
Chapter 5

Two-Timing, Geometric,
and Multi-scale Methods

(a) Elementary Two-Timing

The Brooklyn native Julian Cole (1925–1999) got his Ph.D. in aeronautics
at Caltech in 1949 with Hans Liepmann (a German émigre of 1939) as his
advisor. He remained on the Caltech faculty until 1968 where he main-
tained active contact with Kaplun, Lagerstrom and others in aeronautics,
applied mathematics and industry, attempting to understand singular per-
turbations more deeply and to apply its growing methodology. Then he
moved to UCLA and, ultimately, Rensselaer. He and his Jerusalem-born
student Jerry Kevorkian, who spent his academic career at the University
of Washington, developed and applied asymptotic methods involving two-
(i.e. multi-) time or multiple scales in the early 1960s (cf. the obituary of
Cole by Bluman et al. [48]). Related approaches were made by the Soviet
Kuzmak [273], the Australian Mahony [305], and the American Cochran [89],
among others, but Cole and Kevorkian had the dominant long-term impact.
The previously cited work of Lomov is also recommended reading, as is the
paper by Levey and Mahony [286]. The monograph Perturbation Methods
in Applied Mathematics, Cole [92], considered singular perturbations in a
broad applied math setting, where both the development of the underlying
techniques and significant and diverse applications were included. The book
approaches matching using intermediate limits and presumes a corresponding
overlap of inner and outer domains. The examples used are generally very
instructive and quite nontrivial.

Two-variable expansions are naturally introduced, for example, in the
presence of a small disturbance acting cumulatively for a long time. The sim-
ultaneous occurrence of a small parameter and a long time interval implies

© Springer International Publishing Switzerland 2014
R. O’Malley, Historical Developments in Singular Perturbations,
DOI 10.1007/978-3-319-11924-3 5

141



142 CHAPTER 5. TWO-TIMING AND OTHER METHODS

that we, indeed, encounter a two-parameter singular perturbation problem
(cf. O’Malley [366]). Smith [466] aptly called such initial value problems
singular perturbations with a nonuniformity at infinity. The two-timing ap-
proach generalizes and extends the classical Poincaré–Lindstedt method of
strained coordinates (cf., e.g., Poincaré [394], Minorsky [319], and Murdock
[335]) which is often applied to solve Duffing’s equation and to describe re-
lated nonlinear oscillations. The procedure ultimately provides the same
asymptotic expansion for the solution as the method of averaging (cf. Bogoli-
ubov and Mitropolsky [51]), which is long known to be mathematically justi-
fied. Greatly expanded editions of Cole’s book, coauthored with Kevorkian,
appeared in 1981 and 1996 [247, 248]. The late Peter Chapman, a colleague
of Mahony in Perth, developed a promising manuscript [77] that may never
have been finished. It explained the ongoing work of Mahony and the pa-
per of Kuzmak. Mahony’s work, more generally, is reviewed in Fowkes and
Silberstein [153]. The major recent generalization from two-timing to multi-
scale modeling is considered in E [130].

As a first example, we shall describe the application of two-timing to the
nearly linear Rayleigh equation

ÿ + y = ε

(
ẏ − 1

3
ẏ3
)

on t ≥ 0 (5.1)

with initial values
y(0) = 0 and ẏ(0) = 1. (5.2)

This, presumably, describes the oscillations of a clarinet reed (cf. Rayleigh
[409]). Note that if y satisfies the Rayleigh equation, ẏ will satisfy the van
der Pol equation (which we will later study).

Two-timing anticipates that the solution of (5.1–5.2) will evolve, depend-
ing on both the given fast-time t and the introduced slow time

τ ≡ εt (5.3)

using a formal two-time power series expansion

y(t, ε) = Y (t, τ, ε) ∼ Y0(t, τ) + εY1(t, τ) + ε2Y2(t, τ) + . . . (5.4)

when t = O(1/ε), i.e. τ = O(1). (Don’t be confused because we used τ = t
ε

as a fast time in Chap. 3.) Sophisticates will realize that (5.4) is a generalized
asymptotic expansion, since its coefficients Yk depend on ε through τ . The
chain rule requires that

ẏ = Yt + εYτ and ÿ = Ytt + 2εYtτ + ε2Yττ ,

so equation (5.1) implies that the two-time expansion (5.4) must satisfy the
partial differential equation

Ytt + Y + ε

(
2Ytτ − Yt +

1

3
Y 3
t

)
+ ε2(Yττ − Yτ + Y 2

t Yτ ) + ε3YtY
2
τ +

ε4

3
Y 3
τ = 0.

(5.5)
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Converting the ODE (5.1) to the PDE (5.5) may not, at first, seem like a
step forward, but wait and experience its success. Equating coefficients of
successive powers of ε as a regular perturbation expansion requires

Y0tt + Y0 = 0, (5.6)

Y1tt + Y1 = −2Y0tτ + Y0t − 1

3
Y 3
0t, (5.7)

etc. From (5.6), it follows that Y0 must be a linear combination of cos t and
sin t with τ -dependent coefficients, so we set

Y0(t, τ) = A0(τ) cos t+B0(τ) sin t, (5.8)

where A0 and B0 so far remain undetermined, except for their initial values
since ⎧⎪⎨

⎪⎩
y(0) = Y0(0, 0) = A0(0) = 0

and

ẏ(0) ∼ Y0t(0, 0) = B0(0) = 1.

(5.9)

Thus, the representation (5.8) introduces amplitudes A0 and B0 that are
slowly varying functions of t.

Next, using the partial differential equation (5.7) for Y1, we require

Y1tt + Y1 =− 2

(
−dA0

dτ
sin t+

dB0

dτ
cos t

)

+ (−A0 sin t+B0 cos t)

− 1

3
(−A0 sin t+B0 cos t)

3.

(5.10)

Recalling the trigonometric identities sin3 t = 3
4 sin t − 1

4 sin 3t, sin
2 t cos t =

1
4 cos t− 1

4 cos 3t, sin t cos
2 t = 1

4 sin t+
1
4 sin 3t, and cos3 t = 3

4 cos t+
1
4 cos 3t,

we find that Y1tt + Y1 is a linear combination of sin t, cos t, sin 3t, and cos 3t,
with τ -dependent coefficients. The general solution for Y1 follows simply by
the method of undetermined coefficients. Multiples of sin t and cos t in the
forcing term yield unbounded responses like t sin t and t cos t in the particular
solution. Since sin t and cos t are solutions of the homogeneous equation, the
presence of such terms in the forcing is said to resonate with the comple-
mentary solutions for Y1. Such secular response terms can’t be allowed if
the expansion Y (t, τ, ε) is to remain asymptotic for large t. Specifically, since
(5.10) implies that

Y1tt + Y1 =

(
2
dA0

dτ
−A0 +

A3
0

4
+

A0B
2
0

4

)
sin t

+

(
−2

dB0

dτ
+B0 − A2

0B0

4
− B3

0

4

)
cos t

+

(
−A3

0

12
+

A0B
2
0

4

)
sin 3t+

(
A2

0B0

4
− B3

0

12

)
cos 3t,

(5.11)
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to make the first harmonics disappear in the forcing thereby requires A0 and
B0 to satisfy the coupled vector initial value problem⎧⎪⎨

⎪⎩
2dA0

dτ = A0 − A0

4 (A2
0 +B2

0), A0(0) = 0

and

2dB0

dτ = B0 − B0

4 (A2
0 +B2

0), B0(0) = 1.

(5.12)

Uniqueness implies that
A0(τ) = 0 (5.13)

while the explicit solution of the remaining Bernoulli equation determines

B0(τ) =
2√

1 + 3e−τ
, (5.14)

which remains defined for all τ ≥ 0.
Thus, Y1 must be a bounded solution of

Y1tt + Y1 = −B3
0

12
cos 3t.

A particular solution as a slowly varying multiple of cos 3t follows using un-
determined coefficients and since its complementary solution will be a linear
combination of cos t and sin t, Y1 will have the form

Y1(t, τ) = A1(τ) cos t+B1(τ) sin t+
B3

0(τ)

96
cos 3t.

Moreover, A1 and B1 must satisfy the initial conditions

0 = Y1(0, 0) = A1(0) +
B3

0(0)

96
and 0 = Y1t(0, 0) + Y0τ (0, 0) = B1(0) +A0(0),

so

A1(0) = − 1

96
and B1(0) = 0.

We will completely specify A1 and B1 as an exercise. Equations (5.13–5.14)
determines the limiting two-time approximation

y(t, ε) = Y0(t, τ) +O(ε) (5.15)

on 0 ≤ τ < ∞ with

Y0(t, τ) =
2 sin t√
1 + 3e−τ

. (5.16)

Proofs justifying the two-time technique by proving the estimate (5.15) are
given, e.g., in Smith [466]. They can be expected to hold with some tradeoffs
both on longer time intervals and to higher-order. Note that Poincaré in the
preface to the first volume of Celestial Mechanics [394] reported

All efforts of geometers in the second half of this century have
had as main objective the elimination of secular terms.
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Exercise

Knowing Y0, determine Y1 completely by eliminating resonant terms in the
differential equation

Y2tt + Y2 + (2Y1tτ − Y1 + Y 3
0tY1t) + Y0ττ − Y0τ + Y 2

0tY0τ = 0

for Y2 by appropriately determining the first harmonic coefficients A1(τ) and
B1(τ) of Y1.

