tree 〈T, lf 〉 is in fact an infinite state system
over AP ∪ (AP ×D).

3 VCTL�

In this section, we define variable CTL� (VCTL�, for short) – a first order extension
of CTL� that handles infinite data. Like abstract systems, VCTL� uses atomic
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propositions that are parameterized with variables. In addition, VCTL� uses quantifiers
over the variables that may be nested within the formula.

The syntax of VCTL� includes formulas of two types: state formulas and path formu-
las. Let X be a set of variables, and let AP be a set of atomic propositions that may be
parameterized by variables from X . A VCTL� state formula is p ∈ AP , a.x ∈ AP ×X ,
¬ϕ1, ϕ1 ∨ ϕ2, ∃x;ϕ1, or Eψ1, for VCTL� state formulas ϕ1 and ϕ2 and a VCTL� path
formula ψ1. A VCTL� path formula is ϕ1, ¬ψ1, ψ1 ∨ψ2, Xψ1, ψ1Uψ2, or ∃x;ψ1, for a
VCTL� state formula ϕ1 and VCTL� path formulas ψ1 and ψ2. Finally, VCTL� is the set
of all closed VCTL� state formulas.

We turn to define the semantics of VCTL�. Let A be an abstract system with a labeling
function L, let ϕ be a VCTL� formula. We say that A satisfies ϕ (denoted A � ϕ) if for
every infinite domainD, everyD-concretization of A satisfies ϕ. Thus, it is left to define
the semantics of VCTL� with respect to concretizations of abstract systems. As usual
with first order logic, since we define the semantics inductively over open formulas, we
define the semantics also w.r.t. an assignment t : X → D over the variables. For closed
formulas, the semantics is independent of an assignment to the variables.

Let 〈T, If 〉 be a D-concretization of A, let s be a node in T , and let π = s0, s1, s2, . . .
be an infinite path in T . We assume that 〈T, If 〉 is fixed and use s �t ϕ and π �t ψ to
indicate that s satisfies ϕ under the assignment t, and similarly for π and ψ. The relation
�t is defined inductively as follows. Consider a state formula ϕ.

– If ϕ ∈ AP or the outermost operator in ϕ is ¬, ∨, or E, then the definition is as in
CTL�.

– If ϕ = a.x ∈ AP ×X , then s �t ϕ iff a.d ∈ l(s) and t(x) = d.
– If ϕ = ∃x;ϕ1, then s �t ϕ iff there exists d ∈ D such that s �t[x←d] ϕ1.

Consider a path formula ψ.

– If ψ is a state formula or the outermost operator in ψ is ¬, X, or U, then the defini-
tion is as in CTL�.

– If ψ = ∃x;ψ1, then π, i �t ψ iff there exists d ∈ D such that π, i �t[x←d]ψ.

We use the usual abbreviations G (”always”) and F (“eventually”) for temporal opera-
tors, the path quantifier A (“for all paths”), and the ∀ quantifier over variables.

The logic VACTL� (universal VACTL�) is the fragment of VCTL� in which negation
is restricted to atomic propositions and only the A path quantifier is allowed. The logic
VACTL is the fragment of VACTL� in which temporal operators cannot be nested without
a path quantifier between them. These fragments join the previously defined fragment
VLTL [12], which is the set of all VCTL� formulas of the form Aψ, where ψ is a path
formula that does not contain path quantifiers and all its variable quantifiers are at the
head of the formula.

Remark 1. It is possible to augment the definition of abstract systems and VCTL� for-
mulas to include inequalities over the set of variables, say x1 
= x2. This restricts the
set of legal concretizations and possible assignments, respectively. It is easy to extend
our results to a setting with such an augmentation.
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4 Simulation of Abstract Systems

In this section we define a simulation pre-order between abstract systems. Let A1 =
〈Q1, q

0
1 , AP,X1, R1, L1, S1〉 and A2 = 〈Q2, q

0
2 , AP,X2, R2, L2, S2〉 be abstract sys-

tems over the same set of atomic propositions.
We want to define simulation in such a way that if A2 simulates A1, then every

behavior of A1 is exhibited in A2. In standard simulation, state q1 of system A1 may
be matched with state q2 of system A2 only if q1 and q2 are equally labeled. In abstract
systems, we need, in addition, to assure a match in the variables parameterizing the
atomic propositions in q1 and q2. If, for example, L1(q1) contains a.x1 and L2(q2)
contains a.x2, for a ∈ AP , x1 ∈ X1, and x2 ∈ X2, we want to match q1 with q2 only
if every value that can be assigned to x1 can also be assigned to x2. Accordingly, a
simulation relation H also indicates that when matching q1 with q2, the variable x2 in
q2 is matched with the variable x1 in q1.

Formally, a simulation relation H from A1 to A2 consists of triplets of type
〈q1, q2, f〉, where q1 is a state of A1, q2 is a state of A2, and f : X2 → X1 ∪ {
,⊥} is
a function that maps the variables that parameterize atomic propositions that hold in q2
to the variables that parameterize atomic propositions that hold in q1, and also contains
information about previous and future matches. We elaborate, and explain the role of 

and ⊥, below.

We impose some restrictions on f that ensure that it matches the variables in a suit-
able way. We say that f is a match for q1 and q2 if L1(q1) is equal to the set obtained
from L2(q2) by replacing every x2 in q2 with f(x2). Note that in order for f to be a
match for q1 and q2, for every variable x2 ∈ X2 that appear in q2 it must hold that
f(x2) 
∈ {
,⊥}. We require that if 〈q1, q2, f〉 ∈ H , then f is a match for q1 and q2.
That is, f must correctly match the variables locally.

Fig. 2. Cases A,B,C and D

However, locally matching the variables is not enough. Consider Case A presented
in Figure 2. The local match for q0 and p0 is x2 �→ x1. The variables x1 and x2 are not
reset in the transitions 〈q0, q1〉 and 〈p0, p1〉. Then H remembers that the value of x2 is
bound to the value of x1, by setting x2 �→ x1 also when matching q1 with p1.
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Next, consider Case B. Again, the local match for q0 and p0 is x2 �→ x1. Since x1

is reset in 〈q0, q1〉 and x2 is not reset in 〈p0, p1〉, then x2 cannot be matched with a
variable in p1, since it is still bound to the value x1 was assigned. Then H remembers
this when matching q1 with p1 by setting x2 �→ ⊥.

Now, consider Case C. Since x2 is not reset along both 〈p0, p1〉 and 〈p0, p2〉, it must
be mapped to the same variable both when matching q1 with p1, and when matching q2
with p2. The simulation sets x2 �→ x1 already when matching q0 with p0, even though
x1, x2 do not appear in these states, and remembers this assignment when moving from
p0 to its two different subtrees. This forces both occurences of x2 to be matched with
the same (unreset) variable x1.

Finally, consider Case D. The simulation must match x2 with x1 when matching q1
with p1. Unlike Case C, where both occurences of x2 must be equally matched, here
there is a single occurence of x2, which can therefore be freely matched. x1 is reset in
〈q0, q1〉, and so x2 cannot be mapped to x1 when matching q0 with p0 (unlike Case C).
On the other hand, x2 is not reset in 〈p0, p1〉, and so H must match x2 with a non-⊥
value when matching q0 with p0. H solves this by allowing x2 to remain “uncommitted”
when matching q0 with p0, by setting x2 �→ 
. To ensure that x2 occurs only once, H
sets x2 �→ ⊥ when matching q2 with p2, which means that x2 cannot occur along the
subtree from p2, unless it is reset.

We now formalize these ideas. Let f be a match for q1 and q2, and let 〈q1, q′1〉 ∈ R1

and 〈q2, q′2〉 ∈ R2. We say that a function f ′ : X2 → X1 ∪ {
,⊥} is consistent with f
w.r.t 〈q1, q′1〉 and 〈q2, q′2〉 if f ′ is a match for q′1 and q′2, and

– If f(x2) ∈ X1 ∪ {⊥} and x2 /∈ S2(〈q2, q′2〉) and f(x2) /∈ S1(〈q1, q′1〉), then
f ′(x2) = f(x2). In particular, since ⊥ cannot be reset, if f(x2) = ⊥ and x2 /∈
S2(〈q2, q′2〉), then also f ′(x2) = ⊥. That is, if x2 �→ ⊥, then x2 must be reset
before it may be matched with a variable.

– If f(x2) = x1 for x1 ∈ X1 and x2 /∈ S2(〈q2, q′2〉) and x1 ∈ S1(〈q1, q′1〉) then
f ′(x2) = ⊥. That is, if x1 has been reset, then so must x2 before it appears again.

Let F be the set of functions from X2 to X1 ∪ {
,⊥}. We say that H ⊆ (Q1 ×
Q2×F ) is a simulation from A1 to A2 if for every 〈q1, q2, f〉 ∈ H , the following holds.
Let 〈q1, q11〉, 〈q1, q21〉, . . . 〈q1, qk1 〉 be the transitions from q1. Then there exist transitions
〈q2, q12〉, 〈q2, q22〉, . . . 〈q2, qk2 〉 from q2 and functions f1, f2, . . . fk such that the follow-
ing simulation conditions hold.

1. f i is consistent with f w.r.t 〈q1, qi1〉 and 〈q2, qi2〉 for every 1 ≤ i ≤ k.
2. 〈q11 , q12 , f1〉, 〈q21 , q22 , f2〉, . . . 〈qk1 , qk2 , fk〉 ∈ H .
3. For every x2 ∈ X2, if f(x2) = 
, then there exists at most one 1 ≤ i ≤ k such

that x2 /∈ S2(〈q2, qi2〉) and f i(x2) 
= ⊥.

If there exists a function f0 that is a match for q01 and q02 such that 〈q01 , q02 , f0〉 ∈ H ,
then we say that A2 simulates A1, and denote A1 � A2.

Example 1. Consider the abstract systems A1 and A2 presented in Figure 3. It holds
thatA1 � A2 by a simulation relation {〈q0, p0, x �→ x1〉, 〈q1, p1, x �→ x2〉, 〈q2, p0, x �→
x2〉, 〈q3, p1, x �→ x1〉}. Notice that A2 uses not only fewer states, but also fewer vari-
ables.
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Fig. 3. The abstract systems A1 and A2

Computing a Simulation. We present an algorithm for computing a simulation re-
lation from A1 to A2. The algorithm starts with the set of tuples that can be locally
matched. Then, in every iteration, the tuples that violate one of the simulation condi-
tions are omitted. The algorithm terminates when a fixed point is reached.

Let H ⊆ Q1×Q2×F be a relation. Let 〈q1, q2, f〉 ∈ H , and let 〈q1, q11〉, 〈q1, q21〉, . . .
〈q1, qk1 〉 be the transitions from q1. We say that 〈q1, q2, f〉 is good w.r.t. H if there exist
transitions 〈q2, q12〉, 〈q2, q22〉, . . . 〈q2, qk2 〉 from q2 and functions f1, f2, . . . fk that meet
the simulation conditions w.r.t. H .

We define a sequence of relations H0, H1, . . . as follows. First, H0 is the set of all
tuples 〈q1, q2, f〉 such that q1 ∈ Q1, q2 ∈ Q2, and f is a match for q1, q2. Then, for
every i > 0, we define Hi = {〈q1, q2, f〉|〈q1, q2, f〉 is good w.r.t. Hi−1}. Notice that
H0 ⊇ H1 ⊇ H2 ⊇ . . ., and since H0 is finite, after finitely many i’s a fixed point H∗

is reached. Notice that H∗ is a simulation from A1 to A2. In fact, H∗ is a maximal
simulation from A1 to A2. Indeed, every simulation G satisfies G ⊆ H0, and it is easy
to show by induction that for every i, the relation G is contained in Hi.

The complexity of this algorithm is exponential in the number of variables. This is
not surprising, as there are pairs of abstract systems for which the size of a simulation
relation is exponential in the number of variables (recall that |F | = O(|X1||X2|)).

5 A Logical Characterization of Simulation

In this section, we show that VACTL� logically characterizes the simulation pre-order
for abstract systems. Formally, we prove the following.

Lemma 1. If A1 � A2, then for every ϕ ∈ VACTL�, if A2 � ϕ, then A1 � ϕ.

Lemma 1 follows from the following two properties. First, for an infinite domain
D, for every D-concretization A1 of A1 there exists a D-concretization A2 of A2, such
that A1 � A2 (by standard simulation). Second, standard simulation preserves VACTL�.
Lemma 1 then follows from the semantics of VACTL� w.r.t. abstract systems.

Secondly, we prove that if A1 � A2, then there exists a distinguishing VACTL for-
mula for A1 and A2: a formula that A2 satisfies, and A1 does not satisfy.

Theorem 1. If A1 � A2, then there exists ϕ ∈ VACTL, such that A2 � ϕ and A1 � ϕ.

The proof of Theorem 1 is constructive: ϕ is induced by the algorithm for com-
puting a simulation in Section 4. For every tuple 〈q1, q2, f〉 that is removed from Hi

for some i, we construct a semi-distinguishing formula, which, roughly speaking, is an
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open VACTL formula that distinguishes between q1 and q2 under the assumption that f
matches q1 with q2. As in the the standard setting, the distinguishing VACTL formula
uses only the AX operator, but also uses quantifiers over the variables that refer to
variable assignments.

Combining Lemma 1 and Theorem 1, we have the following.

Theorem 2. A1 � A2 iff for every ϕ ∈ VACTL�, it holds that if A2 � ϕ, then A1 � ϕ.

Thus, VACTL� offers a characterization of simulation of abstract systems, precisely
as ACTL� offers a characterization of simulation of Kripke structures.

Example 2. Consider the abstract systems A1 and A2 presented in Figure 4. The rela-
tion H0 is {〈q0, p0, x2 �→ x1〉,{〈q1, p1, x2 �→ x1〉, 〈q1, p1, x2 �→ ⊥〉,〈q1, p1, x2 �→ 
〉,
〈q2, p2, x2 �→ x1〉}. When calculating H1, the tuple 〈q1, p1, x2 �→ ⊥〉 is removed
as it violates condition (2) of the simulation conditions. A semi-distinguishing for-
mula AXb.x2 for 〈q1, p1, x2 �→ ⊥〉 is calculated by the inconsistency of x2 �→ x1

in 〈q2, p2, x2 �→ x1〉 with x2 �→ ⊥. In H2, the tuple 〈q0, p0, x2 �→ x1〉 violates con-
dition (2), and a semi-distinguishing formula for it, which also distinguishes A1 from
A2, is ϕ = ∃x2; a.x2 ∧ AX( AXb.x2). Indeed, A2 |= ϕ, whereas A1 � ϕ.

Next, consider the abstract systems B1 and B2. The states q0 and p0 appear in H0

with the functions x2 �→ x1, x2 �→ x′
1, x2 �→ ⊥, x2 �→ 
. The function x2 �→ x1 can-

not match q2 with p2, and this contradiction ultimately creates the semi-distinguishing
formula ∃x2; AX(a.x2 ∨ AXb.x2) for 〈q0, p0, x2 �→ x1〉. Similarly, the functions
x2 �→ x′

1 and x2 �→ ⊥ contradict matching q1 with p1 and q2 with p2, respectively,
ultimately creating the semi-distinguishing formulas ∃x2; AX((∀x2¬a.x2)∨ a.x2) for
〈q0, q2, x2 �→ x′

1〉, and ∃x2; AX(a.x2 ∨ AXb.x2) for 〈q0, p0, x2 �→ ⊥〉.
Finally, the function x2 �→ 
 succeeds in matching q1 and p1 by x2 �→ x1, and q2

and p2 by x2 �→ x′
1 or x2 �→ 
, but then condition (3) is violated. A semi-distinguishing

formula for 〈q0, p0, x2 �→ 
〉 is ∃x2; AX(a.x2∨ AX(b.x2)∨(∀x2¬a.x2)∨∃x2; a.x2).
While B2 satisfies all these formulas, the abstract system B1 does not satisfy ∃x2;

AX(a.x2∨ AX(b.x2)).

6 A Game-Theoretic Approach to Simulation

We present a game-theoretic approach to simulation of abstract systems. As usual, the
game players are the prover P , who wishes to prove that A1 � A2, and the refuter R,
who wishes to prove that A1 � A2.

Recall that in the standard setting, in a game for systems A1 and A2, a game position
is a pair of states 〈q1, q2〉 where q1, q2 are states of A1 and A2, respectively, and R is in
location q1 and P is in location q2. A play continues along single paths in each system.

In abstract systems, the situation is a bit more complicated. First, in its every move,
P must choose both a state q2 and a function f that matches the variables of q1 and
q2. Therefore, the game positions are tuples of the form 〈q1, q2, f〉. For P to prove the
existence of simulation, f must be consistent w.r.t. the function it chose in its previous
move, and with the transitions both players took from the previous position. Second,
following a single path may not suffice for R to prove that there is no simulation. We
demonstrate these points below.
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Consider the systems A1 and A2 presented in Figure 4. It holds that A1 � A2,
since x1 is reset and can be assigned different values in q0 and q2, whereas x2 must be
assigned the same value in p0 and p2. Consider a possible play between P and R. The
refuter R must start at q0, and P must choose p0 and x2 �→ x1 to match q0 with p0.
Then, R continues to q1, and P must move to p1 and choose x2 �→ ⊥, since x1 is reset
along 〈q0, q1〉, and x2 is not reset along 〈p0, p1〉. Finally, R moves to q2, and P must
move to p2. To match q2 with p2, P must choose x2 �→ x1, but this is inconsistent with
the function x2 �→ ⊥ that P chose in its previous move, and R wins.

Next, consider the systems B1 and B2. It holds that B1 � B2, since x1 and x′
1 can be

assigned different values in B1, whereas both occurences of x2 in B2 must be equally
assigned. In the first round, P chooses a function f0 to match q0 with p0. Since the
labeling of p0, q0 is empty, f0 can match x2 with either x1, x

′
1,⊥ or 
. If f0(x2) = x1

(or f0(x2) = ⊥), then R can follow q0, q2, q3, forcing P to follow p0, p2, p3, and fail
finding a match for q3 and p3 that is consistent with x2 �→ x1 (or with x2 �→ ⊥).
Similarly, if f0(x2) = x′

1, then R follows q0, q1, and P must follow p0, p1, and fails to
match q1 and p1.

However, if f0(x2) = 
, then if R follows either q1 or q2, q3, then P can respond
with suitable functions x2 �→ x1 to match p1, or x2 �→ 
, x2 �→ x′

1 to match p2, p3
respectively. Thus, by following a single path, P may violate condition (3) of the sim-
ulation conditions, and (wrongly) win the game. We conclude that the game rules must
enforce condition (3). In this case, this means that P may not assign x2 non-⊥ values
along both q1 and q2.

To enforce condition (3), we allow R to continue to both q1 and q2 in the same move.
Then, to follow condition (3), P must choose x2 �→ ⊥ in either q1 or q2. Choosing
x2 �→ ⊥ in q1 causes P to fail in q1. If P chooses x2 �→ ⊥ in q2, then R can continue
from q2 to q3, again causing P to get stuck.

The same holds also for the systems C1 and C2. Consider the first round in a play and
the possible choices of P to match q0 with p0. The variable x2 must be matched with x1

when matching q1 with p1, and so P fails if it chooses x2 �→ ⊥. Also, since x1 is reset
in 〈q0, q1〉, and x2 is not reset in 〈p0, p1〉, then P fails if it chooses x2 �→ x1. Finally,
if P chooses x2 �→ 
, then R can split as in the case of B1 and B2, and cause P to get
stuck in either q1 or q3.

Fig. 4. The abstract systems A1 and A2, and B1 and B2, and C1 and C2
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Thus, as opposed to the classical setting, when there is no simulation, the inability to
locally match states is not enough to refute the existence of a simulation. Also, a single
path may not suffice to properly refute, and two paths are needed, as in the case of the
systems B1 and B2, and C1 and C2. Note that two paths suffice, since x2 may only be
assigned a non-⊥ value along one path, causing P to get stuck in the other, in case that
x2 appears in both paths without being reset.

Accordingly, we define the game such that R continues along a single path (mode
(a) in the game), but may, at any point, choose two states on two different paths split-
ting from its current location (mode (b) in the game). P then chooses matching states
and functions for both states. Then, R chooses along which of the two paths the play
continues from, and switches back to mode (a). P then responds accordingly.

We formally define the game. A play begins as follows.R starts from q01 , andP starts
from q02 and chooses some function f0 such that f0 is a match for q01 and q02 . Then, the
game continues in mode (a) according to the following rules.

