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But is knowledge increasing or is detail
accumulating?

Jeanette Winterson,
Sexing the Cherry





Preface

The author wishes to describe the development of singular perturbations,
including its history, accumulating literature, and its current status, as he
(somewhat personally) understands it after nearly 50 years’ study. The word
“development” is intended to invoke development as both a French equivalent
for series and an historical advance in the subject. The presentation is aimed
at early graduate students in applied mathematics and related fields, so there
is little emphasis on rigor. You are encouraged to alter this point of view,
if you wish, by consulting the cited references. Sophisticated approaches are
mentioned, but generally not detailed. The author’s hope, indeed, is that this
presentation will be accessible and of interest to a broad audience. Readers
are expected to be curious and will need a working knowledge of elementary
ordinary differential equations, including some familiarity with power series
techniques, and of some advanced calculus.

The monograph’s first concern is fluid dynamical boundary layers, empha-
sizing the critical role played by their inventor, Ludwig Prandtl, a professor
at the University of Göttingen from 1904 until 1947. Prandtl contributed
extensively to aerodynamics. The institutes he founded and many he trained
supported Germany in World War II. The anti-Semitism and other negative
aspects of the Nazi regime, however, forced many to leave Göttingen and Ger-
many. One result was to make singular perturbations a subject of increasing
international activity, important in the broader subsequent development of
applied mathematics as a separate discipline.

Prandtl’s inner and outer approximations generalize to the more for-
malized method of matched asymptotic expansions, a procedure that has
been extensively applied with great success throughout the sciences, as well
as to the construction of uniformly valid composite expansions that relate
to the ideas of A. N. Tikhonov and N. Levinson, conceived by less-applied
mathematicians about 50 years after Prandtl’s discovery. The resulting
series generally diverge, so the concept of an asymptotic approximation,
independently defined by T. Stieltjes and H. Poincaré in 1886, is cen-
tral. We benefit from generalizing convergent approximations, classically
applied to linear equations, by utilizing stretched variables. Unlike the
usual situation, we will typically be able to construct explicit asymptotic
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approximations for a variety of challenging problems. Overall, we seek to
provide the reader an overview that will determine the asymptotic behavior.

Multiscale phenomena now seem universal. They generally require special
computational and analytical methods. Thus, it is not surprising that mul-
tiscale asymptotic techniques can provide efficient ways to analyze nonlinear
oscillations on long time intervals as well as handle typical boundary and
shock layers where solutions feature narrow regions of rapid change. Much of
our progress relies on the appropriate ultimate introduction of slowly varying
amplitudes. We will illustrate the underlying ideas and the variety of limit-
ing solutions possible by studying simple examples. Many of those are pearls
found in the literature cited, consisting of over 500 references. They compre-
hensively well represent the important study being pursued. Moreover, the
large bibliography encourages readers to consider the literature broadly and
to study far beyond the limits of this monograph.

Many predecessors deserve credit for teaching us singular perturbations.
These include colleagues and students. Indeed, friends worldwide. The au-
thor apologizes to scholars whose work he failed to mention. The extent of his
omissions is obvious from his lack of extended reference to Joseph B. Keller
(1923–), whose abundant lifetime achievements throughout applied mathe-
matics are centered on cleverly applying asymptotic methods. The author
thanks others who have helped him prepare the manuscript, including the
reviewers and Olga Trichtchenko and Natalie Sheils, but especially Frances
Chen and Alex Goodfriend. He also wishes to express his personal love and
thanks to his longtime supportive wife, Candy.

Seattle, WA, USA Robert E. O’Malley
2014
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Chapter 1

Ludwig Prandtl’s
Boundary Layer Theory

Boundary layer theory formally came into existence in Heidelberg, Germany
at 11:30 am on August 12, 1904 when Ludwig Prandtl (1875–1953), a pro-
fessor (and chair) of mechanics at the Technical University of Hanover (the
youngest professor in Prussia according to Bodenschatz and Eckert [49]),
gave a ten-minute talk to the Third International Congress of Mathemati-
cians entitled “Über Flüssigkeitsbewegung bei sehr kleiner Reibung” (On
Fluid Motion with Small Friction). (Figs. 1.1 and 1.2). (Recall that Hilbert
presented his famous list of twenty-three problems for the new century at the
second ICM in Paris in 1900.) Prandtl’s resulting seven-page paper in the
proceedings, Prandtl [399] [translated to English as NACA Memo No. 452
(1928)] states:

The physical processes in the boundary layer (Grenzschicht) be-
tween fluid and solid body can be calculated in a sufficiently sat-
isfactory way if it is assumed that the flow adheres to the walls,
so that the total velocity there is zero—or equal to the velocity
of the body. If the velocity is very small and the path of the
fluid along the wall is not too long, the velocity will have again
its usual value very near to the wall. In the thin transition layer
(Übergangsschicht) the sharp change of velocity, in spite of the
small viscosity coefficient, produces noticeable effects.

(Here, and below, quotations will usually be indented.)
Prandtl’s amazing scientific insight, evolving from an ultra-practical era of

hydraulics, but less than a year after the Wright brothers’ flight, involves the
basic concept of what would become singular perturbations. The governing

© Springer International Publishing Switzerland 2014
R. O’Malley, Historical Developments in Singular Perturbations,
DOI 10.1007/978-3-319-11924-3 1
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2 CHAPTER 1. PRANDTL’S BOUNDARY LAYER

Figure 1.1: Title page: Proceedings, Third International Congress of Mathe-
maticians
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Figure 1.2: First page: L. Prandtl’s talk to International Congress, 1904
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Navier–Stokes equations

ρ0(∂tu+ (u · ∇)u) +∇p =
1

Re
Δu, ∇ · u = 0

(cf., for background, Anderson [8], and Drazin and Riley [125]) reduce to
Euler’s equations when the viscosity (1/Re for the dimensionless Reynolds
number) is zero, but the solutions do not uniformly reduce to those of Euler’s
equations when the viscosity tends to zero. As Ting [483] summarized:

Prandtl’s boundary layer theory initiated a systematic procedure
for joining local and global expansions to form uniformly-valid
approximations.

This technique, later known as the method of “matched asymptotic expan-
sions,” identifies the (local) boundary layer solution and the inviscid solution
with the leading order “inner” and “outer” solutions (cf. Darrigol [110], Meier
[314], Eckert [131], and O’Malley [373] for background material).

Prandtl’s student (and brother-in-law) Ludwig Föppl gave the following
opinion in his personal memoirs:

In view of the importance of the work, I would like to point out
its essentials. By that time, there had been no theoretical expla-
nation for the drag experienced by a body in a flowing liquid or
in air. The same applies to the lift on an airplane. Classical me-
chanics was either based on frictionless flow or, when friction was
taken into account, mathematical difficulties were so enormous
that hitherto no practical solution had been found. Prandtl’s
idea that led out of the bottleneck was the assumption that a
frictionless flow was everywhere with the exception of the region
along solid boundaries. Prandtl showed that friction, however
small, had to be taken into account in a thin layer along the solid
wall. Since that time, this layer has been known as Prandtl’s
boundary layer. With these simplifying assumptions, the mathe-
matical difficulties . . . could be overcome in a number of practical
cases.

(See Stewartson [474], regarding the troublesome d’Alembert’s paradox (hav-
ing the implausible no drag conclusion) that Prandtl’s theory eliminated).

Prandtl’s father Alexander was a surveying and engineering professor at a
Bavarian agricultural college in Weihenstephan, while his mother, the former
Magdelene Ostermann, spent much of her life as a mental patient. Ludwig
was the only child of three to survive birth. Both parents died before he
was twenty-five. Though the family was Catholic, Prandtl didn’t practice his
religion as an adult. His earlier education was in engineering at the Techni-
cal University of Munich, but Prandtl received his Ph.D. in mathematics in
1900 from the University of Munich for a thesis on the torsional instability
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of beams with an extreme depth-width ratio, under the supervision of Pro-
fessor August Föppl of the Technical University. Prandtl worked for a year
at Maschinenfabrik Augsburg-Nürnberg designing diffusers to increase the
efficiency of wood-cutting machines, so the flow concerned consisted of wood
shavings.

(We note that informative biographies of many mathematicians, though
not Prandtl, are available on the MacTutor History of Mathematics archive
[355] (St. Andrews University website.)

Officially named the Georg-August Universität Göttingen, the Univer-
sity of Göttingen was founded in 1734 by George II, King of Great Britain
and Elector of Hanover. The geometer Felix Klein (1849–1925) hired both
Prandtl and Carl Runge at Göttingen in fall 1904 from Hanover to begin
an Institute for Applied Mathematics and Mechanics, as he sought to nar-
row the gulf between mathematics and technology in Göttingen. (Klein’s
health had collapsed after intense competition with Henri Poincaré concern-
ing automorphic functions, after which he became a university administrator
and power broker in German mathematics (cf. Rowe [425], Hersh and John-
Steiner [204], Gray [182], and Verhulst [502]). Klein came to Göttingen from
Leipzig in 1886, hired David Hilbert from Königsberg in 1895, and earned
the honorific title Geheimrat (similar to the British privy councillor). Klein
especially appreciated Prandtl’s

strong power of intuition and great originality of thought with
the expertise of an engineer and the mastery of the mathematical
apparatus.

Anticipating more recent schemes, Klein founded the Göttingen Society for
the Promotion of Applied Mathematics and Physics, allowing him to obtain
and spend supplementary industrial funding for favored projects. Prandtl
ultimately supervised 85 dissertations, published 1600 pages of technical pa-
pers, and directed an aeronautical proving ground (from 1907) and the Kaiser
Wilhelm Institute for Fluid Mechanics (from 1925). Both organizations sur-
vive, though with changed names (cf. Oswatitsch and Wieghardt [383]).
Prandtl ultimately published about 33 papers on boundary layers and tur-
bulence and directed 31 theses on those subjects.

Theodore von Kármán (1881–1963) arrived as a graduate student in
Göttingen in 1906, after receiving an undergraduate degree in Budapest in
1902. Gorn [177] reports:

Almost from the start, a thinly concealed rivalry developed be-
tween the 31-year-old mentor and the 25-year-old pupil. The
Hungarian’s joie de vivre contrasted sharply with the shy, formal,
pedantic habits of Prandtl.

von Kármán received his doctorate in 1908 for work on the buckling of
columns and he served as an assistant to Prandtl (Privat-docent) until 1913,
when he succeeded Hans Reissner as Professor of Aeronautics and Mechanics
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at the Technical University of Aachen. He served in the Austro-Hungarian
army from 1915–1918 and left Aachen for the California Institute of Tech-
nology (or, more informally, Caltech) in 1930. In the (posthumous) autobi-
ography von Kármán and Edson [241], von Kármán observes:

I came to realize that ever since I had come to Aachen, my old
professor and I were in a kind of world competition. The com-
petition was gentlemanly, of course. But it was first-class rivalry
nonetheless, a kind of Olympic games, between Prandtl and me,
and beyond that, between Göttingen and Aachen. The “playing
field” was the Congress of Applied Mechanics. Our “ball” was
the search for a universal law of turbulence.

The competition between von Kármán and Prandtl regarding turbulence is
further highlighted in Leonard and Peters [285].

von Kármán’s former student Bill Sears (cf. Sears [444]) wrote:

Dr. von Kármán was a master of the à propos anecdote. He
never forgot a joke, and always had one to illustrate most vividly
and tellingly any situation in which he found himself. The result
is that memories of von Kármán tend to become collections of
anecdotes.

Somewhat unfortunately, then, von Kármán’s colorful stories provide us infor-
mation about Prandtl, though they may not necessarily be strictly accurate.
(See Nickelson et al. [348], a recent biography of von Kármán.) von Kármán
characterized Prandtl’s life as

particularly full of overtones of näıveté.

One often-quoted von Kármán story (reproduced in Lienhard [289]) reads:

In 1909, for example, Prandtl decided that he really ought to
marry; but he didn’t know how to proceed. Finally, he wrote to
Mrs. Föppl, asking for the hand of one of her daughters. But
which one? Prandtl had not specified. At a family conference,
the Föppls made the practical decision that he should marry the
eldest daughter, Gertrude. He did and the marriage was appar-
ently a happy one. Daughters were born in 1914 and 1917.

Klaus Gersten, editor of the latest edition of Schlichting’s Boundary Layer
Theory [438], insists that Prandtl married the appropriate daughter since he
was 34 and the two Föppl daughters were then 27 and 17.

Intrigued readers might recall von Neumann’s definition (cf. Beckenbach
[34]):

It takes a Hungarian to go into a revolving door behind you and
come out first.
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See Horvath [216] and Dyson [129], however, regarding the extraordinary
(largely Jewish) Hungarian contributions to twentieth-century mathematics.

In his history of aerodynamics, von Kármán [239] summarized Prandtl’s
skills as follows:

His control of mathematical methods and tricks was limited. . ..
But his ability to establish systems of simplified equations
which expressed the essential physical relations and dropped the
nonessentials was unique. . . .Prandtl had so precise a mind that
he could not make a statement without qualifying it. This is a
mistake. To be effective a teacher must see that a beginner in
science grasps the basic principle before he can be expected to
understand the exceptions.

In an obituary of Prandtl (Busemann [61]), his former assistant Adolf
Busemann, from NASA’s Langley Research Center, wrote:

According to his aim to make his sentences foolproof, they re-
quired a rewording, a re-phrasing, an explanation of the reasons
for re-phasing and perhaps a discussion of some exceptions to
the stated rule. It is quite obvious how different the results of
such lectures might have been for beginners and for listeners with
background. Seeing the details as clearly as Prandtl did, and
never trying to circumvent difficulties by omitting them, made
the lectures, seminars, colloquia a rich source of information for
all his pupils, beside those fortunate few who walked with him
home from work.

Certainly, Prandtl was not a great teacher and expositor (as his father-
in-law (cf. Holton [210]). Likewise, there is no doubt that von Kármán was
more charming and mathematically sophisticated (cf. von Kármán and Biot
[240] and von Kármán’s [238] Gibbs lecture to the American Mathematical
Society). Sears [444] wrote:

von Kármán never identified himself as a mathematician. . .always
as an engineer. But it was clear to those of us who worked close to
him that mathematics—applied mathematics—was his first love.

In his autobiography, von Kármán concluded:

In my opinion Prandtl unravelled the puzzle of some natural phe-
nomena of tremendous importance and was deserving of a Nobel
prize.

G. I. Taylor (1886–1975), the leading British fluid dynamicist of the twentieth
century, wrote Prandtl in 1935 to say that it was insulting that Prandtl
hadn’t been awarded a Nobel prize. (Details regarding Prandtl’s and Taylor’s
nominations for a Nobel Prize (in physics) are given in Sreenivasan [471]).
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Taylor had, no doubt, promoted the honorary doctorate that Prandtl received
from the University of Cambridge in 1936. See Batchelor [31] regarding
Taylor and his very productive life. In his 1975 obituary of Taylor, Cavendish
Professor Brian Pippard begins

Sir Geoffry Ingram Taylor. . .was one of the great scientists of
our time and perhaps the last representative of that school of
thought that includes Kelvin, Maxwell and Rayleigh, who were
physicists, applied mathematicians and engineers—the distinction
is irrelevant because their skill knew no such boundaries.

In summarizing fluid dynamics in the first half of the twentieth century,
Sydney Goldstein [176] observed (in the first Annual Review of Fluid
Mechanics):

In 1928 I asked Prandtl why he kept it so short, and he replied
that he had been given ten minutes for his lecture at the Congress
and that, being still quite young, he had thought he could publish
only what he had time to say. The paper will certainly prove to be
one of the most extraordinary papers of this century, and perhaps
of many centuries.

More specifically, the prominent French fluid dynamicist Paul Germain [168]
wrote:

Prandtl appears to be the first visionary discoverer of what we
may, now, call fluid dynamics inspired by asymptotics . . . . One
must stress that forty lines only are sufficient to Prandtl for deliv-
ering the essentials of a number of great discoveries: the boundary
layer concept itself, the equations which rule it and how they may
be used, their self-similar solutions, the basic law that the bound-
ary layer goes like the square root of the viscosity. It is impossible
to announce such major achievements in a shorter way.

There were certainly roots of singular perturbations and the boundary
layer concept in much nineteenth-century scientific literature. In his fluid
mechanics textbook, Prandtl [401], Prandtl called an 1881 paper by a Danish
physicist, L. Lorenz, the

first paper on boundary layers.

Few would agree today. Indeed, the reference has been dropped in the sur-
viving text, Oertel [357]. Van Dyke [492] notes Laplace’s and Rayleigh’s
work on the meniscus, Stokes’ work on the drag on a sphere, Hertz’s work on
elastic bodies in contact, Maxwell’s measurement of viscosity, Helmholtz and
Kirchhoff’s work on circular-disc capacitors, and Rayleigh and Love’s work
on thin shells. Additional historical perspective can be found in Bloor [47].
Indeed, Bloor [46] includes another list of precedents.
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Hans Reissner’s late son, Eric, a long-time applied math professor at MIT,
used to insist that the edge effect in thin shell theory (cf. Reissner [415])
paralleled fluid dynamical boundary layer analysis, though naturally inter-
changing the inner and outer terminology. Von Kármán, likewise, reported
that the elder Reissner told him:

People attribute to Prandtl and to you discoveries which neither
of you ever made

(cf. Friedrichs [159] for further related comments). We note that Frank [157]
describes singular perturbations in elasticity theory, using the perspective of
operator theory. Also note Andrianov et al. [9] and the classical reference
Gol’denveizer [173]. In Bloor [46], the sociologist argues convincingly that
boundary layer theory is a “social construct .”

One fascinating section of Schlichting and Gersten [438] quotes extensively
from Prandtl’s lectures from the winter semester of 1931–1932 on intuitive
and useful (anschlauliche und nützliche) mathematics, describing the oscil-
lations of a very small mass with damping. He considered the asymptotic
solution of the two-point boundary value problem

εy′′ + y′ + y = 0, 0 ≤ x ≤ 1 (1.1)

with y(0) and y(1) prescribed and with ε being a small positive parameter,
reminiscent of the square root of the reciprocal of the physically relevant
Reynolds number. Cole [92] considers the corresponding initial value problem
(cf. Chap. 3 below). From here onwards, readers should realize that we will
always take the symbol ε to be such a quantity. To emphasize this, we write

0 < ε � 1.

The small parameters we encounter will typically be dimensionless, resulting
from scaling a physical model (cf. Lin and Segel [291] and Holmes [208]). Our
analyses will typically begin as boundary value problems, skipping both the
very important initial modeling stage as well as the mathematical solution’s
ultimate physical reinterpretation.

The differential equation (1.1) can be solved, following Euler, by setting

y = eλx

where the constant λ satisfies the characteristic polynomial

ελ2 + λ+ 1 = 0.

The series expansions for its two roots

−ν(ε) ≡ − (1−√
1− 4ε)

2ε
= −(1 + ε+ . . .)
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and

−κ(ε)

ε
≡ −

(
1 +

√
1− 4ε

2ε

)
= −1

ε
(1− ε− ε2 + . . .)

converge for ε < 1/4, following the binomial theorem. Linearity implies that
the general solution to the differential equation is a linear combination

y(x, ε) = e−ν(ε)(x−1)c1(ε) + e−κ(ε)x/εc2(ε) (1.2)

for any constants c1(ε) and c2(ε). (We shifted the first exponent for later
convenience.) To satisfy the boundary conditions, c1 and c2 must satisfy the
linear system

y(0) = eν(ε)c1(ε) + c2(ε)
y(1) = c1(ε) + e−κ(ε)/εc2(ε).

Since the system is nonsingular for ε small and positive, Cramer’s rule
uniquely determines

c1(ε) =

∣∣∣∣y(0) 1

y(1) e
−κ(ε)

ε

∣∣∣∣∣∣∣∣∣
eν(ε) 1

1 e−
κ(ε)

ε

∣∣∣∣∣
and c2(ε) =

∣∣∣∣e
ν(ε) y(0)
1 y(1)

∣∣∣∣∣∣∣∣∣
eν(ε) 1

1 e−
κ(ε)
ε

∣∣∣∣∣
and thereby the displacement y(x, ε). (Estrada and Kanwal [144] provides a
distributional approach to solving such problems.) Neglecting multiples of
e−κ(ε)/ε (which we will later formally declare to be asymptotically negligible),
we get the asymptotic limit

y(x, ε) ∼ A(x, ε) +B(x, ε)e−x/ε. (1.3)

(The tilde, representing asymptotic equality, will be defined in Chap. 2.) Here
the outer expansion

A(x, ε) ≡ e−ν(ε)(x−1)c1(ε)

∼ e1−x(1 + ε(1− x) + . . .)y(1)

satisfies the given differential equation εA′′ + A′ + A = 0 and the terminal
condition A(1, ε) ∼ y(1) as a formal power series

A(x, ε) = A0(x) + εA1(x) + . . . (1.4)

in ε with
A0(x) = e1−xy(1),

A1(x) = e1−x(1− x)y(1),

etc. Setting like coefficients of ε to zero in the differential equation and the
boundary condition for A, we’d successively need A′

0+A0 = 0, A0(1) = y(1);
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A′
1 + A1 + A′′

0 = 0, A1(1) = 0; etc. Thus, the limiting solution A0(x) for
x > 0 satisfies a first-order differential equation and the terminal condi-
tion. We will later learn that the reason that this boundary condition is
selected for the outer expansion A is because the characteristic polynomial
has a large negative (i.e., stable) root when ε → 0. The related supplemen-
tal term B(x, ε)e−x/ε in (1.3) provides boundary layer behavior near x = 0,
i.e. nonuniform convergence of the solution y from y(0) to A(0, ε) in an
“ε-thick” right-sided neighborhood of x = 0. Since (Be−x/ε)′ = (B′−
B
ε

)
e−x/ε and (Be−x/ε)′′ =

(
B′′ − 2

εB
′ + B

ε2

)
e−x/ε, this boundary layer cor-

rection will satisfy the given linear equation (1.1) and the implied initial
condition if the factor B satisfies the initial value problem

εB′′ −B′ +B = 0, B(0, ε) = y(0)−A(0, ε). (1.5)

Introducing the formal series expansion

B(x, ε) = B0(x) + εB1(x) + . . . (1.6)

and equating successive coefficients in (1.5), we naturally require that they
satisfy

B′
0 = B0, B0(0) = y(0)− ey(1),

B′
1 = B1 +B′′

0 , B1(0) = −A1(0) = ey(1),

etc., which upon integration agrees with the convergent power series expan-
sion in ε of the exact solution (presuming ε < 1/4), i.e.

B(x, ε) = e−(κ(ε)−1)x/ε(y(0)− eν(ε)y(1)).

Simply compare (1.2) and (1.3) for the unique cjs found, neglecting e−κ/ε.
Our termwise solution for A and B will be generalized to the regular pertur-
bation method in the next chapter. Beware, however, the sum (1.3) is not an
exact solution (cf. Howls [219]), though asymptotic (a term we’ll carefully
define in Chap. 2).

Readers should note the important role played by the rapidly decaying
function

e−x/ε

as ε → 0+ on x ≥ 0. (See Fig. 1.3.) It converges nonuniformly from the
value 1 at x = 0 to the trivial limit at each x > 0 as ε → 0+ (quite like the
limiting idealized discontinuous unit Heaviside step function). Setting ε = 0
is meaningless when x = 0, but it provides the trivial limit obtained for any
fixed x > 0. Also note how helpful it would be to immediately assume that
the asymptotic solution of (1.1) has the additive form (1.3), a plunge that
we will confidently take in our final chapter.

More generally, note that the sum

e−x/ε + e−εx, x ≥ 0
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Figure 1.3: The function e−x/ε for x ≥ 0 and ε = 1, 1/10, 1/100

(like its second term) has the power series expansion

1− εx+
1

2
ε2x2 + . . .

on any interval 0 < δ ≤ x ≤ B < ∞, but the sum converges nonuniformly to
2 at x = 0 and to 0 at x = ∞.

Finally, observe that Prandtl used the model (1.1) 10 years before
K.-O. Friedrichs considered the nearly equivalent problem

νfyy = α− fy, 0 ≤ y ≤ 1, f(0) = 0, f(1) = 1

at Brown University’s Program of Advanced Instruction and Research in
Mechanics (cf. von Mises and Friedrichs [322]). For a fixed constant α, its
exact solution

f(y, ν) = (1− α)
(1− e−y/ν)

(1− e−1/ν)
+ αy

features an initial layer of nonuniform convergence near y = 0 as ν → 0+.
Indeed, the outer limit is 1 + α(−1 + y) for y > 0 and the nonuniform
initial layer behavior is described by the correction term (α − 1)e−y/ν (i.e.,
by completely neglecting the asymptotically negligible term ε−1/ν).

In explaining his basic approach when elected an honorary member of the
German Physical Society (upon his retirement), Prandtl [402] stated:

When the complete mathematical problem looks hopeless, it is
recommended to enquire what happens when one essential pa-
rameter of the problem reaches the limit zero. It is assumed that
the problem is strictly solvable when the parameter is set to zero
from the start and that for very small values of the parameter
a simplified approximate solution is possible. Then it must be
checked whether the limit process and the direct way lead to the
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same solution. Let the boundary condition be chosen so that the
answer is positive. The old saying “Natura non facit saltus” (Na-
ture does not make sudden jumps) decides the physical soundness
of the solution: in nature the parameter is arbitrarily small, but it
never vanishes. Consequently, the first way (the limiting process)
is the physically correct one!

(Quite analogously, Paulsen [387] characterizes a singular perturbation prob-
lem by a fundamental difference or change in behavior as a parameter ε
changes from 0 to a positive number.)

An unusual situation arises when solving algebraic equations that depend
analytically on a small parameter. There, singular perturbations occur when
the solution involves a Laurent expansion (cf. Avrachenkov et al. [17]).

The extremely slow acceptance of Prandtl’s boundary layer theory was
noted by Dryden [126] and Darrigol [110]. Bloor [47] explains that the British,
in particular, stuck too long to the inviscid fluid dynamics of Rayleigh (from
1876). They were ultimately convinced to accept Prandtl’s theory, however.

Tani [479] observed:

(i) In the 1905 paper, the essentials of boundary layer theory
were compressed into two and a half pages, largely descrip-
tive and extremely curtailed in expression. It is quite certain
that the paper was very difficult to understand at the time,
making its spread very sluggish.

(ii) Prandtl’s idea was so much ahead of the times.

(iii) The genesis of the boundary layer theory stood in sublime
isolation: nothing similar had ever been suggested before,
and no publications on the subject followed except for a small
number of papers due to Prandtl’s students for almost two
decades.

One might well conclude that boundary layer theory had a slow viscous flow
out of Göttingen (cf. O’Malley [373]).

Only a brief mention of boundary layer theory appeared in the fifth edition
of the preeminent English-language textbook Lamb’s Hydrodynamics [278].
There was no mention of the theory in the third and fourth editions of 1906
and 1916. G. I. Taylor [480], however, reported:

When I returned to Cambridge in 1919, I aimed to bridge the gap
between Lamb and Prandtl.

Sydney Goldstein’s two-volume Modern Developments in Fluid Mechanics
[175], later reprinted by Dover, was very influential in propagating ideas about
the boundary layer. Goldstein had taken on the substantial editorial task of
highlighting modern developments upon the death of Sir Horace Lamb in
1934. Lamb finally treated boundary layers extensively in the sixth edition
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of Hydrodynamics [278]. Prandtl’s Wilbur Wright Memorial Lecture [400]
to the Royal Aircraft Society in 1927 made a substantial impact in Britain,
together with the monograph Glauert [170] on airfoils and airscrews (i.e., wing
shapes and propellers). Prandtl’s student, Hermann Schlichting’s 1941–1942
lectures from Braunschweig lived on as mimeographed versions until they
were revised and published by G. Braun of Karlsruhe as Grenzschicht-Theorie
in 1951. Current 8th editions [438] in German and English, at least, are still
published by Springer. Schlichting, indeed, became director of Prandtl’s
proving ground in 1957 (cf. Schlichting [437]).

Before January 11, 1933, when Adolf Hitler was appointed German chan-
cellor by President Hindenburg, Göttingen was a Mecca for mathematicians
worldwide (cf. MacLane [304]). Richard Courant (1888–1972) became direc-
tor of the Mathematics Institute (Wissenschaftlicher Führer) in 1922 (suc-
ceeding Klein, who had retired in 1913). The German influence, especially in
pure mathematics, had become dominant. Thus, it was natural that the early
work of the prominent Japanese mathematician Mitio Nagumo be published
in German and that he would visit Göttingen from 1932 to 1934. His lifetime
work was greatly influenced by that stay. A chemist’s question motivated his
1939 paper on initial value problems for singularly perturbed second-order or-
dinary differential equations (cf. Yamaguti et al. [530]). As Sibuya observed
there,

when this paper was written, singular perturbations didn’t exist.

(The term hadn’t been defined.) One 1959 paper by Nagumo (on partial
differential equations) also concerns singular perturbations. However, the
later critical use of differential inequalities to analyze singularly perturbed
two-point boundary value problems (cf. Brish [60], Chang and Howes [76],
and De Coster and Habets [112]) is directly based on Nagumo’s use of up-
per and lower solutions (or bounding functions) from 1937 onwards. Nickel
[347]’s mathematical treatment of boundary layer theory extensively used dif-
ferential inequalities. The effective use of maximum principles for singularly
perturbed differential equations is closely related (cf. Eckhaus and de Jager
[138] and Dorr et al. [124]).

Somewhat similarly, the Chinese mathematician Yu-Why Chen came to
study at Göttingen in 1928 at the urging of an earlier student of Courant.
In a telephone conversation with this author, about 1989, Chen (then living
in Amherst, Massachusetts) confirmed that Courant had suggested a thesis
topic to him on an ordinary differential equation model featuring bound-
ary layer behavior, because he wished to encourage a mathematical anal-
ysis of Prandtl’s boundary-layer phenomena. (Chen also said no one had
asked him about his thesis in over 50 years.) Chen was granted his doctor-
ate in 1935 for a thesis coinciding with the Compositio Mathematica paper,
Tschen [485]. His thesis referees at Göttingen were Franz Rellich and Gustav
Herglotz, since Courant had been dismissed because he was a Jew. Chen’s
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asymptotics work is largely forgotten, though it overlaps a bit with Wolfgang
Wasow’s more influential New York University thesis of 1942 (which we will
consider in Chap. 3). Such nostrification, or not properly recognizing work
done elsewhere, may be inadvertent, though it is sometimes claimed to be
quite common at certain introverted math centers, however prominent.

Courant had convinced the Rockefeller Foundation’s International Educa-
tion Board (or IEB) to spend $275,000 to build a new Mathematical Institute
in Göttingen in 1929, balancing the Institut Henri Poincaré it had already
funded in Paris. Just before then, the new Cambridge PhD Sydney Gold-
stein had visited Prandtl for a year as a Rockefeller Research Fellow. There
Goldstein studied numerical boundary layer calculations, a topic extensively
developed later by his Manchester and Cambridge colleague, D. R. Hartree.

According to Siegmund-Schultze [460], the IEB’s rationale for funding
Courant’s institute was

The Board would not be interested in . . . housing or even helping
to house the mathematical department in more agreeable quar-
ters, unless thereby there was a practical certainty that greater
and much greater usefulness to a group of sciences would result.
In fact, the new mathematical institute was finally erected on
Bunsenstrasse in Göttingen close to the physical and chemical in-
stitutes and the aeronautical institutes of Ludwig Prandtl. These
scientists in time now had better access to the mathematicians
and to the mathematical library. Although Prandtl was not in-
volved in the negotiations process, and at one point was men-
tioned in a slightly disparaging way as “more of an engineer than
a physicist” (yet a professor in the University mathematics de-
partment), his institutes and the technical sciences are expressly
included in the “group of sciences” which were of interest to the
IEB’s Trowbridge. In fact this was completely in the tradition of
Felix Klein who had called Prandtl to Göttingen in 1904 in or-
der to enrich its mathematical environment. Trowbridge’s report
includes a longer passage on his visit to Prandtl’s AVA (aerody-
namic proving ground) with its wind tunnel, and mentions the
new and more theoretical Kaiser-Wilhelm-Institut.

At the opening ceremony, Hilbert said:

realizing the idea of building the institute was a great and difficult
task entailing various smaller problems. Courant treated each of
these with the same love and devotion, always knowing how to
find and cajole the most suitable and understanding man for the
task

(cf. Bergmann et al. [42]). (Readers may recall that the original, very
influential, thousand-page, two-volumeMethoden der mathematischen Physik
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[102] was published in 1924 and 1937 as a collaborative effort at the university,
based on Hilbert’s lectures, with Courant as editor.)

Applied mathematics was also being simultaneously developed in other
German universities, especially Berlin. Quite naturally, Ludwig Prandtl and
Richard von Mises established GAMM, the German society Gesellschaft für
Angewandte Mathematik und Mechanik , in 1922 while the sister Society for
Industrial and Applied Mathematics (SIAM) in the USA wasn’t founded un-
til 1952. (The European Consortium for Mathematics in Industry (ECMI)
didn’t start until 1986.)

Erich Rothe was a joint student of Erhard Schmidt and von Mises at Berlin
in 1926. Far ahead of the crowd, he subsequently wrote several papers on
the asymptotic solution of singularly perturbed partial differential equations
and on the skin effect in electrical conductors (cf., e.g., Rothe [422]). Later,
while a refugee schoolteacher in Iowa, he published a very good paper on
singularly perturbed two-point boundary value problems in the obscure Iowa
State College Journal of Science (cf. Rothe [423]). (Most of his career was
spent at the University of Michigan, where his work included topological
degree theory and his first PhD student was Jane Cronin in 1949.)

A major upheaval occurred in Germany on April 7th, 1933. The “Law
for the Reorganization of the Civil Service” dismissed Jews from government
positions (except those appointed prior to 1914 or who (like Courant) had
served in the front lines during World War I (cf. Segal [446] and Siegmund-
Schultze [462]). As of 1937, anyone married to a Jew also lost his or her
university position. Hitler also targeted others, besides Jews, that he labeled
Untermenschen (or subhumans). James [225] reports that from 1938 those
dismissed were not only forbidden to teach, they were no longer allowed to
enter university buildings, including libraries.

After Courant was placed on leave in the spring of 1933, Prandtl joined
27 others in a petition in support of Courant. Petitioners included Artin,
Blaschke, Caratheódory, Hasse, Heisenberg, Herglotz, Hilbert, von Laue,
Mie, Planck, Prandtl, Schrödinger, Sommerfeld, van der Waerden, and Weyl.
Friedrichs later reported:

Several of the names on the list are those of people who later were
considered to be Nazis or near-Nazis, and even at the time some
of them were known to be in sympathy with the regime.

Recall that Nazi refers to a supporter or member of Hitler’s political party,
the National Socialist German Workers’ Party or NSDAP. Courant had in-
deed asked Prandtl to write the Kurator (government representative at the
university) on his behalf since he felt Prandtl

had acted with courage and decision, firing one of his assistants
when he discovered that the man was an informer for the Nazi
forces
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(cf. Reid [411] and Trischler [484]. The assistant was Johann Nikuradse,
whose research under Prandtl is still cited.).

From his intermediate stop at Cambridge University in 1934, Courant
(according to Siegmund-Schultze [462]) wrote

Germany’s best friends such as Hardy, Flexner, Lord Rutherford,
the Rockefeller Foundation get alienated while our institutions,
which were unequalled in the world, are destroyed—even Cam-
bridge cannot compare to the old Göttingen. Foreign countries
take advantage of the situation and employ people, particularly
physicists and chemists, who will in the long run give science and
its applications there a big boost.

Ball [24] notes that Courant decided to emigrate when

My youngest son did not seem able to understand why he should
not be in the Hitler Youth, too.

Prandtl protested to the Minister of the Interior

that the rigid system devised by the race theorists should be flex-
ible enough to allow scholars who were half or a quarter Jewish,
who were then logically half or three-quarters German, to be per-
suaded to join the people’s cause.

Mehrtens and Kingsbury [313] report that the number of math students
at Göttingen decreased from 432 in 1932 to 37 in 1939. According to Cornwell
[99], when Max Planck (as president of the Kaiser Wilhelm Society) expressed
his concerns about the deterioration, Hitler replied:

If the dismissal of Jewish scientists means the annihilation of con-
temporary German science, then we will do without science for a
few years.

(By 1942, the converted Hitler was quoted

I’m mad on technology.

(cf. Jacobsen [223])). Beyerchen [43] reports that the aging David Hilbert
(1862–1943) (who had retired in 1930) when asked at a banquet by the Nazi
minister of science

And how is mathematics in Göttingen now that it has been freed
of the Jewish influence?

Hilbert replied:

Mathematics in Göttingen? There is really none anymore.
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Despite his high opinion of Prandtl’s scientific merits, G. I. Taylor
expressed some personal reservation in his obituary of von Kármán
(cf. Taylor [481]):

By the time the fourth Congress (of Applied Mechanics) was held
in Cambridge, England in 1934, the German Jewish members
were having a bad time. Theodore was well out of it but was
doing a lot for his unfortunate fellow countrymen. Prandtl, who
was not Jewish, appeared to be completely taken in by the Nazi
propaganda. . . In 1938, however, when the fifth Congress was
organized in Cambridge, Massachusetts by Theodore and Jerome
Hunsaker, conditions had changed. Prandtl and my wife and I
were staying with Jerome at his home in Boston. The German
delegation was strictly watched by political agents who had come
as scientist members and Prandtl did not dare to be seen reading
American papers. He used to ask my wife to tell him what was
in them. After I returned to Cambridge from the fifth Congress
I had a letter from Prandtl telling me what a benevolent man
Hitler was and including a newspaper cutting showing the Führer
patting children’s heads. I imagine the poor man did this under
pressure from the propaganda machine, for other people told me
they had similar letters from him.

Epple et al. [140] reports:

After the congress, Prandtl tried to convince Taylor in a letter
dated October 1938 that Hitler did in fact “turn one million peo-
ple against himself while eighty million people, however, are his
most loyal and enthusiastic followers.” The battle Germany had
to fight against the Jews, Prandtl continued to explain, was nec-
essary for its self-preservation. He invited Taylor to Germany so
that he could see with his own eyes “that we are, in fact, being
ruled very well.”

Sreenivasan [471] reports that Prandtl and Taylor exchanged 25 letters
between 1923 and 1938. Prandtl would usually write in typewritten German
(in which Taylor’s wife was fluent) while Taylor would reply in handwritten
English. In 1933, Prandtl complained about Taylor’s handwriting (which is
reproduced in Sreenivasan [471])

Would it be possible for your letters which at the moment are
extremely hard to read and cost me a large amount of time be
written by someone else who writes more clearly? I hope you
don’t take umbrage against this remark.

Taylor called Hitler a
criminal lunatic
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in his last letter and didn’t answer two letters from Prandtl after the Second
World War.

Prandtl had hoped that the 1938 or 1942 Congress would be held in
Germany, assuming no distinction would be made between Jews and non-
Jews. According to Mehrtens and Kingsbury [313], however, the Reich’s
Ministry of Education wrote Prandtl that

“Jews of foreign citizenship” who took part would not be regarded
as Jews here, but that there would be no place for non-Aryans of
German citizenship.

Prandtl accepted the Hermann Göring medal (named for the commander-in-
chief of the Luftwaffe or German Air Force and also Hitler’s minister with-
out portfolio) in 1939 from the Academy of Aeronautical Research and he
chaired an advisory panel for the Air Ministry (Reichsluftfahrtsministerium).
Prandtl’s institutes grew to have hundreds of workers (cf. Hirschel et al. [207]
and Meier [315]). In a letter from 1933, Prandtl wrote

Hopes increased that, after years of ‘unjustified penny-pinching,’
the importance of research for the good of the state would fully
be recognized.

Trischler [484] reported

It is then not surprising that the scientists did not regret the pass-
ing of democracy, or that they quietly aligned themselves with the
new dictatorship, particularly when, with regard to their actual
work, virtually no limits were set on their traditional autonomy.

As Epple et al. [140], observed

we may assume that Prandtl realized, even before the disclosure
of the German air force armament plans in the summer of 1935,
that the expansion of his institute, at least from the point of
view of his official patrons, served to prepare for a new war . . .
Prandtl thus not only anticipated the actual dynamics of the main
phases of war research but also justified some of the research of
the prewar arming period not immediately usable by reference to
a secondary benefit in the eventuality of a war.

von Kármán reported that after the war, Prandtl said

he was not a Nazi, but had to defend his country

(cf. von Kármán and Edson [241]). In a manuscript “Reflections of an
unpolitical German on the denazification” (1947), Prandtl wrote that he
never played a role in politics, but had always served

State and Science.
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His former students, Stanford engineering professors Irmgard Flügge–Lotz
and Wilhelm Flügge, to a large extent, defended him (cf. Flügge-Lotz and
Flügge [150]). They wrote:

In the Applied Mechanics Institute, Prandtl was politely
squeezed out by a group of flag-waving people, but the Fluid
Mechanics Institute started to grow and to enjoy prosperity un-
der the golden rain of government support. A. Betz, while never
submitting to party rule, used the interest of the new German
airforce to buy expensive equipment and to expand the staff.
Among this staff–scientific, technical, and administrative– there
was a wide variety of attitudes. Many went with flying colors into
the camp of the new masters, and from them the precinct war-
dens were chosen who had to watch our thoughts and actions and
to denounce us if they caught us in a word of doubt or criticism.
They were the known enemies, and in their presence people fell
silent. For those who did not approve of the regime, there was
only the choice between martyrdom and compromise. We do not
remember anyone who became a martyr, but the compromise was
a walk on a tightrope. No one really knew where the other stood,
whether he was a member of the muffled opposition, a spy, or
perhaps, at times the one and then the other. This uncertainty,
even with regard to former friends, fell like a blight upon the
social life.

Prandtl had little understanding for politics and was at times
as helpless as a child. He knew that some of the people were like
mad dogs, but he could not understand how results of clear logical
argument could be rejected furiously if they went against the new
doctrine. Standing at the top of the pyramid, he could not avoid
giving once in a while a public address, and this was always a ner-
vous strain for the scientific community of the institute. Usually
someone had had an advance look at Prandtl’s draft of a speech,
but who could be sure that he would not be carried away and
make some extempore remark that could lead us all into trouble?

The author recalls an earlier seminar by Flügge-Lotz, given in a darkened
Stanford classroom with a spotlighted portrait of Prandtl, entitled “The
Ludwig Prandtl I Knew.”

The biography Vogel-Prandtl [509], by Prandtl’s younger daughter
Johanna, portrayed him as hostile to the regime, noting that he refused
to have a picture of Hitler in his office. Her book also makes public a 1941
letter from Prandtl to Göring which states

they [the antagonists of “Jewish physics”] have poisoned the air
with . . . disdain for the past.
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This followed efforts by Prandtl to defend Werner Heisenberg and theoretical
physics. He summarized by writing:

In short, it boils down to one thing, namely that a group of physi-
cists, to whom the Führer listens, is raging against theoretical
physics and defaming the most meritorious theoretical physicists.

The Nazi physicists and Nobel laureates J. Stark and P. Leonard had attacked
“Jewish Aryans” or “white Jews,” particularly Heisenberg, the 1933 Nobel
prizewinner in physics, because they decided he

thinks like a Jew

(cf. Reeves [410]). The term Jude in Geiste (Jewish in spirit) was used. Some
mathematicians wrote similar diatribes, especially in the journal Deutsch
Mathematik, edited by L. Bieberbach and T. Vahlen. Also note Rowe [424].

The Kreisleiter (local Nazi coordinator) in Göttingen wrote in 1937:

Prof. Prandtl is a typical scientist in an ivory tower. He is only
interested in his scientific research which has made him world fa-
mous. Politically, he poses no threat whatsoever. . .. Prandtl may
be considered one of those honourable, conscientous scholars of a
bygone era, conscious of his integrity and respectability, whom we
certainly cannot afford to do without, nor should we wish to, in
light of his immensely valuable contributions to the development
of the air force

(cf. Ball [24]).
Bodenschatz and Eckert [49] report, based on Prandtl’s correspondence,

By July 1945 the institute was under British administration and
had “many British and American visitors.” Prandtl was allowed
to work on some problems that were not finished during the war
and from which also reports were expected. Starting any new
work was forbidden.

They also quote a British Intelligence report on a visit to the Kaiser-Wilhelm-
Institut (KWI) 26–30 April 1946:

Much of the equipment of the A.V.A. has been or is in the pro-
cess of being shipped to the U.K. under M.A.P. direction, but the
present proposals for the future of the K.W.I. Göttingen appear to
be that it shall be reconstituted as an institute of fundamental re-
search in Germany under allied control, in all branches of physics,
not solely in fluid motion as hitherto. Scientific celebrities now
at the K.W.I. include Professors Planck, Heisenberg, Hahn and
Prandtl among others. In the view of this policy, it is only with
difficulty that equipment can be removed from the K.W.I. The
K.W.I. records and library have already been reconstituted.
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When Courant visited Göttingen in 1947, about the time of Prandtl’s
retirement, he reported that the aeronautics institute had become a

veritable fortress.

Although ill and depressed, Prandtl was mentally alive. He had given much
thought to analog computing machines with a view toward meteorologi-
cal computations, a longtime interest. As we continue to describe further
progress in boundary layer theory, we encourage readers to try to under-
stand Prandtl’s behavior in the context of Nazi Germany (cf. Goldhagen
[174], Medawar and Pyke [312], and Barrow-Green et al. [30]).

As Flügge-Lotz and Flügge [150] put it:

The seeds sown by Prandtl have sprouted in many places, and
there are now many ‘second growth’ Göttingens who do not know
that they are.

The surviving victims of Hitler’s Third Reich (including applied mathe-
maticians) spread worldwide as an intellectual diaspora. Courant’s transition
from Göttingen to founding what become the Courant Institute at New York
University is described in Reid [411]. As in Göttingen, Courant was ambitious
to develop as international center at NYU for basic science, ultimately gain-
ing support from the Rockefeller Foundation, the Office of Naval Research,
the Atomic Energy Commission, and rich and well-connected individuals. He
started anew, with practically no resources. His institute educated many out-
standing students and later employed some of them, including the brothers
J. B. and H. B. Keller (from Paterson, N. J.), the Hungarian Peter Lax, and
the Canadians Cathleen Synge Morawetz and Louis Nirenberg. Among those
later involved in asymptotics, Wiktor Eckhaus survived the war in Poland
before finishing high school in Holland and a Ph.D. at MIT (cf. Eckhaus
[137]); the Hungarian Arthur Erdélyi emigrated from Czechoslovakia to Ed-
inburgh in 1939 with the help of E.T. Whittaker (cf. Colton [94] and Jones
[228]), and subsequently split his career between Caltech and Edinburgh; the
German/Palestinian Abraham Robinson fled from France to England where
he did aeronautical research during the war (cf. Dauben [111]); and Richard
von Mises went to Istanbul and then to Harvard (initially, without salary, but
with a girl friend!). James [225] reports that of the 2600 Jews assisted by the
British Academic Assistance Council, twenty become Nobel laureates, fifty-
four were selected Fellows of the Royal Society, thirty-four become Fellows of
the British Academy, and ten received knighthoods.

A substantial effort successfully found university positions for most of the
émigré mathematicians (cf. Siegmund-Schultze [462]), although there was a
counter point of view that the big migration of established academics from
Europe to the USA would force some young American mathematicians to
become

hewers of wood and drawers of water
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(cf. Birkhoff [44] and Joshua 9:23). Einstein (who did not return from
America to Germany in 1933) labeled G. D. Birkhoff (1884–1944), the most
prominent American-trained mathematician at the time,

one of the world’s great anti-Semites

while Courant said

I don’t think he was any more antisemitic than good society in
Cambridge, Massachusetts.

In any case, of the 148 mathematical émigrés after 1933 listed in Siegmund-
Schultze [462], 82 came to the United States and all but 7 obtained positions
by 1945. As Courant anticipated, many contributed to the allied war effort,
including developing the atomic bomb. As Medawar and Pyke [312] conclude:

The great majority of the scientific emigrants were young and
unknown people. Those who later made worthwhile contributions
were able to do so because their host countries generally gave them
the chance that Germany denied them.

The subsequent prominence of Jewish mathematicians in America is consid-
ered in Hersh [203].

K.-O. Friedrichs (1901–1982) left a professorship in Braunschweig in 1937
to come to New York University in order to marry a non-Aryan (cf. Reid
[412]). He had been Courant’s student at Göttingen, learned fluid mechanics
as a postdoc with von Kármán in Aachen, and he encountered boundary
layers in plate theory (cf. Friedrichs and Stoker [162]). His lecture notes from
the Brown University summer school (cf. von Mises and Friedrichs [322]), his
NYU lectures on special topics in fluid mechanics (Friedrichs [160]), and his
Gibbs lecture (Friedrichs [161]) all demonstrate his mastery of asymptotics,
as part of much broader contributions to analysis and differential equations
(cf. Morawetz [326]). In studying nonlinear oscillations, like those described
by the van der Pol equation, Friedrichs and Wasow [163] introduced the
now universally accepted term singular perturbations to distinguish them
from the more common situation of a regular perturbation for which uniform
convergence implies that a single asymptotic power series suffices. Wasow
[516] observed:

In later years, neither of the two authors could remember to which
of them belongs the credit for coining the terminology, but I be-
lieve it was Friedrichs.

