
Chapter 2

Asymptotic
Approximations

(a) Background

Leonhard Euler (1707–1783), among others in the eighteenth century, was
adept at manipulating divergent series, though usually without careful jus-
tification (cf. Tucciarone [487], Barbeau and Leah [26], and Varadarajan
[493]). Note, however, Hardy’s conclusion

. . . it is a mistake to think of Euler as a “loose” mathematician.

As with singular perturbations, the ideas behind asymptotic approxima-
tions were not well understood until about 1900. They were presumably
unknown to Prandtl in Munich and Hanover. For a classical treatment of
infinite series , see, e.g., Rainville [404].

See Olver [360] for an example of a semiconvergent or convergently begin-
ning series. They were defined as follows in P.-S. Laplace’s Analytic Theory
of Probabilities (whose third edition of 1820 is now available online as part
of his complete work):

The series converge fast for the first few terms, but the conver-
gence worsens, and then comes to an end, turning into a diver-
gence. This does not hinder the use of the series if one uses only
the first few terms, for which convergence is rather fast. The
residual of the series, which is usually neglected, is small in com-
parison to the preceding terms.

(This translation is from Andrianov and Manevitch [10].)
Throughout most of the nineteenth century, a strong reaction against di-

vergent series, led by the analyst Cauchy, nearly banned their use (especially
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in France). (Augustin-Louis Cauchy (1789–1857) was a professor at École
Polytechnique from 1815–1830. Afterwards, he held other positions, some-
times in exile, because his conservative religious and political stances made
him refuse to take a loyalty oath.) Note, however, Cauchy [73]. In 1828, the
Norwegian Niels Abel (1802–1829) wrote:

Divergent series are the invention of the devil, and it is shameful
to base on them any demonstrations whatsoever. By using them,
one may draw any conclusion he pleases and that is why these
series have produced so many fallacies and so many paradoxes.

Verhulst [500] has a similar quote from d’Alembert. Kline [255] includes
considerable material regarding divergent series. In particular, he points out
that Abel continued

That most of the things are correct in spite of that is extraordi-
narily surprising. I am trying to find a reason for this; it is an
exceedingly interesting question.

Further, Kline quotes the logician Augustus De Morgan of University College
London as follows:

We must admit that many series are such as we cannot at present
safely use, except as a means of discovery, the results of which are
to be subsequently verified and the most determined rejector of
all divergent series doubtless makes use of them in his closet . . .

Finally, the practical British engineer Oliver Heaviside wrote

The series is divergent; therefore, we may be able to do something
with it.

In his Electromagnetic Theory of 1899, Heaviside also wrote

It is not easy to get up any enthusiasm after it has been artifi-
cially cooled by the rigorists. . . There will have to be a theory of
divergent series.

Attitudes and developments no doubt somewhat reflect the alternations in
French and European politics during those turbulent times. Abel summability
of power series was originated by Euler, but it is usually named after Abel.
Roy [427] reports that Abel called the technique

horrible,

saying
Hold your laughter, friends.

In 1886, however, Henri Poincaré (1854–1912) and Thomas Joannes
Stieltjes (1856–1894), simultaneously and independently, provided the valu-
able definition of an asymptotic approximation and illustrated its use and
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practicality. Their papers were, respectively, published in Acta Math. and
Ann. Sci. École Norm. Sup. (cf. Poincaré [393] and Stieltjes [475]). The
latter was Stieltjes’ dissertation. Stieltjes called the series semi-convergent.
Poincaré (a professor at the Sorbonne and École Polytechnique) had studied
with Hermite, who was in close contact with Stieltjes, primarily through let-
ters (cf. Baillaud and Bourget [20]). Like most others, we tend to emphasize
the special significance of Poincaré because of his important later work on
celestial mechanics, basic to the two-timing methods we will later consider
(see the centennial biographies, Gray [182] and Verhulst [502]). Stieltjes was
Dutch, but successfully spent the last 9 years of his short life in France.

In contrast to convergent series, a couple of terms in an asymptotic series,
in practice, often provide a good approximation. This is especially true for
singular perturbation problems, as we shall find. McHugh [310] and Schissel
[435] connect the topic to the classical ordinary differential equations litera-
ture. One’s first contact with asymptotic series may be for linear differential
equations with irregular singular points (cf. Ford [151], Coddington and
Levinson [91], or Wasow [513]). An example is provided by the differential
equation

x2y′′ + (3x− 1)y′ + y = 0

which has the formal power series solution

∞∑

k=0

k!xk,

convergent only at x = 0. The same series arises (as we will find) in expanding
the exponential integral, while the series

x

∞∑

k=0

(−1)kk!xk

formally satisfies
x2y′ + y = x.

The most popular book on asymptotic expansions may be Erdélyi [141].
(My copy cost $1.35.) The Dover paperback (now an e-book) was based
on Caltech lectures from 1954 and was originally issued as a report to the
U.S. Office of Naval Research. The material is still valuable, including oper-
ations on asymptotic series, asymptotics of integrals, singularities of differ-
ential equations, and differential equations with a large parameter. Arthur
Erdélyi (1908–1977) came to Caltech in 1947 to edit the five-volume Bateman
Manuscript Project (based on formulas rumored to be in Harry Bateman’s
shoebox collection. Bateman was a prolific faculty member at Caltech from
1917 to 1946.) Erdélyi remained in Pasadena until 1964 when he returned
to the University of Edinburgh to take the Regius chair that had been held
by his hero, E. T. (later Sir Edmund) Whittaker, from 1912 to 1946. (Whit-
taker wrote A Course in Modern Analysis in 1902 and was coauthor with
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G. N. Watson of subsequent editions from 1915 (cf. [521]).) Influenced by
the work feverishly underway among engineers at GALCIT, Erdélyi and some
math graduate students also got involved in studying singular perturbations
(one was the author’s own thesis advisor, Gordon Latta, whose 1951 thesis
[281] had H. F. Bohnenblust as advisor). Erdélyi’s Asymptotic Expansions
was much influenced by E. T. Copson’s Admiralty Computing Service re-
port of 1946, commercially published by Cambridge University Press in 1965
[98], and by the work of Rudolf Langer, Thomas Cherry, and others in the
1930s regarding turning points. Much more applied mathematical activity
involving asymptotics took place in Pasadena after Caltech started its applied
math department about 1962, initially centered around Donald Cohen, Julian
Cole, Herbert Keller, Heinz-Otto Kreiss, Paco Lagerstrom, Philip Saffman,
and Gerald Whitham, among others contributing to practical applied asymp-
totics. Their students have meanwhile been most influential in the field.

