
Chapter 3

The Method of Matched
Asymptotic Expansions
and Its Generalizations

(a) Elementary Matching

Milton Van Dyke’s Perturbation Methods in Fluid Mechanics [490] was
effectively both the earliest and the most influential book specifically about
applied singular perturbations. (Some credit might be given earlier fluid
dynamics textbooks, e.g., Hayes and Probstein [199]). Van Dyke extensively
surveyed the large extant aeronautical and fluid dynamical literature, force-
fully advocating and clarifying the so-called method of matched asymptotic
(or inner and outer) expansions . Although Van Dyke acknowledged that
Prandtl’s boundary layer theory was the prototype singular perturbation
problem, he introduced the subject by describing incompressible fluid flow
past a thin airfoil. The book’s highlight message, sometimes called Van
Dyke’s magic rule, states:

The m-term inner expansion of (the n term outer expansion) =
the n-term outer expansion of (the m term inner expansion).

This glib oversimplification (for any positive integer pairs m and n) allowed
many practitioners to confidently solve significant applied problems asymp-
totically (an advantage unavailable before then).
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To grasp the basic idea of Van Dyke’s procedure for m = n = 2, consider
the linear initial value problem{

εy′′ + y′ + y = 0 on 0 ≤ t ≤ T for a fixed finite time T

y(0) = 0, y′(0) = 1
ε for a small ε > 0

(3.1)

for a displacement y. We expect the impulsive large initial derivative to
provide an immediate rapid upward response, so we naturally introduce the
fast time

τ = t/ε. (3.2)

Then y′ = 1
ε yτ and εy′′ = 1

ε yττ , so we naturally seek a local inner expansion
yin satisfying the stretched problem{

yττ + yτ + εy = 0 on τ ≥ 0

with y(0) = 0 and yτ (0) = 1.
(3.3)

(Sophisticated readers will note that our selection of the stretched variable
τ rebalances the orders of the three terms in the given ODE, changing their
dominant balance in the terminology of Bender and Orszag [36]. To deter-
mine the “right” balance will more generally take some trial and error. The
selection of the stretched variable also relates to a classical asymptotic tech-
nique called the Newton polygon (cf. Hille [205], Kung and Traub [269], and
White [519]) which is implemented in Maple. Setting

yin(τ, ε) ∼ y0(τ) + εy1(τ) + ε2y2(τ) + . . . (3.4)

and expanding yτ and yττ analogously, we will need to satisfy

(y0ττ + εy1ττ + . . .) + (y0τ + εy1τ + . . .) + ε(y0 + . . .) = 0,

or
y0ττ + y0τ + ε(y1ττ + y1τ + y0) + . . . = 0,

and the corresponding initial conditions

y(0, ε) = y0(0) + εy1(0) + . . . = 0

and
yτ (0, ε) = y0τ (0) + εy1τ (0) + . . . = 1

as a regular perturbation expansion in powers of ε. Equating coefficients, we
naturally require y0 to satisfy

y0ττ + y0τ = 0, y0(0) = 0, and y0τ (0) = 1, (3.5)

and y1 to next satisfy

y1ττ + y1τ + y0 = 0, y1(0) = y1τ (0) = 0, (3.6)
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etc. Thus, we uniquely obtain

y0(τ) = 1− e−τ (3.7)

while y1ττ +y1τ +1−e−τ = 0 and the trivial initial conditions uniquely imply
that

y1(τ) = 2− τ + e−τ (−2− τ) (3.8)

(using, say, the method of undetermined coefficients).
We then expect the resulting uniquely determined series

yin(τ, ε) = 1− e−τ + ε(2− τ − e−τ (2 + τ)) + . . . (3.9)

or inner expansion to be asymptotically valid at least for bounded τ values,
i.e. for small values of t = O(ε). (It breaks down when τ is large, since the
ratio of successive terms in the series ultimately becomes unbounded like ετ .)

For larger values of t, we shall alternatively seek an outer solution Y out,
depending on the original time variable t and ε. Thus, we will substitute the
regular power series (i.e., outer) expansion

Y out(t, ε) ∼ Y0(t) + εY1(t) + . . . (3.10)

into the given differential equation and equate coefficients of like powers of ε
in (3.1) to successively require Y ′

0 + Y0 = 0, Y ′
1 + Y1 + Y ′′

0 = 0, etc. Hence

Y0(t) = Ae−t for some constant A, (3.11)

Y1(t) = (B −At)e−t for some constant B, (3.12)

etc., providing the first terms of an outer expansion

Y out(t, ε) = Ae−t + ε(B −At)e−t + . . . (3.13)

for finite t values and constants A, B, . . . yet to be determined by matching
this outer expansion to the inner expansion (3.9) as we now describe. (Note
that the terms Yk in (3.10) satisfy first, rather than second, order differential
equations and that the prescribed initial values at t = 0 are so far irrelevant
to the outer expansion.) In the 1950s, an alternative patching technique was
sometimes applied to inner and outer expansions. Patching typically took
place at an ε-dependent t value like −10ε ln ε. The concept still underlies
some numerical methods (cf., e.g., Kopteva and O’Riordan [259] and Miller
et al. [317] regarding the Shishkin mesh).

We first rewrite the known inner expansion in terms of the outer variable
t as

yin
(
t

ε
, ε

)
= 1− e−t/ε + ε

(
2− t

ε
− e−t/ε

(
2 +

t

ε

))
+ . . .

Taking the limit as τ = t/ε → ∞, the exponentials become negligible and we
get the truncated two-term limit

(yin)out = 1− t+ 2ε+ . . . (3.14)
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Analogously, we represent the outer expansion in terms of the inner variable
τ as

Y out(ετ, ε) = Ae−ετ + ε(B − ετA)e−ετ + . . . .

Expanding the exponentials in their Maclaurin expansions for moderate val-
ues of τ as ε → 0 and truncating, we obtain

(Y out)in ≡ A+ ε(B −Aτ) + . . . . (3.15)

Since τ = εt, the asymptotic matching condition

(yin)out = (Y out)in

(at this (m = n = 2) order) requires that

(yin)out = 1− t+ 2ε+ . . .

= A−At+ εB + . . . = (Y out)in.
(3.16)

We will naturally call this expression the common part of the inner and
outer expansions (both truncated at the second order). We could express it
in terms of either time variable t or τ . Note that the matching condition
crudely corresponds to the idea of equating Y out(t, ε) near t = 0 to yin(τ, ε)
near τ = ∞. We are, however, being much more explicit.

This process uniquely provides the unspecified constants A = 1 and B = 2
in the outer expansion, i.e., matching across the O(ε)-thick initial layer (by
equating the common parts) has uniquely specified the outer expansion as

Y out(t, ε) = e−t + ε(2− t)e−t + . . . (3.17)

We expect (3.17) to be the valid asymptotic solution for t outside the initial
layer. Note that Y out(0, 0) �= y(0). (If this wasn’t so, the inner and outer
expansions would coincide for t = ετ .) Note that we seem to implicitly invoke
some idea about overlap of the two solutions in a joint region of validity of
the inner and outer expansions.

Rather than having separate asymptotic expansions, yin very near t = 0
and Y out away from t = 0, we shall now define the additive composite
expansion

yc ≡ Y out + yin − (Y out)in

= (e−t + ε(2− t)e−t + . . .)

+ (1− e−τ + ε[2− τ − (2 + τ)e−τ ] + . . .)

− (1− t+ 2ε+ . . .)

= [e−t − e−τ ] + ε[(2− t)e−t − (2 + τ)e−τ ] + . . . (3.18)

that we expect to be uniformly valid on any fixed finite interval 0 ≤ t ≤ T as
ε → 0, i.e. in the domains where the inner expansion, the outer expansion,
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and their common part are simultaneously defined. The limit of the sum yc is
yin in the inner region and Y out in the outer region since the outer expansion
in the inner region and the inner expansion in the outer region agree with
their common (i.e., matching) part. (We note that other alternative com-
posite expansions have also been introduced in the literature.) Eckhaus [133]
formalizes the procedure using expansion operators . Van Dyke [492] noted
that the terminology global and local approximations would be preferable to
outer and inner approximations.

A more subtle matching technique using intermediate variables

tβ ≡ t

εβ

for βs satisfying 0 < β < 1 in both the inner and outer expansions is presented
in Cole [92] and Holmes [209]. For some problems, the use of power series
in ε for both the inner and outer expansions turns out to be inadequate for
matching, but inserting intermediate terms suggested by their limits succeeds.
The process is called switchback . To avoid going wrong, Van Dyke [491] made
the practical suggestion

Don’t cut between logarithms.

Its subtle meaning could be clarified by examining detailed examples that
caused anxiety 40 years ago.

The exact solution to the initial value problem (3.1) has the form

y(t, ε) = C(ε)(e−ν(ε)t − e−κ(ε)t/ε) (3.19)

where

ν(ε) ≡ 1−√
1− 4ε

2ε
∼ 1 + ε+ . . .

and

κ(ε) ≡ 1 +
√
1− 4ε

2
∼ 1− ε− ε2 + . . . .

Thus, y(0) = 0 and y′(0) = 1
ε = C(ε)

(
−ν(ε) + κ(ε)

ε

)
uniquely determine

C(ε) ≡ 1

κ(ε)− εν(ε)
=

1

1− 2ε+ . . .
= 1 + 2ε+ . . . .

The exact result

y(t, ε) ∼ 1

1− 2ε+ . . .

(
e−(1+ε+...)t − e−(1−ε−ε2+...) t

ε

)
(3.20)

agrees asymptotically with the composite solution (3.18) obtained by match-
ing form = 2 and n = 2. (To carry out these calculations, we use the binomial
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expansion
√
1− x = 1− x

2 − x2

8 + . . ., convergent for |x| < 1.) Readers should
personally experiment by matching solutions of (3.1) for larger values of m
and n than 2.

Further, as we will extensively illustrate, matching results in the same
uniform expansion as we’d get by determining the outer expansion Y (t, ε) as
a function of t (with its unspecified constants) and adding to it a boundary
layer corrector expansion v(τ, ε) (as a function of the stretched time τ = t/ε)
that tends exponentially to zero as τ → ∞. Thus, we’ll have

y(t, ε) ∼ Y (t, ε) + v(τ, ε) (3.21)

Matching, then, ultimately cancels some terms in the inner expansion (re-
taining v ≡ yin − (yin)out), but it is somewhat inefficient because it requires
us to determine terms in yin that are later neglected (i.e., the common part).

Specifically, note that the exact solution (3.20) of (3.1) also has the form

y(t, ε) = Y (t, ε) + Z(t, ε)e−t/ε (3.22)

for power series Y and Z depending on t and ε. Indeed, for bounded t,
Y ≡ C(ε)e−ν(ε)t is the outer solution. The initial conditions require that

y(0) = Y (0, ε) + Z(0, ε) = 0

and

εy′(0) ≡ εY ′(0, ε) + εZ ′(0, ε)− Z(0, ε) = 1.

Since y, Y and the corrector v ≡ Ze−t/ε all satisfy the given differential
equation of (3.1), Z must then satisfy

εZ ′′ − Z ′ + Z = 0 (3.23)

as a series in ε. The representation (3.22) implies a more efficient power series
method than matching. More sophisticated matching procedures for linear
differential equations in the complex plane are considered in Olde Daalhuis
et al. [359]. Likewise, the Russian A. M. I’lin [221] convincingly presents
matching for partial differential equations.

The unusual problem

(x+ ε)y′ + y = 0, y(1) = 1

has the exact solution

y(x, ε) =
1 + ε

x+ ε
,

well-behaved for 0 < x ≤ 1, but algebraically unbounded near x = 0 where
the limiting equation has a singular point. Complications there must be
expected (cf. our discussion of Lighthill’s method in Chap. 5).
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Exercises

1. Show that e−t/ε ≤ εn holds for −nε ln ε ≤ t < ∞ and that the inequality
is reversed for smaller t > 0.

2. For the initial value problem

εÿ + ẏ + y = 0, t ≥ 0, y(0) = 1, ẏ(0) = 1,

show that the asymptotic solution has the form

y(t, ε) = Y (t, ε) + εD(t, ε)e−t/ε

on 0 ≤ t ≤ T < ∞ for power series Y and D. The uniform limit for
t ≥ 0 will be Y0(t) = e−t, since Ẏ0 + Y0 = 0 and Y0(0) = 1. Show that
ẏ will jump near t = 0, however. Try computing the solution and its
derivative for a small ε.

3. (Cole [92]) The equation

εy′′ + (1 + αx)y′ + αy = 0

is exact, so it is possible to obtain its general solution. Suppose α > −1,
so 1 + αx > 0 on 0 ≤ x ≤ 1. Impose the boundary values

y(0) = 0 and y(1) = 1,

so the outer limit is Y0(x) =
1+α
1+αx . Note that the limiting initial layer

corrector
−(1 + α)e−x/ε

approximates the exact corrector

−(1 + α)e−
1
ε

∫ x
0
(1+αs) ds.

Find the exact solution and the first two terms of its outer solution

Y (x, ε) = Y0(x) + εY1(x) +O(ε2).

4. Consider the alternative composite expansion yc for problem (3.1) when
the common part is nonzero by setting

yc =
Y outyin

((Y out)in)2
.

5. Consider the two-point problem

εy′′ + (1 + x)2y′ + 2(1 + x)y = 0, 0 < x < 1

y(0) = 1, y(1) = 2.
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(a) Obtain the exact solution and describe its limiting behavior.
(Hint: the differential equation is exact.)

(b) Determine a composite expansion in the form

y(x, ε) = A(x, ε) + v(ξ, ε)

where A is an outer expansion valid for x > 0 and the boundary
layer corrector v → 0 as ξ ≡ x/ε → ∞.

(c) Determine an asymptotic solution in the WKB form

y(x, ε) = A(x, ε) + e−
1
ε

∫ x
0
(1+s)2 ds(y(0)−A(0, ε)).

6. Consider the two-point problem

εy′′ + (1 + x)2y′ − (1 + x)y = 0, 0 ≤ x ≤ 1

with y(0) = 1 and y(1) = 3.

(a) Obtain the exact solution and determine its limiting behavior as
ε → 0+. (Hint: y = 1 + x is a solution of the ODE.)

(b) Use matched asymptotic expansions to obtain the two-term com-
posite expansion.

(c) Determine an asymptotic solution of the form

y(x, ε) = A(x, ε) +B(x, ε)e−
1
ε

∫ x
0
(1+s)2 ds

(with power series expansions for A and B).

(d) Plot the inner expansion, the outer expansion, the composite exp-
ansion, and the numerical solution for ε = 1/10 (on the same
graph).

(e) Show that

e−
1
ε

∫ x
0
(1+s)2 ds − e−

x
ε = O(ε) on 0 ≤ x ≤ 1.

7. Assuming a boundary layer of O(ε) thickness near x = 1, seek an
asymptotic solution of

εuxx = ux + ut, u(0, t) = u0(t), u(1, t) = u1(t) for t ≥ 0

and u(x, 0) given for 0 ≤ x ≤ 1

in the form

u(x, t, ε) = A(x, t, ε) +B(x, t, ε)e−(1−x)/ε.
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Basic issues concerning the validity of matching were raised by Fraenkel
[155] and Eckhaus [133], among others (cf., e.g., Lo [297] and, especially, Skin-
ner [463]). Some of the subtleties were reconsidered in the annotated edition
of Van Dyke’s book [491] of 1975. Its frontispiece is the woodcut Sky and
Water I, 1938 by the Dutch lithographer M. C. Escher featuring fish trans-
forming vertically into birds (cf. Schattschneider [433] and [434] regarding
relations between Escher’s work and groups, tilings, and other mathematical
objects). (The author recently found this print for sale for about $48,000!)
Van Dyke stated that the woodcut

gives a graphical impression of the “imperceptively smooth blend-
ing” of one flow into another that is the heart of the method of
matched asymptotic expansions.

Milton Van Dyke (1922–2010) was an American who got a 1949 Caltech
Ph.D. (with Paco Lagerstrom) and worked at NASA-Ames before taking a
professorship in aeronautics at Stanford in 1959 (see Schwartz [442] for a
brief biography). One reason for the annotated edition [491] of Perturbation
Methods in Fluid Mechanics was that Academic Press let the 1964 original
[490] go out of print because Van Dyke had insisted that the contract stipulate
that

the book shall cost no more than three cents a page.

The Academic Press edition sold 8,000 copies. (In addition to the annotated
edition, Parabolic Press (managed by Van Dyke) also published the picture
book An Album of Fluid Motion (1984) by Van Dyke and the autobiograph-
ical Stories of a 20th Century Life (1994) by W. R. Sears.)