Wolfgang Wasow (1909–1993) had studied mathematics in Göttingen,
seeking to pass his Staatsexamen to become a teacher (cf. Wasow [516]
and O’Malley [369]). He passed his orals in 1933 and applied for practice
teaching, but was not employed. After some wandering, including teaching
at a boarding school in Florence and at Choate School and Goddard College,
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he took a $600 fellowship at NYU in 1940, arranged by Courant. His 133-
page thesis was nearly completed the following summer, under the direction
of Friedrichs. It described many singular perturbation examples and made
Prandtl’s boundary layer theory into a mathematical topic. The work was
not immediately well received, however. The first papers he submitted were
rejected, but a ten-page paper ultimately appeared in the MIT journal (cf.
Wasow [511]),

with some behind the scenes support from Courant

(according to Wasow [516]). Wasow’s autobiography modestly states that his
post-thesis research

was soon overshadowed by two articles by MIT’s Norman Levin-
son who obtained more general results by different methods.

(Levinson’s critical work on singular perturbations is summarized in Nohel
[353]). Wasow continued to do important work on asymptotics, as summa-
rized in Asymptotic Expansions for Ordinary Differential Equations [513] and
Linear Turning Point Theory [515], as well as much other mathematical and
numerical analysis (while working mostly at UCLA and the University of
Wisconsin, Madison).

By 1950, singular perturbations were being studied and developed by
a variety of mathematicians and engineers worldwide, although hardly in
Göttingen. (Curiously, the U.S. Office of Strategic Services recruited over
1600 German scientists (including Wernher von Braun) to come to America
after the war (as Operation Paperclip), bleaching any ties to Nazi service (cf.
Jacobsen [223]).) Substantial activity was taking place in the Guggenheim
Aeronautical Laboratory at Caltech (GALCIT), which von Kármán headed
since 1930 (cf. Cole [93]), while many promising efforts underway elsewhere
were largely unconnected to the original motivation from fluid dynamical
boundary layers.

von Kármán became emeritus at Caltech in 1949, largely due to his ex-
panding duties (since 1944) with the scientific advisory group for the Air
Force and (since 1951) with NATO’s Advisory Group for Aeronautical Re-
search and Development. In 1962, he received the first National Medal of
Science from President Kennedy.

Sears [445] reports:

He also loved parties, drinks, girls, jokes, the bon mot. All his life,
he played the part of the dangerous Hungarian bachelor. He suc-
ceeded in shocking some of the young wives (and their husbands),
but charmed many more. He told us: ‘I have decided how I want
to die. At the age of 85, I want to be shot by a jealous husband’.
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More seriously, he added

Ulam saw von Kármán and asked John von Neumann who that lit-
tle old guy was. ‘What, you don’t know Theodore von Kármán?’
said von Newmann, ‘Why, he invented consulting’.

More generally, the arrival of applied mathematics in academic America is
considered in Richardson [417] and Siegmund-Schultze [461]. It spread from
New York, Boston, Providence, and Pasadena, among other centers (cf. Rowe
[426] for a colorful (Truesdellian) description of early applied mathematics at
Brown, including comments on its émigré faculty in the summer of 1942).

Exercises

Although we’ve not yet accomplished much technically, readers can do the
exercises that follow based on their first course in differential equations (cf.
O’Malley [370]).

1. Find the solution of the initial value problem

ε3ÿ + εẏ + y = 1

on t ≥ 0 with y(0) = 2 and εẏ(0) = 3 as ε → 0+.

The answer is an asymptotic solution of the form

y(t, ε) ∼ 1 +A(t, ε)e−t/ε + εB(t, ε)e−t(1−ε)/ε2

for power series A and B. (The tilde indicates an asymptotic limit.)

2. Solve the two-point problem

εy′′ + y′ − (y′)2 = 0, 0 ≤ x ≤ 1

with y(0) = 1 and y(1) = 0 and describe its boundary layer behavior.

An exact solution is

y(x, ε) = −ε ln
(
1 + e−1/ε − e−x/ε

)
.

3. (a) Find the exact solution to the problem

εy′′ − y′ + 2x = 0, 0 ≤ x ≤ 1

with y(0) = 0 and y(1) = 1.

(b) For small positive values of ε, show that

y(x, ε) = x2 + 2ε
(
x+ 1 + e

x−1
ε

)

up to exponentially negligible terms like e−1/ε.

Note that y converges uniformly to x2, that y′ converges nonuni-
formly near x = 1, and that y′′(1) is approximately 2/ε.
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4. Show that the two-point problem for the constant coefficient equation

ε2(y′′ + ay′)− b2y = c, 0 ≤ x ≤ 1

with b > 0 has an asymptotic solution of the form

y(x, ε) = − c

b2
+A(x, ε)e−bx/ε +B(x, ε)e−

b
ε (1−x)

where
A(x, ε) ∼ e−

ax
2

(
y(0) +

c

b2

)

and
B(x, ε) ∼ e

a
2 (1−x)

(
y(1) +

c

b2

)
.



Chapter 2

Asymptotic
Approximations

(a) Background

Leonhard Euler (1707–1783), among others in the eighteenth century, was
adept at manipulating divergent series, though usually without careful jus-
tification (cf. Tucciarone [487], Barbeau and Leah [26], and Varadarajan
[493]). Note, however, Hardy’s conclusion

. . . it is a mistake to think of Euler as a “loose” mathematician.

As with singular perturbations, the ideas behind asymptotic approxima-
tions were not well understood until about 1900. They were presumably
unknown to Prandtl in Munich and Hanover. For a classical treatment of
infinite series , see, e.g., Rainville [404].

See Olver [360] for an example of a semiconvergent or convergently begin-
ning series. They were defined as follows in P.-S. Laplace’s Analytic Theory
of Probabilities (whose third edition of 1820 is now available online as part
of his complete work):

The series converge fast for the first few terms, but the conver-
gence worsens, and then comes to an end, turning into a diver-
gence. This does not hinder the use of the series if one uses only
the first few terms, for which convergence is rather fast. The
residual of the series, which is usually neglected, is small in com-
parison to the preceding terms.

(This translation is from Andrianov and Manevitch [10].)
Throughout most of the nineteenth century, a strong reaction against di-

vergent series, led by the analyst Cauchy, nearly banned their use (especially
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in France). (Augustin-Louis Cauchy (1789–1857) was a professor at École
Polytechnique from 1815–1830. Afterwards, he held other positions, some-
times in exile, because his conservative religious and political stances made
him refuse to take a loyalty oath.) Note, however, Cauchy [73]. In 1828, the
Norwegian Niels Abel (1802–1829) wrote:

Divergent series are the invention of the devil, and it is shameful
to base on them any demonstrations whatsoever. By using them,
one may draw any conclusion he pleases and that is why these
series have produced so many fallacies and so many paradoxes.

Verhulst [500] has a similar quote from d’Alembert. Kline [255] includes
considerable material regarding divergent series. In particular, he points out
that Abel continued

That most of the things are correct in spite of that is extraordi-
narily surprising. I am trying to find a reason for this; it is an
exceedingly interesting question.

Further, Kline quotes the logician Augustus De Morgan of University College
London as follows:

We must admit that many series are such as we cannot at present
safely use, except as a means of discovery, the results of which are
to be subsequently verified and the most determined rejector of
all divergent series doubtless makes use of them in his closet . . .

Finally, the practical British engineer Oliver Heaviside wrote

The series is divergent; therefore, we may be able to do something
with it.

In his Electromagnetic Theory of 1899, Heaviside also wrote

It is not easy to get up any enthusiasm after it has been artifi-
cially cooled by the rigorists. . . There will have to be a theory of
divergent series.

Attitudes and developments no doubt somewhat reflect the alternations in
French and European politics during those turbulent times. Abel summability
of power series was originated by Euler, but it is usually named after Abel.
Roy [427] reports that Abel called the technique

horrible,

saying
Hold your laughter, friends.

In 1886, however, Henri Poincaré (1854–1912) and Thomas Joannes
Stieltjes (1856–1894), simultaneously and independently, provided the valu-
able definition of an asymptotic approximation and illustrated its use and
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practicality. Their papers were, respectively, published in Acta Math. and
Ann. Sci. École Norm. Sup. (cf. Poincaré [393] and Stieltjes [475]). The
latter was Stieltjes’ dissertation. Stieltjes called the series semi-convergent.
Poincaré (a professor at the Sorbonne and École Polytechnique) had studied
with Hermite, who was in close contact with Stieltjes, primarily through let-
ters (cf. Baillaud and Bourget [20]). Like most others, we tend to emphasize
the special significance of Poincaré because of his important later work on
celestial mechanics, basic to the two-timing methods we will later consider
(see the centennial biographies, Gray [182] and Verhulst [502]). Stieltjes was
Dutch, but successfully spent the last 9 years of his short life in France.

In contrast to convergent series, a couple of terms in an asymptotic series,
in practice, often provide a good approximation. This is especially true for
singular perturbation problems, as we shall find. McHugh [310] and Schissel
[435] connect the topic to the classical ordinary differential equations litera-
ture. One’s first contact with asymptotic series may be for linear differential
equations with irregular singular points (cf. Ford [151], Coddington and
Levinson [91], or Wasow [513]). An example is provided by the differential
equation

x2y′′ + (3x− 1)y′ + y = 0

which has the formal power series solution

∞∑
k=0

k!xk,

convergent only at x = 0. The same series arises (as we will find) in expanding
the exponential integral, while the series

x

∞∑
k=0

(−1)kk!xk

formally satisfies
x2y′ + y = x.

The most popular book on asymptotic expansions may be Erdélyi [141].
(My copy cost $1.35.) The Dover paperback (now an e-book) was based
on Caltech lectures from 1954 and was originally issued as a report to the
U.S. Office of Naval Research. The material is still valuable, including oper-
ations on asymptotic series, asymptotics of integrals, singularities of differ-
ential equations, and differential equations with a large parameter. Arthur
Erdélyi (1908–1977) came to Caltech in 1947 to edit the five-volume Bateman
Manuscript Project (based on formulas rumored to be in Harry Bateman’s
shoebox collection. Bateman was a prolific faculty member at Caltech from
1917 to 1946.) Erdélyi remained in Pasadena until 1964 when he returned
to the University of Edinburgh to take the Regius chair that had been held
by his hero, E. T. (later Sir Edmund) Whittaker, from 1912 to 1946. (Whit-
taker wrote A Course in Modern Analysis in 1902 and was coauthor with
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G. N. Watson of subsequent editions from 1915 (cf. [521]).) Influenced by
the work feverishly underway among engineers at GALCIT, Erdélyi and some
math graduate students also got involved in studying singular perturbations
(one was the author’s own thesis advisor, Gordon Latta, whose 1951 thesis
[281] had H. F. Bohnenblust as advisor). Erdélyi’s Asymptotic Expansions
was much influenced by E. T. Copson’s Admiralty Computing Service re-
port of 1946, commercially published by Cambridge University Press in 1965
[98], and by the work of Rudolf Langer, Thomas Cherry, and others in the
1930s regarding turning points. Much more applied mathematical activity
involving asymptotics took place in Pasadena after Caltech started its applied
math department about 1962, initially centered around Donald Cohen, Julian
Cole, Herbert Keller, Heinz-Otto Kreiss, Paco Lagerstrom, Philip Saffman,
and Gerald Whitham, among others contributing to practical applied asymp-
totics. Their students have meanwhile been most influential in the field.

The historical background to Cauchy’s own work on divergent series is
well explained by the French mathematician Émile Borel (1871–1956) in Borel
([52], originally from 1928). Borel wrote:

The essential point which emerges from this hasty review of
Cauchy’s work on divergent series is that the great geometer
never lost sight of this matter and constantly searched this
proposition, which he called

a little difficult,

that a divergent series does not have a sum. Cauchy’s immediate
successors, on the contrary, accepted the proposition with neither
extenuation nor restriction. They remembered the theory only as
applied in Stirling’s formula, but the possibility of practical use
of that divergent series seemed to be a totally isolated curiosity
of no importance from the point of view of general ideas which
one could try to develop on the subject of analysis.

Andrianov and Manevitch [10], among others, report that Borel traveled
to Stockholm to confer with Gösta Mittag-Leffler, after realizing that his sum-
mation method of 1899 gave the “right” answer for many classical divergent
series. Placing his hand on the collected works of his teacher Weierstrass,
Mittag-Leffler said, in Latin,

The master forbids it.

Nonetheless, Borel had won the first prize in the 1898 Paris Academy com-
petition “Investigation of the Leading Role of Divergent Series in Analysis.”
See Costin [101] for an update on Borel summability .

Another important early book [196] on divergent series is by the British
mathematician G. H. Hardy (1877–1946), a leading British pure mathemati-
cian and a professor successively at both Oxford and Cambridge. It was
published posthumously in 1949 with a preface by his colleague J. E. Little-
wood saying:
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about the present title, now colourless, there hung an aroma of
paradox and audacity.

Hardy’s introductory chapter is especially readable, filled with interesting and
significant historical remarks. The book has none of the anti-applied slant nor
personal reticence (cf. Hardy [195], Littlewood [296], or Leavitt [282]) often
linked to Hardy. Overall the monograph is quite technically sophisticated, as
is his related Orders of Infinity [194].

Olver’s Asymptotics and Special Functions [360] includes a rigorous, but
very readable, coverage of asymptotics, with a computational slant toward
error bounds. (British-born and educated, Olver came to the United States
in 1961.) At age 85, Frank Olver (1924–2013) was the mathematics editor of
the 2010 NIST Digital Library of Mathematical Functions [361] and of the
associated Handbook, the web-based successor to Abramowitz and Stegun [2]
(which originated at the U.S. National Bureau of Standards, the predeces-
sor of the National Institute of Standards and Technology, and which may
have been the most popular math book since Euclid.) It demonstrates that
asymptotics is fundamental to understanding the behavior of special func-
tions, which still remain highly relevant in this computer age.

Among many other mathematics books deserving attention by those wish-
ing to learn asymptotics are Dingle [123], Bleistein and Handelsman [45],
Bender and Orszag [36], Murray [338], van den Berg [40], Wong [525], Ramis
[405], Sternin and Shatalov [473], Jones [229], Costin [101], Beals and Wong
[33], Paris [386], and Paulsen [387]. Readers will appreciate their individual
uniqueness and may develop their own personal favorites.

(b) Asymptotic Expansions

In the following, we will write

(i)
f(x) ∼ φ(x) as x → ∞ (2.1)

if f(x)
φ(x) then tends to unity. (We will say that f is asymptotic to φ as

x > 0 becomes unbounded.)

(ii)
f(x) = o(φ(x)) as x → ∞ (2.2)

if f(x)
φ(x) → 0 (Alternatively, one can write f � φ.) and

(iii)
f(x) = O(φ(x)) as x → ∞ (2.3)

if f(x)
φ(x) is then bounded.



32 CHAPTER 2. ASYMPTOTIC APPROXIMATIONS

We often call these relations asymptotic equality and the little o and big
O Landau (or Bachmann–Landau) order symbols (after the number theorists
who introduced them in 1894 and 1909, respectively). (Olver [360] calls the
O symbol a fig leaf, since the implied bound (which would be very useful
when known) isn’t provided.) Warning : We need to be especially careful
when the comparison function φ has zeros as x → ∞. The symbol tilde ∼ is
used to distinguish asymptotic equality from ordinary equality.

As our basic definition, we will use (after Olver): A necessary and suffi-
cient condition that f(z) possess an asymptotic (power series) expansion

f(z) ∼ a0 +
a1
z

+
a2
z2

+ . . . as z → ∞ in a region R (2.4)

is that for each nonnegative integer n

zn

{
f(z)−

n−1∑
s=0

as
zs

}
→ an (2.5)

as z → ∞ in R, uniformly with respect to the allowed phase (i.e., argument)
of z. The coefficients aj are uniquely determined (as for convergent series).
They’re not always the Taylor series coefficients, however. Also note that
the limit point ∞ can be replaced by any other point and that (2.5) can be
interpreted to be a recurrence relation for the coefficients an of (2.4).

An important case, often arising in applications, occurs when the asymp-
totic expansion with respect to 1

z depends on a second parameter, say θ.
When the second parameter takes on (or tends to) a critical value θc, the
expansion may become invalid. The asymptotic expansion is then said to be
nonuniform with respect to θ.

Convergence factors are sometimes introduced to “make” divergent series
converge. Likewise, the Borel–Ritt theorem is often invoked to provide a
holomorphic sum to a divergent series (cf. Wasow [513]).

We also note, less centrally, that Martin Kruskal [266] perceptively intro-
duced the term asymptotology as the art of handling applied mathematical
systems in limiting cases, formulating seven underlying “principles” to be
adhered to (cf. the original paper and Ramnath [406]). (They are simplifica-
tion, recursion, interpolation, wild behavior, annihilation, maximum balance,
and mathematical nonsense.)

A very useful elementary technique to obtain asymptotic approximations
is the common method of integration by parts . We illustrate the technique
by considering the exponential integral

Ei(z) ≡
∫ z

−∞

et

t
dt, (2.6)

with integration taken along any path in the complex plane, cut on the pos-
itive real axis, with |z| large. Repeated integration by parts gives

Ei(z) =
ez

z
+

∫ z

−∞

et

t2
dt =

ez

z
+

ez

z2
+ 2

∫ z

−∞

et

t3
dt,
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etc., so for any integer n > 0, we obtain

Ei(z) =
ez

z

(
n∑

k=0

k!

zk
+ en(z)

)
(2.7)

for the (scaled) remainder

en(z) ≡ (n+ 1)! ze−z

∫ z

−∞

et

tn+2
dt. (2.8)

If we define the region R by the conditions Rez < 0 and | arg(−z)| < π, so
that |et−z| ≤ 1 there, we find that

|en(z)| ≤ (n+ 1)!

|z|n+1
, (2.9)

i.e. the error after using the first n+1 terms in the power series for ze−zEi(z)
is less in magnitude than the first neglected term in the series when z → ∞ in
the sector of the left half plane. Thereby, as expected, the series expansion is
asymptotic there. (Recall an analogous error bound, and the related pincer
principle, for real power series whose terms have alternating signs.)

For n = 1,

Ei(z) =
ez

z

(
1 +

1

z
+ e1(z)

)

with |e1(z)| ≤ 2
|z|2 in the open sector R. For z fixed, the error is bounded.

Moreover, we can nicely approximate Ei(z) there by using the first two terms

ez
(
1

z
+

1

z2

)

of the sum if we simply let |z| be sufficiently large. This is in sharp contrast
to using a convergent expansion in powers of 1

z , where we would typically
need to let the number n of terms used become large in order to get a good
approximation for any given z within the domain of convergence.

More surprising is the idea of optimal truncation (cf. White [519] and
Paulsen [387]). A calculus exercise shows that for any given z, the absolute
values of successive terms (i.e., our error bound) in the expansion (2.7) reach
a minimum, after which they increase without bound. (Numerical tables for
this example are available in a number of the sources cited.) This minimum
occurs when n ∼ |z|, so if this asymptotic series is truncated just before then,
the remainder will satisfy

|en(z)| ≤
√

2π

|z| e
−|z| (2.10)
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when we use Stirling’s approximation

Γ(x) = (x− 1)! ∼
(x
e

)x√2π

x

(
1 +

1

12x
+

1

288x2
+ . . .

)
as x → ∞ (2.11)

for (|z| + 1)! (cf., e.g., Olver [360]). The latter series diverges for all x, but
gives the remarkably good approximation 5.9989 for the rather small x = 4.

Spencer [470] states

Surely the most beautiful formula in all of mathematics is
Stirling’s formula . . . How do the two most important funda-
mental constants, e and π, find their way into an asymptotic
formula for the product of integers?

Equation (2.11) seems actually to be due to both de Moivre and Stirling (cf.
Roy [427]). This error bound for Ei(z) is, indeed, asymptotically smaller in
magnitude as |z| → ∞ than any term in the divergent series! Thus, this
bound is naturally said to display asymptotics beyond all orders.

Paris [386] points out that similar exponential improvements via optimal
truncation can often be achieved. He cites the following theorem of Fritz
Ursell [489]:

Suppose f(t) is analytic for |t| < R with the Maclaurin expansion

f(t) =

∞∑
n=0

Cnt
n

there and suppose that

|f(t)| < Keβt

for r ≤ t < ∞ and positive constants K and β. Then (using the greatest
integer function [ ]), he obtains

∫ ∞

0

e−xtf(t)dt =

[rx]∑
n=0

Cnn!

xn+1
+O(e−rx)

as x → ∞. Thus, the Maclaurin coefficients of f(t) (about t = 0) provide
the asymptotic series coefficients for its Laplace transform (about x = ∞)
(because the kernel e−xt greatly discounts other t values).

We shouldn’t extrapolate too far from the example Ei(z) or Ursell’s the-
orem. The often-made suggestion to truncate when the smallest error is
attained is not always appropriate. (Convergent series, indeed, attain their
smallest error (zero) after an infinite number of terms.) However, we point out
that considerable recent progress has resulted using exponential asymptotics,
by reexpanding the remainder repeatedly and truncating the asymptotic ex-
pansions optimally each time (cf. Olde Daalhuis [358] and Boyd [55–57]).
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Boyd tries to explain the divergence of the formal regular power series ex-
pansion

u(x, ε) =

∞∑
j=0

ε2j
d2jf

dx2j
(2.12)

as an asymptotic solution of

ε2u′′ − u = f(x), − 1 ≤ x ≤ 1

by using the representation

u(x, ε) =

∫ ∞

−∞

F (k)

1 + ε2k2
eikx dk

of the solution as an inverse Fourier transform (cf. Boyd [56]) with F being
the transform of f . A critical point is the finite radius of convergence of the
power series for 1

1+ε2k2 . Boyd seems to be first of many authors to quote
Gian-Carlo Rota [421]:

One remarkable fact of applied mathematics is the ubiquitous
appearance of divergent series, hypocritically renamed asymptotic
expansions. Isn’t it a scandal that we teach convergent series to
our sophomores and do not tell them that few, if any, of the
series they meet will converge? The challenge of explaining what
an asymptotic expansion is ranks among the outstanding taboo
problems of mathematics.

In addition to asymptotic power series to approximate a given function,
it will often be helpful to use more general asymptotic expansions

∑
n≥0

anφn(ε).

Here, the ans are constants and we will suppose that {φn} is an asymptotic
sequence of monotonic functions (or scale) satisfying

φn+1

φn
→ 0 as ε → 0, n = 0, 1, 2, . . . , (2.13)

generalizing the powers. We will again let the symbol tilde (∼) denote asymp-
totic equality

f(ε) ∼
∞∑

n=0

anφn(ε) (2.14)

where for any integer N > 0

f(ε) =

N∑
n=0

anφn(ε) +O(φN+1). (2.15)
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Often, it will be helpful to limit N and to restrict ε to appropriate complex
sectors (about, perhaps, the positive real half axis). In the special case of
an asymptotic power series, we simply have φn(ε) = εn. Note that the
coefficients in (2.14) are uniquely determined since

aJ = lim
ε→0

(
f(ε)−∑J−1

n=0 anφn(ε)

φJ(ε)

)
for each J. (2.16)

To multiply asymptotic expansions (2.14), it is convenient if the sequence
satisfies

φn(ε)φm(ε) = φn+m(ε)

for all pairs n and m. (Determining an appropriate asymptotic sequence
{φn}, to use for a given f arising in, say, some application may not be sim-
ple, however. In response, Murdock [335] suggests a method of undetermined
gauges.) When we let the ans depend on ε, the series (2.14) is called a general-
ized asymptotic expansion. Their coefficients an(ε) are then no longer unique.
Such expansions are, nonetheless, commonly used, here and elsewhere.

Some further write

f ∼
∞∑

n=0

fn(ε)

whenever

f(ε)−
N∑

n=0

fn(ε) = o(φN (ε))

for every N .
An important scale is the Hardy field of “logarithmico-exponential” func-

tions, consisting of those functions obtained from ε by adding, multiplying,
exponentiating, and taking a logarithm a finite number of times.

We note the important fact that a convergent series is asymptotic. This
follows since the terms akz

k of a convergent power series or analytic function

f(z) = a0 + a1z + a2z
2 + . . .

ultimately behave like a geometric series, i.e. they satisfy

|akzk| ≤ |ak|rk ≤ A

for some bound A, all large k and |z| ≤ r for some r > 0. For |z| < r
2 , this

implies that the remainder for any n satisfies

∞∑
k=n+1

akz
k = O(zn+1),

so the convergent power series for f for |z| ≤ r is indeed asymptotic as z → 0.
More simply, recall Taylor series with remainder.
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A general technique to obtain asymptotic expansions for integrals is again
termwise integration. Consider, for example, the Laplace transform

I(x) =

∫ ∞

0

tλ−1

1 + t
e−xt dt (2.17)

for λ > 0 and x large. Since 1
1+t =

∑n−1
s=0 (−t)s + (−t)n

1+t , we obtain

I(x) =

n−1∑
s=0

(−1)sΓ(s+ λ)

xs+λ
+ rn(x) (2.18)

in terms of Euler’s gamma (or factorial) function

Γ(z) ≡
∫ ∞

0

e−ttz−1 dt, Re z > 0

(cf. Olver et al. [361]) for the remainder

rn(x) ≡ (−1)n
∫ ∞

0

tn+λ+1

1 + t
e−xt dt.

Since |rn(x)| ≤ Γ(n+λ)
xn+λ ,

I(x) ∼
∞∑
s=0

(−1)sΓ(s+ λ)

xs+λ
as x → ∞. (2.19)

Again, even though the Maclaurin series for 1
1+t only converges for 0 ≤ t < 1,

its coefficients determine the asymptotics for I(x) as x → ∞. (Readers should
understand such typical arguments.) Generalizations of this procedure to
integrals ∫ ∞

0

f(t)e−xt dt

often are labeled Laplace’s method (or Watson’s lemma). A real variables
approach to obtain such results is found in Olver [360], while a complex
variables approach is presented in Wong [525]. More general techniques for
the asymptotic evaluation of integrals include the stationary phase and saddle
point methods (called Edgeworth expansions in statistics).

(c) The WKB Method

The WKB method (cf. Olver [360], Schissel [436], Miller [318], Cheng [83],
Wong [526], and Paulsen [387]) concerns asymptotic solutions of the scalar
linear homogeneous second-order differential equation

y′′ + λ2f(x, λ)y = 0 (2.20)
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when the real parameter λ → ∞ and f is bounded. Introducing the logarith-
mic derivative

u(x, λ) =
y′(x, λ)
y(x, λ)

= (ln y)′, (2.21)

or equivalently setting
y = e

∫ x u(s,λ) ds, (2.22)

converts the given linear second-order differential equation (2.20) to the non-
linear first-order generalized Riccati equation

u′ + u2 + λ2f = 0 (2.23)

(since y′ = uy and y′′ = (u′+u2)y) which, generally, can’t be solved directly.
(This is not the simple version solved by Count Riccati (or Johann Bernoulli)
(cf. Roy [427]).) We will further suppose that the expansion

f(x, λ) ∼
∞∑

n=0

fn(x)

λn
(2.24)

is known and valid on an interval α < x < β as λ → ∞. Then, we will seek
a (formal) asymptotic solution

u(x, λ) ∼ λ

∞∑
n=0

un(x)

λn
, (2.25)

of (2.23) with corresponding series for u2 and u′. Equating coefficients of λ2

and λ2−n in the differential equation, we will successively need

u2
0 + f0 = 0

and

u′
n−1 + 2u0un +

n−1∑
k=1

ukun−k + fn = 0 for each n ≥ 1.

Thus, we will take

u0(x) = u±
0 (x) =

{
±i
√

f0(x) if f0(x) > 0

±√−f0(x) if f0(x) < 0
(2.26)

and

un(x) = − 1

2u0(x)

(
u′
n−1 +

n−1∑
k=1

ukun−k + fn

)
for each n ≥ 1. (2.27)

In particular,

u1(x) = −1

2

d

dx
(lnu0(x))− f1(x)

2u0(x)
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implies two linearly independent WKB approximates

y±(x, λ) =
1

4
√

f0(x)
e
±iλ

∫ x
x0

(√
(f0(s))− 1

2λ
f1(s)√
f0(s)

)

ds
(1 + o(1)) if f0(x) > 0

(2.28)
and

y±(x, λ) =
1

4
√|f0(x)|

e
±λ

∫ x
x0

(√
|f0(s)|− 1

2λ
f1(s)√
|f0(s)|

)

ds
(1 + o(1)) if f0(x) < 0

(2.29)

for (2.20). The algebraic prefactor comes from the first term of u1. See
Keller and Lewis [245] for connections to geometrical optics and Keller [244]
regarding the related Born and Rytov approximations. Note, further, that
one consequence of the leading term approximation, important in quantum
mechanics, is the so-called adiabatic invariance (cf. Arnold et al. [12] and Ou
and Wong [385]). Knowing these linearly independent approximate solutions
also allows us to solve the nonhomogeneous equation, i.e. to determine an
asymptotic Green’s function (cf. Stakgold [472]).

As defined above, the o(1) symbol in (2.28–2.29) indicates an expression
that goes to zero as λ → ∞. Its approximate form would be determined by u2.
Miller [318] proves the validity of the WKB approximation using a contraction
mapping argument, while Olver [360] bounds the error involved in terms of
the total variation of a natural control function. Note the singularities of y
that result at any turning points where f0 has a zero. Also note that the
solutions (2.28–2.29) change from being exponential to oscillatory (or vice-
versa) as such points are crossed with f0 changing signs.

As an alternative to (2.28), we could directly seek asymptotic solutions
of (2.20) in the form

A(x, λ)eiλ
∫ x

√
f0(s) ds +A(x, λ)e−iλ

∫ x
√

f0(s) ds (2.30)

for a complex-valued asymptotic power series A(x, λ) whose terms could be
successively found using an undetermined coefficients scheme. Thus

y = Aeiλ
∫ x

√
f0(s) ds + c.c.

must satisfy the differential equation. Because

y′′ =

[
A′′ + 2iλ

√
f0(x)A

′ +
iλ

2

f ′
0(x)√
f0(x)

A− λ2f0(x)A

]
eiλ

∫ x
√

f0(s) ds + c.c.,

we will need A to satisfy

1

λ

[
A′′ +

(
f(x, λ)− f0(x)

λ

)
A

]
+ 2i

√
f0(x)A

′ +
i

2

f ′
0(x)√
f0(x)

A = 0 (2.31)
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as a power series

A

(
x,

1

λ

)
∼
∑
j≥0

Aj(x)

λj
.

Murray [338] works out a variety of WKB examples quite explicitly.
Olver points out that the separate results of the physicists Wentzel,

Kramers, and Brillouin in 1926 and those of Jeffreys in 1924 were actu-
ally obtained independently by Joseph Liouville and George Green in 1837.
Carlini had even treated a special case involving Bessel functions in 1817. See
Heading [200] and Fröman and Fröman [164] for further history. Nonetheless,
the WKB(J) label seems to persist. (William Thomson, later Lord Kelvin,
visited Paris in 1845 after his Cambridge graduation and introduced Jacques
Sturm and Liouville to the work [183] of Green, a recently deceased former
miller from Nottingham, memorialized in 1993 with a plaque in Westmin-
ster Abbey near the tomb of Newton and plaques to Kelvin, Maxwell, and
Faraday (cf. Cannell [69]). (Green’s mill is now restored as a science center.)
As late as 1953, Sir Harold Jeffreys called WKB

approximations of Green’s type.

First, note that the WKB results provide existence and uniqueness
theorems for the singularly perturbed linear ODE

ε
d2y

dx2
+ a(x)

dy

dx
+ b(x)y = 0 (2.32)

when ε > 0 is small, a and b are smooth, and a(x) �= 0, when Dirichlet
boundary conditions are applied at two endpoints, say α and β . Also note
that the Sturm transformation

y(x) = w(x)e−
1
2ε

∫ x a(s) ds, (2.33)

requires w to satisfy

ε
d2w

dx2
+ f(x, ε)w = 0 (2.34)

for

f(x, ε) ≡ b(x)− 1

2
a′(x)− 1

4ε
a2(x).

The transformation (2.33) holds for all ε, but we will be especially concerned
with the more challenging situation that ε is small but positive. Multiply-
ing (2.34) by w and integrating by parts, supposing homogeneous boundary
conditions w(α) = w(β) = 0, implies that

ε

∫ β

α

(
dw

ds

)2

ds =

∫ β

α

f(s, ε)w2(s) ds
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since the boundary terms εw dw
dx at α and β then vanish. Thus, w(x) ≡ 0

must hold when
f(x, ε) ≤ 0 on α ≤ x ≤ β, (2.35)

and the given two-point problem for y then has a unique solution (just let
w be the difference between any two of them). Note that the sign condition
(2.35) on f is satisfied if either

(i) a(x) �= 0 and ε > 0 is small,

or

(ii) 2b ≤ a′ and ε > 0.

Uniqueness conditions for more general Sturm-Liouville boundary value prob-
lems can be found in Courant-Hilbert [103] and Zettl [532].

Existence of the solutions y of (2.32) follows from using the two linearly
independent real WKB solutions, which take the form

A(x, ε) and B(x, ε)e−
1
ε

∫ x a(s) ds (2.36)

for asymptotic series A andB. (Note that this A is not the complex amplitude
A used in the WKB solution (2.30).) In particular, the exponential factor in
(2.33) is cancelled or doubled in the corresponding solutions (2.36).

The resulting outer solution A(x, ε) of (2.32) must satisfy

εA′′ + a(x)A′ + b(x)A = 0 (2.37)

as a real power series in ε, so its leading term must satisfy

a(x)A′
0 + b(x)A0 = 0,

i.e.

A0(x) = e
− ∫ x

x0

b(s)
a(s)

ds
A0(x0).

Likewise
(
Be

1
ε

∫ x a(s) ds
)′

=
(
B′−Ba

ε

)
e−

1
ε

∫ x a(s) ds and
(
Be−

1
ε

∫ x a(s) ds
)′′

=(
B′′ − 2

εB
′a− 1

εBa′ + B
ε2 a

2
)
e−

1
ε

∫ x a(s) ds, so the differential equation for y
requires that

εB′′ − aB′ + (b− a′)B = 0. (2.38)

Its leading term B0 must satisfy aB′
0 + (a′ − b)B0 = 0, so

B0(x) =
a(x0)

a(x)
e
∫ x
x0

b(s)
a(s)

ds
B0(x0)

and the general solution of (2.32) on x ≥ x0 takes the form

y(x, ε) = e
− ∫ x

x0

b(s)
a(s)

ds
A0(x0) + e

− 1
ε

∫ x
x0
(a(s)−ε

b(s)
a(s) ) dsB0(x0)

a(x0)

a(x)
+O(ε)

(2.39)
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Figure 2.1: e−x/ε for a small ε > 0 is ultimately smaller than εκ for any
κ > 0. Here, n > m > 0

when a(x) > 0. If bounded values y(x0) and εy′(x0) are prescribed, we will
need

y(x0) = A0(x0) +B0(x0) +O(ε)

and

y′(x0) = −1

ε
a(x0)B0(x0) +O(1),

so

A0(x0) = y(x0)−B0(x0) (2.40)

and

B0(x0) = −εy′(x0)

a(x0)
. (2.41)

Having these two linearly independent solutions (2.36) to the linear differ-
ential equation (2.32) will allow us to asymptotically solve many boundary
value problems for it and its nonhomogeneous analog. The errors made us-
ing such approximations are asymptotically negligible like e−Cx/ε for some
C > 0 and x > 0, so smaller than O(εn) for any n > 0. See Fig. 2.1 and
Howls [219]. Note that the solution (2.39) will feature an initial layer of
nonuniform convergence. The asymptotic solutions of (2.32) for a(x) �= 0 will
be more satisfactory throughout boundary layer regions than those tradition-
ally found by matched expansions, as we shall later demonstrate. When such
restrictions as f(x, ε) ≤ 0 in (2.34) don’t hold, and for nonlinear generaliza-
tions, we must expect either multiple solutions to such two-point problems
or none at all.

To illustrate typical behavior near a (simple) turning point, consider the
equation

ε2y′′ − xh2(x)y = 0 (2.42)
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for a smooth h(x) > 0. Oscillatory behavior for x < 0 and exponential
behavior for x > 0 are provided by the WKB solutions. Locally, i.e. near the
turning point x = 0, we naturally use the Airy equation

ẅ − tw = 0 (2.43)

as a comparison equation. Its linearly independent solutions are the Airy
functions Ai(t), and Bi(t) (cf. Olver et al. [361]). Their asymptotic behavior
as t → ±∞ is well known, e.g.,

Ai(t) ∼ 1
2
√
πt1/4

e−
2
3 t

3/2

as t → ∞
and
Ai(t) ∼ 1√

π
1

(−t)1/4
sin
(
2
3 (−t)3/2 + π

4

)
as t → −∞.

The connections to the WKB solutions follow the Langer transformation

y ∼
(
xh2(x)

S(x)

)1/4 [
C1Ai

(
S(x)

ε2/3

)
+ C2Bi

(
S(x)

ε2/3

)]
(2.44)

for constants C1 and C2,

S(x) =

[
3

2

∫ x

0

√
|r|h(r) dr

]2/3
,

and the corresponding limits as t = S(x)
ε2/3

→ ±∞ (cf. Wasow [515] for details
of the so-called connection problem). Expansions can also be found for mul-
tiple and, even, coalescing turning points. Fowkes [152] solves the problem
using multiple scale methods.

More generally, it’s often valuable to realize the equivalence of the Riccati
differential equation

y′ = a(x)y2 + b(x)y + c(x) (2.45)

and second-order linear homogeneous differential equations. The trans-
formation

y =
−w′

aw
or w = e−

∫ x a(s) y(s) ds (2.46)

in (2.45) implies that w will satisfy the linear equation

w′′ −
[
a′(x)
a(x)

+ b(x)

]
w′ + a(x)c(x)w = 0. (2.47)

Many times, its solutions can be provided in terms of special functions,
thereby giving solutions y of the Riccati equation (2.45) as well through
(2.46). On the other hand, if we can guess (or otherwise ascertain) a differ-
entiable solution y of the Riccati equation, it determines a nontrivial solution
w of the linear equation (2.47) and, by reduction of order, the general so-
lution. Other transformations for linear equations are given in Kamke [232]
and Fedoryuk [145].
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Note, in particular, that the second-order linear equation

εu′′ + b1(x)u
′ + b0(x)u = 0 (2.48)

can be converted to

εq′′ + (q′)2 + b1(x)q
′ + εb0(x) = 0 (2.49)

by setting
u = eq/ε (2.50)

and that the latter equation can be solved asymptotically by taking

q(x, ε) ∼
∑
j≥0

εjqj(x) (2.51)

or, equivalently, by setting

u = C(x, ε)eq0(x)/ε

for a power series C (cf. Bender and Orszag [36]), which can be sought
termwise with respect to ε.

(d) The Regular Perturbation Procedure

In the following, we shall consider it natural and straightforward (even central
to singular perturbations) to use a regular perturbation method to find power
series solutions to nonlinear vector initial value problems

ẋ = f(x, t, ε), t ≥ 0, x(0) = c(ε) (2.52)

based on knowing a smooth vector solution x0(t) to the limiting nonlinear
problem

ẋ0 = f(x0, t, 0), t ≥ 0, x0(0) = c0(0) (2.53)

on some bounded interval 0 ≤ t ≤ T . Assuming sufficient smoothness of f
and c and the series expansions

f(x, t, ε) ∼
∑
j≥0

fj(x, t)ε
j

with smooth coefficients fj and

c(ε) ∼
∑
j≥0

cjε
j ,

we shall let
x(t, ε) ∼

∑
k≥0

xk(t)ε
k. (2.54)
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Expanding about ε = 0,

f(x(t, ε), t, ε) = f(x0(t), t, 0) +
(
fx(x0(t), t, 0)(εx1(t) + ε2x2(t) + . . .)

+ εfε(x0, t, 0)
)
+
(
1

2
((fxx(x0(t), t, 0)))(εx1(t) + . . .)

)
(εx1(t) + . . .)

+ εfxε(x0(t), t, 0)(εx1(t) + . . .) +
ε2

2
fεε(x0(t), t, 0) + . . .

and equating successive coefficients of powers of ε in (2.52), we naturally
require

ẋ1 =
∂f

∂x
(x0(t), t, 0)x1 +

∂f

∂ε
(x0(t), t, 0), x1(0) = c1 (2.55)

ẋ2 =
∂f

∂x
(x0(t), t, 0)x2 +

1

2

(
∂2f

∂x2
(x0(t), t, 0)x1(t)

)
x1(t)

+
∂2f

∂x∂ε
(x0(t), t, 0)x1(t) +

1

2

∂2f

∂ε2
(x0(t), t, 0)), x2(0) = c2,

(2.56)

etc. These linear equations for xj with j ≥ 1 can be successively and uniquely
solved using the nonsingular fundamental matrix Φ for the linearized homo-
geneous system

Φ̇ = A(t)Φ with Φ(0) = I (2.57)

for the Jacobian
A(t) = fx(x0(t), t, 0)

and the identity matrix I (cf. Brauer and Nohel [59]). When A is constant, Φ
is the matrix exponential eAt. Recall the variation of constants (parameters)
method to solve the linear vector initial value problem

ẏ = A(t)y + b(t), y(0) given. (2.58)

Set
y = Φ(t)w(t)

for an unspecified vector w. First note that the unique Φ can be found by
iterating in the integral equation

Φ(t) = I +

∫ t

0

A(s)Φ(s) ds

corresponding to (2.57). This yields the approximations

Φ(t) = I +

∫ t

0

A(s) ds+

∫ t

0

A(s)

∫ s

0

A(r) dr ds+ . . . ,

etc. (sometimes called the matrizant) which converge. Differentiating y, we
get ẏ = Φ̇w +Φẇ = AΦw + b(t), so we will need

Φẇ = b and y(0) = w(0).
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Integrating, we uniquely obtain w(t) = y(0) +
∫ t

0
Φ−1(s)b(s) ds (since Φ will

be, at least locally, nonsingular). Thus,

y(t) = Φ(t)y(0) +

∫ t

0

Φ(t) Φ−1(s) b(s) ds, (2.59)

as can be readily checked.
Knowing the solution x0(t) (of (2.53)) for ε = 0 and the resulting Φ

(cf.(2.57)), we next obtain

x1(t) = Φ(t)c1 +

∫ t

0

Φ(t) Φ−1(s) fε(x0(s), s, 0) ds (2.60)

and, then, in turn

x2(t) = Φ(t)c2 +

∫ t

0

Φ(t) Φ−1(s)

[(
1

2
fxx(x0(s), s, 0)x1(s)+

fxε(x0(s), s, 0)

)
x1(s) +

1

2
fεε(x0(s), s, 0)

]
ds,

(2.61)

etc. We expect the series (2.54) for x to converge uniformly for ε small and
bounded t. This justifies the regular perturbation technique, which we will
henceforth apply routinely. When the assumptions don’t apply, the asymp-
totic solution may not simply be a power series in ε. Puiseaux expansions
in fractional powers of ε (cf. [17]) are a possibility. As we will ultimately
find, however, we cannot expect to blindly use these approximate solutions
on intervals where t becomes unbounded. A proof on finite intervals is given
in de Jager and Jiang [224]. See Smith [466] for the celebrated example of
Einstein’s equation for the motion of Mercury about the sun.

More generally, one might also use such regular perturbation (i.e., power
series) methods to solve operator equations

T (u, ε) = 0 (2.62)

for small ε, justified by applying the implicit function theorem under
appropriate conditions (cf. Miller [318]) to get an analytic solution u(x, ε)
(cf. Baumgärtel [32] and Krantz and Parks [262]). Also, see Kato [243] and
Avrachenkov et al. [17] regarding linear operators.

A classic example involves the zeroes of the Wilkinson polynomial

20

Π
k=1

(z − k) + εz19

(cf. Wilkinson [523], Bender and Orszag [36], and Moler [324]). Its complex
roots are extremely sensitive to perturbations. Corresponding to k = 15, the
first correction is of the order 5ε1010, providing extreme sensitivity of the
perturbation.
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In ending the chapter, we want to emphasize that we have severely re-
stricted the topics covered, keeping in mind our limited later needs. More gen-
erally, the use of iteration methods to obtain asymptotic expansions is often
very efficient, as is the use of convergence acceleration methods (cf. Weniger
[518]), among many other computational techniques. We recommend Baren-
blatt [27] and [28]’s unique development of intermediate asymptotics, relating
and extending basic concepts from dimensional analysis, self-similarity, and
scaling. Consulting the extensive literature cited is highly recommended!
Bosley [53] even provides a numerical version of asymptotics.

Among recent texts, Zeytounian [533] attempts to model viscous, com-
pressible, heat-conducting, Newtonian, baroclinic, and nonadiabatic fluid
flow using

the art of modeling assisted, rationally, by the spirit of asymptotics.

Motivation for such rational asymptotic modeling is found in the autobiogra-
phy Zeytounian [534].

Example 1

Gobbi and Spigler [171] consider the scalar singular linear two-point
boundary value problem

ε2u′′ − u = − 1√
x(1− x)

, 0 ≤ x ≤ 1, u(0) = u(1) = 0. (2.63)

Since the auxiliary polynomial ε2λ2 − 1 = 0 provides the complementary
solutions e−x/ε and e−(1−x)/ε, we can use variation of parameters to find the
general solution

u(x, ε) = e−x/εC1 + e−(1−x)/εC2 +
1

2ε

∫ x

0

e−(x−t)/ε dt√
t(1− t)

+
1

2ε

∫ 1

x

e(x−t)/ε dt√
t(1− t)

(2.64)

of the nonhomogeneous differential equation (2.63). The boundary conditions
imply that

C1 ∼ − 1

2ε

∫ 1

0

e−t/ε dt√
t(1− t)

and C2 ∼ − 1

2ε

∫ 1

0

e−(1−t)/ε dt√
t(1− t)

up to asymptotically negligible amounts. Since Γ(12 ) =
√
π,

u(x, ε) ∼ −1

2

√
π

ε

(
e−x/ε + e−(1−x)/ε

)

+
1

2ε

[∫ x

0

e−(x−t)/ε dt√
t(1− t)

+

∫ 1

x

e(x−t)/ε dt√
t(1− t)

]
.

(2.65)
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Within (0, 1), the first two terms are asymptotically negligible, while the
primary contributions to the two integrals come from near t = x. Indeed,

1

2ε

∫ x

0

e−(x−t)/ε dt√
t(1− t)

∼ 1

2
√

x(1− x)

and the second integral has the same limit. Thus, as expected,

u(x, ε) ∼ 1√
x(1− x)

within (0, 1). (2.66)

Because the asymptotic solution is symmetric about 1/2 and the outer limit
is unbounded at the endpoints, further analysis is necessary to determine
the asymptotic behavior in the endpoint boundary layers. Computations for
ε = 0.01 and 0.0025 provide spikes near 0 and 1 with O(1/

√
ε) maxima, as

found.

Example 2

Reiss [414] introduced the combustion model

ẏ = y2(1− y), y(0) = ε (2.67)

(cf. Kapila [234]). Because ẏ > 0 for 0 < y < 1, we know that the
solution y increases monotonically from ε to the rest point 1 at t = ∞.
The exact solution can be obtained by separating variables since integrating(

1
y + 1

1−y + 1
y2

)
dy = dt implies that

ln

(
y

1− y

)
− 1

y
= t− 1

ε
+ ln

(
ε

1− ε

)
. (2.68)

This implicit result shows, e.g., that

y =
1

2
when t =

1

ε
− ln

(
ε

1− ε

)
− 2

while

y =
9

10
when t =

1

ε
− ln

(
ε

1− ε

)
− 10

9
+ ln 9

and

y =
99

100
when t =

1

ε
− ln

(
ε

1− ε

)
− 100

99
+ ln 99.

Thus, the ultimate explosion is long delayed when ε is small.
For bounded values of t, the preignition solution can be represented by a

small regular perturbation expansion

Y (t, ε) = εY1(t) + ε2Y2(t) + . . .
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satisfying
Ẏ1 = 0, Y1(0) = 1

and
Ẏ2 = Y 2

1 , Y2(0) = 0,

etc. termwise. Thus
Y (t, ε) = ε+ ε2t+ . . . . (2.69)

This breaks down as the slow-time τ ≡ εt grows. Indeed, the explosion takes
place about

t̃ =
1

ε
− ln

(
ε

1− ε

)
− 2, (2.70)

as can be verified numerically for, say, ε = 1/10. One might say that a
boundary layer (nonuniform convergence) occurs as t → ∞.

Readers should be aware that one of the most successful texts presenting
asymptotic methods has been Bender and Orszag [36], reprinted by Springer
in 1999. Originated at MIT to teach the ubiquitous course in advanced math-
ematical methods for scientists and engineers, it featured easy, intermediate,
difficult, and theoretical sections, corresponding exercises, and quotes from
Sherlock Holmes at the beginning of each chapter. Paulsen [387] is a well-
written new textbook seeking to simplify Bender and Orszag and make its
subject more accessible.

To illustrate the centrality of asymptotics, we quote Dvortsina [128] re-
garding the prominent Soviet physicist I. M. Lifshitz (co-author of many
outstanding texts with Nobel prizewinner Lev Landau):

Everyone who knew Lifshitz remembers well that every time he
began a discussion of any work he asked first of all: “What small
parameter did you choose?” He meant to say that in the majority
of problems solved by theoretical physics the smallness of some
quantity is always used.