Paul Germain [169] introduces multiple scales more broadly:

when a physical phenomenon is thought to be represented by the
occurrence of steep gradients in one variable only . . . . Assume
that the manifold across which the gradients are steep is F (x, t) =
constant. Then, the mathematical progressive wave structure is

U(t, x,
F

ε
, ε)

with ξ ≡ F
ε considered as a fifth variable.

See Germain [169] and Zeytounian [533] for more details.

Historical Comment

Poincaré won the (Swedish and Norwegian) King Oscar II Prize in 1889 (cel-
ebrating the king’s 60th birthday) for his work on the three-body problem.
The hastily prepared submission was, however, in error (cf. Barrow-Green
[29]). (Distributed copies were collected and trashed, but Barrow-Green
recently found one remaining in the Mittag-Leffler Institute library. Mittag-
Leffler was a judge (together with Hermite and Weierstrass), organizer of
the prize, and founding editor of Acta Mathematica.) A corrected ver-
sion of Poincaré’s paper was published in Acta Mathematica in 1890 (at
Poincaré’s expense). Much of the difference relates to whether the formal
solutions found by the astronomer Lindstedt in 1883 were convergent or
simply asymptotic (and to the nonintegrability of the three-body problem).
This distinction was further highlighted in the introduction to the second
volume of Poincaré’s Celestial Mechanics [394] where a difference between
“astronomers” and “mathematicians” may be understood if we realize that
astronomers traditionally call asymptotic series convergent. Many years
later, KAM theory (the research of Kolmogorov, Arnold, and Moser from
1954 to 1963 on the persistence of quasi-periodic motions under small per-
turbations) shows that some similar results actually converge (cf. Arnold
et al. [12]). Curiously, Szpiro [478] suggests that the Swedes Lindstedt and
Gyldén each claimed some of their work had precedence over Poincaré’s, but
this is not noted by the more scholarly Barrow-Green. More details can be
found in Charpentier et al. [78], Verhulst [502], and Gray [182].
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According to Stubhaug [477], Gyldén, head of the Stockholm Observatory,
characterized the entire prize as

humbug.

Ziegler [537] reports that Mittag-Leffler tried to get a Nobel prize for Poincaré
from their initiation in 1901 until Poincaré’s death. Stubhaug emphasizes
that Mittag-Leffler wanted to promote theoretical physics for the prize as
well as Poincaré. (It’s never been clear why there’s no mathematics Nobel,
but there’s now an Abel prize and other, even bigger, new ones.)

Now consider the initial value problem

ÿ + y + εy3 = 0, y(0) = 1, ẏ(0) = 0 (5.17)

for Duffing’s equation on t ≥ 0 (Kovacic and Brennan [261] provides a brief
biography of Georg Duffing (1861–1944) as well as a partial translation of
his 1918 book Forced Oscillations with Variable Natural Frequency and their
Technical Significance, originally published by Sammlung Vieweg, Braun-
schweig, in German.). Using a phase-plane analysis, for example, one can
readily convince oneself that the solution is periodic (cf. Mudavanhu et al.
[332]). A regular perturbation expansion produces artificial secular terms
that are clearly spurious, so we might naturally instead seek an asymptotic
solution

y(t, ε) = z(s, ε) ∼ z0(s) + εz1(s) + . . . (5.18)

as a function of a so-called strained coordinate

s = (1 + εΩ(ε))t (5.19)

where the frequency perturbation

Ω(ε) ∼ Ω0 + εΩ1 + . . . (5.20)

for constants Ωj is to be determined termwise to achieve periodicity of the
terms of the expansion for z with respect to the strained s. Clearly, z will
need to satisfy the initial value problem

(1 + εΩ(ε))2
d2z

ds2
+ z + εz3 = 0, z(0, ε) = 1,

dz

ds
(0, ε) = 0. (5.21)

Proceeding termwise, we obtain successive initial value problems

d2z0
ds2

+ z0 = 0, z0(0) = 1,
dz0
ds

(0) = 0,

d2z1
ds2

+ z1 + 2Ω0
d2z0
ds2

+ z30 = 0, z1(0) = 0,
dz1
ds

(0) = 0,
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etc. Since
z0(s) = cos s, (5.22)

z1 must satisfy

d2z1
ds2

+ z1 =

(
2Ω0 − 3

4

)
cos s− 1

4
cos 3s.

To avoid secular terms in z1, we must pick

Ω0 = 3/8 (5.23)

to obtain

z1(s) = − 1

32
cos s+

1

32
cos 3s. (5.24)

At the next stage, we find

s =

(
1 +

3ε

8
− 21

256
ε2 + . . .

)
t (5.25)

and

y(t, ε) = z(s, ε) =

(
1− ε

32
+

23

1024
ε2 + . . .

)
cos s

+ ε

(
1

32
− ε

64
+ . . .

)
cos 3s

+ ε2
(

1

1024
+ . . .

)
cos 5s+ . . . .

(5.26)

The series for the frequency actually converges. Andersen and Geer [7] calcu-
lated series for the corresponding periodic solution of the van der Pol equation
to O(ε24) terms using Macsyma and to O(ε164) terms via Taylor series.

Note that use of the coordinate s (which is only ever approximated as
a polynomial of increasing order in ε) corresponds to a multitime expansion
using the times t, εt, ε2t, . . .. (See below.) Later scales are not needed when
we bound εkt for any fixed k.

More generally, nonlinear clock functions

τi(t, ε), i = 0, 1, . . . , N

are sometimes used to determine multitime expansions

x(t, ε) = X(τ0, τ1, . . . , τN , ε).

Ablowitz [1] points out that this frequency-shift method, that he calls the
Stokes-Poincaré approach, is limited to equations in conservation form (see
Sect. (c)). (It does not apply, e.g., to the van der Pol equation, though it will
provide its periodic limit cycle.)
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More generally, when one considers the nearly linear equation

ÿ + y + εf(y, ẏ) = 0, (5.27)

two-timing produces a first term approximation

Y0(t, τ) = A0(τ) cos t+B0(τ) sin t (5.28)

for τ = εt and requires the second term to satisfy a resulting nonhomogeneous
equation

∂2Y1

∂t2
+ Y1 = P (t, τ) (5.29)

determined in terms of A0 and B0. The Fredholm alternative requires the
two orthogonality conditions,

∫ 2π

0

P (t, τ) cos t dt = 0 and

∫ 2π

0

P (t, τ) sin t dt = 0, (5.30)

which coincide with the differential equations for A0 and B0 needed to elim-
inate secular terms in Y1. An alternative representation

Y0(t, τ) = C0(τ) cos(t+D0(τ))

with slowly varying amplitude C0 and phase D0 (instead of (5.28)) would
also be effective. Kevorkian and Cole [249] use multiple scale methods for a
variety of problems.

Exercise (cf. Hinch [206])

Show that Duffing’s equation could also be solved by directly seeking a solu-
tion of the form

y(t, ε) = z(s, ε) (5.31)

where s is determined by inverting a near-identity transformation

t = s+ εt1(s) + ε2t2(s) + . . . (5.32)

for functions tj(s) that provide a periodic solution z(s, ε) termwise.

One can obtain Mathieu’s equation

d2x

dt2
+ (δ + ε cos t)x = 0 (5.33)

as a linearization of Duffing’s equation (cf. Jordan and Smith [230]). More-
over, one can study what parameter values δ and ε provide bounded or un-
bounded solutions. Transitions of solutions x(t, ε) from stability to instability
occur along curves δ(ε) called tongues that can be obtained using perturba-
tion methods (cf. Nayfeh and Mook [345]). Bifurcations may involve hidden
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time scales, like ε3/2t (cf. Chen et al. [81] and Verhulst [504]). The traditional
two-time expansion

Y (t, τ, ε) ∼ Y0(t, τ) + εY1(t, τ) + . . . (5.34)

is effective for equation (5.27). We can expect such results to hold for bounded
τ values, though Greenlee and Snow [184] showed that with appropriate
damping, two-timing is valid on the whole half-line t ≥ 0.