The more complicated use of intermediate limits/intermediate problems,
rather than the formal matching of series, as proposed by Kaplun [235],
relates to the often presumed existence of an overlap (as in analytic continu-
ation in complex variables) between the domains of validity for the inner and
outer expansions and the construction of a “composite” or uniform expan-
sion as the formal sum of the inner and outer expansions less their “common
part,” found by matching. Eckhaus and Fraenkel both showed that having an
overlap is not necessary for matching to succeed. Fruchard and Schäfke [165],
however, base their composite expansions on overlap. (The complication that
the inner and outer expansions are expressed in terms of different variables
indeed suggests the more sophisticated two-timing (or multiple scale) proce-
dure that we will consider in Chap. 5.) The recent proofs of Skinner [463]
and Fruchard and Schäfke [165] validate matching for a broad variety of ODE
problems.

Fluid dynamicists have introduced a more elaborate triple deck technique
(cf. Meyer [316], Sobey [467], and Veldman [498], noting important contri-
butions by Stewartson, Williams, and Neiland) to handle viscous flow along
a plate. Somewhat analogously, mathematicians have introduced a blow-
up technique to analyze even more complicated matching (cf. Dumortier
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and Roussarie [127] and Kuehn [268]). Hastings and McLeod [198] com-
bine blowup with classical methods to rigorously prove matching for the
Lagerstrom model

y′′ +
n− 1

r
y′ + εyy′ = 0, r ≥ 1, y(1) = 0, y(∞) = 1

in dimensions n = 2 and 3. This problem has been considered by a dozen
authors since 1957. Most recently, Holzer and Kaper [211] used normal form
techniques to handle a variety of problems with so-called logarithmic switch-
back .

(b) Tikhonov–Levinson Theory and Boundary
Layer Corrections

(i) Introduction

Wolfgang Wasow’s Asymptotic Expansions for Ordinary Differential Equa-
tions [513] is a much more mathematical work than Van Dyke [490]. It
is centered on singular perturbations, but also includes the study of regu-
lar and irregular singular points, as well as turning points. Much of the
theory is carried out using matrix differential equations (which may have
limited its appeal to the very applied audience). Its singular perturbation
coverage includes boundary value problems for linear scalar ordinary differ-
ential equations, following Wasow’s [517] NYU doctoral thesis, as well as the
(perhaps less efficient) methods of the prominent Russian analysts Vishik
and Lyusternik [507, 508] and Pontryagin [398]. Results for nonlinear initial
value problems rely on papers by the Soviet academician Andrei Nikolaevich
Tikhonov (1906–1993) on the solution of

systems of equations with a small parameter in the term with the
highest derivative

(a large percentage of singular perturbation problems, as we shall find).
Tikhonov’s work on asymptotics appeared from 1948 to 1952 and was contin-
ued in the ongoing work of his former student Adelaida B. Vasil’eva (1926–)
(Ph.D., Moscow State, 1961) (cf. Vasil’eva, Butuzov, and Kalachev [496] and
earlier monographs in Russian by Vasil’eva and by she and her former stu-
dent and MSU colleague Vladimir Butuzov). Instead of matching per se, she
directly obtains a composite expansion by the so-called boundary function
method , a technique analogous to the boundary layer correction method or
“the subtraction trick” (which first finds the outer solution (formally) and
then subtracts it from the solution being sought. Matching is then simple
because the new outer expansion and the new common part are both trivial)
(cf. Lions [295], O’Malley [366, 368], Smith [466], or Verhulst [500]). For a
survey of Soviet work, see Vasil’eva [495].
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We point out that J.-L. Lions (1928–2001) led a large school of French
analysts (including many prominent former students) who applied asymp-
totics to control, stochastic, and partial differential equations. Readers are
encouraged to consult their publications, e.g., [295].

The basic Tikhonov results were largely independently obtained later by
Norman Levinson (1912–1975), senior author of the long-dominant ODE text-
book Coddington and Levinson [91]. Levinson’s approach was more geomet-
ric, aimed at describing relaxation oscillations, as occur for the van der Pol
equation (cf. Levinson [287]), anticipating much recent work involving in-
variant manifolds. Related work was done with his junior colleague Earl
Coddington and by a number of MIT graduate students from the 1950s,
including D. Aronson, R. Davis, L. Flatto, V. Haas, S. Haber, J. Levin,
V. Mizel, R. O’Brien, J. Scott-Thomas, and D. Trumpler.

(ii) A Nonlinear Example

To get an idea of Tikhonov–Levinson theory, we will first consider the specific
planar initial value example{

ẋ = y, x(0) = 1

εẏ = x2 − y2, y(0) = 0
(3.24)

on a bounded t ≥ 0 interval as ε → 0+ (or the equivalent initial value problem
for the second-order nonlinear scalar equation εẍ + (ẋ)2 − x2 = 0), followed
by the linear vector system{

ẋ = A(t)x+B(t)y

εẏ = C(t)x+D(t)y

and then the nonlinear system{
ẋ = f(x, y, t, ε)

εẏ = g(x, y, t, ε)

with appropriate smoothness and stability assumptions. We shall character-
ize the system dynamics for (3.24) as being slow-fast , with variable x being
slow compared to y (since the velocity ẏ = O(1/ε) when x2 �= y2 while
ẋ = O(1) for bounded y). The reduced problem (obtained for ε = 0){

Ẋ0 = Y0, X0(0) = 1

0 = X2
0 − Y 2

0

(3.25)

omits the initial condition for y and implies the two possible roots

Y0 = ±X0 (3.26)

of the algebraic equation, so X0 must satisfy either initial value problem

Ẋ0 = ±X0, X0(0) = 1. (3.27)
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Hence, possible outer limits for t > 0 are

(X0(t), Y0(t)) = (e±t,±e±t). (3.28)

Because Y0(0) = ±1, while y(0) = 0, the fast variable y must initially con-
verge nonuniformly. This suggests that we might actually have uniformly
valid limits ⎧⎪⎨

⎪⎩
x(t, ε) ∼ X0(t)

and

y(t, ε) ∼ Y0(t) + v0(τ)

(3.29)

for bounded ts, where v0(0) = y(0) − Y0(0) is the initial jump in the fast
variable and the initial layer corrector v0 is significant only in a thin initial
layer where v0 → 0 as the fast time τ = t

ε ranges from 0 to ∞. Thus, the
correction term v0(τ) provides the needed nonuniform convergence of the
coordinate y in the O(ε)-thick initial layer near t = 0, described in terms of
τ . Then, we need

ε
dy

dt
∼ ε

dY0

dt
+

dv0
dτ

∼ X2
0 − (Y0 + v0)

2.

Since Y0 = ±X0 = ±e±t is bounded (for t bounded), ε
dy

dt
∼ dv0

dτ
shows that

v0 must nearly satisfy dv0

dτ ∼ −2Y0(ετ)v0−v20 . If we choose Y0(t) = et, Y0 will
be nearly 1 near t = 0, so v0 must satisfy the initial value problem

dv0
dτ

= −(2 + v0)v0, v0(0) = −1 (3.30)

on τ ≥ 0. This problem is easy to solve explicitly as a Riccati equation.
Indeed, checking the sign of dv0

dτ shows that v0 increases monotonically from

−1 to 0 as τ goes from 0 to ∞. We shall say that the initial vector

(
x(0)
y(0)

)
=(

1
0

)
lies in the domain of influence (or “region of attraction”) of the root

Y0 = X0 of the reduced problem (3.25). If we, instead, tried using the other
possible root Y0 = −X0 = −e−t, the corresponding v0 would have to satisfy

dv0
dτ

∼ v0(2− v0), v0(1) = 1,

but then v0 → 2 as τ → ∞ would contradict the asymptotic stability required
for the limiting initial layer correction v0. That one root of the limiting
equation (3.25) is repulsive and thereby inappropriate corresponds to our
expectation that there be a unique asymptotic solution to the given initial
value problem (3.24).
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Vasil’eva’s work (as well as O’Malley’s) further suggests that the asymp-
totic solution of our initial value problem (3.24) indeed has the (higher-order)
composite form {

x(t, ε) = X(t, ε) + εu(τ, ε)

y(t, ε) = Y (t, ε) + v(τ, ε)
(3.31)

uniformly on fixed bounded intervals 0 ≤ t ≤ T , where the outer solution(
X(t, ε)
Y (t, ε)

)
has an asymptotic power series expansion

(
X(t, ε)
Y (t, ε)

)
∼

∑
j≥0

(
Xj(t)
Yj(t)

)
εj (3.32)

with (
X0(t)
Y0(t)

)
=

(
1
1

)
et (3.33)

and where all terms of the scaled supplemental initial layer corrector(
u(τ, ε)
v(τ, ε)

)
∼

∑
j≥0

(
uj(τ)
vj(τ)

)
εj (3.34)

in (3.31) tend to zero as the fast time

τ = t/ε (3.35)

tends to infinity. Nonuniform convergence in the fast variable y (through v)
provokes nonuniform convergence in the derivative ẋ of the slow variable since
y = ẋ = Y +v. That is why X (as compared to Y ) has the asymptotically less
significant initial layer correction εu. (Although we indicate full asymptotic
expansions in (3.32) and (3.34), we in practice only generate a few terms
of all the series.) The critical point is that our ansatz (3.31), especially its
stability condition, usually allows us to bypass the tedium and inefficiency of
actually matching inner and outer expansions. (A possible exception arises in

singular cases when the outer limit

(
X0(t)
Y0(t)

)
is no longer defined or smooth

at the initial point t = 0.)

Away from t = 0, the outer solution

(
X
Y

)
must satisfy the given system

{
Ẋ = Y

εẎ = X2 − Y 2
(3.36)

as a power series (3.32) in ε, since the initial layer correction

(
εu
v

)
and its

derivative have decayed to zero there. For ε = 0, we get the reduced system,

and we pick its unique attractive solution

(
X0

Y0

)
=

(
1
1

)
et because the other
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possibility did not allow the needed asymptotic stability of v0(τ). From the
coefficient of ε in (3.36), we require that{

Ẋ1 = Y1

Ẏ0 = 2X0X1 − 2Y0Y1.

Since Ẏ0 = et = 2et(X1 − Y1), we need Ẋ1 = Y1 = X1 − 1
2 , so we obtain

X1(t) = et
(
X1(0)− 1

2

)
+

1

2
(3.37)

for an unspecified value X1(0). Higher-order terms

(
Xk

Yk

)
in the outer exp-

ansion likewise also follow readily and uniquely, up to specification of the
initial values Xk(0) for each k > 0.

Returning to the slow equation ẋ = y, ẋ = Ẋ + du
dτ = Y + v, so Ẋ = Y

implies the linear initial layer equation

du

dτ
= v. (3.38)

Since εẎ = X2−Y 2, the nonlinear fast equation εẏ = εẎ + dv
dτ = (X+ εu)2−

(Y + v)2 implies the coupled initial layer equation

dv

dτ
= −2Y (ετ, ε)v − v2 + 2εX(ετ, ε)u+ ε2u2, (3.39)

with the terms of the outer solution

(
X
Y

)
already known, up to specification

of X(0, ε). The initial conditions{
1 = X(0, ε) + εu(0, ε)

0 = Y (0, ε) + v(0, ε)
(3.40)

indeed termwise imply that{
1 = X0(0)

0 = Y0(0) + v0(0)
(3.41)

and {
0 = Xk(0) + uk−1(0)

0 = Yk(0) + vk(0)
(3.42)

for each k ≥ 1. Thus, (3.41) requires

v0(0) = −Y0(0) = −1, (3.43)
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while (3.42) successively determines the unknown

Xk(0) = −uk−1(0) (3.44)

and, thereby, both Yk(0) (from the outer problem for Xk) and then vk(0).
Thus, the limiting initial layer system{

du0

dτ = v0
dv0

dτ = −2Y0(0)v0 − v20 = −v0(2 + v0)
(3.45)

for (3.38–3.39) is subject to the initial condition v0(0) = −1. A direct inte-
gration provides

v0(τ) = tanh τ − 1, (3.46)

leaving the terminal value problem du0

dτ = tanh τ−1, u0(∞) = 0. Integrating
backwards from τ = ∞, we uniquely get

u0(τ) = ln cosh τ − τ + ln 2. (3.47)

This immediately provides the needed initial value

X1(0) = −u0(0) = − ln 2, (3.48)

which uniquely specifies the second term

(
X1

Y1

)
of the outer solution via

(3.37). In particular, Y1(0) = X1(0)− 1
2 next specifies

v1(0) = −Y1(0) =
1

2
− ln 2, (3.49)

by (3.42), while v1 by (3.39) must satisfy the linear differential equation

dv1
dτ

= −2(Y0(0) + v0(τ))v1 − 2(τY ′
0(0) + Y1(0))v0 + 2X0(0)u0. (3.50)

Integrating this linear initial value problem provides v1(τ) explicitly (though
we won’t bother to write down its expression) and the uniform approxima-
tions

x(t, ε) = et+ ε

[
1

2
−

(
1

2
+ ln 2

)
et + ln

(
cosh

t

ε

)
− t

ε
+ ln 2

]
+O(ε2) (3.51)

and

y(t, ε) = et + tanh
t

ε
− 1+ ε

[(
1

2
+ ln 2

)
(1− et) + v1

(
t

ε

)]
+O(ε2). (3.52)

The blowup of et as t → ∞ suggests that the results only apply on bounded
t intervals. Hoppensteadt [212] added the necessary hypothesis that the sol-
ution of the reduced problem be asymptotically stable to Tikhonov’s original
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conditions in order to extend the Tikhonov–Levinson theory to the infinite
t interval. Also see Vasil’eva [494], however. Before proceeding, the reader
should note (with some amazement) the efficient interlacing construction of
the expansions for the outer solution and the initial layer correction. Read-
ers should also observe how closely Tikhonov–Levinson theory links singular
perturbations and stability theory (cf. Cesari [74] and Coppel [96]).

(iii) Linear Systems

For the linear vector system{
ẋ = A(t)x+B(t)y

εẏ = C(t)x+D(t)y
(3.53)

of m + n scalar equations on, say, 0 ≤ t ≤ 1, with smooth coefficients and
prescribed bounded initial vectors

x(0) and y(0), (3.54)

we will again seek a composite asymptotic solution of the form

x(t, ε) = X(t, ε) + εu(τ, ε)

y(t, ε) = Y (t, ε) + v(τ, ε)
(3.55)

for τ = εt, presuming the n× n matrix

D(t) remains strictly stable (3.56)

(i.e., has all its eigenvalues strictly in the left half-plane) for 0 ≤ t ≤ 1.

Here, the limiting outer solution

(
X0(t)
Y0(t)

)
must satisfy the reduced

problem {
Ẋ0 = A(t)X0 +B(t)Y0, X0(0) = x(0)

0 = C(t)X0 +D(t)Y0.

Thus,

Y0(t) = −D−1(t)C(t)X0(t) (3.57)

and X0 must be found as a solution of the reduced initial value problem

Ẋ0 = (A(t)−B(t)D−1(t)C(t))X0, X0(0) = x(0) (3.58)

of m equations. Note that the state matrix for X0 in (3.58) is the Schur

complement of the block D in the matrix

(
A B
C D

)
. Higher-order terms
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(
Xk

Yk

)
in the outer expansion are determined from a regular perturbation

solution of the system {
Ẋ = A(t)X +B(t)Y

εẎ = C(t)X +D(t)Y
(3.59)

about

(
X0

Y0

)
, i.e. from the nonhomogeneous system

Ẋj = (A(t)−B(t)D−1(t)C(t))Xj +B(t)D−1(t)Ẏj−1

Yj = −D−1(t)C(t)Xj +D−1(t)Ẏj−1.
(3.60)

Moreover, linearity and the representation (3.55) imply that

dx

dt
=

dX

dt
+

du

dτ
and ε

dy

dt
= ε

dY

dt
+

dv

dτ
,

so the initial layer correction must satisfy the nearly constant coefficient
system {

du
dτ = εA(ετ)u+B(ετ)v
dv
dτ = εC(ετ)u+D(ετ)v

(3.61)

and the limiting initial layer correction

(
u0

v0

)
must satisfy

{
du0

dτ = B(0)v0
dv0

dτ = D(0)v0, v0(0) = y(0)− Y0(0).
(3.62)

Integrating, we explicitly obtain the decaying n-vector

v0(τ) = eD(0)τ (y(0) +D−1(0)C(0)x(0)) (3.63)

while

u0(τ) = −B(0)

∫ ∞

τ

v0(s) ds = B(0)D−1(0)v0(τ). (3.64)

Those unfamiliar with the matrix exponential should consult, e.g.,
Bellman [35].