Let the current position be 〈q1, q2, f〉. If the game is in mode (a),

1. R chooses a transition 〈q1, q′1〉 ∈ R1 and moves to q′1, or switches to mode (b),
2. If R hasn’t switched to mode (b), then P chooses a transition 〈q2, q′2〉 ∈ R2, and a

function f ′ that is consistent with f w.r.t. 〈q1, q′1〉 and 〈q2, q′2〉, and moves to q′2.

If the game is in mode (b),

1. R chooses two different transitions 〈q1, q′1〉, 〈q1, q′′1 〉 ∈ R1.
2. P chooses a transition 〈q2, q′2〉 and a function f ′ such that f ′ is consistent with f

w.r.t. 〈q1, q′1〉 and 〈q2, q′2〉, and dually a transition 〈q2, q′′2 〉 and a function f ′′ for
〈q1, q′′1 〉. Further, for every x2 ∈ X2 such that f(x2) = 
, either f ′(x2) = ⊥ or
f ′′(x2) = ⊥.

3. R chooses between the game positions 〈q′1, q′2, f ′〉 and 〈q′′1 , q′′2 , f ′′〉, and switches
to mode (a) from the chosen position.

Notice that a round does not exactly alternate between R and P ; from mode (a),
R can switch to mode (b) and continue to choose two transitions as described. Also,
after R chooses a single position at the last step of mode (b), it continues to choose a
transition in the first step in mode (a), as described.

If at some point P cannot continue according to the game rules, then R wins. Other-
wise, the play continues forever and P wins.

The simulation game indeed captures simulation of abstract systems: both players
have a winning strategy, according to the existence or lack thereof of a suitable simula-
tion from A1 to A2.

Theorem 3. P has a winning strategy in the simulation game for A1 and A2 iff A1 �
A2, and R has a winning strategy in the simulation game for A1 and A2 iff A1 � A2.

The winning strategy of P corresponds to a suitable simulation from A1 to A2,
whereas the winning strategy of R corresponds to a distinguishing VACTL formula for
A1 and A2. Despite the more complicated nature of the game, the winning strategies of
both players, just like in the standard setting, are memoryless.
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7 Discussion and Future Work

We have shown that the properties of standard simulation can be lifted to the setting of
abstract systems. In this section we describe further theoretical challenges of abstract
systems and simulation and their practical applications.

Consider a system S that describes the behavior of n processes. Typically, each pro-
cess is associated with a set of atomic propositions, parameterized with its id. For exam-
ple, it is common to see atomic propositions like try1, . . . , tryn and grant1, . . . , grantn.
Consider now the system S ′ obtained by uniting all “underlying” atomic propositions,
try and grant in our example, and parameterizing them by a variable that ranges over
the domain of processes ids. As another example, consider a system S in which mes-
sages from a list L = {l1, . . . , ln} of possible messages can be sent, and atomic propo-
sitions are parameterized by messages from L, say atomic propositions are send l1 , . . . ,
send ln and receive l1 , . . . , receive ln . Again, we can obtain a system S ′ that abstracts the
content of the messages and uses atomic propositions send and receive , parameterized
by variables that range over L. Note that the behavior of S with respect to the differ-
ent values of processes ids or messages may be different. thus S′ over-approximatesS.
Clearly, S ′ is also simpler than S.

It is straightforward to extend the definition of simulation to cases in which only the
simulating system is abstract, and to do it in such a way that S ′ simulates S. Essentially,
as noted above, S ′ includes all the behaviors with respect to all values of processes
ids or messages, and also abstracts their number. We can thus use S ′ not only for the
verification of S, but also, in case we abstract identical processes, for checking whether
the specification is sensitive to their number, and for generalizing the reasoning to an
arbitrary number of processes. We plan to formalize this method, namely define the
simulation relation, a refinement procedure, and the connection to other methods of
verification of parameterized systems.

The simulation pre-order defined here is the branching-time counterpart of trace con-
tainment, which is undecidable for abstract systems. In standard systems, the computa-
tional efficiency of the branching-time approach is carried over in the model-checking
problem for CTL. In [12,13] we studied the model-checking problem for VLTL and ab-
stract systems and pointed to useful fragments for which the complexity of the problem
is in PSPACE – as is LTL model checking. We plan to study the model-checking prob-
lem for VCTL and abstract systems, and check whether the advantage of the branching
approach is carried over also to this setting.
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Abstract. As models of real-world stochastic systems usually contain inaccu-
rate information, probabilistic model checking for models with open or undeter-
mined parameters has recently aroused research attention. In this paper, we study
a kind of parametric variant of Discrete-time Markov Chains with uncertain tran-
sition probabilities, namely Parametric Markov Chains (PMCs), and probabilistic
reachability properties with nested PCTL probabilistic operators. Such properties
for a PMC with a univariate parameter define univariate real functions, called
reachability functions, that map the parameter to reachability probabilities. An
interesting application of these functions is sensitivity and robustness analysis of
probabilistic model checking. However, a pitfall of computing the closed-form
expression of a reachability function is the possible dynamism of its constraint
set and target set. We pursue interval approximations for reachability functions
with high accuracy. In particular, for reachability functions involving only single-
nested probabilistic operators, we provide an efficient algorithm to compute their
approximations. We demonstrate the applicability of our approach with a case
study on a NAND multiplexing unit.

1 Introduction

Probabilistic model checking, as a formal verification technology for stochastic sys-
tems, has matured over the past decade and has many successful applications, such
as automatic analysis of communication protocols. In probabilistic model checking,
discrete-time stochastic systems are formally represented by models such as Discrete-
time Markov Chains (DTMCs) and Markov Decision Processes (MDPs). Because
models of real-world stochastic systems usually contain inaccurate information, proba-
bilistic model checking for discrete-time models with open or undetermined parameters
has aroused much attention in the research community recently. Such parameters may
be uncertain transition probabilities or initial distributions that are obtained via statisti-
cal experiments or are dependent on the dynamic environment, leading to perturbations
of the model. In the state-of-the-art, one way to capture such systems is by setting the
lower and upper bounds of the transition matrices, resulting in two groups of models:
Uncertain Markov Chains [1], each of which is interpreted as a set of DTMCs, or In-
terval Markov Chains [2,3,4], each of which is variant of an MDP with an infinite set
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of actions. In this paper, we consider the UMC models, which can alternatively be for-
mulated in the form of Parametric Markov Chains (PMCs) [5,6,7] with undetermined
transition probabilities represented by variables.

Probabilistic Computation Tree Logic (PCTL) [8] is one of the most frequently used
property languages for probabilistic model checking, and one essential PCTL syntac-
tic construct is the nesting of probabilistic operators. Properties expressed by PCTL
formulas with nested probabilistic operators are not able to be represented by com-
mon finite automata. However, model checking of a PMC against PCTL formulas with
nested probabilistic operators can be very difficult in terms of computational cost. In
particular, reachability model checking for UMCs is P-complete, while PCTL model
checking for UMCs is NP-hard and Square-Root-Sum hard [9].

One important problem for probabilistic model checking is the sensitivity and ro-
bustness of the verification results. The informal idea is to study the effect of parameter
perturbations on automata-based probabilistic model checking, and the outcome of the
study is a group of close-formed perturbation bounds [10,11]. In this paper, we explore
this problem for PMCs with univariate parameters and for reachability properties with
nested, especially single-nested, PCTL probabilistic operators. Univariate PMCs ac-
count for a considerable proportion of discrete stochastic systems (such as those in the
PRISM benchmark suite [12]), because the update of the system state contains at most
two probabilistic choices in the high-level specification of those systems.

In the following, we further explain the motivation of our approach. For a DTMC M
with state space S and predicate statements A,B over states, a (constrained) reachabil-
ity model checking problem is the query of the probability of reaching states satisfying
B via states satisfying A from a specific state s ∈ S. For a PMC M〈x〉 with state space
S and a perturbed variable x, which is associated to some transition probabilities and
ranges over a fixed small interval I such that 0 ∈ I , the aforementioned reachability
problem gives rise to a reachability function PrA,B : I × S → [0, 1]. In words, given a
value for the variable of the PMC and a starting state, a reachability function specifies
a reachability probability. One application of PrA,B is sensitivity analysis of the veri-
fication result against the perturbation of the model. A different, yet related application
is the computation of the smallest or largest x such that PrA,B(x, s) is not smaller or
larger than some given probability. In theory, PrA,B(x, s) for M〈x〉 is equivalent to
the accepting regular expression of a finite automaton; therefore, the closed-form ex-
pression of PrA,B(x, s) can be generated by a state-elimination algorithm [5]. Hence,
the worst-case time-complexity of computing PrA,B(x, s) is O(|S|3), the same as that
of the state-elimination algorithm [6].

Nested reachability functions are expressed by PrX,Y : I × S → [0, 1] where X
and Y are PCTL formulas. Because of the perturbed variable x of M〈x〉, X and Y
may be dynamic sets, namely mappings from I onto 2S . Therefore, given s ∈ S,
PrX,Y (·, s) may be a discontinuous function with possible “jumping” points caused
by states moving into or off the satisfaction sets for X and Y . Those points are deter-
mined by rational equations of the form PrX,Y (x, s

′) = p with s′ ∈ S. To compute
PrX,Y with the automata-based and state-elimination method, we need to compute all
involved non-nested reachability functions and then solve the corresponding rational
equations to determine the “jumping” points. However, as the state space of the PMC
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gets larger, such a direct computation may become costly (for both generating the non-
nested reachability functions and solving the rational equations). In the worst case, there
can be as many as |S| rational equations, each of which has up to |S| roots. Hence, it can
be deduced that the time complexity of computing PrX,Y by that method is O(|S|5).

In this paper, instead of directly computing reachability functions for PMCs with
univariate parameters, we present an approximation alternative. Based on the fact that
a non-nested reachability function PrA,B(·, s) (where s ∈ S) is a continuous rational
function, we construct a pair of bounding polynomials of a relatively low order, called
interval approximations, that rigorously bound and sufficiently approximatePrA,B . By
repeating such constructions, we obtain interval approximations for a possibly discon-
tinuous nested reachability function PrX,Y . In particular, for the case that PrX,Y is
single-nested, namely, neither the syntax of X nor Y contains nested PCTL probabilis-
tic operators, we provide an efficient procedure to compute its interval approximations.

The pursuit of closed-from perturbation bounds in the setting of probabilistic model
checking is initiated by the authors [10,11], but this paper contains two key aspects
of novel contributions: First, the discontinuity arising from reachability functions with
nested PCTL probabilistic operators is not addressed by the previous work, which ex-
plores non-nested reachability and ω-regular properties only. Second, in contrast to the
asymptotic method developed in the previous work, the approximation characterization
pursued in this paper rigorously bounds a reachability function and enjoys several ele-
gant mathematical properties, such as monotonicity and convergency. To demonstrate
the applicability of our approach, we conduct a case study based on a benchmark prob-
abilistic system, namely a NAND multiplexing unit.

Note that we focus on the consequence of nested probabilistic operators on the cost
of computing reachability functions, which is separated from the complexity of PCTL
model checking. The P-hardness complexity of PCTL model checking for DTMCs
(without parameters) is due to the embedding of propositional logic in the syntax of
PCTL [9]. Because of involving solving polynomial equations, we foresee a pitfall to
apply our technique to multi-variate PMCs.

The remainder of the paper is organized as follows. Section 2 defines the model
of PMCs, a sublogic of PCTL and the definitions of non-nested and nested reachabil-
ity functions. Section 3 provides our interval approximation characterization for non-
nested and nested reachability functions. Section 4 develops a procedure for computing
the interval approximations for single-nested reachability functions. Section 5 reports a
case study on a NAND multiplexing unit. Section 6 discusses the related work. Section
7 concludes the paper and outlines directions for the future work.

2 Model and Reachability Function

In this section, we present the model of PMCs, a sublogic of PCTL that captures reach-
ability formulas, and non-nested and nested reachability functions.

2.1 Parametric Markov Chain

A Discrete-time Markov Chain (DTMC) is a tuple M = (ι,T) where ι is an initial
probability distribution and T is a k × k transition matrix with k = |ι| (the length of ι)
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that satisfies the following two properties: (i) 0 ≤ T[i, j] ≤ 1 for all 1 ≤ i, j ≤ k and
(ii)

∑k
j=1 T[i, j] = 1 for all 1 ≤ i ≤ k.

A parametric transition matrix T〈x〉, based on the transition matrix T and with
variable x, satisfies the following three properties: For each 1 ≤ i, j ≤ k,

– if T[i, j] = 0 then T〈x〉[i, j] = 0,
– T〈x〉[i, j] is of the form ax+T[i, j] for some rational number a ∈ {−1, 1}, and
–
∑k

j=1 T〈x〉[i, j] = 1.

In the second clause above, if a = +1 (resp., a = −1), we say that x has a positive
(resp., negative) occurrence at the (i, j)-entry of T〈x〉. Let T〈c〉 denote the matrix
obtained by placing c into the positions of x in T〈x〉. Clearly, T〈0〉 and T are identical.

A Parametric Markov Chain (PMC) is a tuple M〈x〉 = (ι,T〈x〉, I) where ι is an
initial probability distribution, T〈x〉 is a parametric transition matrix, and I , called a
perturbation range, is an (open or closed) interval such that 0 ∈ I and |I| � 1. As
mentioned in the Introduction, throughout the paper, we restrict each PMC to have only
one perturbed variable. The small interval I reflects the intuition of perturbations and
allows us to assume the following two propositions: For each c ∈ I ,

– T〈c〉 is a transition matrix, and
– if T〈0〉[i, j] > 0 then T〈c〉[i, j] > 0 for all 1 ≤ i, j ≤ k.

The second condition above ensures that all matrices in the set {T〈c〉 | c ∈ I} share the
same underlying graph. We let M〈c〉 for c ∈ I be the DTMC (ι,T〈c〉), and identify
M〈0〉 as M. In our formulation of M and M〈x〉, the names of states are implicit. But
normally we refer to the state space S of M and M〈x〉 as {1, . . . , k}. We use s, s′ to
denote states in S. We use rch(s) to denote a subset of S such that s′ ∈ rch(s) if and
only if there is a path from s and passing by s′ in the underlying graph of M.

2.2 PCTL Sublogic

We assume an infinite set {Ai | i ∈ N} of atomic formulas. The syntax of L, a sublogic
of PCTL [8], is generated by the following syntactic rules:

X,Y ::= P∼p[X UY ] | ¬X | X ∧ Y | A (formulas)

A ::= 	 | Ai (basic formulas)

where ∼∈ {>,≥, <,≤}, p ∈ [0, 1], P the PCTL probabilistic operator, U the “until”
connective, ¬ the negation operator, and ∧ the conjunction connective. The “next” op-
erator and the “bounded until” connective in PCTL are excluded from L. Throughout
the paper, X,Y denote general formulas defined by the above syntactic rules, while
A,B specifically denote basic formulas. Let FX denote 	UX . Formal interpretation
of formulas of L is provided later, but briefly, A,B are interpreted as “static” subsets of
S, while X,Y are dynamic sets in 2S that are dependent on x, the variable of M〈x〉.

For convenience, we also use L to denote the set of formulas generated by the syn-
tactic rules of L. The depth of X ∈ L, denoted as dep(X), is defined recursively as
follows: (i) dep(A) = 0, (ii) dep(¬X) = dep(X), (iii) dep(X ∧ Y ) = dep(X,Y ) and
dep(P∼p[X UY ]) = dep(X,Y )+1, where dep(X,Y ) denotesmax{dep(X), dep(Y )}.
If X and Y are syntactically identical, we write X ≡ Y . We stress that, in spite of being
a fragment of PCTL, the syntax of L allows the nesting of PCTL probabilistic operators.
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2.3 Reachability Function

Given two subsets S?, S! of S (the state space of M〈x〉), for convenience we define a
fixed set

S?�S! = {s ∈ S? | rch(s) ∩ S! �= ∅}
We define a parametric matrix A〈x〉 that is the restriction of T〈x〉 to S?�S!, and a
parametric column-vector b〈x〉 such that b〈x〉[s] =

∑
s′∈S!

T〈x〉[s, s′] for each s ∈
S?�S!. The set S?�S! is called the constraint set of A〈x〉 and b〈x〉, and S! is called
the target set of them.1 Without loss of generality, we let S?\S! be a set of consecutive
numbers from 1 to k′, namely S?�S! = {1, . . . , k′}, for some k′ ≤ k = |S|. Before
interpreting formulas of L and defining reachability functions, we set up an auxiliary
definition. Let f : 2S × 2S × S × I → [0, 1] be the function such that

f(S?, S!, s, x) =

( ∞∑

i=0

A〈x〉i · b〈x〉
)

[s]

The legitimacy of f is ensured by the fact that I−A〈x〉 is invertible for each x ∈ I
and that the series

∑∞
i=0 A〈x〉i = (I−A〈x〉)−1 for any x ∈ I .

As stated, each basic formula A ∈ L is interpreted as a subset of S, denoted by
satA and called a non-nested satisfaction set. In particular, sat� = S. Interpretation
for the boolean operator and connective is standard: sat¬X = S\satX and satX∧Y =
satX ∩ satY . It remains to deal with P∼p[X UY ]. Given basic formulas A and B, a
non-nested reachability function PrA,B : I × S → [0, 1] is a function such that

PrA,B(x, s) =

⎧
⎨

⎩

f(satA, satB, s, x) if s ∈ satA�satB
1 if s ∈ satB
0 otherwise

Intuitively, PrA,B(x, s) captures the probability of reaching states in satB via states
in satA from state s in the PMC M〈x〉 for any x ∈ I . A mathematical explanation
of non-nested reachability functions based on the measurement theory for DTMCs can
be found in standard texts on probabilistic model checking, such as Baier and Katoen
[13]. The following theorem expresses an important property for non-nested reachabil-
ity functions.

Theorem 1 ([14]). For each s ∈ S and A,B ∈ L, PrA,B(·, s) is a continuous rational
function on I .

A reachability function PrX,Y and a satisfaction set satX for X,Y ∈ L are defined
recursively as follows:

– PrX,Y : I × S → [0, 1] such that

PrX,Y (x, s) =

⎧
⎨

⎩

f(satX(x), satY (x), s, x) if s ∈ satX(x)�satY (x)
1 if s ∈ satY (x)
0 otherwise

1 To avoid notation abuse, we do not explicitly indicate the association of S?�S! and S! to A〈x〉
and b〈x〉, as this association is clear from the context.
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Fig. 1. Graphical model of M0〈x〉

– sat P∼p[X UY ] : I → 2S with ∼∈ {≥, >,≤, <} such that

sat P∼p[X UY ](x) = {s ∈ S | PrX,Y (x, s) ∼ p}, x ∈ I

PrX,Y is nested if dep(X,Y ) ≥ 1 and is single-nested if dep(X,Y ) = 1. Although
X with dep(X) = 1 contains only one occurrence of the P-operator, for convenience,
we also call a satisfaction set satX nested if dep(X) ≥ 1 and single-nested if dep(X) =
1. As satA is a constant set, satA(x) = satA for any x ∈ I . Given s ∈ S, unlike
the non-nested reachability function PrA,B(·, s), a general-form reachability function
PrX,Y (·, s) may be discontinuous because of the possible dynamism of satX and satY .

Theorem 2. For each s ∈ S and X,Y ∈ L, there is a (finite) partition P on I such
that PrX,Y (·, s) is a continuous rational function on each I ′ ∈ P(I).

Let PrX abbreviate Pr�,X . For illustrative purposes, the transition matrix of a PMC
M0〈x〉 is depicted in Figure 1. State s0 of M0〈x〉 is the initial state. All ai,j’s and b
are smaller than 1. (Hence, some of the states have transitions with positive probability
to an implicit “failure” state.) Let A1 and A2 be formulas such that satA1 = {s1} and
satA2 = {s1,1, . . . sn,1}. It is easy to see that PrA1(·, s0) is a non-nested reachability
function, while PrX1 (·, s0) with X1 ≡ P>p[FA1] ∧ A2 is a single-nested reachability
function.

The reachability function can be used for the prediction of maximally permitted per-
turbation distance of the perturbed variable in the PMC. For example, we let X2 ≡
P>p′ [FX1] and suppose s0 ∈ satX2(0) (namely, X2 is satisfied by M0〈x〉 at s0 when
x = 0); we want to know the smallest value c such that s0 �∈ satX2(c). This problem
can be solved by optimizing the function PrX2(·, s0). However, a direct computation
of PrX2 (·, s0) involves solving the high-order polynomial PrX1(x, si,1) = p for each
1 ≤ i ≤ n, which, as mentioned in the Introduction, may be costly. Hence, we are
motivated to pursue interval approximations for reachability functions.