After reading this chapter, and perhaps trying the exercises, the author hopes
you no longer think asymptotic approximations are some sort of mystical
constructions. They’re down to earth!

Exercises

1. (Awrejcewicz and Krysko [18]) Show that

sin 2ε ∼ 2ε− 4

3
ε3 +

4

15
ε5 + . . .

∼ 2 tan ε− 2 tan3 ε− 2 tan5 ε+ . . .
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∼ 2 ln(1+ε)+ ln(1+ε2)−2 ln(1 + ε3)+ ln(1 + ε4)+
2

5
ln(1+ε5)+ . . .

∼ 6

(
ε

3 + 2ε2

)
− 756

5

(
ε

3 + 2ε2

)5

+ . . . .

2. (Awrejcewicz and Krysko [18]) Consider

f(x, ε) =
√
x+ ε.

Note that f(0, ε) =
√
ε. Show that

f(x, ε) =
√
x

(
1 +

ε

2x
− ε2

8x2
+

ε3

16x3
− . . .

)

when ε
x → 0, so the expansion is nonuniform.

3. (a) Find a power series expansion for the solution of the initial value
problem

y′ = 1 + y2, y(0) = ε.

(b) Find the exact solution and determine the first four terms of its power
series about ε = 0.

4. Find the first three terms of two power series solutions

u(x, ε) = u0(x) + εu1(x) + ε2u2(x) + . . .

of the nonlinear differential equation

εu′′ = u2 − u+ εx.

5. (a) Find a regular perturbation solution to the initial value problem

y′ = 1 + y2 + εy, y(0) = ε.

Where does it become singular?

(b) Solve the equation
w′′ − εw′ + 1 = 0

and determine

y = −w′

w
.

Where is it singular?

6. (cf. Hoppensteadt [213]) Consider the initial value problem

ẋ = −x3 + εx, x(0) = 1, t ≥ 0.
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(a) Find the first two terms of the regular perturbation expansion.

(b) Find the exact solution and its limit as t → ∞.

(c) Explain the breakdown of the regular perturbation expansion.

7. (Hsieh and Sibuya [220]) Consider the two-point problem

y′′ = ε sin

(
x

100− y2

)
,−1 ≤ x ≤ 1, y(−1) = y(1) = 0.

Obtain the solution y = φ(x, c, ε) by “shooting,” i.e. by solving the initial
value problem

y′′ = ε sin

(
x

100− y2

)
, y(−1) = 0, y′(−1) = c(ε)

for an appropriate c(ε). Determine the first two terms in the power series
for y(x, ε) and c(ε). Observe the extensive and effective use of the shooting
method in Hastings and McLeod [198].

8. A typical ODE exercise is to compute the terms of the power series solution
to the initial value problem

y′ = x2 + y2, y(0) = 2.

(a) Set

y(x) =
∞∑

n=0

Cnx
n

and show that C0 = 2, C1 = 4, C2 = 8, C3 = 49
3 , and Cn+1 =

1
n+1

∑n
p=0 CpCn−p, n ≥ 3.

(b) Convert the equation to the Weber equation

w′′ + x2w = 0

by using the representation w = e−
∫ x
0

y(s) ds.

(c) Find the power series for w about x = 0, checking that y = −w′
w . The

radius of convergence for w is infinite. Note that w can be expressed
in terms of parabolic cylinder (or Weber) functions.

9. (Kevorkian and Cole [249]) Consider the initial value problem

u′′ + u = εf(x)u

u(0) = 0, u′(0) = 1, x ≥ 0.

Show that a necessary condition that the regular perturbation expansion
of the solution be uniformly valid on x ≥ 0 is to have

∫ x

0
f(s) ds bounded

there.



Chapter 3

The Method of Matched
Asymptotic Expansions
and Its Generalizations

(a) Elementary Matching

Milton Van Dyke’s Perturbation Methods in Fluid Mechanics [490] was
effectively both the earliest and the most influential book specifically about
applied singular perturbations. (Some credit might be given earlier fluid
dynamics textbooks, e.g., Hayes and Probstein [199]). Van Dyke extensively
surveyed the large extant aeronautical and fluid dynamical literature, force-
fully advocating and clarifying the so-called method of matched asymptotic
(or inner and outer) expansions . Although Van Dyke acknowledged that
Prandtl’s boundary layer theory was the prototype singular perturbation
problem, he introduced the subject by describing incompressible fluid flow
past a thin airfoil. The book’s highlight message, sometimes called Van
Dyke’s magic rule, states:

The m-term inner expansion of (the n term outer expansion) =
the n-term outer expansion of (the m term inner expansion).

This glib oversimplification (for any positive integer pairs m and n) allowed
many practitioners to confidently solve significant applied problems asymp-
totically (an advantage unavailable before then).

© Springer International Publishing Switzerland 2014
R. O’Malley, Historical Developments in Singular Perturbations,
DOI 10.1007/978-3-319-11924-3 3
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To grasp the basic idea of Van Dyke’s procedure for m = n = 2, consider
the linear initial value problem

{
εy′′ + y′ + y = 0 on 0 ≤ t ≤ T for a fixed finite time T

y(0) = 0, y′(0) = 1
ε for a small ε > 0

(3.1)

for a displacement y. We expect the impulsive large initial derivative to
provide an immediate rapid upward response, so we naturally introduce the
fast time

τ = t/ε. (3.2)

Then y′ = 1
ε yτ and εy′′ = 1

ε yττ , so we naturally seek a local inner expansion
yin satisfying the stretched problem

{
yττ + yτ + εy = 0 on τ ≥ 0

with y(0) = 0 and yτ (0) = 1.
(3.3)

(Sophisticated readers will note that our selection of the stretched variable
τ rebalances the orders of the three terms in the given ODE, changing their
dominant balance in the terminology of Bender and Orszag [36]. To deter-
mine the “right” balance will more generally take some trial and error. The
selection of the stretched variable also relates to a classical asymptotic tech-
nique called the Newton polygon (cf. Hille [205], Kung and Traub [269], and
White [519]) which is implemented in Maple. Setting

yin(τ, ε) ∼ y0(τ) + εy1(τ) + ε2y2(τ) + . . . (3.4)

and expanding yτ and yττ analogously, we will need to satisfy

(y0ττ + εy1ττ + . . .) + (y0τ + εy1τ + . . .) + ε(y0 + . . .) = 0,

or
y0ττ + y0τ + ε(y1ττ + y1τ + y0) + . . . = 0,

and the corresponding initial conditions

y(0, ε) = y0(0) + εy1(0) + . . . = 0

and
yτ (0, ε) = y0τ (0) + εy1τ (0) + . . . = 1

as a regular perturbation expansion in powers of ε. Equating coefficients, we
naturally require y0 to satisfy

y0ττ + y0τ = 0, y0(0) = 0, and y0τ (0) = 1, (3.5)

and y1 to next satisfy

y1ττ + y1τ + y0 = 0, y1(0) = y1τ (0) = 0, (3.6)
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etc. Thus, we uniquely obtain

y0(τ) = 1− e−τ (3.7)

while y1ττ +y1τ +1−e−τ = 0 and the trivial initial conditions uniquely imply
that

y1(τ) = 2− τ + e−τ (−2− τ) (3.8)

(using, say, the method of undetermined coefficients).
We then expect the resulting uniquely determined series

yin(τ, ε) = 1− e−τ + ε(2− τ − e−τ (2 + τ)) + . . . (3.9)

or inner expansion to be asymptotically valid at least for bounded τ values,
i.e. for small values of t = O(ε). (It breaks down when τ is large, since the
ratio of successive terms in the series ultimately becomes unbounded like ετ .)

For larger values of t, we shall alternatively seek an outer solution Y out,
depending on the original time variable t and ε. Thus, we will substitute the
regular power series (i.e., outer) expansion

Y out(t, ε) ∼ Y0(t) + εY1(t) + . . . (3.10)

into the given differential equation and equate coefficients of like powers of ε
in (3.1) to successively require Y ′

0 + Y0 = 0, Y ′
1 + Y1 + Y ′′

0 = 0, etc. Hence

Y0(t) = Ae−t for some constant A, (3.11)

Y1(t) = (B −At)e−t for some constant B, (3.12)

etc., providing the first terms of an outer expansion

Y out(t, ε) = Ae−t + ε(B −At)e−t + . . . (3.13)

for finite t values and constants A, B, . . . yet to be determined by matching
this outer expansion to the inner expansion (3.9) as we now describe. (Note
that the terms Yk in (3.10) satisfy first, rather than second, order differential
equations and that the prescribed initial values at t = 0 are so far irrelevant
to the outer expansion.) In the 1950s, an alternative patching technique was
sometimes applied to inner and outer expansions. Patching typically took
place at an ε-dependent t value like −10ε ln ε. The concept still underlies
some numerical methods (cf., e.g., Kopteva and O’Riordan [259] and Miller
et al. [317] regarding the Shishkin mesh).

We first rewrite the known inner expansion in terms of the outer variable
t as

yin
(
t

ε
, ε

)
= 1− e−t/ε + ε

(
2− t

ε
− e−t/ε

(
2 +

t

ε

))
+ . . .

Taking the limit as τ = t/ε → ∞, the exponentials become negligible and we
get the truncated two-term limit

(yin)out = 1− t+ 2ε+ . . . (3.14)
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Analogously, we represent the outer expansion in terms of the inner variable
τ as

Y out(ετ, ε) = Ae−ετ + ε(B − ετA)e−ετ + . . . .

Expanding the exponentials in their Maclaurin expansions for moderate val-
ues of τ as ε → 0 and truncating, we obtain

(Y out)in ≡ A+ ε(B −Aτ) + . . . . (3.15)

Since τ = εt, the asymptotic matching condition

(yin)out = (Y out)in

(at this (m = n = 2) order) requires that

(yin)out = 1− t+ 2ε+ . . .

= A−At+ εB + . . . = (Y out)in.
(3.16)

We will naturally call this expression the common part of the inner and
outer expansions (both truncated at the second order). We could express it
in terms of either time variable t or τ . Note that the matching condition
crudely corresponds to the idea of equating Y out(t, ε) near t = 0 to yin(τ, ε)
near τ = ∞. We are, however, being much more explicit.

This process uniquely provides the unspecified constants A = 1 and B = 2
in the outer expansion, i.e., matching across the O(ε)-thick initial layer (by
equating the common parts) has uniquely specified the outer expansion as

Y out(t, ε) = e−t + ε(2− t)e−t + . . . (3.17)

We expect (3.17) to be the valid asymptotic solution for t outside the initial
layer. Note that Y out(0, 0) �= y(0). (If this wasn’t so, the inner and outer
expansions would coincide for t = ετ .) Note that we seem to implicitly invoke
some idea about overlap of the two solutions in a joint region of validity of
the inner and outer expansions.

Rather than having separate asymptotic expansions, yin very near t = 0
and Y out away from t = 0, we shall now define the additive composite
expansion

yc ≡ Y out + yin − (Y out)in

= (e−t + ε(2− t)e−t + . . .)

+ (1− e−τ + ε[2− τ − (2 + τ)e−τ ] + . . .)

− (1− t+ 2ε+ . . .)

= [e−t − e−τ ] + ε[(2− t)e−t − (2 + τ)e−τ ] + . . . (3.18)

that we expect to be uniformly valid on any fixed finite interval 0 ≤ t ≤ T as
ε → 0, i.e. in the domains where the inner expansion, the outer expansion,
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and their common part are simultaneously defined. The limit of the sum yc is
yin in the inner region and Y out in the outer region since the outer expansion
in the inner region and the inner expansion in the outer region agree with
their common (i.e., matching) part. (We note that other alternative com-
posite expansions have also been introduced in the literature.) Eckhaus [133]
formalizes the procedure using expansion operators . Van Dyke [492] noted
that the terminology global and local approximations would be preferable to
outer and inner approximations.

A more subtle matching technique using intermediate variables

tβ ≡ t

εβ

for βs satisfying 0 < β < 1 in both the inner and outer expansions is presented
in Cole [92] and Holmes [209]. For some problems, the use of power series
in ε for both the inner and outer expansions turns out to be inadequate for
matching, but inserting intermediate terms suggested by their limits succeeds.
The process is called switchback . To avoid going wrong, Van Dyke [491] made
the practical suggestion

Don’t cut between logarithms.

Its subtle meaning could be clarified by examining detailed examples that
caused anxiety 40 years ago.

The exact solution to the initial value problem (3.1) has the form

y(t, ε) = C(ε)(e−ν(ε)t − e−κ(ε)t/ε) (3.19)

where

ν(ε) ≡ 1−√
1− 4ε

2ε
∼ 1 + ε+ . . .

and

κ(ε) ≡ 1 +
√
1− 4ε

2
∼ 1− ε− ε2 + . . . .

Thus, y(0) = 0 and y′(0) = 1
ε = C(ε)

(
−ν(ε) + κ(ε)

ε

)
uniquely determine

C(ε) ≡ 1

κ(ε)− εν(ε)
=

1

1− 2ε+ . . .
= 1 + 2ε+ . . . .

The exact result

y(t, ε) ∼ 1

1− 2ε+ . . .

(
e−(1+ε+...)t − e−(1−ε−ε2+...) t

ε

)
(3.20)

agrees asymptotically with the composite solution (3.18) obtained by match-
ing form = 2 and n = 2. (To carry out these calculations, we use the binomial
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expansion
√
1− x = 1− x

2 − x2

8 + . . ., convergent for |x| < 1.) Readers should
personally experiment by matching solutions of (3.1) for larger values of m
and n than 2.

Further, as we will extensively illustrate, matching results in the same
uniform expansion as we’d get by determining the outer expansion Y (t, ε) as
a function of t (with its unspecified constants) and adding to it a boundary
layer corrector expansion v(τ, ε) (as a function of the stretched time τ = t/ε)
that tends exponentially to zero as τ → ∞. Thus, we’ll have

y(t, ε) ∼ Y (t, ε) + v(τ, ε) (3.21)

Matching, then, ultimately cancels some terms in the inner expansion (re-
taining v ≡ yin − (yin)out), but it is somewhat inefficient because it requires
us to determine terms in yin that are later neglected (i.e., the common part).

Specifically, note that the exact solution (3.20) of (3.1) also has the form

y(t, ε) = Y (t, ε) + Z(t, ε)e−t/ε (3.22)

for power series Y and Z depending on t and ε. Indeed, for bounded t,
Y ≡ C(ε)e−ν(ε)t is the outer solution. The initial conditions require that

y(0) = Y (0, ε) + Z(0, ε) = 0

and

εy′(0) ≡ εY ′(0, ε) + εZ ′(0, ε)− Z(0, ε) = 1.

Since y, Y and the corrector v ≡ Ze−t/ε all satisfy the given differential
equation of (3.1), Z must then satisfy

εZ ′′ − Z ′ + Z = 0 (3.23)

as a series in ε. The representation (3.22) implies a more efficient power series
method than matching. More sophisticated matching procedures for linear
differential equations in the complex plane are considered in Olde Daalhuis
et al. [359]. Likewise, the Russian A. M. I’lin [221] convincingly presents
matching for partial differential equations.

The unusual problem

(x+ ε)y′ + y = 0, y(1) = 1

has the exact solution

y(x, ε) =
1 + ε

x+ ε
,

well-behaved for 0 < x ≤ 1, but algebraically unbounded near x = 0 where
the limiting equation has a singular point. Complications there must be
expected (cf. our discussion of Lighthill’s method in Chap. 5).
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Exercises

1. Show that e−t/ε ≤ εn holds for −nε ln ε ≤ t < ∞ and that the inequality
is reversed for smaller t > 0.

2. For the initial value problem

εÿ + ẏ + y = 0, t ≥ 0, y(0) = 1, ẏ(0) = 1,

show that the asymptotic solution has the form

y(t, ε) = Y (t, ε) + εD(t, ε)e−t/ε

on 0 ≤ t ≤ T < ∞ for power series Y and D. The uniform limit for
t ≥ 0 will be Y0(t) = e−t, since Ẏ0 + Y0 = 0 and Y0(0) = 1. Show that
ẏ will jump near t = 0, however. Try computing the solution and its
derivative for a small ε.

3. (Cole [92]) The equation

εy′′ + (1 + αx)y′ + αy = 0

is exact, so it is possible to obtain its general solution. Suppose α > −1,
so 1 + αx > 0 on 0 ≤ x ≤ 1. Impose the boundary values

y(0) = 0 and y(1) = 1,

so the outer limit is Y0(x) =
1+α
1+αx . Note that the limiting initial layer

corrector
−(1 + α)e−x/ε

approximates the exact corrector

−(1 + α)e−
1
ε

∫ x
0
(1+αs) ds.

Find the exact solution and the first two terms of its outer solution

Y (x, ε) = Y0(x) + εY1(x) +O(ε2).

4. Consider the alternative composite expansion yc for problem (3.1) when
the common part is nonzero by setting

yc =
Y outyin

((Y out)in)2
.

5. Consider the two-point problem

εy′′ + (1 + x)2y′ + 2(1 + x)y = 0, 0 < x < 1

y(0) = 1, y(1) = 2.
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(a) Obtain the exact solution and describe its limiting behavior.
(Hint: the differential equation is exact.)

(b) Determine a composite expansion in the form

y(x, ε) = A(x, ε) + v(ξ, ε)

where A is an outer expansion valid for x > 0 and the boundary
layer corrector v → 0 as ξ ≡ x/ε → ∞.

(c) Determine an asymptotic solution in the WKB form

y(x, ε) = A(x, ε) + e−
1
ε

∫ x
0
(1+s)2 ds(y(0)−A(0, ε)).

6. Consider the two-point problem

εy′′ + (1 + x)2y′ − (1 + x)y = 0, 0 ≤ x ≤ 1

with y(0) = 1 and y(1) = 3.

(a) Obtain the exact solution and determine its limiting behavior as
ε → 0+. (Hint: y = 1 + x is a solution of the ODE.)

(b) Use matched asymptotic expansions to obtain the two-term com-
posite expansion.

(c) Determine an asymptotic solution of the form

y(x, ε) = A(x, ε) +B(x, ε)e−
1
ε

∫ x
0
(1+s)2 ds

(with power series expansions for A and B).

(d) Plot the inner expansion, the outer expansion, the composite exp-
ansion, and the numerical solution for ε = 1/10 (on the same
graph).

(e) Show that

e−
1
ε

∫ x
0
(1+s)2 ds − e−

x
ε = O(ε) on 0 ≤ x ≤ 1.

7. Assuming a boundary layer of O(ε) thickness near x = 1, seek an
asymptotic solution of

εuxx = ux + ut, u(0, t) = u0(t), u(1, t) = u1(t) for t ≥ 0

and u(x, 0) given for 0 ≤ x ≤ 1

in the form

u(x, t, ε) = A(x, t, ε) +B(x, t, ε)e−(1−x)/ε.
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Basic issues concerning the validity of matching were raised by Fraenkel
[155] and Eckhaus [133], among others (cf., e.g., Lo [297] and, especially, Skin-
ner [463]). Some of the subtleties were reconsidered in the annotated edition
of Van Dyke’s book [491] of 1975. Its frontispiece is the woodcut Sky and
Water I, 1938 by the Dutch lithographer M. C. Escher featuring fish trans-
forming vertically into birds (cf. Schattschneider [433] and [434] regarding
relations between Escher’s work and groups, tilings, and other mathematical
objects). (The author recently found this print for sale for about $48,000!)
Van Dyke stated that the woodcut

gives a graphical impression of the “imperceptively smooth blend-
ing” of one flow into another that is the heart of the method of
matched asymptotic expansions.

Milton Van Dyke (1922–2010) was an American who got a 1949 Caltech
Ph.D. (with Paco Lagerstrom) and worked at NASA-Ames before taking a
professorship in aeronautics at Stanford in 1959 (see Schwartz [442] for a
brief biography). One reason for the annotated edition [491] of Perturbation
Methods in Fluid Mechanics was that Academic Press let the 1964 original
[490] go out of print because Van Dyke had insisted that the contract stipulate
that

the book shall cost no more than three cents a page.

The Academic Press edition sold 8,000 copies. (In addition to the annotated
edition, Parabolic Press (managed by Van Dyke) also published the picture
book An Album of Fluid Motion (1984) by Van Dyke and the autobiograph-
ical Stories of a 20th Century Life (1994) by W. R. Sears.)

The more complicated use of intermediate limits/intermediate problems,
rather than the formal matching of series, as proposed by Kaplun [235],
relates to the often presumed existence of an overlap (as in analytic continu-
ation in complex variables) between the domains of validity for the inner and
outer expansions and the construction of a “composite” or uniform expan-
sion as the formal sum of the inner and outer expansions less their “common
part,” found by matching. Eckhaus and Fraenkel both showed that having an
overlap is not necessary for matching to succeed. Fruchard and Schäfke [165],
however, base their composite expansions on overlap. (The complication that
the inner and outer expansions are expressed in terms of different variables
indeed suggests the more sophisticated two-timing (or multiple scale) proce-
dure that we will consider in Chap. 5.) The recent proofs of Skinner [463]
and Fruchard and Schäfke [165] validate matching for a broad variety of ODE
problems.

Fluid dynamicists have introduced a more elaborate triple deck technique
(cf. Meyer [316], Sobey [467], and Veldman [498], noting important contri-
butions by Stewartson, Williams, and Neiland) to handle viscous flow along
a plate. Somewhat analogously, mathematicians have introduced a blow-
up technique to analyze even more complicated matching (cf. Dumortier
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and Roussarie [127] and Kuehn [268]). Hastings and McLeod [198] com-
bine blowup with classical methods to rigorously prove matching for the
Lagerstrom model

y′′ +
n− 1

r
y′ + εyy′ = 0, r ≥ 1, y(1) = 0, y(∞) = 1

in dimensions n = 2 and 3. This problem has been considered by a dozen
authors since 1957. Most recently, Holzer and Kaper [211] used normal form
techniques to handle a variety of problems with so-called logarithmic switch-
back .

(b) Tikhonov–Levinson Theory and Boundary
Layer Corrections

(i) Introduction

Wolfgang Wasow’s Asymptotic Expansions for Ordinary Differential Equa-
tions [513] is a much more mathematical work than Van Dyke [490]. It
is centered on singular perturbations, but also includes the study of regu-
lar and irregular singular points, as well as turning points. Much of the
theory is carried out using matrix differential equations (which may have
limited its appeal to the very applied audience). Its singular perturbation
coverage includes boundary value problems for linear scalar ordinary differ-
ential equations, following Wasow’s [517] NYU doctoral thesis, as well as the
(perhaps less efficient) methods of the prominent Russian analysts Vishik
and Lyusternik [507, 508] and Pontryagin [398]. Results for nonlinear initial
value problems rely on papers by the Soviet academician Andrei Nikolaevich
Tikhonov (1906–1993) on the solution of

systems of equations with a small parameter in the term with the
highest derivative

(a large percentage of singular perturbation problems, as we shall find).
Tikhonov’s work on asymptotics appeared from 1948 to 1952 and was contin-
ued in the ongoing work of his former student Adelaida B. Vasil’eva (1926–)
(Ph.D., Moscow State, 1961) (cf. Vasil’eva, Butuzov, and Kalachev [496] and
earlier monographs in Russian by Vasil’eva and by she and her former stu-
dent and MSU colleague Vladimir Butuzov). Instead of matching per se, she
directly obtains a composite expansion by the so-called boundary function
method , a technique analogous to the boundary layer correction method or
“the subtraction trick” (which first finds the outer solution (formally) and
then subtracts it from the solution being sought. Matching is then simple
because the new outer expansion and the new common part are both trivial)
(cf. Lions [295], O’Malley [366, 368], Smith [466], or Verhulst [500]). For a
survey of Soviet work, see Vasil’eva [495].
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We point out that J.-L. Lions (1928–2001) led a large school of French
analysts (including many prominent former students) who applied asymp-
totics to control, stochastic, and partial differential equations. Readers are
encouraged to consult their publications, e.g., [295].

The basic Tikhonov results were largely independently obtained later by
Norman Levinson (1912–1975), senior author of the long-dominant ODE text-
book Coddington and Levinson [91]. Levinson’s approach was more geomet-
ric, aimed at describing relaxation oscillations, as occur for the van der Pol
equation (cf. Levinson [287]), anticipating much recent work involving in-
variant manifolds. Related work was done with his junior colleague Earl
Coddington and by a number of MIT graduate students from the 1950s,
including D. Aronson, R. Davis, L. Flatto, V. Haas, S. Haber, J. Levin,
V. Mizel, R. O’Brien, J. Scott-Thomas, and D. Trumpler.

(ii) A Nonlinear Example

To get an idea of Tikhonov–Levinson theory, we will first consider the specific
planar initial value example{

ẋ = y, x(0) = 1

εẏ = x2 − y2, y(0) = 0
(3.24)

on a bounded t ≥ 0 interval as ε → 0+ (or the equivalent initial value problem
for the second-order nonlinear scalar equation εẍ + (ẋ)2 − x2 = 0), followed
by the linear vector system{

ẋ = A(t)x+B(t)y

εẏ = C(t)x+D(t)y

and then the nonlinear system{
ẋ = f(x, y, t, ε)

εẏ = g(x, y, t, ε)

with appropriate smoothness and stability assumptions. We shall character-
ize the system dynamics for (3.24) as being slow-fast , with variable x being
slow compared to y (since the velocity ẏ = O(1/ε) when x2 �= y2 while
ẋ = O(1) for bounded y). The reduced problem (obtained for ε = 0){

Ẋ0 = Y0, X0(0) = 1

0 = X2
0 − Y 2

0

(3.25)

omits the initial condition for y and implies the two possible roots

Y0 = ±X0 (3.26)

of the algebraic equation, so X0 must satisfy either initial value problem

Ẋ0 = ±X0, X0(0) = 1. (3.27)
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Hence, possible outer limits for t > 0 are

(X0(t), Y0(t)) = (e±t,±e±t). (3.28)

Because Y0(0) = ±1, while y(0) = 0, the fast variable y must initially con-
verge nonuniformly. This suggests that we might actually have uniformly
valid limits ⎧⎪⎨

⎪⎩
x(t, ε) ∼ X0(t)

and

y(t, ε) ∼ Y0(t) + v0(τ)

(3.29)

for bounded ts, where v0(0) = y(0) − Y0(0) is the initial jump in the fast
variable and the initial layer corrector v0 is significant only in a thin initial
layer where v0 → 0 as the fast time τ = t

ε ranges from 0 to ∞. Thus, the
correction term v0(τ) provides the needed nonuniform convergence of the
coordinate y in the O(ε)-thick initial layer near t = 0, described in terms of
τ . Then, we need

ε
dy

dt
∼ ε

dY0

dt
+

dv0
dτ

∼ X2
0 − (Y0 + v0)

2.

Since Y0 = ±X0 = ±e±t is bounded (for t bounded), ε
dy

dt
∼ dv0

dτ
shows that

v0 must nearly satisfy dv0

dτ ∼ −2Y0(ετ)v0−v20 . If we choose Y0(t) = et, Y0 will
be nearly 1 near t = 0, so v0 must satisfy the initial value problem

dv0
dτ

= −(2 + v0)v0, v0(0) = −1 (3.30)

on τ ≥ 0. This problem is easy to solve explicitly as a Riccati equation.
Indeed, checking the sign of dv0

dτ shows that v0 increases monotonically from

−1 to 0 as τ goes from 0 to ∞. We shall say that the initial vector

(
x(0)
y(0)

)
=(

1
0

)
lies in the domain of influence (or “region of attraction”) of the root

Y0 = X0 of the reduced problem (3.25). If we, instead, tried using the other
possible root Y0 = −X0 = −e−t, the corresponding v0 would have to satisfy

dv0
dτ

∼ v0(2− v0), v0(1) = 1,

but then v0 → 2 as τ → ∞ would contradict the asymptotic stability required
for the limiting initial layer correction v0. That one root of the limiting
equation (3.25) is repulsive and thereby inappropriate corresponds to our
expectation that there be a unique asymptotic solution to the given initial
value problem (3.24).
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Vasil’eva’s work (as well as O’Malley’s) further suggests that the asymp-
totic solution of our initial value problem (3.24) indeed has the (higher-order)
composite form {

x(t, ε) = X(t, ε) + εu(τ, ε)

y(t, ε) = Y (t, ε) + v(τ, ε)
(3.31)

uniformly on fixed bounded intervals 0 ≤ t ≤ T , where the outer solution(
X(t, ε)
Y (t, ε)

)
has an asymptotic power series expansion

(
X(t, ε)
Y (t, ε)

)
∼
∑
j≥0

(
Xj(t)
Yj(t)

)
εj (3.32)

with (
X0(t)
Y0(t)

)
=

(
1
1

)
et (3.33)

and where all terms of the scaled supplemental initial layer corrector(
u(τ, ε)
v(τ, ε)

)
∼
∑
j≥0

(
uj(τ)
vj(τ)

)
εj (3.34)

in (3.31) tend to zero as the fast time

τ = t/ε (3.35)

tends to infinity. Nonuniform convergence in the fast variable y (through v)
provokes nonuniform convergence in the derivative ẋ of the slow variable since
y = ẋ = Y +v. That is why X (as compared to Y ) has the asymptotically less
significant initial layer correction εu. (Although we indicate full asymptotic
expansions in (3.32) and (3.34), we in practice only generate a few terms
of all the series.) The critical point is that our ansatz (3.31), especially its
stability condition, usually allows us to bypass the tedium and inefficiency of
actually matching inner and outer expansions. (A possible exception arises in

singular cases when the outer limit

(
X0(t)
Y0(t)

)
is no longer defined or smooth

at the initial point t = 0.)

Away from t = 0, the outer solution

(
X
Y

)
must satisfy the given system

{
Ẋ = Y

εẎ = X2 − Y 2
(3.36)

as a power series (3.32) in ε, since the initial layer correction

(
εu
v

)
and its

derivative have decayed to zero there. For ε = 0, we get the reduced system,

and we pick its unique attractive solution

(
X0

Y0

)
=

(
1
1

)
et because the other
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possibility did not allow the needed asymptotic stability of v0(τ). From the
coefficient of ε in (3.36), we require that

{
Ẋ1 = Y1

Ẏ0 = 2X0X1 − 2Y0Y1.

Since Ẏ0 = et = 2et(X1 − Y1), we need Ẋ1 = Y1 = X1 − 1
2 , so we obtain

X1(t) = et
(
X1(0)− 1

2

)
+

1

2
(3.37)

for an unspecified value X1(0). Higher-order terms

(
Xk

Yk

)
in the outer exp-

ansion likewise also follow readily and uniquely, up to specification of the
initial values Xk(0) for each k > 0.

Returning to the slow equation ẋ = y, ẋ = Ẋ + du
dτ = Y + v, so Ẋ = Y

implies the linear initial layer equation

du

dτ
= v. (3.38)

Since εẎ = X2−Y 2, the nonlinear fast equation εẏ = εẎ + dv
dτ = (X+ εu)2−

(Y + v)2 implies the coupled initial layer equation

dv

dτ
= −2Y (ετ, ε)v − v2 + 2εX(ετ, ε)u+ ε2u2, (3.39)

with the terms of the outer solution

(
X
Y

)
already known, up to specification

of X(0, ε). The initial conditions

{
1 = X(0, ε) + εu(0, ε)

0 = Y (0, ε) + v(0, ε)
(3.40)

indeed termwise imply that

{
1 = X0(0)

0 = Y0(0) + v0(0)
(3.41)

and {
0 = Xk(0) + uk−1(0)

0 = Yk(0) + vk(0)
(3.42)

for each k ≥ 1. Thus, (3.41) requires

v0(0) = −Y0(0) = −1, (3.43)
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while (3.42) successively determines the unknown

Xk(0) = −uk−1(0) (3.44)

and, thereby, both Yk(0) (from the outer problem for Xk) and then vk(0).
Thus, the limiting initial layer system

{
du0

dτ = v0
dv0

dτ = −2Y0(0)v0 − v20 = −v0(2 + v0)
(3.45)

for (3.38–3.39) is subject to the initial condition v0(0) = −1. A direct inte-
gration provides

v0(τ) = tanh τ − 1, (3.46)

leaving the terminal value problem du0

dτ = tanh τ−1, u0(∞) = 0. Integrating
backwards from τ = ∞, we uniquely get

u0(τ) = ln cosh τ − τ + ln 2. (3.47)

This immediately provides the needed initial value

X1(0) = −u0(0) = − ln 2, (3.48)

which uniquely specifies the second term

(
X1

Y1

)
of the outer solution via

(3.37). In particular, Y1(0) = X1(0)− 1
2 next specifies

v1(0) = −Y1(0) =
1

2
− ln 2, (3.49)

by (3.42), while v1 by (3.39) must satisfy the linear differential equation

dv1
dτ

= −2(Y0(0) + v0(τ))v1 − 2(τY ′
0(0) + Y1(0))v0 + 2X0(0)u0. (3.50)

Integrating this linear initial value problem provides v1(τ) explicitly (though
we won’t bother to write down its expression) and the uniform approxima-
tions

x(t, ε) = et+ ε

[
1

2
−
(
1

2
+ ln 2

)
et + ln

(
cosh

t

ε

)
− t

ε
+ ln 2

]
+O(ε2) (3.51)

and

y(t, ε) = et + tanh
t

ε
− 1+ ε

[(
1

2
+ ln 2

)
(1− et) + v1

(
t

ε

)]
+O(ε2). (3.52)

The blowup of et as t → ∞ suggests that the results only apply on bounded
t intervals. Hoppensteadt [212] added the necessary hypothesis that the sol-
ution of the reduced problem be asymptotically stable to Tikhonov’s original
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conditions in order to extend the Tikhonov–Levinson theory to the infinite
t interval. Also see Vasil’eva [494], however. Before proceeding, the reader
should note (with some amazement) the efficient interlacing construction of
the expansions for the outer solution and the initial layer correction. Read-
ers should also observe how closely Tikhonov–Levinson theory links singular
perturbations and stability theory (cf. Cesari [74] and Coppel [96]).

(iii) Linear Systems

For the linear vector system

{
ẋ = A(t)x+B(t)y

εẏ = C(t)x+D(t)y
(3.53)

of m + n scalar equations on, say, 0 ≤ t ≤ 1, with smooth coefficients and
prescribed bounded initial vectors

x(0) and y(0), (3.54)

we will again seek a composite asymptotic solution of the form

x(t, ε) = X(t, ε) + εu(τ, ε)

y(t, ε) = Y (t, ε) + v(τ, ε)
(3.55)

for τ = εt, presuming the n× n matrix

D(t) remains strictly stable (3.56)

(i.e., has all its eigenvalues strictly in the left half-plane) for 0 ≤ t ≤ 1.

Here, the limiting outer solution

(
X0(t)
Y0(t)

)
must satisfy the reduced

problem {
Ẋ0 = A(t)X0 +B(t)Y0, X0(0) = x(0)

0 = C(t)X0 +D(t)Y0.

Thus,

Y0(t) = −D−1(t)C(t)X0(t) (3.57)

and X0 must be found as a solution of the reduced initial value problem

Ẋ0 = (A(t)−B(t)D−1(t)C(t))X0, X0(0) = x(0) (3.58)

of m equations. Note that the state matrix for X0 in (3.58) is the Schur

complement of the block D in the matrix

(
A B
C D

)
. Higher-order terms
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(
Xk

Yk

)
in the outer expansion are determined from a regular perturbation

solution of the system {
Ẋ = A(t)X +B(t)Y

εẎ = C(t)X +D(t)Y
(3.59)

about

(
X0

Y0

)
, i.e. from the nonhomogeneous system

Ẋj = (A(t)−B(t)D−1(t)C(t))Xj +B(t)D−1(t)Ẏj−1

Yj = −D−1(t)C(t)Xj +D−1(t)Ẏj−1.
(3.60)

Moreover, linearity and the representation (3.55) imply that

dx

dt
=

dX

dt
+

du

dτ
and ε

dy

dt
= ε

dY

dt
+

dv

dτ
,

so the initial layer correction must satisfy the nearly constant coefficient
system {

du
dτ = εA(ετ)u+B(ετ)v
dv
dτ = εC(ετ)u+D(ετ)v

(3.61)

and the limiting initial layer correction

(
u0

v0

)
must satisfy

{
du0

dτ = B(0)v0
dv0

dτ = D(0)v0, v0(0) = y(0)− Y0(0).
(3.62)

Integrating, we explicitly obtain the decaying n-vector

v0(τ) = eD(0)τ (y(0) +D−1(0)C(0)x(0)) (3.63)

while

u0(τ) = −B(0)

∫ ∞

τ

v0(s) ds = B(0)D−1(0)v0(τ). (3.64)

Those unfamiliar with the matrix exponential should consult, e.g.,
Bellman [35].

Next, u1 and v1 will be decaying solutions of the initial value problem{
du1

dτ = B(0)u1 + τḂ(0)v0 +A(0)u0

dv1

dτ = D(0)v1 + τḊ(0)v0 + C(0)u0, v1(0) = −Y1(0)

which can be directly and uniquely solved. Taken vectorwise, the representa-
tion (3.55) determines the asymptotics of all solutions, i.e. of a fundamental
matrix (cf. Coppel [96]) for the linear system (3.53) featuring initial layer
behavior near t = 0.
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(iv) Nonlinear Systems

The ansatz (3.55) used further applies directly to the initial value problem
for the general slow-fast nonlinear system

{
ẋ = f(x, y, t, ε), x(0) given

εẏ = g(x, y, t, ε), y(0) given
(3.65)

of m+n smooth differential equations on t ≥ 0 when the limiting differential-
algebraic system (or reduced problem)

{
Ẋ0 = f(X0, Y0, t, 0), X0(0) = x(0)

0 = g(X0, Y0, t, 0)
(3.66)

(with m differential equations) has a smooth isolated solution

Y0 = φ(X0, t) (3.67)

of the n algebraic constraint equations g = 0 selected so that

(i) the resulting initial value problem

Ẋ0 = f(X0, φ(X0, t), t, 0), X0(0) = x(0) (3.68)

has a solution X0(t) defined on a finite interval 0 ≤ t ≤ T such that
the Jacobian

gy(X0, φ(X0, t), t, 0)

remains a stable n× n matrix there and

(ii) the corresponding n-vector

v(0) = y(0)− φ(x(0), 0)

lies in the domain of influence of the trivial solution of the limiting
autonomous initial layer system

dv

dτ
= g(x(0), φ(x(0), 0) + v, 0, 0) for τ = t/ε ≥ 0. (3.69)

Hypothesis (i) provides stability for the outer solution

(
X
Y

)
on the finite t

interval (and, via the implicit function theorem, guarantees that the root φ
is locally unique), while hypothesis (ii) provides asymptotic stability for v
as τ → ∞ within the initial layer, allowing the termwise construction of a

decaying initial layer correction

(
εu
v

)
for τ ≥ 0. As an alternative, one could

express condition (ii) in terms of the existence of an appropriate Liapunov
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function (cf. Khalil [251]). In practice, we begin by checking the hypotheses
for various roots Y0 of

g(X0(t), Y0(t), t, 0) = 0.

Smooth ε-dependent initial values for (3.65) would pose no complication.
We have naturally presumed that outside any initial layers the limiting

solution to any singularly perturbed initial value problem satisfies the
reduced problem, but this isn’t always so. Eckhaus [133] introduced the
counterexample

ε3 cos

(
t

ε2

)
ẍ+ ε sin

(
t

ε2

)
ẋ− x = 0, t ≥ 0

with initial values x(0) = 1 and ẋ(0) = 0. Its solution,

x(t, ε) = 1 + ε− ε cos

(
t

ε2

)
,

however, tends to 1, rather than 0, as ε → 0.
We further note that one practical way to approximate the solution of a

differential-algebraic system {
ẋ = f(x, y, t)

0 = g(x, y, t)

is to regularize it, i.e. to introduce its singular perturbation{
ẋ = f(x, y, t)

εẏ = g(x, y, t)

and to approximately solve that for a small positive ε (cf. O’Malley and
Kalachev [374] and Nipp and Stoffer [351]).

As anticipated, we shall seek an asymptotic solution(
x(t, ε)
y(t, ε)

)
=

(
X(t.ε)
Y (t, ε)

)
+

(
εu(τ, ε)
v(τ, ε)

)
(3.70)

to (3.65) where the vector initial layer correction

(
εu
v

)
→ 0 as τ → ∞.

(Vasil’eva, typically, does not introduce the ε multiplying u in the x-variable
representation of (3.70). After some effort, however, she gets a trivial leading

term for u.) Thus, the outer solution

(
X
Y

)
must satisfy the given system

{
Ẋ = f(X,Y, t, ε)

εẎ = g(X,Y, t, ε)
(3.71)

as a power series

(
X
Y

)
∼∑j≥0

(
Xj(t)
Yj(t)

)
εj in ε.
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Further, the outer limit (
X0(t)
Y0(t)

)

must correspond to an attractive root Y0 = φ of the limiting algebraic equa-
tion of (3.66) such that gy(X0, Y0, t, 0) is stable and the resulting initial value
problem

Ẋ0 = f(X0(t), φ(X0(t), t), t, 0), X0(0) = x(0) (3.72)

for the m-vector X0 is guaranteed solvable (at least locally) by the classical

existence and uniqueness theorem. Later terms

(
Xj

Yj

)
must satisfy linearized

systems

Ẋj = fx(X0, Y0, t, 0)Xj + fy(X0, Y0, t, 0)Yj + fj−1(t) (3.73)

0 = gx(X0, Y0, t, 0)Xj + gy(X0, Y0, t, 0)Yj + gj−1(t) (3.74)

for j > 0, where fj−1 and gj−1 are known successively in terms of preceding
coefficients. We obtain Yj as an affine function of Xj from (3.74) because the
Jacobian gy(X0, Y0, t, 0) remains nonsingular. This leaves a linear system for
Xj , from (3.73), which will be uniquely solved once its initial value Xj(0) is

specified. Because ẋ = Ẋ+ du
dτ , while εẏ = εẎ + dv

dτ , the initial layer correction(
εu
v

)
must satisfy the nonlinear system

{
du
dτ = f(X + εu, Y + v, ετ, ε)− f(X,Y, ετ, ε)
dv
dτ = g(X + εu, Y + v, ετ, ε)− g(X,Y, ετ, ε)

(3.75)

as a power series (
u(τ, ε)
v(τ, ε)

)
∼
∑
j≥0

(
uj(τ)
vj(τ)

)
εj

in ε. The t-dependent coefficients in (3.75) are expanded as functions of τ .

Thus,

(
u0

v0

)
must satisfy

du0

dτ
= f(X0(0), Y0(0) + v0, 0, 0)− f(X0(0), Y0(0), 0, 0) (3.76)

and

dv0
dτ

= g(X0(0), Y0(0) + v0, 0, 0)− g(X0(0), Y0(0), 0, 0)

= g(x(0), φ(x(0), 0) + v0, 0, 0).
(3.77)

Since
v0(0) = y(0)− Y0(0) = y(0)− φ(x(0), 0)
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has been assumed in hypothesis (ii) to lie in the domain of influence of the
rest point v0 = 0 of system (3.77), we are guaranteed that the nonlinear
initial value problem for v0 has the desired decaying solution v0(τ) on τ ≥ 0.
(One might need to obtain it numerically.) In terms of it, we simply integrate
(3.76) to get

u0(τ) = −
∫ ∞

τ

[f(x(0), φ(x(0), 0) + v0(s), 0, 0)

− f(x(0), φ(x(0), 0), 0, 0)] ds.

(3.78)

This, in turn, provides the initial value

X1(0) = −u0(0) (3.79)

needed to specify the outer expansion term X1(t) and thereby Y1(t). Lin-

earized problems for

(
uj

vj

)
, j > 0, with successively determined initial vectors

vj(0) = −Yj(0) will again have exponentially decaying solutions. This imme-
diately specifies the needed vector Xj+1(0) = −uj(0) for the next terms in
the outer expansion.

In the unusual situation that the outer solution(
X(t, ε)
Y (t, ε)

)

satisfies the initial condition(
X(0, ε)
Y (0, ε)

)
=

(
x(0)
y(0)

)
,

the resulting boundary layer correction

(
εu(τ, ε)
v(τ, ε)

)

will be trivial. If we have

y(0) = φ(x(0), 0, 0),

we can omit the trivial first terms

(
u0

v0

)
of the boundary layer correction.

Later terms naturally satisfy linear problems.
A substantial simplification occurs when the nonlinear system (3.71) is

linear with respect to the fast variable y. Thus, we separately consider the
initial value problem for the system

{
ẋ = A(x, t, ε) +B(x, t, ε)y

εẏ = C(x, t, ε) +D(x, t, ε)y
(3.80)
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on t ≥ 0. The corresponding reduced system

{
Ẋ0 = A(X0, t, 0) +B(X0, t, 0)Y0

0 = C(X0, t, 0) +D(X0, t, 0)Y0

(3.81)

will imply

Y0(t) = −D−1(X0, t, 0)C(X0, t, 0)

while X0 must satisfy the reduced nonlinear vector problem

Ẋ0 = A(X0, t, 0)−B(X0, t, 0)D
−1(X0, t, 0)C(X0, t, 0), X0(0) = x(0). (3.82)

We suppose that (3.82) has a solution X0(t) on 0 ≤ t ≤ T < ∞ with a
resulting stable matrix

D(X0(t), t, 0).

Higher-order terms in the outer expansion

(
X(t, ε)
Y (t, ε)

)
then follow successively,

without complication, up to specification of X(0, ε).
The supplemental initial layer correction

(
εu(τ, ε)
v(τ, ε)

)
(3.83)

must be a decaying solution of the stretched system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

du
dτ = A(X + εu, t, ε)−A(X, t, ε)

+B(X + εu, t, ε)(Y + v)−B(X, t, ε)Y
dv
dτ = C(X + εu, t, ε)− C(X, t, ε)

+D(X + εu, t, ε)(Y + v)−D(X, t, ε)Y.

(3.84)

Moreover, the initial conditions require

⎧⎪⎨
⎪⎩
X(0, ε) + εu(0, ε) = x(0)

and

Y (0, ε) + v(0, ε) = y(0).

(3.85)

Thus, the limiting linear initial layer problem is

{
du0

dτ = B(x(0), 0, 0)v0
dv0

dτ = D(x(0), 0, 0)v0, v0(0) = y(0)− Y0(0).
(3.86)

It has the decaying solution

v0(τ) = eD(x(0),0,0)τ
(
y(0) +D−1(x(0), 0, 0)C(x(0), 0, 0)

)
(3.87)
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with

u0(τ) = −
∫ ∞

τ

B(x(0), 0, 0)v0(s) ds

= −B(x(0), 0, 0)D−1(x(0), 0, 0)v0(τ). (3.88)

Later terms follow readily. Again, X1(0) = −u0(0) will specify the O(ε)
terms in the outer expansion.

A special case of (3.65) is provided by the scalar Liénard equation

εẍ+ f(x)ẋ+ g(x) = 0 (3.89)

on t ≥ 0 with initial values x(0) and ẋ(0) provided. We introduce y = ẋ, so
εẏ + f(x)y + g(x) = 0. Then, the limiting solution is the monotonic solution
of the separable equation

Ẋ0 = − g(X0)

f(X0)
, X0(0) = x(0), (3.90)

presuming the stability hypothesis

f(X0) < 0 (3.91)

holds throughout. Then

y(t, ε) = ẋ(t, ε) = − g(X0)

f(X0)
+ ef(x(0))τ

(
ẋ(0) +

g(x(0))

f(x(0))

)
+O(ε) (3.92)

features an initial layer while there is an implicit solution for X0(t).
Skinner [463] considers linear turning point problems of the special form

ε2y′ + xa(x, ε)y = εb(x, ε), y(0) = εα(ε) (3.93)

for smooth functions a and b with a(x, ε) > 0. The simplest example seems
to be

ε2y′ + xy = ε, y(0) = 0. (3.94)

Its exact solution is the inner solution

y(x, ε) = u(x/ε) (3.95)

for

u(ξ) = e−
ξ2

2

∫ ξ

0

e
r2

2 dr. (3.96)

Integrating by parts repeatedly, we get the algebraically decaying behavior

e−
ξ2

2

∫ ξ 1

r

d

dr

(
e

r2

2

)
dr ∼ 1

ξ
+

1

ξ3
+ . . . as ξ → ∞,
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corresponding to the readily generated outer expansion

Y (x, ε) ∼ ε

x
+

ε3

x3
+ . . . , (3.97)

singular at the turning point x = 0. These problems are certainly more
complicated than the initial value problems we have considered previously,
so Skinner [463] is highly recommended reading.

Exercises

1. Find the exact solution to the scalar equation

εẏ = y − y3

on t ≥ 0 and determine how the outer limit Y0(t) for t > 0 depends on
y(0).

2. Solve the initial value problem for the planar system

{
ẋ = xy

εẏ = y − y3

on 0 ≤ t ≤ T < ∞ and determine the outer solution.

3. Obtain an O(ε2) approximation to the solution of the planar initial
value problem

{
ẋ = −x+ (x+ κ− λ)y, x(0) = −1

εẏ = x− (x+ κ)y, y(0) = 0

for positive constants κ and λ as ε → 0+. The problem arises in enzyme
kinetics (cf. Segel and Slemrod [448], Murray [339], and Segel and
Edelstein-Keshet [447]).