Next, u1 and v1 will be decaying solutions of the initial value problem{
du1

dτ = B(0)u1 + τḂ(0)v0 +A(0)u0

dv1

dτ = D(0)v1 + τḊ(0)v0 + C(0)u0, v1(0) = −Y1(0)

which can be directly and uniquely solved. Taken vectorwise, the representa-
tion (3.55) determines the asymptotics of all solutions, i.e. of a fundamental
matrix (cf. Coppel [96]) for the linear system (3.53) featuring initial layer
behavior near t = 0.
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(iv) Nonlinear Systems

The ansatz (3.55) used further applies directly to the initial value problem
for the general slow-fast nonlinear system{

ẋ = f(x, y, t, ε), x(0) given

εẏ = g(x, y, t, ε), y(0) given
(3.65)

of m+n smooth differential equations on t ≥ 0 when the limiting differential-
algebraic system (or reduced problem){

Ẋ0 = f(X0, Y0, t, 0), X0(0) = x(0)

0 = g(X0, Y0, t, 0)
(3.66)

(with m differential equations) has a smooth isolated solution

Y0 = φ(X0, t) (3.67)

of the n algebraic constraint equations g = 0 selected so that

(i) the resulting initial value problem

Ẋ0 = f(X0, φ(X0, t), t, 0), X0(0) = x(0) (3.68)

has a solution X0(t) defined on a finite interval 0 ≤ t ≤ T such that
the Jacobian

gy(X0, φ(X0, t), t, 0)

remains a stable n× n matrix there and

(ii) the corresponding n-vector

v(0) = y(0)− φ(x(0), 0)

lies in the domain of influence of the trivial solution of the limiting
autonomous initial layer system

dv

dτ
= g(x(0), φ(x(0), 0) + v, 0, 0) for τ = t/ε ≥ 0. (3.69)

Hypothesis (i) provides stability for the outer solution

(
X
Y

)
on the finite t

interval (and, via the implicit function theorem, guarantees that the root φ
is locally unique), while hypothesis (ii) provides asymptotic stability for v
as τ → ∞ within the initial layer, allowing the termwise construction of a

decaying initial layer correction

(
εu
v

)
for τ ≥ 0. As an alternative, one could

express condition (ii) in terms of the existence of an appropriate Liapunov



(B). TIKHONOV–LEVINSON THEORY 71

function (cf. Khalil [251]). In practice, we begin by checking the hypotheses
for various roots Y0 of

g(X0(t), Y0(t), t, 0) = 0.

Smooth ε-dependent initial values for (3.65) would pose no complication.
We have naturally presumed that outside any initial layers the limiting

solution to any singularly perturbed initial value problem satisfies the
reduced problem, but this isn’t always so. Eckhaus [133] introduced the
counterexample

ε3 cos

(
t

ε2

)
ẍ+ ε sin

(
t

ε2

)
ẋ− x = 0, t ≥ 0

with initial values x(0) = 1 and ẋ(0) = 0. Its solution,

x(t, ε) = 1 + ε− ε cos

(
t

ε2

)
,

however, tends to 1, rather than 0, as ε → 0.
We further note that one practical way to approximate the solution of a

differential-algebraic system {
ẋ = f(x, y, t)

0 = g(x, y, t)

is to regularize it, i.e. to introduce its singular perturbation{
ẋ = f(x, y, t)

εẏ = g(x, y, t)

and to approximately solve that for a small positive ε (cf. O’Malley and
Kalachev [374] and Nipp and Stoffer [351]).

As anticipated, we shall seek an asymptotic solution(
x(t, ε)
y(t, ε)

)
=

(
X(t.ε)
Y (t, ε)

)
+

(
εu(τ, ε)
v(τ, ε)

)
(3.70)

to (3.65) where the vector initial layer correction

(
εu
v

)
→ 0 as τ → ∞.

(Vasil’eva, typically, does not introduce the ε multiplying u in the x-variable
representation of (3.70). After some effort, however, she gets a trivial leading

term for u.) Thus, the outer solution

(
X
Y

)
must satisfy the given system

{
Ẋ = f(X,Y, t, ε)

εẎ = g(X,Y, t, ε)
(3.71)

as a power series

(
X
Y

)
∼ ∑

j≥0

(
Xj(t)
Yj(t)

)
εj in ε.
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Further, the outer limit (
X0(t)
Y0(t)

)

must correspond to an attractive root Y0 = φ of the limiting algebraic equa-
tion of (3.66) such that gy(X0, Y0, t, 0) is stable and the resulting initial value
problem

Ẋ0 = f(X0(t), φ(X0(t), t), t, 0), X0(0) = x(0) (3.72)

for the m-vector X0 is guaranteed solvable (at least locally) by the classical

existence and uniqueness theorem. Later terms

(
Xj

Yj

)
must satisfy linearized

systems

Ẋj = fx(X0, Y0, t, 0)Xj + fy(X0, Y0, t, 0)Yj + fj−1(t) (3.73)

0 = gx(X0, Y0, t, 0)Xj + gy(X0, Y0, t, 0)Yj + gj−1(t) (3.74)

for j > 0, where fj−1 and gj−1 are known successively in terms of preceding
coefficients. We obtain Yj as an affine function of Xj from (3.74) because the
Jacobian gy(X0, Y0, t, 0) remains nonsingular. This leaves a linear system for
Xj , from (3.73), which will be uniquely solved once its initial value Xj(0) is

specified. Because ẋ = Ẋ+ du
dτ , while εẏ = εẎ + dv

dτ , the initial layer correction(
εu
v

)
must satisfy the nonlinear system

{
du
dτ = f(X + εu, Y + v, ετ, ε)− f(X,Y, ετ, ε)
dv
dτ = g(X + εu, Y + v, ετ, ε)− g(X,Y, ετ, ε)

(3.75)

as a power series (
u(τ, ε)
v(τ, ε)

)
∼

∑
j≥0

(
uj(τ)
vj(τ)

)
εj

in ε. The t-dependent coefficients in (3.75) are expanded as functions of τ .

Thus,

(
u0

v0

)
must satisfy

du0

dτ
= f(X0(0), Y0(0) + v0, 0, 0)− f(X0(0), Y0(0), 0, 0) (3.76)

and

dv0
dτ

= g(X0(0), Y0(0) + v0, 0, 0)− g(X0(0), Y0(0), 0, 0)

= g(x(0), φ(x(0), 0) + v0, 0, 0).
(3.77)

Since
v0(0) = y(0)− Y0(0) = y(0)− φ(x(0), 0)
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has been assumed in hypothesis (ii) to lie in the domain of influence of the
rest point v0 = 0 of system (3.77), we are guaranteed that the nonlinear
initial value problem for v0 has the desired decaying solution v0(τ) on τ ≥ 0.
(One might need to obtain it numerically.) In terms of it, we simply integrate
(3.76) to get

u0(τ) = −
∫ ∞

τ

[f(x(0), φ(x(0), 0) + v0(s), 0, 0)

− f(x(0), φ(x(0), 0), 0, 0)] ds.

(3.78)

This, in turn, provides the initial value

X1(0) = −u0(0) (3.79)

needed to specify the outer expansion term X1(t) and thereby Y1(t). Lin-

earized problems for

(
uj

vj

)
, j > 0, with successively determined initial vectors

vj(0) = −Yj(0) will again have exponentially decaying solutions. This imme-
diately specifies the needed vector Xj+1(0) = −uj(0) for the next terms in
the outer expansion.

In the unusual situation that the outer solution(
X(t, ε)
Y (t, ε)

)

satisfies the initial condition(
X(0, ε)
Y (0, ε)

)
=

(
x(0)
y(0)

)
,

the resulting boundary layer correction(
εu(τ, ε)
v(τ, ε)

)

will be trivial. If we have

y(0) = φ(x(0), 0, 0),

we can omit the trivial first terms

(
u0

v0

)
of the boundary layer correction.

Later terms naturally satisfy linear problems.
A substantial simplification occurs when the nonlinear system (3.71) is

linear with respect to the fast variable y. Thus, we separately consider the
initial value problem for the system{

ẋ = A(x, t, ε) +B(x, t, ε)y

εẏ = C(x, t, ε) +D(x, t, ε)y
(3.80)
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on t ≥ 0. The corresponding reduced system{
Ẋ0 = A(X0, t, 0) +B(X0, t, 0)Y0

0 = C(X0, t, 0) +D(X0, t, 0)Y0

(3.81)

will imply

Y0(t) = −D−1(X0, t, 0)C(X0, t, 0)

while X0 must satisfy the reduced nonlinear vector problem

Ẋ0 = A(X0, t, 0)−B(X0, t, 0)D
−1(X0, t, 0)C(X0, t, 0), X0(0) = x(0). (3.82)

We suppose that (3.82) has a solution X0(t) on 0 ≤ t ≤ T < ∞ with a
resulting stable matrix

D(X0(t), t, 0).

Higher-order terms in the outer expansion

(
X(t, ε)
Y (t, ε)

)
then follow successively,

without complication, up to specification of X(0, ε).
The supplemental initial layer correction(

εu(τ, ε)
v(τ, ε)

)
(3.83)

must be a decaying solution of the stretched system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

du
dτ = A(X + εu, t, ε)−A(X, t, ε)

+B(X + εu, t, ε)(Y + v)−B(X, t, ε)Y
dv
dτ = C(X + εu, t, ε)− C(X, t, ε)

+D(X + εu, t, ε)(Y + v)−D(X, t, ε)Y.

(3.84)

Moreover, the initial conditions require⎧⎪⎨
⎪⎩
X(0, ε) + εu(0, ε) = x(0)

and

Y (0, ε) + v(0, ε) = y(0).

(3.85)

Thus, the limiting linear initial layer problem is{
du0

dτ = B(x(0), 0, 0)v0
dv0

dτ = D(x(0), 0, 0)v0, v0(0) = y(0)− Y0(0).
(3.86)

It has the decaying solution

v0(τ) = eD(x(0),0,0)τ
(
y(0) +D−1(x(0), 0, 0)C(x(0), 0, 0)

)
(3.87)
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with

u0(τ) = −
∫ ∞

τ

B(x(0), 0, 0)v0(s) ds

= −B(x(0), 0, 0)D−1(x(0), 0, 0)v0(τ). (3.88)

Later terms follow readily. Again, X1(0) = −u0(0) will specify the O(ε)
terms in the outer expansion.

A special case of (3.65) is provided by the scalar Liénard equation

εẍ+ f(x)ẋ+ g(x) = 0 (3.89)

on t ≥ 0 with initial values x(0) and ẋ(0) provided. We introduce y = ẋ, so
εẏ + f(x)y + g(x) = 0. Then, the limiting solution is the monotonic solution
of the separable equation

Ẋ0 = − g(X0)

f(X0)
, X0(0) = x(0), (3.90)

presuming the stability hypothesis

f(X0) < 0 (3.91)

holds throughout. Then

y(t, ε) = ẋ(t, ε) = − g(X0)

f(X0)
+ ef(x(0))τ

(
ẋ(0) +

g(x(0))

f(x(0))

)
+O(ε) (3.92)

features an initial layer while there is an implicit solution for X0(t).
Skinner [463] considers linear turning point problems of the special form

ε2y′ + xa(x, ε)y = εb(x, ε), y(0) = εα(ε) (3.93)

for smooth functions a and b with a(x, ε) > 0. The simplest example seems
to be

ε2y′ + xy = ε, y(0) = 0. (3.94)

Its exact solution is the inner solution

y(x, ε) = u(x/ε) (3.95)

for

u(ξ) = e−
ξ2

2

∫ ξ

0

e
r2

2 dr. (3.96)

Integrating by parts repeatedly, we get the algebraically decaying behavior

e−
ξ2

2

∫ ξ 1

r

d

dr

(
e

r2

2

)
dr ∼ 1

ξ
+

1

ξ3
+ . . . as ξ → ∞,
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corresponding to the readily generated outer expansion

Y (x, ε) ∼ ε

x
+

ε3

x3
+ . . . , (3.97)

singular at the turning point x = 0. These problems are certainly more
complicated than the initial value problems we have considered previously,
so Skinner [463] is highly recommended reading.

Exercises

1. Find the exact solution to the scalar equation

εẏ = y − y3

on t ≥ 0 and determine how the outer limit Y0(t) for t > 0 depends on
y(0).

2. Solve the initial value problem for the planar system{
ẋ = xy

εẏ = y − y3

on 0 ≤ t ≤ T < ∞ and determine the outer solution.

3. Obtain an O(ε2) approximation to the solution of the planar initial
value problem {

ẋ = −x+ (x+ κ− λ)y, x(0) = −1

εẏ = x− (x+ κ)y, y(0) = 0

for positive constants κ and λ as ε → 0+. The problem arises in enzyme
kinetics (cf. Segel and Slemrod [448], Murray [339], and Segel and
Edelstein-Keshet [447]).

4. A model for autocatalysis is given by the slow-fast system{
ẋ = x(1 + y2)− y, x(0) = 1

εẏ = −x(1 + y2) + e−t, y(0) = 1.

Seek an asymptotic solution of the form

x(t, ε) = X(t, ε) + εu(τ, ε)

y(t, ε) = Y (t, ε) + v(τ, ε)

where

(
u
v

)
→ 0 as τ = t

ε → ∞.
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(a) Obtain the first two terms of the outer expansion

(
X
Y

)
.

(b) Obtain the system for

(
u
v

)
.

(c) Determine the uniform approximation

x(t, ε) = X0(t) +O(ε)

y(t, ε) = Y0(t) + v0

(
t

ε

)
+O(ε).

5. Consider the initial value problem for the conservation equation

ε
d2x

dt2
= f(x)

with x(0) and dx
dt (0) prescribed. (An example is the pendulum equation

εẍ+ sin(πx) = 0.) Consider an asymptotic solution

x(t, ε) = X(t, ε) + εu(τ, ε)

where u → 0 as τ = t
ε → ∞ and 0 ≤ t ≤ T < ∞. Use Tikhonov–

Levinson theory on the corresponding slow-fast system

dx

dt
= y

ε
dy

dt
= f(x)

under appropriate conditions.

(v) Remarks

In the remainder of this section, we will survey some important results from
the literature. Readers should consult the references for further details.

We note that the typical requirements of the classical existence-uniqueness
theory do not hold for the singular perturbation systems under consideration
since their Lipschitz constant becomes unbounded when ε tends to zero. Sop-
histicated estimates are, nonetheless, provided by Nipp and Stoffer [351].
Needed asymptotic techniques, presented in Wasow [513], are updated in
Hsieh and Sibuya [220] through the introduction of Gevrey asymptotics (cf.
Ramis [405]) and Balser [25]). A formal power series

∑∞
m=0 amxm is defined

to be of Gevrey order s if there exist nonnegative numbers C and A such
that

|am| ≤ C(m!)sAm

for all m (cf. Sibuya [457], Sibuya [458], and Canalis-Durand et al. [68]).
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Fruchard and Schäfke [165] develop a “composite asymptotic expansion”
approach which justifies matched asymptotic expansions for a class of ordi-
nary differential equations, allowing some turning points. Their outer solu-
tions and initial layer corrections are obtained as Gevrey expansions.

Instead of assuming asymptotic stability of the limiting fast system (the
preceding hypothesis (ii)), one might instead consider the possibility of having
rapid oscillations for the solution of the fast system (cf. Artstein et al. [13,
14]). It is useful, indeed, to interpret these solutions in terms of Young
measures.

In his study of the quasi-static state analysis, Hoppensteadt [213, 214]
considers the perturbed gradient system{

dx
dt = f(x, y, t, ε)

εdydt = −
y G(x, y) + εg(x, y, t, ε).
(3.98)

Since

dG

dt
= −1

ε

y G · 
yG+
xG · f +
yG · g = −1

ε
| 
y G|2 +O(1),

we might expect (under natural assumptions) the fast vector y to tend rapidly
to an isolated minimum y∗ of the energy G(x, y), presuming y(0) is in its
domain of attraction. The corresponding limiting slow variable will satisfy

dx

dt
= f(x, y∗, t, 0). (3.99)

Extensions to more complicated systems are also given, including a four-
dimensional Lorenz model⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ1 = x2x3 − bx1 + εf1(x, y, t, ε)

ẋ2 = −x1x3 + rx3 − x2 + εf2(x, y, t, ε)

ẋ3 = σ(x2 − x3) + εf3(x, y, t, ε)

εẏ = λy − y3 + εg(x, y, t, ε)

that has the function

W (y) =
1

2
(y −

√
λ)2

as a Liapunov or energy function for the branch y =
√
λ+O(ε) (with λ > 0)

of the limiting fast system (cf. Brauer and Nohel [59]). Solutions beginning
nearby remain close to the manifold, and may exhibit chaotic behavior for
certain values of the parameters b, r, and σ.

Asymptotic expansions, as in the ansatz (3.70), are used in Hairer and
Wanner [192] to develop Runge–Kutta methods for numerically integrating
vector initial value problems in the singularly perturbed form{

ẋ = f(x, y),

εẏ = g(x, y),
(3.100)
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assuming that the Jacobian matrix gy is stable near the solution of the
‘reduced differential-algebraic system. Note, in the planar situation, that
trajectories will satisfy

ε
dy

dx
=

g(x, y)

f(x, y)
.