3 Interval Approximation

In this section, we present interval approximations for reachability functions and several
key mathematical properties. Similar to reachability functions, the treatment of interval
approximations is separated into basic and general forms.
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3.1 Basic Form

Interval approximations for non-nested reachability functions (and nested reachability
functions alike) consist of an expansion part and a remainder part, as in the approxi-
mation analysis of other mathematical series such as Taylor series. The expansion part
is a polynomial and the remainder part is an estimated bound. We note that the de-
composition of interval approximations into an expansion part and a remainder part
(or something similar) is not unique. Our decomposition enjoys various mathematical
properties presented below and facilitates the computation in practice (see Section 5).

Let A = A〈0〉, A∗ =
∑∞

i=0 A
i and A′〈x〉 = A〈x〉 − A. Let ‖A〈x〉‖ be a para-

metric matrix such that ‖A〈x〉‖[s, s′] = |A〈x〉[s, s′]|, and ‖b〈x〉‖ be a parametric
column-vector such that ‖b‖[s] = |b[s]|. In other words, for any c ∈ I , ‖A〈x〉‖ and
‖b〈x〉‖ are obtained from A〈x〉 and b〈x〉, respectively, by instantiating the negative
(resp., positive) occurrences of x with −c if x ≥ 0 (resp., x < 0). Recall that A and b
are based on the constraint set S?�S! and the target set S!.

Let τ = supx∈I |x|. For n ∈ N and n ≥ 1, we define the aforementioned expansion
part and remainder part of f as functions fn and gn : 2S × 2S × S × I → [0, 1] such
that

fn(S?, S!, s, x) =

(

A∗ ·
n−1∑

i=0

(A′〈x〉 ·A∗)i · b〈x〉
)

[s]

gn(S?, S!, s, x) =
(
A∗ · (‖A′〈x〉‖ ·A∗)n · (I− ‖A′〈τ〉‖ ·A∗)−1 · ‖b〈τ〉‖

)
[s]

The function fn is an expansion up to the n order of x and the function gn is a remain-
der, namely an estimated bound. Since 0 ∈ I and |I| � 1, I−‖A′〈x〉‖·A∗ is invertible
for any x ∈ I and, thus, the definition of gn is legitimate.

The under- and over-approximations for PrA,B are PrnA,B and Pr
n

A,B: I × S →
[0, 1] such that

PrnA,B(x, s) =

⎧
⎨

⎩

fn(satA, satB, s, x)− gn(satA, satB, s, x) if s ∈ satA�satB
1 if s ∈ satB
0 otherwise

Pr
n

A,B(x, s) =

⎧
⎨

⎩

fn(satA, satB, s, x) + gn(satA, satB, s, x) if s ∈ satA�satB
1 if s ∈ satB
0 otherwise

The number n is called the order of PrnA,B and Pr
n

A,B , which together are called
interval approximations for PrA,B . The following lemmas are expected mathematical
properties of interval approximations for non-nested reachability functions.

Lemma 3. PrnA,B(x, s) ≤ PrA,B(x, s) ≤ Pr
n

A,B(x, s) for all basic formulas A,B ∈
L, s ∈ S, any x ∈ I and any n ∈ N.

Lemma 3 confirms that a non-nested reachability function is indeed bounded by its
interval approximations from both below and above.

Lemma 4. For all A,B ∈ L, n1, n2 ∈ N, x ∈ I and s ∈ S, if n1 < n2 then
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– Prn1

A,B(x, s) ≤ Prn2

A,B(x, s)

– Pr
n1

A,B(x, s) ≥ Pr
n2

A,B(x, s)

Lemma 4 expresses a monotonicity property of interval approximations for non-
nested reachability functions: As the order increases, the over-approximation is non-
increasing and the under-approximation is non-decreasing.

Lemma 5. limn→∞ supx∈I,s∈S Pr
n

A,B(x, s) − PrnA,B(x, s) = 0 for each basic for-
mulas A,B ∈ L.

Lemma 5 states that, as the order gets large, the difference between the pair of inter-
val approximations of a non-nested reachability function becomes small on the entire
interval.

Lemma 6. For s ∈ S and A,B ∈ L, Pr
n

A,B(x, s) − PrnA,B(x, s) is o(xn−1) as x
tends to 0.

Lemma 6 states the rate of a non-nested reachability function being approximated by
its interval approximations as the perturbed variable tends to 0.

3.2 General Form

Unlike their basic counterparts, reachability functions and satisfaction sets are mutu-
ally dependent on each other, and so are their interval approximations. For notation
simplicity, we assume that all involved interval approximations share a uniform order.
But as discussed at the end of the section, this assumption is not a theoretical restric-
tion. Formally, the recursive definition of interval approximations, including under- and
over-approximations, is as follows:

– PrnX,Y and Pr
n

X,Y : I × S → [0, 1] such that

PrnX,Y (x, s) =

⎧
⎪⎪⎨

⎪⎪⎩

fn(satX(x), satY (x), s, x)−
gn(satX(x), satY (x), s, x) if s ∈ satX(x)�satY (x)

1 if s ∈ satY (x)
0 otherwise

Pr
n

X,Y (x, s) =

⎧
⎪⎪⎨

⎪⎪⎩

fn(satX(x), satY (x), s, x)+
gn(satX(x), satY (x), s, x) if s ∈ satX(x)�satY (x)

1 if s ∈ satY (x)
0 otherwise

– satnZ and sat
n
Z : I → 2S with Z ≡ P∼p[X UY ] such that (i) if ∼∈ {<,≤} then

satnZ(x) = {s ∈ S | Pr
n

X,Y (x, s) ∼ p}
sat

n
Z(x) = {s ∈ S | PrnX,Y (x, s) ∼ p}

(1)

and (ii) if ∼∈ {>,≥} then satnZ(x) and sat
n
Z(x) are defined by swapping their

positions in Equation (1).
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For consistency of notations, we let satnA(x) = sat
n
A(x) = satA for any A ∈ L. As

expected, the following conservation property holds for interval approximations of all
reachability functions and satisfaction sets.

Theorem 7 (Conservation). For all X,Y ∈ L, n ∈ N, x ∈ I and s ∈ S,

– PrnX,Y (x, s) ≤ PrX,Y (x, s) ≤ Pr
n

X,Y (x, s)

– satnX(x) ⊆ satX(x) ⊆ sat
n
X(x)

The monotonic property can also be generalized for interval approximations for all
reachability functions and satisfaction sets, as below.

Theorem 8 (Monotonicity). For all X,Y ∈ L, n1, n2 ∈ N, x ∈ I and s ∈ S, if
n1 < n2 then

– Prn1

X,Y (x, s) ≤ Prn2

X,Y (x, s), sat
n1

X (x) ⊆ satn2

X (x)

– Pr
n1

X,Y (x, s) ≥ Pr
n2

X,Y (x, s), sat
n1

X (x) ⊇ sat
n2

X (x)

The following theorem states that the integral of PrX,Y (·, s) on I is approximated
by its interval approximations to an arbitrarily accurate degree as their order increases.

Theorem 9 (Convergency). For each s ∈ S,

lim
n→∞

∫

I

(Pr
n

X,Y − PrnX,Y )(x, s)dx = 0

Theorems 7 and 9 imply the following corollary, which states that the difference
between the integral of the over-approximation and that of the under-approximation on
any sub-interval of I has a similar convergent property as their order increases.

Corollary 10. Let a, b ∈ I and a ≤ b. For each s ∈ S,

lim
n→∞

∫ b

a

(Pr
n

X,Y − PrnX,Y )(x, s)dx = 0

All above properties of the interval approximations for reachability functions and
satisfaction sets are based on the assumption of a uniform order for the interval approx-
imations. But this assumption is only for notation simplicity and we claim that for all
these properties there are more general versions for interval approximations involving
non-uniform orders.

4 Computational Procedure

In this section, we consider the computation of interval approximations for single-
nested reachability functions, namely PrX,Y with dep(X,Y ) = 1. Because of the lim-
itation of space, we only present a computational procedure for an over-approximation
on the positive part of a perturbation range, while adopting the procedure for other
cases, such as other forms of formulas in L, an under-approximation and the nega-
tive part of a perturbation range, is straightforward. The pseudo-codes of the procedure
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Algorithm 1. Over-approximation for single-nested satisfaction sets on a positive
perturbation range

Input : M〈x〉, X ≡ P>p[AUB], n
Output: satX of order n
satX(0) := satX(0);
compute A〈x〉 and b〈x〉 based on satA and satB;
compute PrA,B(x, s) of order n for s ∈ satA�satB;
foreach s ∈ satA�satB do

let J(X) = {x ∈ I | x ≥ 0, P rA,B(x, s) = p};
foreach a ∈ J(X) do

if PrA,B(·, s) is increasing at a then
satX(a) := satX(a) ∪ {s};

if PrA,B(·, s) is decreasing at a then
satX(a) := satX(a)\{s};

are provided in Algorithms 1 and 2, which are for generating an over-approximations
for a single-nested satisfaction set and that for a single-nested reachability function,
respectively. The two algorithms are explained in greater detail in the following. For
simplicity, we do not indicate the uniform order symbol n explicitly in the reachability
functions and satisfactions sets throughout this section.

Algorithm 1 takes a PMC M〈x〉, an L-formula X ≡ P>p[AUB] and an order
number n as inputs and returns an over-approximation satX of order n for satX . In
general terms, the algorithm computes satX by determining the “jumping” points of
satX and the update operation of satX at those points, such as either putting a spe-
cific state into satX or removing a specific state from satX . Initially, satX(0) is as-
signed to satX(0). Then, A〈x〉 and b〈x〉 based on the constraint set satA�satB and
the target set satB is computed as in standard probabilistic model checking (except
some entries involve symbolic operations). Next, in an essential step of the algorithm,
the over-approximationPrA,B(·, s) of order n for the non-nested reachability function
PrA,B(·, s) for each s ∈ satA\satB is computed. We write PrA,B as the polynomial

PrA,B(x, s) = b0[s] + b1[s]x+ . . .+ bn[s]x
n

and aim to compute the column-vector coefficients bi’s, which are defined in the next
lemma.

Lemma 11. Let A′〈1〉 = A〈1〉 −A and b′〈1〉 = b〈1〉 − b. It holds that

bn = A∗ · (A′〈1〉 ·A∗)n−1 · b′〈1〉+

A∗ · (‖A′〈1〉‖ ·A∗)n ·
∞∑

i=0

(‖A′〈τ〉‖ ·A∗)i · ‖b〈τ〉‖

where τ = supx∈I |x| and for 0 ≤ i ≤ n− 1

bi = A∗ · (A′〈1〉 ·A∗)i · b+A∗ · (A′〈1〉 ·A∗)i−1 · b′〈1〉
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Algorithm 2. Over-approximation for single-nested reachability functions on a
positive perturbation range

Input : M〈x〉, satX , satY with dep(X,Y ) = 1, n
Output: PrX,Y of order n
let a0 < . . . < am enumerate elements of J(X) ∪ J(Y ) ∪ {0};
for 1 ≤ i ≤ m do

compute A〈x〉 and b〈x〉 based on satX(ai), and satY (ai);
compute PrX,Y (x, s) on each [ai−1, ai) and [am, sup(I)] for each s ∈ S;

After computing PrA,B(·, s) for each s ∈ satA\satB, it computes a finite set
J(X) ⊂ {x ∈ I | x ≥ 0} of “jumping” points for the equation PrA,B(x, s) = p
where X ≡ P>p[AUB]. Then, the algorithm determines the update of satX when
the value of x locates at each “jumping” point a ∈ J(X) in the following manner: If
PrA,B(x, s) is increasing in some neighborhood of a, namely the interval [a− ε, a+ ε]
for some small ε > 0, then the element a is put into satX ; if the function is decreasing
on that interval, a is removed from satX .

Algorithm 2 takes a PMC M〈x〉, dynamic sets satX and satY with dep(X,Y ) being
1 and an order number n as inputs, and returns an over-approximation PrX,Y for the
reachability function PrX,Y . The algorithm first enumerates the “jumping” points of
satX and satY . Note that if X (resp., Y ) is a basic formula, then J(X) = ∅ (resp.,
J(Y ) = ∅). Those “jumping” points form a sequence of sub-intervals of the non-
negative part of I . Then, PrX,Y (·, s) is iteratively computed for each of those sub-
intervals using the same method as specified in Algorithm 1.

Theorem 12. The time complexity for computing interval approximations for single-
nested reachability functions is O(k4n3) where k is the size of the state space of the
PMC and n is the uniform order of the interval approximations.

Proof. The generation of A〈x〉 and b〈x〉 is by a basic graph analysis algorithm (plus
numerical and symbolic additions for the latter). The cost of the k × k-matrix multi-
plications and computing A∗ is O(k3). The number of matrix multiplications of bi for
each 1 ≤ i ≤ n in Lemma 11 is bounded by mn2 for some constant number m (note
that A′〈1〉 ·A∗ is a recurrent component). The computational complexity of solving a
polynomial is linear in the size of its order. The number of (real) roots of a polynomial
is not larger than its order and hence there are no more than 2kn “jumping” points.
Therefore, the overall complexity is O(k4n3).

It should be noted that for perturbation analysis, we usually assume that the range I
for the perturbed variable x is small [11]. Thus, we can anticipate a small n in practice
and the time complexity for computing single-nested reachability functions is domi-
nated by the quartic order of the size of the PMC state space. Also, one obvious way to
boost the two algorithms is to combine states s and s′ before solving the equations if
PrX,Y (x, s) and PrX,Y (x, s

′) are equivalent. Also noteworthy is that, because large-
size matrix multiplications are usually unstable and memory-consuming, matrix-vector



Nested Reachability Approximation for Discrete-Time Markov Chains 375

 

 

U 

 

N 

N 

N 

Fig. 2. NAND Multiplexing

multiplications are iteratively carried out and thus the recurrence of A′〈1〉 ·A∗ is bro-
ken apart in the actual numerical computation. As a final point, the properties of interval
approximations presented in Section 3 are for general-form reachability functions, but
algorithms in these section handle single-nested ones only. Although it is possible to
construct a decision procedure for multiple-nested reachability functions, we do not
foresee such a generalization without an overhead of computational complexity. The
reason is that, for single-nested interval approximations, all satisfaction sets can be
computed separately (c.f., Algorithm 1), but for multiple-nested ones, this “separation-
of-concern” is no longer possible because some satisfaction sets may rely on others.

5 Case Study

In this section, we conduct a case study on NAND multiplexing to demonstrate the
practicality of our approach. The purpose of NAND multiplexing is to enhance the reli-
ability of imperfect NAND gates. Normally, a multiplexer consists of an executive stage
and an even number of restorative stages, respectively for carrying out the basic func-
tion of the multiplexer and for reducing the degradation in the executive stage caused
by the input error and the faulty device [15]. We consider a NAND multiplexing unit
with the executive stage only.

The unit is built by replicating the NAND gate N times, as depicted in Figure 2. The
inputs are two bundles of N logical values 1 (a stimulated result) or 0 (a non-stimulated
result) as determined by a probability distribution. We refer each pair of bundles of
logical values as configurations. The functionality of the “U” box is to randomly choose
two input values as inputs for the NAND gates. Whether the overall output of the whole
unit is stimulated or not depends on the number of stimulated outputs of the individual
gates. More specifically, we specify some threshold number K ≤ N . Then, the overall
output is considered to be stimulated if at least N − K outputs are stimulated and
non-stimulated if no more than K outputs are stimulated. In case that neither of the
conditions is met, the overall output is undecided. It is assumed that all gates have the
same error rate and fail independently. Moreover, we let the error rate be perturbed.

The verification of the overall stimulated probability of the NAND multiplexing unit
is a non-nested reachability problem [11]. With the more expressive syntax of L, a more
complicated analysis can be performed. We call a configuration non-stimulated if the
probability of obtaining a non-stimulated overall output from it is not larger than some
fixed probability p, and our analysis is to determine the probability of reaching some
selected non-stimulated configurations. Because polynomials of order N are involved
in a direct computation of the exact reachability probability, we aim to compute its
interval approximations. Symbolically, let X1 ≡ P≥p[FAnon] ∧ Asel, where Anon is
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Table 1. Partial data for order-3 interval approximations for satX1

Configuration
Over approx. (E-03) Under approx. (E-03)

(−5,−3.9) (−3.9, 0.1) (0.1, 2.7) (2.7, 5) (−5, 0.1) (0.1, 2.3) (2.3, 5)

(18, 17) Y Y Y N Y Y N
(19, 16) Y Y N N Y N N
(20, 15) Y N N N N N N

0.272 

0.366 
0.362 

-3.9 

0.300 

0.1 -5.0 2.7 2.9 5.0 (E-03) 

Fig. 3. Images of order-3 interval approximations for PrX2 at the initial state

the non-stimulated condition and Asel is the selecting condition for configurations. Our
goal is to compute a pair of interval approximations for PrX2 where X2 ≡ FX1. The
specification of the NAND multiplexing unit is provided in the modeling language of
the probabilistic model checking tool PRISM [16]. The DTMC model underlying the
specification has about 16,000 states and 24,000 transitions. We make use of the model
export in PRISM to export the states and transition matrix of the DTMC in the Matlab
language [17] and manipulated by our implementation of Algorithms 1 and 2.

In our experiment, the key parameters mentioned above are set as follows: The error
rate of the NAND gates is 0.02 with a perturbation range being [−0.005, 0.005]; the rate
of obtaining the logical value 1 in the inputs is 0.875; the size N of the two bundles is 20;
the stimulated threshold numberK for the overall output is 5; the non-stimulation thresh-
old probability p for configurations is 0.80. The selecting condition for configurations is
(x1 ≥ 15)∧ (x2 ≥ 15)∧ (x1 ≥ x2), where x1, x2 are the numbers of logical value 1 in
the first and second bundles respectively. Instead of computing satX1 andPrX2 directly,
our Matlab implementation computes their interval approximations. Table 1 summarizes
experimental data for three different configurations and several intervals, which express
which configurations belong to the order-3 interval approximations of satX1 at which
intervals—“Y” (resp., “N”) means “yes” (resp., “no”). Figure 3 depicts the function im-
ages of the interval approximations for PrX2 , in which the lower and upper ends of the
boxes specify the under- and over-approximations of PrX2 respectively, while the lines
are their overlapped part. The four “jumping” points of the functions, which are caused
by the movement of three configurations (18, 17), (19, 16) and (20, 15) into or off the
interval approximations for satX1 , locate at x = −0.0039, 0.0001, 0.0023 and 0.0029.
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The specification, implementation and all experiment data can be found in the first au-
thor’s website http://www.comp.nus.edu.sg/˜sugx/.

Overall, our experiment reflects that a small perturbation range of the error rate of the
NAND gates in the multiplexing unit can cause obvious and singularly perturbed effects
on the verification result, and that, even though the computation of the exact locations
of the singularly perturbed points may be costly, these effects can be accurately and
efficiently approximated with our approach.

6 Related Work

Our work is related to the approach of parametric DTMCs. Daws [5] pioneered the
idea of representing a reachability problem in a DTMC or a parametric DTMC as a
finite automaton, transforming the automaton into a regular expression using the state-
elimination method, and evaluating the regular expression as a rational number or a
rational reachability function. This language-theoretic and symbolic approach to the
model checking of parametric DTMCs was advocated and further developed by Hahn
et al. [6,18] and Jansen et al. [19] for non-nested reachability functions. A directed
parameterization of the standard computational method of inversed matrices is used by
Filieri et al. [20].

The other approach is the approach of interval-valued DTMCs, including Interval
Markov Chains (IMCs) and Uncertain Markov Chains (UMCs). Each IMC is treated as
a non-deterministic DTMC or, equivalently, a variant of an MDP with a possibly infinite
set of actions [21]. According to the MDP semantics, the model checking problem for
an IMC involves optimization problems [1,2,3,4]. Each UMC is interpreted as a set of
DTMCs [22]. Although our PMCs are a special kind of UMCs, instead of computing
function expressions like our approach does, the model checking problem for a UMC
amounts to the search for a particular DTMC belonging to the UMC, which is NP-hard,
as pointed out by Sen et al. [1]. Ghorbal et al. [23] proposed an approximation method
for model checking UMCs based on affine arithmetic. Both our work and their work
pursue rigorous bounds for verification results of DTMCs with open or undetermined
quantities, but the scope of their method is UMCs (and thus broader than ours). How-
ever, they addressed neither non-linear approximations nor reachability problems with
nested PCTL probabilistic operators.

Our work is also related to a separated line of research, the common goal of which
is to find an inequality between the distance of stationary distributions of two DTMCs
and the distance of their transition probability functions multiplied by some condition
numbers [24,25,26,27]. Such an inequality holds universally for all DTMCs according
to the mathematical definitions of the chosen condition numbers and distance metrics,
instead of by numerical or symbolic computation.