4. A model for autocatalysis is given by the slow-fast system

{
ẋ = x(1 + y2)− y, x(0) = 1

εẏ = −x(1 + y2) + e−t, y(0) = 1.

Seek an asymptotic solution of the form

x(t, ε) = X(t, ε) + εu(τ, ε)

y(t, ε) = Y (t, ε) + v(τ, ε)

where

(
u
v

)
→ 0 as τ = t

ε → ∞.
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(a) Obtain the first two terms of the outer expansion

(
X
Y

)
.

(b) Obtain the system for

(
u
v

)
.

(c) Determine the uniform approximation

x(t, ε) = X0(t) +O(ε)

y(t, ε) = Y0(t) + v0

(
t

ε

)
+O(ε).

5. Consider the initial value problem for the conservation equation

ε
d2x

dt2
= f(x)

with x(0) and dx
dt (0) prescribed. (An example is the pendulum equation

εẍ+ sin(πx) = 0.) Consider an asymptotic solution

x(t, ε) = X(t, ε) + εu(τ, ε)

where u → 0 as τ = t
ε → ∞ and 0 ≤ t ≤ T < ∞. Use Tikhonov–

Levinson theory on the corresponding slow-fast system

dx

dt
= y

ε
dy

dt
= f(x)

under appropriate conditions.

(v) Remarks

In the remainder of this section, we will survey some important results from
the literature. Readers should consult the references for further details.

We note that the typical requirements of the classical existence-uniqueness
theory do not hold for the singular perturbation systems under consideration
since their Lipschitz constant becomes unbounded when ε tends to zero. Sop-
histicated estimates are, nonetheless, provided by Nipp and Stoffer [351].
Needed asymptotic techniques, presented in Wasow [513], are updated in
Hsieh and Sibuya [220] through the introduction of Gevrey asymptotics (cf.
Ramis [405]) and Balser [25]). A formal power series

∑∞
m=0 amxm is defined

to be of Gevrey order s if there exist nonnegative numbers C and A such
that

|am| ≤ C(m!)sAm

for all m (cf. Sibuya [457], Sibuya [458], and Canalis-Durand et al. [68]).
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Fruchard and Schäfke [165] develop a “composite asymptotic expansion”
approach which justifies matched asymptotic expansions for a class of ordi-
nary differential equations, allowing some turning points. Their outer solu-
tions and initial layer corrections are obtained as Gevrey expansions.

Instead of assuming asymptotic stability of the limiting fast system (the
preceding hypothesis (ii)), one might instead consider the possibility of having
rapid oscillations for the solution of the fast system (cf. Artstein et al. [13,
14]). It is useful, indeed, to interpret these solutions in terms of Young
measures.

In his study of the quasi-static state analysis, Hoppensteadt [213, 214]
considers the perturbed gradient system{

dx
dt = f(x, y, t, ε)

εdydt = −�y G(x, y) + εg(x, y, t, ε).
(3.98)

Since

dG

dt
= −1

ε
�y G · �yG+�xG · f +�yG · g = −1

ε
| �y G|2 +O(1),

we might expect (under natural assumptions) the fast vector y to tend rapidly
to an isolated minimum y∗ of the energy G(x, y), presuming y(0) is in its
domain of attraction. The corresponding limiting slow variable will satisfy

dx

dt
= f(x, y∗, t, 0). (3.99)

Extensions to more complicated systems are also given, including a four-
dimensional Lorenz model⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = x2x3 − bx1 + εf1(x, y, t, ε)

ẋ2 = −x1x3 + rx3 − x2 + εf2(x, y, t, ε)

ẋ3 = σ(x2 − x3) + εf3(x, y, t, ε)

εẏ = λy − y3 + εg(x, y, t, ε)

that has the function

W (y) =
1

2
(y −

√
λ)2

as a Liapunov or energy function for the branch y =
√
λ+O(ε) (with λ > 0)

of the limiting fast system (cf. Brauer and Nohel [59]). Solutions beginning
nearby remain close to the manifold, and may exhibit chaotic behavior for
certain values of the parameters b, r, and σ.

Asymptotic expansions, as in the ansatz (3.70), are used in Hairer and
Wanner [192] to develop Runge–Kutta methods for numerically integrating
vector initial value problems in the singularly perturbed form{

ẋ = f(x, y),

εẏ = g(x, y),
(3.100)
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assuming that the Jacobian matrix gy is stable near the solution of the
‘reduced differential-algebraic system. Note, in the planar situation, that
trajectories will satisfy

ε
dy

dx
=

g(x, y)

f(x, y)
.

In particular, Hairer and Wanner begin their treatment of such stiff differ-
ential equations by considering the one-dimensional example

ẏ = g(x, y) = −50(y − cosx)

from Curtiss and Hirschfelder [107] (with ε = 0.02), pointing out the spurious
oscillations one finds with the explicit Euler method, in contrast to the success
obtained using the backward differentiation formula

yn+1 − yn = hg(xn+1, yn+1). (3.101)

Aiken [5] provides a review of the early literature from the chemical engineer-
ing perspective.

The existence of periodic solutions to the slow-fast vector system

{
ẋ = f(x, y, t, ε)

εẏ = g(x, y, t, ε)
(3.102)

was considered by Flatto and Levinson [149] and generalized in Wasow [513].
We will assume that f and g are periodic in t with period ω and that the
reduced system {

Ẋ0 = f(X0, Y0, t, 0)

0 = g(X0, Y0, t, 0)
(3.103)

has a solution

(
X0

Y0

)
of period ω. The question is whether or not the full

system (3.102) has a nearby periodic solution of the same period.
Let s be the vector parameter of initial values for X0, with the corre-

sponding variational system

{
d
dt

(
∂X0

∂s

)
= fx(X0, Y0, t, 0)

∂X0

∂s + fy(X0, Y0, t, 0)
∂Y0

∂s

0 = gx(X0, Y0, t, 0)
∂X0

∂s + gy(X0, Y0, t, 0)
∂Y0

∂s

(3.104)

We will assume that

(i) there is a smooth nonsingular matrix P (t) of period ω so that

P−1(t)gy(X0, Y0, t, 0)P (t) ≡
(
B(t) 0
0 −C(t)

)
(3.105)

with B(t) and C(t) being stable matrices.
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Since gy(X0, Y0, t, 0) is nonsingular and

∂Y0

∂s
= −g−1

y (X0, Y0, t, 0)gx(X0, Y0, t, 0)
∂X0

∂s
, (3.106)

ξ ≡ ∂X0

∂s will satisfy the linear system

dξ

dt
= A(t)ξ (3.107)

forA(t)≡fx(X0, Y0, t, 0)−fy(X0, Y0, t, 0)g
−1
y (X0, Y0, t, 0)gx(X0, Y0, t, 0).

We will also assume

(ii) the variational equation (3.107) has no nontrivial solution of period ω.

(Recall Floquet theory and the Fredholm alternative theorem from Codding-
ton and Levinson [91]). Flatto and Levinson [149] show that the full system
(3.102) will then have a solution of period ω with a uniform asymptotic ex-
pansion (

x(t, ε)
y(t, ε)

)
∼

∞∑
k=0

(
Xk(t)
Yk(t)

)
εk. (3.108)

Because there are no distinguished boundary points, the periodic solution
doesn’t need boundary layers.

Verhulst [505] considers the scalar Riccati example

εẏ = a(t)y − y2 (3.109)

with a(t) positive and periodic. The reduced problem has a nontrivial and
stable periodic solution

Y0(t) = a(t)

while we suppose the singularly perturbed equation (3.109) has a regularly
perturbed solution

y(t, ε) = Y0(t) + εY1(t) + . . .

This requires
Ẏ0 = a(t)Y1 − 2Y0Y1

at O(ε) order, so Y1=− ȧ(t)
a(t) implies the corresponding periodic approximation

y(t, ε) ∼ a(t)− ε
ȧ(t)

a(t)
+ . . . . (3.110)

Kopell and Howard [258] studied the Belousov–Zhabotinsky reaction,
which provides dramatic chemical oscillations with color changes. When
one seeks a traveling wave solution, a concentration C satisfies a singularly
perturbed differential equation

C ′ = F (C) + βC ′′
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with a small β > 0. Kopell [257] supposes that the reduced problem has a
stable limit cycle and she seeks a nearby invariant manifold for the perturbed
problem. This provides a major motivation for Fenichel’s geometric theory
from 1979, which generalizes Anosov [11].

The concept of a slow integral manifold (cf. Wiggins [522], Nipp and Stof-
fer [351], Goussis [178], Shchepakina et al. [450], Kuehn [268], and Roberts
[418]) is valuable in many applied contexts, including chemical kinetics, con-
trol theory, and computation (cf. also, Kokotović et al. [256] and Gear et al.
[167]). Let’s again consider the initial value problem for the slow-fast m+ n
dimensional system {

ẋ = f(x, y, t, ε)

εẏ = g(x, y, t, ε)
(3.111)

on t ≥ 0, subject to the usual Tikhonov–Levinson stability hypotheses. We
will determine a corresponding slow manifold described by

y(t, ε) = h(x(t, ε), t, ε) (3.112)

for a vector function h to be determined termwise as a power series in ε.
Motion along it will then be governed by the m-dimensional slow system

ẋ = f(x, h(x, t, ε), t, ε), (3.113)

subject to the prescribed initial vector x(0). This approach provides a sub-
stantial reduction in dimensionality when n is large, although it fails to des-
cribe the usual rapid nonuniform convergence of y in the O(ε)-thick initial
layer. However, in chemical kinetics, for example, the initial layer behavior
may occur too quickly to measure in the lab. Thus, it’s then natural to seek
such a quasi-steady state. Still, the fast equation and the chain rule applied
to (3.112) imply the invariance equation

εẏ = ε

(
∂h

∂x
f +

∂h

∂t

)
= g. (3.114)

To lowest order, this requires

g(x, h0, t, 0) = 0, (3.115)

so we naturally take
h0 = φ(x, t) (3.116)

to be an isolated root of the limiting fast system (3.115). Moreover, we again
require the root φ to be attractive in the sense that

gy(x, φ(x, t), t, 0)

is a strictly stable matrix, thereby ruling out any repulsive roots that might
occur. Higher-order terms in the expansion

h(x, t, ε) = φ(x, t) + εh1(x, t) + . . . (3.117)
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follow readily since g(x, φ(x, t), t, 0) = 0 implies the expansion g(x, h(x, t, ε),
t, ε) = gy(x, φ(x, t), t, 0)(εh1(x, t) + . . .) + εgε(x, φ(x, t), t, 0) + . . . = 0 about
ε = 0. Balancing the O(ε) terms in (3.114) then implies that

∂h

∂x
(x, φ(x, t), t, 0)f(x, φ(x, t), t, 0) +

∂h

∂t
(x, φ(x, t), t, 0)

= gy(x, φ(x, t), t, 0)h1(x, t) + gε(x, φ(x, t), t, 0).
(3.118)

This specifies h1 since gy is nonsingular and all else is known. h2 next fol-
lows analogously from the O(ε2) terms in (3.114). Thus, it is convenient to
describe the slow manifold in terms of the outer limit, avoiding the initial
layer correction.

Examples

1. Kokotović et al. [256] considered an initial value problem like

{
ẋ = f(x, y, t) ≡ txy, x(0) = 1

εẏ = g(x, y, t) ≡ −(y − 4)(y − 2)(y + tx), y(0) given.
(3.119)

We naturally anticipate having an asymptotic solution of the form

{
x(t, ε) = X(t, ε) + εu(τ, ε)

y(t, ε) = Y (t, ε) + v(τ, ε)

with an outer solution

(
X
Y

)
and an initial layer correction

(
εu
v

)
that tends

to zero as τ = t/ε tends to infinity. The outer limit

(
X0

Y0

)
will then satisfy

the reduced problem

{
Ẋ0 = tX0Y0, X0(0) = 1

0 = −(Y0 − 4)(Y0 − 2)(Y0 + tX0).
(3.120)

The first possibility

Y0(t) = 4, Ẋ0 = 4tX0, X0(0) = 1

for the root Y0 determines the bounded outer limit

(
X0(t)
Y0(t)

)
=

(
e2t

2

4

)
(3.121)

for finite t. It provides the complete outer expansion and thereby the
corresponding stable integral manifold. For y(0) �= 4, however, we need a
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nontrivial boundary layer correction at t = 0. Its leading term v0 must then
satisfy

dv0
dτ

= g(x(0), Y0(0) + v0, 0, 0) = −v0(v0 + 2)(v0 + 4), v0(0) = y(0)− 4

(3.122)
and must decay to zero as τ → ∞. Checking the sign of dv0

dτ shows that we
will need v0(0) > −2 or y(0) > 2 in order to attain such asymptotic stability.

The second possibility
Y0(t) = 2 (3.123)

provides X0(t) = et
2

. For y(0) �= 2, we will need a nontrivial limiting initial
layer correction v0(τ) satisfying

dv0
dτ

= −(v0 − 2)v0(v0 + 2), v0(0) = y(0)− 2. (3.124)

Its trivial rest point is, however, unstable, as is the corresponding integral
manifold. Thus, we rule out (3.123), except when y(0) = 2 exactly.

Finally, when we take

Y0(t) = −tX0(t), (3.125)

Ẋ0 = tX0Y0 = −t2X2
0 , and X0(0) = 1 determine the limiting outer solution

(
X0(t)
Y0(t)

)
=

( 3
t2+3−3t
t2+3

)
. (3.126)

The next term in the outer expansion must then satisfy the linear system

{
Ẋ1 = t(X1Y0 +X0Y1) = −t2X0X1 + tX0Y1

Ẏ0 = − [Y1(Y0 − 2) + (Y0 − 4)Y1] (Y0 + tX0)− (Y0 − 4)(Y0 − 2)(Y1 + tX1)

so

Y1 + tX1 =
−Ẏ0

Y 2
0 − 6Y0 + 8

=
X0 − t3X2

0

t2X2
0 + 6tX0 + 8

(3.127)

where

Ẋ1 = −2t2X0X1 +
tX2

0 (1− t3X0)

t2X2
0 + 6tX0 + 8

, X1(0) = u0(0). (3.128)

The corresponding limiting initial layer system

{
du0

dτ = 0
dv0

dτ = −(v0 − 4)(v0 − 2)v0, v0(0) = y(0)
(3.129)

has the trivial rest point provided y(0) < 2. In summary, we obtain one of
the possible asymptotic solutions depending on the sign of y(0) − 2. The
solution lies on an attractive slow invariant manifold when y(0) = 4 or 0.
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The geometric singular perturbation theory of Fenichel [146] generalizes
Tikhonov–Levinson theory by replacing its first stability assumption by nor-
mal hyperbolicity. See Fenichel [147], Kaper [233], Jones and Khibnik [227],
Krupa and Szmolyan [265], Verhulst and Bakri [505], Kosiak and Szmolyan
[260], and Kuehn [268] for updated treatments. In particular, then, imag-
inary eigenvalues of gy are not allowed, but unstable eigenvalues are. (In-
terestingly, Neil Fenichel’s work was “ahead of its time.” It didn’t attract
the attention it merited for many years.) Hastings and McLeod [198] include
several applications of Fenichel’s theory, which they simplify. A large variety
of sophisticated approaches are combined in Desroches et al. [116]. Other
significant extensions of Tikhonov’s theorem include Nipp [349] (cf., also,
Nipp and Stoffer [351]).

The situation where the first Tikhonov–Levinson stability assumption is
violated because the Jacobian matrix gy is everywhere singular might be
called a singular singular perturbation problem (cf. Gu et al. [187]). Narang-
Siddarth and Valasek [340] say these are in nonstandard form.

2. A simple example of a singular problem is provided by the linear initial
value problem

εẏ = A(ε)y, y(0) =

(
1
1

)
(3.130)

for the nearly singular state matrix

A(ε) =

(
1− 2ε 2− 2ε
−1 + ε −2 + ε

)
(3.131)

with eigenvalues −1 and −ε and corresponding eigenvectors

(
1
−1

)
and(

2
−1

)
. Applying the initial condition provides the exact solution

y(t, ε) =

(
4
−2

)
e−t +

(−3
3

)
e−t/ε for t ≥ 0 (3.132)

in the anticipated form

y(t, ε) ∼ Y0(t) + ξ0(τ)

for an outer solution Y0(t) and an initial layer correction ξ0(τ) that decays
to zero as τ = t/ε → ∞.

If we, instead, simply sought an outer solution

Y (t, ε) ∼
∑
j≥0

Yj(t)ε
j (3.133)

of εẏ = A(t)y with Yj =

(
Y1j

Y2j

)
, the leading terms require that

Y10 + 2Y20 = 0, (3.134)
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but leaves Y0 otherwise unspecified. At O(ε), we’d need

⎧⎪⎨
⎪⎩
Ẏ10 = Y11 + 2Y21 − 2Y10 − 2Y20

and

Ẏ20 = −Y11 − 2Y21 + Y10 + Y20.

(3.135)

Adding implies that
Ẏ10 + Ẏ20 = −Y10 − Y20.

Because Y10 = −2Y20, however, Ẏ20 = −Y20 so

Y0(t) =

(−2
1

)
e−tk0 (3.136)

for a constant k0 to be determined by matching.
More directly, we could change variables by putting A(ε) in a more con-

venient triangular form. Let us set

z =

(
z1
z2

)
≡ Py =

(
1 −1
1 1

)
y, (3.137)

so

y =
1

2

(
1 1
−1 1

)
z

and the initial value problem (3.130) is transformed to

{
εż1 = −z1 + 3(1− ε)z2, z1(0) = 0

ż2 = −z2, z2(0) = −2,
(3.138)

a problem in fast-slow form that can be uniquely solved using Tikhonov–
Levinson theory. We get

⎧⎪⎨
⎪⎩
z1(t) = 6e−t − 6e−t/ε

and

z2(t) = 2e−t,

(3.139)

corresponding to the constant k0 = 3 in (3.136). Although only the first
component of z has an initial layer, both components of y do.

3. A nonlinear example is given by

{
εẏ1 = y1 + y2 − 1

2 (y1 + y2)
3 + ε√

2
(y21 − y22), y1(0) = 2

εẏ2 = y1 + y2 − 1
2 (y1 + y2)

3 − ε√
2
(y21 − y22), y2(0) = −2.

(3.140)

Now, the reduced problem

Y10 + Y20 − 1

2
(Y10 + Y20)

3 = 0 (3.141)
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has the three families of solutions

Y10 + Y20 = 0 or ±
√
2. (3.142)

Tikhonov–Levinson theory doesn’t apply, but if we transform the problem
by setting

z =

(
1 1
1 −1

)
y, (3.143)

we get the separated fast-slow system

{
εż1 = z1 − 1

2z
3
1 , z1(0) = −2

ż2 =
√
2z1z2, z2(0) = 0.

(3.144)

We immediately integrate the Bernoulli equation for z1 to get

z1(t, ε) = −
√

2

1− 1
2e

−2t/ε
(3.145)

and we conveniently rewrite it in the anticipated form

z1(t, ε) = −
√
2 + u1(τ) (3.146)

with the outer solution −√
2 and the decaying initial layer correction

u1(τ) =
√
2

⎛
⎝1− 1√

1− 1
2e

−2τ

⎞
⎠ . (3.147)

Integrating the remaining linear equation for z2, we get

z2(t, τ, ε) = −2e−2te
√
2ε

∫ τ
0

u1(r)dr

≡ Z2(t, ε)e
−√

2ε
∫ ∞
τ

u1(r)dr.
(3.148)

Setting
z2(t, ε) = Z2(t, ε) + εu2(τ, ε), (3.149)

we have a decaying initial layer correction εu2(τ, ε). Power series for Z2 and
u2 can be obtained termwise. The limiting outer solution

Z1(t, 0) = −
√
2 and Z2(t, 0) = −2e−2t

corresponds to the outer limits

⎧⎪⎨
⎪⎩
Y10(t) = − 1√

2
− e−2t

and

Y20(t) = − 1√
2
+ e−2t

(3.150)
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and to the conserved constant

Y10(t) + Y20(t) = −
√
2. (3.151)

Since neither Y10(0) = −2 nor Y20(0) = −2, both components of y need initial
layer corrections.

For the nonlinear n-dimensional initial value problem

εẏ = g(y, t, ε), t ≥ 0, (3.152)

we expect the limiting solution to satisfy

g(Y0, t, 0) = 0.

When gy is singular with a constant rank 0 < k < n and when its nontriv-
ial eigenvalues are stable, we might seek additional constraints on the outer
limit Y0 by differentiating g = 0. (Recall the related concept of the index
of a differential-algebraic equation (cf. Ascher and Petzold [15] and Lamour
et al. [279]). Shchepakina et al. [450] describe applications, including singu-
lar ones and bimolecular reactions.

Historical Remark

Tikhonov made important contributions to many fields of mathematics, in-
cluding topology and cybernetics. He also rose to the top of the Communist
Party hierarchy in the Soviet Union, attaining great power and exerting his
anti-Semitism (like Pontryagin) by, for example, influencing the results of
entrance exams at Moscow State University.

Levinson, as the child of poor Russian Jewish immigrants in Revere, Mas-
sachusetts, naturally supported leftish causes. Norbert Wiener recognized his
brilliance and got him (with some help from Hardy) a faculty position at the
Massachusetts Institute of Technology. (Harvard was, presumably, unwilling
to hire Jewish mathematicians in 1937.) In the McCarthy era of Communist
witchhunts, Levinson was called to Washington to testify, but he refused to
“name names” (cf. Levinson [288] and O’Connor and Robertson [355]).

(c) Two-Point Problems

The linear first-order scalar equation

εy′ + a(x)y = b(x), x ≥ 0 (3.153)

has the exact solution

y(x, ε) = e−
1
ε

∫ x
0

a(s) ds y(0) +
1

ε

∫ x

0

e−
1
ε

∫ x
s

a(t) dt b(s) ds.
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For bounded x and smooth coefficients, we can use repeated integrations by
parts when

a(x) > 0

to show that y has a generalized asymptotic expansion of the form

y(x, ε) ∼ A(x, ε) +B(ε)e−
1
ε

∫ x
0

a(s) ds (3.154)

for power series A and B. For example, since

1

ε

∫ x

0

e−
1
ε

∫ x
s

a(t) dtb(s) ds ∼ b(x)

a(x)
− e−

1
ε

∫ x
0

a(t) dt b(0)

a(0)
,

A(x, 0) = b(x)
a(x) and B(0) = y(0) − b(0)

a(0) . Indeed, the series can be found

directly by regular perturbation methods (using undetermined coefficients in
the power series for A and B). Since there is an initial layer near x = 0, we
could also introduce the stretched variable

ξ = x/ε

and expand the product B(ε)e−
1
ε

∫ εξ
0

a(s) ds in its Maclaurin expansion about
ε = 0 to find the composite asymptotic solution

y(x, ε) = A(x, ε) + C(ξ, ε) (3.155)

for the same outer solution A(x, ε), where the coefficients of the initial layer
correction

C(ξ, ε) ∼
∑
k≥0

Ck(ξ)ε
k

tend to zero as ξ → ∞. Clearly, the expansion (3.154) is preferable, because
it provides more immediate details regarding boundary layer behavior. In
particular, it explicitly shows that the nonuniform behavior in the initial
layer depends on the stretched variable

η =
1

ε

∫ x

0

a(s) ds,

rather than its local limit a(0)ξ. Indeed, e−η exactly satisfies the homoge-
neous equation. As we will later find, the expansion (3.155) corresponds to
matching and (3.154) to two-timing.

For the linear second-order equation

εy′′ + a(x)y′ + b(x)y = c(x) (3.156)

with a(x) > 0, we cannot generally write down the exact solution (un-
less we happen to know a nontrivial solution of the homogeneous equa-
tion). Nonetheless, we will find that the asymptotic solution of the two-point
problem with

y(0) and y(1) prescribed
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will likewise have the asymptotic form

y(x, ε) ∼ A(x, ε) +B(x, ε)e−
1
ε

∫ x
0

a(s) ds (3.157)

(corresponding to WKB theory) where the outer expansion A(x, ε) will now
be a regular power series solution of the terminal value problem

εA′′ + a(x)A′ + b(x)A = c(x), A(1, ε) = y(1) (3.158)

and where B(x, ε) will be a regular power series solution of the initial value
problem

εB′′ − aB′ − a′B + bB = 0, B(0, ε) = y(0)−A(0, ε) (3.159)

(since the product Be−
1
ε

∫ x
0

a(s) ds must satisfy the homogeneous differential
equation). Curiously, the differential equation for B is the adjoint of that for
A (when c is zero).

Analogous (though somewhat more complicated) results hold for the non-
linear equation

εy′′ + a(x)y′ + f(x, y) = 0 (3.160)

again for Dirichlet boundary conditions. Before obtaining them, let us first
show how the more familiar method of boundary layer corrections works.
With

a(x) > 0 on 0 ≤ x ≤ 1,

we would naturally expect an initial layer of nonuniform convergence when
y(0) and y(1) are prescribed. Thus, for smooth coefficients a and f , we will
seek a composite asymptotic expansion of the form

y(x, ε) = Y (x, ε) + v(ξ, ε) (3.161)

where v → 0 as the stretched coordinate

ξ =
x

ε

→ ∞ and where the outer expansion Y and the initial layer correction v have
power series expansions

Y (x, ε) ∼
∑
k≥0

Yk(x)ε
k and v(ξ, ε) ∼

∑
k≥0

vk(ξ)ε
k.

Away from x = 0, y ∼ Y to all orders (and, likewise, for its derivatives), so
Y must satisfy

εY ′′ + a(x)Y ′ + f(x, Y ) = 0, Y (1, ε) = y(1). (3.162)

Clearly, Y0 must satisfy the nonlinear reduced problem

a(x)Y ′
0 + f(x, Y0) = 0, Y0(1) = y(1). (3.163)
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Assuming that its solution Y0 exists from x = 1, back to x = 0, later Yks
must satisfy linearized problems

a(x)Y ′
k + fx(x, Y0)Yk + αk−1(x) = 0, Yk(1) = 0 (3.164)

there, where each αk−1 is known successively in terms of earlier coefficients
Yj and their first two derivatives. Using an integrating factor, each Yk then
follows uniquely throughout the interval. It would be unlikely that Y (0, ε) =
y(0), however, so a nontrivial corrector v must be expected.

Knowing Y asymptotically, y′ = Y ′ + 1
ε
dv
dξ and εy′′ = εY ′′ + 1

ε
d2v
dξ2 imply

that the initial layer correction v must satisfy the differential equation

d2v

dξ2
+ a(εξ)

dv

dξ
+ ε
(
f
(
εξ, Y (εξ, ε) + v(ξ, ε)

)− f
(
εξ, Y (εξ, ε)

))
= 0, (3.165)

the initial condition
v(0, ε) = y(0)− Y (0, ε), (3.166)

and decay to zero as ξ → ∞. Thus, the leading coefficient v0 must satisfy
the linear problem

d2v0
dξ2

+ a(0)
dv0
dξ

= 0, v0(0) = y(0)− Y0(0) and v0 → 0 as ξ → ∞,

so
v0(ξ) = e−a(0)ξ(y(0)− Y0(0)). (3.167)

Next, we will need

d2v1
dξ2

+ a(0)
dv1
dξ

+ a′(0)ξ
dv0
dξ

+ f(0, Y0(0) + v0(ξ))− f(0, Y0(0)) = 0,

v1(0) = −Y1(0) and v1 → 0 as ξ → ∞.

The unique solution

v1(ξ) = − e−a(0)ξY1(0)−
∫ ξ

0

ea(0)(s−ξ)
[
f(0, Y0(0) + v0(ξ))

− f(0, Y0(0))− a′(0)a(0) s v0(s)
]
ds

(3.168)

decays like ξe−a(0)ξ as ξ → ∞. Subsequent vjs follow analogously, in turn.
We will later obtain a somewhat more satisfying solution using multiscale
methods with slow and fast variables x and η = 1

ε

∫ x

0
a(s) ds. Numerical

methods for such problems are presented in Roos et al. [419] and Ascher
et al. [16]. Related techniques for partial differential equations are given
in Shishkin and Shishkina [452], Linss [294], and Miller et al. [317]. The
variety of two-point singular perturbation problems one can confidently solve
numerically is, sadly, quite limited, compared to the success found for stiff
initial value problems. This appropriately remains a topic of substantial
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current research and importance. Useful recommendations about software for
solving singularly perturbed two-point problems can be found on the home-
page of Professor Jeff Cash of Imperial College, London (cf. also, Soetaert
et al. [469]).

If we consider the two-point problem for the scalar Liénard equation

εy′′ + f(y)y′ + g(y) = 0, 0 ≤ x ≤ 1 (3.169)

with y(0) and y(1) prescribed, we can again expect to have an asymptotic
solution of the form

y(x, ε) = Y (x, ε) + v(ξ, ε) (3.170)

provided

(i) the reduced problem

f(Y0)Y
′
0 + g(Y0) = 0, Y0(1) = y(1) (3.171)

has a solution Y0(x) on 0 ≤ x ≤ 1 with

f(Y0) > 0.

(Note the monotonic implicit solution x− 1 =
∫ y(1)

Y0(x)
f(r)
g(r) dr.)

and

(ii) the linear integrated initial layer problem

dv0
dξ

+ f(Y0(0))v = 0, v0(0) = y(0)− Y0(0) (3.172)

has a solution v0(ξ) on ξ ≥ 0 that decays to zero as ξ ≡ x
ε → ∞. (This

simply requires f(Y0(0)) > 0 since the solution is an exponential.)

Treating the problem with f(Y0) < 0 proceeds analogously, using a terminal
layer, but real complications arise when f(Y0) has a zero within the interval.

As a specific example, suppose

εy′′ = 2yy′ with y(1) < 0 and y(0) + y(1) < 0. (3.173)

Then, we obtain the attractive constant outer solution

Y (x, ε) = y(1) < 0 (3.174)

while the supplementary initial layer correction v(ξ, ε) must be a decaying
solution of vξξ = 2(y(1)+ v)vξ. Integrating from infinity, we must satisfy the
Riccati equation

vξ − 2y(1)v − v2 = 0, v(0) = y(0)− y(1). (3.175)

With the assumed sign restrictions, v exists and decays to zero as ξ → ∞.
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Cole [92] considered the linear problem

εy′′ +
√
xy′ − y = 0, y(0) = 0 and y(1) = e2, (3.176)

with an initial turning point. Because
√
x > 0 for x > 0, we might stubbornly

still seek an asymptotic solution of the composite form

y(x, ε) = Y (x, ε) + v(ξ, εβ), (3.177)

with an outer expansion Y that satisfies the terminal value problem

εY ′′ +
√
xY ′ − Y = 0, Y (1, ε) = e2 (3.178)

as a power series in ε, and with an initial layer correction v satisfying the
stretched equation

ε1−2α d
2v

dξ2
+ ε−α/2

√
ξ
dv

dξ
− v = 0, (3.179)

the initial condition

v(0, εβ) = y(0)− Y (0, ε), (3.180)

and which decays to zero as the appropriate stretched variable

ξ =
x

εα
, (3.181)

for some α > 0, tends to infinity. We will take v to have a power series in
εβ , for a power β > 0 to be determined. The purpose of the new stretching
ξ is to balance different terms in the differential equation (3.176) within the
initial layer. The dominant balance argument (cf. Bender and Orszag [36]
and Nipp [350]) here requires us to select α so that

1− 2α = −α

2
or α = 2/3. (3.182)

Since this leaves
d2v

dξ2
+
√

ξ
dv

dξ
− ε1/3v = 0, (3.183)

we naturally take β = 1/3.
The outer expansion Y ∼∑k≥0 Ykε

k for (3.176) must satisfy

√
xY ′

0 − Y0 = 0, Y0(1) = e2

and
√
xY ′

1 − Y1 + Y ′′
0 = 0, Y1(1) = 0, so we get

Y (x, ε) = e2
√
x

(
1 + ε

(
− 1

2x
+

2√
x
− 3

2

)
+ . . .

)
. (3.184)
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Indeed, following a suggestion of E. Kirkinis, we can peel off e2
√
x by setting

y = e2
√
xz. (3.185)

The corresponding outer expansion Z(x, ε) in inner variables provides

Z(ε2/3ξ, ε) = 1− ε1/3

2ξ
+

2ε2/3√
ξ

− 3ε

2
+ . . . , (3.186)

conveniently a power series in ε1/3. The transformed equation is

εz′′ +
(√

x+
2ε√
x

)
z′ + ε

(
1

x
− 1

2

1

(
√
x)3

)
z = 0

and the stretched equation for the corresponding inner solution w(ξ, ε1/3) in
terms of ξ = x/ε2/3 is

d2w

dξ2
+

(√
ξ +

2ε1/3√
ξ

)
dw

dξ
+

(
− ε1/3

2ξ3/2
+

ε2/3

ξ

)
w = 0, w(0) = 0. (3.187)

Expanding

w(ξ, ε1/3) ∼
∞∑
k=0

wk(ξ)ε
k/3 (3.188)

and integrating the resulting initial value problems, we first obtain

w0(ξ) = c0

∫ ξ

0

e−
2
3 s

3/2

ds, (3.189)

and then

w1(ξ) = c1

∫ ξ

0

e−
2
3 s

3/2

ds

+

∫ ξ

0

e−
2
3 s

3/2

∫ ξ

0

e
2
3 t

3/2

(
− 2√

t

dw0

dξ
+

1

2

w0

(
√
t)3

)
dt ds

(3.190)

for constants c0 and c1. When we write

w0(ξ) = c0

(∫ ∞

0

e−
2
3 s

3/2

ds−
∫ ∞

ξ

e−
2
3 s

3/2

ds

)

and apply the crude matching condition that

lim
ξ→∞

w0(ξ) = lim
x→0

Z0(x),

we determine the unusual constant,

c0 =
1∫∞

0
e−

2
3 s

3/2
ds

≡
(
3

2

)1/3
1

Γ(2/3)
. (3.191)
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The asymptotic behavior of w0 as ξ → ∞ follows by using repeated
integrations by parts, i.e.

w0(ξ) = 1− c0

∫ ∞

ξ

e−
2
3 s

3/2

ds

= 1− c0

[
1√
ξ
− 1

2ξ2
+

1

(
√
ξ)7

+O

(
1

ξ5

)]
e−

2
3 ξ

3/2

. (3.192)

Next, since w0 → 1 and dw0

dξ → 0 as ξ → ∞, w1 must satisfy d2w1

dξ2 +
√
ξ dw1

dξ ∼
1

2(
√
ξ)3

nearby, so upon integrating, we get

w1(ξ) ∼ K1 +

∫ ∞

ξ

e−
2
3 s

3/2

∫ ∞

s

e
2
3 t

3/2 dt

2(
√
t)3

ds

∼ K1 − 1

2ξ
− 2

5(
√
ξ)5

− 7

8ξ4
− 35

11(
√
ξ)11

+ . . . .

(3.193)

(This could be more simply determined by directly introducing a power series
for the limiting behavior of w1 using undetermined coefficients.) Further,
integration by parts implies that

∫ ∞

ξ

e−
2
3 s

3/2

∫ ∞

s

e
2
3 t

3/2

2t3/2
dt ds ∼ −

∫ ∞

ξ

ds

2s2
= − 1

2ξ
. (3.194)

To match w1 at infinity, we need K1 = 0, so w1 → 0 as ξ → ∞. Thus,

c1

∫ ∞

0

e−
2
3 s

3/2

ds =

−
∫ ∞

0

e−
2
3 s

3/2

∫ s

0

e
2
3 t

3/2

(
− 2√

t

dw0

dξ
+

1

2

w0

(
√
t)3

)
dt ds

(3.195)

specifies c1. Higher-order matching follows analogously. (We will not at-
tempt a uniformly valid composite expansion.) Clearly, matching near turn-
ing points is complicated. (It might be an instance calling for the neutrix
calculus (cf. van der Corput [100]), where infinities are appropriately can-
celed.) Our procedure for (3.176) might be compared to that of Miller [318]
and Johnson [226] who, respectively, consider the linear problem

εy′′ + 12x1/3y′ + y = 0, y(0) = 1, y(1) = 1

and the nonlinear problem

εy′′ +
√
xy′ + y2 = 0, y(0) = 2, y(1) = 1/3.

We now reconsider the nonlinear two-point problem

εy′′ − 2yy′ = 0, 0 ≤ x ≤ 1 (3.196)
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with prescribed endvalues y(0) and y(1). Wasow [514] cited this as an
example of the capriciousness of singular perturbations. (In response, Franz
and Roos [158] have written about the capriciousness of numerical methods
for singular perturbations.) If we integrate once to get εy′ = y2 − α, we can
separate variables to provide the general solution

y(x, ε) = −√
α tanh

(√
α

ε
(x− β)

)

= −√
α

(
1− e−

2
√

α
ε (x−β)

1 + e−
2
√

α
ε (x−β)

) (3.197)

for ε-dependent constants α and β. (When α is real, we shall take it to be
nonnegative.) The boundary conditions require that

y(0) = −√
α

(
1− e

2
√

αβ
ε

1 + e
2
√

αβ
ε

)
and y(1) = −√

α

(
1− e−

2
√

α
ε e

2β
√

α
ε

1 + e−
2
√

α
ε e

2β
√

α
ε

)
,

so

e
2β

√
α

ε =

√
α+ y(0)√
α− y(0)

=

(√
α+ y(1)√
α− y(1)

)
e

2
√

α
ε . (3.198)

We will, curiously, find different sorts of limiting behaviors for y in four
different portions of the y(0)-y(1) plane of boundary values.

(i) On the half-line where y(0) = −y(1) > 0: Because of the sign of the
coefficient of y′ in (3.196), we might expect y to be nearly constant near
both x = 0 and 1. Thus, we can anticipate having the limit

y ∼ y(0) > 0 near x = 0

and, likewise,
y ∼ y(1) < 0 near x = 1.

Symmetry even suggests that a narrow shock (or transition) layer be-
tween these outer solutions will occur about the midpoint x = 1/2 since
y(1) = −y(0). Indeed, (3.198) implies that

e
√

α
ε =

√
α+ y(0)√
α− y(0)

(corresponding to β = 1/2) and to the implicit relation

√
α = y(0) + (

√
α+ y(0))e−

√
α/ε

for α. Iterating, we then find

√
α ∼ y(0) + 2y(0)e−y(0)/ε + . . . (3.199)
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We recognize this as a result involving exponential asymptotics (i.e., it
uses asymptotically negligible correction terms like e−y(0)/ε). Thus, the
limiting uniform solution

y(x, ε) ∼ −y(0) tanh

(
y(0)

ε

(
x− 1

2

))
(3.200)

features an O(ε)-thick shock layer at the midpoint with the constant
limit y(0) for x < 1

2 and y(1) for x > 1/2.

(ii) In that 135◦ sector of the y(0)-y(1) plane where y(0) > 0 and y(0) +
y(1) > 0, we might expect the dominant endvalue y(0) to provide the
limiting solution, except in a narrow terminal layer near x = 1. To see
this, rewrite the boundary conditions (3.198) as

e2
√
α(β−1)/ε =

√
α+ y(1)√
α− y(1)

and √
α = y(0) + (

√
α+ y(0))e−2

√
αβ/ε.

Using the general solution (3.197),
√
α ∼ y(0) implies that

y(x, ε) ∼ y(0)

[
y(0) + y(1)− (y(0)− y(1))e

2y(0)
ε (x−1)

y(0) + y(1) + (y(0)− y(1))e
2y(0)

ε (x−1)

]
, (3.201)

so y indeed has the constant limit y(0) for x < 1 and an ordinary
O(ε)-thick boundary layer near x = 1.

Curiously, when y(0) + y(1) is positive, but only asymptotically exp-
onentially small, the previously found shock wave can be moved all
the way from the midpoint x = 1/2 to the endpoint x = 1. This
demonstrates the supersensitivity of the shock location β. Imagine the
computational consequences!

(iii) One could analogously show (cf. (3.176)) that the limiting solution is
y(1), except in an initial layer, when y(1) < 0 and y(0) + y(1) < 0.
Now, for y(0) + y(1) appropriately exponentially negligible, the shock
can be moved from x = 1

2 to x = 0. (This also follows by reflection
from (ii).)

(iv) In the quarter-plane where y(0) < 0 < y(1), we’d expect two endpoint
layers. Instead of letting α be imaginary, we take the general solution
to have the form

y(x, ε) = εA tan(A(x− εB)) (3.202)

with a trivial limit in 0 < x < 1 and boundary layers at both x = 0
and 1.



(C). TWO-POINT PROBLEMS 97

The limiting possibilities for solutions of (3.196) are illustrated in Fig. 3.1.
The preceding analysis for (3.196) anticipates the corresponding asymp-

totics for Burgers’ partial differential equation

ut = εuxx + uux (3.203)

on the planar strip where −1 ≤ x ≤ 1 and t ≥ 0. For the constant boundary
values u(±1, t) = ±1 and a prescribed smooth initial function u(0, t), we
might anticipate the development of a moving shock layer solution

tanh

(
x− xε(t)

2ε

)
(3.204)

(cf. Reyna and Ward [416] and Laforgue and O’Malley [275]). One can,
indeed, use the Cole–Hopf transformation

v(η, t) = e
∫ η
0

u(s,t) ds for η =
x− xε

2ε

to convert Burgers’ equation to the linear heat equation and to then solve that
using Fourier series. Note the relation to the previously introduced Riccati
transformations. One finds that the profile (3.204) moves asymptotically
slowly after the shock is formed, according to the equation

dxε

dt
= e−1/ε(e−xε/ε − exε/ε). (3.205)

The trivial rest point of (3.205) is reached after an asymptotically exponen-
tially long time (i.e., we attain metastability due to the asymptotically negli-
gible speed of the shock location xε). See O’Malley and Ward [379] for study
of a variety of related problems. Also note the relationship to intermediate
asymptotics and self-similar solutions, as presented by Barenblatt [28].

E [130] outlines a two-scale approach to satisfy the Allen–Cahn equation
(describing phase transitions):

ut = εΔu− 1

ε
V ′(u) (3.206)

where V is a double-well potential with local minima u1 and u2. He intro-
duces the stretched variable

ϕ(x, t)

ε
, (3.207)

with ϕ being the distance from x to a boundary curve Γt of the domain and
makes the multi-scale ansatz

u
(
x, t,

ϕ

ε
, ε
)
= U0

(
ϕ(x, t)

ε

)
+ εU1

(
ϕ(x, t)

ε
, x, t

)
+ . . . (3.208)

where U0(±∞) = u1/2. Leading terms in (3.206) then imply that

ϕtU
′
0 = U ′′

0 − V ′(U0)
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Figure 3.1: The limiting solution to εy′′ − 2yy′ = 0 differs in four different
regions of the y(0)-y(1) plane

so

ϕt =
V (u1)− V (u2)∫∞
−∞(U ′

0(y))
2 dy

. (3.209)

When V (u1) = V (u2), he gets shock layer motion on a longer time scale.
Such multi-scale ideas will be developed in Chap. 5.

Cole [92] shows that the asymptotic solution of the boundary value
problem

εy′′ + yy′ − y = 0, 0 ≤ x ≤ 1, y(0) and y(1) prescribed (3.210)

(less tractable than (3.196)) also varies significantly depending on the end-
values y(0) and y(1). This problem was introduced at Caltech in the 1950s
as a nonlinear model where solutions feature both endpoint boundary and
interior shock layers. It’s often called the Cole–Lagerstrom problem. We
shall illustrate some possibilities. See Cole [92], Dorr et al. [124], Chang and
Howes [76], and Lagerstrom [276] for the complete list of possible asymptotic
solutions in nine distinct subsets of the y(0)-y(1) plane. Shen and Han [451]
provide results for a more general equation.

Note that the reduced equation

Y0(Y
′
0 − 1) = 0 (3.211)

has the trivial solution Y0(x) ≡ 0 and the linear family of solutions Y0(x) =
x+ c.
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(a) Suppose y(0) = 0 and y(1) = 2. If we take c = 1, Y0(x) = x + 1
will satisfy the terminal condition Y0(1) = 2. The positivity of x + 1
throughout 0 ≤ x ≤ 1 suggests that Y0 might serve as an outer solution
Y (x, ε) for an asymptotic solution with an initial layer, say

y(x, ε) = x+ 1 + v(ξ, ε) (3.212)

where v(0, ε) = −1, v → 0 as ξ = x/ε → ∞, and

v ∼
∑
k≥0

vk(ξ)ε
k. (3.213)

Then, y′ = 1+ 1
ε
dv
dξ and εy′′ = 1

ε
d2v
dξ2 imply that d2v

dξ2 +(εξ+1+v)dvdξ = 0,

so the leading term v0 must satisfy the autonomous equation d2v0

dξ2 +

(1 + v0)
dv0

dξ = 0. Integrating backwards from infinity, we obtain the
initial value problem

dv0
dξ

+ v0 +
v20
2

= 0, v0(0) = −1. (3.214)

Integrating this Riccati equation provides v0(ξ) = − 2
1+eξ

, i.e., the uni-
formly valid approximation

y(x, ε) ∼ x+ 1− 2

1 + ex/ε
, (3.215)

featuring an initial layer of O(ε)-thickness in x.

(b) If we instead take y(0) = −1 and y(1) = 1, we might anticipate having
an interior shock layer between the linear left- and right-sided outer
solutions

YL(x) = x− 1 and YR(x) = x. (3.216)

(Since YL < 0 and YR > 0, we wouldn’t expect endpoint layers.) Thus,
we will assume an asymptotic solution of the form

y(x, ε) = x− 1 + u(κ, ε) (3.217)

for the stretched variable

κ ≡ x− x̃

ε
, (3.218)

expecting a monotonic unit jump in y about the shock location x̃ (to
be determined) such that

u →
{
0 as κ → −∞
x̃− (x̃− 1) = 1 as κ → ∞.
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Since y′ = 1+ 1
ε
du
dκ and εy′′ = 1

ε
d2u
dκ2 , u must satisfy d2u

dκ2 + (x̃+ εκ− 1+

u)dudκ = 0. Its leading term will satisfy

du0

dκ
+ (x̃− 1)u0 +

u2
0

2
= 0, (3.219)

upon integrating from −∞. The rest points are 0 and 2(1− x̃). To get
a solution joining the rest points u0(−∞) = 0 and u0(∞) = 1 requires
taking

x̃ = 1/2, (3.220)

as we should have anticipated from symmetry. The corresponding lim-
iting shock layer solution is

u0(κ) =
1

1 + e−κ/ε
for κ =

x− 1
2

ε
. (3.221)

With analogous nonsymmetric boundary values, the jump would in-
stead be located elsewhere. Higher-order terms follow readily.

Example

The two-point problem

εy′′ = 1− (y′)2, 0 ≤ x ≤ 1, with y(0) = 0 = y(1) (3.222)

can be solved by converting it to the slow-fast system{
y′ = z

εz′ = 1− z2.
(3.223)

If we select the left and right outer solutions

ZL(x) = −1 and ZR(x) = 1,

corresponding to

YL(x) = −x and YR(x) = x− 1,

the two outer solutions YL and YR meet at x = 1/2, where y′ must jump.
We naturally look for a shock layer as a function of the stretched variable

ξ =
1

ε

(
x− 1

2

)
.

A direct integration (with the “right” endvalues) provides

⎧⎪⎪⎨
⎪⎪⎩

z(x, ε) = tanh((x− 1
2 )/ε)

and

y(x, ε) = ε ln

(
cosh((x− 1

2 )/ε)
cosh(1/2ε)

) (3.224)
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with the anticipated angular asymptotics. Note that y has a minimum at
x = 1/2. (A maximum principle argument would rule out the selection
ZL(x) = 1, ZR(x) = −1.)

Exercises

1. Numerically solve
εy′′ = 2yy′, 0 ≤ x ≤ 1

with various boundary values y(0) and y(1) to illustrate the four pos-
sible types of limiting solution.

2. For y(0) = −1/4 and y(1) = 1/2, show that the limiting (piecewise
linear) solution to the Cole–Lagerstrom equation (3.210) is given by

y(x, ε) →

⎧⎪⎨
⎪⎩
x− 1

4 , 0 ≤ x ≤ 1
4

0, 1
4 ≤ x ≤ 1

2

x− 1
2 ,

1
2 ≤ x ≤ 1.

3. Show that the nonlinear boundary value problem

εy′′ + f(y)y′ + g(y) = 0

with y(0) and y(1) prescribed can be converted to a slow-fast problem
in the y-z (or Liénard) plane with z ≡ εy′ +

∫ y
f(r) dr.

For the more general nonlinear scalar problem

{
εy′′ + f(x, y)y′ + g(x, y) = 0, 0 ≤ x ≤ 1

with y(0) and y(1) prescribed,
(3.225)

perhaps first studied in Coddington and Levinson [90], we will seek an initial
layer solution in the composite form

y(x, ε) = Y (x, ε) + v(ξ, ε) (3.226)

where v → 0 as ξ = x/ε → ∞. We will naturally require two stability
assumptions:

(i) that the reduced problem

f(x, Y0)Y
′
0 + g(x, Y0) = 0, Y0(1) = y(1) (3.227)

has a solution Y0(x) on 0 ≤ x ≤ 1 with

f(x, Y0(x)) > 0 (3.228)
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(ii) that the separable limiting integrated initial layer problem{
dv0

dξ +
∫ v0

0
f(0, Y0(0) + r) dr = 0,

v0(0) = y(0)− Y0(0)
(3.229)

has a solution v0(ξ) defined throughout ξ ≥ 0 that decays to zero as
ξ → ∞.