In particular, Hairer and Wanner begin their treatment of such stiff differ-
ential equations by considering the one-dimensional example

ẏ = g(x, y) = −50(y − cosx)

from Curtiss and Hirschfelder [107] (with ε = 0.02), pointing out the spurious
oscillations one finds with the explicit Euler method, in contrast to the success
obtained using the backward differentiation formula

yn+1 − yn = hg(xn+1, yn+1). (3.101)

Aiken [5] provides a review of the early literature from the chemical engineer-
ing perspective.

The existence of periodic solutions to the slow-fast vector system{
ẋ = f(x, y, t, ε)

εẏ = g(x, y, t, ε)
(3.102)

was considered by Flatto and Levinson [149] and generalized in Wasow [513].
We will assume that f and g are periodic in t with period ω and that the
reduced system {

Ẋ0 = f(X0, Y0, t, 0)

0 = g(X0, Y0, t, 0)
(3.103)

has a solution

(
X0

Y0

)
of period ω. The question is whether or not the full

system (3.102) has a nearby periodic solution of the same period.
Let s be the vector parameter of initial values for X0, with the corre-

sponding variational system{
d
dt

(
∂X0

∂s

)
= fx(X0, Y0, t, 0)

∂X0

∂s + fy(X0, Y0, t, 0)
∂Y0

∂s

0 = gx(X0, Y0, t, 0)
∂X0

∂s + gy(X0, Y0, t, 0)
∂Y0

∂s

(3.104)

We will assume that

(i) there is a smooth nonsingular matrix P (t) of period ω so that

P−1(t)gy(X0, Y0, t, 0)P (t) ≡
(
B(t) 0
0 −C(t)

)
(3.105)

with B(t) and C(t) being stable matrices.
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Since gy(X0, Y0, t, 0) is nonsingular and

∂Y0

∂s
= −g−1

y (X0, Y0, t, 0)gx(X0, Y0, t, 0)
∂X0

∂s
, (3.106)

ξ ≡ ∂X0

∂s will satisfy the linear system

dξ

dt
= A(t)ξ (3.107)

forA(t)≡fx(X0, Y0, t, 0)−fy(X0, Y0, t, 0)g
−1
y (X0, Y0, t, 0)gx(X0, Y0, t, 0).

We will also assume

(ii) the variational equation (3.107) has no nontrivial solution of period ω.

(Recall Floquet theory and the Fredholm alternative theorem from Codding-
ton and Levinson [91]). Flatto and Levinson [149] show that the full system
(3.102) will then have a solution of period ω with a uniform asymptotic ex-
pansion (

x(t, ε)
y(t, ε)

)
∼

∞∑
k=0

(
Xk(t)
Yk(t)

)
εk. (3.108)

Because there are no distinguished boundary points, the periodic solution
doesn’t need boundary layers.

Verhulst [505] considers the scalar Riccati example

εẏ = a(t)y − y2 (3.109)

with a(t) positive and periodic. The reduced problem has a nontrivial and
stable periodic solution

Y0(t) = a(t)

while we suppose the singularly perturbed equation (3.109) has a regularly
perturbed solution

y(t, ε) = Y0(t) + εY1(t) + . . .

This requires
Ẏ0 = a(t)Y1 − 2Y0Y1

at O(ε) order, so Y1=− ȧ(t)
a(t) implies the corresponding periodic approximation

y(t, ε) ∼ a(t)− ε
ȧ(t)

a(t)
+ . . . . (3.110)

Kopell and Howard [258] studied the Belousov–Zhabotinsky reaction,
which provides dramatic chemical oscillations with color changes. When
one seeks a traveling wave solution, a concentration C satisfies a singularly
perturbed differential equation

C ′ = F (C) + βC ′′
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with a small β > 0. Kopell [257] supposes that the reduced problem has a
stable limit cycle and she seeks a nearby invariant manifold for the perturbed
problem. This provides a major motivation for Fenichel’s geometric theory
from 1979, which generalizes Anosov [11].

The concept of a slow integral manifold (cf. Wiggins [522], Nipp and Stof-
fer [351], Goussis [178], Shchepakina et al. [450], Kuehn [268], and Roberts
[418]) is valuable in many applied contexts, including chemical kinetics, con-
trol theory, and computation (cf. also, Kokotović et al. [256] and Gear et al.
[167]). Let’s again consider the initial value problem for the slow-fast m+ n
dimensional system {

ẋ = f(x, y, t, ε)

εẏ = g(x, y, t, ε)
(3.111)

on t ≥ 0, subject to the usual Tikhonov–Levinson stability hypotheses. We
will determine a corresponding slow manifold described by

y(t, ε) = h(x(t, ε), t, ε) (3.112)

for a vector function h to be determined termwise as a power series in ε.
Motion along it will then be governed by the m-dimensional slow system

ẋ = f(x, h(x, t, ε), t, ε), (3.113)

subject to the prescribed initial vector x(0). This approach provides a sub-
stantial reduction in dimensionality when n is large, although it fails to des-
cribe the usual rapid nonuniform convergence of y in the O(ε)-thick initial
layer. However, in chemical kinetics, for example, the initial layer behavior
may occur too quickly to measure in the lab. Thus, it’s then natural to seek
such a quasi-steady state. Still, the fast equation and the chain rule applied
to (3.112) imply the invariance equation

εẏ = ε

(
∂h

∂x
f +

∂h

∂t

)
= g. (3.114)

To lowest order, this requires

g(x, h0, t, 0) = 0, (3.115)

so we naturally take
h0 = φ(x, t) (3.116)

to be an isolated root of the limiting fast system (3.115). Moreover, we again
require the root φ to be attractive in the sense that

gy(x, φ(x, t), t, 0)

is a strictly stable matrix, thereby ruling out any repulsive roots that might
occur. Higher-order terms in the expansion

h(x, t, ε) = φ(x, t) + εh1(x, t) + . . . (3.117)
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follow readily since g(x, φ(x, t), t, 0) = 0 implies the expansion g(x, h(x, t, ε),
t, ε) = gy(x, φ(x, t), t, 0)(εh1(x, t) + . . .) + εgε(x, φ(x, t), t, 0) + . . . = 0 about
ε = 0. Balancing the O(ε) terms in (3.114) then implies that

∂h

∂x
(x, φ(x, t), t, 0)f(x, φ(x, t), t, 0) +

∂h

∂t
(x, φ(x, t), t, 0)

= gy(x, φ(x, t), t, 0)h1(x, t) + gε(x, φ(x, t), t, 0).
(3.118)

This specifies h1 since gy is nonsingular and all else is known. h2 next fol-
lows analogously from the O(ε2) terms in (3.114). Thus, it is convenient to
describe the slow manifold in terms of the outer limit, avoiding the initial
layer correction.

Examples

1. Kokotović et al. [256] considered an initial value problem like{
ẋ = f(x, y, t) ≡ txy, x(0) = 1

εẏ = g(x, y, t) ≡ −(y − 4)(y − 2)(y + tx), y(0) given.
(3.119)

We naturally anticipate having an asymptotic solution of the form{
x(t, ε) = X(t, ε) + εu(τ, ε)

y(t, ε) = Y (t, ε) + v(τ, ε)

with an outer solution

(
X
Y

)
and an initial layer correction

(
εu
v

)
that tends

to zero as τ = t/ε tends to infinity. The outer limit

(
X0

Y0

)
will then satisfy

the reduced problem{
Ẋ0 = tX0Y0, X0(0) = 1

0 = −(Y0 − 4)(Y0 − 2)(Y0 + tX0).
(3.120)

The first possibility

Y0(t) = 4, Ẋ0 = 4tX0, X0(0) = 1

for the root Y0 determines the bounded outer limit(
X0(t)
Y0(t)

)
=

(
e2t

2

4

)
(3.121)

for finite t. It provides the complete outer expansion and thereby the
corresponding stable integral manifold. For y(0) �= 4, however, we need a
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nontrivial boundary layer correction at t = 0. Its leading term v0 must then
satisfy

dv0
dτ

= g(x(0), Y0(0) + v0, 0, 0) = −v0(v0 + 2)(v0 + 4), v0(0) = y(0)− 4

(3.122)
and must decay to zero as τ → ∞. Checking the sign of dv0

dτ shows that we
will need v0(0) > −2 or y(0) > 2 in order to attain such asymptotic stability.

The second possibility
Y0(t) = 2 (3.123)

provides X0(t) = et
2

. For y(0) �= 2, we will need a nontrivial limiting initial
layer correction v0(τ) satisfying

dv0
dτ

= −(v0 − 2)v0(v0 + 2), v0(0) = y(0)− 2. (3.124)

Its trivial rest point is, however, unstable, as is the corresponding integral
manifold. Thus, we rule out (3.123), except when y(0) = 2 exactly.

Finally, when we take

Y0(t) = −tX0(t), (3.125)

Ẋ0 = tX0Y0 = −t2X2
0 , and X0(0) = 1 determine the limiting outer solution(

X0(t)
Y0(t)

)
=

( 3
t2+3−3t
t2+3

)
. (3.126)

The next term in the outer expansion must then satisfy the linear system{
Ẋ1 = t(X1Y0 +X0Y1) = −t2X0X1 + tX0Y1

Ẏ0 = − [Y1(Y0 − 2) + (Y0 − 4)Y1] (Y0 + tX0)− (Y0 − 4)(Y0 − 2)(Y1 + tX1)

so

Y1 + tX1 =
−Ẏ0

Y 2
0 − 6Y0 + 8

=
X0 − t3X2

0

t2X2
0 + 6tX0 + 8

(3.127)

where

Ẋ1 = −2t2X0X1 +
tX2

0 (1− t3X0)

t2X2
0 + 6tX0 + 8

, X1(0) = u0(0). (3.128)

The corresponding limiting initial layer system{
du0

dτ = 0
dv0

dτ = −(v0 − 4)(v0 − 2)v0, v0(0) = y(0)
(3.129)

has the trivial rest point provided y(0) < 2. In summary, we obtain one of
the possible asymptotic solutions depending on the sign of y(0) − 2. The
solution lies on an attractive slow invariant manifold when y(0) = 4 or 0.
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The geometric singular perturbation theory of Fenichel [146] generalizes
Tikhonov–Levinson theory by replacing its first stability assumption by nor-
mal hyperbolicity. See Fenichel [147], Kaper [233], Jones and Khibnik [227],
Krupa and Szmolyan [265], Verhulst and Bakri [505], Kosiak and Szmolyan
[260], and Kuehn [268] for updated treatments. In particular, then, imag-
inary eigenvalues of gy are not allowed, but unstable eigenvalues are. (In-
terestingly, Neil Fenichel’s work was “ahead of its time.” It didn’t attract
the attention it merited for many years.) Hastings and McLeod [198] include
several applications of Fenichel’s theory, which they simplify. A large variety
of sophisticated approaches are combined in Desroches et al. [116]. Other
significant extensions of Tikhonov’s theorem include Nipp [349] (cf., also,
Nipp and Stoffer [351]).

The situation where the first Tikhonov–Levinson stability assumption is
violated because the Jacobian matrix gy is everywhere singular might be
called a singular singular perturbation problem (cf. Gu et al. [187]). Narang-
Siddarth and Valasek [340] say these are in nonstandard form.

2. A simple example of a singular problem is provided by the linear initial
value problem

εẏ = A(ε)y, y(0) =

(
1
1

)
(3.130)

for the nearly singular state matrix

A(ε) =

(
1− 2ε 2− 2ε
−1 + ε −2 + ε

)
(3.131)

with eigenvalues −1 and −ε and corresponding eigenvectors

(
1
−1

)
and(

2
−1

)
. Applying the initial condition provides the exact solution

y(t, ε) =

(
4
−2

)
e−t +

(−3
3

)
e−t/ε for t ≥ 0 (3.132)

in the anticipated form

y(t, ε) ∼ Y0(t) + ξ0(τ)

for an outer solution Y0(t) and an initial layer correction ξ0(τ) that decays
to zero as τ = t/ε → ∞.

If we, instead, simply sought an outer solution

Y (t, ε) ∼
∑
j≥0

Yj(t)ε
j (3.133)

of εẏ = A(t)y with Yj =

(
Y1j

Y2j

)
, the leading terms require that

Y10 + 2Y20 = 0, (3.134)
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but leaves Y0 otherwise unspecified. At O(ε), we’d need⎧⎪⎨
⎪⎩
Ẏ10 = Y11 + 2Y21 − 2Y10 − 2Y20

and

Ẏ20 = −Y11 − 2Y21 + Y10 + Y20.

(3.135)

Adding implies that
Ẏ10 + Ẏ20 = −Y10 − Y20.

Because Y10 = −2Y20, however, Ẏ20 = −Y20 so

Y0(t) =

(−2
1

)
e−tk0 (3.136)

for a constant k0 to be determined by matching.
More directly, we could change variables by putting A(ε) in a more con-

venient triangular form. Let us set

z =

(
z1
z2

)
≡ Py =

(
1 −1
1 1

)
y, (3.137)

so

y =
1

2

(
1 1
−1 1

)
z

and the initial value problem (3.130) is transformed to{
εż1 = −z1 + 3(1− ε)z2, z1(0) = 0

ż2 = −z2, z2(0) = −2,
(3.138)

a problem in fast-slow form that can be uniquely solved using Tikhonov–
Levinson theory. We get ⎧⎪⎨

⎪⎩
z1(t) = 6e−t − 6e−t/ε

and

z2(t) = 2e−t,

(3.139)

corresponding to the constant k0 = 3 in (3.136). Although only the first
component of z has an initial layer, both components of y do.

3. A nonlinear example is given by{
εẏ1 = y1 + y2 − 1

2 (y1 + y2)
3 + ε√

2
(y21 − y22), y1(0) = 2

εẏ2 = y1 + y2 − 1
2 (y1 + y2)

3 − ε√
2
(y21 − y22), y2(0) = −2.

(3.140)

Now, the reduced problem

Y10 + Y20 − 1

2
(Y10 + Y20)

3 = 0 (3.141)
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has the three families of solutions

Y10 + Y20 = 0 or ±
√
2. (3.142)

Tikhonov–Levinson theory doesn’t apply, but if we transform the problem
by setting

z =

(
1 1
1 −1

)
y, (3.143)

we get the separated fast-slow system{
εż1 = z1 − 1

2z
3
1 , z1(0) = −2

ż2 =
√
2z1z2, z2(0) = 0.

(3.144)

We immediately integrate the Bernoulli equation for z1 to get

z1(t, ε) = −
√

2

1− 1
2e

−2t/ε
(3.145)

and we conveniently rewrite it in the anticipated form

z1(t, ε) = −
√
2 + u1(τ) (3.146)

with the outer solution −√
2 and the decaying initial layer correction

u1(τ) =
√
2

⎛
⎝1− 1√

1− 1
2e

−2τ

⎞
⎠ . (3.147)

Integrating the remaining linear equation for z2, we get

z2(t, τ, ε) = −2e−2te
√
2ε

∫ τ
0

u1(r)dr

≡ Z2(t, ε)e
−√

2ε
∫ ∞
τ

u1(r)dr.
(3.148)

Setting
z2(t, ε) = Z2(t, ε) + εu2(τ, ε), (3.149)

we have a decaying initial layer correction εu2(τ, ε). Power series for Z2 and
u2 can be obtained termwise. The limiting outer solution

Z1(t, 0) = −
√
2 and Z2(t, 0) = −2e−2t

corresponds to the outer limits⎧⎪⎨
⎪⎩
Y10(t) = − 1√

2
− e−2t

and

Y20(t) = − 1√
2
+ e−2t

(3.150)
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and to the conserved constant

Y10(t) + Y20(t) = −
√
2. (3.151)

Since neither Y10(0) = −2 nor Y20(0) = −2, both components of y need initial
layer corrections.

For the nonlinear n-dimensional initial value problem

εẏ = g(y, t, ε), t ≥ 0, (3.152)

we expect the limiting solution to satisfy

g(Y0, t, 0) = 0.

When gy is singular with a constant rank 0 < k < n and when its nontriv-
ial eigenvalues are stable, we might seek additional constraints on the outer
limit Y0 by differentiating g = 0. (Recall the related concept of the index
of a differential-algebraic equation (cf. Ascher and Petzold [15] and Lamour
et al. [279]). Shchepakina et al. [450] describe applications, including singu-
lar ones and bimolecular reactions.

Historical Remark

Tikhonov made important contributions to many fields of mathematics, in-
cluding topology and cybernetics. He also rose to the top of the Communist
Party hierarchy in the Soviet Union, attaining great power and exerting his
anti-Semitism (like Pontryagin) by, for example, influencing the results of
entrance exams at Moscow State University.