7 Conclusions

To address the high cost of computing reachability functions with nested PCTL proba-
bilistic operators, we presented an interval approximate characterization for such func-
tions, which enjoys several elegant mathematical properties such as monotonicity and

http://www.comp.nus.edu.sg/~sugx/
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convergency, and developed an efficient procedure for computing interval approxima-
tions for single-nested reachability functions. We evaluate our approach with a case
study on a NAND multiplexing unit.

We outline several directions for future work below. First, the logic that we defined
is a sublogic of PCTL and thus it is natural to extend the approach to capturing the
full-fledged PCTL syntax. Indeed, we believe that all properties in Section 3 would
be preserved if formulas with the “next” operator and the “bounded until” connective
were added to the syntax of the logic. A second interesting problem is to investigate
the possibility of a similar technique, based on multi-variate mathematical analysis, for
PMCs with multi-variate parameters. A third direction is the interval approximation
analysis of other DTMC benchmarks in probabilistic model checking. Last but not the
least, we want to investigate the convergence rate of interval approximations to the
accurate result as the approximation order increases.

Acknowledgment. The authors are indebted to the anonymous reviewers for their com-
ments on the earlier version of the paper.
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Abstract. We introduce a segment-offset-plane memory model for sym-
bolic execution that supports symbolic pointers, allocations of memory
blocks of symbolic sizes, and multi-writes. We further describe our effi-
cient implementation of the model in a free open-source project Bugst.
Experimental results provide empirical evidence that the implemented
memory model effectively tackles the variable storage-referencing prob-
lem of symbolic execution.

1 Introduction

Symbolic execution [9,2,7] is a classic automated program analysis technique
based on a simple idea to execute a program on symbols representing arbitrary
input data. It is nowadays used in many automatic test-generation and bug-
finding tools including industrial ones. Some of the best known tools are Exe [4],
Klee [3], Cute [10], Sage [6], and Pex [15].

As symbolic execution runs a program on symbols instead of concrete input
data, it has to manipulate expressions over these symbols instead of standard
datatype values like integers or floats. However, reading and writing symbolic
expressions is not the main problem associated with memory in symbolic ex-
ecution. It is the variable storage-referencing problem originally presented by
King [9]. The problem appears when one needs to read a value from (or write
a value to) a memory location dependent on input symbols. For example, if we
want to execute an assignment A[i]:=0, the memory location that should be
set to 0 depends on the symbolic value stored in i. The issue becomes even
more serious when we introduce pointers because a symbolic pointer may point
literally to any memory location, not only to elements of one array.

King [9] proposed two possible solutions of the problem for symbolic execution
(and he immediately mentioned that ‘neither is very satisfactory’ ):

1. Symbolic execution is forked for each memory location which is a potential
concrete value of the symbolic pointer. This solution leads to an exhaustive
case analysis. This approach is further improved in [8,5].
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2. The second solution prevents intensive forking of symbolic execution by stor-
ing conditional values in the symbolic memory. For example, if array element
A[3] has a value e and i has a value i, then an assignment A[i]:=0 changes
the value of A[3] to ite(i = 3, 0, e) meaning that the value is 0 if i = 3,
and e otherwise. Note that each write can theoretically prolong all memory
records by one application of ite. Hence, this symbolic memory grows very
quickly unless we use some reduction methods. Unfortunately, the reduction
methods are typically expensive.

The presented symbolic memory elaborates on the second approach. Besides
symbolic pointers, our approach also supports allocations of memory blocks of
symbolic sizes and multi-writes, i.e. operations that write to symbolic number
of memory locations at once. This is useful for example when one sets a block
of allocated memory to 0, where the number of allocated bytes in the block is
given by a symbolic expression.

Full description of our symbolic memory is divided into two parts: Section 2
explains our segment-offset-plane memory model and Section 3 then describes its
implementation. Both the memory model and its implementation are designed
to manipulate as simple expressions as possible, to make operations in symbolic
memory efficient. The suggested symbolic memory provides just basic memory
operations (i.e. allocation, read, write, deallocation, and test for memory initial-
isation). Handling of some advanced memory-related operations (e.g. manipula-
tion with composed objects or unions) using our symbolic memory is discussed
in Section 4. The high efficiency of our symbolic memory implementation is
confirmed by measurements presented in Section 5.

2 Segment-Offset-Plane Memory Model

Our symbolic memory is not bound to any particular programming language or
data types. For sake of accessibility, all examples use C statements and programs.
Further, we assume that integers and pointers are 4 bytes long.

First we describe the structure of the memory model. The crucial memory
operations (namely allocation, read, and write) are then illustrated on a simple
example. Finally, we introduce extended versions of allocation and write op-
erations called multi-allocation and multi-write. The remaining two operations
provided by our symbolic memory interface (namely deallocation and test for
memory initialisation) are described in the following section.

2.1 Structure of the Model

Structure of the model reflects needs of symbolic execution. A specific aspect of
memory allocations in symbolic execution is that sizes of requested allocations
can be given by symbolic expressions instead of concrete numbers. For example,
if an integer variable n has a value represented by a symbol n, then symbolic
execution of malloc(n * sizeof(int)) allocates 4n bytes, which can represent
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4 bytes as well as 4 megabytes. If we use a standard memory model where
memory cells are ordered into a linear sequence, it is very complicated to track
which cells are allocated and which are free. We rather represent every allocated
block as an isolated part of the memory called segment. Each segment is identified
by a unique integer number. Memory cells within the block are identified by a
nonnegative integer called offset. Hence, an address in our memory model is a
pair segment :offset.

Further, write and read operations know what type of data they manipulate.
Our memory model takes advantage of this fact and stores data of each basic
type into a separated part of the memory called plane. The separation increases
performance of our symbolic memory. For example, if we read an integer, we
do not have to deal with chars, floats, or any data of other types stored in
the memory. Pointers are composite datatypes and thus they are stored in two
planes: segments in the plane Segments and offsets in the plane Offsets.

The memory model is called segment-offset-plane as every read or write op-
eration needs to know the address (i.e. its segment and its offset) and the plane
it should read from or write to.

10

5

10

5planes

+segment

−segment

+offset
0

3

7 Segments

Offsets

Integers

0

5 20

...

...

...

Sizes

Fig. 1. A simple instance of the segment-offset-plane memory model
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Figure 1 depicts a simple instance of the segment-offset-plane memory model.
The segment axis (vertical) has two directions to positive and negative values.
The offset axis (horizontal) has only one direction to positive values. On the
planes axis there are depicted three parallel memory planes. They share the
same address space. In the picture there is further depicted a pointer 3 : 7 which
is stored at the address 5 : 10. We see that the segment 3 of the pointer is stored
in the Segments memory plane, while the offset 7 is stored in the plane Offsets.
Although both segment and offset are stored at the same address, they are stored
into different planes. The figure also shows an array Sizes that stores the size of
each allocated segment. In the figure, the size of segment 5 is 20 bytes. As we
mentioned above, the size of a segment can be symbolic. Segments with size 0
are not allocated. The segment 0 is never used to store any data: addresses with
segment 0 are interpreted as NULL pointers (assigning NULL sets a pointer to
0 : 0).

In our approach, memory operations do not automatically check whether ad-
dresses they work with are allocated or not. Instead, we provide an additional
function that checks whether a given address points to an allocated memory or
not. This function simply looks into the given address in the array Sizes and
checks whether the value is greater then zero. We similarly do not implicitly test
for memory initialisation in memory operations. We discuss details about the
function providing memory initialisation test in the next section.

To unify the structures used in the model, we represent the array Sizes as
another plane where we use only memory offsets 0, i.e. the size of a segment x
is stored in plane Sizes at the address x : 0.

The content of a plane is represented by a list of write records, where each
record has the form (segment : offset , value). In fact, the list reflects history of
the plane content: a new record is always added at the end of the list. We use this
representation just to explain principles of the model. An effective representation
of a plane’s content is described later in Section 3.

2.2 Basic Functionality of the Model

We explain the basic functionality of the memory model using a simple example.
Let us consider the program depicted in Figure 2. The program contains a defi-
nition of a global pointer variable A and a function foo accepting two parameters

1 int* A = NULL;

2 int foo(int n, int i) {
3 A = (int*)malloc(n * sizeof(int));

4 A[3] = 777;

5 A[4] = 888;

6 A[3*i+1] = 999;

7 return A[3]+A[4];

8 }

Fig. 2. Running example with a global pointer variable A and a function foo
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n and i. We symbolically execute the program with input values of variables n
and i represented by symbols n and i respectively. As we are interested in an
effect of statements forming the body of the function, we start by a description
of the symbolic memory content just before execution of line 3. We especially
need to know where program variables are stored in the memory and what are
their values. Let the global variable A be stored at address 1 : 0, and the stack
variables n and i be stored at addresses 2 : 0 and 2 : 4 respectively. Note that
we can consider the segment 1 as a memory block for the common ‘data seg-
ment’ of the program and we can consider the segment 2 as a memory block for
the common ‘stack segment’ of the program. All other segments (except 0) then
represent the program heap. As the program uses only pointers and integers, we
will work with four planes: Segments, Offsets, Integers, Sizes. Before executing
line 3, the planes have the following content:

Segments ≡ [(1 : 0, 0)] Integers ≡ [(2 : 0, n), (2 : 4, i)]
Offsets ≡ [(1 : 0, 0)] Sizes ≡ [(1 : 0, 4), (2 : 0, 1024)]

Note that the record (1 : 0, 4) in Sizes says that the data segment of the program
consists of four bytes only. It is enough for storing the global pointer A (initialised
to NULL, i.e. 0 : 0) as we assume that a pointer is 4 bytes long. Further, the
record (2 : 0, 1024) says that we reserved 1024 bytes for the program stack.
Currently, only variables n and i occupy their 8 bytes. Note that instead of a
fixed size of the stack we can introduce a fresh symbol for its symbolic size.

Execution of line 3 of the program results in two modifications in the memory.
First, we allocate 4n bytes of memory in the first free segment which is the
segment 3. We do so by a single write into the plane Sizes and we get

Sizes ≡ [(1 : 0, 4), (2 : 0, 1024), (3 : 0, 4n)].

Second, we assign the address 3 : 0 of the first byte of the allocated memory to
the pointer A. More precisely, the segment 3 and the offset 0 of the address are
stored to the planes Segments and Offsets respectively, both to the address of A
which is 1 : 0. We have

Segments ≡ [(1 : 0, 0), (1 : 0, 3)] and Offsets ≡ [(1 : 0, 0), (1 : 0, 0)].

The statement at line 4 writes the value 777 to the address 3 : (0 + 4 · 3)
computed from the address 3 : 0 (stored in the pointer A) by its increment by
4 · 3 bytes (which is the size of 3 four–byte integers). We obtain

Integers ≡ [(2 : 0, n), (2 : 4, i), (3 : 4 · 3, 777)].

The statements at lines 5 and 6 are resolved similarly. The resulting content
of the plane Integers is

Integers ≡ [(2 : 0, n), (2 : 4, i), (3 : 4 · 3, 777), (3 : 4 · 4, 888), (3 : 4 · (3i+ 1), 999)].

Note that the last record refers to a symbolic offset. In fact, any part of a record
is a symbolic expression (concrete number is a special kind of such expressions).
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Now we execute line 7 with two read operations. The first operation reading
A[3] is resolved in the plane Integers such that we compare the address where
we read, i.e. the address 3 : 4 · 3, with addresses in all records in the list in the
reverse order, and we build the composed ite expression

ite(3 = 3 ∧ 4 · 3 = 4 · (3 · i+ 1), 999,
ite(3 = 3 ∧ 4 · 3 = 4 · 4, 888,

ite(3 = 3 ∧ 4 · 3 = 4 · 3, 777,
ite(3 = 2 ∧ 4 · 3 = 4, i,

ite(3 = 2 ∧ 4 · 3 = 0, n,
δ(3, 4 · 3)))))),

where δ(3, 4 · 3) denotes a symbolic default value stored initially at the address
3 : 4·3 in the memory plane Integers. This default value can be used for detection
of read operations from uninitialised memory. After few trivial simplifications we
reduce the ite expression to ite(2 = 3 · i, 999, 777). We can further see that the
equation 2 = 3 · i does not have any solution, since i represents only integer
values. With this knowledge we can simplify the expression even further to the
final value 777.

Constraints like 2 = 3 · i can be resolved automatically by an SMT solver.
Simplifications based on satisfiability checking of constraints have an important
impact on size of expressions returned from the memory. As these expressions
are often modified by the program and then stored back to the memory, the
simplifications also reduce memory size and improve its performance. In Section 3
we present an actual implementation of the memory model, which substantially
reduces the construction of compound ite expressions. In particular, the read of
A[3] in our running example returns 777 without construction of any composed
ite expressions.

The last memory operation of our running example reads A[4]. It proceeds in
the same way as the previous one and results into the value ite(1 = i, 999, 888).

2.3 Multi-Writes and Multi-Allocations

Our memory supports multi-write operations that can change content of more
memory locations at once. This ability has some natural applications in symbolic
execution. We only sketch the concept of multi-writes using the example code

char A[n];

memset(A,0,n);

that allocates an array A of n bytes and sets all its elements to 0. Let n represent
the value of n. We need to write to n addresses. Use of one multi-write is definitely
more efficient here than iterating over the array and writing to one address each
time, especially when we do not know the concrete length of the array.

Let us assume that the array A is stored at an address σA : ωA. Then we need to
write 0 to every address with segment σA and an offset ω satisfying the formula

φ(ω) = (ωA ≤ ω < ωA + n).
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We can describe the addresses using λ-notation as σA : λω. φ(ω).
Formally, we always work with λ-expressions of the form λσ̄. λω̄. f(σ̄, ω̄),

i.e. functions of both, a segment σ̄ and an offset ω̄. Thus, the arguments of
the considered multi-write are

(σA : λσ̄. λω̄. φ(ω̄), 0),

which is precisely the record that is added to the corresponding plane. In general,
the values set by a multi-write operation do not have to be constant. They can
also be given by a function of a segment and an offset. For example, the multi-
write

(σA : λσ̄. λω̄. φ(ω̄), λσ̄. λω̄. (ω̄ − ωA) mod 2)

sets all even elements of the array to 0 and all odd elements to 1.

Besides multi-writes, our model also supports a multi-allocation that allocates
a number of segments given by a symbolic expression at once. A multi-allocation
is basically a multi-write into the Sizes memory plane. Segments allocated in
this way have negative numbers. We provide more information about multi-
allocations in the next section.

3 Implementation of the Memory Model

This section describes data structures used for effective representation of planes’
contents. Further, it describes the algorithms for basic memory operations.

The implementation distinguishes two types of addresses: constant and sym-
bolic. An address is constant if its segment and offset are both concrete integer
numbers. Non-constant addresses are called symbolic. Note that a segment or
an offset of a symbolic address is either a symbolic expression not equivalent to
a concrete integer number, or a boolean λ-function determining a set of integers.

In the previous section, plane contents are represented as lists of records.
As most memory operations work with concrete addresses, we use a specific
structure to quickly resolve operations on these addresses. More precisely, the
content of a plane is held in two structures: boostMap and iteList. The boostMap
contains only data stored at concrete addresses and not colliding with any newer
record. For example, symbolic address 3 : 4·(3·i+1) collides with concrete address
3 : 52 as the two addresses are identical when i = 4. On the other hand, the
symbolic address does not collide with 3 : 53. The boostMap is implemented as a
map assigning stored values to the corresponding constant addresses. All other
records are stored in a doubly linked list called iteList, where the oldest record is
at the beginning and the youngest at the end. An example of the two structures
is depicted in Figure 3.

Write Operation. The write operation of a memory plane stores a passed
symbolic expression ν at a given address σ : ω. If the address is constant, the
procedure is very simple: we remove the old value stored at the address from the
boostMap (if any) and then we insert the pair (σ : ω, ν) into the boostMap.
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boostMap

2 : 3 �−→ 15
13 : 0 �−→ a+ 2
7 : 11 �−→ 100i
5 : 68 �−→ 2k − 5

records with constant
addresses and younger

than or non-colliding with
any record in the iteList

iteList

8 : λσ.λω.0 ≤ ω < m

λσ.λω.ω + 3n
the oldest

3 : 4

45

3k : 15i+ j

2a− 13
the youngest

Fig. 3. An example of data structures boostMap and iteList. Each record in iteList is
represented by an address (upper line) and the corresponding value (lower line).

If the passed address is symbolic, then there is a possibility that it collides
with some constant addresses stored in the boostMap. To keep the boostMap
correct, we must first detect all such collisions and move the colliding records
from the boostMap to the iteList. Let (σ′ : ω′, ν′) be a record with a concrete
address stored in the boostMap. There is a collision between the addresses σ′ : ω′

and σ : ω iff the collision formula Γ (σ′, ω′, σ, ω) defined as σ′ = σ ∧ ω′ = ω is
satisfiable.1 We ask an SMT solver to decide the satisfiability. To be on the safe
side, we assume that the formula is satisfiable even if the SMT solver returns
UNKNOWN (recall that SMT queries can refer to some undecidable theories).
If the formula is satisfiable, we remove the record (σ′ : ω′, ν′) from the boostMap
and we insert it at the end of the iteList. Otherwise, the record remains in the
boostMap. When all records in the boostMap are examined, we finish the write
operation by inserting a new record (σ : ω, ν) at the end of the iteList.

We illustrate the write operation using the example of Figure 2. Let us assume
that the first 5 lines of the program are already symbolically executed. Since these
lines call writes to constant addresses only, all data are stored in boostMaps. We
focus on the plane Integers, which has the following content:

Integers.boostMap = {(2 : 0, n), (2 : 4, i), (3 : 4 · 3, 777), (3 : 4 · 4, 888)}
Integers.iteList = []

Execution of line 6 of the program produces a write of the record (3 : 4(3i+
1), 999) to the plane Integers. As the address 3 : 4(3i+1) is symbolic, the record
will be added to the iteList. Before we do so, we have to detect collisions of the
records in the boostMap with the new record:

1 The structure of the collision formula is slightly different if some of its argu-
ments are λ-expressions. For example, σ′ : ω′ collides with σ : λσ̄. λω̄. φ(σ̄, ω̄) iff
Γ (σ′, ω′, σ, λσ̄. λω̄. φ(σ̄, ω̄)) defined as σ′ = σ ∧ φ(σ′, ω′) is satisfiable.
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collision test collision formula result
2 : 0 vs. 3 : 4(3i+ 1) 2 = 3 ∧ 0 = 4(3i+ 1) UNSAT
2 : 4 vs. 3 : 4(3i+ 1) 2 = 3 ∧ 4 = 4(3i+ 1) UNSAT

3 : 4 · 3 vs. 3 : 4(3i+ 1) 3 = 3 ∧ 4 · 3 = 4(3i+ 1) UNSAT
3 : 4 · 4 vs. 3 : 4(3i+ 1) 3 = 3 ∧ 4 · 4 = 4(3i+ 1) SAT

Since only the collision with the last record in the boostMap is possible, only this
one is moved into iteList. We finish the write operation by extending the iteList
by the new record (3, 4(3i+ 1), 999). The updated plane is represented by:

Integers.boostMap = {(2 : 0, n), (2 : 4, i), (3 : 4 · 3, 777)}
Integers.iteList = [(3 : 4 · 4, 888), (3, 4(3i+ 1), 999)]

Read Operation. Given an address σ : ω and a memory plane, the read
operation computes a single symbolic expression which determines the value
stored in the memory plane at the passed address. If the address is constant, we
check whether it lies in the domain of the boostMap. If so, we return the symbolic
expression stored in the map for the address.

In all other cases, we construct a nested ite expression ψ holding the value.
We initialise ψ to a symbol δ(σ, ω) representing the default value stored in the
plane at the passed address σ : ω. This initialisation of ψ covers the case when no
value has been written to the passed address so far. Now we enumerate records
in the iteList from the oldest one to the youngest one. For each enumerated
record (σ′ : ω′, ν′) we check whether its address collides with σ : ω. That is, we
build the collision formula Γ (σ′, ω′, σ, ω) as described in the write operation. If
the formula is satisfiable, we update ψ to

ite(Γ (σ′, ω′, σ, ω), ρ, ψ), where ρ =

{
ν′ iff ν′ is not a λ-function,

f(σ, ω) iff ν′ ≡ λσ̄. λω̄. f(σ̄, ω̄).

After processing all records in the iteList, we do the same with the records stored
in the boostMap (processed in an arbitrary order) unless σ : ω is a constant
address. If it is a constant address, we already know that it does not collide with
any record in the boostMap as this was already checked at the beginning.