The historical background to Cauchy’s own work on divergent series is
well explained by the French mathematician Émile Borel (1871–1956) in Borel
([52], originally from 1928). Borel wrote:

The essential point which emerges from this hasty review of
Cauchy’s work on divergent series is that the great geometer
never lost sight of this matter and constantly searched this
proposition, which he called

a little difficult,

that a divergent series does not have a sum. Cauchy’s immediate
successors, on the contrary, accepted the proposition with neither
extenuation nor restriction. They remembered the theory only as
applied in Stirling’s formula, but the possibility of practical use
of that divergent series seemed to be a totally isolated curiosity
of no importance from the point of view of general ideas which
one could try to develop on the subject of analysis.

Andrianov and Manevitch [10], among others, report that Borel traveled
to Stockholm to confer with Gösta Mittag-Leffler, after realizing that his sum-
mation method of 1899 gave the “right” answer for many classical divergent
series. Placing his hand on the collected works of his teacher Weierstrass,
Mittag-Leffler said, in Latin,

The master forbids it.

Nonetheless, Borel had won the first prize in the 1898 Paris Academy com-
petition “Investigation of the Leading Role of Divergent Series in Analysis.”
See Costin [101] for an update on Borel summability .

Another important early book [196] on divergent series is by the British
mathematician G. H. Hardy (1877–1946), a leading British pure mathemati-
cian and a professor successively at both Oxford and Cambridge. It was
published posthumously in 1949 with a preface by his colleague J. E. Little-
wood saying:
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about the present title, now colourless, there hung an aroma of
paradox and audacity.

Hardy’s introductory chapter is especially readable, filled with interesting and
significant historical remarks. The book has none of the anti-applied slant nor
personal reticence (cf. Hardy [195], Littlewood [296], or Leavitt [282]) often
linked to Hardy. Overall the monograph is quite technically sophisticated, as
is his related Orders of Infinity [194].

Olver’s Asymptotics and Special Functions [360] includes a rigorous, but
very readable, coverage of asymptotics, with a computational slant toward
error bounds. (British-born and educated, Olver came to the United States
in 1961.) At age 85, Frank Olver (1924–2013) was the mathematics editor of
the 2010 NIST Digital Library of Mathematical Functions [361] and of the
associated Handbook, the web-based successor to Abramowitz and Stegun [2]
(which originated at the U.S. National Bureau of Standards, the predeces-
sor of the National Institute of Standards and Technology, and which may
have been the most popular math book since Euclid.) It demonstrates that
asymptotics is fundamental to understanding the behavior of special func-
tions, which still remain highly relevant in this computer age.

Among many other mathematics books deserving attention by those wish-
ing to learn asymptotics are Dingle [123], Bleistein and Handelsman [45],
Bender and Orszag [36], Murray [338], van den Berg [40], Wong [525], Ramis
[405], Sternin and Shatalov [473], Jones [229], Costin [101], Beals and Wong
[33], Paris [386], and Paulsen [387]. Readers will appreciate their individual
uniqueness and may develop their own personal favorites.

(b) Asymptotic Expansions

In the following, we will write

(i)
f(x) ∼ φ(x) as x → ∞ (2.1)

if f(x)
φ(x) then tends to unity. (We will say that f is asymptotic to φ as

x > 0 becomes unbounded.)

(ii)
f(x) = o(φ(x)) as x → ∞ (2.2)

if f(x)
φ(x) → 0 (Alternatively, one can write f � φ.) and

(iii)
f(x) = O(φ(x)) as x → ∞ (2.3)

if f(x)
φ(x) is then bounded.
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We often call these relations asymptotic equality and the little o and big
O Landau (or Bachmann–Landau) order symbols (after the number theorists
who introduced them in 1894 and 1909, respectively). (Olver [360] calls the
O symbol a fig leaf, since the implied bound (which would be very useful
when known) isn’t provided.) Warning : We need to be especially careful
when the comparison function φ has zeros as x → ∞. The symbol tilde ∼ is
used to distinguish asymptotic equality from ordinary equality.

As our basic definition, we will use (after Olver): A necessary and suffi-
cient condition that f(z) possess an asymptotic (power series) expansion

f(z) ∼ a0 +
a1
z

+
a2
z2

+ . . . as z → ∞ in a region R (2.4)

is that for each nonnegative integer n

zn

{
f(z)−

n−1∑

s=0

as
zs

}
→ an (2.5)

as z → ∞ in R, uniformly with respect to the allowed phase (i.e., argument)
of z. The coefficients aj are uniquely determined (as for convergent series).
They’re not always the Taylor series coefficients, however. Also note that
the limit point ∞ can be replaced by any other point and that (2.5) can be
interpreted to be a recurrence relation for the coefficients an of (2.4).

An important case, often arising in applications, occurs when the asymp-
totic expansion with respect to 1

z depends on a second parameter, say θ.
When the second parameter takes on (or tends to) a critical value θc, the
expansion may become invalid. The asymptotic expansion is then said to be
nonuniform with respect to θ.

Convergence factors are sometimes introduced to “make” divergent series
converge. Likewise, the Borel–Ritt theorem is often invoked to provide a
holomorphic sum to a divergent series (cf. Wasow [513]).

We also note, less centrally, that Martin Kruskal [266] perceptively intro-
duced the term asymptotology as the art of handling applied mathematical
systems in limiting cases, formulating seven underlying “principles” to be
adhered to (cf. the original paper and Ramnath [406]). (They are simplifica-
tion, recursion, interpolation, wild behavior, annihilation, maximum balance,
and mathematical nonsense.)

