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Abstract. The paper presents a dynamic method for phoneme synthesis using 
an elemental-based concatenation approach. The vocal sound waveform can be 
decomposed into elemental patterns that have slight modifications of the shape 
as they chain one after another in time but keep the same dynamics which is 
specific to each phoneme. An approximation or RBF network is used to 
generate elementals in time with the possibility of controlling the characteristics 
of the sound signals. Based on this technique a quite realistic mimic of a natural 
sound was obtained. 
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1 Introduction 

Speech synthesis remains a challenging topic in artificial intelligence since the goal of 
obtaining natural human-like sounds is not yet fully reached. Among the different 
approaches of speech synthesis, the closest to human-like sounds are obtained by the 
concatenation of segments of recorded speech. However, one of the main 
disadvantages of this technique, besides the necessity of a large database, is the 
difficulty of reproducing the natural variations in speech [1]. There are some attempts 
towards expressive speech synthesis using concatenative technique [2] but the lack of 
an explicit speech model in these systems makes them applicable mainly in neutral 
spoken rendering of text. The other techniques of speech synthesis such as 
formant/parametric synthesis and articulatory synthesis [3], although they employ 
acoustic models and human vocal tract models, cannot surpass the results of a robotic-
sounding speech. The main difficulty resides in dealing with the nonlinear character 
of natural language phenomenon. Therefore the need of developing new models able 
to encompass the dynamics of speech became prominent in the recent years. More 
research works were invested in nonlinear analysis of speech signals in order to derive 
valid dynamic models [4], [5], [6], [7], [8]. A promising direction is given by the 
neural networks dynamic models. There are classic approaches in speech synthesis 
(text-to-speech synthesis) that use neural networks, but not for generating directly the 
audio signal [9], [10], [11]. However, neural networks did prove successfully to have 
the potential of predicting and generating nonlinear time-series [12], [13], [14]. 
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Different topologies have been studied starting from a feed-forward neural network 
architecture and adding feedback connections to previous layers [15], [16]. 
Applications in speech and sound synthesis have also been proposed [17], [18]. In a 
recent work [19] we have studied the possibility of training a feedback topology of 
neural network for the generation of three new periods of elemental patterns in 
phonemes. The phoneme sound was finally generated in a repetitive loop with 
promising results. In the present work we are interested in extending the ideas of 
dynamic modeling of speech sounds with neural networks, this time using 
approximation nets. The approximation or interpolation networks, also known as 
radial basis function (RBF) networks, offer a series of advantages for time-series 
prediction due to the nature of the non-linear RBF activation function. 

The remainder of the paper consists of the following sections: A nonlinear analysis 
of the phoneme signals, the RBF network model and the experimental results. Finally, 
the summary and future researches conclude the report.. 

2 Nonlinear Analysis of Phoneme Signals 

The purpose of nonlinear analysis of phoneme time series is to characterize the 
observed dynamics in order to produce new time series exhibiting the same dynamics. 
According to Takens’ embedding theorem [20], a discrete-time dynamical system can 
be reconstructed from scalar-valued partial measurements of internal states. If the 
measurement variable at time t is defined by x(t), a k-dimensional embedding vector 
is defined by: 

X(ti) = [x(ti), x(ti + τ),…, x(ti + (k − 1) τ)], (1) 

where τ is the time delay, and k = 1…d, where d denotes the embedding dimension. 
The reason was to have samples from the original sound signal x(t) delayed by 
multiples of τ and obtain the reconstructed d−dimensional space. The conditions in 
the embedding theorem impose d ≥ 2D + I, where D is the dimension of the compact 
manifold containing the attractor, and I is an integer. According to the embedding 
technique, from sampled time series of speech phonemes the dynamics of the 
unknown speech generating system could be uncovered, provided that the embedding 
dimension d was large enough. The difficult problem in practical applications is 
finding the optimal length of the time series and the optimal time delay. However, 
there are some methods to estimate these parameters [21], [22]. We used the false 
nearest neighbor method and the mutual information method, for establishing the 
optimal embedding dimension and the time lag (embedding delay), respectively [23]. 
The optimal choice depends on the specific dynamics of the studied process. 
Prediction requires sufficient points in the neighborhood of the current point. As the 
dimension increases the number of such points decreases. Apparently a high 
embedding seems advantageous because a sufficiently large value ensures that 
different states are accurately represented by distinct delay vectors. When the value 
becomes unnecessarily high the data become sparse and each embedding dimension 
introduces additional noise. A technique that may provide a suitable embedding for  
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d-dimensional metric. The same pairs of vectors are then extended by adding one 
more delay coordinate and are compared, this time using d + 1-dimensional metric. If 
they become far apart then we may consider that nearest neighbor to be false. 
Regarding the selection of τ, if the value is too large the successive components in a 
delay vector are completely unrelated. At contrary, if the value is too small the 
components are nearly identical and therefore adding new components does not bring 
new information. Out of several techniques available to estimate τ, we selected the 
minimum mutual information method. Mutual information is a measure of how much 
one knows about x(t + τ ) if one knows x(t). It is calculated as the sum of the two self-
entropies minus the joint entropy. The optimal time lag can be estimated for the point 
where the mutual information reaches its first minimum. 