We illustrate the read operation using the example of Figure 2. We describe
two read operations, from the array of integers allocated at line 3, performed
during symbolic execution of the line 7. The content of the plane Integers after
symbolic execution of the first 6 lines is already shown right before the descrip-
tion of the read operation. Execution of A[3] invokes the read operation in the
plane Integers at the address 3 : 4 · 3. Since there is a record in the boostMap for
the address, we directly return its value 777. Execution of A[4] invokes the read
operation in the plane Integers at the address 3 : 4 · 4. Since there is no record
in the boostMap for this address, we construct the resulting expression ψ from
all records in the iteList as depicted in the following table:

collision test collision formula result ψ
− − − δ(3, 4 · 4)

3 : 4 · 4 vs. 3 : 4 · 4 3 = 3 ∧ 4 · 4 = 4 · 4 SAT 888
3 : 4(3i+ 1) vs. 3 : 4 · 4 3 = 3 ∧ 4(3i+ 1) = 4 · 4 SAT ite(i = 1, 999, 888)
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In the first row there we initialise ψ to the default value δ(3, 4·4). In the following
lines we perform collision checks before we update ψ. Note that we automatically
applied trivial simplification of ψ. In particular, in the second row we simplified
ψ from ite(3 = 3 ∧ 4 · 4 = 4 · 4, 888, δ(3, 4 · 3)) to 888 and in the third row we
simplified the condition 3 = 3 ∧ 4(3i+ 1) = 4 · 4 to i = 1.

Allocation and Deallocation. We distinguish allocations of a single segment
and multi-allocations. We maintain an allocation counter initialised to 1 and a
multi-allocation counter initialised to −1.

An allocation of a single segment of a symbolic length ψ proceeds in the
following three steps. Let γ be a value of the allocation counter before the allo-
cation. In the first step we write the passed size ψ into Sizes memory plane at
the address γ : 0. Next, the counter is updated to the value γ + 1. Finally, we
return the address γ : 0 as the result of the allocation.

Let ϕ and ψ be symbolic expressions. A multi-allocation of ϕ segments of the
common size ψ proceeds in three steps as well. Let γ be a value of the multi-
allocation counter before the allocation. In the first step we write the size ψ into
the plane Sizes at addresses (λσ̄. λω̄. γ ≥ σ̄ > γ − ϕ) : 0. In the next step the
multi-allocation counter is updated to the value γ − ϕ. Finally, we return the
address (γ − ϕ + 1) : 0 as the result of the allocation. Note that the returned
address points to the memory block with the lowest segment identifier.

Segment deallocation works exactly the same way for all memory blocks, re-
gardless of types of their allocation. We simply write the number 0 into the
memory plane Sizes at the passed address. Note that the offset of the passed
address must always be the number 0, since all memory blocks are allocated
at that offset. We can also perform a multi-deallocation by the corresponding
multi-write into the Sizes memory plane. Note that deallocations do not change
allocation and multi-allocation counters.

Test for Memory Initialisation. Given an address σ : ω and a memory plane,
test for memory initialisation returns a formula ψ over input symbols, which is
valid for the concrete inputs for which the memory location σ : ω in the given
plane is initialised. Computation of ψ proceeds as follows. If the address σ : ω is
constant and it belongs to the domain of boostMap of the plane, then ψ ≡ true.

In all other cases, we construct ψ in form of disjunction. We first initialise
ψ to false . Then we enumerate records in the iteList in any order. For each
enumerated record (σ′ : ω′, ν′) we build the collision formula Γ (σ′, ω′, σ, ω) as
described in the write operation and then we update ψ to ψ∨Γ (σ′, ω′, σ, ω). After
processing all records in the iteList, we do the same with the records stored in
the boostMap (also processed in an arbitrary order) unless σ : ω is a constant
address. If it is a constant address, we already know that it does not collide with
any record in the boostMap as this was already checked at the beginning.

The passed address σ : ω can contain λ-expressions and thus it can represent a
set of addresses. In this case, the returned formula ψ describes the concrete inputs
for which all the represented locations are initialised. Hence, ψ is constructed in
a slightly different way for addresses with λ-expressions. If σ : ω has the form
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λσ̄. λω̄. φ(σ̄, ω̄) : ω, then ψ is defined as ∀σ̄. φ(σ̄, ω) → ψ′, where ψ′ is constructed
by the algorithm described above for the address σ̄ : ω (instead for the original
address σ : ω). The construction of ψ for addresses with a λ-expression in the
offset is similar.

Caching Satisfiability Queries. During read or write operations not resolved
by boostMaps we intensively construct collision formulae. We use an SMT solver
to decide their satisfiability. Unfortunately, resolving SMT queries is usually
very time consuming. Fortunately, the constructed collision formulae are often
repeated. We thus implemented a cache in front of an SMT solver to improve
amortised complexity of symbolic memory operations.

Remark. Our implementation of symbolic memory can be further improved. For
example, it currently never removes any record from an iteList even if one can
easily construct an example where such a record becomes useless. We left the
removal of useless records for future work for two reasons: it does not seem to
be a bottleneck in our evaluation, and it can be expensive to decide whether a
record in iteList is useless or not.

4 Use of the Memory in Symbolic Execution Tool

Our symbolic memory defines language- and platform-independent low-level
memory layout with basic operations only. However, symbolic executors often
need to handle some higher-level features of supported language. For exam-
ple, symbolic executors of C programs have to handle composed data types,
unions, void*, implementation of type casting expressions, etc. In this section,
we suggest possible implementation of the mentioned high-level features using
our low-level symbolic memory.

Composed Data Types. A symbolic execution tool may create a plane for
each basic data type of its instruction language and composed data (even nested)
are treated simply as (nested) tuples of basic data types. So, individual attributes
of an instance of a composed type are spread into the corresponding planes of
basic types. Moreover, the tool can also introduce special separate planes for
selected composed types of an analysed program.

Unions. Union is a special composed data type, which can easily be represented
such that its attributes reside in different planes but all at the same address.

void*. Like other pointers, void pointers can be stored in the predefined planes
Segments and Offsets. We do not define types for addresses, i.e. we treat all
pointers the same way. It is responsibility of the tool to know which (pointer)
variable has which type.
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Type Casting. This feature of a programming language allows a programer to
reinterpret meaning of referenced data. If the language also supports pointers
and pointer arithmetic, then any sequence of bytes (starting basically at any
address) can be reinterpreted according to programmer’s will. This flexibility
complicates designing of a symbolic executor. Here we show that our memory
model provides a ground for efficient implementation of symbolic memory even
for such flexible languages.

Let us consider the following C statement: float f = *(float*)p;, where
p is of int* type. Obviously, the correct execution of this statement requires
that the memory plane Floats contains at the address p such floating point
number whose memory representation is equal to the memory representation of
the integer stored at the same address in the plane Integers. This means that
the last write into the plane Integers at the address p must have been extended
by the corresponding write to the memory plane Floats.

With our memory model, a symbolic execution tool can optimise performance
of the memory by implementing a data-flow analysis which detects all those write
statements in the program whose extension is indeed necessary. Without any
such analysis, the tool would have to extend each write such that it is performed
to memory planes of all basic data types.

Note that in case of type-safe programming languages execution of type cast-
ing instructions is optimal in our memory model since no writes have to be
extended. Therefore, performance of our memory scales according to properties
of programming languages used in symbolic executors.

5 Experimental Results

We have implemented the symbolic memory as a library Segy of an open-
source project called Bugst [14]. The library is used by a symbolic execution
tool Rudla, which is another part of the project Bugst. The tool performs both
classic [9] and compact [11] symbolic execution. We run Rudla on a collection
of benchmarks from the category ’Loops’ of SV–COMP 2013 [1], revision 229.
We have chosen this category for two reasons. First, the benchmarks manipulate
with arrays. Reading from and writing to array elements with input-dependent
indexes lead to memory operations on non-constant addresses. Second, compact
symbolic execution of program loops is the source of multi-write operations. The
category contains 79 benchmarks, but only 70 of them can be translated into
Rudla’s internal program representation by the current version of Bugst. We
symbolically executed each of the 70 benchmarks, both by classic and compact
symbolic executions. Classic symbolic execution does not use multi-writes and
thus the performed memory operations are relatively simple, while compact sym-
bolic execution uses multi-writes which insert λ-expressions to the memory and
make subsequent memory operations harder.

All experiments were performed on a laptop Acer Aspire 5920G (Intel R© CoreTM

2 Duo 2GHz, 2GB RAM) running Windows 7 Professional 64-bit. We used Z3
SMT Solver 4.3.0 [16] for deciding satisfiability queries. We apply a five minutes
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Table 1. Comparison of efficient and naive implementation of the memory model

settings visited nodes

classic naive implementation 417627
SE efficient implementation 8083024

compact naive implementation 219285
SE efficient implementation 3547706

Table 2. Usage of BoostMap structures and iteList structures. Numbers in brackets
are counts of multi-writes and they are included in the numbers of write operations.

boostMap iteList
operation count time count time

# % [s] % # % [s] %

classic write 7014327 99.98 15.50 69.01 1288(0) 0.02 6.959 30.99
SE read 6765528 99.74 75.35 57.03 17748 0.26 56.77 42.97

compact write 6365255 99.96 15.48 52.44 2698(236) 0.04 14.04 47.56
SE read 3793442 98.38 65.81 26.48 62606 1.62 182.7 73.52

summary 23938552 99.65 172.1 39.78 84340 0.35 260.5 60.22

timeout for execution of each benchmark. In all experiments, we present cumu-
lative data for classic symbolic execution of the 70 benchmarks and for compact
symbolic execution of the 70 benchmarks.

The first experiment compares overall efficiency of our implementation with
a naive implementation of the segment-offset-plane model. The naive implemen-
tation (also available in Bugst library Segy) represents the content of a plane
by a simple list of records. The naive read operation produces a nested ite ex-
pression containing all records of the list and asks an SMT solver to simplify it.
Table 1 presents cumulative numbers of symbolic execution tree nodes visited
during classic and compact symbolic executions of the 70 benchmarks (each with
the five minutes timeout) using either the naive or the efficient symbolic memory
implementation. The results show that classic symbolic execution runs more than
19 times faster when using our efficient implementation of the symbolic memory
compared to the naive implementation. The compact symbolic execution with
the efficient symbolic memory runs more than 16 times faster. The numbers of
tree nodes visited by classic and compact symbolic executions should not be
compared as nodes in compact trees have a slightly different semantics than
nodes in classic symbolic execution trees.

The following experimental data provide more information about performance
of our efficient implementation. We focus on read and write operations since they
are essential for the memory. Note that memory allocations and deallocations
are also considered as they are writes into the plane Sizes actually.

Table 2 shows total counts of read and write operations resolved purely by
boostMap structures and the operations accessing iteList structures. The table
also provides the total time (in seconds) of these operations. We always present
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Table 3. Efficiency of our cache in front of Z3 SMT solver

cache hits cache misses
operation count time count time

# % [s] % # % [s] %

classic write 3791 83.28 0.360 5.55 761 16.72 6.131 94.45
SE read 27031 85.04 3.385 7.69 4756 14.96 40.65 92.31

compact write 2471 67.74 1.700 12.69 1177 32.26 11.70 87.31
SE read 69231 83.80 25.59 16.96 13382 16.20 125.3 83.04

summary 102524 83.62 31.04 14.45 20076 16.38 183.78 85.55

absolute as well as relative numbers. One can see that overwhelming majority
of the memory operations are resolved in boostMaps. The table also shows that
accesses to boostMaps are much faster than those to iteLists. So we have an
empirical evidence that implementation of memory planes by the two structures
boostMap and iteList is indeed very important.

Although memory operations accessing iteLists are relatively slow, we actually
achieved an impressive speed up by introducing a cache in front of an SMT solver
called by memory operations (note that operations resolved by boostMaps do not
produce SMT queries). Table 3 shows the counts of cache hits and cache misses.
Again, we show also total time needed to solve the cached and non-cached SMT
queries. We can see that more than 80% of all SMT queries led to cache hits and
thus to very fast responses.

Finally, the results also show that the performance of our symbolic memory
scales according to complexity of expressions passed to the memory: the ratio of
operations resolved by boostMaps is higher for classic symbolic execution than for
compact symbolic execution, and the same holds for cache hits of SMT queries.

6 Other Approaches to Symbolic Memory

As far as we know, our symbolic memory is the only one that supports fully
symbolic addresses. Other recognized tools based on symbolic execution includ-
ing Exe [4], Klee [3], Cute [10], Sage [6], Pex [12], and SimC [13] solve the
variable-storage referencing problem in different ways. For example, Klee and
Sage support symbolic offsets, but only concrete segments. If a pointer can point
to n memory segments, Klee clones symbolic execution n times and fix the seg-
ment part of the pointer to one of the segments in each clone. Concolic executors
like Sage often take advantage of the fact that they perform both concrete and
symbolic execution along the same path. Hence, if a symbolic pointer can point
to more segments, Sage fix the segment part of the pointer to the value of this
pointer in the corresponding concrete execution. Another approach is used in
Cute: it supports only pointers that are either NULL, or they point to a concrete
address, or they directly correspond to some input symbol.

None of the mentioned tools support allocation of memory blocks of symbolic
size or multi-writes.
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Different approaches and abilities of our symbolic memory and symbolic mem-
ories of the above tools prevent their reasonable performance comparison. Indeed,
other tools solve dereference of fully symbolic pointers outside symbolic memory.
This allows them to use simpler structures and faster algorithms implementing
symbolic memory, but for the price of more symbolic executions (due to cloning
in Klee) or loss of information (like in Sage where a symbolic value is replaced
by the corresponding value in a concrete execution).

7 Conclusion

We presented a symbolic memory supporting symbolic pointers, allocations of
memory blocks of symbolic sizes, and multi-writes. The memory is based on
storing conditional values. It uses the introduced segment-offset-plane memory
model where addresses are segment : offset pairs. Data stored in the memory
are distributed into memory planes according to their semantic information,
e.g. data type. The model leads to a natural fragmentation of the memory,
which makes memory operations faster. We also describe our implementation
of the memory model that uses specific data structures and a cache for SMT
queries to improve efficiency of the symbolic memory. Experimental results give
us an empirical evidence that the implemented symbolic memory successfully
tackles the variable storage-referencing problem.
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Abstract. Timed automata are a well known formalism for modeling
real-time systems. Model checking of timed automata is important for
ensuring that the systems satisfy certain properties. Safety is one of
the most important properties for timed automata. In this paper we
propose a method for the safety checking of timed automata, which is
an adaptation of the general trace abstraction refinement framework to
timed automata. The feature of our work is that we use zone-based LU-
abstraction instead of interpolation techniques. This method performs
zone computation only when necessary, and the abstraction on zones is
coarser because only part of the control structure is considered when
computing LU-bounds. We give an example to show when this method
could perform more efficiently than the traditional zone-based search
algorithm.

Keywords: Timed Automata, Trace Abstraction Refinement, Safety.

1 Introduction

Timed automata are a well-known model for real-time systems. Since it was
proposed [1], many works have been focused on model checking of timed au-
tomata. Model checking of timed automata is non trivial due to the dense state
space. This problem was initially solved by the construction of region graph [1],
which results from partitioning the state space into a finite number of bisimula-
tion equivalence classes. However, this method is impractical because it induces
severe state explosion.

The zone-based method has been extensively investigated for symbolically
represent the region graph. In zone-based timed automata model checking, dif-
ference bound inequalities are used to symbolically represent a convex set of
regions [6]. Abstraction techniques are used to reduce the number of zones, and
consequently improve performance. Efforts have been made to obtain coarser
abstractions through inventing new abstraction techniques [4], or by static anal-
ysis [3] and dynamic analysis [14] of the timed automata model. The zone based
method is used in tools such as UPPAAL [5] and KRONOS [24].

Traditional symbolic model checking techniques can also be used on region
graphs. Both BDD structures [2,7,20] and SAT formulas [23,25] have been used
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to encode region graphs. Several works try to develop extensions of BDDs in or-
der to represent dense valuation space fully symbolically. Examples of this kind
of extensions include Clock Difference Diagrams (CDD) [18], Difference Deci-
sion Diagrams DDD [19], Clock Restriction Diagrams (CRD) [22], Constraint
Matrix Diagrams (CMD) [10] and so on. The basic idea is to develop a data
structure that combines clock difference constraints into BDD, making it effi-
cient to perform zone operations. Some researchers use SMT-based method for
timed automata model checking [17], which exploit the ability of SMT-solvers
in handling linear inequations to directly encode the dense semantics of timed
automata.

Abstraction refinement techniques [8,13] have been invented for software and
hardware verification, and have received much attention in recent years. Ab-
straction refinement techniques start by model checking a simpler model which
is a coarse abstraction of the original model. In each iteration, model checking is
performed on a new abstract model which is obtained by refining the one in the
previous iteration. Abstraction refinement techniques fight the state explosion
by automatically extracting the information related to the correctness of the
system, and abstracting away those that are not relevant. Various works have
been devoted on adapting abstraction refinement techniques to the verification
of timed automata [9,15,16,21].

Recently, the trace abstraction refinement scheme has been proposed for soft-
ware model checking [11,12]. Trace abstraction refinement views the system to
be verified as a finite automaton accepting sequences of statements as words,
and performs the refinement by iteratively constructing finite automata (which
the author call interpolant automata) to remove infeasible traces.

In this paper, we adapt the trace abstraction refinement method to the model
checking of timed automata. We see the set of timed transitions in timed au-
tomata as the alphabet, and perform a zone-based automata construction in each
iteration. While in the original trace abstraction refinement framework automata
construction depends on SMT interpolation, in our work we use zone-based ab-
straction instead. This is because zones are very suitable and efficient for the
analysis of timed automata.

Organization of the Paper. In Section 2 we will give the basic definitions re-
lated to timed automata, and recall the zone-based symbolic semantics and
LU-extrapolation. Then in Section 3 we will introduce the trace abstraction
refinement framework, and in Section 4, we show how to adapt it to timed au-
tomata verification. In Section 5 we present an example to show how our method
behaves in comparison with zone based search algorithm. Last, in Section 6, we
give the conclusion and possible future works.

2 Preliminaries

2.1 Timed Automata and the Safety Property

A set of clock variables X is a set of non-negative real-valued variables. A clock
constraint is a conjunction of inequations of the form x ∼ c, where x ∈ X , c ∈ N,
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and ∼∈ {<,≤, >,≥}. A clock valuation is a function ν : X �→ R≥0, which assigns
to each clock variable a nonnegative real value. We denote 0 the special clock
valuation that assigns 0 to every clock variable. For a formula ϕ on X , we denote
by �ϕ� the set of all clock valuations satisfying ϕ, i.e., �ϕ� = {ν|ν |= ϕ}.

Definition 1 (Timed automata).A timed automaton is a tuple 〈L, linit, X,E〉,
where L is the set of locations, linit is the initial location,X is the set of clocks, and

E is the set of transitions of the form l
a,g,r−−−→ l′, where a is an action label, g is a

clock constraint, which we call guard, and r ⊆ X is the set of clocks to be reset.

Definition 2 (Semantics of timed automata). A configuration of a timed
automaton A = 〈L, linit, X,E〉 is a pair (l, ν), where l ∈ L is a location, and ν
is a clock valuation. The initial configuration is (linit,0). There are two kinds of
transitions

– Action. For each pair of states (l, ν) and (l′, ν′), (l, ν)
a,g,r−−−→ (l′, ν′) iff there

is a transition l
a,g,r−−−→ l′ ∈ E, and

• ν |= g, and
• ν′(x) = ν(x) for each x /∈ r, and
• ν′(x) = 0 for each x ∈ r.

– Delay. For each pair of configurations (l, ν) and (l′, ν′), and an arbitrary

δ ∈ R≥0, (l, ν)
δ−→ (l′, ν′), iff l = l′ and ν′(x) = ν(x)+δ for each clock x ∈ X.

A run of a timed automaton is a (possibly infinite) sequence of configurations
ρ = (l0, ν0)(l1, ν1) · · · , where (l0, ν0) = (linit,0), and for each i ≥ 0, either

(li, νi)
a,g,r−−−→ (li+1, νi+1) or (li, νi)

δ−→ (li+1, νi+1) for some δ ∈ R≥0.

The definition of timed automata is usually extended to parallel composition
of timed automata (networks of timed automata). The parallel composition of
a set of timed automata is the product of these timed automata [6]. So the
verification of networks of timed automata can be reduced to the verification of
the product timed automaton.

In this paper we will consider the safety property. Basically, a timed automa-
ton is safe iff the given error location can not be reached.

Definition 3 (Safety property). A timed automaton A with an error location
lerr is safe iff there does not exist a run ρ = (l0, ν0)(l1, ν1) · · · , and an index i
such that li = lerr.