A very useful elementary technique to obtain asymptotic approximations
is the common method of integration by parts . We illustrate the technique
by considering the exponential integral

Ei(z) ≡
∫ z

−∞

et

t
dt, (2.6)

with integration taken along any path in the complex plane, cut on the pos-
itive real axis, with |z| large. Repeated integration by parts gives

Ei(z) =
ez

z
+

∫ z

−∞

et

t2
dt =

ez

z
+

ez

z2
+ 2

∫ z

−∞

et

t3
dt,
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etc., so for any integer n > 0, we obtain

Ei(z) =
ez

z

(
n∑

k=0

k!

zk
+ en(z)

)
(2.7)

for the (scaled) remainder

en(z) ≡ (n+ 1)! ze−z

∫ z

−∞

et

tn+2
dt. (2.8)

If we define the region R by the conditions Rez < 0 and | arg(−z)| < π, so
that |et−z| ≤ 1 there, we find that

|en(z)| ≤ (n+ 1)!

|z|n+1
, (2.9)

i.e. the error after using the first n+1 terms in the power series for ze−zEi(z)
is less in magnitude than the first neglected term in the series when z → ∞ in
the sector of the left half plane. Thereby, as expected, the series expansion is
asymptotic there. (Recall an analogous error bound, and the related pincer
principle, for real power series whose terms have alternating signs.)

For n = 1,

Ei(z) =
ez

z

(
1 +

1

z
+ e1(z)

)

with |e1(z)| ≤ 2
|z|2 in the open sector R. For z fixed, the error is bounded.

Moreover, we can nicely approximate Ei(z) there by using the first two terms

ez
(
1

z
+

1

z2

)

of the sum if we simply let |z| be sufficiently large. This is in sharp contrast
to using a convergent expansion in powers of 1

z , where we would typically
need to let the number n of terms used become large in order to get a good
approximation for any given z within the domain of convergence.

More surprising is the idea of optimal truncation (cf. White [519] and
Paulsen [387]). A calculus exercise shows that for any given z, the absolute
values of successive terms (i.e., our error bound) in the expansion (2.7) reach
a minimum, after which they increase without bound. (Numerical tables for
this example are available in a number of the sources cited.) This minimum
occurs when n ∼ |z|, so if this asymptotic series is truncated just before then,
the remainder will satisfy

|en(z)| ≤
√

2π

|z| e
−|z| (2.10)
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when we use Stirling’s approximation

Γ(x) = (x− 1)! ∼
(x
e

)x
√

2π

x

(
1 +

1

12x
+

1

288x2
+ . . .

)
as x → ∞ (2.11)

for (|z| + 1)! (cf., e.g., Olver [360]). The latter series diverges for all x, but
gives the remarkably good approximation 5.9989 for the rather small x = 4.

Spencer [470] states

Surely the most beautiful formula in all of mathematics is
Stirling’s formula . . . How do the two most important funda-
mental constants, e and π, find their way into an asymptotic
formula for the product of integers?

Equation (2.11) seems actually to be due to both de Moivre and Stirling (cf.
Roy [427]). This error bound for Ei(z) is, indeed, asymptotically smaller in
magnitude as |z| → ∞ than any term in the divergent series! Thus, this
bound is naturally said to display asymptotics beyond all orders.

Paris [386] points out that similar exponential improvements via optimal
truncation can often be achieved. He cites the following theorem of Fritz
Ursell [489]:

Suppose f(t) is analytic for |t| < R with the Maclaurin expansion

f(t) =

∞∑

n=0

Cnt
n

there and suppose that

|f(t)| < Keβt

for r ≤ t < ∞ and positive constants K and β. Then (using the greatest
integer function [ ]), he obtains

∫ ∞

0

e−xtf(t)dt =

[rx]∑

n=0

Cnn!

xn+1
+O(e−rx)

as x → ∞. Thus, the Maclaurin coefficients of f(t) (about t = 0) provide
the asymptotic series coefficients for its Laplace transform (about x = ∞)
(because the kernel e−xt greatly discounts other t values).

We shouldn’t extrapolate too far from the example Ei(z) or Ursell’s the-
orem. The often-made suggestion to truncate when the smallest error is
attained is not always appropriate. (Convergent series, indeed, attain their
smallest error (zero) after an infinite number of terms.) However, we point out
that considerable recent progress has resulted using exponential asymptotics,
by reexpanding the remainder repeatedly and truncating the asymptotic ex-
pansions optimally each time (cf. Olde Daalhuis [358] and Boyd [55–57]).



(B). ASYMPTOTIC EXPANSIONS 35

Boyd tries to explain the divergence of the formal regular power series ex-
pansion

u(x, ε) =

∞∑

j=0

ε2j
d2jf

dx2j
(2.12)

as an asymptotic solution of

ε2u′′ − u = f(x), − 1 ≤ x ≤ 1

by using the representation

u(x, ε) =

∫ ∞

−∞

F (k)

1 + ε2k2
eikx dk

of the solution as an inverse Fourier transform (cf. Boyd [56]) with F being
the transform of f . A critical point is the finite radius of convergence of the
power series for 1

1+ε2k2 . Boyd seems to be first of many authors to quote
Gian-Carlo Rota [421]:

One remarkable fact of applied mathematics is the ubiquitous
appearance of divergent series, hypocritically renamed asymptotic
expansions. Isn’t it a scandal that we teach convergent series to
our sophomores and do not tell them that few, if any, of the
series they meet will converge? The challenge of explaining what
an asymptotic expansion is ranks among the outstanding taboo
problems of mathematics.

In addition to asymptotic power series to approximate a given function,
it will often be helpful to use more general asymptotic expansions

∑

n≥0

anφn(ε).

Here, the ans are constants and we will suppose that {φn} is an asymptotic
sequence of monotonic functions (or scale) satisfying

φn+1

φn
→ 0 as ε → 0, n = 0, 1, 2, . . . , (2.13)

generalizing the powers. We will again let the symbol tilde (∼) denote asymp-
totic equality

f(ε) ∼
∞∑

n=0

anφn(ε) (2.14)

where for any integer N > 0

f(ε) =

N∑

n=0

anφn(ε) +O(φN+1). (2.15)
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Often, it will be helpful to limit N and to restrict ε to appropriate complex
sectors (about, perhaps, the positive real half axis). In the special case of
an asymptotic power series, we simply have φn(ε) = εn. Note that the
coefficients in (2.14) are uniquely determined since

aJ = lim
ε→0

(
f(ε)−∑J−1

n=0 anφn(ε)

φJ(ε)

)
for each J. (2.16)

To multiply asymptotic expansions (2.14), it is convenient if the sequence
satisfies

φn(ε)φm(ε) = φn+m(ε)

for all pairs n and m. (Determining an appropriate asymptotic sequence
{φn}, to use for a given f arising in, say, some application may not be sim-
ple, however. In response, Murdock [335] suggests a method of undetermined
gauges.) When we let the ans depend on ε, the series (2.14) is called a general-
ized asymptotic expansion. Their coefficients an(ε) are then no longer unique.
Such expansions are, nonetheless, commonly used, here and elsewhere.