We can also apply multiple scales to equations with boundary layer
behavior, even though Lagerstrom [276] sought a dichotomous distinction
between layer type and secular problems. Consider, for example, the nonlin-
ear two-point boundary value problem

εy′′ + a(x)y′ + g(x, y) = 0 (5.35)

on 0 ≤ x ≤ 1 where

a(x) > 0, (5.36)

a and g are smooth, and bounded end values

y(0) and y(1) (5.37)

are prescribed. We anticipate having an initial boundary layer due to the
sign of a, so we introduce the stretched (fast) variable

η =
1

ε

∫ x

0

a(s) ds (5.38)

(known to be appropriate for the corresponding linear equations) and seek an
asymptotic solution to the two-point problem for (5.35) in the two-variable
(or multiscale) form

y(x, ε) = Y (x, η, ε) ∼ Y0(x, η) + εY1(x, η) + . . . . (5.39)

Since

y′ = Yx +
a(x)

ε
Yη

and

εy′′ = εYxx + 2a(x)Yxη + a′(x)Yη +
a2(x)

ε
Yηη,

the ordinary differential equation (5.35) for y requires Y to satisfy the partial
differential equation

a2(x)

ε
(Yηη + Yη)+

(
2a(x)Yxη + a′(x)Yη

+ a(x)Yx + g(x, Y )
)
+ εYxx = 0

(5.40)
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as a regular perturbation series, with the coefficients Yk in (5.39) depending
on x and η simultaneously. Equating successive coefficients in (5.40) to zero
then requires that

Y0ηη + Y0η = 0, (5.41)

Y1ηη + Y1η +
1

a2(x)
(2a(x)Y0xη + a′(x)Y0η + a(x)Y0x + g(x, Y0)) = 0, (5.42)

etc. Equation (5.41) implies that Y0 is a linear combination of 1 and e−η,
with undetermined coefficients depending on the slow variable x. Thus, we
set

Y0(x, η) = A0(x) +B0(x)e
−η. (5.43)

The boundary values then require that

A0(0) +B0(0) = y(0) and A0(1) ∼ y(1) (5.44)

since e−η is asymptotically negligible outside the initial layer. The equation
(5.42) then requires that

Y1ηη + Y1η +
1

a2(x)

(−2a(x)B′
0(x)e

−η − a′(x)B0(x)e
−η

+ a(x) (A′
0 +B′

0e
−η) + g(x,A0 +B0e

−η)
)
= 0.

(5.45)

We expand

g(x,A0 +B0e
−η) = g(x,A0) + gy(x,A0)B0e

−η +
1

2
gyy(x,A0)(B

2
0e

−2η) + . . .

about y = A0. To prevent secular terms in Y1, we must make the coefficients
of 1 and e−η in the forcing term of (5.45) be zero. Thus, we will need A0 to
satisfy the limiting nonlinear equation

a(x)A′
0 + g(x,A0) = 0

while B0 must satisfy the coupled linear equation

−a(x)B′
0 + (−a′(x) + gy(x,A0))B0 = 0.

Using the terminal condition for A0, we shall assume that a unique solution
to the reduced problem

A′
0 = −g(x,A0)

a(x)
, A0(1) = y(1) (5.46)

is defined throughout 0 ≤ x ≤ 1. We may have to obtain A0 numerically.
Then, B0(x) is uniquely determined from the linear problem

(aB0)
′ = gy(x,A0)B0, B0(0) = y(0)−A0(0),
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i.e.

B0(x) = e
∫ x
0

gy(s,A0(s))

a(s)
ds a(0)

a(x)
(y(0)−A0(0)). (5.47)

This completely specifies Y0. Next, we will need to integrate

Y1ηη + Y1η +
1

a2(x)
(g(x,A0 +B0e

−η)− g(x,A0)− gy(x,A0)B0e
−η) = 0

using variation of parameters to determine its complementary solution by
applying the initial conditions and then eliminating the resulting resonant
terms in the differential equation for Y2. Generalizations of these methods
are found in O’Malley [362, 363], Smith [465], and elsewhere.

To illustrate how our earlier results on turning point problems fit the
two-time ansatz, consider the two examples that follow.

Example 1

Recall that solutions of the two-point problem

εy′′ + xy′ = 0, − 1 ≤ x ≤ 1, y(±1) = ±1 (5.48)

have the form

y(x, ε) = A+B

∫ x

0

e−s2/2εds

for constants A(ε) and B(ε). Applying the boundary conditions, we get A = 0

and B = (
∫ 1

0
e−s2/2εds)−1, so the asymptotic solution

y(x, ε) ∼
∫ x/

√
ε

0
e−t2/2 dt∫∞

0
e−t2/2 dt

(5.49)

is an odd function of the stretched variable

ξ = x/
√
ε. (5.50)

If we directly sought the solution as

y(x, ε) = C(ξ), (5.51)

C would satisfy the boundary value problem

d2C

dξ2
+ ξ

dC

dξ
= 0, C(±∞) = ±1,

as found. The symmetric shock layer C(ξ) clearly connects the outer solutions
∓1 on opposite sides of the turning point.
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Example 2

Recall that the differential equation

εy′′ + 2xy′ − 2y = 0, − 1 ≤ x ≤ 1, y(−1) = −1, y(1) = 2 (5.52)

has the exact solution

y(x, ε) = x+ x

∫ x

−1
e−s2/ε ds∫ 1

−1
e−s2/ε ds

+
εe−x2/ε

2
∫ 1

−1
e−s2/ε ds

depending on the variables x and ξ ≡ x/
√
ε. Indeed, it has the simple form

y(x, ε) = Y (x, ξ,
√
ε) ∼ x+ xC0(ξ) + εC2(ξ) (5.53)

where C0(ξ) ≡
∫ ξ
−∞ e−t2dt

∫ ∞
−∞ e−t2dt

and C2(ξ) ≡ e−ξ2

2
∫ ∞
−∞ e−t2dt

. As expected,

Y (x, ξ, 0) →
{
2x as ξ → ∞
x as ξ → −∞

while C2(ξ) → 0 as ξ → ±∞.

Murdock [335] considered the so-called harmonic resonance problem of
finding solutions of period 2π

ω(ε) for the equation

ÿ + y = εf(y, ẏ, ω(ε)t) (5.54)

where
ω(ε) ∼ 1 + εω1 + ε2ω2 + . . . (5.55)

is specified. He lets the initial values take the form
⎧⎪⎨
⎪⎩
y(0) = α0 + εα1 + . . .

and

ẏ(0) = β0 + εβ1 + . . .

(5.56)

(to be determined termwise) with

y ∼ y0(ωt) + εy1(ωt) + . . . . (5.57)

Exercises

1. To further motivate two-scale expansions, consider the scalar linear
initial value problem

εu′ + a(x)u = b(x), x ≥ 0, u(0) prescribed

on a finite interval where a(x) > 0 and a and b are smooth.
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(a) Obtain a formal asymptotic solution in the form

u(x, ε) = U(x, ε) + e−
1
ε

∫ x
0

a(s) ds
(
u(0)− U(0, ε)

)
where U is an outer expansion

U(x, ε) ∼ U0(x) + εU1(x) + ε2U2(x) + . . .

(b) Integrate the exact solution

u(x, ε) = e−
1
ε

∫ x
0

a(s) ds u(0) +
1

ε

∫ x

0

e−
1
ε

∫ x
t

a(s) ds b(t) dt

by parts to show that

u(x, ε) =
b(x)

a(x)
+ e−

1
ε

∫ x
0

a(s) ds

(
u(0)− b(0)

a(0)

)
+O(ε).

(c) Integrate the exact solution again by parts to show that

u(x, ε) = U0(x)+εU1(x)+e−
1
ε

∫ x
0 a(s) ds(u(0)−U0(0)−εU1(0)

)
+O(ε2).

(d) Find the exact solution to the two-point boundary value problem

εy′′ + a(x)y′ = f(x), 0 ≤ x ≤ 1

with
y(0) and y(1) prescribed.

For a(x) > 0 and a and f smooth, use integration by parts to show
that the asymptotic solution has the two-variable form

y(x, ε) = Y (x, ε) + e−
1
ε

∫ x
0

a(s) ds(y(0)− Y (0, ε))

where the outer solution Y has an asymptotic series expansion in ε.

2. Consider the scalar two-point problem

εy′′ + f(x, y, y′, ε) = 0, 0 ≤ x ≤ 1

with y(0) and y(1) prescribed in cases when the reduced problem

f(x, Y, Y ′, 0) = 0, Y (1) = y(1)

has a solution Y0(x) on 0 ≤ x ≤ 1 with

fy′(x, Y0, Y
′
0 , 0) ≥ σ

for a positive constant σ. Provide examples for which one can use the
fast variable

1

ε

∫ t

0

fy′(s, Y0(s), Y
′
0(s), 0) ds

(cf. Willett [524], O’Malley [362], Searl [443], and Rosenblat [420]).
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3. (cf. Searl [443]) Consider the Cole-Lagerstrom problem

εẍ+ xẋ− x = 0, x(0) = α, x(1) = β.

(a) Try solving the problem via two-timing by setting

x(t, τ, ε) = x0(t, τ) + εx1(t, τ) + · · ·
with the slow time τ = εt. Show that x0 must satisfy

x0ττ + x0x0τ = 0

while

x1ττ + x0x1τ + x1x0τ + 2x0tτ + x0x0τ − x0 = 0.

Then take

x0(t, τ) = u0(t) tanh

(
u0(t)

2
τ + v0(t)

)

with u0(1) = β and v0(0) = tanh−1
(

α
u0(0)

)
.

(b) Determine the functions u0 and v0 to eliminate secular terms in
x1. Note that sech2

(
u0

2 τ + v0
)
is a solution of the homogeneous

linearized equation

xττ + x0(t, τ)xτ + x0τ (t, τ)x = 0,

with t as a parameter. Searl determines u0(t) = t + β − 1 and

v0(t) = v0(0) = tanh−1
(

α
β−1

)
when |α| < |β − 1|.