Clearly, the outer solution Y (x, ε) ∼∑j≥0 Yj(x)ε
j must satisfy the terminal

value problem

εY ′′ + f(x, Y )Y ′ + g(x, Y ) = 0, Y (1, ε) = y(1). (3.230)

Since we have assumed existence of the ε = 0 solution Y0(x) throughout
0 ≤ x ≤ 1, the next term Y1 must satisfy the linearized problem

f(x, Y0)Y
′
1 +
(
fy(x, Y0)Y

′
0 + gy(x, Y0)

)
Y1 + Y ′′

0 = 0, Y1(1) = 0. (3.231)

Presuming smoothness of the coefficients, it is no problem to successively
define all the Yks in terms of the attractive outer limit Y0.

Knowing Y (x, ε) asymptotically, the supplementary initial layer correc-
tion v must satisfy(

εY ′′ +
1

ε

d2v

dξ2

)
+ f(x, Y + v)

(
Y ′ +

1

ε

dv

dξ

)
+ g(x, Y + v) = 0

and v(0, ε) = y(0)− Y (0, ε), i.e.

d2v

dξ2
+ f(x, Y + v)

dv

dξ

+ ε
[
(f(x, Y + v)− f(x, Y ))Y ′ + g(x, Y + v)− g(x, Y )

]
= 0

(3.232)

when we substitute −f(x, Y )Y ′ − g(x, Y ) for εY ′′ and expand all functions
of x = εξ in Taylor series about x = 0. Thus, v0 must be a decaying solution
of the nonlinear terminal value problem

d2v0
dξ2

+ f(0, Y0(0) + v0)
dv0
dξ

= 0, v0(∞) = 0. (3.233)

Integrating backwards, we require v0 to satisfy the initial value problem
(3.229). Existence of v0 is guaranteed by the second stability condition.
The next terms in (3.232) require v1 to satisfy

d2v1
dξ2

+ f(0, Y0(0) + v0)
dv1
dξ

+ ξ
[
fx(0, Y0(0) + v0)

+ fy(0, Y0(0) + v0)Y
′
0(0)

]dv0
dξ

+
[(
f(0, Y0(0) + v0)− f(0, Y0(0)

)
Y ′
0(0)

+
(
g(0, Y0(0) + v0)− g(0, Y0(0)

)]
= 0.

(3.234)
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Because v0 and dv0

dξ decay exponentially to zero as ξ → ∞, we can integrate

backwards from infinity where v1(∞) = 0. Then, we integrate the resulting
linear initial value problem with v1(0) = −Y1(0) to get v1(ξ). Later terms
follow analogously, in turn. We note that more direct multi-scale methods for
(3.225) (which we will later consider) do not seem to be generally available
except when f(x, y) is independent of y.

Example

Consider

εy′′ + eyy′ = 1, y(0) = 0, y(1) = 1. (3.235)

The limiting outer problem

eY0Y ′
0 = 1, Y0(1) = 1 (3.236)

implies that eY0 = x+ c where e = 1 + c, so

Y0(x) = ln(x+ e− 1) (3.237)

and eY0 > 0. We will seek a uniform limit

y(x, ε) ∼ Y0(x) + v0(ξ) for ξ = x/ε. (3.238)

Then, v0 must satisfy d2v0

dξ2 + eY0(0)+v0(ξ) dv0

dξ = 0, Y0(0) + v0(0) = 0 and
v0 → 0 as ξ → ∞. An integration requires v0 to satisfy the nonlinear initial
value problem

dv0
dξ

+ (e− 1)(ev0 − 1) = 0, v0(0) = − ln(e− 1).

Thus

v0(ξ) = − ln(1 + (e− 2)e−(e−1)ξ) (3.239)

and the uniformly valid limiting solution on 0 ≤ x ≤ 1 is

y(x, ε) = ln

(
x+ e− 1

1 + (e− 2)e−(e−1)x/ε

)
+O(ε). (3.240)

We will next outline the construction of the asymptotic solution of the
scalar two-point problem

εy′′ + f(x, y)y′ + g(x, y) = 0 with y(0) and y(1) prescribed (3.241)

featuring a sharp transition (i.e., a shock) layer at an interior point x̃. (Recall
several examples considered previously.)
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We will assume

(i) that the left limiting problem

f(x, Y )Y ′ + g(x, Y ) = 0, Y (0) = y(0) (3.242)

has a solution YL0(x) such that

f(x, YL0(x)) < 0 for 0 ≤ x ≤ x̃, (3.243)

and

(ii) the right limiting problem

f(x, Y )Y ′ + g(x, Y ) = 0, Y (1) = y(1) (3.244)

has a solution YR0(x) such that

f(x, YR0(x)) > 0, for x̃ ≤ x ≤ 1. (3.245)

Here, the isolated jump location x̃ is determined by the classical
Rankine–Hugoniot jump condition

∫ YR0(x̃)

YL0(x̃)

f(x̃, s) ds = 0 (3.246)

(cf. Whitham [520]).

We will also assume that

(iii) the integrated shock layer problem

du0

dκ
+

∫ u0

0

f (x̃, YL0(x̃) + r) dr = 0, −∞ < κ < ∞ (3.247)

has a monotonic solution u0(κ) on −∞ < κ < ∞ satisfying

u0(−∞) = 0 and u0(∞) = YR0(x̃)− YL0(x̃).

Then, we can construct an asymptotic solution to (3.241) of the form

y(x, ε) = YL(x, ε) + u(κ, ε) (3.248)

where

κ =
1

ε
(x− x̃), (3.249)

u(−∞, ε) = 0, and u(∞, ε) → YR(x̃+ εκ, ε)− YL(x̃+ εκ, ε)

for left- and right-outer expansions YL(x, ε) and YR(x, ε) with limits YL0 and
YR0 such that

YL(x, ε) ∼
∑
j≥0

YLj(x)ε
j , YR(x, ε) ∼

∑
j≥0

YRj(x)ε
j ,

and u(κ, ε) ∼
∑
j≥0

uj(κ)ε
j .

(3.250)
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As an alternative, we could center the shock layer at the average value

1

2
(YL(x̃, ε) + YR(x̃, ε))

and seek a shock layer solution v(κ, ε) tending to YL(x̃, ε) as κ → −∞ and
to YR(x̃, ε) as κ → +∞.

Lorenz [299] considered the example
{
εy′′ + y(1− y2)y′ − y = 0

y(0) = 1.6, y(1) = −1.7.

He showed that the limiting solution satisfies

y(x, ε) →

⎧⎪⎨
⎪⎩
YL0(x), 0 < x < x1 =

√
2
3 − 1.6− (1.6)3

3

0, x1 < x < x2

YR0(x), −
√
2
3 + 1.7− (1.7)3

3 = x2 < x ≤ 1

for left and right limiting solutions YL0(x) and YR0(x) and with x1 ≈ 0.24
and x2 ≈ 0.59, found computationally. Readers should verify this conclusion
analytically or numerically.

We might expect solutions of two-point problems for the semilinear vector
equation

ε2y′′ + f(x, y) = 0, 0 ≤ x ≤ 1 (3.251)

to instead converge away from boundary layers at both endpoints to a solution
Y0 of the limiting algebraic equation

f(x, Y0(x)) = 0 (3.252)

when (i) the Jacobian
fy(x, Y0(x))

is a stable matrix throughout the interval and (ii) the corresponding boundary
layer jumps y(0) − Y0(0) and y(1) − Y0(1) are appropriately restricted to
achieve stability in the boundary layers.

Then, the asymptotic solution to (3.251) will take the form

y(x, ε) = Y (x, ε) + r(κ, ε) + s(λ, ε) (3.253)

where the terms of r → 0 as κ = x
ε → ∞ while s → 0 as λ = 1−x

ε → ∞.
Franz and Roos [158], likewise, show that the limiting solution to

ε2y′′ − y(y − 1)

(
y − x− 3

2

)
= 0, y(0) = 0, y(1) = 5/2

satisfies

y(x, ε) →
{
0, 0 ≤ x < 1

2

x+ 3
2 ,

1
2 < x ≤ 1.
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These boundary values don’t require endpoint layers. However, a shock layer
between the two outer limits is needed at x = 1/2.

A semilinear example with (at least) two solutions having both boundary
and corner layers is contained in O’Donnell [356]. It is the system

{
εy′′1 =

(
y1 −

∣∣x− 1
2

∣∣) (1 + y22)

εy′′2 =
(
y2 − 1 +

∣∣ 1
3 − x

∣∣) (1 + y21)

for appropriate values y1(0), y1(1), y2(0), and y2(1).
Other two-point problems are considered by Butuzov et al. [64]. Indeed,

Butuzov et al. [63] and Vasil’eva et al. [497] develop a theory for the so-
called contrast structures . See Schmeiser [439] for an application with ε-
dependent boundary conditions. Somewhat comparable asymptotic results
to those we’ve obtained are also available for certain integral equations (cf.
Shubin [454] and its references) and other functional equations.

Overview (or Proof of Asymptotic Validity)

When one solves boundary value problems asymptotically, one typically uses
only a few terms in the formal series generated, because of the effort inv-
olved and because the series generally diverge. Thus, if one knows the first
two terms y0(x, η) and y1(x, η) in a formal approximation, with the given
independent variable x and, say, a stretched variable η(x, ε) describing a
boundary or interior layer of nonuniform convergence, we might write the
actual solution y(x, ε) as

y(x, ε) = y0(x, η) + εy1(x, η) + ε2R(x, ε) (3.254)

and convert the given boundary value problem for y into a new problem
for the (scaled) remainder R. Often, we further convert the latter problem
into an integral equation for R. If we can estimate its solution R using, for
example, differential inequalities, the boundedness of R throughout the x
interval will imply that our formal result

y ∼ y0 + εy1

is asymptotically correct to O(ε2) in that interval. Such proofs are given in
Smith [466], Murdock [335], and de Jager and Jiang [224].

(d) Linear Boundary Value Problems

So far, we may have casually given the incorrect impression that singularly
perturbed boundary value problems have unique asymptotic solutions, typi-
cally consisting of an outer solution and endpoint boundary layer corrections.
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The actual situation is illustrated quite clearly by the constant linear n-
dimensional vector system

εy′ = Ay, 0 ≤ x ≤ 1 (3.255)

subject to n coupled linear boundary conditions

αy(0) + βy(1) = γ (3.256)

for scalar constants α and β and an n-vector γ. More complications naturally
occur when the entries of the matrix A vary with x.

We will assume here that the matrix A has the spectral decomposition

A = PDP−1 (3.257)

for a nonsingular constant matrix P and a block-diagonal matrix

D ≡ diag (S, 0, U) (3.258)

where S is a stable r × r matrix, 0 is the trivial s × s matrix, and U is
a t × t unstable matrix with r + s + t = n. Then the so-called shearing
transformation

y = Pz (3.259)

implies the two-point problem

εz′ = Dz, αPz(0) + βPz(1) = γ (3.260)

for z. If we split

z ≡
⎛
⎝z1
z2
z3

⎞
⎠ (3.261)

for an r-dimensional vector z1, an s-dimensional z2, and a t-dimensional z3,
bounded solutions z must be of the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z1(x) = eSx/εz1(0),

z2(x) = z2(0),

and

z3(x) = e−U(1−x)/εz3(1)

(3.262)

for bounded endvalues z1(0), z2(0), and z3(1) that act like shooting parame-
ters in the transformed linear boundary condition

αP

⎛
⎝ z1(0)

z2(0)
e−U/εz3(1)

⎞
⎠+ βP

⎛
⎝eS/εz1(0)

z2(0)
z3(1)

⎞
⎠ = γ.
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Note that the matrix entries e−U/ε and eS/ε are asymptotically negligible.
Asymptotically, then, we obtain a unique solution

y = P

⎛
⎝ eSx/εz1(0)

z2(0)

e−
U
ε (1−x)z3(1)

⎞
⎠ (3.263)

of the given boundary value problem when we can uniquely solve the limiting
n-dimensional linear system

αP

⎛
⎝z1(0)
z2(0)
0

⎞
⎠+ βP

⎛
⎝ 0
z2(0)
z3(1)

⎞
⎠ ∼ γ (3.264)

for the shooting vectors z1(0), z2(0), and z3(1). Note that the result-
ing solution (3.263) features an r-dimensional initial layer determined by
z1(0), an s-dimensional constant outer solution determined by z2(0), and a
t-dimensional terminal layer determined by z3(1). If the Jacobian of (3.264)
(with respect to these n unknown endvalues) is singular, however, there may
be multiple solutions of the problem (3.255)–(3.256) or none at all. Gener-
alizations to block-diagonalizable slow-fast linear systems without turning
points are straightforward (cf. Harris [197], Flaherty and O’Malley [148],
and O’Malley [368]). Surveys of classical results are contained in Wasow
[512, 513], Hsieh and Sibuya [220], and Balser [25].

Wasow [511, 517] considered the higher-order variable coefficient linear
scalar equation

ε�−kL(y) +K(y) = 0, 0 ≤ x ≤ 1 (3.265)

where L(y) is an �th-order linear differential operator with leading term

y(�) (3.266)

and where K(y) is a k-th order linear differential operator with leading term

β0(x)y
(k) (3.267)

for � > k ≥ 0 and with β0(x) �= 0 throughout the interval, thereby avoiding
turning points. The prototype differential equation is

ε�−ky(�) + β0(x)y
(k) = 0.

He also prescribed r linear scalar initial conditions

Aiy(0) = γi (3.268)

for (3.265) with

Aiy = y(λi) + lower-order terms, i = 1, . . . , r (3.269)
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for decreasing orders λi as well as s linear terminal conditions

Ajy(1) = γj (3.270)

with

Ajy = y(λj) + lower-order terms, j = r + 1, . . . , r + s = � (3.271)

for decreasing λjs. (Treating boundary conditions coupling derivatives at the
two endpoints would again be more complicated.)

Assuming appropriate smoothness of the coefficients, one can construct a
complete set of � smooth linearly independent asymptotic solutions of (3.265)
of the form⎧⎪⎨

⎪⎩
Gj(x, ε)e

1
ε

∫ x(−β0(s))
1/(
−k) ds, j = 1, 2, . . . , �− k

and

Gj(x, ε), j = �− k + 1, . . . , �

(3.272)

for power series Gj to be determined and distinct roots (−β0(x))
1


−k , gener-
alizing our WKB results for � = 2 and k = 1. (Note the fixed regular spacing
of these roots in the complex plane.) The first �−k of these solutions display
boundary layer behavior near x = 0 whenever

Re (−β0(x))
1

(
−k) < 0.

We will, more explicitly, use the representation

Gj(x, ε)e
1
ε

∫ x
0
(−β0(s))

1

−k ds (3.273)

to specify initial layer behavior. Likewise, we will use solutions

Gj(x, ε)e
1
ε

∫ 1
x
(−β0(s))

1

−k ds (3.274)

with terminal layers near x = 1 when

Re (−β0(x))
1


−k > 0

holds. We suppose that
σ (3.275)

of the �-k values Re (−β0(x))
1


−k are negative, that

τ (3.276)

are positive, and that we are in the nonexceptional case when

σ + τ = �− k. (3.277)
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(Then, none of the roots are purely imaginary.) The last k asymptotic sol-
utions (3.272) don’t feature boundary layer behavior and they can, indeed,
be found as regular perturbations of any set of linearly independent solu-
tions of the reduced equation K(y) = 0. (Solutions of the corresponding
nonhomogeneous equation

ε�−kL(y) +K(y) = f(x)

could be obtained from the � asymptotic solutions (3.272) of the homogeneous
equation by using variation of parameters.)

Note that even the harmless-looking two-point problem

ε2y′′ + y = 0, 0 ≤ x ≤ 1, y(0) = 0, y(1) = 1

hasn’t a limiting solution as ε → 0. The solution

y(x, ε) =
sin x

ε

sin 1
ε

isn’t even defined for ε = 1
nπ , n = 1, 2, . . . , and it is rapidly oscillating

otherwise. Thus, Wasow’s quest wasn’t trivial.
Writing the solution of the boundary value problem (3.265–3.271) as a lin-

ear combination of the � asymptotic solutions, we get a unique solution only
if the appropriate � × � determinant obtained from applying the prescribed
boundary conditions (3.268) and (3.270) is nonsingular for small values of ε.
Because of the special form of the differential equation and of the boundary
conditions, many entries of the determinant involve a limiting Vandermonde
form (cf. Horn and Johnson [215]), which allows us to asymptotically factor
the determinant conveniently. Indeed, it will often allow us to define a can-
cellation law , implying which k limiting boundary conditions, together with
the limiting equation K(y) = 0, will uniquely specify the limiting solution
Y (x, 0) within 0 < x < 1. With no purely imaginary roots

(−β0(x))
1


−k ,

such arguments show that the reduced problem will consist of the reduced
equationK(y) = 0, the last r−σ limiting initial conditions (3.268) (presuming
r ≥ σ) and of the last s− τ limiting terminal conditions (3.270) (presuming
s ≥ τ). (Recall that

(r − σ) + (s− τ) = �− (�− k) = k,

the order of reduced operator K.) The general result involves more compli-
cated algebra, but the approach to take is clear in principle. See Wasow [513]
for more details.

Wasow’s study can be motivated by the simpler question of finding the
asymptotic behavior of the � roots m(ε) to the polynomial equation

ε�−kL(m) +K(m) = 0 (3.278)
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where K is a polynomial of degree k and L, a polynomial of degree � > k (cf.
Lin and Segel [291] and Murdock [335]). Indeed, one can also consider the
polynomial

f(y, ε) = f�(ε)y
� + f�−1(ε)y

�−1 + . . .+ f1(ε)y + f0(ε) = 0. (3.279)

If asymptotic expansions

fs(ε) ∼ fs0ε
ρs + . . . , fs0 �= 0 and ρs ≥ 0 (3.280)

are given for the coefficients, it would be reasonable to use a dominant balance
argument to seek asymptotic solutions satisfying

y ∼ ενpyp, yp �= 0 (3.281)

that provide a limiting balance in (3.279). This is the basis of the Newton
polygon method. Knowing the limiting approximations (3.281) for the roots,
we can readily improve upon them.

To solve problems (3.265–3.271) asymptotically, we don’t need the cum-
bersome machinery of matched asymptotic expansions. Indeed, the advances
made by the distinguished American lineage, G. D. Birkhoff, R. E. Langer,
H. L. Turrittin, and W. A. Harris, among others, between 1908 and 1960
suffice for such problems, until we encounter turning points or nonlinearities
(cf. Turrittin [488] and Schissel [435]). They simply construct, algorithmi-
cally, a full linearly independent set of asymptotic solutions. We observe that
they were most likely completely unaware of Prandtl’s boundary layer the-
ory, though they knew the work of the Germans Fuchs and Frobenius in the
nineteenth century and more recent developments by pure mathematicians
worldwide. In quite a different direction, Devaney [117] considers complex
maps of the form P (z) + λ

(z−a)d
for polynomials P , d > 0, and λ small.

We note that one way to obtain high-order singularly perturbed differen-
tial equations like (3.265) is to consider initial function problems for delay
equations

ẋ(t) = f(x(t), x(t− τ))

for small values of the delay τ > 0. In particular, if one expands f to some
finite order in powers of τ , the highest time derivative occurring will be
multiplied by the corresponding power of τ . The resulting long-term solution
behavior of the original delay equation and of the approximating differential
equation (under suitable hypotheses) can be expected to agree (cf. Chicone
[88] and Erneux [143]).

Examples

1. Consider the singularly perturbed problem

ε2y′′′′ − y′′ = 0, 0 ≤ x ≤ 1 (3.282)
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with prescribed boundary values

y′′′(0), y(0), y′(1), and y(1). (3.283)

Linearly independent solutions of the differential equation are given by

e−x/ε, ex/ε, 1, and x

(as can be immediately verified), so we naturally seek a solution of the
boundary value problem in the form

y(x, ε) = a(ε) + b(ε)x+ ε3c(ε)e−x/ε + εd(ε)e−(1−x)/ε (3.284)

for constants a, b, c, and d to be asymptotically determined as power
series in ε (for scale factors ε3 and εe−1/ε introduced to simplify
later algebra). Formulas for the derivatives of y follow directly. The
boundary conditions (omitting only asymptotically negligible coeffi-

cients like e−1/ε

ε2 ) imply that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y′′′(0) ∼ −c(ε)

y(0) ∼ a(ε) + ε3c(ε)

y′(1) ∼ b(ε) + d(ε)

and

y(1) ∼ a(ε) + b(ε) + εd(ε).

(3.285)

Solving these linear equations implies that the unique asymptotic solu-
tion of our two-point problem (3.282–3.283) has the form

y(x, ε) ∼ [y(0) + ε2y′′′(0)]

+
x

1− ε
[y(1)− εy′(1)− y(0)− ε3y′′′(0)]− ε3y′′′(0)e−x/ε

+
εe−(1−x)/ε

1− ε
[y(0) + ε3y′′′(0) + y′(1)− y(1)]. (3.286)

The limiting solution

Y0(x) = y(0) + (y(1)− y(0))x (3.287)

exactly satisfies the reduced problem

Y ′′
0 = 0, Y0(0) = y(0), Y0(1) = y(1), (3.288)

so a cancellation law applies. y′ will converge to Y ′
0 , but nonuniformly

at x = 0 though not at x = 1, while higher derivatives of y are generally
algebraically unbounded at both endpoints when ε → 0.



(D). LINEAR BOUNDARY VALUE PROBLEMS 113

2. Boundary value problems need not have unique solutions. Consider, as
an example, the planar slow-fast nonlinear system{

ẋ = y

εẏ = − 1
2 (1 + 3x2)y

(3.289)

on 0 ≤ t ≤ 1 with the homogeneous separated boundary conditions

x(0, ε) + εy(0, ε) = 0 and x(1, ε) = 0. (3.290)

The two-point problem certainly has the trivial solution. Because
− 1

2 (1+ 3x2) < 0, we might anticipate having an initial layer. Thus, we
naturally seek a nontrivial asymptotic solution of the form{

x(t, ε) = X(t, ε) + u(τ, ε)

y(t, ε) = Y (t, ε) + 1
ε v(τ, ε)

(3.291)

with an initial layer correction

(
u
v
ε

)
tending to zero as the stretched

variable

τ =
t

ε
(3.292)

tends to infinity, thereby anticipating an initial impulse in the fast
variable y and nonuniform convergence in the slow. Then, the outer

solution

(
X
Y

)
must satisfy the given system

{
Ẋ = Y

εẎ = − 1
2 (1 + 3X2)Y

(3.293)

as a power series in ε, together with the terminal condition

X(1, ε) = 0. (3.294)

A regular perturbation procedure readily implies that this outer expan-
sion is trivial to all orders εk. Thus, the initial layer correction must
satisfy the initial value problem{

du
dτ = v
dv
dτ = − 1

2 (1 + 3u2)v
(3.295)

with
u(0, ε) + v(0, ε) = 0 (3.296)

and the asymptotic stability condition as τ → ∞. Since dv
dτ = − 1

2 (1 +

3u2)dudτ , integrating from infinity implies that −2v = u+ u3, leaving us
the initial value problem

du

dτ
= −(1 + u2)

u

2
, u(0, ε) = u3(0, ε) (3.297)
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The three possible initial values are

u(0, ε) = 0, 1, and − 1. (3.298)

The two resulting nontrivial solutions are readily found as solutions of
the Bernoulli equation for u to be

x(t, ε) =
±1√

2et/ε − 1
(3.299)

and

y(t, ε) = ∓1

ε

et/ε

(
√
2et/ε − 1)3

. (3.300)

3. Smith [466] considers the nonlinear two-point problem for

ε2ẍ = (x2 − 1)(x2 − 4). (3.301)

With boundary values x(0) = x(1) = 1
2 , he obtains a solution with

the outer limit 2 and another with the outer limit −1 (with endpoint
layers). However, with the boundary values ẋ(0) = 0 and x(1) = 1

2 , he
obtains a solution with outer limit 2 and another with outer limit −1
(and terminal layers).

To determine the limiting behavior of solutions to singularly perturbed
boundary value problems, it is helpful to know about the possibilities exhib-
ited by a variety of solved examples. In this regard, readers are especially
referred to the work of the late Fred Howes (cf., e.g., Howes [217], Chang
and Howes [76]) who used many explicit examples to motivate more general
results. The subtleties arising suggest that blind computation may often be
useless. Other challenging problems can, for example, be found in Smith
[466], Carrier [70], Bogaevski and Povzner [50], Hinch [206], Johnson [226],
Verhulst [500], Cousteix and Mauss [104], Ablowitz [1], Holmes [209], and
Paulsen [387], and in the following.

Exercises

1. Show that the asymptotic solution of{
ε2y′′′′ − y′′ = x2,

y(0) = 0, y′(0) = 1, y′(1) = 2, and y′′(1) = 3

is given by

y(x, ε) = − 1

12
(x4 − 28x) +

4ε

3

(
−3x− 1 + e−x/ε

)

+ ε2
(
−x2 + 2x+ 4− 4e−x/ε + 4e−(1−x)/ε

)

+O(ε3).
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2. Approximate the eigenvalues λ(ε) and the corresponding eigenfunctions
y(x, ε) for {

ε2y′′′′ − y′′ = λy, 0 ≤ x ≤ 1

y(0) = y′(0) = y(1) = y′(1) = 0

(cf. Moser [329], Handelman et al. [193], and Frank [156]).

3. Show that the following boundary value problems have no limiting
solution as ε → 0+:

(a) εy′′ − y′ = 0, y′(0) = 1, y(1) = 0

(b) ε2y′′′ + y′ = 0, y′(0) = 0, y(0) = y′(1) = 1.

4. Consider the initial value problem

εẏ = A(t)y, t ≥ 0, with y(0) given

when

A(t) = U−1(t)

(−1 η/ε
0 −1

)
U(t)

for

U(t) =

(
cos t sin t
− sin t cos t

)
.

Show that solutions for η > 2 can be unbounded, even through A(t)
remains stable. Hint: Solve for v = Uy (cf. Kreiss [263]).

5. Solve

εy′′ + xy′ = x

on 0 ≤ x ≤ 1 with y(0) = y(1) = 1 and describe the limiting behavior
as ε → 0.

6. Show how one can find an asymptotic solution of the two-point problem

εy′′ + (1 + x2)y′ + 2xy = x, 0 ≤ x ≤ 1

in the form

y(x, ε) = A(x, ε) + e−
1
ε

∫ x
0
(1+s2) ds (y(1)−A(1, ε)) .

7. Consider the nonlinear two-point problem

εy′′ = y′ − (y′)3, y(0) = 0, y(1) =
1

2
.

(Hint: The equation for z = y′ can be integrated explicitly.)
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Show that the (angular) limiting solution satisfies

y(x, ε) →
{
0, 0 ≤ x ≤ 1

2

x− 1
2 ,

1
2 ≤ x ≤ 1.

Why couldn’t you obtain

y(x, ε) →
{
−x, 0 ≤ x ≤ 1

4

x− 1
2 ,

1
4 ≤ x ≤ 1?

Such problems are discussed in Chang and Howes [76] and elsewhere.
The original reference is Haber and Levinson [189]. Also, see Vishik
and Lyusternik [506].

8. Müller et al. [333] considered the two-point problem{
εy′′ = y3, 0 < x < 1

y(0) = 1, y(1) = 2.

(a) Obtain the exact solution in terms of elliptic functions .

(b) Show that the limiting solution within 0 < x < 1 is trivial and
that

√
ε-thick endpoint layers occur.

9. Consider
εy′′ = y(y − x), y(−1) = 0, y(1) = 1.

Show that the inverse function x(y) satisfies

ε
d2x

dy2
= y(x− y)

(
dx

dy

)3

, x(0) = −1, x(1) = 1

(cf. Howes [218]).

10. Pokrovskii and Sobolev [395] consider the piecewise linear system{
ẋ = 1,

εẏ = x+ |y|.
(a) Determine typical trajectories numerically.

(b) Show that

y =

{
x− ε, x < ε

2εe(x−ε)/ε − x− ε, x ≥ ε

and

y =

⎧⎪⎨
⎪⎩
−x− ε, x < −ε

2εe−(x+ε)/ε + x− ε, − ε < x < εν

ε(1 + ν)e(x−νε)/ε − x− ε, εν < ε

are invariant manifolds where ν is a root of 2e−1−ν + ν − 1 = 0.
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Lomov [298] used the scalar initial value problem

εu′ +
2u

1 + x2
= 2

(
3 + (tan−1 x)2

1 + x2

)
, u(0) = 1, x ≥ 0 (3.302)

to introduce singular perturbations. The reduced problem has the solution

U0(x) = 3 + (tan−1 x)2.

Let us seek an outer expansion

U(x, ε) = U0(x) + εU1(x) + ε2U2(x) + . . . (3.303)

Substituting this series into (3.302) requires

εU ′
0 + ε2U ′

1 + . . .+
2

1 + x2
(U0 + εU1 + ε2U2 + . . .) =

2

1 + x2

(
3 + (tan−1 x)2

)
.

The ε coefficient implies that U ′
0 = − 2U1

1+x2 , so

U1(x) = tan−1 x.

Next the ε2 coefficient implies that U ′
1 = − 2U2

1+x2 , or

U2(x) =
1

2
.

Higher coefficients imply that Uk = 0 for k ≥ 3, so we have found an exact
outer solution

U(x, ε) = 3 + (tan−1 x)2 + ε tan−1 x+
ε2

2
(3.304)

of the differential equation. The homogeneous differential equation has the
complementary solution

e
− 2

ε

∫ x ds
1+s2 = e−

2
ε tan−1 xk,

so the exact solution of our initial value problem (3.302) is

u(x, ε) = U(x, ε) + e−
2
ε tan−1 x(1− U(0, ε)). (3.305)

Note that the second term is an initial layer correction increasing from −2− ε2

2

when x = 0 to 0 as tan−1 x
ε → ∞. It is essential since the outer solution doesn’t

satisfy the prescribed initial condition. By contrast, the matched expansion
solution would have the additive form

u(x, ε) = U(x, ε) + v(ξ, ε) (3.306)
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where v → 0 as ξ = x/ε → ∞. Since the initial layer correction v must satisfy

dv

dξ
+

2

1 + ε2ξ2
v = 0, v(0, ε) = u(0)− U(0, ε), (3.307)

its leading term v0 must satisfy dv0

dξ + 2v0 = 0 and v0(0) = −2. Thus,

v0(ξ) = −2e−2ξ (3.308)

approximates the exact initial layer correction −e−
2
ε tan−1 x

(
2 + ε2

2

)
.

The more general scalar problem

εu′ = a(x)u+ b(x), x ≥ 0 (3.309)

has the exact solution

u(x, ε) = e
1
ε

∫ x
0

a(s) ds u(0) +
1

ε

∫ x

0

e
1
ε

∫ x
t

a(s) ds b(t) dt. (3.310)

(as noted earlier). Assuming that

a(x) < 0, (3.311)

the homogeneous solution

e
1
ε

∫ x
0

a(s) ds

features nonuniform convergence from 1 to 0 in an O(ε)-thick initial layer.
Again, it is natural to seek an asymptotic solution of (3.309) in the form

u(x, ε) = U(x, ε) + e
1
ε

∫ x
0

a(s) ds(1− U(0, ε)) (3.312)

for an outer expansion

U(x, ε) = U0(x) + εU1(x) + ε2U2(x) + . . . . (3.313)

Then U must satisfy (3.309) as a power series in ε. Equating coefficients
successively, we will need

a(x)U0 + b(x) = 0, a(x)U1 = U ′
0, a(x)U2 = U ′

1,

etc., so we uniquely obtain the expansion

U(x, ε) = − b(x)

a(x)
− ε

a(x)

(
b(x)

a(x)

)′
− ε2

a(x)

(
1

a(x)

(
b(x)

a(x)

)′)′
+ . . . (3.314)
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presuming sufficient smoothness of the coefficients a and b. As we’d expect,
this also follows from (3.310) using repeated integration by parts. Rewriting

u(x, ε) = e
1
ε

∫ x
0

a(s) ds
(
u(0)− ∫ x

0
d
dt

(
e−

1
ε

∫ t
0
a(s) ds

)
b(t)
a(t)dt

)
= e

1
ε

∫ x
0

a(s) ds
(
u(0)− e−

1
ε

∫ x
0

a(s) ds b(x)
a(x) +

b(0)
a(0)

+
∫ x

0
e−

1
ε

∫ t
0
a(s) ds

(
b(t)
a(t)

)′
dt

)

= − b(x)
a(x) + e

1
ε

∫ x
0

a(s) ds
(
u(0) + b(0)

a(0)

)
+
∫ x

0
e

1
ε

∫ x
t

a(s) ds d
dt

(
b(t)
a(t)

)
dt

= − b(x)
a(x) − ε

a(x)
d
dx

(
b(x)
a(x)

)
+e

1
ε

∫ x
0

a(s) ds
(
u(0) + b(0)

a(0) +
ε

a(0)
d
dx

(
b(x)
a(x)

)
x=0

)
+O(ε2),

we readily obtain the anticipated asymptotic approximation to any desired
number of terms.

Next, applying the preceding result componentwise shows that the vector
equation

εv′ = ∧(x)v + k(x) (3.315)

has an asymptotic solution of the form

v(x, ε) = ∨(x, ε) + e
1
ε

∫ x
0

∧(s) ds(v(0)− ∨(0, ε)) (3.316)

when the state matrix ∧ is an n× n diagonal matrix with stable eigenvalues
λi, and ∨ is an outer expansion satisfying a system

ε∨′ = ∧(x) ∨+k(x) (3.317)

as a regular power series in ε. Because e
1
ε

∫ x
0

Λ(s) ds is diagonal with non-
trivial decaying entries e

1
ε

∫ x
0

λi(s) ds, the asymptotic solution of (3.315) is an
additive function of the slow variable x and the fast variables 1

ε

∫ x

0
λi(s) ds,

i = 1, . . ., n.
More generally, consider the vector system

εu′ = A(x)u+ b(x) (3.318)

when the state matrix A can be factored as

A(x) = M(x) ∧ (x)M−1(x) (3.319)

for a smooth invertible n×n matrix M and a diagonal matrix ∧ with distinct
smooth stable eigenvalues λi(x), i = 1, . . ., n. The kinematic change of
variables

u = M(x)v (3.320)

converts the equation (3.318) to the nearly diagonal form

εv′ = (∧ − εM−1M ′)v +M−1b (3.321)
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which has an asymptotic solution

v(x, ε) = ∨(x, ε) + e
1
ε

∫ x
0

∧(s) ds w(x, ε) (3.322)

where V (x, ε) and w(x, ε) have power series expansions (cf. Lomov [298] and
Wasow [513]). Their expansions can be obtained via undetermined coefficient
methods.

If we can diagonalize the matrix D(t), assuming it is stable, we can simi-
larly treat the initial value problem for the slow-fast linear vector system

ẋ = A(t)x+B(t)y

εẏ = C(t)x+D(t)y
(3.323)

and interpret the result in terms of using the slow time t and the fast times
1
ε

∫ t

0
λi(s) ds where the λi(t)s are stable (nonrepeated) eigenvalues of D(t).

Block diagonalization of a conditionally stable matrixD might similarly allow
us to treat certain two-point problems. Readers might look ahead to Example
16 in Chap. 6.

Historical Remarks

The work of Kaplun and Lagerstrom at Caltech in the 1950s was especially
important to the development of matched expansions and its applications to
fluid mechanics. Comparable work was simultaneously done by Proudman
and Pearson at Cambridge University in England (cf. Proudman and Pearson
[403]). Paco Lagerstrom (1914–1989), a Swedish-born Princeton math Ph.D.,
was Saul Kaplun (1924–1964)’s thesis advisor in 1954. (Contemporaries
suggest they may have had an intimate personal, as well as professional, re-
lationship.) The Polish-born Kaplun only published three papers, although
Lagerstrom and others published a (not thoroughly edited) collection of his
unfinished work as a monograph, Kaplun [237]. This and a book of reminis-
cences, My Son Saul [236] by his father and others and various memorials
(at Caltech and Tel Aviv) made Kaplun into a hero of applied asymptotics
in the 1960s. Lagerstrom persistently pursued their insights about matching
for the next quarter century, using a limit process approach based upon the
presumed overlapping domains of validity of the inner and outer expansions.
Lagerstrom’s book Matched Asymptotic Expansions [276] appeared in 1988,
as he wrote,

after a long sequence of earlier drafts.

Edward Fraenkel (in [155]) and Wiktor Eckhaus (in [133]) both insisted that
existence of an overlap was not necessary for matching to succeed. Even after
Lagerstrom’s passing, Eckhaus [136] renewed the controversy, suggesting that
the Kaplun extension theorem (intended to justify matching) could be based
on Robinson’s lemma in nonstandard analysis (cf. Diener and Diener [120]).
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One fascinating example from Eckhaus [132], used in Lagerstrom [276], is the
linear two-point problem

(ε+ x)u′′ + u′ = 1, u(0) = 0, u(1) = 2. (3.324)

Since x is an exact solution of the differential equation, one readily finds the
exact solution

u(x, ε) = x+
ln ε− ln(x+ ε)

ln ε− ln(1 + ε)
(3.325)

of the two-point problem. Note the initial layer.
Wiktor Eckhaus (1930–2000) was a significant contributor to both the

nonlinear stability and singular perturbation literatures who had a number
of productive students at Delft and Utrecht, including Ferdinand Verhulst,
Johan Grasman, and Arjen Doelman, and the insightful early collaborator
Eduardus de Jager. Verhulst, in turn, is known for his well-written texts
on dynamical systems, averaging, singular perturbations and, most recently,
Poincaré. He founded a publishing house, Epsilon, which produced math-
ematical monographs and textbooks in Dutch. Fortunately for most of us,
later editions of many of its publications appeared in English from other
publishers.



Chapter 4

Wendepunkts and Canards
(Turning Points
and Delayed Bifurcations)

(a) Simple Examples with Turning Points

We will soon realize that linear differential equations with turning points
(Wendepunkts, in German) can feature complicated behavior. One of the
best collections of illustrative examples (with sketches of the limiting solu-
tions) is contained in the first chapter of a Dutch thesis, Hemker [202], which
aimed to provide methods to solve such two-point singularly perturbed prob-
lems numerically. We will determine the limiting behavior of solutions to
several examples using elementary methods.

1. Let’s begin by considering

εy′′ − xp(x)y′ = 0 on − 1 ≤ x ≤ 1 (4.1)

for a smooth function
p(x) > 0,

with bounded values y(±1) prescribed. Because −xp(x) > 0 for x < 0 and
−xp(x) < 0 for x > 0, asymptotic matching might suggest a limiting solution
of the form

y(x, ε) ∼ e−p(−1)(x+1)/ε(y(−1)− C) + C + e−p(1)(1−x)/ε(y(1)− C) (4.2)

with O(ε)-thick boundary layers at both ±1 and with a constant outer limit
C within (−1, 1) (thereby satisfying the limiting equation −xp(x)Y ′

0 = 0).
Nothing unusual then would happen at the simple turning point x = 0.

© Springer International Publishing Switzerland 2014
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The complication is that there is no obvious way using matching (rather
than the exact solution) to specify the essential constant C. (One might
even expect that the limit could change at x = 0, a singular point of the
reduced equation.)

Since any nontrivial constant and

I(x) ≡
∫ x

0

e
1
ε

∫ t
0
s p(s) dsdt

are linearly independent solutions of the differential equation (4.1), how-
ever, we can directly seek a solution of the two-point problem as the linear
combination

y(x, ε) = c+ I(x)d (4.3)

for ε-dependent constants c and d. Then, the boundary conditions directly
imply the linear equations

y(1) = c+ I(1)d and y(−1) = c+ I(−1)d,

so Cramer’s rule uniquely specifies

⎧⎪⎨
⎪⎩
c = I(1)y(−1)−I(−1)y(1)

I(1)−I(−1)

and

d = y(1)−y(−1)
I(1)−I(−1) .

(4.4)

Within (−1, 1), I(x)
I(1)−I(−1) is asymptotically negligible, so the ε-dependent

constant c provides the outer solution. The endpoint behavior depends on

the limits of I(±1)
I(1)−I(−1) . Under natural circumstances, we obtain the limit

(4.2) suggested by matching, with the constant C = c. To determine c

asymptotically, we need the limit of I(−1)
I(1) . The exact solution (4.3)–(4.4) is

certainly preferable to the limiting asymptotic solution (4.2) since it, indeed,
applies for all values of ε.

2. Hemker [202] also considered the two-point problem
⎧⎪⎨
⎪⎩
εy′′ + 2xy′ − 2y = 0, − 1 ≤ x ≤ 1

with

y(−1) = −1 and y(1) = 2.

(4.5)

Since 2x < 0 for x < 0, we might expect the limiting solution to be

yL(x) = x for x < 0,

since yL is an exact solution of the differential equation and satisfies the left
boundary condition. Likewise, the fact that 2x > 0 for x > 0 satisfies the
equation and the terminal condition suggests the limiting solution

yR(x) = 2x for x > 0.
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Because both of these one-sided solutions are zero at x = 0 (they match!),
we don’t expect y to converge nonuniformly anywhere. However, y′L(x) = 1
and y′R(x) = 2 suggest that y′ must jump at the turning point x = 0. (Some
readers will realize that one could apply a Sturm transformation to eliminate
the y′ coefficient in (4.5) and then solve the resulting equation exactly using
parabolic cylinder functions, as we shall do in the next section.)

The exact solution to (4.5) can also be found by reduction of order, since
y = x satisfies the differential equation. Its general solution will therefore
have the form

y(x, ε) = αx+ β

(
2x

∫ x

−1

e−s2/ε ds+ εe−x2/ε

)
(4.6)

for constants α(ε) and β(ε). The boundary conditions then require that

⎧⎪⎪⎨
⎪⎪⎩
−1 = −α+ εβe−1/ε

and

2 = α+ β
(
2
∫ 1

−1
e−s2/ε ds+ εe−1/ε

)
.

Since e−1/ε is asymptotically negligible, α ∼ 1 and β ∼ 1
2
∫ 1
−1

e−s2/ε ds
provide

the asymptotic solution

y(x, ε) ∼ x+
2x
∫ x

−1
e−s2/ε ds+ εe−x2/ε

2
∫ 1

−1
e−s2/ε ds

, (4.7)

good up to an asymptotically negligible remainder. For x < 0, e−x2/ε ∼ 0
and ∫ x

−1
e−s2/ε ds∫ 1

−1
e−s2/ε ds

∼ 0

since the primary contribution to the denominator comes from the vicinity
of s = 0. Thus,

y ∼ x for x < 0,

as expected. For x > 0, however,

∫ x

−1
e−s2/ε ds∫ 1

−1
e−s2/ε ds

∼ 1

shows that
y ∼ 2x

there. Since

y′(x, ε) ∼ 1 +

∫ x

−1
e−s2/ε ds∫ 1

−1
e−s2/ε ds

,
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y′ jumps from 1 to 2 in a O(
√
ε)-thick turning point (or shock layer) region

about x = 0. Indeed, y′(0, ε) = 3/2.

3. The equation
εy′′ − xy′ − y = 0 (4.8)

has the general solution

y(x, ε) = e
x2−1

2ε

(
A+B

∫ x

0

e−t2/2εdt

)
. (4.9)

(Check it.) If bounded values y(±1) are prescribed, we will need

y(1) = A+B

∫ 1

0

e−t2/2ε dt

and

y(−1) = A−B

∫ 1

0

e−t2/2ε dt.

This uniquely determines A and B and the exact solution

y(x, ε) =
1

2
e

x2−1
2ε

(
y(1) + y(−1) +

(∫ x

0
e−t2/2ε dt∫ 1

0
e−t2/2ε dt

)
(y(1)− y(−1))

)
.

(4.10)
For x > 0, the ratio of integrals tends to 1, so the limiting solution is

yR(x, ε) ∼ e
x2−1

2ε y(1) (4.11)

there, i.e. there is an O(ε)-thick terminal boundary layer near x = 1. For
x < 0, the ratio of integrals tends to −1, so the limiting solution is

yL(x, ε) ∼ e
x2−1

2ε y(−1), (4.12)

providing an analogous initial boundary layer. Away from the endpoints, the
outer solution satisfies

Y (x, ε) = O(εk) for all k > 0.

Since the outer limit is trivial, we will later call the problem nonresonant .

4. Hemker [202] also considered the two-point Dirichlet problem for

εy′′ + xy′ − 2y = 0 (4.13)

on −1 ≤ x ≤ 1. The sign of the coefficient x here suggests that there won’t be
endpoint layers. Since x2 satisfies the reduced equation, the limiting solution
should then be

x2y(1) for x > 0 and x2y(−1) for x < 0.
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Because the resulting limits for y and y′ match at x = 0, we must expect the
limiting y′′ to jump at the turning point when y(1) �= y(−1).

The equation (4.13) indeed has the exact even solution

y1(x, ε) ≡ x2 + ε

and the odd solution

y2(x, ε) ≡ (x2 + ε)

∫ x

0

e−s2/2ε ds+ εxe−x2/2ε,

so we write the general solution as the linear combination

y(x, ε) = Ay2(x, ε) +By1(x, ε).

The boundary values y(±1) uniquely determine A and B and the exact so-
lution

y(x, ε) =
1

2

y1(x, ε)

y1(1, ε)
(y(1)− y(−1)) +

1

2

y2(x, ε)

y2(1, ε)
(y(1) + y(−1)). (4.14)

Since y1(x,ε)
y1(1,ε)

= x2+ε
1+ε → x2 as ε → 0, while

y2(x, ε)

y2(1, ε)
=

(x2 + ε)
∫ x

0
e−s2/2ε ds+ εxe−x2/2ε

(1 + ε)
∫ 1

0
e−s2/2ε ds+ εe−1/ε

→
{
x2 for x ≥ 0

−x2 for x ≤ 0,

the limiting solution is that anticipated. Note the value of y′′(0) and that the
interior shock layer for y′′ at the turning point x = 0 has O(

√
ε) thickness.

Higher-order turning point problems are considered in Laforgue [274], Cheng
[83], De Maesschalck [113], and Fruchard and Schäfke [165].

5. A much more challenging turning point problem was considered by
Mahony and Shepherd [306] (cf. also O’Malley [371], which benefitted from
the assistance of Grant Keady and Leonid Kalachev). They considered the
initial value problem for the nonlinear equation

εy′ = x2(x2 − y2) (4.15)

on x ≥ −1 with y(−1) = 0. Note that this Riccati equation can be converted
to a linear second-order differential equation for u = y′/y, which can be
solved in terms of Bessel functions . Alternatively, one can use Maple to
find

y(x, ε) = −x

⎡
⎣K− 5

8

(
x4

4ε

)
− λI− 5

8

(
x4

4ε

)
K 3

8

(
x4

4ε

)
+ λI 3

8

(
x4

4ε

)
⎤
⎦ (4.16)

for a constant λ (which might change at the turning point). The outer
solutions

Y (x, ε) ∼
{
−x− ε

2
1
x3 + 7

8
ε2

x7 + . . . for −1 < x < 0

x− ε
2

1
x3 + . . . for 0 < x < 1

(4.17)
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can be directly generated by iterating in the differential equation. (Note that
the root y = −x of the reduced equation g(x, y) = x4 − x2y2 = 0 is stable
for x < 0 since gy(x,−x) = 2x3 < 0 there, while the root y = x is stable for
x > 0 since gy(x, x) = −2x3 < 0 there.) We can expect an O(1) initial layer
jump near x = −1 when y(−1) �= 1. Behavior near x = 0 is complicated, due
to the singularity of the outer limits (4.17) and because the solution (4.16) is
a function of the stretched variable x/ε1/4, creating quite a thick corner layer
at the turning point, as numerical computations confirm. The asymptotics
of (4.15) are fascinating.

6. The two-point problem

εy′′ + xy′ − xy = 0, 0 ≤ x ≤ 1, y(0) = 0, y(1) = e (4.18)

has an O(ε)-thick initial layer and a complicated outer solution (cf. Bender
and Orszag [36]). Fortunately, it can be solved exactly in terms of parabolic
cylinder functions . One uses the Sturm transformation

y(x) = e−
x2

4ε u(t)

for t = x+2ε√
ε

to find u as a linear combination of

D−ε(it) and D−1−ε(−t). (4.19)

Using the usual asymptotic approximations (see Section (b)), one finds the
outer limit

y(x, ε) ∼ ex

xε
(4.20)

(as anticipated by Chen et al. [81]). Holzer and Kaper [211] point out that
the matched expansion solution involves logarithmic switchback.

Exercise (Pearson [388])

(a) Determine the limiting behavior for

εy′′ + xy′ − 1

2
y = 0, − 1 ≤ x ≤ 1, y(−1) = 1, y(1) = 2.

Note that y(0) = 0 and that y′(0) will be singular.