Some further write

f ∼
∞∑

n=0

fn(ε)

whenever

f(ε)−
N∑

n=0

fn(ε) = o(φN (ε))

for every N .
An important scale is the Hardy field of “logarithmico-exponential” func-

tions, consisting of those functions obtained from ε by adding, multiplying,
exponentiating, and taking a logarithm a finite number of times.

We note the important fact that a convergent series is asymptotic. This
follows since the terms akz

k of a convergent power series or analytic function

f(z) = a0 + a1z + a2z
2 + . . .

ultimately behave like a geometric series, i.e. they satisfy

|akzk| ≤ |ak|rk ≤ A

for some bound A, all large k and |z| ≤ r for some r > 0. For |z| < r
2 , this

implies that the remainder for any n satisfies

∞∑

k=n+1

akz
k = O(zn+1),

so the convergent power series for f for |z| ≤ r is indeed asymptotic as z → 0.
More simply, recall Taylor series with remainder.
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A general technique to obtain asymptotic expansions for integrals is again
termwise integration. Consider, for example, the Laplace transform

I(x) =

∫ ∞

0

tλ−1

1 + t
e−xt dt (2.17)

for λ > 0 and x large. Since 1
1+t =

∑n−1
s=0 (−t)s + (−t)n

1+t , we obtain

I(x) =

n−1∑

s=0

(−1)sΓ(s+ λ)

xs+λ
+ rn(x) (2.18)

in terms of Euler’s gamma (or factorial) function

Γ(z) ≡
∫ ∞

0

e−ttz−1 dt, Re z > 0

(cf. Olver et al. [361]) for the remainder

rn(x) ≡ (−1)n
∫ ∞

0

tn+λ+1

1 + t
e−xt dt.

Since |rn(x)| ≤ Γ(n+λ)
xn+λ ,

I(x) ∼
∞∑

s=0

(−1)sΓ(s+ λ)

xs+λ
as x → ∞. (2.19)

Again, even though the Maclaurin series for 1
1+t only converges for 0 ≤ t < 1,

its coefficients determine the asymptotics for I(x) as x → ∞. (Readers should
understand such typical arguments.) Generalizations of this procedure to
integrals ∫ ∞

0

f(t)e−xt dt

often are labeled Laplace’s method (or Watson’s lemma). A real variables
approach to obtain such results is found in Olver [360], while a complex
variables approach is presented in Wong [525]. More general techniques for
the asymptotic evaluation of integrals include the stationary phase and saddle
point methods (called Edgeworth expansions in statistics).

(c) The WKB Method

The WKB method (cf. Olver [360], Schissel [436], Miller [318], Cheng [83],
Wong [526], and Paulsen [387]) concerns asymptotic solutions of the scalar
linear homogeneous second-order differential equation

y′′ + λ2f(x, λ)y = 0 (2.20)
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when the real parameter λ → ∞ and f is bounded. Introducing the logarith-
mic derivative

u(x, λ) =
y′(x, λ)
y(x, λ)

= (ln y)′, (2.21)

or equivalently setting
y = e

∫ x u(s,λ) ds, (2.22)

converts the given linear second-order differential equation (2.20) to the non-
linear first-order generalized Riccati equation

u′ + u2 + λ2f = 0 (2.23)

(since y′ = uy and y′′ = (u′+u2)y) which, generally, can’t be solved directly.
(This is not the simple version solved by Count Riccati (or Johann Bernoulli)
(cf. Roy [427]).) We will further suppose that the expansion

f(x, λ) ∼
∞∑

n=0

fn(x)

λn
(2.24)

is known and valid on an interval α < x < β as λ → ∞. Then, we will seek
a (formal) asymptotic solution

u(x, λ) ∼ λ

∞∑

n=0

un(x)

λn
, (2.25)

of (2.23) with corresponding series for u2 and u′. Equating coefficients of λ2

and λ2−n in the differential equation, we will successively need

u2
0 + f0 = 0

and

u′
n−1 + 2u0un +

n−1∑

k=1

ukun−k + fn = 0 for each n ≥ 1.

Thus, we will take

u0(x) = u±
0 (x) =

{
±i

√
f0(x) if f0(x) > 0

±√−f0(x) if f0(x) < 0
(2.26)

and

un(x) = − 1

2u0(x)

(
u′
n−1 +

n−1∑

k=1

ukun−k + fn

)
for each n ≥ 1. (2.27)

In particular,

u1(x) = −1

2

d

dx
(lnu0(x))− f1(x)

2u0(x)
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implies two linearly independent WKB approximates

y±(x, λ) =
1

4
√

f0(x)
e
±iλ

∫ x
x0

(√
(f0(s))− 1

2λ
f1(s)√
f0(s)

)

ds
(1 + o(1)) if f0(x) > 0

(2.28)
and

y±(x, λ) =
1

4
√|f0(x)|

e
±λ

∫ x
x0

(√
|f0(s)|− 1

2λ
f1(s)√
|f0(s)|

)

ds
(1 + o(1)) if f0(x) < 0

(2.29)

for (2.20). The algebraic prefactor comes from the first term of u1. See
Keller and Lewis [245] for connections to geometrical optics and Keller [244]
regarding the related Born and Rytov approximations. Note, further, that
one consequence of the leading term approximation, important in quantum
mechanics, is the so-called adiabatic invariance (cf. Arnold et al. [12] and Ou
and Wong [385]). Knowing these linearly independent approximate solutions
also allows us to solve the nonhomogeneous equation, i.e. to determine an
asymptotic Green’s function (cf. Stakgold [472]).