The reachability problem of timed automata, which asks whether a given
configuration is reachable, can be easily reduced to the safety checking problem.

2.2 Zone Based Symbolic Semantics

The symbolic semantics of timed automata has been proposed to fight state ex-
plosion. Basically, the idea is to represent a set of clock valuations using difference
constraints on the clock variables.
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Zones are used in timed automata model checking to symbolically represent
the sets of clock valuations. A zone is a set of difference inequalities over the set
of clock variables. A zone represents all clock valuations satisfying its constraints.

For a zone D and a clock constraint g, we define D ∧ g as {ν|ν ∈ D ∧ ν |= g},
D[r := 0] as {ν|∃ν′ ∈ D · (∀x ∈ r · ν(x) = 0∧∀x /∈ r · ν(x) = ν′(x))}, and D ↑ as
{ν|∃ν′ ∈ D, δ ∈ R0+ · ν = ν′ + δ}. Zones are closed under the above operations
[6].

Definition 4 (Symbolic Semantics of Timed Automata). The symbolic
semantics of a timed automaton A = 〈L, linit, X,E〉 is a labeled transition system
(S,→, s0), and each state s ∈ S is a pair (l, D), where l is a location, and D
is a zone. The initial state is s0 = (linit, �0 ≤ x1 = x2 = · · · = xn�). For each

pair of states s = (l, D) and s′ = (l′, D′), s
a,g,r−−−→ s′ iff there exists a transition

l
a,g,r−−−→ l′ ∈ E such that D′ = (D ∧ g)[r := 0] ↑. A symbolic run is a sequence

(l0, D0)(l1, D1) · · · , where (l0, D0) = (linit, �0 ≤ x1 = x2 = · · · = xn�), and for

each i ≥ 0, (li, Di)
a,g,r−−−→ (li+1, Di+1) for some li

a,g,r−−−→ li+1 ∈ E.

The safety property can be expressed in terms of symbolic semantics. The
given timed automaton is safe iff there is no symbolic run reaching the error
location and a non-empty zone.

Zones can be represented as Difference Bound Matrices (DBMs), and efficient
algorithms for manipulating DBMs have already been proposed [6]. The DBM
representation of a zone on the clock set X is a (|X |+1)× (|X |+1) matrix, each
element of which is a tuple (≺, c), where ≺∈ {<,≤} and c ∈ N. In the DBM,
D0i = (≺, c) means 0 − xi ≺ c, i.e., xi � −c, Di0 = (≺, c) means xi − 0 ≺ c,
i.e., xi ≺ c. For i, j �= 0, Dij = (≺, c) represents the constraint xi − xj ≺ c.
Two different DBMs might correspond to the same zone. In order to tackle this
problem, canonical forms of DBMs can be computed by the Floyd-Warshall
algorithm [6].

2.3 LU-Extrapolation

Abstraction techniques are used to reduce the symbolic state space, while still
preserving the properties that we care about. Among the various Max-bound and
LU-bounds based abstraction techniques, we choose to use the LU-extrapolation
techniqueExtra+LU [4], which is the coarsest among the existing convex-preserving
extrapolations. The LU-extrapolation of a zone is still a zone, which makes it suit-
able to use in timed automata model checking.

An LU-bound is a pair of functions LU , where L : X → N ∪ {−∞} is called
a lower bound function and U : X → N∪{−∞} an upper bound function. L(x)
(respectively, U(x)) is the maximum constant c that appeared in the guards of
the timed automaton of the form x > c or x ≥ c (respectively, x < c or x ≤ c).

Definition 5 (LU-preorder [4]). For two clock valuations ν and ν′, and an
LU-bound LU , we say that ν′ �LU ν iff the following conditions are satisfied
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– If ν′(x) < ν(x), then ν′(x) > L(x), and
– if ν′(x) > ν(x), then ν(x) > U(x).

It has been proved in [4] that the relation {((l, ν), (l, ν′))|ν′ �LU ν} is a simula-
tion relation. Intuitively, for a zone D, and an LU-bound LU , an abstraction op-
erator based on LU-preorder can be defined: a�LU (D) ≡ {ν|∃ν′ ∈ D ·ν �LU ν′}.
Unfortunately, a�LU is not convex-preserving, i.e., the a�LU (D) for an arbitrary
zone D is not necessarily a zone. However, some slightly finer abstractions based
on LU-preorder that are convex-preserving exist, among which is Extra+LU .

Definition 6 (LU-extrapolation [4]). Let D be a zone whose canonical DBM
is 〈ci,j ,≺i,j〉i,j=0,1,...,|X|. Given an LU-bound LU , the LU-extrapolation

Extra+LU (D) of D is a zone D′ which can be represented by a DBM 〈c′i,j ,≺′
i,j

〉i,j=0,1,...,|X|, where

〈c′i,j ,≺′
i,j〉 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞ if ci,j > L(xi)

∞ if − c0,i > L(xi)

∞ if − c0,j > U(xj), i �= 0

(−U(xj), <) if − c0,j > U(xj), i = 0

(ci,j ,≺i,j) otherwise

The following properties hold for LU-extrapolation. These properties are impor-
tant for the LU-bound computation in Section 4.

Since the LU-extrapolation can only relax constraints, the original zone must
be included in the resulting zone. Thus we have:

Property 1. For each zone D, and the LU-bound LU : D ⊆ Extra+LU (D).

The second property comes from [4]. It clarifies the relation between LU-
extrapolation and LU-preorder:

Property 2. For each zone D, and the LU-bound LU : Extra+LU (D) ⊆ a�LU (D).

3 Trace Abstraction Refinement Framework

Trace abstraction refinement was originally proposed in [11] for software model
checking. In this section, we will introduce the trace abstraction refinement
framework in terms of timed automata.

3.1 Timed Automata as Finite Automata

We could view a timed automaton as a finite automaton by ignoring the seman-
tics of guards and resets in the transitions. Formally, the finite automaton view
of a timed automaton can be described as follows:

Given a timed automaton A = 〈L, linit, X,E〉 and the error location lerr ∈ L,
we define a finite automaton FA = 〈Σ,Q, δ, {qinit}, {qfin}〉 over the alphabet

{〈a, g, r〉|∃l, l′ ∈ L · l a,g,r−−−→ l′ ∈ E} as follows:



Trace Abstraction Refinement for Timed Automata 401

– Σ = {〈a, g, r〉|∃l, l′ ∈ L · l a,g,r−−−→ l′ ∈ E}
– Q = L, i.e., the set of states of FA is exactly the set of locations of A.
– qinit = linit, the initial state is the initial location.
– qfin = lerr, the accepting state is the error location.

– δ = {q 〈a,g,r〉−−−−→ q′|∃l a,g,r−−−→ l′ ∈ E · q = l ∧ q′ = l′}.

We use Σ(F) to denote the alphabet of the finite automaton F . For a label t =
〈a, g, r〉 ∈ Σ(F), we use t.a, t.g, t.r respectively to denote the three components
of t.

Example 1. For the timed automaton A1 shown in Figure 1 with the error lo-
cation L2, the alphabet of the corresponding finite automaton is {〈a, true, {x}〉,
〈b, y > 2∧x ≤ 2, {}〉, 〈c, true, {x}〉, 〈d, true, {y}〉, 〈e, x > 3∧y ≤ 3, {}〉}. If we use
a, b, c, d, e as the abbreviations of the above five elements of the alphabet, the
language that the finite automaton recognizes can be expressed by the regular
expression (a|((b|c)d))∗(b|c)e. One of the words in the language is:

〈a, true, {x}〉〈b, y > 2 ∧ x ≤ 2, {}〉〈e, x > 3 ∧ y ≤ 3, {}〉

which induces the sequence of states L0, L0, L1, L2 in the finite automaton.
Notice that, although this path is recognized by the finite automaton, it is

not possible to execute along this path for the corresponding timed automaton.

Fig. 1. The timed automaton A1

A word of FA might induce an unsafe symbolic run (l0, D0), (l1, D1), . . . , (ln(=
lerr), Dn) in the symbolic semantics of A, or it might be infeasible. Let’s denote
by Lang(FA) the language of FA. Lang(FA) is an over-approximation of the
set of unsafe paths of A. Thus proving that A is safe is just equal to proving
that all words in Lang(FA) are infeasible. So we get the following property:

Property 3. A timed automaton A is safe iff every sequence π ∈ Lang(FA) is
infeasible.

Consequently, we could check the safety property of A by checking that all
traces in Lang(FA) are infeasible.
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3.2 Trace Abstraction Refinement

In this subsection we will introduce the concept of trace abstraction, followed
by a brief description of the trace abstraction refinement procedure proposed in
[11]. We describe them based on the timed automata model.

In order to check that all traces in Lang(FA) are infeasible, we can build a
trace abstraction that abstracts the set of traces in Lang(FA). A trace abstrac-
tion is a tuple of finite automata (F1,F2, . . . ,Fn), each of which having the same
alphabet as FA, and accepting a subset of infeasible traces. For an arbitrary finite
automaton F , let F be its complement. Lang(FA)∩Lang(F1)∩ · · · ∩Lang(Fn)
is an over-approximation of the set of unsafe traces of A. Moreover, this over-
approximation is refined incrementally as new finite automata are added to the
tuple. If the trace abstraction satisfies the condition Lang(FA) ⊆ Lang(F1 ∪
F2 ∪ · · · ∪ Fn), we can conclude that all traces in Lang(FA) are infeasible, and
consequently A is safe. Formally:

Property 4. If there exists a trace abstraction (F1,F2, . . . ,Fn) such thatLang(FA)
⊆ Lang(F1 ∪ F2 ∪ · · · ∪ Fn), then A is safe.

In fact, if A is safe, then there is always a trace abstraction satisfying the
above condition.

Theorem 1. If A is safe, then there exists a trace abstraction (F1,F2, . . . ,Fn)
such that Lang(FA) ⊆ Lang(F1 ∪ F2 ∪ · · · ∪ Fn).

Proof. When A is safe, from Property 3 we can conclude that FA only accepts
infeasible traces, thus the tuple of finite automata that contains only one com-
ponent (FA) is a qualifying trace abstraction. ��

According to the above two properties, the safety problem can be reduced to the
problem of finding a trace abstraction that can cover Lang(FA). This task can
be done incrementally, following a counterexample guided abstraction refinement
(CEGAR) [8] paradigm. Initially FA is constructed as the over-approximation
of A. In the ith iteration a word π ∈ Lang(FA) ∩ Lang(F1) ∩ · · · ∩ Lang(Fi−1)
is found and checked whether it is feasible according to the semantics of A. If
π is feasible, then a real counterexample is found, and the timed automaton A
is unsafe, otherwise a finite automaton Fi such that π ∈ Lang(Fi) and for all
π′ ∈ Lang(Fi), π

′ is infeasible, is constructed and added to the trace abstraction.
The iteration continues until we find a real counterexample, which means the
system is unsafe, or Lang(FA)∩Lang(F1)∩· · · ∩Lang(Fi−1) = ∅, which means
there is no feasible counterexample, and the system is safe. In the latter case, we
can conclude that Lang(A) ⊆ Lang(F1∪· · ·∪Fi−1), so that (F1,F2, . . . ,Fi−1) is
the final trace abstraction. This procedure is called trace abstraction refinement
because in each iteration a finite automaton is added to the trace abstraction to
refine it. The overall procedure is illustrated in Figure 2.

In the procedure shown in Figure 2, there are three modules that need to be
implemented: the language emptiness checking, the path-infeasibility checking,
and the construction of finite automata. The first task can be accomplished using
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Fig. 2. Trace abstraction refinement framework

existing algorithms on finite automata, and the second task can be performed
using existing algorithms in timed automata verification. What remains to be
explained is the construction of the finite automata that recognize the given
infeasible paths, which we will address in the next section.

4 Zone Automata Construction

In this section we describe how to construct the finite automaton according to
the infeasible path in each iteration. In the original literature [11], an interpolant
automaton was constructed based on a sequence of interpolants. In this paper,
we propose to use zones instead of interpolants to construct the finite automata.

4.1 Zone Automata

We use a sequence of zones to construct the finite automaton that recognizes a
set of infeasible traces, thus we call it a zone automaton, which corresponds to
interpolant automata in [11].

Definition 7 (Zone automata). Given a sequence of zones D0, D1, . . . , Dn,
where �0 <= x1 = x2 = · · · = x|X|� ⊆ D0 and Dn = ∅, a zone automaton

FI = (QI , δI , Q
init
I , Qfin

I ) is a finite automaton, where
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– QI = {q0, q1, . . . , qn}, and
– For each pair of different states qi, qj and each transition label (a, g, r),

qi
(a,g,r)−−−−→ qj ∈ δI entails (Di ∧ g)[r := 0] ↑⊆ Dj, and

– qi ∈ Qinit
I implies �0 <= x1 = x2 = · · · = x|X|� ⊆ Di, and qi ∈ Qfin

I implies
Di = ∅.

Theorem 2. For an arbitrary zone automaton FZ , and an arbitrary word π ∈
Lang(FZ): (l0,0)

π
�, i.e., π is infeasible.

Proof. Assume, to the contrary, that π is feasible, then there is a symbolic
run (lπ0 , D

π
0 )(l

π
1 , D

π
1 ) · · · (lπ|π|(= lerr), D

π
|π|) induced by π, where Dπ

j �= ∅ for

j = 0, 1, . . . , |π|. Suppose π induces a path qi0qi1 · · · qi|π| in FI , and let’s de-
note the corresponding sequence of zones as Di0Di1 · · ·Di|π| . Since Dπ

0 is the
first zone of the run, we have Dπ

0 = �0 <= x1 = x2 = · · · = x|X|�, so Dπ
0 ⊆ Di0 ,

by the concept of symbolic run, Dπ
1 = (Dπ

0 ∧ π1.g)[π1.r := 0] ↑, and by the
definition of zone automata, Dπ

1 ⊆ Di1 . Similarly, we can get that Dπ
j ⊆ Dij for

all j = 0, 1, . . . , |π|, this implies that Dπ
|π| ⊆ Di|π| = ∅, which contradicts the

assumption. ��

The definition of zone automata does not give an algorithmic description to
the construction. In fact it is just a general requirement, and various different
schemes exist. In the following subsection, we will show, given a spurious coun-
terexample trace, how to construct a zone automaton that recognizes this trace
(and possibly other infeasible traces).

4.2 Inductive Sequence of Zones

In this subsection, we will describe how an inductive sequence of zones is con-
structed from an infeasible path. Basically, it is built by performing abstractions
to the sequence of zones that the infeasible trace induces in the timed automaton.
Formally, a word π ∈ Lang(FA) is infeasible, iff for the corresponding symbolic
run (lπ0 , D

π
0 ), . . . , (l

π
|π|, D

π
|π|), we have Dπ

|π| = ∅.
In order to generate a zone automaton that accepts π, we define the inductive

sequence of zones.

Definition 8 (Inductive sequence of zones). Given an infeasible path π, an
inductive sequence of zones is a sequence D0, D1, . . . , D|π| of zones satisfying:

– �0 ≤ x1 = x2 = · · · = x|X|� ⊆ D0,
– D|π| = ∅,
– ((Di−1 ∧ πi.g)[πi.r := 0]) ↑⊆ Di, for i = 1, 2, . . . , |π|.

For each trace π ∈ Lang(FA), we can calculate the corresponding zones in-
duced by the path according to the symbolic semantics of timed automata.

Although this sequence of zones is a qualified candidate of inductive sequence
of zones for π, it contains redundant information. If we can “grasp” the “real
reason” why the path is infeasible, reducing away unrelated information, it would
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be possible to construct a zone automaton that recognizes more paths that share
the same reason of infeasibility. This is achieved by abstraction on zones.

For a guard g and a clock x, we denote Lg(x) the largest constant c such that
x > c or x ≥ c appeared in g. If there is no such constant, then Lg(x) = −∞. Sim-
ilarly, we denote Ug(x) the largest constant c such that x < c or x ≤ c appeared
in g. For two LU-bounds LU and L′U ′, and a clock variable x, we define the
max operator L′′U ′′(x) = max{LU(x), L′U ′(x)} as L′′(x) = max{L(x), L′(x)},
and U ′′(x) = max{U(x), U ′(x)}.

For an infeasible path π, we compute the corresponding sequence of LU-
bounds (L0U0, L1U1, . . . , L|π|U|π|) as follows:

– L|π|(x) = U|π|(x) = −∞
– For i = 0, 1, . . . , |π| − 1,

LiUi(x) =

{
Lπi+1.gUπi+1.g(x) if x ∈ πi+1.r

max{Li+1Ui+1(x), Lπi+1.gUπi+1.g(x)} otherwise

This computation procedure is in fact a static guard analysis procedure [3].
Using these LU-bounds, the inductive sequence of zones D0, D1, . . . , D|π| can be
computed as follows:

– D0 = Extra+L0U0
(�0 ≤ x1 = x2 = · · · = x|X|�), and

– Di = Extra+LiUi
(((Di−1 ∧ πi.g)[πi.r := 0]) ↑) for i = 1, 2, . . . , |π|.

In order to prove that this sequence of zones is indeed an inductive sequence
of zones for π, it suffices to prove that D|π| = ∅, since the other two conditions
can be easily observed.

Property 5. For the sequence of zones D0, D1, . . . , D|π| computed as described
above: D|π| = ∅.

Proof. Suppose the sequence of zones in the symbolic run of π isDπ
0 , D

π
1 , . . . , D

π
|π|.

We can prove that, for each i = 0, 1, . . . , |π| − 1, if Di ⊆ a�LiUi
(Dπ

i ), then
Di+1 ⊆ a�Li+1Ui+1

(Dπ
i+1).

For any valuation ν ∈ Di+1, there is a valuation ν′ ∈ (Di ∧ πi+1.g)[πi+1.r :=
0] ↑ such that ν �Li+1Ui+1 ν′, and consequently there is a valuation ν′1 ∈ Di such
that ν′1 |= πi+1.g and ν′1[πi+1.r := 0] + δ = ν′. Since Di ⊆ a�LiUi

(Dπ
i ), there is

a valuation ν′′1 ∈ Dπ
i such that ν′1 �LiUi ν

′′
1 . From the definition of LU-preorder

and the computation of LU-bounds we know that ν′′1 |= πi+1.g. It can be easily
proved that ν′1[πi+1.r := 0] + δ �Li+1Ui+1 ν′′1 [πi+1.r := 0] + δ, which implies
that ν �Li+1Ui+1 ν′′1 [πi+1.r := 0] + δ. By the definition of symbolic semantics,
ν′′1 [πi+1.r := 0] + δ ∈ Dπ

i+1, so ν ∈ a�Li+1Ui+1
(Dπ

i+1). Since ν is taken arbitrarily

from Di+1, we can conclude that Di+1 ⊆ a�Li+1Ui+1
(Dπ

i+1).

From the symbolic semantics of timed automata we know that Dπ
0 = �0 ≤

x1 = x2 = · · · = x|X|�, so D0 = Extra+L0U0
(Dπ

0 ) ⊆ aL0U0(D
π
0 ), from which

D1 ⊆ aL1U1(D
π
1 ), . . . , D|π| ⊆ aL|π|U|π|(D

π
|π|) can be obtained. Since Dπ

|π| = ∅, we
have aL|π|U|π|(D

π
|π|) = ∅, and consequently D|π| = ∅. ��
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Example 2. For the sequence of zones in Example 1, the corresponding sequence
of LU-bounds is given in Table 1. Consequently, we get the sequence of abstract
zones:

�y ≥ 0�, �0 ≤ x ≤ y�, �x < y ∧ y > 2�, ∅.

Table 1. LU-bounds for the sequence of zones in Example 1

Location L(x) U(x) L(y) U(y)

L0 −∞ −∞ 2 3
L1 3 2 2 3
L2 3 −∞ −∞ 3
L3 −∞ −∞ −∞ −∞

4.3 Canonical Zone Automata

Based on the infeasible path and the corresponding inductive sequence of zones
that can be constructed following the previous subsection, we can now give
a candidate scheme that constructs a zone automaton, which recognizes the
infeasible path.

Definition 9 (Canonical zone automata). Given an infeasible path π and
the corresponding inductive sequence of zones D0, D1, . . . , D|π|, a canonical zone

automaton is a zone automaton FZ = (QZ , δZ , Q
init
Z , Qfin

Z ), where:

– QZ = {q0, q1, . . . , q|π|}, and
– δZ = {qi

πj−→ qj+1|i, j = 0, . . . , |π| − 1, (Di ∧ πj .g)[πj .r := 0] ↑⊆ Dj+1} ∪
{q|π|

〈a,g,r〉−−−−→ q|π||〈a, g, r〉 ∈ Σ(FA)}, and
– Qinit

Z = {q0}, Qfin
Z = {q|π|}.