(b) Show, perhaps computationally, that the limiting solution to

εy′′ + |x|y′ − 1

2
y = 0, y(−1) = 1, y(1) = 2

is trivial for −1 < x < 0.
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(b) Boundary Layer Resonance

A prototypical boundary layer resonance problem consists of the linear
equation

εy′′ − xy′ + βy = 0 (4.21)

on−1 ≤ x ≤ 1, with prescribed boundary values y(±1) and a critical constant
coefficient β. Note the turning point at x = 0 and that we have already
exactly solved the problem when β = 0 and −1 (cf. (4.1) and (4.8)). Since
the coefficient −x is positive for x < 0 and negative for x > 0, we should
expect endpoint layers at both ±1. The limiting solution Y0(x) for x �= 0 can
be expected to satisfy

−xY ′
0 + βY0 = 0,

so
Y0(x) = xβC (4.22)

for some constant C (possibly different for x < 0 and for x > 0). When
β > 0, however, these outer limits match at the turning point. The ultimate
boundary layer jumps at the endpoints x = ±1 will therefore be y(1)−C and
y(−1) − (−1)βC, respectively, so if we suppose the same outer limits (4.22)
for x > 0 and x < 0 and O(ε)-thick boundary layers at both endpoints, the
limiting solution (as obtained via matched expansions) will have the limiting
composite form

y(x, ε) = xβC + e−(1+x)/ε(y(−1)− (−1)βC) + e−(1−x)/ε(y(1)− C) +O(ε)
(4.23)

uniformly in −1 ≤ x ≤ 1. An exact solution, in terms of special functions, will
ultimately allow us to determine the unspecified constant C. A clever, but
less straightforward, variational method (using (4.21) as an Euler–Lagrange
equation) to find C was given by Grasman and Matkowsky [181], while a
more subtle matching technique balancing asymptotically negligible terms
was given in MacGillivray [302]. De Groen [185] observed that resonance (i.e.,
having a nontrivial limiting solution xβC) is possible when β(ε) is asymp-
totically exponentially close to nonnegative integer eigenvalues. Of course,
taking C = 0 when β < 0 avoids a singular Y0.

The situation of having an ambiguous constant C in the representation
(4.23) suggests a failure of the classical matched expansion technique, provid-
ing unusual interest to specialists anxious to retain confidence in matching.

The Sturm transformation

y = ex
2/4εu (4.24)

converts equation (4.21) to the parabolic cylinder (or Weber) equation

εu′′ +
(
−x2

4ε
+

1

2
+ β

)
u = 0 (4.25)
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whose solutions can be expressed as a linear combination of the parabolic
cylinder functions Dβ(x/

√
ε) and Dβ(−x/

√
ε) or D−β−1(ix/

√
ε) (to obtain a

nonzero Wronskian and linear independence) (cf. Olver et al. [361]). These
special functions are attributed to Weber and Hermite in White [519].

We will begin by setting

y(x, ε) = e
x2

4ε

(
Dβ

(
x√
ε

)
A (ε) +Dβ

(−x√
ε

)
B(ε)

)
, (4.26)

where we will seek the constants A and B by imposing the prescribed bound-
ary conditions. Whittaker and Watson [521] gives the asymptotic behavior
of Dγ(z) for z → ∞ as

Dγ(z) ∼
{
zγe−z2/4 for | arg z| < 3π

4

zγe−z2/4 −
√
2π

Γ(−γ)
eiπγ

zγ+1 e
z2/4 for π

4 < arg z < 5π
4 .

(Note that these asymptotic limits change discontinuously across two so-
called Stokes lines in the complex z plane. Figuring this out kept the Victo-
rian Anglo-Irish Cambridge professor George Gabriel Stokes from sleep days
prior to his wedding. As he quaintly wrote his fiancée:

when the cat’s away the mice can play. You are the cat and I am
the poor little mouse. I have been doing what I guess You won’t
let me do when we are married, sitting up till 3 o’clock in the
morning fighting hard against a mathematical difficulty. Some
years ago I attacked an integral of Airy’s, and after a severe trial
reduced it to a readily calculable form. But there was a difficulty
about it which, though I tried till I almost made myself ill, I could
not get over and at last I have to give it up and profess myself
unable to master it. I took it up again a few days ago, and after
a two or three days’ fight, the last of which I sat up till 3, I at
last mastered it. . .

(cf. Ramis [405]).
A simple related example is provided by the function

f(ε) = 1 + e−
1
ε2 (4.27)

as ε → 0 in the complex plane. For | arg ε| < π
4 or 3π

4 < arg ε < 5π
4 , one has

f(ε) ∼ 1,

but for π
4 < arg ε < 3π

4 and 5π
4 < arg ε < 7π

4 ,

f(ε) ∼ e−
1
ε2

becomes exponentially large. Thus the Stokes lines (called anti-Stokes lines
by some) are given by arg ε = ±π

4 and ± 3π
4 . If you are reluctant to go

complex, recall Hadamard’s advice:
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The shortest path between two truths of the real domain often
passes through the complex one

(cf. Hadamard [191]). Also see Olde Daalhuis et al. [359]. Thus, the
linear independence of Dβ(± x√

ε
) in (4.26) is maintained as ε → 0 as long

as Γ(−β) �= ∞. When β = N = 0, 1, 2, . . ., however,

e
x2

4ε DN

(
x√
ε

)
= HeN

(
x√
ε

)
,

the Nth Hermite polynomial , so we will then seek a solution of our two-point
problem (4.21) in the alternative form

y(x, ε) = HeN

(
x√
ε

)
A(ε) + e

x2

4ε D−N−1

(
ix√
ε

)
B(ε) (4.28)

for new constants A and B.
For β �= N = 0, 1, 2, . . ., however, (4.26) implies the asymptotic limits

y(x, ε) ∼
(

x√
ε

)β

A(ε) +

√
2π

Γ(−β)

(√
ε

x

)β+1

e
x2

2ε B(ε) for x > 0

and likewise for x < 0. Thus

(A,B) ∼ Γ(−β)√
2π

e−
1
2ε

(
y(−1)

(−√
ε)β+1

,
y(1)

(
√
ε)β+1

)

in (4.26) and, thereby, the limits

y(x, ε) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−(1−x2)/2ε

xβ+1 y(1) for x > 0

O

(
1

ε
β+1
2

e−
1
2ε

)
for x = 0

e−(1−x2)/2εy(−1)
(−x)β+1 for x < 0

(4.29)

featuring O(ε)-thick endpoint boundary layers like e−(1∓x)/εy(±1) and a triv-
ial outer limit (i.e., C = 0 in (4.22)) within (−1, 1). Note that nothing unusual
regarding y occurs at the turning point for these values of β.

For an integer β = N ≥ 0, however, the representation (4.28) implies that

A(ε) ∼ y(1) + (−1)Ny(−1)

2HeN (1/
√
ε)

and

B(ε) ∼ 1

2

(
i√
ε

)N+1

e−
1
2ε

(
y(1)− (−1)Ny(−1)

)
,
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yielding the uniform asymptotic limit

y(x, ε) ∼ 1

2

(
y(1) + (−1)Ny(−1)

)
xN

+
1

2

(
y(1)− (−1)Ny(−1)

) e−(1−x2)/2ε

xN+1
.

(4.30)

Note that the boundary layer behavior found here is more specific than,
but consistent with, the behavior we would obtain by matching since, e.g.,
e−(1−x2)/2ε ∼ e−(1−x)/ε near x = 1. Thus, we generally then have a nontrivial
outer limit xNC for |x| < 1 with the specific constant

C =
1

2

(
y(1) + (−1)Ny(−1)

)
(4.31)

in (4.23). Again, nothing unusual happens to y at the turning point. As an
example, the problem

{
εy′′ − xy′ + y = 0,

y(−1) = −2, y(1) = −1

has the outer limit x/2 within (−1, 1). The reason that we call this special
case resonance is because we obtain a nontrivial limiting solution when C �= 0
(cf. Ackerberg and O’Malley [3] and O’Malley [372]) for these special values
of the parameter β. Note that Platte and Trefethen [392] use Chebychev
approximations to successfully numerically solve the resonance problem for
β = 1.

The equation

εy′′ − xy′ + εny = 0

will again be nonresonant for every integer n > 0 because Γ(εn) is only
algebraically large. Indeed, for

εy′′ − xy′ + β(ε)y = 0

when

β(0) = N = 0, 1, 2, . . . ,

resonance requires that all later coefficients βj (for j > 0) in the asymptotic
(Maclaurin) expansion of β(ε) be zero. On the other hand, we can also achieve
resonance (i.e., a nonzero limiting solution) when β(ε) −N is appropriately
asymptotically negligible. This is another example of exponential asymptotics
or asymptotics beyond all orders (cf. Segur et al. [449]). Meanwhile, a direct
calculation shows that the solution of the example
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{
εy′′ + 2xy′ + y = 0,

y(−1) = −1, y(1) = 2

becomes unbounded at the turning point x = 0.
The linear variable coefficient equation

εy′′ − xh(x, ε)y′ + g(x, ε)y = 0 (4.32)

with
h(x, ε) > 0

can be treated by a so-called uniform reduction method, a technique common
in classical turning point theory (cf. Erdélyi [141]). We will first convert
(4.32) to the form

εyηη + F (η, ε)yη +G(η, ε)y = 0 (4.33)

by introducing the new independent variable

η =

√
2

∫ x

0

s h(s, 0) ds. (4.34)

Then, the Sturm transformation

z = e
1
2ε

∫ η
0

F (s,ε) ds y (4.35)

implies that z will satisfy

ε
d2z

dη2
−
(
F 2

4ε
+

1

2
Fη −G

)
z = 0. (4.36)

We then solve (4.36) asymptotically for z(η, ε) by finding power series for the
coefficients M(η, ε), N(η, ε), and σ(ε) (termwise in ε) so that z is the linear
combination

z = M(η, ε)w + εN(η, ε)wη (4.37)

where w(η) satisfies the exactly solvable comparison equation

ε
d2w

dη2
−
(
η2

4ε
+ σ(ε)

)
w = 0. (4.38)

Resonance for (4.38) occurs precisely when σ(ε) = N , a nonnegative inte-
ger (i.e., there are no higher-order corrections to σ as linear combinations
of positive integer powers of ε). This initially provocative infinity of neces-
sary conditions for resonance was labeled the Matkowsky condition, follow-
ing Matkowsky [308]. The study was initiated by Ackerberg and O’Malley
[3] and O’Malley [365], but was later continued by many prominent experts
including W. Eckhaus, N. Kopell, H.-O. Kreiss, R. McKelvey, F. W. J. Olver,
S. Parter, Y. Sibuya, and W. Wasow and their students and collaborators,
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among quite a few others worldwide. For more details regarding classical
turning point theory, readers should consult Wasow [515] and Fedoryuk [145].
Sibuya [455, 456] provide more information about uniform reduction. De
Groen [185] and [186] provides the eigenvalues and eigenfunctions for

εu′′ − xh(x, ε)u′ + g(x, ε)u = λu, u(±1) = 0

and then sensibly uses eigenfunction expansions to study resonance. Related
analysis is contained in Lee and Ward [284].

Instead of using parabolic cylinder functions, Holmes [209] directly uses
Kummer functions. They satisfy the differential equation

y′′ + αxy′ + βy = 0

and are the confluent hypergeometric functions

M

(
β

2α
,
1

2
,−α

2
x2

)
and xM

(
α+ β

2α
,
3

2
,−α

2
x2

)
.

You might be led to these special functions by asking Maple to solve your
differential equation. The exit time problem for stochastic processes is an im-
portant application with β = 0 (cf. Grasman and van Herwaarden [180] and
Schuss [441]). For α = 1, we can show that resonance provides unbounded
solutions when β = −2, −4, . . . (cf. O’Malley [366]).

The general linear simple turning point problem

εy′′ + f(x)y′ + g(x)y = 0, −1 ≤ x ≤ 1, y(−1) = a, y(1) = b (4.39)

with
f(0) = 0 and f ′(x) < 0 (4.40)

was considered in Ackerberg and O’Malley [3] and de Jager and Jiang [224].
When

β ≡ −2g(0)

f ′(0)
�= 2m, m = 0, 1, 2, . . . , (4.41)

the outer limit is trivial and the boundary layer behavior is described by

y(x, ε) ∼
{
ae−

1
ε

∫ x
−1

f(s) ds for x near − 1

be−
1
ε

∫ x
1

f(s) ds for x near 1.
(4.42)

In the exceptional case of resonance, whether there’s one or two endpoint
boundary layers depends on the sign of the integral

I =

∫ 1

−1

f(s) ds. (4.43)

If I > 0, the outer limit is given by

y(x, ε) ∼ bx
β
2 e−

∫ 1
x [

g(s)
f(s)

+ β
2s ] ds for x > −1 (4.44)
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with the complementary initial layer. When I < 0, however,

y(x, ε) ∼ a(−x)
β
2 e−

∫ x
−1[

g(s)
f(s)

+ β
2s ] ds for x < 1 (4.45)

and for I = 0, as for (4.21), the outer limit is the average of (4.44) and (4.45).
One shows this by constructing the WKB approximations

x
β
2 e−

∫ x[ g(s)f(s)
+ β

2s ] ds (4.46)

and
x− β

2

f(x)
e−

1
ε

∫ x f(s) dse
∫ x[ g(s)f(s)

+ β
2s ] ds (4.47)

(cf. Pearson [388]) and using turning point analysis or (like de Jager and
Jiang) two-timing with the slow scale x and the fast scale 1

ε

∫ x
f(s) ds

(cf. Chap. 5).

(c) Canards

The following problems are ones for which classical Tikhonov–Levinson
theory doesn’t apply. The simplest example of a canard may be the initial
value problem

εẏ = ty, t ≥ −1, y(−1) = 1. (4.48)

Here, the root Y0 = 0 of the reduced equation

g(Y0, t) ≡ tY0 = 0

is stable for t < 0 (i.e., attractive since gy(y, t) = t < 0), but unstable
(i.e., repulsive) for t > 0 (since gy > 0). The exact solution

y(t, ε) = e(t
2−1)/2ε (4.49)

of (4.48), however, features an initial layer of O(ε) thickness near t = −1 and
a trivial outer limit for |t| < 1. Moreover, it is symmetric about the turning
point t = 0 and blows up exponentially after t = 1 for small ε. Such a
canard (cf. Diener and Diener [120]) or delayed bifurcation occurs due to the

asymptotically small size of the solution e−
1
2ε at t = 0. A canard is said to

occur when the limiting trajectory sticks to the repulsive manifold for some
time after a loss of stability. The term canard was (humorously) originally
used because the phase-plane diagram for the van der Pol equation seemed
to depict a duck (canard, in French) when wings were teasingly added (cf.
Diener [122] and Chap. 5). By contrast to (4.48), the solution of the singularly
perturbed equation

εẏ = ty + ε, t ≥ −1 (4.50)

with y(−1) = 1 blows up exactly at the turning point t = 0. Such a dramatic
contrast between the solutions of (4.48) and (4.50) suggests that random
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perturbations might eliminate canards (cf. Berglund et al. [41]). The adven-
turous reader might check to see how various stiff integrators do at computing
numerical solutions to (4.48) or (4.50). For a more sophisticated study of ca-
nards, see, for example, De Maesschalck [114]. An early reference is Benoit
et al. [38].

The nonlinear example

εẏ = ty3, t ≥ −1, y(−1) = 1 (4.51)

has the exact solution

y(t, ε) =
1√

1 +
(
t2−1
2ε

) (4.52)

with the limiting solution Y0 = 0 for |t| < 1. Gavin et al. [166] call this
a feeble canard, because attraction and repulsion are now algebraic. Note
that stiff integrators might do better here. Also note that Sobolev [468] is
continuing a provocative study of canards and that Mishchenko at al. [323]
gave Pontryagin credit for recognizing the phenomenon of a delay in the loss
of stability, though other Russians suggest that this attribution represents
loyalty to a thesis advisor (cf. Shishkova [453], however). Singularly per-
turbed logistic equations are considered in Verhulst [503]. An application to
the FitzHugh–Nagumo equation is considered in Baer et al. [19].

Exercises

1. For the two-point problem

{
εy′′ + x

(
x2 − 1

2

)
y′ − y = 0,

y(−1) = 1, y(1) = 2,

show that the limiting solution as ε → 0+ is

Y0(x) =

⎧⎪⎨
⎪⎩
1− 1

2x2 , −1 ≤ x ≤ −
√
2
2

0, −
√
2
2 ≤ x ≤

√
2
2

4− 2
x ,

√
2
2 ≤ x ≤ 1.

2. For {
εy′′ +

(
1
2 − x2

)
y′ + xy = 0,

y(−1) = 1, y(1) = 0,

show (numerically or otherwise) that the limiting solution is

Y0(x) =

{√
2x2 − 1, −1 ≤ x ≤ −

√
2
2

0, −
√
2
2 ≤ x ≤ 1.
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3. For {
εy′′ + x3y′ − y = 0

y(−1) = 1, y(1) = 2,

show that the limiting solution is

{
e1−

1
x , −1 ≤ x ≤ 0

2e1−
1
x , 0 ≤ x ≤ 1

(cf. Pearson [388] and Miranker [320] who seek numerical solutions to
a variety of related problems.) A connection to Riccati transformations
is explored in Dieci et al. [119].

4. (a) Solve the example

εy′′ + xy′ − y = 0, y(0) and y(1) prescribed

exactly and determine the limiting solution.

(b) Solve the equation in terms of Kummer functions M(a, b, z).
Simplify your answer using the identities M

(− 1
2 ,

1
2 ,− 1

2αx
2
)
=

e−
α
2 x2

+ αx
∫ x

0
e−

α
2 r2dr and M(0, b, z) = 1.

Lin [292] considered the nonlinear two-point problem

εy′′ − x(1 + y2)y′ − (1 + y2)y = 0, y(±1) = 1 (4.53)

numerically. The corresponding outer equation

xY ′
0 + Y0 = 0

has nontrivial solutions Y0(x) = c
x that become unbounded at the turning

point. We might seek an inner solution near x = −1 in the form

yin(σ, ε) for σ =
1 + x

ε

such that yin(0) = 1 and yin(∞) = 0 to match the trivial outer solution. The
approximate local equation is

d2yin

dσ2
+
(
1 + (yin)2

) dyin
dσ

= 0,

so integrating from infinity implies the Bernoulli equation dyin

dσ + yin +
1
3 (y

in)3 = 0. Thus,

yin(σ) ∼ 3e−σ

√
4− e−2σ

.
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We will rewrite this as y(x, ε) ∼ 3e−(1+x)/ε√
4−e−2(1+x)/ε

. Doing likewise near x = 1

and combining the two asymptotic approximations, we obtain the uniformly
valid approximation

y(x, ε) ∼ 3e−(1−x2)/2ε

√
4− e−(1−x2)/ε

for − 1 ≤ x ≤ 1. (4.54)

Related examples are considered in Pearson [389].
The prominent Swedish numerical analyst Germund Dahlquist (1925–

2005) introduced the solvable Riccati equation

εẏ = ty − y2, t ≥ −1, y(−1) = 1 (4.55)

as a challenging test problem for numerical integrators (cf. Dahlquist et al.
[109]). The reduced equation

tY0 − Y 2
0 = 0

has the root Y0(t) = 0, stable for t < 0, and the root Y0(t) = t, stable for
t > 0, that cross at t = 0. The exact solution

y(t, ε) =
1

e(1−t2)/2ε + 1
ε

∫ t

−1
e(s2−t2)/2ε ds

(4.56)

of (4.55) can be evaluated asymptotically (using Laplace’s method) to get
the discontinuous limiting solution

y(t, ε) ∼

⎧⎪⎨
⎪⎩
0, −1 < t < 1
1
3 , t = 1

t, t > 1

(4.57)

(known as Dahlquist’s knee) with a boundary layer at t = −1 and a shock
layer at t = 1. Note, again, the occurrence of a canard or delayed bifurcation
for 0 < t < 1.

The example

εẏ = t(1− y2), t ≥ −1, y(−1) =
1

2
(4.58)

was introduced by Mahony and Shepherd [306]. The separable equation has
the exact solution

y(t, ε) =
3e

t2−1
ε − 1

3e
t2−1

ε + 1
. (4.59)

When t2 < 1, the limiting solution is Y0(t) = −1, but for t2 > 1, it is
Y0(t) = 1. If we instead had y(−1) < −1, we’d again get the limit −1 for
|t| < 1, but blowup would occur for |t| > 1. Lebowitz and Schaar [283]
considered the related exchange of stability in systems without bifurcation
delay. Also see Nefedov and Schneider [346].
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Verhulst [500] considers the separable (Riccati) equation

εẏ = − sin ty(1− y), y(0) = 1/2. (4.60)

It has the exact 2π-periodic solution

y(t, ε) =
e−

1
ε (1−cos t)

1 + e−
1
ε (1−cos t)

. (4.61)

Since the exponentials become negligible away from t = 2πk, the solution
tends to the trivial root of the reduced equation, except near t = 2πk for
integers k, where it spikes to the value 1/2. The root Y0 = 1 of the reduced
equation is never reached for this initial value.

We note that other interesting examples are given by Fruchard and
Schäfke [165]. They provide necessary and sufficient conditions for resonance
for a broader variety of equations and they give composite expansions for
their asymptotic solutions.

Kreiss and Parter [264] provide many good examples, including the readily
solvable equations

εy′′ − 2xy′ = 0, − 1 ≤ x ≤ 1

4

εy′′ − 1

2
y + b0(ε)y = 0,

1

4
≤ x ≤ 1

2

with b0(ε) exponentially small.
Among many intriguing examples found in the literature, one of the most

interesting involves small exponent asymptotics (cf. Fowler et al. [154] and
Kember et al. [246]). They consider the solvable initial value problem

ẏ =
1

yε
− 2, y(−1) = 1 (4.62)

for ε small and encounter a “hidden” boundary layer at t = 0. An implicit
solution t(y) in straightforward.

Exercises

1. Determine the limiting behavior for Dahlquist’s example

εẏ = (1− t)y − y2, t ≥ 0, y(0) =
1

2
.

2. For the problem

εẏ = ty − y2, t ≥ −2,

show that

y(t, ε) ∼
{
0, −2 < t < 2

t− ε
t + . . . , t > 2.



140 CHAPTER 4. WENDEPUNKTS AND CANARDS

Note that these trivial and nontrivial slow manifolds can be generated
termwise by substituting a regular perturbation series

Y (t, ε) = Y0(t) + εY1(t) + . . .

into the differential equation.

3. Dahlquist [108] considers the Riccati equation

εẏ = sin2 t− y2, y(0) > 0.

Use a matching argument near t = π to show that the asymptotic
solution satisfies y(t, ε) = | sin t|+O(

√
ε), t > 0.

4. Lin and O’Malley [293] show that the solution to the separable equation

εẏ =
ty

1 + y
, y(−1) = 1

is given by

yey−1 = e−
1
2ε (1−t2).

Show this and verify that the limiting solution is trivial for |t| < 1.
(Some might express the solution in terms of the Lambert W function.)

5. Consider the two-point problem

εy′′ − xy′ + (x− ε)y = 0, 0 ≤ x ≤ 1

with y(0) and y(1) prescribed.

(a) Noting that ex is an exact solution of the differential equation,
find the exact solution of the boundary value problem.

(b) Noting that exy(0) is the outer solution, determine the nature of
the boundary layer behavior near x = 1.



Chapter 5

Two-Timing, Geometric,
and Multi-scale Methods

(a) Elementary Two-Timing

The Brooklyn native Julian Cole (1925–1999) got his Ph.D. in aeronautics
at Caltech in 1949 with Hans Liepmann (a German émigre of 1939) as his
advisor. He remained on the Caltech faculty until 1968 where he main-
tained active contact with Kaplun, Lagerstrom and others in aeronautics,
applied mathematics and industry, attempting to understand singular per-
turbations more deeply and to apply its growing methodology. Then he
moved to UCLA and, ultimately, Rensselaer. He and his Jerusalem-born
student Jerry Kevorkian, who spent his academic career at the University
of Washington, developed and applied asymptotic methods involving two-
(i.e. multi-) time or multiple scales in the early 1960s (cf. the obituary of
Cole by Bluman et al. [48]). Related approaches were made by the Soviet
Kuzmak [273], the Australian Mahony [305], and the American Cochran [89],
among others, but Cole and Kevorkian had the dominant long-term impact.
The previously cited work of Lomov is also recommended reading, as is the
paper by Levey and Mahony [286]. The monograph Perturbation Methods
in Applied Mathematics, Cole [92], considered singular perturbations in a
broad applied math setting, where both the development of the underlying
techniques and significant and diverse applications were included. The book
approaches matching using intermediate limits and presumes a corresponding
overlap of inner and outer domains. The examples used are generally very
instructive and quite nontrivial.

Two-variable expansions are naturally introduced, for example, in the
presence of a small disturbance acting cumulatively for a long time. The sim-
ultaneous occurrence of a small parameter and a long time interval implies

© Springer International Publishing Switzerland 2014
R. O’Malley, Historical Developments in Singular Perturbations,
DOI 10.1007/978-3-319-11924-3 5
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that we, indeed, encounter a two-parameter singular perturbation problem
(cf. O’Malley [366]). Smith [466] aptly called such initial value problems
singular perturbations with a nonuniformity at infinity. The two-timing ap-
proach generalizes and extends the classical Poincaré–Lindstedt method of
strained coordinates (cf., e.g., Poincaré [394], Minorsky [319], and Murdock
[335]) which is often applied to solve Duffing’s equation and to describe re-
lated nonlinear oscillations. The procedure ultimately provides the same
asymptotic expansion for the solution as the method of averaging (cf. Bogoli-
ubov and Mitropolsky [51]), which is long known to be mathematically justi-
fied. Greatly expanded editions of Cole’s book, coauthored with Kevorkian,
appeared in 1981 and 1996 [247, 248]. The late Peter Chapman, a colleague
of Mahony in Perth, developed a promising manuscript [77] that may never
have been finished. It explained the ongoing work of Mahony and the pa-
per of Kuzmak. Mahony’s work, more generally, is reviewed in Fowkes and
Silberstein [153]. The major recent generalization from two-timing to multi-
scale modeling is considered in E [130].

As a first example, we shall describe the application of two-timing to the
nearly linear Rayleigh equation

ÿ + y = ε

(
ẏ − 1

3
ẏ3
)

on t ≥ 0 (5.1)

with initial values
y(0) = 0 and ẏ(0) = 1. (5.2)

This, presumably, describes the oscillations of a clarinet reed (cf. Rayleigh
[409]). Note that if y satisfies the Rayleigh equation, ẏ will satisfy the van
der Pol equation (which we will later study).

Two-timing anticipates that the solution of (5.1–5.2) will evolve, depend-
ing on both the given fast-time t and the introduced slow time

τ ≡ εt (5.3)

using a formal two-time power series expansion

y(t, ε) = Y (t, τ, ε) ∼ Y0(t, τ) + εY1(t, τ) + ε2Y2(t, τ) + . . . (5.4)

when t = O(1/ε), i.e. τ = O(1). (Don’t be confused because we used τ = t
ε

as a fast time in Chap. 3.) Sophisticates will realize that (5.4) is a generalized
asymptotic expansion, since its coefficients Yk depend on ε through τ . The
chain rule requires that

ẏ = Yt + εYτ and ÿ = Ytt + 2εYtτ + ε2Yττ ,

so equation (5.1) implies that the two-time expansion (5.4) must satisfy the
partial differential equation

Ytt + Y + ε

(
2Ytτ − Yt +

1

3
Y 3
t

)
+ ε2(Yττ − Yτ + Y 2

t Yτ ) + ε3YtY
2
τ +

ε4

3
Y 3
τ = 0.

(5.5)
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Converting the ODE (5.1) to the PDE (5.5) may not, at first, seem like a
step forward, but wait and experience its success. Equating coefficients of
successive powers of ε as a regular perturbation expansion requires

Y0tt + Y0 = 0, (5.6)

Y1tt + Y1 = −2Y0tτ + Y0t − 1

3
Y 3
0t, (5.7)

etc. From (5.6), it follows that Y0 must be a linear combination of cos t and
sin t with τ -dependent coefficients, so we set

Y0(t, τ) = A0(τ) cos t+B0(τ) sin t, (5.8)

where A0 and B0 so far remain undetermined, except for their initial values
since ⎧⎪⎨

⎪⎩
y(0) = Y0(0, 0) = A0(0) = 0

and

ẏ(0) ∼ Y0t(0, 0) = B0(0) = 1.

(5.9)

Thus, the representation (5.8) introduces amplitudes A0 and B0 that are
slowly varying functions of t.

Next, using the partial differential equation (5.7) for Y1, we require

Y1tt + Y1 =− 2

(
−dA0

dτ
sin t+

dB0

dτ
cos t

)

+ (−A0 sin t+B0 cos t)

− 1

3
(−A0 sin t+B0 cos t)

3.

(5.10)

Recalling the trigonometric identities sin3 t = 3
4 sin t − 1

4 sin 3t, sin
2 t cos t =

1
4 cos t− 1

4 cos 3t, sin t cos
2 t = 1

4 sin t+
1
4 sin 3t, and cos3 t = 3

4 cos t+
1
4 cos 3t,

we find that Y1tt + Y1 is a linear combination of sin t, cos t, sin 3t, and cos 3t,
with τ -dependent coefficients. The general solution for Y1 follows simply by
the method of undetermined coefficients. Multiples of sin t and cos t in the
forcing term yield unbounded responses like t sin t and t cos t in the particular
solution. Since sin t and cos t are solutions of the homogeneous equation, the
presence of such terms in the forcing is said to resonate with the comple-
mentary solutions for Y1. Such secular response terms can’t be allowed if
the expansion Y (t, τ, ε) is to remain asymptotic for large t. Specifically, since
(5.10) implies that

Y1tt + Y1 =

(
2
dA0

dτ
−A0 +

A3
0

4
+

A0B
2
0

4

)
sin t

+

(
−2

dB0

dτ
+B0 − A2

0B0

4
− B3

0

4

)
cos t

+

(
−A3

0

12
+

A0B
2
0

4

)
sin 3t+

(
A2

0B0

4
− B3

0

12

)
cos 3t,

(5.11)
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to make the first harmonics disappear in the forcing thereby requires A0 and
B0 to satisfy the coupled vector initial value problem⎧⎪⎨

⎪⎩
2dA0

dτ = A0 − A0

4 (A2
0 +B2

0), A0(0) = 0

and

2dB0

dτ = B0 − B0

4 (A2
0 +B2

0), B0(0) = 1.

(5.12)

Uniqueness implies that
A0(τ) = 0 (5.13)

while the explicit solution of the remaining Bernoulli equation determines

B0(τ) =
2√

1 + 3e−τ
, (5.14)

which remains defined for all τ ≥ 0.
Thus, Y1 must be a bounded solution of

Y1tt + Y1 = −B3
0

12
cos 3t.

A particular solution as a slowly varying multiple of cos 3t follows using un-
determined coefficients and since its complementary solution will be a linear
combination of cos t and sin t, Y1 will have the form

Y1(t, τ) = A1(τ) cos t+B1(τ) sin t+
B3

0(τ)

96
cos 3t.

Moreover, A1 and B1 must satisfy the initial conditions

0 = Y1(0, 0) = A1(0) +
B3

0(0)

96
and 0 = Y1t(0, 0) + Y0τ (0, 0) = B1(0) +A0(0),

so

A1(0) = − 1

96
and B1(0) = 0.

We will completely specify A1 and B1 as an exercise. Equations (5.13–5.14)
determines the limiting two-time approximation

y(t, ε) = Y0(t, τ) +O(ε) (5.15)

on 0 ≤ τ < ∞ with

Y0(t, τ) =
2 sin t√
1 + 3e−τ

. (5.16)

Proofs justifying the two-time technique by proving the estimate (5.15) are
given, e.g., in Smith [466]. They can be expected to hold with some tradeoffs
both on longer time intervals and to higher-order. Note that Poincaré in the
preface to the first volume of Celestial Mechanics [394] reported

All efforts of geometers in the second half of this century have
had as main objective the elimination of secular terms.
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Exercise

Knowing Y0, determine Y1 completely by eliminating resonant terms in the
differential equation

Y2tt + Y2 + (2Y1tτ − Y1 + Y 3
0tY1t) + Y0ττ − Y0τ + Y 2

0tY0τ = 0

for Y2 by appropriately determining the first harmonic coefficients A1(τ) and
B1(τ) of Y1.

Paul Germain [169] introduces multiple scales more broadly:

when a physical phenomenon is thought to be represented by the
occurrence of steep gradients in one variable only . . . . Assume
that the manifold across which the gradients are steep is F (x, t) =
constant. Then, the mathematical progressive wave structure is

U(t, x,
F

ε
, ε)

with ξ ≡ F
ε considered as a fifth variable.

See Germain [169] and Zeytounian [533] for more details.

Historical Comment

Poincaré won the (Swedish and Norwegian) King Oscar II Prize in 1889 (cel-
ebrating the king’s 60th birthday) for his work on the three-body problem.
The hastily prepared submission was, however, in error (cf. Barrow-Green
[29]). (Distributed copies were collected and trashed, but Barrow-Green
recently found one remaining in the Mittag-Leffler Institute library. Mittag-
Leffler was a judge (together with Hermite and Weierstrass), organizer of
the prize, and founding editor of Acta Mathematica.) A corrected ver-
sion of Poincaré’s paper was published in Acta Mathematica in 1890 (at
Poincaré’s expense). Much of the difference relates to whether the formal
solutions found by the astronomer Lindstedt in 1883 were convergent or
simply asymptotic (and to the nonintegrability of the three-body problem).
This distinction was further highlighted in the introduction to the second
volume of Poincaré’s Celestial Mechanics [394] where a difference between
“astronomers” and “mathematicians” may be understood if we realize that
astronomers traditionally call asymptotic series convergent. Many years
later, KAM theory (the research of Kolmogorov, Arnold, and Moser from
1954 to 1963 on the persistence of quasi-periodic motions under small per-
turbations) shows that some similar results actually converge (cf. Arnold
et al. [12]). Curiously, Szpiro [478] suggests that the Swedes Lindstedt and
Gyldén each claimed some of their work had precedence over Poincaré’s, but
this is not noted by the more scholarly Barrow-Green. More details can be
found in Charpentier et al. [78], Verhulst [502], and Gray [182].
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According to Stubhaug [477], Gyldén, head of the Stockholm Observatory,
characterized the entire prize as

humbug.

Ziegler [537] reports that Mittag-Leffler tried to get a Nobel prize for Poincaré
from their initiation in 1901 until Poincaré’s death. Stubhaug emphasizes
that Mittag-Leffler wanted to promote theoretical physics for the prize as
well as Poincaré. (It’s never been clear why there’s no mathematics Nobel,
but there’s now an Abel prize and other, even bigger, new ones.)

Now consider the initial value problem

ÿ + y + εy3 = 0, y(0) = 1, ẏ(0) = 0 (5.17)

for Duffing’s equation on t ≥ 0 (Kovacic and Brennan [261] provides a brief
biography of Georg Duffing (1861–1944) as well as a partial translation of
his 1918 book Forced Oscillations with Variable Natural Frequency and their
Technical Significance, originally published by Sammlung Vieweg, Braun-
schweig, in German.). Using a phase-plane analysis, for example, one can
readily convince oneself that the solution is periodic (cf. Mudavanhu et al.
[332]). A regular perturbation expansion produces artificial secular terms
that are clearly spurious, so we might naturally instead seek an asymptotic
solution

y(t, ε) = z(s, ε) ∼ z0(s) + εz1(s) + . . . (5.18)

as a function of a so-called strained coordinate

s = (1 + εΩ(ε))t (5.19)

where the frequency perturbation

Ω(ε) ∼ Ω0 + εΩ1 + . . . (5.20)

for constants Ωj is to be determined termwise to achieve periodicity of the
terms of the expansion for z with respect to the strained s. Clearly, z will
need to satisfy the initial value problem

(1 + εΩ(ε))2
d2z

ds2
+ z + εz3 = 0, z(0, ε) = 1,

dz

ds
(0, ε) = 0. (5.21)

Proceeding termwise, we obtain successive initial value problems

d2z0
ds2

+ z0 = 0, z0(0) = 1,
dz0
ds

(0) = 0,

d2z1
ds2

+ z1 + 2Ω0
d2z0
ds2

+ z30 = 0, z1(0) = 0,
dz1
ds

(0) = 0,
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etc. Since
z0(s) = cos s, (5.22)

z1 must satisfy

d2z1
ds2

+ z1 =

(
2Ω0 − 3

4

)
cos s− 1

4
cos 3s.

To avoid secular terms in z1, we must pick

Ω0 = 3/8 (5.23)

to obtain

z1(s) = − 1

32
cos s+

1

32
cos 3s. (5.24)

At the next stage, we find

s =

(
1 +

3ε

8
− 21

256
ε2 + . . .

)
t (5.25)

and

y(t, ε) = z(s, ε) =

(
1− ε

32
+

23

1024
ε2 + . . .

)
cos s

+ ε

(
1

32
− ε

64
+ . . .

)
cos 3s

+ ε2
(

1

1024
+ . . .

)
cos 5s+ . . . .

(5.26)

The series for the frequency actually converges. Andersen and Geer [7] calcu-
lated series for the corresponding periodic solution of the van der Pol equation
to O(ε24) terms using Macsyma and to O(ε164) terms via Taylor series.

Note that use of the coordinate s (which is only ever approximated as
a polynomial of increasing order in ε) corresponds to a multitime expansion
using the times t, εt, ε2t, . . .. (See below.) Later scales are not needed when
we bound εkt for any fixed k.

More generally, nonlinear clock functions

τi(t, ε), i = 0, 1, . . . , N

are sometimes used to determine multitime expansions

x(t, ε) = X(τ0, τ1, . . . , τN , ε).

Ablowitz [1] points out that this frequency-shift method, that he calls the
Stokes-Poincaré approach, is limited to equations in conservation form (see
Sect. (c)). (It does not apply, e.g., to the van der Pol equation, though it will
provide its periodic limit cycle.)
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More generally, when one considers the nearly linear equation

ÿ + y + εf(y, ẏ) = 0, (5.27)

two-timing produces a first term approximation

Y0(t, τ) = A0(τ) cos t+B0(τ) sin t (5.28)

for τ = εt and requires the second term to satisfy a resulting nonhomogeneous
equation

∂2Y1

∂t2
+ Y1 = P (t, τ) (5.29)

determined in terms of A0 and B0. The Fredholm alternative requires the
two orthogonality conditions,

∫ 2π

0

P (t, τ) cos t dt = 0 and

∫ 2π

0

P (t, τ) sin t dt = 0, (5.30)

which coincide with the differential equations for A0 and B0 needed to elim-
inate secular terms in Y1. An alternative representation

Y0(t, τ) = C0(τ) cos(t+D0(τ))

with slowly varying amplitude C0 and phase D0 (instead of (5.28)) would
also be effective. Kevorkian and Cole [249] use multiple scale methods for a
variety of problems.

Exercise (cf. Hinch [206])

Show that Duffing’s equation could also be solved by directly seeking a solu-
tion of the form

y(t, ε) = z(s, ε) (5.31)

where s is determined by inverting a near-identity transformation

t = s+ εt1(s) + ε2t2(s) + . . . (5.32)

for functions tj(s) that provide a periodic solution z(s, ε) termwise.

One can obtain Mathieu’s equation

d2x

dt2
+ (δ + ε cos t)x = 0 (5.33)

as a linearization of Duffing’s equation (cf. Jordan and Smith [230]). More-
over, one can study what parameter values δ and ε provide bounded or un-
bounded solutions. Transitions of solutions x(t, ε) from stability to instability
occur along curves δ(ε) called tongues that can be obtained using perturba-
tion methods (cf. Nayfeh and Mook [345]). Bifurcations may involve hidden
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time scales, like ε3/2t (cf. Chen et al. [81] and Verhulst [504]). The traditional
two-time expansion

Y (t, τ, ε) ∼ Y0(t, τ) + εY1(t, τ) + . . . (5.34)

is effective for equation (5.27). We can expect such results to hold for bounded
τ values, though Greenlee and Snow [184] showed that with appropriate
damping, two-timing is valid on the whole half-line t ≥ 0.

We can also apply multiple scales to equations with boundary layer
behavior, even though Lagerstrom [276] sought a dichotomous distinction
between layer type and secular problems. Consider, for example, the nonlin-
ear two-point boundary value problem

εy′′ + a(x)y′ + g(x, y) = 0 (5.35)

on 0 ≤ x ≤ 1 where

a(x) > 0, (5.36)

a and g are smooth, and bounded end values

y(0) and y(1) (5.37)

are prescribed. We anticipate having an initial boundary layer due to the
sign of a, so we introduce the stretched (fast) variable

η =
1

ε

∫ x

0

a(s) ds (5.38)

(known to be appropriate for the corresponding linear equations) and seek an
asymptotic solution to the two-point problem for (5.35) in the two-variable
(or multiscale) form

y(x, ε) = Y (x, η, ε) ∼ Y0(x, η) + εY1(x, η) + . . . . (5.39)

Since

y′ = Yx +
a(x)

ε
Yη

and

εy′′ = εYxx + 2a(x)Yxη + a′(x)Yη +
a2(x)

ε
Yηη,

the ordinary differential equation (5.35) for y requires Y to satisfy the partial
differential equation

a2(x)

ε
(Yηη + Yη)+

(
2a(x)Yxη + a′(x)Yη

+ a(x)Yx + g(x, Y )
)
+ εYxx = 0

(5.40)
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as a regular perturbation series, with the coefficients Yk in (5.39) depending
on x and η simultaneously. Equating successive coefficients in (5.40) to zero
then requires that

Y0ηη + Y0η = 0, (5.41)

Y1ηη + Y1η +
1

a2(x)
(2a(x)Y0xη + a′(x)Y0η + a(x)Y0x + g(x, Y0)) = 0, (5.42)

etc. Equation (5.41) implies that Y0 is a linear combination of 1 and e−η,
with undetermined coefficients depending on the slow variable x. Thus, we
set

Y0(x, η) = A0(x) +B0(x)e
−η. (5.43)

The boundary values then require that

A0(0) +B0(0) = y(0) and A0(1) ∼ y(1) (5.44)

since e−η is asymptotically negligible outside the initial layer. The equation
(5.42) then requires that

Y1ηη + Y1η +
1

a2(x)

(−2a(x)B′
0(x)e

−η − a′(x)B0(x)e
−η

+ a(x) (A′
0 +B′

0e
−η) + g(x,A0 +B0e

−η)
)
= 0.

(5.45)

We expand

g(x,A0 +B0e
−η) = g(x,A0) + gy(x,A0)B0e

−η +
1

2
gyy(x,A0)(B

2
0e

−2η) + . . .

about y = A0. To prevent secular terms in Y1, we must make the coefficients
of 1 and e−η in the forcing term of (5.45) be zero. Thus, we will need A0 to
satisfy the limiting nonlinear equation

a(x)A′
0 + g(x,A0) = 0

while B0 must satisfy the coupled linear equation

−a(x)B′
0 + (−a′(x) + gy(x,A0))B0 = 0.

Using the terminal condition for A0, we shall assume that a unique solution
to the reduced problem

A′
0 = −g(x,A0)

a(x)
, A0(1) = y(1) (5.46)

is defined throughout 0 ≤ x ≤ 1. We may have to obtain A0 numerically.
Then, B0(x) is uniquely determined from the linear problem

(aB0)
′ = gy(x,A0)B0, B0(0) = y(0)−A0(0),



(A). ELEMENTARY TWO-TIMING 151

i.e.

B0(x) = e
∫ x
0

gy(s,A0(s))

a(s)
ds a(0)

a(x)
(y(0)−A0(0)). (5.47)

This completely specifies Y0. Next, we will need to integrate

Y1ηη + Y1η +
1

a2(x)
(g(x,A0 +B0e

−η)− g(x,A0)− gy(x,A0)B0e
−η) = 0

using variation of parameters to determine its complementary solution by
applying the initial conditions and then eliminating the resulting resonant
terms in the differential equation for Y2. Generalizations of these methods
are found in O’Malley [362, 363], Smith [465], and elsewhere.

To illustrate how our earlier results on turning point problems fit the
two-time ansatz, consider the two examples that follow.

Example 1

Recall that solutions of the two-point problem

εy′′ + xy′ = 0, − 1 ≤ x ≤ 1, y(±1) = ±1 (5.48)

have the form

y(x, ε) = A+B

∫ x

0

e−s2/2εds

for constants A(ε) and B(ε). Applying the boundary conditions, we get A = 0

and B = (
∫ 1

0
e−s2/2εds)−1, so the asymptotic solution

y(x, ε) ∼
∫ x/

√
ε

0
e−t2/2 dt∫∞

0
e−t2/2 dt

(5.49)

is an odd function of the stretched variable

ξ = x/
√
ε. (5.50)

If we directly sought the solution as

y(x, ε) = C(ξ), (5.51)

C would satisfy the boundary value problem

d2C

dξ2
+ ξ

dC

dξ
= 0, C(±∞) = ±1,

as found. The symmetric shock layer C(ξ) clearly connects the outer solutions
∓1 on opposite sides of the turning point.
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Example 2

Recall that the differential equation

εy′′ + 2xy′ − 2y = 0, − 1 ≤ x ≤ 1, y(−1) = −1, y(1) = 2 (5.52)

has the exact solution

y(x, ε) = x+ x

∫ x

−1
e−s2/ε ds∫ 1

−1
e−s2/ε ds

+
εe−x2/ε

2
∫ 1

−1
e−s2/ε ds

depending on the variables x and ξ ≡ x/
√
ε. Indeed, it has the simple form

y(x, ε) = Y (x, ξ,
√
ε) ∼ x+ xC0(ξ) + εC2(ξ) (5.53)

where C0(ξ) ≡
∫ ξ
−∞ e−t2dt

∫ ∞
−∞ e−t2dt

and C2(ξ) ≡ e−ξ2

2
∫ ∞
−∞ e−t2dt

. As expected,

Y (x, ξ, 0) →
{
2x as ξ → ∞
x as ξ → −∞

while C2(ξ) → 0 as ξ → ±∞.

Murdock [335] considered the so-called harmonic resonance problem of
finding solutions of period 2π

ω(ε) for the equation

ÿ + y = εf(y, ẏ, ω(ε)t) (5.54)

where
ω(ε) ∼ 1 + εω1 + ε2ω2 + . . . (5.55)

is specified. He lets the initial values take the form
⎧⎪⎨
⎪⎩
y(0) = α0 + εα1 + . . .

and

ẏ(0) = β0 + εβ1 + . . .

(5.56)

(to be determined termwise) with

y ∼ y0(ωt) + εy1(ωt) + . . . . (5.57)

Exercises

1. To further motivate two-scale expansions, consider the scalar linear
initial value problem

εu′ + a(x)u = b(x), x ≥ 0, u(0) prescribed

on a finite interval where a(x) > 0 and a and b are smooth.
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(a) Obtain a formal asymptotic solution in the form

u(x, ε) = U(x, ε) + e−
1
ε

∫ x
0

a(s) ds
(
u(0)− U(0, ε)

)
where U is an outer expansion

U(x, ε) ∼ U0(x) + εU1(x) + ε2U2(x) + . . .

(b) Integrate the exact solution

u(x, ε) = e−
1
ε

∫ x
0

a(s) ds u(0) +
1

ε

∫ x

0

e−
1
ε

∫ x
t

a(s) ds b(t) dt

by parts to show that

u(x, ε) =
b(x)

a(x)
+ e−

1
ε

∫ x
0

a(s) ds

(
u(0)− b(0)

a(0)

)
+O(ε).

(c) Integrate the exact solution again by parts to show that

u(x, ε) = U0(x)+εU1(x)+e−
1
ε

∫ x
0 a(s) ds(u(0)−U0(0)−εU1(0)

)
+O(ε2).

(d) Find the exact solution to the two-point boundary value problem

εy′′ + a(x)y′ = f(x), 0 ≤ x ≤ 1

with
y(0) and y(1) prescribed.

For a(x) > 0 and a and f smooth, use integration by parts to show
that the asymptotic solution has the two-variable form

y(x, ε) = Y (x, ε) + e−
1
ε

∫ x
0

a(s) ds(y(0)− Y (0, ε))

where the outer solution Y has an asymptotic series expansion in ε.

2. Consider the scalar two-point problem

εy′′ + f(x, y, y′, ε) = 0, 0 ≤ x ≤ 1

with y(0) and y(1) prescribed in cases when the reduced problem

f(x, Y, Y ′, 0) = 0, Y (1) = y(1)

has a solution Y0(x) on 0 ≤ x ≤ 1 with

fy′(x, Y0, Y
′
0 , 0) ≥ σ

for a positive constant σ. Provide examples for which one can use the
fast variable

1

ε

∫ t

0

fy′(s, Y0(s), Y
′
0(s), 0) ds

(cf. Willett [524], O’Malley [362], Searl [443], and Rosenblat [420]).
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3. (cf. Searl [443]) Consider the Cole-Lagerstrom problem

εẍ+ xẋ− x = 0, x(0) = α, x(1) = β.

(a) Try solving the problem via two-timing by setting

x(t, τ, ε) = x0(t, τ) + εx1(t, τ) + · · ·
with the slow time τ = εt. Show that x0 must satisfy

x0ττ + x0x0τ = 0

while

x1ττ + x0x1τ + x1x0τ + 2x0tτ + x0x0τ − x0 = 0.

Then take

x0(t, τ) = u0(t) tanh

(
u0(t)

2
τ + v0(t)

)

with u0(1) = β and v0(0) = tanh−1
(

α
u0(0)

)
.