As defined above, the o(1) symbol in (2.28–2.29) indicates an expression
that goes to zero as λ → ∞. Its approximate form would be determined by u2.
Miller [318] proves the validity of the WKB approximation using a contraction
mapping argument, while Olver [360] bounds the error involved in terms of
the total variation of a natural control function. Note the singularities of y
that result at any turning points where f0 has a zero. Also note that the
solutions (2.28–2.29) change from being exponential to oscillatory (or vice-
versa) as such points are crossed with f0 changing signs.

As an alternative to (2.28), we could directly seek asymptotic solutions
of (2.20) in the form

A(x, λ)eiλ
∫ x

√
f0(s) ds +A(x, λ)e−iλ

∫ x
√

f0(s) ds (2.30)

for a complex-valued asymptotic power series A(x, λ) whose terms could be
successively found using an undetermined coefficients scheme. Thus

y = Aeiλ
∫ x

√
f0(s) ds + c.c.

must satisfy the differential equation. Because

y′′ =

[
A′′ + 2iλ

√
f0(x)A

′ +
iλ

2

f ′
0(x)√
f0(x)

A− λ2f0(x)A

]
eiλ

∫ x
√

f0(s) ds + c.c.,

we will need A to satisfy

1

λ

[
A′′ +

(
f(x, λ)− f0(x)

λ

)
A

]
+ 2i

√
f0(x)A

′ +
i

2

f ′
0(x)√
f0(x)

A = 0 (2.31)
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as a power series

A

(
x,

1

λ

)
∼

∑

j≥0

Aj(x)

λj
.

Murray [338] works out a variety of WKB examples quite explicitly.
Olver points out that the separate results of the physicists Wentzel,

Kramers, and Brillouin in 1926 and those of Jeffreys in 1924 were actu-
ally obtained independently by Joseph Liouville and George Green in 1837.
Carlini had even treated a special case involving Bessel functions in 1817. See
Heading [200] and Fröman and Fröman [164] for further history. Nonetheless,
the WKB(J) label seems to persist. (William Thomson, later Lord Kelvin,
visited Paris in 1845 after his Cambridge graduation and introduced Jacques
Sturm and Liouville to the work [183] of Green, a recently deceased former
miller from Nottingham, memorialized in 1993 with a plaque in Westmin-
ster Abbey near the tomb of Newton and plaques to Kelvin, Maxwell, and
Faraday (cf. Cannell [69]). (Green’s mill is now restored as a science center.)
As late as 1953, Sir Harold Jeffreys called WKB

approximations of Green’s type.

First, note that the WKB results provide existence and uniqueness
theorems for the singularly perturbed linear ODE

ε
d2y

dx2
+ a(x)

dy

dx
+ b(x)y = 0 (2.32)

when ε > 0 is small, a and b are smooth, and a(x) 
= 0, when Dirichlet
boundary conditions are applied at two endpoints, say α and β . Also note
that the Sturm transformation

y(x) = w(x)e−
1
2ε

∫ x a(s) ds, (2.33)

requires w to satisfy

ε
d2w

dx2
+ f(x, ε)w = 0 (2.34)

for

f(x, ε) ≡ b(x)− 1

2
a′(x)− 1

4ε
a2(x).

The transformation (2.33) holds for all ε, but we will be especially concerned
with the more challenging situation that ε is small but positive. Multiply-
ing (2.34) by w and integrating by parts, supposing homogeneous boundary
conditions w(α) = w(β) = 0, implies that

ε

∫ β

α

(
dw

ds

)2

ds =

∫ β

α

f(s, ε)w2(s) ds



(C). THE WKB METHOD 41

since the boundary terms εw dw
dx at α and β then vanish. Thus, w(x) ≡ 0

must hold when
f(x, ε) ≤ 0 on α ≤ x ≤ β, (2.35)

and the given two-point problem for y then has a unique solution (just let
w be the difference between any two of them). Note that the sign condition
(2.35) on f is satisfied if either

(i) a(x) 
= 0 and ε > 0 is small,

or

(ii) 2b ≤ a′ and ε > 0.

Uniqueness conditions for more general Sturm-Liouville boundary value prob-
lems can be found in Courant-Hilbert [103] and Zettl [532].

Existence of the solutions y of (2.32) follows from using the two linearly
independent real WKB solutions, which take the form

A(x, ε) and B(x, ε)e−
1
ε

∫ x a(s) ds (2.36)

for asymptotic series A andB. (Note that this A is not the complex amplitude
A used in the WKB solution (2.30).) In particular, the exponential factor in
(2.33) is cancelled or doubled in the corresponding solutions (2.36).

The resulting outer solution A(x, ε) of (2.32) must satisfy

εA′′ + a(x)A′ + b(x)A = 0 (2.37)

as a real power series in ε, so its leading term must satisfy

a(x)A′
0 + b(x)A0 = 0,

i.e.

A0(x) = e
− ∫ x

x0

b(s)
a(s)

ds
A0(x0).

Likewise
(
Be

1
ε

∫ x a(s) ds
)′

=
(
B′−Ba

ε

)
e−

1
ε

∫ x a(s) ds and
(
Be−

1
ε

∫ x a(s) ds
)′′

=
(
B′′ − 2

εB
′a− 1

εBa′ + B
ε2 a

2
)
e−

1
ε

∫ x a(s) ds, so the differential equation for y
requires that

εB′′ − aB′ + (b− a′)B = 0. (2.38)

Its leading term B0 must satisfy aB′
0 + (a′ − b)B0 = 0, so

B0(x) =
a(x0)

a(x)
e
∫ x
x0

b(s)
a(s)

ds
B0(x0)

and the general solution of (2.32) on x ≥ x0 takes the form

y(x, ε) = e
− ∫ x

x0

b(s)
a(s)

ds
A0(x0) + e

− 1
ε

∫ x
x0
(a(s)−ε

b(s)
a(s) ) dsB0(x0)

a(x0)

a(x)
+O(ε)

(2.39)
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Figure 2.1: e−x/ε for a small ε > 0 is ultimately smaller than εκ for any
κ > 0. Here, n > m > 0

when a(x) > 0. If bounded values y(x0) and εy′(x0) are prescribed, we will
need

y(x0) = A0(x0) +B0(x0) +O(ε)

and

y′(x0) = −1

ε
a(x0)B0(x0) +O(1),

so

A0(x0) = y(x0)−B0(x0) (2.40)

and

B0(x0) = −εy′(x0)

a(x0)
. (2.41)