Levinson, as the child of poor Russian Jewish immigrants in Revere, Mas-
sachusetts, naturally supported leftish causes. Norbert Wiener recognized his
brilliance and got him (with some help from Hardy) a faculty position at the
Massachusetts Institute of Technology. (Harvard was, presumably, unwilling
to hire Jewish mathematicians in 1937.) In the McCarthy era of Communist
witchhunts, Levinson was called to Washington to testify, but he refused to
“name names” (cf. Levinson [288] and O’Connor and Robertson [355]).

(c) Two-Point Problems

The linear first-order scalar equation

εy′ + a(x)y = b(x), x ≥ 0 (3.153)

has the exact solution

y(x, ε) = e−
1
ε

∫ x
0

a(s) ds y(0) +
1

ε

∫ x

0

e−
1
ε

∫ x
s

a(t) dt b(s) ds.
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For bounded x and smooth coefficients, we can use repeated integrations by
parts when

a(x) > 0

to show that y has a generalized asymptotic expansion of the form

y(x, ε) ∼ A(x, ε) +B(ε)e−
1
ε

∫ x
0

a(s) ds (3.154)

for power series A and B. For example, since

1

ε

∫ x

0

e−
1
ε

∫ x
s

a(t) dtb(s) ds ∼ b(x)

a(x)
− e−

1
ε

∫ x
0

a(t) dt b(0)

a(0)
,

A(x, 0) = b(x)
a(x) and B(0) = y(0) − b(0)

a(0) . Indeed, the series can be found

directly by regular perturbation methods (using undetermined coefficients in
the power series for A and B). Since there is an initial layer near x = 0, we
could also introduce the stretched variable

ξ = x/ε

and expand the product B(ε)e−
1
ε

∫ εξ
0

a(s) ds in its Maclaurin expansion about
ε = 0 to find the composite asymptotic solution

y(x, ε) = A(x, ε) + C(ξ, ε) (3.155)

for the same outer solution A(x, ε), where the coefficients of the initial layer
correction

C(ξ, ε) ∼
∑
k≥0

Ck(ξ)ε
k

tend to zero as ξ → ∞. Clearly, the expansion (3.154) is preferable, because
it provides more immediate details regarding boundary layer behavior. In
particular, it explicitly shows that the nonuniform behavior in the initial
layer depends on the stretched variable

η =
1

ε

∫ x

0

a(s) ds,

rather than its local limit a(0)ξ. Indeed, e−η exactly satisfies the homoge-
neous equation. As we will later find, the expansion (3.155) corresponds to
matching and (3.154) to two-timing.

For the linear second-order equation

εy′′ + a(x)y′ + b(x)y = c(x) (3.156)

with a(x) > 0, we cannot generally write down the exact solution (un-
less we happen to know a nontrivial solution of the homogeneous equa-
tion). Nonetheless, we will find that the asymptotic solution of the two-point
problem with

y(0) and y(1) prescribed
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will likewise have the asymptotic form

y(x, ε) ∼ A(x, ε) +B(x, ε)e−
1
ε

∫ x
0

a(s) ds (3.157)

(corresponding to WKB theory) where the outer expansion A(x, ε) will now
be a regular power series solution of the terminal value problem

εA′′ + a(x)A′ + b(x)A = c(x), A(1, ε) = y(1) (3.158)

and where B(x, ε) will be a regular power series solution of the initial value
problem

εB′′ − aB′ − a′B + bB = 0, B(0, ε) = y(0)−A(0, ε) (3.159)

(since the product Be−
1
ε

∫ x
0

a(s) ds must satisfy the homogeneous differential
equation). Curiously, the differential equation for B is the adjoint of that for
A (when c is zero).

Analogous (though somewhat more complicated) results hold for the non-
linear equation

εy′′ + a(x)y′ + f(x, y) = 0 (3.160)

again for Dirichlet boundary conditions. Before obtaining them, let us first
show how the more familiar method of boundary layer corrections works.
With

a(x) > 0 on 0 ≤ x ≤ 1,

we would naturally expect an initial layer of nonuniform convergence when
y(0) and y(1) are prescribed. Thus, for smooth coefficients a and f , we will
seek a composite asymptotic expansion of the form

y(x, ε) = Y (x, ε) + v(ξ, ε) (3.161)

where v → 0 as the stretched coordinate

ξ =
x

ε

→ ∞ and where the outer expansion Y and the initial layer correction v have
power series expansions

Y (x, ε) ∼
∑
k≥0

Yk(x)ε
k and v(ξ, ε) ∼

∑
k≥0

vk(ξ)ε
k.

Away from x = 0, y ∼ Y to all orders (and, likewise, for its derivatives), so
Y must satisfy

εY ′′ + a(x)Y ′ + f(x, Y ) = 0, Y (1, ε) = y(1). (3.162)

Clearly, Y0 must satisfy the nonlinear reduced problem

a(x)Y ′
0 + f(x, Y0) = 0, Y0(1) = y(1). (3.163)
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Assuming that its solution Y0 exists from x = 1, back to x = 0, later Yks
must satisfy linearized problems

a(x)Y ′
k + fx(x, Y0)Yk + αk−1(x) = 0, Yk(1) = 0 (3.164)

there, where each αk−1 is known successively in terms of earlier coefficients
Yj and their first two derivatives. Using an integrating factor, each Yk then
follows uniquely throughout the interval. It would be unlikely that Y (0, ε) =
y(0), however, so a nontrivial corrector v must be expected.

Knowing Y asymptotically, y′ = Y ′ + 1
ε
dv
dξ and εy′′ = εY ′′ + 1

ε
d2v
dξ2 imply

that the initial layer correction v must satisfy the differential equation

d2v

dξ2
+ a(εξ)

dv

dξ
+ ε

(
f
(
εξ, Y (εξ, ε) + v(ξ, ε)

)− f
(
εξ, Y (εξ, ε)

))
= 0, (3.165)

the initial condition
v(0, ε) = y(0)− Y (0, ε), (3.166)

and decay to zero as ξ → ∞. Thus, the leading coefficient v0 must satisfy
the linear problem

d2v0
dξ2

+ a(0)
dv0
dξ

= 0, v0(0) = y(0)− Y0(0) and v0 → 0 as ξ → ∞,

so
v0(ξ) = e−a(0)ξ(y(0)− Y0(0)). (3.167)

Next, we will need

d2v1
dξ2

+ a(0)
dv1
dξ

+ a′(0)ξ
dv0
dξ

+ f(0, Y0(0) + v0(ξ))− f(0, Y0(0)) = 0,

v1(0) = −Y1(0) and v1 → 0 as ξ → ∞.

The unique solution

v1(ξ) = − e−a(0)ξY1(0)−
∫ ξ

0

ea(0)(s−ξ)
[
f(0, Y0(0) + v0(ξ))

− f(0, Y0(0))− a′(0)a(0) s v0(s)
]
ds

(3.168)

decays like ξe−a(0)ξ as ξ → ∞. Subsequent vjs follow analogously, in turn.
We will later obtain a somewhat more satisfying solution using multiscale
methods with slow and fast variables x and η = 1

ε

∫ x

0
a(s) ds. Numerical

methods for such problems are presented in Roos et al. [419] and Ascher
et al. [16]. Related techniques for partial differential equations are given
in Shishkin and Shishkina [452], Linss [294], and Miller et al. [317]. The
variety of two-point singular perturbation problems one can confidently solve
numerically is, sadly, quite limited, compared to the success found for stiff
initial value problems. This appropriately remains a topic of substantial
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current research and importance. Useful recommendations about software for
solving singularly perturbed two-point problems can be found on the home-
page of Professor Jeff Cash of Imperial College, London (cf. also, Soetaert
et al. [469]).

If we consider the two-point problem for the scalar Liénard equation

εy′′ + f(y)y′ + g(y) = 0, 0 ≤ x ≤ 1 (3.169)

with y(0) and y(1) prescribed, we can again expect to have an asymptotic
solution of the form

y(x, ε) = Y (x, ε) + v(ξ, ε) (3.170)

provided

(i) the reduced problem

f(Y0)Y
′
0 + g(Y0) = 0, Y0(1) = y(1) (3.171)

has a solution Y0(x) on 0 ≤ x ≤ 1 with

f(Y0) > 0.

(Note the monotonic implicit solution x− 1 =
∫ y(1)

Y0(x)
f(r)
g(r) dr.)

and

(ii) the linear integrated initial layer problem

dv0
dξ

+ f(Y0(0))v = 0, v0(0) = y(0)− Y0(0) (3.172)

has a solution v0(ξ) on ξ ≥ 0 that decays to zero as ξ ≡ x
ε → ∞. (This

simply requires f(Y0(0)) > 0 since the solution is an exponential.)

Treating the problem with f(Y0) < 0 proceeds analogously, using a terminal
layer, but real complications arise when f(Y0) has a zero within the interval.

As a specific example, suppose

εy′′ = 2yy′ with y(1) < 0 and y(0) + y(1) < 0. (3.173)

Then, we obtain the attractive constant outer solution

Y (x, ε) = y(1) < 0 (3.174)

while the supplementary initial layer correction v(ξ, ε) must be a decaying
solution of vξξ = 2(y(1)+ v)vξ. Integrating from infinity, we must satisfy the
Riccati equation

vξ − 2y(1)v − v2 = 0, v(0) = y(0)− y(1). (3.175)

With the assumed sign restrictions, v exists and decays to zero as ξ → ∞.
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Cole [92] considered the linear problem

εy′′ +
√
xy′ − y = 0, y(0) = 0 and y(1) = e2, (3.176)

with an initial turning point. Because
√
x > 0 for x > 0, we might stubbornly

still seek an asymptotic solution of the composite form

y(x, ε) = Y (x, ε) + v(ξ, εβ), (3.177)

with an outer expansion Y that satisfies the terminal value problem

εY ′′ +
√
xY ′ − Y = 0, Y (1, ε) = e2 (3.178)

as a power series in ε, and with an initial layer correction v satisfying the
stretched equation

ε1−2α d
2v

dξ2
+ ε−α/2

√
ξ
dv

dξ
− v = 0, (3.179)

the initial condition

v(0, εβ) = y(0)− Y (0, ε), (3.180)

and which decays to zero as the appropriate stretched variable

ξ =
x

εα
, (3.181)

for some α > 0, tends to infinity. We will take v to have a power series in
εβ , for a power β > 0 to be determined. The purpose of the new stretching
ξ is to balance different terms in the differential equation (3.176) within the
initial layer. The dominant balance argument (cf. Bender and Orszag [36]
and Nipp [350]) here requires us to select α so that

1− 2α = −α

2
or α = 2/3. (3.182)

Since this leaves
d2v

dξ2
+

√
ξ
dv

dξ
− ε1/3v = 0, (3.183)

we naturally take β = 1/3.
The outer expansion Y ∼ ∑

k≥0 Ykε
k for (3.176) must satisfy

√
xY ′

0 − Y0 = 0, Y0(1) = e2

and
√
xY ′

1 − Y1 + Y ′′
0 = 0, Y1(1) = 0, so we get

Y (x, ε) = e2
√
x

(
1 + ε

(
− 1

2x
+

2√
x
− 3

2

)
+ . . .

)
. (3.184)



(C). TWO-POINT PROBLEMS 93

Indeed, following a suggestion of E. Kirkinis, we can peel off e2
√
x by setting

y = e2
√
xz. (3.185)

The corresponding outer expansion Z(x, ε) in inner variables provides

Z(ε2/3ξ, ε) = 1− ε1/3

2ξ
+

2ε2/3√
ξ

− 3ε

2
+ . . . , (3.186)

conveniently a power series in ε1/3. The transformed equation is

εz′′ +
(√

x+
2ε√
x

)
z′ + ε

(
1

x
− 1

2

1

(
√
x)3

)
z = 0

and the stretched equation for the corresponding inner solution w(ξ, ε1/3) in
terms of ξ = x/ε2/3 is

d2w

dξ2
+

(√
ξ +

2ε1/3√
ξ

)
dw

dξ
+

(
− ε1/3

2ξ3/2
+

ε2/3

ξ

)
w = 0, w(0) = 0. (3.187)

Expanding

w(ξ, ε1/3) ∼
∞∑
k=0

wk(ξ)ε
k/3 (3.188)

and integrating the resulting initial value problems, we first obtain

w0(ξ) = c0

∫ ξ

0

e−
2
3 s

3/2

ds, (3.189)

and then

w1(ξ) = c1

∫ ξ

0

e−
2
3 s

3/2

ds

+

∫ ξ

0

e−
2
3 s

3/2

∫ ξ

0

e
2
3 t

3/2

(
− 2√

t

dw0

dξ
+

1

2

w0

(
√
t)3

)
dt ds

(3.190)

for constants c0 and c1. When we write

w0(ξ) = c0

(∫ ∞

0

e−
2
3 s

3/2

ds−
∫ ∞

ξ

e−
2
3 s

3/2

ds

)

and apply the crude matching condition that

lim
ξ→∞

w0(ξ) = lim
x→0

Z0(x),

we determine the unusual constant,

c0 =
1∫∞

0
e−

2
3 s

3/2
ds

≡
(
3

2

)1/3
1

Γ(2/3)
. (3.191)
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The asymptotic behavior of w0 as ξ → ∞ follows by using repeated
integrations by parts, i.e.

w0(ξ) = 1− c0

∫ ∞

ξ

e−
2
3 s

3/2

ds

= 1− c0

[
1√
ξ
− 1

2ξ2
+

1

(
√
ξ)7

+O

(
1

ξ5

)]
e−

2
3 ξ

3/2

. (3.192)

Next, since w0 → 1 and dw0

dξ → 0 as ξ → ∞, w1 must satisfy d2w1

dξ2 +
√
ξ dw1

dξ ∼
1

2(
√
ξ)3

nearby, so upon integrating, we get

w1(ξ) ∼ K1 +

∫ ∞

ξ

e−
2
3 s

3/2

∫ ∞

s

e
2
3 t

3/2 dt

2(
√
t)3

ds

∼ K1 − 1

2ξ
− 2

5(
√
ξ)5

− 7

8ξ4
− 35

11(
√
ξ)11

+ . . . .

(3.193)

(This could be more simply determined by directly introducing a power series
for the limiting behavior of w1 using undetermined coefficients.) Further,
integration by parts implies that

∫ ∞

ξ

e−
2
3 s

3/2

∫ ∞

s

e
2
3 t

3/2

2t3/2
dt ds ∼ −

∫ ∞

ξ

ds

2s2
= − 1

2ξ
. (3.194)

To match w1 at infinity, we need K1 = 0, so w1 → 0 as ξ → ∞. Thus,

c1

∫ ∞

0

e−
2
3 s

3/2

ds =

−
∫ ∞

0

e−
2
3 s

3/2

∫ s

0

e
2
3 t

3/2

(
− 2√

t

dw0

dξ
+

1

2

w0

(
√
t)3

)
dt ds

(3.195)

specifies c1. Higher-order matching follows analogously. (We will not at-
tempt a uniformly valid composite expansion.) Clearly, matching near turn-
ing points is complicated. (It might be an instance calling for the neutrix
calculus (cf. van der Corput [100]), where infinities are appropriately can-
celed.) Our procedure for (3.176) might be compared to that of Miller [318]
and Johnson [226] who, respectively, consider the linear problem

εy′′ + 12x1/3y′ + y = 0, y(0) = 1, y(1) = 1

and the nonlinear problem

εy′′ +
√
xy′ + y2 = 0, y(0) = 2, y(1) = 1/3.

We now reconsider the nonlinear two-point problem

εy′′ − 2yy′ = 0, 0 ≤ x ≤ 1 (3.196)
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with prescribed endvalues y(0) and y(1). Wasow [514] cited this as an
example of the capriciousness of singular perturbations. (In response, Franz
and Roos [158] have written about the capriciousness of numerical methods
for singular perturbations.) If we integrate once to get εy′ = y2 − α, we can
separate variables to provide the general solution

y(x, ε) = −√
α tanh

(√
α

ε
(x− β)

)

= −√
α

(
1− e−

2
√

α
ε (x−β)

1 + e−
2
√

α
ε (x−β)

) (3.197)

for ε-dependent constants α and β. (When α is real, we shall take it to be
nonnegative.) The boundary conditions require that

y(0) = −√
α

(
1− e

2
√

αβ
ε

1 + e
2
√

αβ
ε

)
and y(1) = −√

α

(
1− e−

2
√

α
ε e

2β
√

α
ε

1 + e−
2
√

α
ε e

2β
√

α
ε

)
,

so

e
2β

√
α

ε =

√
α+ y(0)√
α− y(0)

=

(√
α+ y(1)√
α− y(1)

)
e

2
√

α
ε . (3.198)

We will, curiously, find different sorts of limiting behaviors for y in four
different portions of the y(0)-y(1) plane of boundary values.