(c) Can you find solutions for all αs and βs?

4. (a) Solve the linear initial value problem

ÿ + y + εe−ty = 0, y(0) = 1, ẏ(0) = 0

on t ≤ 0 in terms of Bessel functions.

(b) Show that the regular perturbation expansion provides the asymp-
totic solution with no secular terms.

The Palestinian-American Ali Nayfeh (1933–) got his Ph.D. in aeronautics
at Stanford in 1964, with Milton Van Dyke as his advisor. He’s been in the
department of engineering science and mechanics at Virginia Tech since 1971.
His 1973 text, Perturbation Methods [341], now reissued as a Wiley Classic,
surveyed the growing literature and provided detailed solutions to numerous
examples. This and several related books by him have been very successful
pedagogically for two generations of engineering and science students. Nayfeh
[342] again provides solutions to many perturbation problems, while Nayfeh
[343] updates his discussion of two-timing.
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(b) Lighthill’s Method

Sir M. James Lighthill (1924–1988) was a British applied mathematician and
administrator who held important positions at the University of Manchester,
the Royal Aircraft Establishment, Imperial College London, Trinity Col-
lege Cambridge, and University College London (see Pedley [390] and the
biography Debnath [115]).

One of the topics presented by Nayfeh [341] is coordinate stretching . It
generalizes the Poincaré-Lindstedt method and was called the PLK method
by von Kármán’s student H.-S. Tsien (after Poincaré, Lighthill, and Kuo)
(cf. Tsien [486]). (Tsien lost his security clearance in 1950 and spent 5 years
under house arrest in California before returning to China to lead its rocket
program. He is the subject of a biography (Chang [75]). Lighthill gave the
Ludwig Prandtl Memorial Lecture to GAMM in 1961. He commented

Indeed, his revolutionary discovery of the boundary layer in 1904
had the same transforming effect on fluid mechanics as Einstein’s
1905 discoveries on other parts of physics.

A simple example of Lighthill’s method (cf. Lighthill [290], Nayfeh [341],
de Jager and Jiang [224], and Johnson [226]) is provided by the nonlinear
initial value problem

(x+ εu)
du

dx
+ u = 0, u(1) = 1. (5.58)

A regular perturbation expansion

u(x, ε) = u0(x) + εu1(x) + . . .

breaks down at x = 0, though the given equation only becomes singular when
x+ εu = 0. Proceeding termwise, we’d need

x
du0

dx
+ u0 = 0, u0(1) = 1,

so u0(x) = 1/x. Then xdu1

dx + u1 + u0
du0

dx = 0 and u1(1) = 0 imply that

u1(x) =
x2 − 1

2x3
.

The increasing singularity of the terms uk(x) at x = 0 is a difficulty which
we might compensate for by introducing a near-identity transformation

x = ξ + εf(ξ, ε) ∼ ξ + εf0(ξ) + ε2f1(ξ) + . . . (5.59)

with a yet unspecified function f to define the new coordinate ξ(x, ε) by
inversion and a corresponding regular perturbation expansion

U(ξ, ε) = U0(ξ) + εU1(ξ) + . . . (5.60)
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for the solution of (5.58) as a function of ξ, which we hope will be defined at
x = 0. (Bush [62] makes the helpful suggestion that subsequent coefficients
Uk should be no more singular than previous ones.) Since dξ

dx = 1
1+ε df

dξ

, the

given differential equation (5.58) transforms to

(ξ + εf(ξ, ε) + εU)
dU

dξ
+

(
1 + ε

df

dξ
(ξ, ε)

)
U = 0. (5.61)

The regular perturbation process now implies the sequence of equations

ξ
dU0

dξ
+ U0 = 0, (5.62)

ξ
dU1

dξ
+ U1 + f0(ξ)

dU0

dξ
+

df0
dξ

U0 + U0
dU0

dξ
= 0, (5.63)

etc., for the coefficients Uk in (5.60). The boundary values need to be deter-
mined from the terminal condition

U(ξ∗, ε) = 1 where 1 = ξ∗ + εf(ξ∗, ε). (5.64)

Taking

ξ∗ ∼ 1 + b0ε+ b1ε
2 + . . . , (5.65)

the ε coefficient in (5.64), 1 = (1 + b0ε + b1ε
2 + . . .) + εf0(1 + εb0 + . . .) +

ε2f1(1 + . . .) + . . . , implies that

b0 = −f0(1),

so U(ξ∗, ε) = U0(1− f0(1)ε+ . . .)+ εU1(1+ . . .)+ . . . = 1 determines the end
values

U0(1) = 1, (5.66)

and

U1(1) = U ′
0(1)f0(1) (5.67)

etc. Returning to (5.62), d
dξ (ξU0) = 0, U0(1) = 1 implies that

U0(ξ) =
1

ξ
(5.68)

(compared to 1/x for u0). Now there still remains much flexibility in picking
f in the near-identity transformation (5.59). We will compensate the singular
term U0

dU0

dξ in (5.63) by asking that f0 satisfies

df0
dξ

U0 + f0
dU0

dξ
+ U0

dU0

dξ
= 0, (5.69)
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leaving

ξ
dU1

dξ
+ U1 = 0, U1(1) = −f0(1). (5.70)

from (5.63). If we now take f0(1) = 0, we get

U1(ξ) = 0, (5.71)

leaving (5.63) as the initial value problem 1
ξ
df0
dξ − f0

ξ2 − 1
ξ3 = 0, f0(1) = 0.

Integration yields

f0(ξ) =
1

2

(
ξ − 1

ξ

)
. (5.72)

Taking all later fks in (5.59) to be zero, as well as all later Uks in (5.60), we
simply obtain the quadratic near-identity transformation

x = ξ +
ε

2

(
ξ − 1

ξ

)
(5.73)

and the one-term solution

U = U0(ξ) =
1

ξ
. (5.74)

Since (5.73) has the inverse ξ = x+
√
x2+2ε+ε2

2+ε , the solution (5.74) of (5.58) is

u(x, ε) =
2 + ε

x+
√
x2 + 2ε+ ε2

=
−x+

√
x2 + 2ε+ ε2

ε
. (5.75)

Amazingly, this is the exact solution, as can be checked by integrating

(
xu+

ε

2
u2

)′
= 0, u(1) = 1.

We note a closely related method of George Temple [482]. Recall, too, that
Kaplun [235] called a coordinate ξ optimal when it leads to a uniformly valid
solution U(ξ, ε). Readers should consult Comstock [95] regarding Lighthill’s
method and the controversy that once surrounded it. Johnson [226] considers
more general initial value problems for

(x+ εu)u′ + (α+ βx)u = 0

for α > 0 and u(1) prescribed, while Sibuya and Takahasi [459] provide a
proof for equations

(x+ εu)u′ + q(x)u = r(x).

Awrejcewicz and Krysko [18] more generally suppose one begins with a
naive expansion

f(x, ε) ∼ f0(x) + εf1(x) + ε2f2(x) + . . . (5.76)
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that is not uniformly valid. They next introduce the deformed variable X
via

x = X + εν1(X) + ε2ν2(X) + . . . (5.77)

to obtain

f(x, ε) = F (X, ε) ∼ F0(X) + εF1(X) + ε2F2(X) + . . . . (5.78)

Then, they pick the deformation coefficients ν1, ν2, . . . in (5.77) to achieve a
uniformly suitable series for F .

(c) Phase-Plane Methods and Relaxation
Oscillations

Scalar boundary value problems for singularly perturbed equations in con-
servation form, ⎧⎪⎨

⎪⎩
ε2ẍ+ f(x) = 0, 0 ≤ t ≤ 1

with

x(0) and x(1) prescribed,

(5.79)

can be integrated by introducing the potential energy

V (x) =

∫ x

f(s) ds (5.80)

and invoking the resulting conservation of energy principle

1

2
ε2ẋ2 + V (x) = E (5.81)

for a constant total energy E fixed on each solution trajectory (cf. O’Malley
[367], Lutz and Goze [300], and Ou and Wong [384]). (The classical graphical
treatment of conservation equations with ε = 1 is given, e.g., in Jordan and
Smith [230].) This follows immediately by direct integration, after multiply-
ing the differential equation of (5.79) by ẋ. If we set

y = εẋ, (5.82)

we can describe the motion in the x-y phase plane by considering the singu-
larly perturbed system {

εẋ = y

εẏ = −f(x).
(5.83)

To get a real trajectory, the constant E must always exceed V (x) since E −
V = y2/2 ≥ 0.

Indeed, since dt = ± ε dx√
2(E−V (x))

, E must be only just slightly greater

than the maximum of V on any bounded trajectory in order to use up one
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unit of transit time in going from one prescribed endvalue to the other, i.e.,
so that ∫ 1

0

dt = ε

∫ x(1)

x(0)

dx√
2(E − V (x))

= 1 (5.84)

for integration along the path x(t) traversed. Moreover, most time must be
spent near rest points of (5.83) corresponding to such maxima, because dt =
O(ε) elsewhere. Be aware that such two-point problems generally have more
than one solution that follow related, but different, phase-plane trajectories
(with slightly different E levels), as we shall demonstrate with Example 2
below.