Having these two linearly independent solutions (2.36) to the linear differ-
ential equation (2.32) will allow us to asymptotically solve many boundary
value problems for it and its nonhomogeneous analog. The errors made us-
ing such approximations are asymptotically negligible like e−Cx/ε for some
C > 0 and x > 0, so smaller than O(εn) for any n > 0. See Fig. 2.1 and
Howls [219]. Note that the solution (2.39) will feature an initial layer of
nonuniform convergence. The asymptotic solutions of (2.32) for a(x) 
= 0 will
be more satisfactory throughout boundary layer regions than those tradition-
ally found by matched expansions, as we shall later demonstrate. When such
restrictions as f(x, ε) ≤ 0 in (2.34) don’t hold, and for nonlinear generaliza-
tions, we must expect either multiple solutions to such two-point problems
or none at all.

To illustrate typical behavior near a (simple) turning point, consider the
equation

ε2y′′ − xh2(x)y = 0 (2.42)
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for a smooth h(x) > 0. Oscillatory behavior for x < 0 and exponential
behavior for x > 0 are provided by the WKB solutions. Locally, i.e. near the
turning point x = 0, we naturally use the Airy equation

ẅ − tw = 0 (2.43)

as a comparison equation. Its linearly independent solutions are the Airy
functions Ai(t), and Bi(t) (cf. Olver et al. [361]). Their asymptotic behavior
as t → ±∞ is well known, e.g.,

Ai(t) ∼ 1
2
√
πt1/4

e−
2
3 t

3/2

as t → ∞
and
Ai(t) ∼ 1√

π
1

(−t)1/4
sin

(
2
3 (−t)3/2 + π

4

)
as t → −∞.

The connections to the WKB solutions follow the Langer transformation

y ∼
(
xh2(x)

S(x)

)1/4 [
C1Ai

(
S(x)

ε2/3

)
+ C2Bi

(
S(x)

ε2/3

)]
(2.44)

for constants C1 and C2,

S(x) =

[
3

2

∫ x

0

√
|r|h(r) dr

]2/3
,

and the corresponding limits as t = S(x)
ε2/3

→ ±∞ (cf. Wasow [515] for details
of the so-called connection problem). Expansions can also be found for mul-
tiple and, even, coalescing turning points. Fowkes [152] solves the problem
using multiple scale methods.

More generally, it’s often valuable to realize the equivalence of the Riccati
differential equation

y′ = a(x)y2 + b(x)y + c(x) (2.45)

and second-order linear homogeneous differential equations. The trans-
formation

y =
−w′

aw
or w = e−

∫ x a(s) y(s) ds (2.46)

in (2.45) implies that w will satisfy the linear equation

w′′ −
[
a′(x)
a(x)

+ b(x)

]
w′ + a(x)c(x)w = 0. (2.47)

Many times, its solutions can be provided in terms of special functions,
thereby giving solutions y of the Riccati equation (2.45) as well through
(2.46). On the other hand, if we can guess (or otherwise ascertain) a differ-
entiable solution y of the Riccati equation, it determines a nontrivial solution
w of the linear equation (2.47) and, by reduction of order, the general so-
lution. Other transformations for linear equations are given in Kamke [232]
and Fedoryuk [145].
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Note, in particular, that the second-order linear equation

εu′′ + b1(x)u
′ + b0(x)u = 0 (2.48)

can be converted to

εq′′ + (q′)2 + b1(x)q
′ + εb0(x) = 0 (2.49)

by setting
u = eq/ε (2.50)

and that the latter equation can be solved asymptotically by taking

q(x, ε) ∼
∑

j≥0

εjqj(x) (2.51)

or, equivalently, by setting

u = C(x, ε)eq0(x)/ε

for a power series C (cf. Bender and Orszag [36]), which can be sought
termwise with respect to ε.

(d) The Regular Perturbation Procedure

In the following, we shall consider it natural and straightforward (even central
to singular perturbations) to use a regular perturbation method to find power
series solutions to nonlinear vector initial value problems

ẋ = f(x, t, ε), t ≥ 0, x(0) = c(ε) (2.52)

based on knowing a smooth vector solution x0(t) to the limiting nonlinear
problem

ẋ0 = f(x0, t, 0), t ≥ 0, x0(0) = c0(0) (2.53)

on some bounded interval 0 ≤ t ≤ T . Assuming sufficient smoothness of f
and c and the series expansions

f(x, t, ε) ∼
∑

j≥0

fj(x, t)ε
j

with smooth coefficients fj and

c(ε) ∼
∑

j≥0

cjε
j ,

we shall let
x(t, ε) ∼

∑

k≥0

xk(t)ε
k. (2.54)
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Expanding about ε = 0,

f(x(t, ε), t, ε) = f(x0(t), t, 0) +
(
fx(x0(t), t, 0)(εx1(t) + ε2x2(t) + . . .)

+ εfε(x0, t, 0)
)
+
(
1

2
((fxx(x0(t), t, 0)))(εx1(t) + . . .)

)
(εx1(t) + . . .)

+ εfxε(x0(t), t, 0)(εx1(t) + . . .) +
ε2

2
fεε(x0(t), t, 0) + . . .

and equating successive coefficients of powers of ε in (2.52), we naturally
require

ẋ1 =
∂f

∂x
(x0(t), t, 0)x1 +

∂f

∂ε
(x0(t), t, 0), x1(0) = c1 (2.55)

ẋ2 =
∂f

∂x
(x0(t), t, 0)x2 +

1

2

(
∂2f

∂x2
(x0(t), t, 0)x1(t)

)
x1(t)

+
∂2f

∂x∂ε
(x0(t), t, 0)x1(t) +

1

2

∂2f

∂ε2
(x0(t), t, 0)), x2(0) = c2,

(2.56)

etc. These linear equations for xj with j ≥ 1 can be successively and uniquely
solved using the nonsingular fundamental matrix Φ for the linearized homo-
geneous system