(b) Determine the functions u0 and v0 to eliminate secular terms in
x1. Note that sech2

(
u0

2 τ + v0
)
is a solution of the homogeneous

linearized equation

xττ + x0(t, τ)xτ + x0τ (t, τ)x = 0,

with t as a parameter. Searl determines u0(t) = t + β − 1 and

v0(t) = v0(0) = tanh−1
(

α
β−1

)
when |α| < |β − 1|.

(c) Can you find solutions for all αs and βs?

4. (a) Solve the linear initial value problem

ÿ + y + εe−ty = 0, y(0) = 1, ẏ(0) = 0

on t ≤ 0 in terms of Bessel functions.

(b) Show that the regular perturbation expansion provides the asymp-
totic solution with no secular terms.

The Palestinian-American Ali Nayfeh (1933–) got his Ph.D. in aeronautics
at Stanford in 1964, with Milton Van Dyke as his advisor. He’s been in the
department of engineering science and mechanics at Virginia Tech since 1971.
His 1973 text, Perturbation Methods [341], now reissued as a Wiley Classic,
surveyed the growing literature and provided detailed solutions to numerous
examples. This and several related books by him have been very successful
pedagogically for two generations of engineering and science students. Nayfeh
[342] again provides solutions to many perturbation problems, while Nayfeh
[343] updates his discussion of two-timing.
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(b) Lighthill’s Method

Sir M. James Lighthill (1924–1988) was a British applied mathematician and
administrator who held important positions at the University of Manchester,
the Royal Aircraft Establishment, Imperial College London, Trinity Col-
lege Cambridge, and University College London (see Pedley [390] and the
biography Debnath [115]).

One of the topics presented by Nayfeh [341] is coordinate stretching . It
generalizes the Poincaré-Lindstedt method and was called the PLK method
by von Kármán’s student H.-S. Tsien (after Poincaré, Lighthill, and Kuo)
(cf. Tsien [486]). (Tsien lost his security clearance in 1950 and spent 5 years
under house arrest in California before returning to China to lead its rocket
program. He is the subject of a biography (Chang [75]). Lighthill gave the
Ludwig Prandtl Memorial Lecture to GAMM in 1961. He commented

Indeed, his revolutionary discovery of the boundary layer in 1904
had the same transforming effect on fluid mechanics as Einstein’s
1905 discoveries on other parts of physics.

A simple example of Lighthill’s method (cf. Lighthill [290], Nayfeh [341],
de Jager and Jiang [224], and Johnson [226]) is provided by the nonlinear
initial value problem

(x+ εu)
du

dx
+ u = 0, u(1) = 1. (5.58)

A regular perturbation expansion

u(x, ε) = u0(x) + εu1(x) + . . .

breaks down at x = 0, though the given equation only becomes singular when
x+ εu = 0. Proceeding termwise, we’d need

x
du0

dx
+ u0 = 0, u0(1) = 1,

so u0(x) = 1/x. Then xdu1

dx + u1 + u0
du0

dx = 0 and u1(1) = 0 imply that

u1(x) =
x2 − 1

2x3
.

The increasing singularity of the terms uk(x) at x = 0 is a difficulty which
we might compensate for by introducing a near-identity transformation

x = ξ + εf(ξ, ε) ∼ ξ + εf0(ξ) + ε2f1(ξ) + . . . (5.59)

with a yet unspecified function f to define the new coordinate ξ(x, ε) by
inversion and a corresponding regular perturbation expansion

U(ξ, ε) = U0(ξ) + εU1(ξ) + . . . (5.60)
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for the solution of (5.58) as a function of ξ, which we hope will be defined at
x = 0. (Bush [62] makes the helpful suggestion that subsequent coefficients
Uk should be no more singular than previous ones.) Since dξ

dx = 1
1+ε df

dξ

, the

given differential equation (5.58) transforms to

(ξ + εf(ξ, ε) + εU)
dU

dξ
+

(
1 + ε

df

dξ
(ξ, ε)

)
U = 0. (5.61)

The regular perturbation process now implies the sequence of equations

ξ
dU0

dξ
+ U0 = 0, (5.62)

ξ
dU1

dξ
+ U1 + f0(ξ)

dU0

dξ
+

df0
dξ

U0 + U0
dU0

dξ
= 0, (5.63)

etc., for the coefficients Uk in (5.60). The boundary values need to be deter-
mined from the terminal condition

U(ξ∗, ε) = 1 where 1 = ξ∗ + εf(ξ∗, ε). (5.64)

Taking

ξ∗ ∼ 1 + b0ε+ b1ε
2 + . . . , (5.65)

the ε coefficient in (5.64), 1 = (1 + b0ε + b1ε
2 + . . .) + εf0(1 + εb0 + . . .) +

ε2f1(1 + . . .) + . . . , implies that

b0 = −f0(1),

so U(ξ∗, ε) = U0(1− f0(1)ε+ . . .)+ εU1(1+ . . .)+ . . . = 1 determines the end
values

U0(1) = 1, (5.66)

and

U1(1) = U ′
0(1)f0(1) (5.67)

etc. Returning to (5.62), d
dξ (ξU0) = 0, U0(1) = 1 implies that

U0(ξ) =
1

ξ
(5.68)

(compared to 1/x for u0). Now there still remains much flexibility in picking
f in the near-identity transformation (5.59). We will compensate the singular
term U0

dU0

dξ in (5.63) by asking that f0 satisfies

df0
dξ

U0 + f0
dU0

dξ
+ U0

dU0

dξ
= 0, (5.69)
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leaving

ξ
dU1

dξ
+ U1 = 0, U1(1) = −f0(1). (5.70)

from (5.63). If we now take f0(1) = 0, we get

U1(ξ) = 0, (5.71)

leaving (5.63) as the initial value problem 1
ξ
df0
dξ − f0

ξ2 − 1
ξ3 = 0, f0(1) = 0.

Integration yields

f0(ξ) =
1

2

(
ξ − 1

ξ

)
. (5.72)

Taking all later fks in (5.59) to be zero, as well as all later Uks in (5.60), we
simply obtain the quadratic near-identity transformation

x = ξ +
ε

2

(
ξ − 1

ξ

)
(5.73)

and the one-term solution

U = U0(ξ) =
1

ξ
. (5.74)

Since (5.73) has the inverse ξ = x+
√
x2+2ε+ε2

2+ε , the solution (5.74) of (5.58) is

u(x, ε) =
2 + ε

x+
√
x2 + 2ε+ ε2

=
−x+

√
x2 + 2ε+ ε2

ε
. (5.75)

Amazingly, this is the exact solution, as can be checked by integrating

(
xu+

ε

2
u2
)′

= 0, u(1) = 1.

We note a closely related method of George Temple [482]. Recall, too, that
Kaplun [235] called a coordinate ξ optimal when it leads to a uniformly valid
solution U(ξ, ε). Readers should consult Comstock [95] regarding Lighthill’s
method and the controversy that once surrounded it. Johnson [226] considers
more general initial value problems for

(x+ εu)u′ + (α+ βx)u = 0

for α > 0 and u(1) prescribed, while Sibuya and Takahasi [459] provide a
proof for equations

(x+ εu)u′ + q(x)u = r(x).

Awrejcewicz and Krysko [18] more generally suppose one begins with a
naive expansion

f(x, ε) ∼ f0(x) + εf1(x) + ε2f2(x) + . . . (5.76)
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that is not uniformly valid. They next introduce the deformed variable X
via

x = X + εν1(X) + ε2ν2(X) + . . . (5.77)

to obtain

f(x, ε) = F (X, ε) ∼ F0(X) + εF1(X) + ε2F2(X) + . . . . (5.78)

Then, they pick the deformation coefficients ν1, ν2, . . . in (5.77) to achieve a
uniformly suitable series for F .

(c) Phase-Plane Methods and Relaxation
Oscillations

Scalar boundary value problems for singularly perturbed equations in con-
servation form, ⎧⎪⎨

⎪⎩
ε2ẍ+ f(x) = 0, 0 ≤ t ≤ 1

with

x(0) and x(1) prescribed,

(5.79)

can be integrated by introducing the potential energy

V (x) =

∫ x

f(s) ds (5.80)

and invoking the resulting conservation of energy principle

1

2
ε2ẋ2 + V (x) = E (5.81)

for a constant total energy E fixed on each solution trajectory (cf. O’Malley
[367], Lutz and Goze [300], and Ou and Wong [384]). (The classical graphical
treatment of conservation equations with ε = 1 is given, e.g., in Jordan and
Smith [230].) This follows immediately by direct integration, after multiply-
ing the differential equation of (5.79) by ẋ. If we set

y = εẋ, (5.82)

we can describe the motion in the x-y phase plane by considering the singu-
larly perturbed system {

εẋ = y

εẏ = −f(x).
(5.83)

To get a real trajectory, the constant E must always exceed V (x) since E −
V = y2/2 ≥ 0.

Indeed, since dt = ± ε dx√
2(E−V (x))

, E must be only just slightly greater

than the maximum of V on any bounded trajectory in order to use up one
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unit of transit time in going from one prescribed endvalue to the other, i.e.,
so that ∫ 1

0

dt = ε

∫ x(1)

x(0)

dx√
2(E − V (x))

= 1 (5.84)

for integration along the path x(t) traversed. Moreover, most time must be
spent near rest points of (5.83) corresponding to such maxima, because dt =
O(ε) elsewhere. Be aware that such two-point problems generally have more
than one solution that follow related, but different, phase-plane trajectories
(with slightly different E levels), as we shall demonstrate with Example 2
below.

Example 1

Consider the simple linear problem

⎧⎪⎨
⎪⎩
ε2ẍ− x = 0, 0 ≤ t ≤ 1

with

x(0) = 1 and x(1) = 2.

(5.85)

Here, we can take

V =
1

2
x2.

Note that solutions x(t) satisfy a maximum principle (cf. Dorr et al. [124]).
Since solutions are linear combinations of e±t/ε, we write the unique solution
of (5.85) as

x(t, ε) = e−t/εc+ e−(1−t)/εk

for constants c(ε) and k(ε) that satisfy the linear system

c+ e−1/εk = 1 and e−1/εc+ k = 2.

Up to asymptotically negligible quantities, we get c ∼ 1 and k ∼ 2, so

x(t, ε) ∼ e−t/ε + 2e−(1−t)/ε. (5.86)

Then
y = εẋ ∼ −e−t/ε + 2e−(1−t)/ε (5.87)

and the total energy on the corresponding trajectory is

E =
1

2
(y2 − x2) ∼ −4e−1/ε (5.88)

(negative, but asymptotically negligible). Graphically, see Figs. 5.1 and 5.2.
We plot V (x) with a small negative E value in Fig. 5.3. This deter-

mines the allowed range of x values (omitting a neighborhood of x = 0) and
graphically determines the corresponding real-valued y = ±√2(E − V (x).
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Figure 5.1: The asymptotic solution x(t, ε) of ε2ẍ = x

Figure 5.2: The solution y(t, ε) = εẋ(t, ε) of ε2ẍ = x

To obtain a trajectory joining x(0) = 1 and x(1) = 2, we must follow the
dashed right orbit in the phase-plane (Fig. 5.4) where x > 0 and y is mono-
tonically increasing. Let α′ and α be the points where the orbit cuts the
vertical line x = 1 (with α′ below α) and let β′ and β be the corresponding
points where it cuts x = 2. Because motion only slows down near the rest

point (0, 0), ε
∫ 2

1
dx
y = 1 requires y to be small most of the time. This rules

out the trajectory αβ as being too fast, so the only possible orbit is α′αβ,
which moves slowly near the rest point, but fast in the endpoint layers, as
pictured in Figs. 5.1 and 5.2.
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Figure 5.3: The potential V (x) = − 1
2x

2

Figure 5.4: The dotted phase-plane orbit for the solution α′αβ of ε2ẍ = x
with ε small

Example 2

Consider the nonlinear example{
ε2ẍ+ x2 = 1, − 1 ≤ t ≤ 1

with x(±1) = 0.
(5.89)

The example is important because it suggests that the method of matched
expansions can mislead by suggesting the existence of spurious solutions .
Actual solutions can be obtained in terms of elliptic integrals (cf. Byrd and
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Figure 5.5: The x-y phase plane for ε2ẍ = 1− x2

Friedman [66] and Kevorkian and Cole [249]). We take the potential energy
to be

V (x) =

∫ x

0

(s2 − 1) ds =
x3

3
− x. (5.90)

Since V ′(−1) = 0 and V ′′(−1) < 0, V has a local maximum 2/3 at x = −1.
Significantly, V (2) = 2/3, too, though 2 is not a maximum of V . The phase-
plane portrait for an E slightly less than 2/3 is shown in Fig. 5.5.

To obtain a trajectory joining x(−1) = 0 and x(1) = 0, we will need
the (dashed) orbit in Fig. 5.5 within the separatrix that passes through the
rest point in the phase-plane. (A trajectory through the rest point cannot
take finite time.) Let α′ and α be the points where the trajectory hits the
prescribed boundary value x = 0, with α′ below α. Note that the orbit αα′ is
too fast since it doesn’t go near the rest point (−1, 0), but repeated passages
past both points (−1, 0) and (2, 0) are allowed (on trajectories with somewhat
less than the upper bound 2

3 for the energy E). To use up one unit of time,
the orbit spends most time near (−1, 0). By contrast, motion toward (2, 0)
and back is rapid, providing a thin spike in the x-y trajectory. The limit
X0(t) = −1 is a root of the reduced equation. The other root, X0(t) = 1, a
minimum of the potential energy V , is quite irrelevant asymptotically. The
simplest (and shortest) solution α′α is shown in Fig. 5.6. It has the form

x(t, ε) ∼ −1 +
12epL

(1 + epL)2
+

12epR

(1 + epR)2
(5.91)

(cf. Carrier and Pearson [71] and Lange [280]) where pL/R =
√
2
ε (1 ± t) +

2 ln(
√
3 +

√
2) or, equivalently,

x(t, ε) ∼ − 1 + 3 sech2
(
1 + t√

2ε
+ ln(

√
3 +

√
2)

)

+ 3 sech2
(
1− t√

2ε
+ ln(

√
3 +

√
2)

)
.

(5.92)
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Figure 5.6: The x trajectory following α′α

The corresponding solution for y = εẋ follows by differentiation. Readers
are urged to plot these functions to check the complicated formulas. Other
endpoint layers, with spikes to 2, are possible for trajectories with lower
energies E. For example, the solution αα′α has such an initial spike while
α′αα′ has a terminal spike, and αα′αα′ has a spike near both endpoints. Two
of these solutions are shown in Figs. 5.7 and 5.8. Note the differences in the
signs and sizes of the endpoint slopes.

According to Ou and Wong [384], the asymptotic solutions are, respec-
tively, given by

x(t, ε) ∼ − 1 + 3 sech2
(
− t+ 1√

2ε
+ ln(

√
3 +

√
2)

)

+ 3 sech2
(
1− t√

2ε
+ ln(

√
3 +

√
2)

) (5.93)

x(t, ε) ∼ −1 + 3 sech2
(
t+ 1√

2ε
+ ln(

√
3 +

√
2)

)

+ 3 sech2
(
− (1− t)√

2ε
+ ln(

√
3 +

√
2)

)
,

(5.94)

and

x(t, ε) ∼ −1 + 3 sech2
(
− (t+ 1)√

2ε
+ ln(

√
3 +

√
2)

)

+ 3 sech2
(
− (1− t)√

2ε
+ ln(

√
3 +

√
2)

)
.

(5.95)
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Figure 5.7: The x trajectory following αα′α

Figure 5.8: The x trajectory following αα′αα′

Interior spikes are another possibility. Carrier and Pearson [71] warned
that classical matching allows one to formally add a spike

g(t) = 3sech2
(
t− t0√

2ε

)
(5.96)

about any interior point t0 to obtain a possibly new asymptotic solution
x. Indeed, one could seem to add several isolated spikes. However, Carrier
and Pearson realized by a phase-plane analysis (such as ours) that these
“solutions” are generally spurious . It would be allowable to add a single
spike at the midpoint t0 = 0 or two such spikes simultaneously at t0 = ±1/3
(corresponding to one- and two-thirds of the interval length). Solutions with
legitimate interior spikes can be obtained that pass near the rest point more
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than once, on a longer trajectory with somewhat less energy E. Such cycles
take the same time of passage for each revolution in the phase- plane, so
the resulting periodic motion in the x-t plane must feature nearly regularly
spaced spikes, in addition to the endpoint layers already considered. Carrier
and Pearson reassured readers

The authors have never seen this occur with any problem which
arose in a scientific context.

Nonetheless, our confidence in formal matching is diminished. Kath [242]
provides extensions to slowly varying phase-planes.

Limiting attention to N regularly spaced O(ε)-thick interior spikes will,
as N increases, ultimately fill the t interval (−1, 1), leaving scant space for
the attractive outer limit −1 to apply. Thus, it’s not surprising that Ou and
Wong [384], using a natural shooting argument for initial values x(−1, 0) = 0
and a varying ẋ(−1, 0) = k, were able to show that actual solutions for
appropriate k have at most O(1/ε) internal spikes. They also provided details
regarding the asymptotic locations of those spikes as functions of ε. Also, note
Ward [510].

Carrier [72] considered the nonautonomous problem

ε2ẍ+ 2(1− t2)x+ x2 − 1 = 0, x(±1) = 0. (5.97)

No phase-plane argument applies. As you’d expect, however, he finds (cf.
Bender and Orszag [36]) that the asymptotic solutions have the outer limit

−(1− t2)−
√

(1− t2)2 + 1

with both boundary layers and various additional spikes possible. MacGill-
ivray et al. [303] show that the interior spikes coalesce as ε → 0. Carrier
again raised the specter of spurious solutions and considered the possibility
of multiple solutions, differing in their endpoint slopes by only negligible
amounts. Bender and Orszag display a number of numerical solutions for
ε = 10−4, again suggesting a breakdown in the asymptotics as the number of
spikes increases. The more recent results of Ai [4] suggest a pileup of spikes
near the midpoint, but that isn’t clear from Wong and Zhao [527], who also
used shooting arguments. Hastings and McLeod [198] transform the problem
to a more tractable equation of the Riccati form

ε2ü = u(q(t, ε)− u)

by setting x = X + u for the outer solution X (i.e., by using the subtraction
trick). They also develop extensive material regarding spikes and layers for
more general reaction-diffusion models.

Carrier and Pearson [71] use singular perturbations as the penultimate
topic in their ODE text. George Carrier (1918–2002) was a superb math
modeller who repeatedly used asymptotic techniques to comprehend a wide
variety of physical applications. He was active as a consultant to industry
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and government, winning the National Medal of Science in 1990. He also
had great success and influence as a teacher, throughout his long career at
Harvard (from 1952). Even earlier, he introduced Julian Cole to perturba-
tion methods as an undergraduate at Cornell (where Carrier got his Ph.D.).
Carl Pearson co-authored several books with Carrier, worked for Boeing, and
was a professor of aeronautics and applied mathematics at the University of
Washington.

Let’s next consider an autonomous slow-fast planar system

{
ẋ = f(x, y)

εẏ = g(x, y)
(5.98)

for times t ≥ 0. We can expect slow motion to follow the reduced system

{
dX
dt = f(X,Y )

0 = g(X,Y ),
(5.99)

while fast motion should follow the stretched system

dy

dτ
= g(x, y) (5.100)

with x as a parameter and fast time

τ =
t− t0
ε

for some t0. (5.101)

Thus, slow motion will lie on the manifold

Γ : g(x, y) = 0 (5.102)

and fast motion will be off it. If the prescribed initial point

(x(0), y(0))

is not on Γ, we can immediately expect nearly vertical fast motion toward
(or away from) Γ since g/ε will be large. If we next reach a stable (i.e.,
attractive) point

(x(0), y1)

on Γ where gy < 0, we then expect slow motion along Γ to follow until, say,
gy loses stability at a junction point

(x2, y2).

Then, we can again expect rapid motion away from the manifold until, per-
haps, a stable drop point

(x2, y3)



(C). PHASE-PLANE METHODS AND RELAXATION. . . 167

on Γ is reached, when slow motion may again begin. When successive alter-
nations between slow and fast motions produce a limiting closed trajectory
with jerky, almost instantaneous, jumps in y, we will say we have a relaxation
oscillation. The limiting period will be determined by integrating

dt =
dx

f(x, y)

on the slow manifold Γ. Detailed asymptotics, especially near junction and
drop points, is called for. We leave the connection to hysteresis open, but
interested readers might note Mortell et al. [328].

Many times, oscillators like (5.98) arise from scalar second-order differen-
tial equations

εÿ − F ′(y)ẏ + y = 0. (5.103)

The van der Pol equation occurs when

F (y) = y − 1

3
y3, (5.104)

i.e. from
d2y

dτ2
− λ(1− y2)

dy

dτ
+ y = 0 (5.105)

when λ = 1√
ε
is large and τ = λt. For it, we let

ẋ = f(x, y) ≡ y (5.106)

and integrate the resulting y equation (5.103) to get

εẏ = g(x, y) ≡ F (y)− x. (5.107)

Thus,

Γ : x = F (y) (5.108)

is then an S-shaped curve, stable for |y| > 1, so the relaxation oscillation
for the van der Pol equation jumps between arcs of Γ at y = ±1 (cf. Stoker
[476]). See Figs. 5.9 and 5.10.

As anticipated, the limiting period of the corresponding trajectory will
be

T = 2

∫ 2/3

−2/3

dx

y(x)
= 2

∫ 1

2

F ′(y)
y

dy = 3− 2 ln 2, (5.109)

integrating along one arc of Γ. Obtaining higher-order terms in the asymp-
totic expansion for the period or the amplitude requires much effort (cf.
Stoker [476], Levinson [287], Mischenko and Rozov [321], and Grasman
[179]). In particular, the asymptotic sequences that arise are far from
obvious a priori.
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The first to study relaxation oscillations seems to be Balthasar van der
Pol (1889–1959) in 1926 (cf. Israel [222]). He was a scholarly Dutch engi-
neer, with a Ph.D. from Utretcht based on work done in Cambridge, and
was head physicist at Philips Physical Laboratory. He became particularly
interested in modeling the human heart and its arrhythmias. (From 1945 to
1946, he was president of the Temporary University at Eindhoven, founded
to replace other Dutch universities in occupied territory.) Currently, ap-
plications to neuroscience, featuring many coupled oscillations, are of great
interest and quite complicated (cf. Ermentrout and Terman [142]). Earlier
neural networks are modeled in Cronin [105, 106]. The simplest examples
may be see-saws with water reservoirs, pictured in Grasman [179]. For other
applications, see Sastry and Desoer [432].

One of the most interesting recent developments relates to the occurrence
of canards . The topic was introduced by a group of French mathematicians
in the 1970s, primarily concerned with applying non-standard analysis (cf.
Diener and Diener [120]). (Some were working in Algeria.) They considered
the forced van der Pol equation

εÿ + (y2 − 1)ẏ + y = a (5.110)

or, equivalently, the system

{
εẏ = z − F (y)

ż = a− y
(5.111)

in the Liénard plane where F (y) = y − y3

3 and a is a constant. For a = 0 or
1, for example, we get periodic solutions that follow the limit cycle consisting
of slow motion on the attractive arcs of the characteristic curve and fast

Figure 5.9: Approaching the limit cycle for the van der Pol equation
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Figure 5.10: Limit cycle

horizontal trajectories. They found that canards occur for special values

a(ε) ∼ a0 + εa1 + ε2a2 + . . . (5.112)

near a0 = 1, resulting in solutions of the form

z ∼ F (y) + εf1(y) + ε2f2(y) + . . . (5.113)

that travel up the unstable branch of the characteristic curve to produce a
canard sans tête (Fig. 5.11) or a canard avec tête (Fig. 5.12). (Pardon my
French!) Note the connection to Sect. (c) of Chap. 4. Motion up the dashed
curve is unstable (i.e., repulsive).

Finding the power series is straightforward since ż = z′ẏ and εẏ = z−F (y)
imply that

ż = a0 − y + εa1 + . . . = (F ′(y) + εf ′
1(y) + . . .)(f1(y) + εf2(y) + . . .).

Thus, F ′(1) = 0 shows that we need

a0 = 1. (5.114)

More generally, at ε = 0, a0 − y = F ′(y)f1(y) determines

f1(y) =
a0 − y

F ′(y)
=

1

1 + y
(5.115)

while the ε terms imply that

⎧⎪⎨
⎪⎩
a1 = f ′

1(1)f1(1) = − 1
8

and

f2(y) =
a1−f ′

1(y)f1(y)
F ′(y) = (1+y)3−8

8(1−y)(1+y)4 .

(5.116)
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Figure 5.11: Canard sans tête

Figure 5.12: Canard avec tête

The French mathematicians used Macsyma to get the expansions for a gen-
eral f up to fifty terms while Zvonkin and Shubin [538] later provided recur-
sion relations for them. For the van der Pol equation,

a = 1− ε

8
− 3

32
ε2 + . . . (5.117)

and

z =
y3

3
− y − ε

y + 1
− ε2

8(y + 1)2
(y4 + 4y + 7) + . . . . (5.118)

These results were confirmed by Eckhaus [134] using classical (standard)
analysis. Canalis-Durand [67] showed that the divergent series are of class
Gevrey −1. Zvonkin and Shubin conclude
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Ducks and all phenomena connected with them can be effectively
discovered by numerical computations for such moderately in-
finitely small values of ε as 1

10 or 1
20 .

Exercise

Find canard solutions for the van der Pol equation with ε = 1/10 and a nearly
0.9863132 . . .. Picture them. Imagine doing so in North Africa 35 years ago!

Beware:
A canard’s life is short.

If a is a duck value, any other duck value a satisfies

|a− a| = e−
1
kε

for some k > 0. Once more, we’re involved with exponential asymptotics.
Some, though not the originators, say the hard-to-detect phenomenon was
called a canard after the French newspaper slang for a hoax. For more details,
see the Scholarpedia article by Wechselberger. (Also, note Braaksma [58].)

(d) Averaging and Renormalization
Group Methods

The first appendix to Sanders et al. [430] presents a brief history of the
method of averaging . Important contributions to that approach were made by
Lagrange, van der Pol, Krylov, Bogoliubov, and Mitropolsky. See Samoilenko
[429] for a survey of Soviet work.

A basic underlying idea concerns variation of parameters (i.e., variation
of constants). Its linear version is elementary and well known, while its
nonlinear version has recently been attributed to Alekseev [6], rather than
Lagrange or Poisson, though it seems present in the earlier celestial mechanics
literature (cf. Pollard [397] and Verhulst [499]). Consider the vector initial
value problem

ż = f(z, t, ε), z(t0) = a, (5.119)

with f depending smoothly on ε, and suppose the unperturbed problem

ẋ = f(x, t, 0), x(t0) = a (5.120)

has a known solution which we will denote (as in dynamical systems) by

x = φ(a, t). (5.121)

If we seek the solution of the given problem (5.119) using the ansatz

z = φ(p, t) (5.122)
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for a variable function p(t) subject to the initial condition p(t0) = a, differ-
entiation implies that

ż =
∂φ

∂p

dp

dt
+

∂φ

∂t
= f(φ, t, ε).

But ∂φ
∂t = f(φ, t, 0) and ∂φ

∂p is (at least locally) invertible by the existence-
uniqueness theorem. Thus, p must satisfy the initial value problem

dp

dt
=

(
∂φ

∂p

)−1

(f(φ(p, t), t, ε)− f(φ(p, t), t, 0)), p(t0) = a. (5.123)

Because dp
dt = O(ε), p will be slowly varying , so it can only change substan-

tially on a long O(1/ε) time interval. Solving the nonlinear problem (5.123)
for p(t), numerically or otherwise, determines the desired solution z = φ(p, t)
of (5.119). The constant a in (5.121) could be any parameter, not just the
initial value.

Adrianov et al. [9] also consider the system (5.119). They reduce it to
the standard form

ż = εZ(t, z, ε) (5.124)

by simply making a change of variables

z = G(t, x) (5.125)

where
∂G

∂t
= f +O(ε), (5.126)

∂G
∂x is invertible, and

ż =

(
∂G

∂x

)−1(
f − ∂G

∂t

)
≡ εZ(t, z, ε). (5.127)

Examples

1. For the nearly linear vector problem

ż = A(t)z + εg(z, t), z(0) = a, (5.128)

the limiting problem ẋ = A(t)x, x(0) = a has the unique solution

x = Φ(t)a

where the fundamental matrix Φ(t) (cf., e.g., Bellman [35]) satisfies the linear
homogeneous matrix initial value problem

Φ̇ = A(t)Φ, Φ(0) = I.
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(In particular, Φ(t) is the matrix exponential eAt when A(t) is constant).
Its n columns provide a full set of linearly independent solutions to (5.128)
with ε = 0, spanning all solutions. Assuming Φ(t) is available, variation of
parameters determines the solution of the given problem (5.128) in the form

z(t) = Φ(t)p(t). (5.129)

Thus ż = Φ̇p+Φṗ = AΦp+εg(Φp, t) implies that the slowly varying amplitude
p(t) must satisfy the nonlinear vector initial value problem

ṗ = εΦ−1(t)g(Φ(t)p, t), p(0) = a. (5.130)

Existence of p(t) is guaranteed locally and its numerical solution is straight-
forward.

2. In the special case of nearly linear autonomous scalar oscillators

ẍ+ x = εh(x, ẋ) (5.131)

with prescribed initial values x(0) and ẋ(0), we naturally write the solution
for ε = 0 in polar coordinates as

x = r sin(t+ φ) and ẋ = r cos(t+ φ)

for constants r and φ determined directly by the initial values. For ε �= 0,
we use the traditional variation of parameters approach to instead introduce
variable functions R(t) and Ψ(t) so that

x = R sin(t+Ψ) and ẋ = R cos(t+Ψ). (5.132)

Differentiating the first expression with respect to t and comparing that result
to the second requires R and Ψ to satisfy

Ṙ sin(t+Ψ) +R cos(t+Ψ)Ψ̇ = 0.

Likewise, differentiating the second expression implies that

ẍ+ x = Ṙ cos(t+Ψ)−R sin(t+Ψ)Ψ̇ = εh(x, ẋ).

Using Cramer’s rule, we solve these two linear equations to obtain

⎧⎪⎨
⎪⎩
Ṙ = ε cos(t+Ψ)h(R sin(t+Ψ), R cos(t+Ψ))

and

RΨ̇ = ε sin(t+Ψ)h(R sin(t+Ψ), R cos(t+Ψ)).

(5.133)

The resulting nonlinear initial value problem with

R(0) = r and Ψ(0) = φ (5.134)
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will have a unique slowly varying solution

(
R
Ψ

)
for bounded τ values. This

variation of parameters approach is the basis of a variety of averaging proce-
dures. For Duffing’s equation, for example, h(x, ẋ) = −x3 so

⎧⎪⎨
⎪⎩
Ṙ = −εR3 cos(t+Ψ) sin3(t+Ψ)

and

Ψ̇ = −εR2 sin4(t+Ψ),

a problem we could solve numerically. Several different approximate methods
will be found subsequently. For more examples, see O’Malley and Kirkinis
[378].

The fundamental idea to vary arbitrary constants was contained in J.-L.
Lagrange’s Analytical Mechanics [277] in 1788. A 1997 translation of the
1811 edition states:

For problems of mechanics which can only be resolved by approxi-
mate methods, the first solution is ordinarily found by considering
only the primary forces acting on the bodies. In order to extend
this solution to the secondary forces which are called perturbing
forces, the simplest approach is to keep the form of the first solu-
tion by considering as variables the arbitrary constants contained
in it. If the quantities which were neglected and which we want to
take into account, are very small, the new variables will be nearly
constant and the ordinary methods of approximation could be
applied. Thus the difficulty is reduced to finding the equations
between these variables.

If we naively seek a solution

(
R(t, ε)
Ψ(t, ε)

)
of (5.133–5.134) as a regular power

series in ε, the first term will be a constant, which will cause the second term
to grow like t as t → ∞. This is equivalent to expanding the right-hand side
as a Fourier series and realizing that a nonzero constant term would result
in secular behavior for later terms because that part of the forcing resonates
with the complementary solution of the leading-order homogeneous system.
It might again be advisable to introduce a near-identity transformation to
eliminate such secularities in accordance with the Fredholm alternative. The
end result is to replace the system (5.133) for R and Ψ by its average over
its 2π period, i.e. we use the autonomous averaged equation

Ṙ = εf1(R) ≡ ε

2π

∫ 2π

0

cos s h(R sin s,R cos s) ds with R(0) = r. (5.135)

This nonlinear, but separable, initial value problem provides R uniquely as
a function of the slow time

τ = εt,
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i.e.

τ =

∫ R

r

ds

f1(s)
. (5.136)

(Finding R(τ) explicitly won’t always be possible, though we know R will
move monotonically to a zero of f1.) UsingR in place ofRmakes approximate
sense since R should only change by a small O(ε) amount over a period. Then,
we can directly integrate the corresponding averaged equation

Ψ̇ =
ε

R
f2(R) ≡ ε

2πR

∫ 2π

0

sin s h(R sin s,R cos s) ds

to provide the approximate phase

Ψ(τ) = φ+

∫ τ

0

f2(R(τ))

R(τ)
dτ (5.137)

in terms of R. (A more complete argument, using near-identity transforma-
tions, is given, e.g., in Rand [408].) The resulting approximation (5.132) for
x and ẋ can be shown, by a Gronwall inequality argument (cf. Cesari [74]),
to have an O(ε) error on any 0 ≤ t ≤ O(1/ε) time interval. As a final caveat,
we point out that blowup later is always an ultimate possibility. Verhulst
[500] uses the separable equation

ẋ = 2εx2 sin2 t

as an example. With x(0) = 1, the exact solution is x(t, ε) = 1
1−εt+ ε

2 sin 2t .

Moreover, when the forcing in ẋ = εf(x, t, ε) isn’t periodic, one can conve-
niently use the long-time average

f0(x) ≡ lim
T→∞

1

T

∫ T

0

f(x, s, 0) ds.

Higher-order averaging is also well studied and important in applications, as
are extensions to even longer time intervals. An unusual variation is given in
Coppola and Rand [97]. E [130] describes how the corresponding homogeniza-
tion technique can be applied to certain elliptic and Hamilton–Jacobi equa-
tions. (See Bensoussan et al. [39], Bakhvalov and Panasenko [21], Bakhvalov
et al. [22], and Holmes [209] as well.)

For the van der Pol equation, h = (1 − x2)ẋ, so the averaged equations
are easy to solve, viz.

Ṙ =
ε

2
R

(
1− R

2

4

)
and Ψ̇ = 0.

This indicates that a steady-state limit cycle will occur (when r > 0) with
R(∞) = 2.
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The intimate relationship between two-timing and averaging, in general,
becomes clear when one examines the asymptotic solution of the initial value
problem for the vector system

ẋ = εf(x, t, ε)

in the so-called periodic standard form (cf. Murdock [335], Sarlet [431], and
Mudavanhu et al. [332]).

See de Jager and Jiang [224] for a variety of worked out examples of
averaging.

3. The simple linear initial value problem

ÿ + 2εẏ + y = 0, t ≥ 0, y(0) = 0, ẏ(0) = 1 (5.138)

with small damping has the exact solution

y(t, ε) =
e−εt

√
1− ε2

sin
(√

1− ε2 t
)
. (5.139)

Although this solution is bounded, its regular perturbation expansion about
ε = 0 breaks down as t becomes unbounded, since secular terms arise. If we
had naively set

y(t, ε) = y0(t) + εy1(t) + . . . , (5.140)

we would need ÿ0 + y0 = 0, ÿ1 + y1 = −2ẏ0, etc., so

y0(t) = α0 cos t+ β0 sin t (5.141)

for constants α0 and β0 and ÿ1 + y1 = 2α0 sin t− 2β0 cos t. This implies the
secular term

y1(t) = (α1 − α0t) cos t+ (β1 − β0t) sin t (5.142)

Renormalization group (or RG) methods (cf. Chen et al. [80] and [81]
and Ziane [536]) proceed by eliminating the unbounded terms in a naive
expansion (5.140) by replacing the ε-dependent initial amplitudes

α0 + εα1 + . . . and β0 + εβ1 + . . .

that arise by instead using slowly varying amplitudes

A(τ, ε) and B(τ, ε)

depending on the slow time
τ = εt (5.143)

For bounded τ , then, they could simply seek an asymptotic solution for
(5.138) in the form

y(t, τ, ε) = A(τ, ε) cos t+B(τ, ε) sin t (5.144)
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Then

ẏ =

(
B + ε

dA

dτ

)
cos t+

(
−A+ ε

dB

dτ

)
sin t

while

ÿ =

(
−A+ 2ε

dB

dτ
+ ε2

d2A

dτ2

)
cos t+

(
−B − 2ε

dA

dτ
+ ε2

d2B

dτ2

)
sin t,

so (5.138) requires

ÿ + 2εẏ + y =ε

[
2
dB

dτ
+B + ε

(
d2A

dτ2
+

dA

dτ

)]
cos t

+ ε

[
−2

dA

dτ
−A+ ε

(
d2B

dτ2
+

dB

dτ

)]
sin t = 0.

(5.145)

The linear independence of the trig functions implies that the amplitudes A
and B must satisfy the initial value problem

2
dA

dτ
+ 2A = ε

(
d2B

dτ2
+ 2

dB

dτ

)
, A(0, ε) = 0

2
dB

dτ
+ 2B = −ε

(
d2A

dτ2
+ 2

dA

dτ

)
, B(0, ε) = 1.

(5.146)

Using series expansions

A(τ, ε) ∼
∑
j≥0

Aj(τ)ε
j and B(τ, ε) ∼

∑
j≥0

Bj(τ)ε
j , (5.147)

we will need dA0

dτ +A0 = 0, A0(0) = 0 and dB0

dτ +B0 = 0, B0(0) = 1, so

A0(τ) = 0 and B0(τ) = e−τ (5.148)

completely specify the limiting solution y0 = e−τ sin t. Next, we will need

2
dA1

dτ
+ 2A1 =

d2B0

dτ2
+ 2

dB0

dτ
= −e−τ , A1(0) = 0

and

2
dB1

dτ
+ 2B1 = −d2A0

dτ2
− 2

dA0

dτ
= 0, B1(0) = 0,

so

A1(τ) = −τ

2
e−τ and B1(τ) = 0. (5.149)

Thus, we have the renormalized solution

y(t, τ, ε) = e−τ sin t− ετ

2
e−τ cos t+O(ε2) (5.150)
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for τ finite. For improved approximations, we must let the frequency of the
trig functions vary with ε2. For details, see O’Malley and Kirkinis [377].
(Recall that the exact solution (5.139) is a function of the fast time

√
1− ε2t

and the slow time τ = εt. Kirkinis [252] provides an alternative elimination
technique using cumulants (cf. Small [464]) to describe renormalization that
is somewhat closer to the original ideas of Goldenfeld, Oono, and coworkers.

4. The linear initial value problem

ẍ+ x = ε sin t, t ≥ 0, x(0) = 1, ẋ(0) = 0 (5.151)

can be solved exactly using variation of parameters. Thus, x(t, ε) = cos t +
ε
2 (sin t − t cos t). A more insightful representation, however, is to write
x(t, τ, ε) =

(
1− τ

2

)
cos t + ε

2 sin t for τ = εt. This suggests that we directly
seek an asymptotic solution of the form

x(t, τ, ε) = α(τ, ε) cos t+ εβ(τ, ε) sin t (5.152)

for bounded τ values and undetermined slowly varying coefficients α and β.
Then

ẋ = ε
dα

dτ
cos t− α sin t+ ε2

dβ

dτ
sin t+ εβ cos t

and

ẍ = ε2
d2α

dτ2
cos t− 2ε

dα

dτ
sin t− α cos t+ ε3

d2β

dτ2
sin t+ 2ε2

dβ

dτ
cos t− εβ sin t.

Substituting into (5.151), we obtain

ε2
(
d2α

dτ2
+ 2

dβ

dτ

)
cos t+ ε

(
−2

dα

dτ
+ ε2

d2β

dτ2
− 1

)
sin t = 0

with

α(0, ε) = 1 and
dα

dτ
(0, ε) + β(0, ε) = 0.

The linear independence of sin t and cos t implies that α and β must satisfy
the initial value problem

⎧⎪⎨
⎪⎩
2dα
dτ + 1 = ε2 d2β

dτ2 , α(0, ε) = 1

and

2dβ
dτ + d2α

dτ2 = 0, β(0, ε) + dα
dτ (0, ε) = 0.

(5.153)

We will solve the problem asymptotically for finite τ using power series

(
α(τ, ε)
β(τ, ε)

)
∼
∑
j≥0

(
αj(τ)
βj(τ)

)
εj . (5.154)
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The leading terms require

2
dα0

dτ
+ 1 = 0, α0(0) = 1

and

2
dβ0

dτ
+

d2α0

dτ2
= 0, β0(0) +

dα0

dτ
(0) = 0.

Thus

α0(τ) = 1− τ

2
and β0(τ) =

1

2
(5.155)

No further corrections are needed!

Exercises

1. Use two-timing to show that the asymptotic solution to the initial value
problem

ÿ + εẏ|ẏ|+ y = 0, y(0) = 1, ẏ(0) = 0

satisfies

y(t, τ) =
cos t

1 + 4τ
3π

+O(ε)

for τ = εt bounded.

Hint: The sin t coefficient in the Fourier expansion of sin t |sin t| is 8
3π

(cf. Mattheij et al. [309]).

2. (cf. Smith [466]). Consider the initial value problem for a weakly
coupled electrical circuit{

(1− ε2)Q′′
1 +Q1 = εQ2, Q1(0) = q, Q′

1(0) = 0

(1− ε2)Q′′
2 +Q2 = εQ1, Q2(0) = 0 = Q′

2(0)

and determine a solution of the form

Q1(t) = εA(τ, ε) sin t+B(τ, ε) cos t
Q2(t) = C(τ, ε) sin t+ εD(τ, ε) cos t

for 0 ≤ t ≤ 1
ε using averaging. Note the beat phenomenon!

3. (cf. O’Malley and Kirkinis [378]). Seek a solution of the Riccati equa-
tion

ẋ = −x2 + εx

of the form

x(t, ε) =
A

1 +At

and show that the slowly varying coefficient A is given by

A(t, ε) =
εx(0)

x(0) (1− εt− e−εt) + ε
.
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Historical Remarks

The very important work of Krylov, Bogoliubov, and Mitropolsky on aver-
aging and its applications was somewhat delayed in reaching the West from
Kiev. The 1937 Russian monograph by Krylov and Bogoliubov didn’t appear
in English until an abridged translation by Solomon Lefschetz was published
by Princeton University Press [267] in 1947. The 1955 monograph by Bo-
goliubov and Mitropolsky, Asymptotic Methods in the Theory of Nonlinear
Oscillations , appeared in an English version [51] by Hindustan Publishing
of New Delhi in 1961 (distributed in the West by Gordon and Breach). (Its
first sixty pages are now available on Google Scholar.) For many years, two-
timing was justified (cf. Morrison [327] and Perko [391]) because it gave the
same results as averaging. Now, direct proofs are known (cf., e.g., Murdock
[336] and Murdock and Wang [337]).

The physicists Chen, Goldenfeld, and Oono [81] presented their renormal-
ization group method as a unified approach to global asymptotic analysis.
They, indeed, succeeded in finding asymptotic approximations for solutions
to a wide variety of challenging problems from the literature. Figuring out
what their fundamental ideas are is not simple, but their aim to provide a uni-
versal technique is one all can subscribe to. Their underlying technique is to
eliminate secular terms in a regular perturbation expansion by replacing con-
stants by slowly varying amplitudes (or envelopes) that satisfy appropriate
RG equations to be integrated as initial value problems (cf. also Kunihiro
[270] and [271], Ei et al. [139], and Kirkinis [253]). See Goldenfeld [172] for
an ambitious update. It is clear that the renormalization group approach
is a resummation technique, closely related to averaging methods that sup-
press secular terms. The recent work of DeVille et al. [118] and Roberts
[418] emphasizes that it often produces an asymptotic solution in the clas-
sical Poincaré-Birkhoff normal form (cf. Guckenheimer and Holmes [188],
Sanders et al. [430], and Nayfeh [344]). Woodruff [528, 529] independently
developed a related invariance method (which deserves more attention than
it has received), applying it to systems of the form

ẋ = M(εαt)x+ εN(εαt, t, x)

for α = 1 or 2, where the matrix M has distinct, nonzero, purely imaginary
eigenvalues. Cheng [82] presents a hybrid scheme combining renormalization
and two-timing while Chiba [86, 87] provides a simplified RG method.

In section 3.7A of Oono [381], a proto-renormalization group approach is
developed for autonomous differential equations

Ly = εN(y)
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where L is a constant-coefficient linear differential operator and N is non-
linear. A somewhat analogous procedure is developed in Mudavanhu and
O’Malley [331].

In the following chapter, we shall give the renormalization group method
a new and somewhat simplified presentation, which we hope will be further
developed as a unification of many methods found in the literature.



Chapter 6

A Simple Multi-scale
Procedure for Both
Oscillatory and Boundary
Layer Problems

(a) Examples

In this final chapter, we shall develop a simple multiscale method by
applying it to a varied sequence of examples. Readers can consult O’Malley
and Kirkinis [377] for additional details.

1. A Linear Equation with Small Damping

Reconsider the linear equation

ÿ + 2εẏ + y = 0 on t ≥ 0 (6.1)

with

y(0) = 0 and ẏ(0) = 1

prescribed for a small damping coefficient ε > 0. Applying the regular per-
turbation procedure

y(t, ε) ∼
∑
k≥0

yk(t)ε
k,

© Springer International Publishing Switzerland 2014
R. O’Malley, Historical Developments in Singular Perturbations,
DOI 10.1007/978-3-319-11924-3 6

183



184 CHAPTER 6. A SIMPLE MULTI-SCALE PROCEDURE

we obtain secular terms yk for k ≥ 1 that grow like tke±it as t → ∞ (cf. the
last example of the preceding chapter). To get an asymptotic solution valid
on the moderately long time interval with

τ = εt

finite, we have to modify our naive regular perturbation approach (which
still remains valid for finite t) and instead seek an asymptotic solution in the
two-time form

y(t, τ, ε) = A(τ, ε)eit +A(τ, ε)e−it = A(τ, ε)it + c.c. (6.2)

where A is a slowly varying complex-valued amplitude to be determined
for finite τ and where c.c. represents the complex conjugate function.
Since the chain rule implies that ẏ =

(
iA+ εdAdτ

)
eit + c.c. and ÿ =(

A+ 2iεdAdτ + ε2 d2A
dτ2

)
eit + c.c.,

ÿ + 2εẏ + y = ε

(
2i
dA
dτ

+ 2iA+ ε
d2A
dτ2

+ 2ε
dA
dτ

)
eit + c.c. = 0 (6.3)

requires A to satisfy the regularly perturbed amplitude equation

dA
dτ

+A =
εi

2

(
d2A
dτ2

+ 2
dA
dτ

)
. (6.4)

Moreover, the representation (6.2) and the initial conditions

y(0) = A(0, ε) +A(0, ε) = 0

and

ẏ(0) = i
(A(0, ε)−A(0, ε)

)
+ ε

(
dA
dτ

(0, ε) +
dA
dτ

(0, ε)

)
= 1 (6.5)

specify the real and imaginary parts of A(0, ε) termwise when we take

A(τ, ε) = A0(τ) + εA1(τ) + . . . (6.6)

as a power series in ε. Thus, A(0, ε) = − i
2 − εRe

(
dA
dτ (0, ε)

)
. Substituting

(6.6) into (6.4) and (6.5) yields dA0

dτ +A0 = 0, so

A0(τ) = e−τA0(0) for A0(0) = − i

2
(6.7)

while dA1

dτ +A1 = i
2

(
d2A0

dτ2 + 2dA0

dτ

)
provides

A1(τ) = − i

2
A0(0)τe

−τ , (6.8)

etc. (since A1(0) = −Re
(
dA0

dτ (0)
)
= 0.)
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These results are satisfactory for finite τ values, but to get an asymptotic
solution on an even longer time interval, we can introduce the even slower
time

κ = ε2t (6.9)

and set

A(τ, ε) ≡ e−τB(κ, ε2) (6.10)

for the rescaled amplitude B. Substituting (6.10) into (6.4), B must satisfy

dB
dκ

+
i

2
B =

ε2i

2

d2B
dκ2

(6.11)

Since B(κ, 0) = e−
iκ
2 A0(0), we obtain the leading term approximation

y(t, τ, κ, ε) ∼ − i

2
eite−εte−

iε2t
2 + . . .+ c.c.

∼ − i

2
e(i−ε− iε2

2 +...)t + . . .+ c.c..

(6.12)

This agrees asymptotically with the exact solution

y(t, ε) =
e−εt

√
1− ε2

sin
(√

1− ε2t
)

for finite κ and also corresponds to using a multi-scale ansatz

y(t, ε) = e−εtei(1+ε2σ1+ε4σ2+...)tC(ε2) + c.c. (6.13)

for initially unspecified constants σ1, σ2, . . . (cf. Rubenfeld [428]). Alterna-
tively, we could directly renormalize by introducing slowly varying coefficients
depending on both τ = εt and κ = ε2t to again get a valid approximation
for finite κ. Tradeoffs between the order of approximation attained and the
asymptotic size of the time interval of validity can also be made (cf. Mur-
dock [335]). Henceforth, we shall avoid introducing further slow times, like κ,
but readers will realize that using such multivariable expansions can be both
valuable and necessary, depending on the degree of approximation desired
and the time interval of interest.