 

Fig. 2. The percentage of FNNs in dependence on the value of d 

 

Fig. 3. The average mutual information in dependence on the embedding delay 

For experimental purposes, we considered in this work the signals of the main 
vocal phonemes, /a/, /e/, /i/, /o/, and /u/ pronounced by a male person. The waveforms 
along with an instance of the corresponding elemental pattern are shown in Fig. 1. 
The vocal sound data were sampled at 96 kHz with 16 bits. The elemental pattern 
may be viewed as a basic component in constructing the phoneme signal. If this 
pattern is repeated in time (concatenated) the phoneme sound can be reconstructed. 
For these phonemes data we applied the FNN method and the mutual information 
method. As an example, the percentage of FNNs in dependence on the value of d can 
be seen in Fig. 2 for phoneme /a/. The percentage of FNN should drop to zero for the 
optimal global embedding dimension d. In Fig. 3 it is depicted the average mutual  
information in dependence on the embedding delay. The optimal time delays result in 
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the point where the average mutual information reaches the first minimum. The 
results obtained for the phonemes under study are presented in Table 1. 

Table 1. Phonemes nonlinear analysis results 

 

Phonemes/ 
Vocals 

Sample length 
Optimal embedding 

dimension 
Optimal time 

delay 
LE ≈ 

/a/ 43304 20 34 42 

/e/ 42984 14 59 16 

/i/ 42240 9 24 167 

/o/ 45120 15 48 53 

/u/ 42624 10 62 54 

After the estimation of d and τ we could proceed with the embedding process. For a 
convenient exploration of the reconstructed phase-space we constructed the following 
three−dimensional map: 

x = x(t) 

y = x(t + k) 

z = x(t + 2k), 

 

(2) 

and we selected the points along the z axis for k = d. The samples are depicted in Fig. 
4 for phoneme /a/. These samples constituted the input vector to the RBF neural 
network as will be detailed in the next section. 

 

Fig. 4. Training samples taken out from the original time-series 
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3 The RBF Network Model and Experimental Results 

By choosing the appropriate values for d and τ in the embedding process we may have 
a high degree of confidence that the intrinsic dynamics of the time-series was 
captured. If we apply the samples on a higher dimension as inputs to an interpolation 
neural network then we can have a good starting point in generating the phoneme 
sound. Using a RBF network in this case has several advantages. The network has 
three layers. The input and output layers have one neuron. The output of the network 
is a scalar function y of the input (x1, x2, …,xn) and is given by 

, , … , ∑ | | , (3) 

where S is the number of neurons in the hidden layer, wi is the weight of the neuron i, 
ci is the center vector for neuron i, and gi is the activation function: | | || || 2  (4) 

The Gaussian function has the advantage of being controllable by the parameter σ. 
In this way, the Gaussian functions in the RBF networks centered on samples enable 
good interpolations. Small values of σ reflect little sample influence outside of local 
neighborhood, whereas larger σ values extend the influence of each sample, making 
that influence too global for extremely large values. 

 

Fig. 5. The approximated elemental 

In Fig. 5 it is shown the function approximation along with the data samples. The 
network consisted of 20 basis function of Gaussian type and was trained with 39 
samples. The mean squared error decreased below 0.02 after only 5 iterations. We can 
observe a good match. The strength of this approach is given by the capability of 
controlling the width of the basis function and hence the final shape of the 
approximation. The dynamics of the elementals is still very well preserved if the 
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number of nodes is not too low. In the next stage, a series of different elementals were 
generated by varying the width of the basis function according to a random source 
(for instance a quadratic map). Finally these elementals were concatenated to generate 
the sound signal. If the concatenation was performed with the same elemental the 
resulting sound created an artificial impression even if the original elemental was 
used. The impression of naturalness is not given by the phoneme elemental alone, but 
by the temporal perception of the slight variations of the elementals in succession. 

  
Fig. 6. Three elemental samples generated when σ was controlled by a random source 

In Fig. 6, a series of three different elemental are depicted. Slight variations can be 
observed but with the preservation of the original dynamics as can be observed in the 
original signal. In conclusion, the method suggested proved to be simple and effective 
encouraging further researches. 

4 Summary 

A dynamic method for phoneme synthesis using an elemental-based concatenation 
technique was proposed. The phonemes’ elementals could be generated by an 
approximation network and the signal parameters can be controlled, at every iteration, 
through the width of the Gaussian activation function. The resultant elementals were 
concatenated and finally assembled in the resultant phoneme sound. The sound 
impression was quite realistic. Future researches in this direction are encouraged by 
the positive results obtained in this work. 
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