(i) On the half-line where y(0) = −y(1) > 0: Because of the sign of the
coefficient of y′ in (3.196), we might expect y to be nearly constant near
both x = 0 and 1. Thus, we can anticipate having the limit

y ∼ y(0) > 0 near x = 0

and, likewise,
y ∼ y(1) < 0 near x = 1.

Symmetry even suggests that a narrow shock (or transition) layer be-
tween these outer solutions will occur about the midpoint x = 1/2 since
y(1) = −y(0). Indeed, (3.198) implies that

e
√

α
ε =

√
α+ y(0)√
α− y(0)

(corresponding to β = 1/2) and to the implicit relation

√
α = y(0) + (

√
α+ y(0))e−

√
α/ε

for α. Iterating, we then find

√
α ∼ y(0) + 2y(0)e−y(0)/ε + . . . (3.199)
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We recognize this as a result involving exponential asymptotics (i.e., it
uses asymptotically negligible correction terms like e−y(0)/ε). Thus, the
limiting uniform solution

y(x, ε) ∼ −y(0) tanh

(
y(0)

ε

(
x− 1

2

))
(3.200)

features an O(ε)-thick shock layer at the midpoint with the constant
limit y(0) for x < 1

2 and y(1) for x > 1/2.

(ii) In that 135◦ sector of the y(0)-y(1) plane where y(0) > 0 and y(0) +
y(1) > 0, we might expect the dominant endvalue y(0) to provide the
limiting solution, except in a narrow terminal layer near x = 1. To see
this, rewrite the boundary conditions (3.198) as

e2
√
α(β−1)/ε =

√
α+ y(1)√
α− y(1)

and √
α = y(0) + (

√
α+ y(0))e−2

√
αβ/ε.

Using the general solution (3.197),
√
α ∼ y(0) implies that

y(x, ε) ∼ y(0)

[
y(0) + y(1)− (y(0)− y(1))e

2y(0)
ε (x−1)

y(0) + y(1) + (y(0)− y(1))e
2y(0)

ε (x−1)

]
, (3.201)

so y indeed has the constant limit y(0) for x < 1 and an ordinary
O(ε)-thick boundary layer near x = 1.

Curiously, when y(0) + y(1) is positive, but only asymptotically exp-
onentially small, the previously found shock wave can be moved all
the way from the midpoint x = 1/2 to the endpoint x = 1. This
demonstrates the supersensitivity of the shock location β. Imagine the
computational consequences!

(iii) One could analogously show (cf. (3.176)) that the limiting solution is
y(1), except in an initial layer, when y(1) < 0 and y(0) + y(1) < 0.
Now, for y(0) + y(1) appropriately exponentially negligible, the shock
can be moved from x = 1

2 to x = 0. (This also follows by reflection
from (ii).)

(iv) In the quarter-plane where y(0) < 0 < y(1), we’d expect two endpoint
layers. Instead of letting α be imaginary, we take the general solution
to have the form

y(x, ε) = εA tan(A(x− εB)) (3.202)

with a trivial limit in 0 < x < 1 and boundary layers at both x = 0
and 1.
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The limiting possibilities for solutions of (3.196) are illustrated in Fig. 3.1.
The preceding analysis for (3.196) anticipates the corresponding asymp-

totics for Burgers’ partial differential equation

ut = εuxx + uux (3.203)

on the planar strip where −1 ≤ x ≤ 1 and t ≥ 0. For the constant boundary
values u(±1, t) = ±1 and a prescribed smooth initial function u(0, t), we
might anticipate the development of a moving shock layer solution

tanh

(
x− xε(t)

2ε

)
(3.204)

(cf. Reyna and Ward [416] and Laforgue and O’Malley [275]). One can,
indeed, use the Cole–Hopf transformation

v(η, t) = e
∫ η
0

u(s,t) ds for η =
x− xε

2ε

to convert Burgers’ equation to the linear heat equation and to then solve that
using Fourier series. Note the relation to the previously introduced Riccati
transformations. One finds that the profile (3.204) moves asymptotically
slowly after the shock is formed, according to the equation

dxε

dt
= e−1/ε(e−xε/ε − exε/ε). (3.205)

The trivial rest point of (3.205) is reached after an asymptotically exponen-
tially long time (i.e., we attain metastability due to the asymptotically negli-
gible speed of the shock location xε). See O’Malley and Ward [379] for study
of a variety of related problems. Also note the relationship to intermediate
asymptotics and self-similar solutions, as presented by Barenblatt [28].

E [130] outlines a two-scale approach to satisfy the Allen–Cahn equation
(describing phase transitions):

ut = εΔu− 1

ε
V ′(u) (3.206)

where V is a double-well potential with local minima u1 and u2. He intro-
duces the stretched variable

ϕ(x, t)

ε
, (3.207)

with ϕ being the distance from x to a boundary curve Γt of the domain and
makes the multi-scale ansatz

u
(
x, t,

ϕ

ε
, ε
)
= U0

(
ϕ(x, t)

ε

)
+ εU1

(
ϕ(x, t)

ε
, x, t

)
+ . . . (3.208)

where U0(±∞) = u1/2. Leading terms in (3.206) then imply that

ϕtU
′
0 = U ′′

0 − V ′(U0)
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Figure 3.1: The limiting solution to εy′′ − 2yy′ = 0 differs in four different
regions of the y(0)-y(1) plane

so

ϕt =
V (u1)− V (u2)∫∞
−∞(U ′

0(y))
2 dy

. (3.209)

When V (u1) = V (u2), he gets shock layer motion on a longer time scale.
Such multi-scale ideas will be developed in Chap. 5.

Cole [92] shows that the asymptotic solution of the boundary value
problem

εy′′ + yy′ − y = 0, 0 ≤ x ≤ 1, y(0) and y(1) prescribed (3.210)

(less tractable than (3.196)) also varies significantly depending on the end-
values y(0) and y(1). This problem was introduced at Caltech in the 1950s
as a nonlinear model where solutions feature both endpoint boundary and
interior shock layers. It’s often called the Cole–Lagerstrom problem. We
shall illustrate some possibilities. See Cole [92], Dorr et al. [124], Chang and
Howes [76], and Lagerstrom [276] for the complete list of possible asymptotic
solutions in nine distinct subsets of the y(0)-y(1) plane. Shen and Han [451]
provide results for a more general equation.

Note that the reduced equation

Y0(Y
′
0 − 1) = 0 (3.211)

has the trivial solution Y0(x) ≡ 0 and the linear family of solutions Y0(x) =
x+ c.
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(a) Suppose y(0) = 0 and y(1) = 2. If we take c = 1, Y0(x) = x + 1
will satisfy the terminal condition Y0(1) = 2. The positivity of x + 1
throughout 0 ≤ x ≤ 1 suggests that Y0 might serve as an outer solution
Y (x, ε) for an asymptotic solution with an initial layer, say

y(x, ε) = x+ 1 + v(ξ, ε) (3.212)

where v(0, ε) = −1, v → 0 as ξ = x/ε → ∞, and

v ∼
∑
k≥0

vk(ξ)ε
k. (3.213)

Then, y′ = 1+ 1
ε
dv
dξ and εy′′ = 1

ε
d2v
dξ2 imply that d2v

dξ2 +(εξ+1+v)dvdξ = 0,

so the leading term v0 must satisfy the autonomous equation d2v0

dξ2 +

(1 + v0)
dv0

dξ = 0. Integrating backwards from infinity, we obtain the
initial value problem

dv0
dξ

+ v0 +
v20
2

= 0, v0(0) = −1. (3.214)

Integrating this Riccati equation provides v0(ξ) = − 2
1+eξ

, i.e., the uni-
formly valid approximation

y(x, ε) ∼ x+ 1− 2

1 + ex/ε
, (3.215)

featuring an initial layer of O(ε)-thickness in x.

(b) If we instead take y(0) = −1 and y(1) = 1, we might anticipate having
an interior shock layer between the linear left- and right-sided outer
solutions

YL(x) = x− 1 and YR(x) = x. (3.216)

(Since YL < 0 and YR > 0, we wouldn’t expect endpoint layers.) Thus,
we will assume an asymptotic solution of the form

y(x, ε) = x− 1 + u(κ, ε) (3.217)

for the stretched variable

κ ≡ x− x̃

ε
, (3.218)

expecting a monotonic unit jump in y about the shock location x̃ (to
be determined) such that

u →
{
0 as κ → −∞
x̃− (x̃− 1) = 1 as κ → ∞.
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Since y′ = 1+ 1
ε
du
dκ and εy′′ = 1

ε
d2u
dκ2 , u must satisfy d2u

dκ2 + (x̃+ εκ− 1+

u)dudκ = 0. Its leading term will satisfy

du0

dκ
+ (x̃− 1)u0 +

u2
0

2
= 0, (3.219)

upon integrating from −∞. The rest points are 0 and 2(1− x̃). To get
a solution joining the rest points u0(−∞) = 0 and u0(∞) = 1 requires
taking

x̃ = 1/2, (3.220)

as we should have anticipated from symmetry. The corresponding lim-
iting shock layer solution is

u0(κ) =
1

1 + e−κ/ε
for κ =

x− 1
2

ε
. (3.221)

With analogous nonsymmetric boundary values, the jump would in-
stead be located elsewhere. Higher-order terms follow readily.

Example

The two-point problem

εy′′ = 1− (y′)2, 0 ≤ x ≤ 1, with y(0) = 0 = y(1) (3.222)

can be solved by converting it to the slow-fast system{
y′ = z

εz′ = 1− z2.
(3.223)

If we select the left and right outer solutions

ZL(x) = −1 and ZR(x) = 1,

corresponding to

YL(x) = −x and YR(x) = x− 1,

the two outer solutions YL and YR meet at x = 1/2, where y′ must jump.
We naturally look for a shock layer as a function of the stretched variable

ξ =
1

ε

(
x− 1

2

)
.

A direct integration (with the “right” endvalues) provides⎧⎪⎪⎨
⎪⎪⎩
z(x, ε) = tanh((x− 1

2 )/ε)

and

y(x, ε) = ε ln

(
cosh((x− 1

2 )/ε)
cosh(1/2ε)

) (3.224)
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with the anticipated angular asymptotics. Note that y has a minimum at
x = 1/2. (A maximum principle argument would rule out the selection
ZL(x) = 1, ZR(x) = −1.)

Exercises

1. Numerically solve
εy′′ = 2yy′, 0 ≤ x ≤ 1

with various boundary values y(0) and y(1) to illustrate the four pos-
sible types of limiting solution.

2. For y(0) = −1/4 and y(1) = 1/2, show that the limiting (piecewise
linear) solution to the Cole–Lagerstrom equation (3.210) is given by

y(x, ε) →

⎧⎪⎨
⎪⎩
x− 1

4 , 0 ≤ x ≤ 1
4

0, 1
4 ≤ x ≤ 1

2

x− 1
2 ,

1
2 ≤ x ≤ 1.

3. Show that the nonlinear boundary value problem

εy′′ + f(y)y′ + g(y) = 0

with y(0) and y(1) prescribed can be converted to a slow-fast problem
in the y-z (or Liénard) plane with z ≡ εy′ +

∫ y
f(r) dr.

For the more general nonlinear scalar problem{
εy′′ + f(x, y)y′ + g(x, y) = 0, 0 ≤ x ≤ 1

with y(0) and y(1) prescribed,
(3.225)

perhaps first studied in Coddington and Levinson [90], we will seek an initial
layer solution in the composite form

y(x, ε) = Y (x, ε) + v(ξ, ε) (3.226)

where v → 0 as ξ = x/ε → ∞. We will naturally require two stability
assumptions:

(i) that the reduced problem

f(x, Y0)Y
′
0 + g(x, Y0) = 0, Y0(1) = y(1) (3.227)

has a solution Y0(x) on 0 ≤ x ≤ 1 with

f(x, Y0(x)) > 0 (3.228)
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(ii) that the separable limiting integrated initial layer problem{
dv0

dξ +
∫ v0

0
f(0, Y0(0) + r) dr = 0,

v0(0) = y(0)− Y0(0)
(3.229)

has a solution v0(ξ) defined throughout ξ ≥ 0 that decays to zero as
ξ → ∞.

Clearly, the outer solution Y (x, ε) ∼ ∑
j≥0 Yj(x)ε

j must satisfy the terminal
value problem

εY ′′ + f(x, Y )Y ′ + g(x, Y ) = 0, Y (1, ε) = y(1). (3.230)

Since we have assumed existence of the ε = 0 solution Y0(x) throughout
0 ≤ x ≤ 1, the next term Y1 must satisfy the linearized problem

f(x, Y0)Y
′
1 +

(
fy(x, Y0)Y

′
0 + gy(x, Y0)

)
Y1 + Y ′′

0 = 0, Y1(1) = 0. (3.231)

Presuming smoothness of the coefficients, it is no problem to successively
define all the Yks in terms of the attractive outer limit Y0.

Knowing Y (x, ε) asymptotically, the supplementary initial layer correc-
tion v must satisfy(

εY ′′ +
1

ε

d2v

dξ2

)
+ f(x, Y + v)

(
Y ′ +

1

ε

dv

dξ

)
+ g(x, Y + v) = 0

and v(0, ε) = y(0)− Y (0, ε), i.e.

d2v

dξ2
+ f(x, Y + v)

dv

dξ

+ ε
[
(f(x, Y + v)− f(x, Y ))Y ′ + g(x, Y + v)− g(x, Y )

]
= 0

(3.232)

when we substitute −f(x, Y )Y ′ − g(x, Y ) for εY ′′ and expand all functions
of x = εξ in Taylor series about x = 0. Thus, v0 must be a decaying solution
of the nonlinear terminal value problem

d2v0
dξ2

+ f(0, Y0(0) + v0)
dv0
dξ

= 0, v0(∞) = 0. (3.233)

Integrating backwards, we require v0 to satisfy the initial value problem
(3.229). Existence of v0 is guaranteed by the second stability condition.
The next terms in (3.232) require v1 to satisfy

d2v1
dξ2

+ f(0, Y0(0) + v0)
dv1
dξ

+ ξ
[
fx(0, Y0(0) + v0)

+ fy(0, Y0(0) + v0)Y
′
0(0)

]dv0
dξ

+
[(
f(0, Y0(0) + v0)− f(0, Y0(0)

)
Y ′
0(0)

+
(
g(0, Y0(0) + v0)− g(0, Y0(0)

)]
= 0.

(3.234)



(C). TWO-POINT PROBLEMS 103

Because v0 and dv0

dξ decay exponentially to zero as ξ → ∞, we can integrate

backwards from infinity where v1(∞) = 0. Then, we integrate the resulting
linear initial value problem with v1(0) = −Y1(0) to get v1(ξ). Later terms
follow analogously, in turn. We note that more direct multi-scale methods for
(3.225) (which we will later consider) do not seem to be generally available
except when f(x, y) is independent of y.

Example

Consider

εy′′ + eyy′ = 1, y(0) = 0, y(1) = 1. (3.235)

The limiting outer problem

eY0Y ′
0 = 1, Y0(1) = 1 (3.236)

implies that eY0 = x+ c where e = 1 + c, so

Y0(x) = ln(x+ e− 1) (3.237)

and eY0 > 0. We will seek a uniform limit

y(x, ε) ∼ Y0(x) + v0(ξ) for ξ = x/ε. (3.238)

Then, v0 must satisfy d2v0

dξ2 + eY0(0)+v0(ξ) dv0

dξ = 0, Y0(0) + v0(0) = 0 and
v0 → 0 as ξ → ∞. An integration requires v0 to satisfy the nonlinear initial
value problem

dv0
dξ

+ (e− 1)(ev0 − 1) = 0, v0(0) = − ln(e− 1).

Thus

v0(ξ) = − ln(1 + (e− 2)e−(e−1)ξ) (3.239)

and the uniformly valid limiting solution on 0 ≤ x ≤ 1 is

y(x, ε) = ln

(
x+ e− 1

1 + (e− 2)e−(e−1)x/ε

)
+O(ε). (3.240)

We will next outline the construction of the asymptotic solution of the
scalar two-point problem

εy′′ + f(x, y)y′ + g(x, y) = 0 with y(0) and y(1) prescribed (3.241)

featuring a sharp transition (i.e., a shock) layer at an interior point x̃. (Recall
several examples considered previously.)



104 CHAPTER 3. MATCHED ASYMPTOTIC EXPANSIONS

We will assume

(i) that the left limiting problem

f(x, Y )Y ′ + g(x, Y ) = 0, Y (0) = y(0) (3.242)

has a solution YL0(x) such that

f(x, YL0(x)) < 0 for 0 ≤ x ≤ x̃, (3.243)

and

(ii) the right limiting problem

f(x, Y )Y ′ + g(x, Y ) = 0, Y (1) = y(1) (3.244)

has a solution YR0(x) such that

f(x, YR0(x)) > 0, for x̃ ≤ x ≤ 1. (3.245)

Here, the isolated jump location x̃ is determined by the classical
Rankine–Hugoniot jump condition∫ YR0(x̃)

YL0(x̃)

f(x̃, s) ds = 0 (3.246)

(cf. Whitham [520]).