Φ̇ = A(t)Φ with Φ(0) = I (2.57)

for the Jacobian
A(t) = fx(x0(t), t, 0)

and the identity matrix I (cf. Brauer and Nohel [59]). When A is constant, Φ
is the matrix exponential eAt. Recall the variation of constants (parameters)
method to solve the linear vector initial value problem

ẏ = A(t)y + b(t), y(0) given. (2.58)

Set
y = Φ(t)w(t)

for an unspecified vector w. First note that the unique Φ can be found by
iterating in the integral equation

Φ(t) = I +

∫ t

0

A(s)Φ(s) ds

corresponding to (2.57). This yields the approximations

Φ(t) = I +

∫ t

0

A(s) ds+

∫ t

0

A(s)

∫ s

0

A(r) dr ds+ . . . ,

etc. (sometimes called the matrizant) which converge. Differentiating y, we
get ẏ = Φ̇w +Φẇ = AΦw + b(t), so we will need

Φẇ = b and y(0) = w(0).
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Integrating, we uniquely obtain w(t) = y(0) +
∫ t

0
Φ−1(s)b(s) ds (since Φ will

be, at least locally, nonsingular). Thus,

y(t) = Φ(t)y(0) +

∫ t

0

Φ(t) Φ−1(s) b(s) ds, (2.59)

as can be readily checked.
Knowing the solution x0(t) (of (2.53)) for ε = 0 and the resulting Φ

(cf.(2.57)), we next obtain

x1(t) = Φ(t)c1 +

∫ t

0

Φ(t) Φ−1(s) fε(x0(s), s, 0) ds (2.60)

and, then, in turn

x2(t) = Φ(t)c2 +

∫ t

0

Φ(t) Φ−1(s)

[(
1

2
fxx(x0(s), s, 0)x1(s)+

fxε(x0(s), s, 0)

)
x1(s) +

1

2
fεε(x0(s), s, 0)

]
ds,

(2.61)

etc. We expect the series (2.54) for x to converge uniformly for ε small and
bounded t. This justifies the regular perturbation technique, which we will
henceforth apply routinely. When the assumptions don’t apply, the asymp-
totic solution may not simply be a power series in ε. Puiseaux expansions
in fractional powers of ε (cf. [17]) are a possibility. As we will ultimately
find, however, we cannot expect to blindly use these approximate solutions
on intervals where t becomes unbounded. A proof on finite intervals is given
in de Jager and Jiang [224]. See Smith [466] for the celebrated example of
Einstein’s equation for the motion of Mercury about the sun.

More generally, one might also use such regular perturbation (i.e., power
series) methods to solve operator equations

T (u, ε) = 0 (2.62)

for small ε, justified by applying the implicit function theorem under
appropriate conditions (cf. Miller [318]) to get an analytic solution u(x, ε)
(cf. Baumgärtel [32] and Krantz and Parks [262]). Also, see Kato [243] and
Avrachenkov et al. [17] regarding linear operators.

A classic example involves the zeroes of the Wilkinson polynomial

20

Π
k=1

(z − k) + εz19

(cf. Wilkinson [523], Bender and Orszag [36], and Moler [324]). Its complex
roots are extremely sensitive to perturbations. Corresponding to k = 15, the
first correction is of the order 5ε1010, providing extreme sensitivity of the
perturbation.
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In ending the chapter, we want to emphasize that we have severely re-
stricted the topics covered, keeping in mind our limited later needs. More gen-
erally, the use of iteration methods to obtain asymptotic expansions is often
very efficient, as is the use of convergence acceleration methods (cf. Weniger
[518]), among many other computational techniques. We recommend Baren-
blatt [27] and [28]’s unique development of intermediate asymptotics, relating
and extending basic concepts from dimensional analysis, self-similarity, and
scaling. Consulting the extensive literature cited is highly recommended!
Bosley [53] even provides a numerical version of asymptotics.

Among recent texts, Zeytounian [533] attempts to model viscous, com-
pressible, heat-conducting, Newtonian, baroclinic, and nonadiabatic fluid
flow using

the art of modeling assisted, rationally, by the spirit of asymptotics.

Motivation for such rational asymptotic modeling is found in the autobiogra-
phy Zeytounian [534].

Example 1

Gobbi and Spigler [171] consider the scalar singular linear two-point
boundary value problem

ε2u′′ − u = − 1√
x(1− x)

, 0 ≤ x ≤ 1, u(0) = u(1) = 0. (2.63)

Since the auxiliary polynomial ε2λ2 − 1 = 0 provides the complementary
solutions e−x/ε and e−(1−x)/ε, we can use variation of parameters to find the
general solution

u(x, ε) = e−x/εC1 + e−(1−x)/εC2 +
1

2ε

∫ x

0

e−(x−t)/ε dt√
t(1− t)

+
1

2ε

∫ 1

x

e(x−t)/ε dt√
t(1− t)

(2.64)

of the nonhomogeneous differential equation (2.63). The boundary conditions
imply that

C1 ∼ − 1

2ε

∫ 1

0

e−t/ε dt√
t(1− t)

and C2 ∼ − 1

2ε

∫ 1

0

e−(1−t)/ε dt√
t(1− t)

up to asymptotically negligible amounts. Since Γ(12 ) =
√
π,

u(x, ε) ∼ −1

2

√
π

ε

(
e−x/ε + e−(1−x)/ε

)

+
1

2ε

[∫ x

0

e−(x−t)/ε dt√
t(1− t)

+

∫ 1

x

e(x−t)/ε dt√
t(1− t)

]
.

(2.65)
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Within (0, 1), the first two terms are asymptotically negligible, while the
primary contributions to the two integrals come from near t = x. Indeed,

1

2ε

∫ x

0

e−(x−t)/ε dt√
t(1− t)

∼ 1

2
√

x(1− x)

and the second integral has the same limit. Thus, as expected,

u(x, ε) ∼ 1√
x(1− x)

within (0, 1). (2.66)

Because the asymptotic solution is symmetric about 1/2 and the outer limit
is unbounded at the endpoints, further analysis is necessary to determine
the asymptotic behavior in the endpoint boundary layers. Computations for
ε = 0.01 and 0.0025 provide spikes near 0 and 1 with O(1/

√
ε) maxima, as

found.