Example 1

Consider the simple linear problem

⎧⎪⎨
⎪⎩
ε2ẍ− x = 0, 0 ≤ t ≤ 1

with

x(0) = 1 and x(1) = 2.

(5.85)

Here, we can take

V =
1

2
x2.

Note that solutions x(t) satisfy a maximum principle (cf. Dorr et al. [124]).
Since solutions are linear combinations of e±t/ε, we write the unique solution
of (5.85) as

x(t, ε) = e−t/εc+ e−(1−t)/εk

for constants c(ε) and k(ε) that satisfy the linear system

c+ e−1/εk = 1 and e−1/εc+ k = 2.

Up to asymptotically negligible quantities, we get c ∼ 1 and k ∼ 2, so

x(t, ε) ∼ e−t/ε + 2e−(1−t)/ε. (5.86)

Then
y = εẋ ∼ −e−t/ε + 2e−(1−t)/ε (5.87)

and the total energy on the corresponding trajectory is

E =
1

2
(y2 − x2) ∼ −4e−1/ε (5.88)

(negative, but asymptotically negligible). Graphically, see Figs. 5.1 and 5.2.
We plot V (x) with a small negative E value in Fig. 5.3. This deter-

mines the allowed range of x values (omitting a neighborhood of x = 0) and
graphically determines the corresponding real-valued y = ±√

2(E − V (x).
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Figure 5.1: The asymptotic solution x(t, ε) of ε2ẍ = x

Figure 5.2: The solution y(t, ε) = εẋ(t, ε) of ε2ẍ = x

To obtain a trajectory joining x(0) = 1 and x(1) = 2, we must follow the
dashed right orbit in the phase-plane (Fig. 5.4) where x > 0 and y is mono-
tonically increasing. Let α′ and α be the points where the orbit cuts the
vertical line x = 1 (with α′ below α) and let β′ and β be the corresponding
points where it cuts x = 2. Because motion only slows down near the rest

point (0, 0), ε
∫ 2

1
dx
y = 1 requires y to be small most of the time. This rules

out the trajectory αβ as being too fast, so the only possible orbit is α′αβ,
which moves slowly near the rest point, but fast in the endpoint layers, as
pictured in Figs. 5.1 and 5.2.
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Figure 5.3: The potential V (x) = − 1
2x

2

Figure 5.4: The dotted phase-plane orbit for the solution α′αβ of ε2ẍ = x
with ε small

Example 2

Consider the nonlinear example{
ε2ẍ+ x2 = 1, − 1 ≤ t ≤ 1

with x(±1) = 0.
(5.89)

The example is important because it suggests that the method of matched
expansions can mislead by suggesting the existence of spurious solutions .
Actual solutions can be obtained in terms of elliptic integrals (cf. Byrd and
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Figure 5.5: The x-y phase plane for ε2ẍ = 1− x2

Friedman [66] and Kevorkian and Cole [249]). We take the potential energy
to be

V (x) =

∫ x

0

(s2 − 1) ds =
x3

3
− x. (5.90)

Since V ′(−1) = 0 and V ′′(−1) < 0, V has a local maximum 2/3 at x = −1.
Significantly, V (2) = 2/3, too, though 2 is not a maximum of V . The phase-
plane portrait for an E slightly less than 2/3 is shown in Fig. 5.5.

To obtain a trajectory joining x(−1) = 0 and x(1) = 0, we will need
the (dashed) orbit in Fig. 5.5 within the separatrix that passes through the
rest point in the phase-plane. (A trajectory through the rest point cannot
take finite time.) Let α′ and α be the points where the trajectory hits the
prescribed boundary value x = 0, with α′ below α. Note that the orbit αα′ is
too fast since it doesn’t go near the rest point (−1, 0), but repeated passages
past both points (−1, 0) and (2, 0) are allowed (on trajectories with somewhat
less than the upper bound 2

3 for the energy E). To use up one unit of time,
the orbit spends most time near (−1, 0). By contrast, motion toward (2, 0)
and back is rapid, providing a thin spike in the x-y trajectory. The limit
X0(t) = −1 is a root of the reduced equation. The other root, X0(t) = 1, a
minimum of the potential energy V , is quite irrelevant asymptotically. The
simplest (and shortest) solution α′α is shown in Fig. 5.6. It has the form

x(t, ε) ∼ −1 +
12epL

(1 + epL)2
+

12epR

(1 + epR)2
(5.91)

(cf. Carrier and Pearson [71] and Lange [280]) where pL/R =
√
2
ε (1 ± t) +

2 ln(
√
3 +

√
2) or, equivalently,

x(t, ε) ∼ − 1 + 3 sech2
(
1 + t√

2ε
+ ln(

√
3 +

√
2)

)

+ 3 sech2
(
1− t√

2ε
+ ln(

√
3 +

√
2)

)
.

(5.92)
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Figure 5.6: The x trajectory following α′α

The corresponding solution for y = εẋ follows by differentiation. Readers
are urged to plot these functions to check the complicated formulas. Other
endpoint layers, with spikes to 2, are possible for trajectories with lower
energies E. For example, the solution αα′α has such an initial spike while
α′αα′ has a terminal spike, and αα′αα′ has a spike near both endpoints. Two
of these solutions are shown in Figs. 5.7 and 5.8. Note the differences in the
signs and sizes of the endpoint slopes.

According to Ou and Wong [384], the asymptotic solutions are, respec-
tively, given by

x(t, ε) ∼ − 1 + 3 sech2
(
− t+ 1√

2ε
+ ln(

√
3 +

√
2)

)

+ 3 sech2
(
1− t√

2ε
+ ln(

√
3 +

√
2)

) (5.93)

x(t, ε) ∼ −1 + 3 sech2
(
t+ 1√

2ε
+ ln(

√
3 +

√
2)

)

+ 3 sech2
(
− (1− t)√

2ε
+ ln(

√
3 +

√
2)

)
,

(5.94)

and

x(t, ε) ∼ −1 + 3 sech2
(
− (t+ 1)√

2ε
+ ln(

√
3 +

√
2)

)

+ 3 sech2
(
− (1− t)√

2ε
+ ln(

√
3 +

√
2)

)
.

(5.95)
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Figure 5.7: The x trajectory following αα′α

Figure 5.8: The x trajectory following αα′αα′

Interior spikes are another possibility. Carrier and Pearson [71] warned
that classical matching allows one to formally add a spike

g(t) = 3sech2
(
t− t0√

2ε

)
(5.96)

about any interior point t0 to obtain a possibly new asymptotic solution
x. Indeed, one could seem to add several isolated spikes. However, Carrier
and Pearson realized by a phase-plane analysis (such as ours) that these
“solutions” are generally spurious . It would be allowable to add a single
spike at the midpoint t0 = 0 or two such spikes simultaneously at t0 = ±1/3
(corresponding to one- and two-thirds of the interval length). Solutions with
legitimate interior spikes can be obtained that pass near the rest point more
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than once, on a longer trajectory with somewhat less energy E. Such cycles
take the same time of passage for each revolution in the phase- plane, so
the resulting periodic motion in the x-t plane must feature nearly regularly
spaced spikes, in addition to the endpoint layers already considered. Carrier
and Pearson reassured readers

The authors have never seen this occur with any problem which
arose in a scientific context.

Nonetheless, our confidence in formal matching is diminished. Kath [242]
provides extensions to slowly varying phase-planes.

Limiting attention to N regularly spaced O(ε)-thick interior spikes will,
as N increases, ultimately fill the t interval (−1, 1), leaving scant space for
the attractive outer limit −1 to apply. Thus, it’s not surprising that Ou and
Wong [384], using a natural shooting argument for initial values x(−1, 0) = 0
and a varying ẋ(−1, 0) = k, were able to show that actual solutions for
appropriate k have at most O(1/ε) internal spikes. They also provided details
regarding the asymptotic locations of those spikes as functions of ε. Also, note
Ward [510].

Carrier [72] considered the nonautonomous problem

ε2ẍ+ 2(1− t2)x+ x2 − 1 = 0, x(±1) = 0. (5.97)

No phase-plane argument applies. As you’d expect, however, he finds (cf.
Bender and Orszag [36]) that the asymptotic solutions have the outer limit

−(1− t2)−
√

(1− t2)2 + 1

with both boundary layers and various additional spikes possible. MacGill-
ivray et al. [303] show that the interior spikes coalesce as ε → 0. Carrier
again raised the specter of spurious solutions and considered the possibility
of multiple solutions, differing in their endpoint slopes by only negligible
amounts. Bender and Orszag display a number of numerical solutions for
ε = 10−4, again suggesting a breakdown in the asymptotics as the number of
spikes increases. The more recent results of Ai [4] suggest a pileup of spikes
near the midpoint, but that isn’t clear from Wong and Zhao [527], who also
used shooting arguments. Hastings and McLeod [198] transform the problem
to a more tractable equation of the Riccati form

ε2ü = u(q(t, ε)− u)

by setting x = X + u for the outer solution X (i.e., by using the subtraction
trick). They also develop extensive material regarding spikes and layers for
more general reaction-diffusion models.