We will also assume that

(iii) the integrated shock layer problem

du0

dκ
+

∫ u0

0

f (x̃, YL0(x̃) + r) dr = 0, −∞ < κ < ∞ (3.247)

has a monotonic solution u0(κ) on −∞ < κ < ∞ satisfying

u0(−∞) = 0 and u0(∞) = YR0(x̃)− YL0(x̃).

Then, we can construct an asymptotic solution to (3.241) of the form

y(x, ε) = YL(x, ε) + u(κ, ε) (3.248)

where

κ =
1

ε
(x− x̃), (3.249)

u(−∞, ε) = 0, and u(∞, ε) → YR(x̃+ εκ, ε)− YL(x̃+ εκ, ε)

for left- and right-outer expansions YL(x, ε) and YR(x, ε) with limits YL0 and
YR0 such that

YL(x, ε) ∼
∑
j≥0

YLj(x)ε
j , YR(x, ε) ∼

∑
j≥0

YRj(x)ε
j ,

and u(κ, ε) ∼
∑
j≥0

uj(κ)ε
j .

(3.250)
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As an alternative, we could center the shock layer at the average value

1

2
(YL(x̃, ε) + YR(x̃, ε))

and seek a shock layer solution v(κ, ε) tending to YL(x̃, ε) as κ → −∞ and
to YR(x̃, ε) as κ → +∞.

Lorenz [299] considered the example{
εy′′ + y(1− y2)y′ − y = 0

y(0) = 1.6, y(1) = −1.7.

He showed that the limiting solution satisfies

y(x, ε) →

⎧⎪⎨
⎪⎩
YL0(x), 0 < x < x1 =

√
2
3 − 1.6− (1.6)3

3

0, x1 < x < x2

YR0(x), −
√
2
3 + 1.7− (1.7)3

3 = x2 < x ≤ 1

for left and right limiting solutions YL0(x) and YR0(x) and with x1 ≈ 0.24
and x2 ≈ 0.59, found computationally. Readers should verify this conclusion
analytically or numerically.

We might expect solutions of two-point problems for the semilinear vector
equation

ε2y′′ + f(x, y) = 0, 0 ≤ x ≤ 1 (3.251)

to instead converge away from boundary layers at both endpoints to a solution
Y0 of the limiting algebraic equation

f(x, Y0(x)) = 0 (3.252)

when (i) the Jacobian
fy(x, Y0(x))

is a stable matrix throughout the interval and (ii) the corresponding boundary
layer jumps y(0) − Y0(0) and y(1) − Y0(1) are appropriately restricted to
achieve stability in the boundary layers.

Then, the asymptotic solution to (3.251) will take the form

y(x, ε) = Y (x, ε) + r(κ, ε) + s(λ, ε) (3.253)

where the terms of r → 0 as κ = x
ε → ∞ while s → 0 as λ = 1−x

ε → ∞.
Franz and Roos [158], likewise, show that the limiting solution to

ε2y′′ − y(y − 1)

(
y − x− 3

2

)
= 0, y(0) = 0, y(1) = 5/2

satisfies

y(x, ε) →
{
0, 0 ≤ x < 1

2

x+ 3
2 ,

1
2 < x ≤ 1.
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These boundary values don’t require endpoint layers. However, a shock layer
between the two outer limits is needed at x = 1/2.

A semilinear example with (at least) two solutions having both boundary
and corner layers is contained in O’Donnell [356]. It is the system{

εy′′1 =
(
y1 −

∣∣x− 1
2

∣∣) (1 + y22)

εy′′2 =
(
y2 − 1 +

∣∣ 1
3 − x

∣∣) (1 + y21)

for appropriate values y1(0), y1(1), y2(0), and y2(1).
Other two-point problems are considered by Butuzov et al. [64]. Indeed,

Butuzov et al. [63] and Vasil’eva et al. [497] develop a theory for the so-
called contrast structures . See Schmeiser [439] for an application with ε-
dependent boundary conditions. Somewhat comparable asymptotic results
to those we’ve obtained are also available for certain integral equations (cf.
Shubin [454] and its references) and other functional equations.

Overview (or Proof of Asymptotic Validity)

When one solves boundary value problems asymptotically, one typically uses
only a few terms in the formal series generated, because of the effort inv-
olved and because the series generally diverge. Thus, if one knows the first
two terms y0(x, η) and y1(x, η) in a formal approximation, with the given
independent variable x and, say, a stretched variable η(x, ε) describing a
boundary or interior layer of nonuniform convergence, we might write the
actual solution y(x, ε) as

y(x, ε) = y0(x, η) + εy1(x, η) + ε2R(x, ε) (3.254)

and convert the given boundary value problem for y into a new problem
for the (scaled) remainder R. Often, we further convert the latter problem
into an integral equation for R. If we can estimate its solution R using, for
example, differential inequalities, the boundedness of R throughout the x
interval will imply that our formal result

y ∼ y0 + εy1

is asymptotically correct to O(ε2) in that interval. Such proofs are given in
Smith [466], Murdock [335], and de Jager and Jiang [224].

(d) Linear Boundary Value Problems

So far, we may have casually given the incorrect impression that singularly
perturbed boundary value problems have unique asymptotic solutions, typi-
cally consisting of an outer solution and endpoint boundary layer corrections.
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The actual situation is illustrated quite clearly by the constant linear n-
dimensional vector system

εy′ = Ay, 0 ≤ x ≤ 1 (3.255)

subject to n coupled linear boundary conditions

αy(0) + βy(1) = γ (3.256)

for scalar constants α and β and an n-vector γ. More complications naturally
occur when the entries of the matrix A vary with x.

We will assume here that the matrix A has the spectral decomposition

A = PDP−1 (3.257)

for a nonsingular constant matrix P and a block-diagonal matrix

D ≡ diag (S, 0, U) (3.258)

where S is a stable r × r matrix, 0 is the trivial s × s matrix, and U is
a t × t unstable matrix with r + s + t = n. Then the so-called shearing
transformation

y = Pz (3.259)

implies the two-point problem

εz′ = Dz, αPz(0) + βPz(1) = γ (3.260)

for z. If we split

z ≡
⎛
⎝z1
z2
z3

⎞
⎠ (3.261)

for an r-dimensional vector z1, an s-dimensional z2, and a t-dimensional z3,
bounded solutions z must be of the form⎧⎪⎪⎪⎨

⎪⎪⎪⎩
z1(x) = eSx/εz1(0),

z2(x) = z2(0),

and

z3(x) = e−U(1−x)/εz3(1)

(3.262)

for bounded endvalues z1(0), z2(0), and z3(1) that act like shooting parame-
ters in the transformed linear boundary condition

αP

⎛
⎝ z1(0)

z2(0)
e−U/εz3(1)

⎞
⎠+ βP

⎛
⎝eS/εz1(0)

z2(0)
z3(1)

⎞
⎠ = γ.
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Note that the matrix entries e−U/ε and eS/ε are asymptotically negligible.
Asymptotically, then, we obtain a unique solution

y = P

⎛
⎝ eSx/εz1(0)

z2(0)

e−
U
ε (1−x)z3(1)

⎞
⎠ (3.263)

of the given boundary value problem when we can uniquely solve the limiting
n-dimensional linear system

αP

⎛
⎝z1(0)
z2(0)
0

⎞
⎠+ βP

⎛
⎝ 0
z2(0)
z3(1)

⎞
⎠ ∼ γ (3.264)

for the shooting vectors z1(0), z2(0), and z3(1). Note that the result-
ing solution (3.263) features an r-dimensional initial layer determined by
z1(0), an s-dimensional constant outer solution determined by z2(0), and a
t-dimensional terminal layer determined by z3(1). If the Jacobian of (3.264)
(with respect to these n unknown endvalues) is singular, however, there may
be multiple solutions of the problem (3.255)–(3.256) or none at all. Gener-
alizations to block-diagonalizable slow-fast linear systems without turning
points are straightforward (cf. Harris [197], Flaherty and O’Malley [148],
and O’Malley [368]). Surveys of classical results are contained in Wasow
[512, 513], Hsieh and Sibuya [220], and Balser [25].

Wasow [511, 517] considered the higher-order variable coefficient linear
scalar equation

ε�−kL(y) +K(y) = 0, 0 ≤ x ≤ 1 (3.265)

where L(y) is an �th-order linear differential operator with leading term

y(�) (3.266)

and where K(y) is a k-th order linear differential operator with leading term

β0(x)y
(k) (3.267)

for � > k ≥ 0 and with β0(x) �= 0 throughout the interval, thereby avoiding
turning points. The prototype differential equation is

ε�−ky(�) + β0(x)y
(k) = 0.

He also prescribed r linear scalar initial conditions

Aiy(0) = γi (3.268)

for (3.265) with

Aiy = y(λi) + lower-order terms, i = 1, . . . , r (3.269)
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for decreasing orders λi as well as s linear terminal conditions

Ajy(1) = γj (3.270)

with

Ajy = y(λj) + lower-order terms, j = r + 1, . . . , r + s = � (3.271)

for decreasing λjs. (Treating boundary conditions coupling derivatives at the
two endpoints would again be more complicated.)

Assuming appropriate smoothness of the coefficients, one can construct a
complete set of � smooth linearly independent asymptotic solutions of (3.265)
of the form⎧⎪⎨

⎪⎩
Gj(x, ε)e

1
ε

∫ x(−β0(s))
1/(�−k) ds, j = 1, 2, . . . , �− k

and

Gj(x, ε), j = �− k + 1, . . . , �

(3.272)

for power series Gj to be determined and distinct roots (−β0(x))
1

�−k , gener-
alizing our WKB results for � = 2 and k = 1. (Note the fixed regular spacing
of these roots in the complex plane.) The first �−k of these solutions display
boundary layer behavior near x = 0 whenever

Re (−β0(x))
1

(�−k) < 0.

We will, more explicitly, use the representation

Gj(x, ε)e
1
ε

∫ x
0
(−β0(s))

1
�−k ds (3.273)

to specify initial layer behavior. Likewise, we will use solutions

Gj(x, ε)e
1
ε

∫ 1
x
(−β0(s))

1
�−k ds (3.274)

with terminal layers near x = 1 when

Re (−β0(x))
1

�−k > 0

holds. We suppose that
σ (3.275)

of the �-k values Re (−β0(x))
1

�−k are negative, that

τ (3.276)

are positive, and that we are in the nonexceptional case when

σ + τ = �− k. (3.277)
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(Then, none of the roots are purely imaginary.) The last k asymptotic sol-
utions (3.272) don’t feature boundary layer behavior and they can, indeed,
be found as regular perturbations of any set of linearly independent solu-
tions of the reduced equation K(y) = 0. (Solutions of the corresponding
nonhomogeneous equation

ε�−kL(y) +K(y) = f(x)

could be obtained from the � asymptotic solutions (3.272) of the homogeneous
equation by using variation of parameters.)

Note that even the harmless-looking two-point problem

ε2y′′ + y = 0, 0 ≤ x ≤ 1, y(0) = 0, y(1) = 1

hasn’t a limiting solution as ε → 0. The solution

y(x, ε) =
sin x

ε

sin 1
ε

isn’t even defined for ε = 1
nπ , n = 1, 2, . . . , and it is rapidly oscillating

otherwise. Thus, Wasow’s quest wasn’t trivial.
Writing the solution of the boundary value problem (3.265–3.271) as a lin-

ear combination of the � asymptotic solutions, we get a unique solution only
if the appropriate � × � determinant obtained from applying the prescribed
boundary conditions (3.268) and (3.270) is nonsingular for small values of ε.
Because of the special form of the differential equation and of the boundary
conditions, many entries of the determinant involve a limiting Vandermonde
form (cf. Horn and Johnson [215]), which allows us to asymptotically factor
the determinant conveniently. Indeed, it will often allow us to define a can-
cellation law , implying which k limiting boundary conditions, together with
the limiting equation K(y) = 0, will uniquely specify the limiting solution
Y (x, 0) within 0 < x < 1. With no purely imaginary roots

(−β0(x))
1

�−k ,

such arguments show that the reduced problem will consist of the reduced
equationK(y) = 0, the last r−σ limiting initial conditions (3.268) (presuming
r ≥ σ) and of the last s− τ limiting terminal conditions (3.270) (presuming
s ≥ τ). (Recall that

(r − σ) + (s− τ) = �− (�− k) = k,

the order of reduced operator K.) The general result involves more compli-
cated algebra, but the approach to take is clear in principle. See Wasow [513]
for more details.

Wasow’s study can be motivated by the simpler question of finding the
asymptotic behavior of the � roots m(ε) to the polynomial equation

ε�−kL(m) +K(m) = 0 (3.278)
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where K is a polynomial of degree k and L, a polynomial of degree � > k (cf.
Lin and Segel [291] and Murdock [335]). Indeed, one can also consider the
polynomial

f(y, ε) = f�(ε)y
� + f�−1(ε)y

�−1 + . . .+ f1(ε)y + f0(ε) = 0. (3.279)

If asymptotic expansions

fs(ε) ∼ fs0ε
ρs + . . . , fs0 �= 0 and ρs ≥ 0 (3.280)

are given for the coefficients, it would be reasonable to use a dominant balance
argument to seek asymptotic solutions satisfying

y ∼ ενpyp, yp �= 0 (3.281)

that provide a limiting balance in (3.279). This is the basis of the Newton
polygon method. Knowing the limiting approximations (3.281) for the roots,
we can readily improve upon them.

To solve problems (3.265–3.271) asymptotically, we don’t need the cum-
bersome machinery of matched asymptotic expansions. Indeed, the advances
made by the distinguished American lineage, G. D. Birkhoff, R. E. Langer,
H. L. Turrittin, and W. A. Harris, among others, between 1908 and 1960
suffice for such problems, until we encounter turning points or nonlinearities
(cf. Turrittin [488] and Schissel [435]). They simply construct, algorithmi-
cally, a full linearly independent set of asymptotic solutions. We observe that
they were most likely completely unaware of Prandtl’s boundary layer the-
ory, though they knew the work of the Germans Fuchs and Frobenius in the
nineteenth century and more recent developments by pure mathematicians
worldwide. In quite a different direction, Devaney [117] considers complex
maps of the form P (z) + λ

(z−a)d
for polynomials P , d > 0, and λ small.

We note that one way to obtain high-order singularly perturbed differen-
tial equations like (3.265) is to consider initial function problems for delay
equations

ẋ(t) = f(x(t), x(t− τ))

for small values of the delay τ > 0. In particular, if one expands f to some
finite order in powers of τ , the highest time derivative occurring will be
multiplied by the corresponding power of τ . The resulting long-term solution
behavior of the original delay equation and of the approximating differential
equation (under suitable hypotheses) can be expected to agree (cf. Chicone
[88] and Erneux [143]).

Examples

1. Consider the singularly perturbed problem

ε2y′′′′ − y′′ = 0, 0 ≤ x ≤ 1 (3.282)
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with prescribed boundary values

y′′′(0), y(0), y′(1), and y(1). (3.283)

Linearly independent solutions of the differential equation are given by

e−x/ε, ex/ε, 1, and x

(as can be immediately verified), so we naturally seek a solution of the
boundary value problem in the form

y(x, ε) = a(ε) + b(ε)x+ ε3c(ε)e−x/ε + εd(ε)e−(1−x)/ε (3.284)

for constants a, b, c, and d to be asymptotically determined as power
series in ε (for scale factors ε3 and εe−1/ε introduced to simplify
later algebra). Formulas for the derivatives of y follow directly. The
boundary conditions (omitting only asymptotically negligible coeffi-

cients like e−1/ε

ε2 ) imply that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y′′′(0) ∼ −c(ε)

y(0) ∼ a(ε) + ε3c(ε)

y′(1) ∼ b(ε) + d(ε)

and

y(1) ∼ a(ε) + b(ε) + εd(ε).