From the construction described above we can see that the resulting finite au-
tomaton recognizes the trace π. Moreover, it recognizes all infeasible paths that
contain π as a prefix.

Example 3. Following Example 2, now we have the infeasible trace π:

〈a, true, {x}〉〈b, y > 2 ∧ x ≤ 2, {}〉〈e, x > 3 ∧ y ≤ 3, {}〉
and the corresponding inductive sequence of zones

�y ≥ 0�, �0 ≤ x ≤ y�, �0 ≤ x < y ∧ y > 2�, ∅.
Using the candidate construction scheme, we can construct a zone automaton as
shown in Figure 3, in which a, b, c, d, e are abbreviations for 〈a, true, {x}〉, 〈b, y >
2 ∧ x ≤ 2, {}〉, 〈c, true, {x}〉, 〈d, true, {y}〉, 〈e, x > 3 ∧ y ≤ 3, {}〉, respectively.
We can see that this finite automaton recognizes the trace π and many other
infeasible traces – in fact all traces with a prefix of the form aa∗be in FA are
recognized by this automaton.
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Fig. 3. The zone automaton for Example 3

Theorem 3. For each timed automaton safety problem, the trace abstraction
refinement procedure with the canonical zone automata construction scheme will
terminate.

Proof. From the construction we know that, if Di = Dj for i, j ∈ {0, 1, . . . , |π|−
1}, then qi and qj are bisimulation equivalent. Consequently, if there are N
different zones in a canonical construction, the resulting finite automaton would
be bisimulation equivalent to a finite automaton with no more than N+1 states.
By the properties of Extra+LU , there exists a number B such that the number
of different zones in each canonical construction is no more than B. This entails
that for each finite automaton FZ obtained by the canonical construction, there
is a finite automaton F ′

Z with no more than B+1 states, such that Lang(FZ) =
Lang(F ′

Z). Since the alphabet Σ(FA) is finite and our construction ensures that
Σ(FZ) = Σ(FA), the number of finite automata with this alphabet and no more
than B + 1 states is finite.

Assume the trace abstraction refinement procedure does not terminate, then
an infinite number of finite automata F1,F2, . . . are constructed for counterex-
ample traces π1, π2, . . ., there must be two finite automata Fi and Fj with
i < j and a finite automaton F ′ with no more than B + 1 states, such that
Lang(Fi) = Lang(F ′) = Lang(Fj), and thus πj ∈ Lang(Fi). However, by the
trace abstraction refinement procedure πj will never be found as a counterex-
ample, which leads to a contradiction. ��

5 An Example

Now let’s consider the timed automaton shown in Figure 4, with L3 as the error
location. We can easily see that this timed automaton is safe. If we adopt the
traditional zone based search algorithm with static guard analysis, the following
zones will be explored on the location L1:

�0 ≤ z ≤ x = y�,
�x− y = 1 ∧ y ≥ 0 ∧ z ≥ 0 ∧ z ≤ x�,
�x− y = 2 ∧ y ≥ 0 ∧ z ≥ 0 ∧ z ≤ x�,
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Fig. 4. A timed automaton

...,
�x − y = 100 ∧ y ≥ 0 ∧ z ≥ 0 ∧ z ≤ x�,
�x − y ≥ 101 ∧ y ≥ 0 ∧ z ≥ 0 ∧ z ≤ x�.

We can see that in this example the number of states explored highly depends
on the constants in the guards, which might be very large. However, if we use
the method proposed in this paper, only exploring the path

〈a, true, {}〉〈b, y = 1, {y}〉〈d, 100 < x < 200 ∧ z ≥ 200, {}〉

would be enough to remove all error traces and arrive to the result that the
timed automaton is safe. The inductive sequence of zones is

�0 ≤ z ≤ x = y�, �0 ≤ z ≤ x = y�, �0 ≤ z ≤ x ∧ y ≥ 0�, ∅

The canonical zone automaton corresponding to this trace is shown in Figure 5.
In this example, the efficiency of our method comes from the fact that the

algorithm only focuses on those parts of the timed automaton related to the
properties we want to check. When constructing zone automata, LU bounds are
obtained from the part of control structure that is related with the counterexam-
ple trace, which leads to smaller bounds, and consequently coarser abstraction.

Fig. 5. The zone automaton for the path abd
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6 Conclusion

In this paper we proposed a method to adapt trace abstraction refinement to
the safety checking of timed automata. In some cases, this method might have
better performance due to delayed computation of zones, and potential reuse of
infeasibility proofs.

In the future, we will implement our method and perform experiments to
investigate its efficiency. Moreover, we may consider the possibility of extending
our method to verify more expressive properties such as Metric Interval Temporal
Logic. For the zone automata construction procedure, we could explore the use of
other zone based abstraction techniques. Furthermore, in some cases the timing
information is not the only source of state explosion: for networks of timed
automata, the state explosion might also come from the composition of control
structures. It would be interesting if we tackle the state explosion caused by
parallel composition of timed automata in addition.

Acknowledgement. We thank the anonymous reviewers for their helpful
comments.
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Abstract. This paper discusses verification and optimization of complex sys-
tems with respect to a set of specifications under stochastic parameter variations.
We introduce a simulation-based statistically sound model inference approach
that considers systems whose responses depend on a few design parameters and
many stochastic parameters. The technique iteratively searches over the space of
design parameters by alternating between verification and optimization phases.
The verification phase uses statistical model checking to check if the model us-
ing the current design parameters satisfies the specifications. Failing this, we seek
new values of the design parameters for which statistical verification could poten-
tially succeed. This is achieved through repeated simulations for various values
of the design and stochastic parameters, and quantile regression to construct a
model that predicts the spread of the responses as a function of the design pa-
rameters. The resulting model is used to select a new set of values for the design
parameters. We evaluate this approach over several benchmark examples. In each
case, the performance is improved significantly compared to the nominal design.

1 Introduction

We address the problem of selecting design parameter values for complex systems that
are “robust” with respect to varying stochastic parameters. For instance, a control de-
signer often faces the problem of selecting gain values of a controller so that the design
is robust under stochastic disturbances and variations in the plant model parameters.
Elsewhere, the problem of designing “robust” analog circuits that can function correctly
under stochastic process variations is also well known. Thus, the problem of finding
appropriate design parameter values for a complex system whose output responses de-
pend on a few controllable (tunable) design parameters, and numerous uncontrollable
stochastic parameters with known probability distributions, is quite common. In this
work, we present an automatic search method that seeks to adjust the design parameters
so that the resulting system satisfies the specifications with a given probability bound.

We introduce an approach that combines simulation, quantile regression [12] and a
generalization procedure. The approach iterates between two phases: verification and
optimization. The verification phase determines whether the system is safe given the
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currently chosen design parameters. If not, we search for a new set of values for the
design parameters (design point) that can potentially yield a safe system. The new de-
sign point is chosen by constructing a relational model that captures the spread of the
responses as a function of the design parameters using simulations and quantile regres-
sion. This relational model is then constructed to search for new design points that po-
tentially satisfy the specifications with the given probability bound. Repeated iterations
of this process checks correctness over a sequence of design points, while iteratively
refining the relational model, converging to optimal values for the design parameters.

The relational model effectively marginalizes the effects of the stochastic parameters.
It is constructed using quantile regression to fit through the upper and lower quantiles
of the responses as a function of the design parameters, followed by a generalization
procedure that relaxes the model into a statistical over-approximation of the response.
The procedure iterates until it successfully finds a design point that satisfies the specifi-
cations, or stops when a new design point cannot be found. In the latter case, we report
that we cannot find a safe design point and suggest that the specifications may be too
stringent.

The main contribution of this paper is the introduction of a simulation-based sta-
tistically sound model inference approach that combines verification and optimization.
This problem is hard for formal verification techniques that reason symbolically about
the distribution of an output response. In recent years, statistical verification techniques
have received increasing attention [24,19,10,22,27,17,13]. They are simulation-based,
requiring just the ability to simulate the model efficiently for various values of design
and stochastic parameters. Such a technique can be used to place “high confidence”
bounds on the probability that a response satisfies a given specification. Statistical
model checking (SMC) [24,10] is a family of statistical verification techniques that
relies on sequential hypothesis testing [21,11]. An SMC technique checks whether a
time-bounded LTL property is satisfied with a certain probability bound by deciding
between two mutually exclusive hypotheses through simulation.

SMC provides a “likely yes/no” answer for a system and its specifications. In con-
trast, we wish to find design points for which the system is likely to satisfy the specifi-
cations. A straightforward, but impractical, approach iterates through individual design
points, and runs SMC for each of them. Hence, it is desirable to build a model that char-
acterizes the relationship between design parameters and responses. For this purpose,
regression-based performance modeling techniques are natural candidates and have
been studied extensively [20,15,14,3,26,6]. They use simulation data to fit functions
that approximate the true response. However, since the outcome of a regression-based
approach is an approximation, rather than a sound model of the response
function, few guarantees can be provided. Our previous work attempts to combine re-
gression and hypothesis testing techniques to provide a statistically sound model in-
ference approach [25]. A statistically sound model provides an envelope of a response
that is guaranteed to contain the corresponding response with a high probability. Such
a model is useful when dealing with complex systems, in which case a formally sound
model cannot be obtained.

In the control community, similar problems have been considered, such as robust
convex optimization [2] and chance-constrained optimization [16]. A classic technique
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to solve for these problems is known as the scenario approach [4], which provides so-
lutions that guaranteed to be optimal with a desired probability. The similarity between
the scenario approach and our approach lies in that both of them deal with uncertainties
in a system and provide statistical guarantees on the solutions. However, the scenario
approach assumes that the system dynamics are available in a closed form, while our
approach only relies on the ability to simulate the system.

To our knowledge, the idea of this paper, which combines quantile regression with
SMC is unique. Nevertheless, the use of SMC for tuning model parameters has re-
ceived some attention in the past. Jha et al. present the use of SMC to tune parameters
for closed loop controller models in order to satisfy a given set of temporal logic spec-
ifications [9]. Their approach uses Monte-Carlo sampling over the design parameter
values, wherein the number of simulation runs required to resolve the hypothesis test-
ing problem is used as the fitness function for each design parameter. A similar idea is
used by Palaniappan et al. to fit parameter values for biological models based on exper-
imental observations as well as model specifications [17]. In their work, SMC is used to
derive a fitness function that seeks to measure the fraction of the specifications satisfied
by a particular choice of model parameters. Our approach builds a more sophisticated
“global” model of how the properties depend on the design parameters using quantile
regression, and is expected to use fewer number of simulations.

While our approach considers controllable design parameters, a significant body of
work treats problems involving uncontrollable, non-deterministic parameters along with
stochastic parameters using SMC. We refer the reader to recent papers by Zuliani et
al. [8] and Ellen et al. [7] that use reinforcement learning techniques to verify the cor-
rectness properties under the worst case values of non-deterministic parameters.

The paper is organized as follows. Section 2 presents an overview of the proposed
approach. Section 3 formulates the use of quantile regression. Section 4 discusses how
to manipulate the model from quantile regression to achieve statistical soundness. Sec-
tion 5 introduces a method to find new design points that are potentially safe. Section 6
shows applications of the proposed approach.

2 Overview

Consider a system with design parameters u ∈ U and stochastic parameters x ∈ X,
where U and X are the domains of the parameters. Assume that the design parameters
are controllable, i.e., we can choose values for them, and the stochastic parameters,
following a joint distribution F (x), are uncontrollable. We also assume give nominal
design parameters unom. A response φ is defined by a function r(u,x) where r is com-
putable as a black-box, but has an complex analytic form. A specification of such a
system has the form φ ∈ [a, b], with a, b ∈ R. We wish to find a design parameter u that
satisfies the specification with probability at least θ0 (a given probability threshold):

Pr
x∼F (x)

(r(u,x) ∈ [a, b]) ≥ θ0 , (1)

First, we statistically verify whether the system with the nominal parameters unom sat-
isfies (1). If the verification fails, we search for new design point unew ∈ U.
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Fig. 1. A two-mass-spring system and the closed-loop system with a controller

Example 1 (A Two-Mass-Spring System). A two-mass-spring system [23] is shown in
Figure 1a. It consists of two rigid bodies and a spring. The model is uncertain in which
m1 = 1.0 ± 20%, m2 = 1.0 ± 20% and k = 1.0 ± 20% with appropriate units. We
apply force u to m1 and measure y = x2, the position of m2. In Figure 1b, a controller
is used to track y with r, the reference position.

A lead compensator controls the plant. It has two tunable parameters, the pole p ∈
[−1200,−800] and the zero z ∈ [−1.2,−0.8]. Nominally, p = −1000 and z = −1.
The goal is to design a controller so that the step response of the system satisfies: (1)
the settling time t ≤ 2.5 and (2) the overshoot r ≤ 15% of the steady state value.

The key idea of the proposed approach is to fit a relational model for the response
r(u,x). Let I be the set of real-valued intervals. A relational model g maps design
parameters u ∈ U to intervals g(u) ∈ I. In effect, g(u) marginalizes the effects of the
stochastic parameters. Such a model attempts to over-approximate the spread of r(u,x)
over x ∼ F (x). The key notion that we seek to satisfy is called statistical soundness.

Definition 1 (Statistical Soundness). Given a probability θ0 ∈ (0, 1), a relational
model g : U → I is θ0-statistically sound if for all u ∈ U

Pr
x∼F (x)

(r(u,x) ∈ g(u)) ≥ θ0 . (2)

While constructing an accurate but fully sound relational model is often expensive, if
not impossible, a statistically sound model can be used instead with guarantees that are
probabilistic rather than absolute.

In Definition 1 there is a universal quantifier over u. Since the response function r
is assumed to be a black-box, finding a model that satisfies (2) is not possible. In the
proposed approach, we will restrict ourselves to show that (2) is true for some finite
subset of design points. Furthermore, checking if a model g(u) is statistically sound
at a given design point u requires detailed knowledge of the function r(u,x), which
is not available. To address this, we will use hypothesis testing techniques such as the
sequential Bayesian test to conclude statistical soundness with high confidence at a
given design point u.

Figure 2 shows the basic flow of the proposed approach. First, using quantile re-
gression, we compute a relational model ĝ(u) = [ĝ�(u), ĝu(u)] with affine functions
ĝ� and ĝu, to approximate the response function r(u,x) with u ∈ U and x ∈ X.
Quantile regression is carried out using randomly sampled design and stochastic pa-
rameters, and the corresponding values of the response. However, ĝ is not guaranteed
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Fig. 3. Histogram of t (in seconds) and r (percentage) in the two-mass-spring example

to be statistically sound. Next, we check whether the nominal design point unom satisfy
the specifications under stochastic parameter variations. This is achieved by a gener-
alization technique [25], which derives a relational model g(u) that is θ0-statistically
sound for u = unom with high confidence. Intuitively, the procedure fixes the design
parameters to unom and samples the stochastic parameters sequentially. A tolerance in-
terval I : [�, u] is computed so that a long enough sequence of the observed responses
fall in the interval [ĝ�(unom) + � , ĝu(unom) + u]. This procedure is guaranteed to yield
g(u) ≡ [ĝ�(u) + �, ĝu(u) + u] that is statistically sound at u = unom, with high confi-
dence. For a specification φ ∈ [a, b], if g(unom) is contained in [a, b], we conclude that
with a high probability (which depends on θ0) the system is safe at unom. Otherwise, we
search for new design point that yields a safe system.

To carry out the search, the response r(u,x) is modeled by g(u). We then look for
a point u1 ∈ U that has the largest margin from violating the specifications. Since g
is statistically sound only at unom, generalization is applied again so that g becomes
statistically sound at {unom,u1}. Then we check whether the specifications hold. The
procedure continues until either the system is safe at some ui at the ith iteration, or a
limit on the number of iterations is exceeded, in which case, a failure is returned.

Example 2. Let us continue with Example 1. First, we simulate the system with ran-
domly sampled design and stochastic parameters

p ∈ [−1200,−800], z ∈ [−1.2,−0.8], m1 ∈ [0.8, 1.2], m2 ∈ [0.8, 1.2], k ∈ [0.8, 1.2].

We use quantile regression to fit a lower and an upper bound function for the responses
t and r. For instance, 1.157 + 0.03966p+ 0.7071z is the lower bound of t, with p and
z normalized to [−1, 1]. Figure 3 shows the histograms of t and r at unom and unew.
Apparently, the system violates the specification r ≤ 15% at unom (p = −1000 and
z = −1). After optimization, we have p = −1200 and z = −0.928. The histograms
show that both specifications are satisfied.
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3 Quantile Regression

In this section, we present the basic notion of quantile regression. For a real-valued
random variable X with a distribution FX(x) = Pr(X ≤ x), the τ th quantile of X is
defined as QX(τ) = inf{x : FX(x) ≥ τ}. Informally, it is the smallest x such that
Pr(X ≥ x) is at most 1− τ .

Consider a complex system with design parameters u, stochastic parameters x and a
response φ = r(u,x). For a fixed u, r(u,x) can be regarded as a random variable, de-
noted as r̃u. The random variable r̃u follows the distribution of r(u,x), which depends
on r and the distribution of x. A τ th quantile function gτ (u) = Qr̃u(τ) maps the design
parameters onto the τ th quantile of the random variable r̃u. In the proposed approach,
the goal of quantile regression is to approximate the quantile function gτ (u) with an
affine function of the form ĝτ (u; c) = c0 +

∑k
i=1 ciui, where c = (c0, c1, . . . , ck) are

unknown coefficients and ui is the ith design parameter. The coefficients c are com-
puted by minimizing the residual between gτ (u) and ĝτ (u),

min
c=(c0,c1,...,ck)

‖gτ (u)− ĝτ (u; c)‖ . (3)

Since gτ (u) is often not available, (3) is merely conceptually useful. We show a
general approach to solve for ĝτ (u; c). For a given set of simulation data with m data
points, quantile regression relies on the following penalty function,

ρτ (e) =
m∑

i=1
ei≥0

τei +
m∑

i=1
ei≤0

(τ − 1)ei , (4)

where ei = r(u(i),x(i))− ĝτ (u
(i)) are the residuals between the response function and

the approximation, evaluated at (u(i),x(i)). Here u(i) and x(i) refers to the ith observa-
tions of the design and the stochastic parameters, respectively. For a fixed τ (except for
0.5), (4) incurs an asymmetric penalty on the positive and the negative side of the resid-
ual e. For τ > 0.5 (τ < 0.5), a positive (negative) residual incurs more penalty and thus
is minimized. The penalty function (4) leads to the following optimization problem.

min
c=(c0,c1,...,ck)

ρτ (r(u,x) − ĝτ (u; c)) . (5)

Since (4) is piecewise linear, it has a unique minimum.
The problem in (5) is solved as a linear program [12]. The penalty function in (4)

is encoded by adding auxiliary variables s = (s1, . . . , sm) and t = (t1, . . . , tm). The
auxiliary variables s and t correspond to the cases that the response φ is greater and
less than the approximation ĝτ , respectively. With them, we write (5) as

min
c=(c0,c1,...,ck)

m∑

i=1

τsi +

m∑

i=1

(1− τ)ti

subject to

r
(
u(i),x(i)

)
− ĝτ

(
u(i); c

)
= si − ti, i = 1, 2, . . . ,m ,

s ≥ 0 , t ≥ 0 .

(6)
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To minimize the objective function, at most one of si and ti should be non-zero. The
first constraint forces that either s or t equals to the residuals. The last two constraints
ensures s and t to be non-negative (notice the sign change in the second sum of the
objective function in (4) and (6)).

It is important to understand that the formulation in (6) only solves for τ ∈ (0, 1). For
τ = 0 and τ = 1, (6) fails to find the maximum lower bound and the minimum upper
bound. This is because in the two cases, (4) penalizes only one side of the residuals
and thus allows the approximation to behave arbitrarily on the opposite side. Such a
solution is meaningless in practice. For instance, for τ = 0, the lower bound function
of t in Example 2 can be either 0+0p+0z or −100+0p+0z, with the same objective
value of 0. To obtain a meaningful lower (upper) bound approximation from quantile
regression, we set τ close to 0 (1). Note that ĝτ is not necessarily close to the true lower
(upper) bound. In the case that there are outliers in the simulation data, ĝτ can be distant
from the true bound. In contrast, ĝτ tends to leave out the outliers and only concerns
with the normal data. Such a property is often desirable when dealing with data from
practical settings. In the following, we write ĝ� and ĝu to indicate the estimated lower
and the upper bound, respectively. By default, we assume that ĝ� is computed with
τ = 0.01 and ĝu with τ = 0.99.