Carrier and Pearson [71] use singular perturbations as the penultimate
topic in their ODE text. George Carrier (1918–2002) was a superb math
modeller who repeatedly used asymptotic techniques to comprehend a wide
variety of physical applications. He was active as a consultant to industry
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and government, winning the National Medal of Science in 1990. He also
had great success and influence as a teacher, throughout his long career at
Harvard (from 1952). Even earlier, he introduced Julian Cole to perturba-
tion methods as an undergraduate at Cornell (where Carrier got his Ph.D.).
Carl Pearson co-authored several books with Carrier, worked for Boeing, and
was a professor of aeronautics and applied mathematics at the University of
Washington.

Let’s next consider an autonomous slow-fast planar system

{
ẋ = f(x, y)

εẏ = g(x, y)
(5.98)

for times t ≥ 0. We can expect slow motion to follow the reduced system

{
dX
dt = f(X,Y )

0 = g(X,Y ),
(5.99)

while fast motion should follow the stretched system

dy

dτ
= g(x, y) (5.100)

with x as a parameter and fast time

τ =
t− t0
ε

for some t0. (5.101)

Thus, slow motion will lie on the manifold

Γ : g(x, y) = 0 (5.102)

and fast motion will be off it. If the prescribed initial point

(x(0), y(0))

is not on Γ, we can immediately expect nearly vertical fast motion toward
(or away from) Γ since g/ε will be large. If we next reach a stable (i.e.,
attractive) point

(x(0), y1)

on Γ where gy < 0, we then expect slow motion along Γ to follow until, say,
gy loses stability at a junction point

(x2, y2).

Then, we can again expect rapid motion away from the manifold until, per-
haps, a stable drop point

(x2, y3)
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on Γ is reached, when slow motion may again begin. When successive alter-
nations between slow and fast motions produce a limiting closed trajectory
with jerky, almost instantaneous, jumps in y, we will say we have a relaxation
oscillation. The limiting period will be determined by integrating

dt =
dx

f(x, y)

on the slow manifold Γ. Detailed asymptotics, especially near junction and
drop points, is called for. We leave the connection to hysteresis open, but
interested readers might note Mortell et al. [328].

Many times, oscillators like (5.98) arise from scalar second-order differen-
tial equations

εÿ − F ′(y)ẏ + y = 0. (5.103)

The van der Pol equation occurs when

F (y) = y − 1

3
y3, (5.104)

i.e. from
d2y

dτ2
− λ(1− y2)

dy

dτ
+ y = 0 (5.105)

when λ = 1√
ε
is large and τ = λt. For it, we let

ẋ = f(x, y) ≡ y (5.106)

and integrate the resulting y equation (5.103) to get

εẏ = g(x, y) ≡ F (y)− x. (5.107)

Thus,

Γ : x = F (y) (5.108)

is then an S-shaped curve, stable for |y| > 1, so the relaxation oscillation
for the van der Pol equation jumps between arcs of Γ at y = ±1 (cf. Stoker
[476]). See Figs. 5.9 and 5.10.

As anticipated, the limiting period of the corresponding trajectory will
be

T = 2

∫ 2/3

−2/3

dx

y(x)
= 2

∫ 1

2

F ′(y)
y

dy = 3− 2 ln 2, (5.109)

integrating along one arc of Γ. Obtaining higher-order terms in the asymp-
totic expansion for the period or the amplitude requires much effort (cf.
Stoker [476], Levinson [287], Mischenko and Rozov [321], and Grasman
[179]). In particular, the asymptotic sequences that arise are far from
obvious a priori.
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The first to study relaxation oscillations seems to be Balthasar van der
Pol (1889–1959) in 1926 (cf. Israel [222]). He was a scholarly Dutch engi-
neer, with a Ph.D. from Utretcht based on work done in Cambridge, and
was head physicist at Philips Physical Laboratory. He became particularly
interested in modeling the human heart and its arrhythmias. (From 1945 to
1946, he was president of the Temporary University at Eindhoven, founded
to replace other Dutch universities in occupied territory.) Currently, ap-
plications to neuroscience, featuring many coupled oscillations, are of great
interest and quite complicated (cf. Ermentrout and Terman [142]). Earlier
neural networks are modeled in Cronin [105, 106]. The simplest examples
may be see-saws with water reservoirs, pictured in Grasman [179]. For other
applications, see Sastry and Desoer [432].

One of the most interesting recent developments relates to the occurrence
of canards . The topic was introduced by a group of French mathematicians
in the 1970s, primarily concerned with applying non-standard analysis (cf.
Diener and Diener [120]). (Some were working in Algeria.) They considered
the forced van der Pol equation

εÿ + (y2 − 1)ẏ + y = a (5.110)

or, equivalently, the system

{
εẏ = z − F (y)

ż = a− y
(5.111)

in the Liénard plane where F (y) = y − y3

3 and a is a constant. For a = 0 or
1, for example, we get periodic solutions that follow the limit cycle consisting
of slow motion on the attractive arcs of the characteristic curve and fast

Figure 5.9: Approaching the limit cycle for the van der Pol equation
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Figure 5.10: Limit cycle

horizontal trajectories. They found that canards occur for special values

a(ε) ∼ a0 + εa1 + ε2a2 + . . . (5.112)

near a0 = 1, resulting in solutions of the form

z ∼ F (y) + εf1(y) + ε2f2(y) + . . . (5.113)

that travel up the unstable branch of the characteristic curve to produce a
canard sans tête (Fig. 5.11) or a canard avec tête (Fig. 5.12). (Pardon my
French!) Note the connection to Sect. (c) of Chap. 4. Motion up the dashed
curve is unstable (i.e., repulsive).

Finding the power series is straightforward since ż = z′ẏ and εẏ = z−F (y)
imply that

ż = a0 − y + εa1 + . . . = (F ′(y) + εf ′
1(y) + . . .)(f1(y) + εf2(y) + . . .).

Thus, F ′(1) = 0 shows that we need

a0 = 1. (5.114)

More generally, at ε = 0, a0 − y = F ′(y)f1(y) determines

f1(y) =
a0 − y

F ′(y)
=

1

1 + y
(5.115)

while the ε terms imply that

⎧⎪⎨
⎪⎩
a1 = f ′

1(1)f1(1) = − 1
8

and

f2(y) =
a1−f ′

1(y)f1(y)
F ′(y) = (1+y)3−8

8(1−y)(1+y)4 .

(5.116)
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Figure 5.11: Canard sans tête

Figure 5.12: Canard avec tête

The French mathematicians used Macsyma to get the expansions for a gen-
eral f up to fifty terms while Zvonkin and Shubin [538] later provided recur-
sion relations for them. For the van der Pol equation,

a = 1− ε

8
− 3

32
ε2 + . . . (5.117)

and

z =
y3

3
− y − ε

y + 1
− ε2

8(y + 1)2
(y4 + 4y + 7) + . . . . (5.118)

These results were confirmed by Eckhaus [134] using classical (standard)
analysis. Canalis-Durand [67] showed that the divergent series are of class
Gevrey −1. Zvonkin and Shubin conclude
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Ducks and all phenomena connected with them can be effectively
discovered by numerical computations for such moderately in-
finitely small values of ε as 1

10 or 1
20 .

Exercise

Find canard solutions for the van der Pol equation with ε = 1/10 and a nearly
0.9863132 . . .. Picture them. Imagine doing so in North Africa 35 years ago!

Beware:
A canard’s life is short.

If a is a duck value, any other duck value a satisfies

|a− a| = e−
1
kε

for some k > 0. Once more, we’re involved with exponential asymptotics.
Some, though not the originators, say the hard-to-detect phenomenon was
called a canard after the French newspaper slang for a hoax. For more details,
see the Scholarpedia article by Wechselberger. (Also, note Braaksma [58].)

(d) Averaging and Renormalization
Group Methods

The first appendix to Sanders et al. [430] presents a brief history of the
method of averaging . Important contributions to that approach were made by
Lagrange, van der Pol, Krylov, Bogoliubov, and Mitropolsky. See Samoilenko
[429] for a survey of Soviet work.

A basic underlying idea concerns variation of parameters (i.e., variation
of constants). Its linear version is elementary and well known, while its
nonlinear version has recently been attributed to Alekseev [6], rather than
Lagrange or Poisson, though it seems present in the earlier celestial mechanics
literature (cf. Pollard [397] and Verhulst [499]). Consider the vector initial
value problem

ż = f(z, t, ε), z(t0) = a, (5.119)

with f depending smoothly on ε, and suppose the unperturbed problem

ẋ = f(x, t, 0), x(t0) = a (5.120)

has a known solution which we will denote (as in dynamical systems) by

x = φ(a, t). (5.121)

If we seek the solution of the given problem (5.119) using the ansatz

z = φ(p, t) (5.122)
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for a variable function p(t) subject to the initial condition p(t0) = a, differ-
entiation implies that

ż =
∂φ

∂p

dp

dt
+

∂φ

∂t
= f(φ, t, ε).