(3.285)

Solving these linear equations implies that the unique asymptotic solu-
tion of our two-point problem (3.282–3.283) has the form

y(x, ε) ∼ [y(0) + ε2y′′′(0)]

+
x

1− ε
[y(1)− εy′(1)− y(0)− ε3y′′′(0)]− ε3y′′′(0)e−x/ε

+
εe−(1−x)/ε

1− ε
[y(0) + ε3y′′′(0) + y′(1)− y(1)]. (3.286)

The limiting solution

Y0(x) = y(0) + (y(1)− y(0))x (3.287)

exactly satisfies the reduced problem

Y ′′
0 = 0, Y0(0) = y(0), Y0(1) = y(1), (3.288)

so a cancellation law applies. y′ will converge to Y ′
0 , but nonuniformly

at x = 0 though not at x = 1, while higher derivatives of y are generally
algebraically unbounded at both endpoints when ε → 0.
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2. Boundary value problems need not have unique solutions. Consider, as
an example, the planar slow-fast nonlinear system{

ẋ = y

εẏ = − 1
2 (1 + 3x2)y

(3.289)

on 0 ≤ t ≤ 1 with the homogeneous separated boundary conditions

x(0, ε) + εy(0, ε) = 0 and x(1, ε) = 0. (3.290)

The two-point problem certainly has the trivial solution. Because
− 1

2 (1+ 3x2) < 0, we might anticipate having an initial layer. Thus, we
naturally seek a nontrivial asymptotic solution of the form{

x(t, ε) = X(t, ε) + u(τ, ε)

y(t, ε) = Y (t, ε) + 1
ε v(τ, ε)

(3.291)

with an initial layer correction

(
u
v
ε

)
tending to zero as the stretched

variable

τ =
t

ε
(3.292)

tends to infinity, thereby anticipating an initial impulse in the fast
variable y and nonuniform convergence in the slow. Then, the outer

solution

(
X
Y

)
must satisfy the given system

{
Ẋ = Y

εẎ = − 1
2 (1 + 3X2)Y

(3.293)

as a power series in ε, together with the terminal condition

X(1, ε) = 0. (3.294)

A regular perturbation procedure readily implies that this outer expan-
sion is trivial to all orders εk. Thus, the initial layer correction must
satisfy the initial value problem{

du
dτ = v
dv
dτ = − 1

2 (1 + 3u2)v
(3.295)

with
u(0, ε) + v(0, ε) = 0 (3.296)

and the asymptotic stability condition as τ → ∞. Since dv
dτ = − 1

2 (1 +

3u2)dudτ , integrating from infinity implies that −2v = u+ u3, leaving us
the initial value problem

du

dτ
= −(1 + u2)

u

2
, u(0, ε) = u3(0, ε) (3.297)
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The three possible initial values are

u(0, ε) = 0, 1, and − 1. (3.298)

The two resulting nontrivial solutions are readily found as solutions of
the Bernoulli equation for u to be

x(t, ε) =
±1√

2et/ε − 1
(3.299)

and

y(t, ε) = ∓1

ε

et/ε

(
√
2et/ε − 1)3

. (3.300)

3. Smith [466] considers the nonlinear two-point problem for

ε2ẍ = (x2 − 1)(x2 − 4). (3.301)

With boundary values x(0) = x(1) = 1
2 , he obtains a solution with

the outer limit 2 and another with the outer limit −1 (with endpoint
layers). However, with the boundary values ẋ(0) = 0 and x(1) = 1

2 , he
obtains a solution with outer limit 2 and another with outer limit −1
(and terminal layers).

To determine the limiting behavior of solutions to singularly perturbed
boundary value problems, it is helpful to know about the possibilities exhib-
ited by a variety of solved examples. In this regard, readers are especially
referred to the work of the late Fred Howes (cf., e.g., Howes [217], Chang
and Howes [76]) who used many explicit examples to motivate more general
results. The subtleties arising suggest that blind computation may often be
useless. Other challenging problems can, for example, be found in Smith
[466], Carrier [70], Bogaevski and Povzner [50], Hinch [206], Johnson [226],
Verhulst [500], Cousteix and Mauss [104], Ablowitz [1], Holmes [209], and
Paulsen [387], and in the following.

Exercises

1. Show that the asymptotic solution of{
ε2y′′′′ − y′′ = x2,

y(0) = 0, y′(0) = 1, y′(1) = 2, and y′′(1) = 3

is given by

y(x, ε) = − 1

12
(x4 − 28x) +

4ε

3

(
−3x− 1 + e−x/ε

)
+ ε2

(
−x2 + 2x+ 4− 4e−x/ε + 4e−(1−x)/ε

)
+O(ε3).
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2. Approximate the eigenvalues λ(ε) and the corresponding eigenfunctions
y(x, ε) for {

ε2y′′′′ − y′′ = λy, 0 ≤ x ≤ 1

y(0) = y′(0) = y(1) = y′(1) = 0

(cf. Moser [329], Handelman et al. [193], and Frank [156]).

3. Show that the following boundary value problems have no limiting
solution as ε → 0+:

(a) εy′′ − y′ = 0, y′(0) = 1, y(1) = 0

(b) ε2y′′′ + y′ = 0, y′(0) = 0, y(0) = y′(1) = 1.

4. Consider the initial value problem

εẏ = A(t)y, t ≥ 0, with y(0) given

when

A(t) = U−1(t)

(−1 η/ε
0 −1

)
U(t)

for

U(t) =

(
cos t sin t
− sin t cos t

)
.

Show that solutions for η > 2 can be unbounded, even through A(t)
remains stable. Hint: Solve for v = Uy (cf. Kreiss [263]).

5. Solve

εy′′ + xy′ = x

on 0 ≤ x ≤ 1 with y(0) = y(1) = 1 and describe the limiting behavior
as ε → 0.

6. Show how one can find an asymptotic solution of the two-point problem

εy′′ + (1 + x2)y′ + 2xy = x, 0 ≤ x ≤ 1

in the form

y(x, ε) = A(x, ε) + e−
1
ε

∫ x
0
(1+s2) ds (y(1)−A(1, ε)) .

7. Consider the nonlinear two-point problem

εy′′ = y′ − (y′)3, y(0) = 0, y(1) =
1

2
.

(Hint: The equation for z = y′ can be integrated explicitly.)
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Show that the (angular) limiting solution satisfies

y(x, ε) →
{
0, 0 ≤ x ≤ 1

2

x− 1
2 ,

1
2 ≤ x ≤ 1.

Why couldn’t you obtain

y(x, ε) →
{
−x, 0 ≤ x ≤ 1

4

x− 1
2 ,

1
4 ≤ x ≤ 1?

Such problems are discussed in Chang and Howes [76] and elsewhere.
The original reference is Haber and Levinson [189]. Also, see Vishik
and Lyusternik [506].

8. Müller et al. [333] considered the two-point problem{
εy′′ = y3, 0 < x < 1

y(0) = 1, y(1) = 2.

(a) Obtain the exact solution in terms of elliptic functions .

(b) Show that the limiting solution within 0 < x < 1 is trivial and
that

√
ε-thick endpoint layers occur.

9. Consider
εy′′ = y(y − x), y(−1) = 0, y(1) = 1.

Show that the inverse function x(y) satisfies

ε
d2x

dy2
= y(x− y)

(
dx

dy

)3

, x(0) = −1, x(1) = 1

(cf. Howes [218]).

10. Pokrovskii and Sobolev [395] consider the piecewise linear system{
ẋ = 1,

εẏ = x+ |y|.
(a) Determine typical trajectories numerically.

(b) Show that

y =

{
x− ε, x < ε

2εe(x−ε)/ε − x− ε, x ≥ ε

and

y =

⎧⎪⎨
⎪⎩
−x− ε, x < −ε

2εe−(x+ε)/ε + x− ε, − ε < x < εν

ε(1 + ν)e(x−νε)/ε − x− ε, εν < ε

are invariant manifolds where ν is a root of 2e−1−ν + ν − 1 = 0.
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Lomov [298] used the scalar initial value problem

εu′ +
2u

1 + x2
= 2

(
3 + (tan−1 x)2

1 + x2

)
, u(0) = 1, x ≥ 0 (3.302)

to introduce singular perturbations. The reduced problem has the solution

U0(x) = 3 + (tan−1 x)2.

Let us seek an outer expansion

U(x, ε) = U0(x) + εU1(x) + ε2U2(x) + . . . (3.303)

Substituting this series into (3.302) requires

εU ′
0 + ε2U ′

1 + . . .+
2

1 + x2
(U0 + εU1 + ε2U2 + . . .) =

2

1 + x2

(
3 + (tan−1 x)2

)
.

The ε coefficient implies that U ′
0 = − 2U1

1+x2 , so

U1(x) = tan−1 x.

Next the ε2 coefficient implies that U ′
1 = − 2U2

1+x2 , or

U2(x) =
1

2
.

Higher coefficients imply that Uk = 0 for k ≥ 3, so we have found an exact
outer solution

U(x, ε) = 3 + (tan−1 x)2 + ε tan−1 x+
ε2

2
(3.304)

of the differential equation. The homogeneous differential equation has the
complementary solution

e
− 2

ε

∫ x ds
1+s2 = e−

2
ε tan−1 xk,

so the exact solution of our initial value problem (3.302) is

u(x, ε) = U(x, ε) + e−
2
ε tan−1 x(1− U(0, ε)). (3.305)

Note that the second term is an initial layer correction increasing from −2− ε2

2

when x = 0 to 0 as tan−1 x
ε → ∞. It is essential since the outer solution doesn’t

satisfy the prescribed initial condition. By contrast, the matched expansion
solution would have the additive form

u(x, ε) = U(x, ε) + v(ξ, ε) (3.306)
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where v → 0 as ξ = x/ε → ∞. Since the initial layer correction v must satisfy

dv

dξ
+

2

1 + ε2ξ2
v = 0, v(0, ε) = u(0)− U(0, ε), (3.307)

its leading term v0 must satisfy dv0

dξ + 2v0 = 0 and v0(0) = −2. Thus,

v0(ξ) = −2e−2ξ (3.308)

approximates the exact initial layer correction −e−
2
ε tan−1 x

(
2 + ε2

2

)
.

The more general scalar problem

εu′ = a(x)u+ b(x), x ≥ 0 (3.309)

has the exact solution

u(x, ε) = e
1
ε

∫ x
0

a(s) ds u(0) +
1

ε

∫ x

0

e
1
ε

∫ x
t

a(s) ds b(t) dt. (3.310)

(as noted earlier). Assuming that

a(x) < 0, (3.311)

the homogeneous solution

e
1
ε

∫ x
0

a(s) ds

features nonuniform convergence from 1 to 0 in an O(ε)-thick initial layer.
Again, it is natural to seek an asymptotic solution of (3.309) in the form

u(x, ε) = U(x, ε) + e
1
ε

∫ x
0

a(s) ds(1− U(0, ε)) (3.312)

for an outer expansion

U(x, ε) = U0(x) + εU1(x) + ε2U2(x) + . . . . (3.313)

Then U must satisfy (3.309) as a power series in ε. Equating coefficients
successively, we will need

a(x)U0 + b(x) = 0, a(x)U1 = U ′
0, a(x)U2 = U ′

1,

etc., so we uniquely obtain the expansion

U(x, ε) = − b(x)

a(x)
− ε

a(x)

(
b(x)

a(x)

)′
− ε2

a(x)

(
1

a(x)

(
b(x)

a(x)

)′)′
+ . . . (3.314)
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presuming sufficient smoothness of the coefficients a and b. As we’d expect,
this also follows from (3.310) using repeated integration by parts. Rewriting

u(x, ε) = e
1
ε

∫ x
0

a(s) ds
(
u(0)− ∫ x

0
d
dt

(
e−

1
ε

∫ t
0
a(s) ds

)
b(t)
a(t)dt

)
= e

1
ε

∫ x
0

a(s) ds
(
u(0)− e−

1
ε

∫ x
0

a(s) ds b(x)
a(x) +

b(0)
a(0)

+
∫ x

0
e−

1
ε

∫ t
0
a(s) ds

(
b(t)
a(t)

)′
dt

)
= − b(x)

a(x) + e
1
ε

∫ x
0

a(s) ds
(
u(0) + b(0)

a(0)

)
+

∫ x

0
e

1
ε

∫ x
t

a(s) ds d
dt

(
b(t)
a(t)

)
dt

= − b(x)
a(x) − ε

a(x)
d
dx

(
b(x)
a(x)

)
+e

1
ε

∫ x
0

a(s) ds
(
u(0) + b(0)

a(0) +
ε

a(0)
d
dx

(
b(x)
a(x)

)
x=0

)
+O(ε2),

we readily obtain the anticipated asymptotic approximation to any desired
number of terms.

Next, applying the preceding result componentwise shows that the vector
equation

εv′ = ∧(x)v + k(x) (3.315)

has an asymptotic solution of the form

v(x, ε) = ∨(x, ε) + e
1
ε

∫ x
0

∧(s) ds(v(0)− ∨(0, ε)) (3.316)

when the state matrix ∧ is an n× n diagonal matrix with stable eigenvalues
λi, and ∨ is an outer expansion satisfying a system

ε∨′ = ∧(x) ∨+k(x) (3.317)

as a regular power series in ε. Because e
1
ε

∫ x
0

Λ(s) ds is diagonal with non-
trivial decaying entries e

1
ε

∫ x
0

λi(s) ds, the asymptotic solution of (3.315) is an
additive function of the slow variable x and the fast variables 1

ε

∫ x

0
λi(s) ds,

i = 1, . . ., n.
More generally, consider the vector system

εu′ = A(x)u+ b(x) (3.318)

when the state matrix A can be factored as

A(x) = M(x) ∧ (x)M−1(x) (3.319)

for a smooth invertible n×n matrix M and a diagonal matrix ∧ with distinct
smooth stable eigenvalues λi(x), i = 1, . . ., n. The kinematic change of
variables

u = M(x)v (3.320)

converts the equation (3.318) to the nearly diagonal form

εv′ = (∧ − εM−1M ′)v +M−1b (3.321)
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which has an asymptotic solution

v(x, ε) = ∨(x, ε) + e
1
ε

∫ x
0

∧(s) ds w(x, ε) (3.322)

where V (x, ε) and w(x, ε) have power series expansions (cf. Lomov [298] and
Wasow [513]). Their expansions can be obtained via undetermined coefficient
methods.

If we can diagonalize the matrix D(t), assuming it is stable, we can simi-
larly treat the initial value problem for the slow-fast linear vector system

ẋ = A(t)x+B(t)y

εẏ = C(t)x+D(t)y
(3.323)

and interpret the result in terms of using the slow time t and the fast times
1
ε

∫ t

0
λi(s) ds where the λi(t)s are stable (nonrepeated) eigenvalues of D(t).

Block diagonalization of a conditionally stable matrixD might similarly allow
us to treat certain two-point problems. Readers might look ahead to Example
16 in Chap. 6.

Historical Remarks

The work of Kaplun and Lagerstrom at Caltech in the 1950s was especially
important to the development of matched expansions and its applications to
fluid mechanics. Comparable work was simultaneously done by Proudman
and Pearson at Cambridge University in England (cf. Proudman and Pearson
[403]). Paco Lagerstrom (1914–1989), a Swedish-born Princeton math Ph.D.,
was Saul Kaplun (1924–1964)’s thesis advisor in 1954. (Contemporaries
suggest they may have had an intimate personal, as well as professional, re-
lationship.) The Polish-born Kaplun only published three papers, although
Lagerstrom and others published a (not thoroughly edited) collection of his
unfinished work as a monograph, Kaplun [237]. This and a book of reminis-
cences, My Son Saul [236] by his father and others and various memorials
(at Caltech and Tel Aviv) made Kaplun into a hero of applied asymptotics
in the 1960s. Lagerstrom persistently pursued their insights about matching
for the next quarter century, using a limit process approach based upon the
presumed overlapping domains of validity of the inner and outer expansions.
Lagerstrom’s book Matched Asymptotic Expansions [276] appeared in 1988,
as he wrote,

after a long sequence of earlier drafts.

Edward Fraenkel (in [155]) and Wiktor Eckhaus (in [133]) both insisted that
existence of an overlap was not necessary for matching to succeed. Even after
Lagerstrom’s passing, Eckhaus [136] renewed the controversy, suggesting that
the Kaplun extension theorem (intended to justify matching) could be based
on Robinson’s lemma in nonstandard analysis (cf. Diener and Diener [120]).
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One fascinating example from Eckhaus [132], used in Lagerstrom [276], is the
linear two-point problem

(ε+ x)u′′ + u′ = 1, u(0) = 0, u(1) = 2. (3.324)

Since x is an exact solution of the differential equation, one readily finds the
exact solution

u(x, ε) = x+
ln ε− ln(x+ ε)

ln ε− ln(1 + ε)
(3.325)

of the two-point problem. Note the initial layer.
Wiktor Eckhaus (1930–2000) was a significant contributor to both the

nonlinear stability and singular perturbation literatures who had a number
of productive students at Delft and Utrecht, including Ferdinand Verhulst,
Johan Grasman, and Arjen Doelman, and the insightful early collaborator
Eduardus de Jager. Verhulst, in turn, is known for his well-written texts
on dynamical systems, averaging, singular perturbations and, most recently,
Poincaré. He founded a publishing house, Epsilon, which produced math-
ematical monographs and textbooks in Dutch. Fortunately for most of us,
later editions of many of its publications appeared in English from other
publishers.
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