Example 2

Reiss [414] introduced the combustion model

ẏ = y2(1− y), y(0) = ε (2.67)

(cf. Kapila [234]). Because ẏ > 0 for 0 < y < 1, we know that the
solution y increases monotonically from ε to the rest point 1 at t = ∞.
The exact solution can be obtained by separating variables since integrating(

1
y + 1

1−y + 1
y2

)
dy = dt implies that

ln

(
y

1− y

)
− 1

y
= t− 1

ε
+ ln

(
ε

1− ε

)
. (2.68)

This implicit result shows, e.g., that

y =
1

2
when t =

1

ε
− ln

(
ε

1− ε

)
− 2

while

y =
9

10
when t =

1

ε
− ln

(
ε

1− ε

)
− 10

9
+ ln 9

and

y =
99

100
when t =

1

ε
− ln

(
ε

1− ε

)
− 100

99
+ ln 99.

Thus, the ultimate explosion is long delayed when ε is small.
For bounded values of t, the preignition solution can be represented by a

small regular perturbation expansion

Y (t, ε) = εY1(t) + ε2Y2(t) + . . .
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satisfying
Ẏ1 = 0, Y1(0) = 1

and
Ẏ2 = Y 2

1 , Y2(0) = 0,

etc. termwise. Thus
Y (t, ε) = ε+ ε2t+ . . . . (2.69)

This breaks down as the slow-time τ ≡ εt grows. Indeed, the explosion takes
place about

t̃ =
1

ε
− ln

(
ε

1− ε

)
− 2, (2.70)

as can be verified numerically for, say, ε = 1/10. One might say that a
boundary layer (nonuniform convergence) occurs as t → ∞.

Readers should be aware that one of the most successful texts presenting
asymptotic methods has been Bender and Orszag [36], reprinted by Springer
in 1999. Originated at MIT to teach the ubiquitous course in advanced math-
ematical methods for scientists and engineers, it featured easy, intermediate,
difficult, and theoretical sections, corresponding exercises, and quotes from
Sherlock Holmes at the beginning of each chapter. Paulsen [387] is a well-
written new textbook seeking to simplify Bender and Orszag and make its
subject more accessible.

To illustrate the centrality of asymptotics, we quote Dvortsina [128] re-
garding the prominent Soviet physicist I. M. Lifshitz (co-author of many
outstanding texts with Nobel prizewinner Lev Landau):

Everyone who knew Lifshitz remembers well that every time he
began a discussion of any work he asked first of all: “What small
parameter did you choose?” He meant to say that in the majority
of problems solved by theoretical physics the smallness of some
quantity is always used.

After reading this chapter, and perhaps trying the exercises, the author hopes
you no longer think asymptotic approximations are some sort of mystical
constructions. They’re down to earth!

Exercises

1. (Awrejcewicz and Krysko [18]) Show that

sin 2ε ∼ 2ε− 4

3
ε3 +

4

15
ε5 + . . .

∼ 2 tan ε− 2 tan3 ε− 2 tan5 ε+ . . .
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∼ 2 ln(1+ε)+ ln(1+ε2)−2 ln(1 + ε3)+ ln(1 + ε4)+
2

5
ln(1+ε5)+ . . .

∼ 6

(
ε

3 + 2ε2

)
− 756

5

(
ε

3 + 2ε2

)5

+ . . . .

2. (Awrejcewicz and Krysko [18]) Consider

f(x, ε) =
√
x+ ε.

Note that f(0, ε) =
√
ε. Show that

f(x, ε) =
√
x

(
1 +

ε

2x
− ε2

8x2
+

ε3

16x3
− . . .

)

when ε
x → 0, so the expansion is nonuniform.

3. (a) Find a power series expansion for the solution of the initial value
problem

y′ = 1 + y2, y(0) = ε.

(b) Find the exact solution and determine the first four terms of its power
series about ε = 0.

4. Find the first three terms of two power series solutions

u(x, ε) = u0(x) + εu1(x) + ε2u2(x) + . . .

of the nonlinear differential equation

εu′′ = u2 − u+ εx.

5. (a) Find a regular perturbation solution to the initial value problem

y′ = 1 + y2 + εy, y(0) = ε.

Where does it become singular?

(b) Solve the equation
w′′ − εw′ + 1 = 0

and determine

y = −w′

w
.

Where is it singular?

6. (cf. Hoppensteadt [213]) Consider the initial value problem

ẋ = −x3 + εx, x(0) = 1, t ≥ 0.
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(a) Find the first two terms of the regular perturbation expansion.

(b) Find the exact solution and its limit as t → ∞.

(c) Explain the breakdown of the regular perturbation expansion.

7. (Hsieh and Sibuya [220]) Consider the two-point problem

y′′ = ε sin

(
x

100− y2

)
,−1 ≤ x ≤ 1, y(−1) = y(1) = 0.

Obtain the solution y = φ(x, c, ε) by “shooting,” i.e. by solving the initial
value problem

y′′ = ε sin

(
x

100− y2

)
, y(−1) = 0, y′(−1) = c(ε)

for an appropriate c(ε). Determine the first two terms in the power series
for y(x, ε) and c(ε). Observe the extensive and effective use of the shooting
method in Hastings and McLeod [198].

8. A typical ODE exercise is to compute the terms of the power series solution
to the initial value problem

y′ = x2 + y2, y(0) = 2.

(a) Set

y(x) =
∞∑

n=0

Cnx
n

and show that C0 = 2, C1 = 4, C2 = 8, C3 = 49
3 , and Cn+1 =

1
n+1

∑n
p=0 CpCn−p, n ≥ 3.

(b) Convert the equation to the Weber equation

w′′ + x2w = 0

by using the representation w = e−
∫ x
0

y(s) ds.

(c) Find the power series for w about x = 0, checking that y = −w′
w . The

radius of convergence for w is infinite. Note that w can be expressed
in terms of parabolic cylinder (or Weber) functions.

9. (Kevorkian and Cole [249]) Consider the initial value problem

u′′ + u = εf(x)u

u(0) = 0, u′(0) = 1, x ≥ 0.

Show that a necessary condition that the regular perturbation expansion
of the solution be uniformly valid on x ≥ 0 is to have

∫ x

0
f(s) ds bounded

there.
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