But ∂φ
∂t = f(φ, t, 0) and ∂φ

∂p is (at least locally) invertible by the existence-
uniqueness theorem. Thus, p must satisfy the initial value problem

dp

dt
=

(
∂φ

∂p

)−1

(f(φ(p, t), t, ε)− f(φ(p, t), t, 0)), p(t0) = a. (5.123)

Because dp
dt = O(ε), p will be slowly varying , so it can only change substan-

tially on a long O(1/ε) time interval. Solving the nonlinear problem (5.123)
for p(t), numerically or otherwise, determines the desired solution z = φ(p, t)
of (5.119). The constant a in (5.121) could be any parameter, not just the
initial value.

Adrianov et al. [9] also consider the system (5.119). They reduce it to
the standard form

ż = εZ(t, z, ε) (5.124)

by simply making a change of variables

z = G(t, x) (5.125)

where
∂G

∂t
= f +O(ε), (5.126)

∂G
∂x is invertible, and

ż =

(
∂G

∂x

)−1 (
f − ∂G

∂t

)
≡ εZ(t, z, ε). (5.127)

Examples

1. For the nearly linear vector problem

ż = A(t)z + εg(z, t), z(0) = a, (5.128)

the limiting problem ẋ = A(t)x, x(0) = a has the unique solution

x = Φ(t)a

where the fundamental matrix Φ(t) (cf., e.g., Bellman [35]) satisfies the linear
homogeneous matrix initial value problem

Φ̇ = A(t)Φ, Φ(0) = I.
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(In particular, Φ(t) is the matrix exponential eAt when A(t) is constant).
Its n columns provide a full set of linearly independent solutions to (5.128)
with ε = 0, spanning all solutions. Assuming Φ(t) is available, variation of
parameters determines the solution of the given problem (5.128) in the form

z(t) = Φ(t)p(t). (5.129)

Thus ż = Φ̇p+Φṗ = AΦp+εg(Φp, t) implies that the slowly varying amplitude
p(t) must satisfy the nonlinear vector initial value problem

ṗ = εΦ−1(t)g(Φ(t)p, t), p(0) = a. (5.130)

Existence of p(t) is guaranteed locally and its numerical solution is straight-
forward.

2. In the special case of nearly linear autonomous scalar oscillators

ẍ+ x = εh(x, ẋ) (5.131)

with prescribed initial values x(0) and ẋ(0), we naturally write the solution
for ε = 0 in polar coordinates as

x = r sin(t+ φ) and ẋ = r cos(t+ φ)

for constants r and φ determined directly by the initial values. For ε 
= 0,
we use the traditional variation of parameters approach to instead introduce
variable functions R(t) and Ψ(t) so that

x = R sin(t+Ψ) and ẋ = R cos(t+Ψ). (5.132)

Differentiating the first expression with respect to t and comparing that result
to the second requires R and Ψ to satisfy

Ṙ sin(t+Ψ) +R cos(t+Ψ)Ψ̇ = 0.

Likewise, differentiating the second expression implies that

ẍ+ x = Ṙ cos(t+Ψ)−R sin(t+Ψ)Ψ̇ = εh(x, ẋ).

Using Cramer’s rule, we solve these two linear equations to obtain

⎧⎪⎨
⎪⎩
Ṙ = ε cos(t+Ψ)h(R sin(t+Ψ), R cos(t+Ψ))

and

RΨ̇ = ε sin(t+Ψ)h(R sin(t+Ψ), R cos(t+Ψ)).

(5.133)

The resulting nonlinear initial value problem with

R(0) = r and Ψ(0) = φ (5.134)
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will have a unique slowly varying solution

(
R
Ψ

)
for bounded τ values. This

variation of parameters approach is the basis of a variety of averaging proce-
dures. For Duffing’s equation, for example, h(x, ẋ) = −x3 so

⎧⎪⎨
⎪⎩
Ṙ = −εR3 cos(t+Ψ) sin3(t+Ψ)

and

Ψ̇ = −εR2 sin4(t+Ψ),

a problem we could solve numerically. Several different approximate methods
will be found subsequently. For more examples, see O’Malley and Kirkinis
[378].

The fundamental idea to vary arbitrary constants was contained in J.-L.
Lagrange’s Analytical Mechanics [277] in 1788. A 1997 translation of the
1811 edition states:

For problems of mechanics which can only be resolved by approxi-
mate methods, the first solution is ordinarily found by considering
only the primary forces acting on the bodies. In order to extend
this solution to the secondary forces which are called perturbing
forces, the simplest approach is to keep the form of the first solu-
tion by considering as variables the arbitrary constants contained
in it. If the quantities which were neglected and which we want to
take into account, are very small, the new variables will be nearly
constant and the ordinary methods of approximation could be
applied. Thus the difficulty is reduced to finding the equations
between these variables.

If we naively seek a solution

(
R(t, ε)
Ψ(t, ε)

)
of (5.133–5.134) as a regular power

series in ε, the first term will be a constant, which will cause the second term
to grow like t as t → ∞. This is equivalent to expanding the right-hand side
as a Fourier series and realizing that a nonzero constant term would result
in secular behavior for later terms because that part of the forcing resonates
with the complementary solution of the leading-order homogeneous system.
It might again be advisable to introduce a near-identity transformation to
eliminate such secularities in accordance with the Fredholm alternative. The
end result is to replace the system (5.133) for R and Ψ by its average over
its 2π period, i.e. we use the autonomous averaged equation

Ṙ = εf1(R) ≡ ε

2π

∫ 2π

0

cos s h(R sin s,R cos s) ds with R(0) = r. (5.135)

This nonlinear, but separable, initial value problem provides R uniquely as
a function of the slow time

τ = εt,



(D). AVERAGING AND RENORMALIZATION GROUP METHODS 175

i.e.

τ =

∫ R

r

ds

f1(s)
. (5.136)

(Finding R(τ) explicitly won’t always be possible, though we know R will
move monotonically to a zero of f1.) UsingR in place ofRmakes approximate
sense since R should only change by a small O(ε) amount over a period. Then,
we can directly integrate the corresponding averaged equation

Ψ̇ =
ε

R
f2(R) ≡ ε

2πR

∫ 2π

0

sin s h(R sin s,R cos s) ds

to provide the approximate phase

Ψ(τ) = φ+

∫ τ

0

f2(R(τ))

R(τ)
dτ (5.137)

in terms of R. (A more complete argument, using near-identity transforma-
tions, is given, e.g., in Rand [408].) The resulting approximation (5.132) for
x and ẋ can be shown, by a Gronwall inequality argument (cf. Cesari [74]),
to have an O(ε) error on any 0 ≤ t ≤ O(1/ε) time interval. As a final caveat,
we point out that blowup later is always an ultimate possibility. Verhulst
[500] uses the separable equation

ẋ = 2εx2 sin2 t

as an example. With x(0) = 1, the exact solution is x(t, ε) = 1
1−εt+ ε

2 sin 2t .

Moreover, when the forcing in ẋ = εf(x, t, ε) isn’t periodic, one can conve-
niently use the long-time average

f0(x) ≡ lim
T→∞

1

T

∫ T

0

f(x, s, 0) ds.

Higher-order averaging is also well studied and important in applications, as
are extensions to even longer time intervals. An unusual variation is given in
Coppola and Rand [97]. E [130] describes how the corresponding homogeniza-
tion technique can be applied to certain elliptic and Hamilton–Jacobi equa-
tions. (See Bensoussan et al. [39], Bakhvalov and Panasenko [21], Bakhvalov
et al. [22], and Holmes [209] as well.)

For the van der Pol equation, h = (1 − x2)ẋ, so the averaged equations
are easy to solve, viz.

Ṙ =
ε

2
R

(
1− R

2

4

)
and Ψ̇ = 0.

This indicates that a steady-state limit cycle will occur (when r > 0) with
R(∞) = 2.
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The intimate relationship between two-timing and averaging, in general,
becomes clear when one examines the asymptotic solution of the initial value
problem for the vector system

ẋ = εf(x, t, ε)

in the so-called periodic standard form (cf. Murdock [335], Sarlet [431], and
Mudavanhu et al. [332]).

See de Jager and Jiang [224] for a variety of worked out examples of
averaging.

3. The simple linear initial value problem

ÿ + 2εẏ + y = 0, t ≥ 0, y(0) = 0, ẏ(0) = 1 (5.138)

with small damping has the exact solution

y(t, ε) =
e−εt

√
1− ε2

sin
(√

1− ε2 t
)
. (5.139)

Although this solution is bounded, its regular perturbation expansion about
ε = 0 breaks down as t becomes unbounded, since secular terms arise. If we
had naively set

y(t, ε) = y0(t) + εy1(t) + . . . , (5.140)

we would need ÿ0 + y0 = 0, ÿ1 + y1 = −2ẏ0, etc., so

y0(t) = α0 cos t+ β0 sin t (5.141)

for constants α0 and β0 and ÿ1 + y1 = 2α0 sin t− 2β0 cos t. This implies the
secular term

y1(t) = (α1 − α0t) cos t+ (β1 − β0t) sin t (5.142)

Renormalization group (or RG) methods (cf. Chen et al. [80] and [81]
and Ziane [536]) proceed by eliminating the unbounded terms in a naive
expansion (5.140) by replacing the ε-dependent initial amplitudes

α0 + εα1 + . . . and β0 + εβ1 + . . .

that arise by instead using slowly varying amplitudes

A(τ, ε) and B(τ, ε)

depending on the slow time
τ = εt (5.143)

For bounded τ , then, they could simply seek an asymptotic solution for
(5.138) in the form

y(t, τ, ε) = A(τ, ε) cos t+B(τ, ε) sin t (5.144)
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Then

ẏ =

(
B + ε

dA

dτ

)
cos t+

(
−A+ ε

dB

dτ

)
sin t

while

ÿ =

(
−A+ 2ε

dB

dτ
+ ε2

d2A

dτ2

)
cos t+

(
−B − 2ε

dA

dτ
+ ε2

d2B

dτ2

)
sin t,

so (5.138) requires

ÿ + 2εẏ + y =ε

[
2
dB

dτ
+B + ε

(
d2A

dτ2
+

dA

dτ

)]
cos t

+ ε

[
−2

dA

dτ
−A+ ε

(
d2B

dτ2
+

dB

dτ

)]
sin t = 0.