4 Generalization and Verification

As mentioned in Section 2, ĝ� and ĝu form a relational model ĝ(u) ≡ [ĝ�(u), ĝu(u)].
Clearly, ĝ is not necessarily statistically sound (see Definition 1) and thus does not
provide guarantees on the behavior of the underlying system. We now present a gener-
alization technique that converts ĝ into a statistically sound model with high likelihood,
and statistically verifies whether specifications of the form φ ∈ [a, b] are satisfied.

Generalization. Recall that Definition 1 defines statistical soundness for all u ∈ U.
Such a condition is too strong since our goal is to (1) learn whether the specifications
hold at unom and if not, (2) find a new point unew that satisfies them. Hence we are only
concerned with statistical soundness at these two design points.

Once the design parameters are fixed, ĝ becomes an interval. We derive a tolerance
interval [�, u] so that the interval [ĝ�(u) + �, ĝu(u) + u] is a statistically sound bound
for the response φ under stochastic parameter variations. The procedure is based on se-
quential Bayesian test which is briefly reviewed here.1 Sequential Bayesian test inves-
tigates statistical hypotheses through a sequence of observations and determine which
one should be accepted. It computes Bayes factor

B =
Pr(z1, . . . , zN | H1)

Pr(z1, . . . , zN | H2)
, zi =

{
1 , H1 	 si

0 , H2 	 si
,

where H1 and H2 are mutually exclusive hypotheses, each zi is a random variate of a
Bernoulli random variable Z , and H 	 s is interpreted as s is in favor of H. A large
Bayes factor indicates that the observed data support H1 over H2. Thus we specify a

1 The interested readers are referred to Kass and Raftery [11] and Zhang et al. [25].
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Data: Model ĝ(u) = [ĝ�, ĝu], Design Parameters u, Probability θ0, Threshold T
Result: Tolerance Interval [�, u], Model g(u)
K = − log(T + 1)/ log θ0 − 1 ;
�, u, count = 0 ;
while count < K do

x = Sample the stochastic parameter space ;
φ = Simulate the system at design parameters u and measure response ;
if ĝ�(u) + � ≤ φ ≤ ĝu(u) + u then

count = count + 1 ;
continue ;

else
count = 0 ;
�, u = min(φ− ĝ�(u), �) , max(φ− ĝu(u), u) ;

end
end
Return [�, u], [ĝ�(u) + �, ĝu(u) + u] ;

Algorithm 1. Generalization that achieves statistical soundness at fixed u

threshold T such that we accept H1 when B grows beyond T , and accept H2 when it
falls below 1/T . Usually H1 and H2 have the form Pr(Ψ) ≥ θ0 and Pr(Ψ) < θ0, where
θ0 is a specified probability and Ψ denotes the assertion

r(u,x) ∈ [ĝ�(u) + �, ĝu(u) + u] , for fixed u and x ∼ F (x) , (7)

The goal is to derive proper � and u for given θ0 and T such that H1 is accepted.
Algorithm 1 shows the generalization procedure to derive a tolerance interval to

achieve statistical soundness at fixed design parameters. The inputs are the model ĝ(u) =
[ĝ�(u), ĝu(u)], fixed design parameters u, a probability θ0 which indicates the desired
probability that (7) should happen, and a Bayes factor threshold T . The algorithm first
computes a sequence length K with the specified θ0 and T . Intuitively, it is the mini-
mum number of consecutive supportive observations required to acceptH1 for the given
θ0 and T . Then the tolerance interval [�, u], as well as a count variable, is initialized to
0. The count variable records the number of consecutive supportive observations. Next,
we sample the stochastic parameters x according to the distribution F (x) and simu-
late the system to obtain the response φ. The observation supports H1 if (7) holds. In
this case, the variable count is incremented, terminating when it reaches K . Otherwise,
count is reset to 0, and � and u are updated to satisfy (7).

One may have noticed that Algorithm 1 did not employ the comparison between the
Bayes factor B and its threshold T . Instead, it derives a sequence length K and lets
a count variable grows towards K . In fact, there is a natural correspondence between
count and B, as well as K and T (see Zhang et al. [25] for details). An important
observation is that count is only incremented when we find a supportive observation.
Therefore, for fixed θ0 and T , that count reaches K is equivalent to that the Bayes factor
B grows to at least T .

Theorem 1. Algorithm 1 terminates and when it terminates, we have B ≥ T .
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Verification. Algorithm 1 yields a tolerance interval [�, u] and a model

g(u) = [ĝ�(u) + �, ĝu(u) + u] (8)

that is θ0 statistically sound at the fixed design parameters. It means that for a fixed u,
we have a high level of confidence to claim that the response φ has a probability of at
least θ0 to lie in the interval (8). It has been shown that the level of confidence is linked
to the Bayes factor threshold T such that the type I/II error is bounded by 1

T+1 [10,27].
Hence with large θ0 and T , the interval (8) is almost an over-approximation of the
response φ under stochastic parameter variations. To verify whether specifications φ ∈
[a, b] hold at some u, we simply check whether (8) is contained in [a, b]. If yes, we
conclude that with a confidence level of at least 1 − 1

T+1 , the system is safe with a
probability of at least θ0 at u. Otherwise, we continue to search for new design point.

5 Optimization

To find a new design point, we introduce an iterative procedure. At the ith iteration, we
try to find a candidate u

(i)
new that is safe with respect to the model in (8). We may fail if

either the specifications are too stringent or our approximation is too excessive. In these
cases, we stop and report that for u ∈ U and x ∈ X, we cannot find a design point
which satisfies all the specifications. Suppose u(i)

new is found. Since (8) is not guaranteed
to be statistically sound at u(i)

new, we apply generalization so that (8) becomes statistically
sound at u(i)

new, and check whether the system is safe there. If yes, u(i)
new is the final design

point. Otherwise, we try again with the updated model in (8). After the ith iteration,
u
(i)
new is included in the set of points at which (8) is statistically sound.
It is easy to pick up a candidate point from (8) that satisfies the specifications. How-

ever, an arbitrary choice can easily lead to a failed attempt in verification. As a conse-
quence, more iterations and thus more simulations would be required. Therefore, the
candidate should be the one that is most likely to satisfy the specifications. Our solution
is to search for the point that has the largest margin from violating the specifications
using the following linear program:

max
unew∈U

(b − ĝu(unew)− u) + (ĝ�(unew) + �− a)

subject to

a ≤ ĝ�(unew) + � ≤ ĝu(unew) + u ≤ b .

(9)

In the case of multiple specifications, (9) consists of multiple constraints, each corre-
sponding to a specification. Also, the objective function of becomes the sum of the
margin for each specification. Clearly, (9) is infeasible if and only if we cannot find any
candidate.

6 Experimental Evaluation

We present four applications: (1) a motor with a rigid arm controlled by a PI controller,
(2) a ring oscillator circuit modeled at the transistor-level, (3) an insulin pump that con-
trols the blood glucose level of diabetic patients, and (4) an aircraft flight control model.
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Motor (plant)

PI Controller -

α0

Arm angle αControl v

(a) A motor with PI controller (b) φ1 at unom (left) and unew (right)

(c) φ2 at unom (left) and unew (right) (d) φ3 at unom (left) and unew (right)

Fig. 4. A motor with a rigid arm controlled by a PI controller is shown in (a). Figure (b), (c) and
(d) shows the histograms of φ1, φ2 and φ3.

All models have stochastic parameter variations. We use our approach to search for a
design point that maximizes the empirical probability of satisfying the given specifi-
cations. The experiments are performed on a AMD Athlon II quad-core 2.8GHz CPU
with 4G RAM. The proposed approach is implemented in Python-2.7.

6.1 Motor with PI Controller

Figure 4a shows a DC motor with an attached rigid arm controller by a PI controller.
We control the input voltage v of the motor which determines the angle α of the rigid
arm. The goal is to set α to a reference α0, thus holding the arm at a constant angle.
The design parameters are the proportional gain Kp and the integral gain Ki. There are
5 stochastic parameters, such as the resistance and the inductance in the motor model.

The step response α(t) should satisfy the following specifications. Over t ∈ [0, 2],
α(t) ≤ 1.5. The specification is φ1 ≥ 0 where

(1) φ1 = min(1.5− α(t)) , t ∈ [0, 2] ;

Over t ∈ [2, T ] where T is the total simulation time, α(t) ∈ [0.8, 1.2]. The specifica-
tions are φ2 ≥ 0 and φ3 ≥ 0 where

(2) φ2 = min(α(t) − 0.8) , (3) φ3 = min(1.2− α(t)) , t ∈ [2, T ] .

The nominal design point unom is Kp = −2.5 and Ki = −1. Our goal is to verify
whether the specifications hold at unom and if not, find a new design point unew from
Kp ∈ [−3,−2] and Ki ∈ [−1.2,−0.8] to satisfy the specifications.
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Table 1. Results for the motor example (θ0 = 0.95 and T = 100)

Spec
MC-1000 Proposed Approach
unom unew Inom SimR TR Iters SimW TW TO Inew

1 93.1% 100% [−0.08, 0.19]

500 189 s 1

307

148 s 1 s

[0.06, 0.22]
2 95.8% 100% [−0.13, 0.17] 247 [0.06, 0.22]
3 95.5% 100% [−0.13, 0.16] 398 [0.06, 0.17]

all 92.1% 100% - - -

The system is designed in Matlab R©with Simulink R©. Table 1 shows the results of this
example. The column “MC-1000” shows the yields of each specification at unom and
unew estimated through 1000 Monte-Carlo simulations. SimR and TR are the number of
simulations and time spent, respectively, for quantile regression; SimW , TW represent
the same for generalization and SimO, TO for optimization. “Iters” is the number of
iterations of our search. Finally, Inom and Inew are the statistically sound performance
bounds at unom and unew.

First, notice that the the system fails to satisfy all the three specifications at unom

as shown by the Monte-Carlo simulations. The proposed approach makes the same
conclusion by showing that the performance bounds Inom are not contained in the spec-
ifications. The bounds are derived from a relational model g that is statistically sound
at unom. Next, we pick up a new design point unew from the model g according to the
linear program (9), and check whether it satisfies the specifications. In fact it does, as
shown by the performance bounds Inew. Having yields of 100%, the conclusion is also
confirmed by the Monte-Carlo simulations at unew. The new design parameters for this
application is Kp = −2 and Ki = −0.8. To obtain this result, 500 simulations are spent
in quantile regression and 398 simulations in generalization.2

Figure 4b, 4c and 4d present the histograms of the responses φ1, φ2 and φ3 at unom

and unew. We choose θ0 = 0.95 and T = 100 in generalization. This means that the
probability that the intervals under Inom and Inew are the true performance bounds is at
least 95%. Given that, we have at least 100%− 1

T+1 × 100% ≈ 99% confidence that
unew satisfies the specifications. Yield estimation from the Monte-Carlo simulations is
a strong support to our conclusion.

6.2 Ring Oscillator

Figure 5 shows a ring oscillator. It is is designed to oscillate at a frequency f of 2.1GHz
with a power consumptionw of 5mW. However, a real circuit suffers from process vari-
ations, such as the doping concentration and oxide layer thickness, resulting in deviation
from the ideal performance. The performance specifications are

(1) f ∈ [2.0, 2.2]GHz , (2) w ≤ 5.5mW .

We choose 12 design parameters. They are the channel widths and lengths of each
transistor. Also, 54 stochastic parameters are considered, arising from process variations

2 Simulation data are reusable with respect to different specifications.
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Table 2. Results for the 3-stage ring oscillator (θ0 = 0.95 and T = 100)

Spec
MC-1000 Proposed Approach
unom unew Inom SimR TR Iters SimW TW TO Inew

1 95.8% 98.9% [2.05, 2.23]GHz
500 307 s 1

309
233 s 1 s

[2.04, 2.19]GHz
2 60.1% 100% [5.18, 5.85]mW 332 [4.75, 5.41]mW

all 60.0% 98.9% - - -

(a) f at unom (left) and unew (right) (b) w at unom (left) and unew (right)

Fig. 6. Histograms of f (left, GHz) and w (right, mW) at in the ring oscillator

in the transistor parameters. The goal is to verify whether the two specifications can be
satisfied under the nominal design point and if not, choose new values for the width and
length of each transistor.

M2

M1 M3

M4

M5

M6

Vout

Fig. 5. A 3-stage ring oscillator

We use LTSpice R© [1], a freely available SPICE
simulator, to simulate the circuit. The results are
shown in Table 2. The columns have the same
meanings as in Table 1. The circuit at the nomi-
nal widths and lengths has a poor performance in
the power consumption w, which has a yield of
only 60.1%. The upper bound of Inom violates the
specification (2) excessively. Our approach finds
a new design point that has performance bounds
that satisfies both specifications, which is confirmed by the Monte-Carlo simulations.
The yield is boosted from 60% to almost 100%. Figure 6 shows the histograms of the
two responses, f and w, at unom and unew. Obviously, we have a significant performance
improvement.

6.3 Insulin Pump

We study a previously published model of an insulin pump used by type-1 diabetic
patients [18,5]. Our model incorporates a physiological model of the human insulin-
glucose response from Dalla-Man et al. [5], models of sensor errors and a typical pump
usage by type-1 diabetic patients [18]. A type-1 diabetic patient uses their insulin pump
with at least three “design parameters” that include (a) the basal rate (basal) that repre-
sents the rate at which background insulin is delivered, (b) the insulin-to-carbohydrates
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Diabetes
Patient

Meal-bolus
Pump

Correction
Pump

Basal-level
Pump

Meal Data

Meal Bolus

Glucose
Level

Correction
Bolus

Basal Level

(a) A model of an insulin pump (b) gmin at unom (left) and unew (right)

Fig. 7. A model of an insulin pump (left) and the histograms of min(g(t)), the minimum glucose
level during simulation (right)

ratio (icRatio) that controls how much bolus insulin is to be administered to the patient
for each gram of carbohydrate to be consumed, and (c) a correction factor (cor) to cor-
rect blood glucose levels that are higher than normal. Clinically, these values are tuned
manually by a physician upon close observation of the patient’s blood glucose levels,
meal and sleep patterns over time. Our study attempts to automate this choice assuming
that personalized models are available for patients.

The stochastic parameters include the time of the meal, the amount of carbohy-
drates in each meal, sensor noise and the discrepancies between the planned and actual
meals [18]. Overall, the model has 3 design parameters and 10 stochastic parameters.
We used virtual patient parameters published for 30 patients by Dalla Man et al. [5]. Our
study here focuses on a single model patient. The total simulation time is 1400min.

There are many important correctness properties. Ideally, the human blood glucose
level should be between 70mg/dl and 180mg/dl. A level lower than 70mg/dl is called
hypoglycemia, and a level higher than 180mg/dl is called hyperglycemia. In practice,
hypoglycemia is usually much more critical than hyperglycemia since it can cause
seizures, unconsciousness and even death. Therefore, our goal is to control the blood
glucose level higher than 70mg/dl at all time time and reduce the time that the patient
stays in hyperglycemia as much as possible.

The above description yields the following specifications. The blood glucose level
g(t) should be between 70mg/dl and 240mg/dl over t ∈ [0, T ] where T is the total
simulation time.

(1) min(g(t)) ≥ 70mg/dl , (2) max(g(t)) ≤ 240mg/dl ;

The maximum period ph for hyperglycemia is at most 240min, and the total time in
hyperglycemia is at most 20% of the total simulation time.

(3) ph ≤ 240min , (4) rh ≤ 20% .

Table 3 shows the results of applying our approach to the data for model that pertains
to a single patient, whose insulin pump is tuned to a nominal design point basal = 0.3,
icRatio = 0.06 and cor = 0.06. Observe that the pump works well except that it
has a 3.8% chance of dangerous hypoglycemia. Our approach lowers this chance to
0.4%, a significant lowering of a risk. Another observation comes from the number
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Table 3. Results for the insulin pump example (θ0 = 0.95 and T = 100). The units of Inom and
Inew for specification (1) and (2) are mg/dl.

Spec
MC-1000 Proposed Approach
unom unew Inom SimR TR Iters SimW TW TO Inew

1 96.2% 99.6% [68.12, 95.28]

500 624s 3

567

701s 4s

[70.0, 102.1]
2 100% 100% [186.6, 219.3] 549 [189.2, 227.0]
3 100% 100% [41.44, 209.8]min 423 [48.6, 213.3]min
4 100% 100% [6.0%, 18.8%] 420 [6.2%, 20.0%]
all 96.2% 99.6% - -

Aircraft Model -
Deflection Generator+

State Feedback

Integral Action

Wind Gust g

(u,w, q, v, p, r)

(μ, α, β)

(μ0, α0, β0)

Fig. 8. An aircraft flight control model

of iterations. Unlike the other examples, our approach takes 3 iterations to find a new
design point. It indicates that the system has a relatively small margin from violating the
specifications, as shown by Inew. The new design point basal = 0.225, icRatio = 0.080
and cor = 0.049. Histograms of min(g(t)) at unom and unew are shown in Figure 7b.

6.4 Aircraft Flight Control System

Figure 8 shows a model of the flight control system in an aircraft. This model is avail-
able in Matlab R© R2014a Robust Control Toolbox

TM
. The aircraft is modeled as a 6th-

order state-space system. The state variables include the velocity on x, y and z-body
axis (u, v, w), the pitch rate q, the roll rate p and the yaw rate r. These variables to-
gether with three responses, the flight-path bank angle μ, the angle of attack α and the
sideslip angle β, are available to the controller. The controller, which consists of a state
feedback control and an integral control, is designed to generate the deflections of the
elevators, the ailerons and the rudder so that a good tracking performance is maintained
on the responses with respect to the reference μ0, α0 and β0.

The controller has two gain matrices, Kx and Ki, that maps the controller inputs to
deflections. Kx is a 3×6 state-feedback matrix, and Ki is a 3×3 matrix for integrating
the three tracking errors. In all, we have 27 design parameters. The stochastic param-
eters arise from uncertainties in the state matrix and the input matrices along with the
stochastic wind disturbance. In all, we have 73 stochastic parameters. The following
specifications concern the step response of μ(t), α(t) and β(t). First, the settling time
of each trajectory should be smaller than 7.5 s.

(1) tμ ≤ 7.5 s , (2) tα ≤ 7.5 s , (3) tβ ≤ 7.5 s ;
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Table 4. Results for the aircraft flight control example (θ0 = 0.95 and T = 100)

Spec
MC-1000 Proposed Approach
unom unew Inom SimR TR Iters SimW TW TO Inew

1 100% 100% [1.40, 6.47]s

500 307s 1

326

341s 2s

[1.98, 6.42]s
2 76.7% 99.9% [5.00, 7.79]s 332 [5.86, 7.48]s
3 100% 100% [3.82, 6.23]s 479 [3.80, 6.34]s
4 100% 100% [3.8%, 9.5%] 399 [0, 11.7%]
5 82.5% 99.5% [0, 26%] 402 [0, 19.5%]
6 100% 100% [5.3%, 9.4%] 507 [7.7%, 12.7%]

all 74.1% 99.5% - - -

(a) tα at unom (left) and unew (right) (b) rα at unom (left) and unew (right)

Fig. 9. Histograms of tα (left, in seconds) and rα (right, as percentage) in the aircraft flight control
model

Also, the overshoot should be less than 20% of the steady state value.

(4) rμ ≤ 20% , (5) rα ≤ 20% , (6) rβ ≤ 20% .

Table 4 presents the results of applying our approach. Observe that the specification
(2) and (5) are not satisfies at unom, confirmed by both the Monte-Carlo simulations and
the performance bounds Inom. We use 500 simulations in quantile regression and 507
in generalization, and find a new design point in one iteration. The new point leads to
better performance on tα and rα and thus a boost of the overall yield from 74.1% to
99.5%. Figure 9 shows the histograms of tα and rα at unom and unew, which clearly
shows the performance improvement.

Now let us compare Inom with Inew. Note that except for tα and rα in specification (2)
and (5), all the other responses have larger performance bounds at unew but still satisfy
the specifications. It indicates that the proposed approach trades off the performance of
the other responses so that (2) and (5) can be satisfied.

7 Conclusion

In this paper, we have introduced a statistically sound model inference approach for the
verification and optimization of complex systems. First, using quantile regression, a re-
lational model is computed to approximate the marginalized response function. Then a
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generalization procedure is employed to relax the model so that it becomes statistically
sound at the nominal design point. The resulting model is used to verify the specifica-
tions. If fail, the model is then used to search for a new design point. We show several
interesting examples that through the application of our approach, the yield of these
systems are improved significantly.
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André, Étienne 242

Becker, Bernd 297
Belo Lourenço, Cláudio 24
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