(5.145)

The linear independence of the trig functions implies that the amplitudes A
and B must satisfy the initial value problem

2
dA

dτ
+ 2A = ε

(
d2B

dτ2
+ 2

dB

dτ

)
, A(0, ε) = 0

2
dB

dτ
+ 2B = −ε

(
d2A

dτ2
+ 2

dA

dτ

)
, B(0, ε) = 1.

(5.146)

Using series expansions

A(τ, ε) ∼
∑
j≥0

Aj(τ)ε
j and B(τ, ε) ∼

∑
j≥0

Bj(τ)ε
j , (5.147)

we will need dA0

dτ +A0 = 0, A0(0) = 0 and dB0

dτ +B0 = 0, B0(0) = 1, so

A0(τ) = 0 and B0(τ) = e−τ (5.148)

completely specify the limiting solution y0 = e−τ sin t. Next, we will need

2
dA1

dτ
+ 2A1 =

d2B0

dτ2
+ 2

dB0

dτ
= −e−τ , A1(0) = 0

and

2
dB1

dτ
+ 2B1 = −d2A0

dτ2
− 2

dA0

dτ
= 0, B1(0) = 0,

so

A1(τ) = −τ

2
e−τ and B1(τ) = 0. (5.149)

Thus, we have the renormalized solution

y(t, τ, ε) = e−τ sin t− ετ

2
e−τ cos t+O(ε2) (5.150)
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for τ finite. For improved approximations, we must let the frequency of the
trig functions vary with ε2. For details, see O’Malley and Kirkinis [377].
(Recall that the exact solution (5.139) is a function of the fast time

√
1− ε2t

and the slow time τ = εt. Kirkinis [252] provides an alternative elimination
technique using cumulants (cf. Small [464]) to describe renormalization that
is somewhat closer to the original ideas of Goldenfeld, Oono, and coworkers.

4. The linear initial value problem

ẍ+ x = ε sin t, t ≥ 0, x(0) = 1, ẋ(0) = 0 (5.151)

can be solved exactly using variation of parameters. Thus, x(t, ε) = cos t +
ε
2 (sin t − t cos t). A more insightful representation, however, is to write
x(t, τ, ε) =

(
1− τ

2

)
cos t + ε

2 sin t for τ = εt. This suggests that we directly
seek an asymptotic solution of the form

x(t, τ, ε) = α(τ, ε) cos t+ εβ(τ, ε) sin t (5.152)

for bounded τ values and undetermined slowly varying coefficients α and β.
Then

ẋ = ε
dα

dτ
cos t− α sin t+ ε2

dβ

dτ
sin t+ εβ cos t

and

ẍ = ε2
d2α

dτ2
cos t− 2ε

dα

dτ
sin t− α cos t+ ε3

d2β

dτ2
sin t+ 2ε2

dβ

dτ
cos t− εβ sin t.

Substituting into (5.151), we obtain

ε2
(
d2α

dτ2
+ 2

dβ

dτ

)
cos t+ ε

(
−2

dα

dτ
+ ε2

d2β

dτ2
− 1

)
sin t = 0

with

α(0, ε) = 1 and
dα

dτ
(0, ε) + β(0, ε) = 0.

The linear independence of sin t and cos t implies that α and β must satisfy
the initial value problem

⎧⎪⎨
⎪⎩
2dα
dτ + 1 = ε2 d2β

dτ2 , α(0, ε) = 1

and

2dβ
dτ + d2α

dτ2 = 0, β(0, ε) + dα
dτ (0, ε) = 0.

(5.153)

We will solve the problem asymptotically for finite τ using power series

(
α(τ, ε)
β(τ, ε)

)
∼

∑
j≥0

(
αj(τ)
βj(τ)

)
εj . (5.154)
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The leading terms require

2
dα0

dτ
+ 1 = 0, α0(0) = 1

and

2
dβ0

dτ
+

d2α0

dτ2
= 0, β0(0) +

dα0

dτ
(0) = 0.

Thus

α0(τ) = 1− τ

2
and β0(τ) =

1

2
(5.155)

No further corrections are needed!

Exercises

1. Use two-timing to show that the asymptotic solution to the initial value
problem

ÿ + εẏ|ẏ|+ y = 0, y(0) = 1, ẏ(0) = 0

satisfies

y(t, τ) =
cos t

1 + 4τ
3π

+O(ε)

for τ = εt bounded.

Hint: The sin t coefficient in the Fourier expansion of sin t |sin t| is 8
3π

(cf. Mattheij et al. [309]).

2. (cf. Smith [466]). Consider the initial value problem for a weakly
coupled electrical circuit{

(1− ε2)Q′′
1 +Q1 = εQ2, Q1(0) = q, Q′

1(0) = 0

(1− ε2)Q′′
2 +Q2 = εQ1, Q2(0) = 0 = Q′

2(0)

and determine a solution of the form

Q1(t) = εA(τ, ε) sin t+B(τ, ε) cos t
Q2(t) = C(τ, ε) sin t+ εD(τ, ε) cos t

for 0 ≤ t ≤ 1
ε using averaging. Note the beat phenomenon!

3. (cf. O’Malley and Kirkinis [378]). Seek a solution of the Riccati equa-
tion

ẋ = −x2 + εx

of the form

x(t, ε) =
A

1 +At

and show that the slowly varying coefficient A is given by

A(t, ε) =
εx(0)

x(0) (1− εt− e−εt) + ε
.
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Historical Remarks

The very important work of Krylov, Bogoliubov, and Mitropolsky on aver-
aging and its applications was somewhat delayed in reaching the West from
Kiev. The 1937 Russian monograph by Krylov and Bogoliubov didn’t appear
in English until an abridged translation by Solomon Lefschetz was published
by Princeton University Press [267] in 1947. The 1955 monograph by Bo-
goliubov and Mitropolsky, Asymptotic Methods in the Theory of Nonlinear
Oscillations , appeared in an English version [51] by Hindustan Publishing
of New Delhi in 1961 (distributed in the West by Gordon and Breach). (Its
first sixty pages are now available on Google Scholar.) For many years, two-
timing was justified (cf. Morrison [327] and Perko [391]) because it gave the
same results as averaging. Now, direct proofs are known (cf., e.g., Murdock
[336] and Murdock and Wang [337]).

The physicists Chen, Goldenfeld, and Oono [81] presented their renormal-
ization group method as a unified approach to global asymptotic analysis.
They, indeed, succeeded in finding asymptotic approximations for solutions
to a wide variety of challenging problems from the literature. Figuring out
what their fundamental ideas are is not simple, but their aim to provide a uni-
versal technique is one all can subscribe to. Their underlying technique is to
eliminate secular terms in a regular perturbation expansion by replacing con-
stants by slowly varying amplitudes (or envelopes) that satisfy appropriate
RG equations to be integrated as initial value problems (cf. also Kunihiro
[270] and [271], Ei et al. [139], and Kirkinis [253]). See Goldenfeld [172] for
an ambitious update. It is clear that the renormalization group approach
is a resummation technique, closely related to averaging methods that sup-
press secular terms. The recent work of DeVille et al. [118] and Roberts
[418] emphasizes that it often produces an asymptotic solution in the clas-
sical Poincaré-Birkhoff normal form (cf. Guckenheimer and Holmes [188],
Sanders et al. [430], and Nayfeh [344]). Woodruff [528, 529] independently
developed a related invariance method (which deserves more attention than
it has received), applying it to systems of the form

ẋ = M(εαt)x+ εN(εαt, t, x)

for α = 1 or 2, where the matrix M has distinct, nonzero, purely imaginary
eigenvalues. Cheng [82] presents a hybrid scheme combining renormalization
and two-timing while Chiba [86, 87] provides a simplified RG method.

In section 3.7A of Oono [381], a proto-renormalization group approach is
developed for autonomous differential equations

Ly = εN(y)
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where L is a constant-coefficient linear differential operator and N is non-
linear. A somewhat analogous procedure is developed in Mudavanhu and
O’Malley [331].

In the following chapter, we shall give the renormalization group method
a new and somewhat simplified presentation, which we hope will be further
developed as a unification of many methods found in the literature.
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