We note that Eckhaus [135] describes how the Ginzburg–Landau equa-
tion arises as the amplitude (or envelope) equation for a broad class of dif-
ferential equations. Moloney and Newell [325] and Ostrovsky and Potapov
[382] include applications to optics. Also see Schmid and Henningson [440].
Haberman [190] labels the method of multiple scales the method of slow
variation. This reflects the independent development of the multiple scales
technique by D. J. Benney and his MIT students (including M. Ablowitz,
R. Haberman, C. Lange, and A. Newell, among others). (Benney himself was
a student of the late C.-C. Lin, a prominent student of von Kármán in 1944).
Related methods for chemical oscillations can be found in Kuramoto [272].
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2. Duffing’s Equation

Let’s next reconsider Duffing’s equation

ÿ + y + εy3 = 0, t ≥ 0 (6.14)

with

y(0) = 1 and ẏ(0) = 0. (6.15)

A regular perturbation (or naive) expansion Σyκ(t)ε
κ provides the series

solution

y(t, ε) = α(ε)eit + ε

(
−3

2
iα|α|2teit + 1

8
α3e3it

)

+ ε2
(
− 9

8
α|α|4t2eit − 15

16
iα|α|4teit + 9

16
iα3|α|2te3it

− 21

64
α3|α|2e3it + 1

64
α5e5it

)
+ . . .+ c.c..

(6.16)

Here, the complex constant α(ε) can be uniquely determined asymptotically
as a power series in ε from applying the prescribed initial values. As briefly
introduced in Chap. 5, the renormalization group (or RG) method charac-
teristically drops all the unbounded terms (as t → ∞) in the naive expan-
sion and replaces the amplitude α(ε) in the remaining expansion by a slowly
varying function A(τ, ε) of the slow-time τ = εt that remains to be determined
(cf. Chen et al. [81]). Thus, for Duffing’s equation, it seeks an asymptotic
solution in the appealing form

y(t, τ, ε) = A(τ, ε)eit +
ε

8
A3(τ, ε)e3it +

ε2

64

(− 21A3(τ, ε)|A(τ, ε)|2e3it

+A5(τ, ε)e5it
)
+ . . .+ c.c..

(6.17)

Substituting (6.17) back into equation (6.14) requires A to satisfy the ampli-
tude equation

dA

dτ
= A|A|2

(
3i

2
− 15

16
ε|A|2 + iε2

128
|A|4 + . . .

)
(6.18)

for finite τ ≥ 0. Note that the coefficients in (6.18) are precisely the coeffi-
cients of the corresponding secular terms teit in the naive expansion (6.16).
We now take

A(0, ε) = α(ε).

Thus, the amplitude expansion

A(τ, ε) ∼ ΣAj(τ)ε
j
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is readily determined termwise from the initial value problem for (6.18) on
intervals where τ remains bounded. This RG procedure works, although it
is somewhat inefficient since it first obtains the naive expansion and then
eliminates its unbounded terms.

We shall now instead directly seek the asymptotic solution of Duffing’s
equation (6.14) for finite τ as the two-scale expansion

y(t, τ, ε) = A(τ, ε)eit + εB(τ, ε)e3it + ε2C(τ, ε)e5it + . . .+ c.c. (6.19)

for undetermined slowly varying complex coefficients A, B, C, . . . with power
series expansions in ε. We will ultimately obtain an amplitude equation for A
and formulas to obtain B, C, and later coefficients in terms of A. A somewhat
analogous approach was taken by Noble and Hussain [352], who refer to
their expansion as “generalized harmonic balance.” That work, according to
correspondence with Ben Noble, was continuing in 1990, but the author is
unaware of later publications. Equation (6.19) implies that

ẏ =

(
iA+ ε

dA

dτ

)
eit + ε

(
3iB + ε

dB

dτ

)
e3it

+ ε2
(
5iC + ε

dC

dτ

)
e5it + . . .+ c.c.,

ÿ =

(
−A+ 2iε

dA

dτ
+ ε2

d2A

dτ2

)
eit + ε

(
−9B + 6iε

dB

dτ
+ . . .

)
e3it

+ ε2 (−25C + . . .) e5it + . . .+ c.c.,

and

y3 = A3ε3it + 3A|A|2eit

+ 3ε(A2Be5it + 2|A|2Be3it +A
2
Beit) + . . .+ c.c.,

so

ÿ + y + εy3 = εeit
[
2i
dA

dτ
+ 3A|A|2 + ε

(
d2A

dτ2
+ 3A

2
B

)
+ . . .

]

+ εe3it
[
−8B +A3 + 6ε

(
idB

dτ
+ |A|2B

)
+ . . .

]

+ 3ε2e5it
[−8C +A2B + . . .

]
+ . . .+ c.c. = 0.

(6.20)

Linear independence of the powers eijt forces us to take

2i
dA

dτ
+ 3A|A|2 + ε

(
d2A

dτ2
+ 3A

2
B

)
+ . . . = 0,

−8B +A3 + 6ε

(
i
dB

dτ
+ |A|2B

)
+ . . . = 0,
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and

−8C +A2B + . . . = 0.

Iterating, then, we obtain

B =
A3

8

(
1− 21

8
ε|A|2 + . . .

)
(6.21)

and

C =
A5

64
+ . . . , (6.22)

where A must satisfy the amplitude equation

dA

dτ
=

3i

2
A|A|2

(
1− 5ε

8
|A|2 + . . .

)
. (6.23)

This is consistent with what we found more indirectly using renormaliza-
tion. Getting more terms is straightforward, especially when using computer
algebra.

We can easily determine A from (6.23) by using polar coordinates

A = Reiφ. (6.24)

First, R2 = AA implies that 2R dR
dτ = dA

dτ A+AdA
dτ = 0(ε2), so, indeed,

R(τ, ε) = |α(ε)| ≡ R(0, ε) (6.25)

(as is classically found using the Poincaré–Lindstedt method of strained coor-
dinates (cf. e.g., Nayfeh [341])). Next, eiφ = A

R implies that ieiφ dφ
dτ =

d
dτ

(
A
R

)
= 1

R
dA
dτ , so integrating

dφ

dτ
=

3

2
R2 − 15

16
εR4 +O(ε2),

we get

φ(τ, ε) = arg(α(ε)) +
3

2
R2

(
1− 5

8
εR2 + . . .

)
τ, (6.26)

Roberts [418] obtains analogous expansions using normal form techniques,
for which he also provides computer algebra implementations. Reexpansion
of the solution (6.19) for finite t agrees with the naive expansion.

To extend the validity of our results to time scales where τ is infinite,
one can introduce a frequency normalization, as proposed by Cheng [82], by
replacing t in the phase by

s = t(1 + β1ε+ β2ε
2 + · · · )

for appropriate βjs. This corresponds to two-timing using the slow time
τ = εt and a fast time s.
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We note that an alternative expansion in terms of real trigonometric
functions could also be used as a natural ansatz, i.e., we could seek a solution
in the form

x(t, τ, ε) = α(τ, ε) cos t+ β(τ, ε) sin t

+ ε(γ(τ, ε) cos 3t+ δ(τ, ε) sin 3t) + . . .

for slowly varying real coefficients α, β, γ, δ, . . . to be determined termwise
for finite τ . See Zhang et al. [535] for a generalization of this technique.

Exercises

1. (a) Obtain the naive expansion for the initial value problem

ÿ + y + εy2 = 0, y(0) = 1, ẏ(0) = 0

through O(ε2) terms.

(b) Determine the form of the asymptotic solution for t = O(1/ε2)
and the leading term in the solution of the amplitude equation.

2. (cf. O’Malley and Kirkinis [378]) Show that the initial value problem
for the nearly linear equation

ÿ + 4ẏ + 3y = εy2

has an asymptotic solution of the form

y(t, ε) = α(τ, ε)e−t + β(τ, ε)e−3t + ε
[
γ(τ, ε)e−2t + δ(τ, ε)e−4t + ζ(τ, ε)e−6t]

+O(ε2)

where the slowly varying coefficients α, β, γ, δ, and ζ vary with τ = εt.

3. (cf. Verhulst [504]) Solve the linear equation

ÿ + ε(2− e−εt)ẏ + y = 0

by seeking a solution of the form

y(t, ε) = A(τ, ε) cos t+B(τ, ε) sin t

with real coefficients A and B, depending on τ = εt.

3. A Linear Equation with a Turning Point

Following Chen et al. [81], we next consider the linear oscillator

ÿ + (1− εt)y = 0 (6.27)
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on t ≥ 0 with initial values

y(0) = 1 and ẏ(0) = 0. (6.28)

Since (6.27) has the form

ÿ + ω2(τ)y = 0,

for the slowly varying coefficient

ω(τ) =
√
1− τ and τ = εt,

we might expect the asymptotic solution to depend on both the fast time

T ≡ 1

ε

∫ τ

0

ω(s) ds =
2

3ε
(1− (1− τ)3/2) (6.29)

and the slow time τ (for motivation, cf. Bourland and Haberman [54],
O’Malley and Williams [380], Ablowitz [1], and Haberman [190]). Thus,
we shall seek an asymptotic solution to (6.27) of the form

y(T, τ, ε) = A(τ, ε)eiT + c.c.. (6.30)

Since ÿ =
(
−ω2A+ 2iωεdAdτ + iεdωdτ A+ ε2 d2A

dτ2

)
eiT+c.c., the given differential

equation forces the amplitude A to satisfy

2ω
dA

dτ
+

dω

dτ
A = εi

d2A

dτ2
. (6.31)

Introducing the power series

A(τ, ε) = A0(τ) + εA1(τ) + . . . , (6.32)

we obtain

A0(τ) =
A0(0)

(1− τ)1/4
(6.33)

to provide the leading-order approximation

y(t, ε) =
1

(1− εt)1/4
cos

(
2

3ε
(1− (1− εt))3/2

)
+O(ε) (6.34)

which agrees with the leading asymptotic approximation of the exact solution

y(t, ε) = π

[
Bi′
(
− 1

ε2/3

)
Ai

(
εt− 1

ε2/3

)
−Ai′

(
− 1

ε2/3

)
Bi

(
εt− 1

ε2/3

)]
(6.35)

(using the Airy functions Ai and Bi, solutions of the Airy equation z′′ = xz)
and with the WKB approximation. For finite t, (6.34) also agrees with the
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approximation y(t, ε) ∼ eεt/4 cos
(
t− ε

4 t
2
)
of Chen et al. [81], but (6.34) also

holds for τ < 1, i.e. up to the turning point, a singular point of the limiting
amplitude equation.

The related equation
ÿ + e−εty = 0

is solved by the Bessel functions J0
(
2
ε e

−εt/2
)
and Y0

(
2
ε e

−εt/2
)
, while its two-

time expansion holds for

εeεt/2 � 1

(cf. Cheng and Wu [84]).
Ablowitz [1] shows how analogous multiple scale arguments can be used

for the nonlinear pendulum equation

ÿ + ρ2(εt) sin y = 0

while Johnson [226] considers

ÿ + a(εt)y + b(εt)y3 = 0,

i.e. Duffing’s equation with slowly varying coefficients. Nayfeh [341] earlier
considered the linear equation

ÿ + p(εt, ε)ẏ + q(εt, ε)y = r(εt, ε)eiφ(t,ε).

Likewise, the first-order initial value problem

ẏ + 2εty = 0, y(0) = 1

has the exact solution

y(t, ε) = e−εt2 ,

depending on the nonlinear scale T = εt2.

4. The Duffing–van der Pol Equation

Benney and Newell [37] introduced the Duffing–van der Pol equation

ÿ + y + εy3 + ε2(y2 − 1)ẏ = 0. (6.36)

It was later treated by other authors, including Mudavanhu and O’Malley
[330]. We shall naturally seek an asymptotic solution

y(t, ε) = A(τ, ε)eit + εB(τ, ε)e3it + ε2C(τ, ε)e5it + . . .+ c.c. (6.37)

for τ = εt finite. Differentiating (6.37) and collecting coefficients of eit, e3it,
e5it, . . . in (6.36), we find that A must satisfy the amplitude equation

dA

dτ
=

3i

2
A|A|2 − εA

2
(|A|2 − 1) +

εi

2

d2A

dτ2
+ . . .
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while

B ∼ A3

8
and C ∼ A2B

8
.

Iterating, we rewrite the amplitude equation as

dA

dτ
=

3i

2
A|A|2 + εA

2

[
1− |A|2 − 27i

4
|A|4 + . . .

]
(6.38)

and we will solve it using polar coordinates

A = Reiφ (6.39)

to provide the separated equations

dR

dτ
=

εR

2
(1−R2) + . . . (6.40)

and

dφ

dτ
=

3

2
R2

(
1 +

9ε

4
R2 + . . .

)
(6.41)

for the amplitude R and phase φ. Note that (6.40) shows that R is actually
a function of the slower time

κ = ετ = ε2t. (6.42)

Setting

R(κ, ε) = R0(κ) + εR1(κ) + . . . , (6.43)

R0 must satisfy the Bernoulli equation

dR0

dκ
=

R0

2

(
1−R2

0

)
. (6.44)

We can explicitly obtain R0. It decays to the steady-state 1 as κ → ∞
(presuming R0(0) �= 0). Knowing R to any order in ε, we next integrate
(6.41) to find φ asymptotically.

5. Morrison’s Counterexample

Morrison [327] introduced the oscillator

ÿ + y + ε(ẏ3 + 3εẏ) = 0 (6.45)

as a counterexample to traditional two-timing. Proceeding as above, we set

y(t, τ, ε) = A(τ, ε)eit + εB(τ, ε)e3it + ε2C(τ, ε)e5it + . . .+ c.c. (6.46)
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for undetermined coefficients A, B, C, . . . depending on the slow variable
τ = εt and ε. Differentiating and separating coefficients of successive odd
powers of eit in (6.46), we find that

B ∼ −A3

8

(
i+

45

8
ε|A|2 + . . .

)
(6.47)

and

C ∼ 3

64
A5 + . . . , (6.48)

while A must satisfy the amplitude equation

dA

dτ
+ 3iA|A|2 + 3

2
A|A|4 + 3ε

2
A

(
1 +

3i

8
|A|4

)
+ . . . = 0. (6.49)

When we set A = Reiφ, we get the separated equations

dR

dτ
= −3

2
(R3 + εR+ . . .) (6.50)

and

dφ

dτ
= −3

2
R2

(
1 +

3ε

8
R2 + . . .

)
.

Integrating the φ equation is straightforward once R is known, but integrating
(6.50) for R(τ, ε) is a little tricky. If we balance the first three terms, we get
a Bernoulli equation for R(κ, ε) whose nontrivial solutions decay to zero as

κ = ε2t = ετ (6.51)

tends to infinity. The linear third term in (6.50) dominates the second when
R = O(ε1/2), so ignoring it gets two-timing in trouble (cf. the apologetic
discussion in Kevorkian and Cole [249] and Exercise 6 at the end of Chap. 2).
Likewise, one can consider the solvable initial value problem for ẏ = εy2−ε2y.

Exercise

The system {
ẋ = x(y − εy2)

ẏ = − lnx− εy

studied by Chiba [85] reduces to

ÿ + y + ε(ẏ − y2) = 0

when lnx is eliminated from the system. Show that the appropriate ansatz
to obtain the asymptotic solution is

y(t, τ, ε) = A(τ, ε)eit + ε(B(τ, ε) + C(τ, ε)e2it) + ε2D(τ, ε)e3it + . . .+ c.c.

where A, B, C, D, etc. are slowly varying functions of τ = εt for finite τ .
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6. A Homogeneous Linear Initial Value Problem

For the scalar linear equation

εÿ + a(t)ẏ + b(t)y = 0, t ≥ 0 (6.52)

with initial values y(0) and ẏ(0) prescribed, presuming

a(t) > 0 (6.53)

and that a and b are smooth, we can expect y to converge to the solution of
the reduced problem

a(t)Ẏ0 + b(t)Y0 = 0, Y0(0) = y(0)

for bounded intervals of t ≥ 0. To describe the nonuniform convergence of ẏ
near t = 0, we introduce the natural stretched variable

η =
1

ε

∫ t

0

a(s) ds (6.54)

and the two-time ansatz

y(t, η, ε) = A(t, ε) + εB(t, ε)e−η. (6.55)

Then ẏ = Ȧ+(−aB+ εḂ)e−η and εÿ = εÄ+(a2B− 2εaḂ− εȧB+ ε2B̈)e−η,
so (6.52) implies that

εÄ+ aȦ+ bA+ ε(−aḂ − ȧB + bB + εB̈)e−η = 0.

The linear independence of 1 and e−η imply that the outer expansion A(t, ε)
must, as expected, satisfy

εÄ+ aȦ+ bA = 0 (6.56)

as a power series ΣAκε
κ in ε, while B(t, ε) must satisfy

aḂ + ȧB − bB = εB̈ (6.57)

as a series ΣBκε
κ. Moreover, (6.55) converts the initial conditions to

⎧⎪⎨
⎪⎩
A(0, ε) + εB(0, ε) = y(0)

and

Ȧ(0, ε)− a(0)B(0, ε) + εḂ(0, ε) = ẏ(0).

(6.58)

Since A0(t) must satisfy the initial value problem

a(t)Ȧ0 + b(t)A0 = 0, A0(0) = y(0),

A0(t) = e−
∫ t
0

b(s)
a(s)

ds a(0)

a(t)
y(0) (6.59)
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while

a(t)Ḃ0 + (ȧ− b)B0 = 0, B0(0) = (Ȧ0(0)− ẏ(0))/a(0)

implies that

B0(t) = −e
∫ t
0

b(s)
a(s)

ds 1

a(t)

(
ẏ(0) +

b(0)y(0)

a(0)

)
. (6.60)

Higher-order terms in the expansions for A and B follow uniquely without
complication. When the outer limit A0 decays asymptotically as t → ∞, the
expansion may even remain valid for unbounded t (cf. Hoppensteadt [212]).
Otherwise, we should only use the results for finite t values.

7. A Linear Two-Point Problem

For the two-point linear problem

εy′′ + a(x)y′ + b(x)y = c(x), 0 ≤ x ≤ 1 (6.61)

with

a(x) > 0, (6.62)

smooth coefficients a, b, and c, and for prescribed bounded endvalues

y(0) and y(1),

we will find an asymptotic solution in the form

y(x, η, ε) = A(x, ε) +B(x, ε)e−η (6.63)

for the (fast or) boundary layer variable

η =
1

ε

∫ x

0

a(s) ds. (6.64)

(Thus, as Wasow’s thesis showed, we again have an initial layer.) Since

εy′′ + a(x)y′ + b(x)y = εA′′ + a(x)A′ + b(x)A

+ (εB′′ − aB′ + (b− a′)B)e−η = c(x)

while, up to asymptotically negligible terms,

A(0, ε) +B(0, ε) = y(0) and A(1, ε) ∼ y(1),

the outer solution A must satisfy the terminal value problem

εA′′ + a(x)A′ + b(x)A = c(x), A(1, ε) = y(1) (6.65)



196 CHAPTER 6. A SIMPLE MULTI-SCALE PROCEDURE

as a power series, while B must satisfy the initial value problem

εB′′ − aB′ + (b− a′)B = 0, B(0, ε) = y(0)−A(0, ε). (6.66)

Occasionally, such problems have a trivial boundary layer correction B. An
example is provided by

εy′′ + y′ + y = 1 + x, y(0) = 0 and y(1) = 1

since the outer solution

A(x, ε) = x

is an exact solution of the two-point problem. The initial layer would reap-
pear when the initial value is changed to a nontrivial y(0).

If a(x) were negative everywhere, the asymptotic solution of (6.61) would
instead have the form

y(x, ξ, ε) = C(x, ε) +D(x, ε)e−ξ for ξ =
1

ε

∫ 1

x

a(s) ds,

i.e. it would display the analogous terminal boundary layer. In the special
case

εy′′ + (1 + x)y′ − y = 0, (6.67)

of (6.61)–(6.62), the outer solution of (6.67) is simply

A(x, ε) =
1

2
(1 + x)y(1), (6.68)

while the stretched variable

η =
1

ε

∫ x

0

(1 + s) ds =
x

ε

(
1 +

x

2

)
(6.69)

determines an initial layer correction B(x, ε)e−η with

B(x, 0) =
(y(0)− y(1)/2)

(1 + x)2
. (6.70)

The full expansion (6.63) can, of course, also be obtained from the exact
solution

y(x, ε) =
1

2
(1 + x)y(1) + (1 + x)

∫ 1

x
1

(1+s)2 e
− 1

ε

(
s+ s2

2

)

ds

∫ 1

0
1

(1+s)2 e
− 1

ε

(
s+ s2

2

)

ds

(
y(0)− y(1)

2

)

using Laplace’s method.
Note: We can use the WKB method to show that (6.61) has solutions

of the form (6.63). The theory of Maslov [307] shows that WKB holds even
more broadly.
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As pointed out by Nayfeh [341], the unpublished 1951 Caltech thesis of
Gordon Latta [281] used the ansatz (6.63) to solve such linear boundary value
problems.

In the special case of the Frobenius equation

εxy′′ − y′ − xy = 0, 0 ≤ x ≤ 1 with y(0) = y(1) = 1 (6.71)

(from Bender and Orszag [36]), we’d expect to have a terminal layer since

a(x) = − 1

x
< 0.

Thus, we introduce the stretched variable

ξ =
1

ε

∫ 1

x

ds

s
= − lnx

ε
.

Since e−ξ = x1/ε, we shall seek an asymptotic solution of (6.71) in the form

y(x, ε) = A(x, ε) +B(x, ε)x1/ε (6.72)

where A and B have power series expansions in ε. Clearly, x1/ε is asymp-
totically negligible for any fixed x < 1, yet very important for x near 1.
Differentiating (6.72) twice, we get

εxy′′ − y′ − xy = (εxA′′ −A′ − xA) +

(
εxB′′ +B′ − B

x
− xB

)
x1/ε = 0.

Thus, the series for A should satisfy the initial value problem

εxA′′ −A′ − xA = 0, A(0, ε) = 1 (6.73)

as a power series in ε, while B should satisfy

εx2B′′ + xB′ − (1 + x2)B = 0, B(1, ε) = 1−A(1, ε). (6.74)

Their leading terms are

A0(x) = e−x2/2 and B0(x) = xe(x
2−1)/2

(
1− 1√

e

)
. (6.75)

Exercises

1. Since the asymptotic solution of

εy′ + a(x)y = −b(x),

with a(x) > 0 can be found for x ≥ 0 in the form

y(x, ε) = A(x, ε) + e−
1
ε

∫ x
0

a(s) ds(y(0)−A(0, ε)),
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we might expect to find the asymptotic solution of the corresponding
Riccati equation

εz′ = a(x)z + b(x)z2

in the form

z(x, ε) =
1

A(x, ε) + e−
1
ε

∫ x
0

a(s) dsk(ε)
.

Show this by finding the explicit solution to the Riccati equation and
expanding the integrals involved asymptotically.

2. (Kevorkian and Cole [249]) For the boundary value problem

εy′′ + y′ + xy = 0, y(0) = 0, y(1) =
√
e,

one can find the exact solution in terms of Airy functions by using the
Sturm transformation

y = e−
x
2ε z.

Show that

y(x, ε) = A0(x) +B0(x)e
−x/ε +O(ε)

where A0(x) = ex
2/2 and B0(x) = −e−x2/2.

8. A Fourth-Order Two-Point Problem

The linear fourth-order equation

ε2y′′′′ − a2(x)y′′ = f(x), 0 ≤ x ≤ 1 (6.76)

for a(x) > 0 and with prescribed boundary values

y(0), y′(0), y(1), and y′(1) (6.77)

and ε > 0 small might arise in elasticity. We can expect nonuniform conver-
gence of y′, but not y, at both endpoints, according to Wasow [511]. Thus,
we will seek an asymptotic solution of the form

y(x, ε) = A(x, ε) + εB(x, ε)e−
1
ε

∫ x
0

a(s) ds + εC(x, ε)e−
1
ε

∫ 1
x
a(s) ds (6.78)

with power series for A, B, and C. Then

y′′ = A′′ +
(
εB′′ − 2aB′ − a′B +

a2

ε
B

)
e−

1
ε

∫ x
0

a(s) ds

+

(
εC ′′ + 2aC ′ + a′C +

a2

ε
C

)
e−

1
ε

∫ 1
x
a(s) ds
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and

y′′′′ = A′′′′ +
[
εB′′′′ − 4aB′′′ − 6a′B′′ − 4a′′B′ − a′′′B

+
1

ε

[
6a2B′′ + 12aa′B′ + 3(a′)2B + 4aa′′B

]

+
1

ε2
[−4a3B′ − 6a2a′B

]
+

a4B

ε3

]
e−

1
ε

∫ x
0

a(s) ds

+

[
εC ′′′′ + 4aC ′′′ + 6a′C ′′ + 4a′′C ′ + a′′′C

+
1

ε

[
6a2C ′′ + 12aa′C ′ + 3(a′)2C + 4aa′′C

]

+
1

ε2
(4a3C ′ + 6a2a′C) +

a4C

ε3

]
e−

1
ε

∫ 1
x
a(s) ds.

Substituting into the differential equation (6.76) and separating the coeffi-

cients of 1, e−
1
ε

∫ x
0

a(s) ds, and e−
1
ε

∫ 1
x
a(s) ds requires us to impose the decoupled

linear equations

ε2A′′′′ − a2A′′ = f, (6.79)

ε3B′′′′ − ε2(4aB′′′ + 6a′B′′ + 4a′′B′ + a′′′B) + ε
(
5a2B′′ + 12aa′B′

+ 3(a′)2B + 4aa′′B
)− (2a3B′ − 5a2a′B) = 0,

(6.80)

and

ε3C ′′′′ + ε2(4aC ′′′ + 6a′C ′′ + 4a′′C ′ + a′′′C) + ε
(
5a2C ′′ + 12aa′C ′

+ 3(a′)2C + 4aa′′C
)
+ (2a3C ′ + 5a2a′C) = 0

(6.81)

for power series A, B, and C. Moreover, the boundary conditions imply that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y(0) ∼ A(0, ε) + εB(0, ε)

y′(0) ∼ A′(0, ε)− a(0)B(0, ε) + εB′(0, ε)
y(1) ∼ A(1, ε) + εC(1, ε)

and

y′(1) ∼ A′(1, ε) + a(1)C(1, ε) + εC ′(1, ε).

(6.82)

As a result, the outer expansion A(x, ε) must satisfy the two-point outer
problem

ε2A′′′′ − a2A′′ = f, A(0, ε) ∼ y(0)− εB(0, ε),

and A(1, ε) ∼ y(1)− εC(1, ε),
(6.83)

the initial layer’s amplitude B(x, ε) will satisfy

− 2aB′ + 5a′B = O(ε), a(0)B(0, ε) ∼ A′(0, ε)− y′(0) + εB′(0, ε), (6.84)
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while C(x, ε) must satisfy

2aC ′ + 5a′C = O(ε), a(1)C(1, ε) ∼ y′(1)−A′(1, ε)− εC ′(1, ε). (6.85)

Thus, A0 follows as a solution of the two-point problem

A′′
0 =

f(x)

a2(x)
on 0 ≤ x ≤ 1 with A0(0) = y(0) and A0(1) = y(1) (6.86)

(i.e., a cancellation law applies), while B0 and C0 must satisfy

B′
0

B0
=

5a′

2a
on 0 ≤ x ≤ 1 with a(0)B0(0) = −y′(0) +A′

0(0), (6.87)

and

C ′
0

C0
= −5a′

2a
on 0 ≤ x ≤ 1 with a(1)C0(1) = y′(1)−A′

0(1). (6.88)

Specifically,

A0(x) = y(0) +

(
y(1)− y(0)−

∫ 1

0

(1− s)
f(s)

a2(s)
ds

)
x+

∫ x

0

(x− s)
f(s)

a2(s)
ds,

B0(x) =

(
a(x)

a(0)

)5/2

B0(0)

and

C0(x) =

(
a(1)

a(x)

)5/2

C0(1).

Later terms also follow without complication.

9. A Linear Two-Point Problem with a Turning Point

The linear equation

εy′′ − x(x+ 2)y′ + xy = 0, − 1 ≤ x ≤ 1 (6.89)

was considered by Hemker [202]. We will use boundary values

y(−1) = 1 and y(1) = 2. (6.90)

Because the coefficient of y′ is positive at x = −1 and negative at x = 1, we
might expect to have O(ε)-thick boundary layers at each endpoint.

The differential equation (6.89) has linearly independent solutions

y1(x) = x+ 2
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and

y2(x, ε) = (x+ 2)

∫ x

−1

e−
1
ε

∫ 1
t
s(s+2) ds

(t+ 2)2
dt, (6.91)

so all solutions have the form y(x, ε) = (x + 2)α + y2(x, ε)β for ε-dependent

constants α and β. Note that using y1(−1) = 1 eliminates the need for an
initial layer. Applying the boundary conditions, we get the exact solution

y(x, ε) = x+ 2− y2(x, ε)

y2(1, ε)
(6.92)

which features a terminal layer since

y2 ∼ 1

x(x+ 2)2
e−

1
ε

∫ 1
x
s(s+2) ds.

Alternatively, we might directly write the asymptotic solution of (6.89)–(6.90)
as

y(x, ε) = A(x, ε) +B(x, ε)e−ξ (6.93)

for

ξ =
1

ε

∫ 1

x

s(s+ 2) ds =
1

3ε
(1− x)(2 + x)2. (6.94)

Substituting (6.93) into (6.89) and separating coefficients of 1 and e−ξ, we
will need

εA′′ − x(x+ 2)A′ + xA = 0, A(−1, ε) = 1

and

εB′′ + x(x+ 2)B′ + (3x+ 2)B = 0, B(1, ε) = 2−A(1, ε). (6.95)

Thus, as anticipated,

A(x, ε) = x+ 2 (6.96)

and B(x, 0) satisfies

x(x+ 2)B′
0 + (3x+ 2)B0 = 0, B0(0) = −1.

The singularity of B0 at x = 0 is irrelevant because B0e
−ξ is asymptotically

negligible there.

10. Nonlinear Two-Point Problem I

Johnson [226] considered the quasilinear two-point problem

εy′′ + (1 + x)2y′ − y2 = 0, 0 ≤ x ≤ 1, y(0) = y(1) = 2. (6.97)

We’d naturally expect an initial layer corresponding to the stretched variable

η =
1

ε

∫ x

0

(1 + s)2 ds =
x

ε

(
1 + x+

x2

3

)
, (6.98)
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so we somewhat boldly seek an asymptotic solution of the form

y(x, η, ε) = A(x, ε) +B(x, ε)e−η + εC(x, ε)e−2η + . . . (6.99)

Since this implies that

εy′′ + (1 + x)2y′ − y2 = εA′′ + (1 + x)2A′ −A2

+ [εB′′ − (1 + x)2B′ − 2(1 + x+A)B]e−η

+
[
ε2C ′′ + ε

(− 3(1 + x)2C ′ − 4(1 + x)C − 2AC
)

+ 2(1 + x)2C −B2
]
e−2η + . . . = 0,

we ask the outer solution A(x, ε) to satisfy the nonlinear outer problem

εA′′ + (1 + x)2A′ −A2 = 0, A(1, ε) = y(1) = 2,

so we simply obtain

A(x, ε) = 1 + x. (6.100)

Then, B(x, ε) must satisfy the linear problem

(1 + x)2B′ + 4(1 + x)B = εB′′, B(0, ε) = −1− εC(0, ε) (6.101)

while C(x, ε) must satisfy

2(1 + x)2C −B2 − 3ε((1 + x)2C ′ + 2(1 + x)C) + ε2C ′′ = 0. (6.102)

Letting B(x, ε) ∼ ΣBj(x)ε
j and C(x, ε) ∼ ΣCj(x)ε

j , we determine the coef-
ficients termwise starting with

(1 + x)B′
0 + 4B0 = 0, B0(0) = 1,

(1 + x)2B′
1 + 4(1 + x)B1 = B′′

0 , B1(0) = −C0(0),

and

2(1 + x)2C0 = B2
0

to obtain the uniform approximation

y(x, η, ε) = 1 + x+
e−η

(1 + x)4

+
εe−η

6(1 + x)10
[
37(1 + x)6 − 40(1 + x)3 + 3e−η

]
+O(ε2).

(6.103)
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11. Nonlinear Two-Point Problem II

Johnson [226] also considered the two-point problem

εy′′ − y′

1 + 2x
− 1

y
= 0, 0 ≤ x ≤ 1, y(0) = y(1) = 3. (6.104)

Again, using the ansatz

y(x, η, ε) = A(x, ε) +B(x, ε)e−ξ + εC(x, ε)e−2ξ + . . . (6.105)

with

ξ =
1

ε

∫ 1

x

ds

1 + 2s
= − 1

2ε
ln

(
1 + 2x

3

)
, (6.106)

we separate the resulting coefficients of 1, e−ξ =
(
1+2x

3

)1/2ε
, and e−2ξ =(

1+2x
3

)1/ε
in (6.104) to get

εA′′ − A′

1 + 2x
− 1

A
= 0, A(0, ε) = 3, (6.107)

εB′′ − B′

1 + 2x
−
(

1

A2
+

2

1 + 2x

)
B = 0, B(1, ε) = 3−A(1, ε)− εC(1, ε),

(6.108)
and

ε2C ′′ + ε

(
3C ′

1 + 2x
− 4C

(1 + 2x)2

)
+

2C

(1 + 2x)2
=

B2

A3
(6.109)

since
1

y
=

1

A
− B

A2
e−ξ +

B2 − εAC

A3
e−2ξ + . . .

provided A �= 0. The leading coefficients are determined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0A
′
0 + (1 + 2x) = 0, A0(0) = 3,

A′
1

1+2x − A1

A2
0
= A′′

0 , A1(0) = 0,

B′
0 +
(

1+2x
A2

0
+ 2
)
B0 = 0, B0(1) = 3−A0(1),

B′
1

1+2x +
(

1
A2

0
+ 2

1+2x

)
B1

= B′′
0 + B0A1

A3
0

, B1(1) = 3−A1(1)− C0(1),

and

C0 =
(1+2x)2B2

0

2A3
0

.

(6.110)

No complications occur since A0(x) =
√
9− 2x− 2x2 > 0.
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12. Nonlinear Two-Point Problem III

The related example

εy′′ + y′ + e−y = 0, 0 ≤ x ≤ 1 (6.111)

using the boundary values

y(0) = y(1) = 0, (6.112)

is similar to one considered by Bender and Orszag [36], Chen et al. [81], and
Cheng [83]

If one used a regular perturbation expansion, one would encounter sec-
ular terms at order O(ε). One could renormalize to eliminate them by in-
troducing slowly varying amplitudes (cf. O’Malley and Kirkinis [375, 376]).
Correspondingly, we will attempt to find an asymptotic solution

y
(
x,

x

ε
, ε
)
= A(x, ε) +B(x, ε)e−x/ε + εC(x, ε)e−2x/ε +O(ε2), (6.113)

with undetermined amplitudes A, B, and C and the stretched variable

η = x/ε.

Since e−(A+Be−η) = e−A(1−Be−η+ 1
2B

2e−2η+ . . .), substituting (6.113) into
(6.111) implies that

(εA′′ +A′ + e−A) + (εB′′ −B′ − e−AB)e−x/ε

+

(
ε2C ′′ − 3εC ′ − εe−AC + 2C +

1

2
e−AB2

)
e−2x/ε + . . . = 0,

so we ask the outer solution A(x, ε) to satisfy the nonlinear terminal value
problem

εA′′ +A′ + e−A = 0, A(1, ε) = 0 (6.114)

as a power series in ε. Likewise, we ask B(x, ε) to satisfy the linear initial
value problem

εB′′ −B′ − e−AB = 0, B(0, ε) = −A(0, ε) (6.115)

while C(x, ε) must satisfy

2C +
1

2
e−AB2 − ε(3C ′ + e−AC) + ε2C ′′ = 0. (6.116)

Since A′
0 + e−A0 = 0, A0(1) = 0, the limiting outer solution is

A0(x) = ln(2− x). (6.117)
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Moreover, B′
0 + e−A0B0 = 0 and B0(0) = − ln 2 imply that

B0(x) =
1

2
(2− x) ln 2 (6.118)

and

C0(x) = −1

4
e−AB2

0 = (x− 2)

(
ln 2

2

)2

. (6.119)

As the earlier phase-plane analysis suggests, some two-point problems have
additional asymptotic solutions, not necessarily in the form we first envi-
sioned. Thus, McLeod and Sadhu [311] and Bakri et al. [23] both find an
initially unbounded solution to

εy′′ + 2y′ + ey = 0, y(0) = y(1) = 0,

in addition to the asymptotic solution with an initial layer.

13. A Quasilinear Two-Point Problem

For the general quasilinear equation

εy′′ + a(x)y′ + f(x, y) = 0, 0 ≤ x ≤ 1 (6.120)

with

a(x) > 0,

smooth functions a and f , and prescribed boundary values

y′(0) and y(1), (6.121)

we must expect the limiting solution A0(x) to satisfy the reduced problem

a(x)A′
0 + f(x,A0) = 0, A0(1) = y(1) (6.122)

(presuming existence of A0 throughout 0 ≤ x ≤ 1) and y′ to have an initial
layer. Thus, we will seek an asymptotic solution of the form

y(x, η, ε) = A(x, ε) + εB(x, ε)e−η +O(ε2e−2η) (6.123)

using the stretched variable

η =
1

ε

∫ x

0

a(s) ds. (6.124)

Then (6.120) implies that

(εA′′ + (ε2B′′ − 2εaB′ − εa′B + a2B)e−η + . . .)

+ a(x)(A′ + (εB′ − aB)e−η + . . .)

+ f(x,A+ εBe−η + . . .) = 0.
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Expanding f(x,A+ εBe−η + . . .) about y = A and separating coefficients of
1 and e−η, we ask the outer expansion A to satisfy

εA′′ + a(x)A′ + f(x,A) = 0, A(1, ε) = y(1) (6.125)

as a power series in ε. Likewise, we ask B to satisfy

εB′′ − aB′ − a′B + fy(x,A)B = 0,

−a(0)B(0, ε) +A′(0, ε) + εB′(0, ε) = y′(0).
(6.126)

All proceeds in a straightforward manner when A0(x) is defined throughout
0 ≤ x ≤ 1. In particular, B0(x) will then satisfy the linear initial value
problem

a(x)B′
0+a′(x)B0 = fy(x,A0)B0, a(0)B0(0) = −f(0, A0(0))

a(0)
−y′(0). (6.127)

14. A Nearly Linear Oscillator with Slowly Varying
Coefficients

Consider the initial value problem for the nearly linear oscillator

ÿ + ω2(τ)y + εκ(τ)y2 = 0 (6.128)

with ω > 0 and with ω and κ being given smooth functions of the slow time

τ = εt.

As in (6.27), we introduce the fast time

T =
1

ε

∫ τ

0

ω(s) ds (6.129)

(replacing t) and let the solution of (6.128) follow using the two-time ansatz

y(T, τ, ε) = A(τ, ε)eiT + ε
(
B(τ, ε) + C(τ, ε)e2iT

)
+O(ε2) + c.c. (6.130)

for undetermined amplitudes A, B, C, . . .. Then, the differential equation
(6.128) implies that

ÿ + ω2y + εκy2 = ε

(
2iω

dA

dτ
+ iA

dω

dτ
+ ε

d2A

dτ2
+ . . .

)
eiT

+ ε(ω2B + 2κ|A|2 + . . .)

+ ε

(
−3ω2C + κA2 + 2iε

dω

dτ
C + ε2

d2C

dτ2
+ . . .

)
e2iT

+ . . .+ c.c. = 0.

(6.131)
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Thus, the amplitude A must satisfy

2ω
dA

dτ
+A

dω

dτ
− iε

d2A

dτ2
+ . . . = 0 (6.132)

while

ω2B + 2κ|A|2 + . . . = 0 (6.133)

and

− 3ω2C + κA2 + . . . = 0. (6.134)

Further, the initial values

y(0) ∼ A(0, ε) + ε(B(0, ε) + C(0, ε)) + . . .+ c.c.

and

ẏ(0) ∼ iωA(0, ε) + ε

(
dA

dτ
(0, ε) + 2iωC(0, ε)

)
+ . . .+ c.c.

can be used to specify the complex initial value A(0, ε) termwise. The leading
coefficient is

A0(τ) =

√
ω(0)

ω(τ)
A0(0), (6.135)

analogous to the WKB approximation.

15. A Semilinear Two-Point Problem

Consider the semilinear scalar equation

ε2y′′ + f(x, y, ε) = 0, 0 ≤ x ≤ 1 (6.136)

with f smooth and with Neumann boundary conditions

y′(0) and y′(1) prescribed. (6.137)

We will suppose the reduced problem

f(x,A0, 0) = 0 (6.138)

has an isolated solution A0(x) defined throughout 0 ≤ x ≤ 1 such that the
resulting Jacobian matrix

fy(x,A0(x), 0) is strictly stable (6.139)

there. Then, the implicit function theorem allows us to termwise generate an
outer expansion

A(x, ε) ∼ Σj≥0Aj(x)ε
j (6.140)
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of the given equation. Thus,

fy(x,A0, 0)A1 + fε(x,A0, 0) = 0

and

fy(x,A0, 0)A2 +
1

2
fyy(x,A0, 0)A

2
1 +

1

2
fεε(x,A0, 0) +A′′

0 = 0

uniquely specify A1, A2, and A(x, ε) termwise in terms of A0. Since y′ must
generally have endpoint layers, we seek the asymptotic solution of (6.136)–
(6.137) in the form

y(x, ε) = A(x, ε) + εB(x, ε)e−
1
ε

∫ x
0

√
−fy(s,A(s,ε),ε) ds

+ εC(x, ε)e−
1
ε

∫ 1
x

√
−fy(s,A(s,ε),ε) ds + . . . .

(6.141)

Substituting into (6.136) shows that B(x, ε) must satisfy{
2B′√−fy(x,A, ε) +B(

√−fy(x,A, ε))x = εB′′ + . . .

B(0, ε)
√−fy(0, A(0, ε), ε) = A′(0, ε)− y′(0)− εB′(0, ε) + . . .

(6.142)

while{
2C ′√−fy(x,A, ε) + C(

√−fy(x,A, ε))x = −εC ′′ . . .
C(1, ε)

√−fy(1, A(1, ε), ε) = y′(1)−A′(1, ε)− εC ′(1, ε) + . . .
(6.143)

Thus ⎧⎪⎪⎨
⎪⎪⎩
B0(x) =

4

√
fy(0,A0(0),0)
fy(x,A0(x),0)

B0(0)

and

C0(x) =
4

√
fy(1,A0(1),0)
fy(x,A0(x),0)

C0(1),

(6.144)

as expected.

16. Linear Systems

Lastly, consider the linear vector initial value problem for the singularly per-
turbed (or slow/fast) system{

ẋ = A11(t)x+A12(t)y

εẏ = A21(t)x+A22(t)y
(6.145)

on a bounded interval 0 ≤ t ≤ T where

A22(t) is a strictly stable matrix. (6.146)

For prescribed initial vectors x(0) and y(0), we shall seek the asymptotic
solution {

x(t, ε) = α(t, ε) + εe
1
ε

∫ t
0
A22(s) dsγ(t, ε)

y(t, ε) = β(t, ε) + e
1
ε

∫ t
0
A22(s) dsδ(t, ε),

(6.147)
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presuming smooth coefficients in (6.145). We naturally expect the outer
solution (

α(t, ε)
β(t, ε)

)
(6.148)

to satisfy the system (6.145) as a power series

Σj≥0

(
αj(t)
βj(t)

)
εj

in ε. In particular, {
α̇0 = A11α0 +A12β0

0 = A21α0 +A22β0

implies that

β0(t) = −A−1
22 A21α0, (6.149)

leaving α0(t) to satisfy the lower-dimensional initial value problem

α̇0 = (A11 −A12A
−1
22 A21)α0, α0(0) = x(0). (6.150)

Imposing the initial condition

x(0) = α(0, ε) + εγ(0, ε) (6.151)

for the slow variable x termwise will force higher-order terms

(
αj(t)
βj(t)

)
for

j > 0 in the outer expansion to satisfy corresponding nonhomogeneous
differential equations with the initial value

αj(0) = −γj−1(0) (6.152)

determined by preceding terms in the initial layer correction.
Linearity requires this correction

e
1
ε

∫ t
0
A22(s) ds

(
εγ
δ

)
(6.153)

to also satisfy (6.145), so

e
1
ε

∫ t
0
A22(s) ds

(
A22γ + ε

dγ

dt

)
= e

1
ε

∫ t
0
A22(s) ds(εA11γ +A12δ)

and

e
1
ε

∫ t
0
A22(s) ds

(
A22δ + ε

dδ

dt

)
= e

1
ε

∫ t
0
A22(s) ds(εA21γ +A22δ)

i.e.

(A22 − εA11)γ = A12δ − ε
dγ

dt
and

dδ

dt
= A21γ.
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Thus, we will take

γ = (A22 − εA11)
−1

(
A12δ − ε

dγ

dt

)
(6.154)

while δ(t) must termwise satisfy

dδ

dt
= A21(A22 − εA11)

−1A12δ − εA21(A22 − εA11)
−1 dγ

dt
. (6.155)

together with the remaining initial condition

δ(0, ε) = y(0)− β(0, ε) (6.156)

for the fast-variable y. When we introduce power series expansions(
γ
δ

)
∼ Σj≥0

(
γj
δj

)
εj , (6.157)

all decouples most efficiently. We get

γ0 = A−1
22 A12δ0 (6.158)

where the exponential δ0 must satisfy the initial value problem

dδ0
dt

= A21A
−1
22 A12δ0, δ0(0) = y(0) +A−1

22 (0)A12(0)x(0). (6.159)

Higher-order coefficients satisfy corresponding nonhomogeneous problems.
The process used for this example is easier than that of Tikhonov–Levinson.

Among many possible generalizations (cf. O’Malley [364]), one could
analogously solve initial value problems for linear systems with two small
parameters like⎧⎪⎨

⎪⎩
ẋ = A11(t)x+A12(t)y +A13(t)z + b1(t)

εẏ = A21(t)x+A22(t)y + b2(t)

μż = A31(t)x+A33(t)z + b3(t)

on intervals 0 ≤ t ≤ 1 where the matrices

A22(t) and −A33(t)

are both strictly stable, subject to prescribed boundary values

x(0), y(0), and z(1)

for μ = ε or ε2. One could also consider kinematically similar systems where

u(t) = K(t, ε, μ)

(
y(t)
z(t)

)

for a smooth invertible matrix K.
Note that the asymptotic forms of solutions used for the preceding exam-

ples may be anticipated by considering simpler problems with known asymp-
totics. Thus, we have a method to successively improve our intuition.
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Exercises (cf. Zauderer [531] and O’Malley
and Kirkinis [377])

1. Determine the asymptotic behavior of the solution to the initial value
problem

εu′ + (x− 1)2u = 1, u(0) = 0.

2. Consider the Cauchy problem

ε(utt − c2uxx) + ut + ux = 0

with

u(x, 0) and ut(x, 0) prescribed for all x.

Seek a asymptotic solution of the form

u(x, t, ε) = A(x, t, ε) + εB(x, t, ε)e−t/ε.

3. (cf. Chen and O’Malley [79]) The boundary-value problem

{
εy′′ − b(x)y′ − g(x, y) = 0, 0 ≤ x ≤ 1

εy′(0) = y(0)− α, y′(1) = β

with b(x) > 0 arises in chemical reactor theory. Find an asymptotic
approximation of the form

y(x, ε) = A0(x) + ε
(
A1(x) +B1(x)e

− 1
ε

∫ x
0

b(s) ds
)
+O(ε2)

presuming A0(x) is defined for 0 ≤ x ≤ 1.

Note that Miller [318] and Johnson [226] find multiscale solutions for a
variety of boundary value problems for partial differential equations (cf. also
Kirkinis and O’Malley [254]).

(b) Exponential Asymptotics for Two-point
Problems

Howls [219] introduces transseries or templates to obtain exact solutions for
certain singular perturbation problems. In particular, he uses an infinity of
exponential scales as prefactors of divergent power series. We shall simply
illustrate his ideas on the linear example

{
εu′′ + (2x+ 1)u′ + 2u = 0, 0 ≤ x ≤ 1

u(0) = α, u(1) = β.
(6.160)
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He begins with the WKB ansatz

u(x, ε) = A(x, ε)+B(x, ε)e−F (x)/ε ∼
∞∑

n=0

ar(x)ε
r+e−

F (x)
ε

∞∑
r=0

br(x)ε
r (6.161)

(as we have been using) for

F (x) =

∫ x

0

(2s+ 1) ds = x2 + x.

At x = 1, we make an asymptotically negligible error, i.e. O(e−F (1)/ε) when
we take

A(1, ε) ∼
∞∑
r=0

ar(1)ε
r ∼ β.

We can compensate it by adding an additional series to the solution, pref-
actored by e−F (1)/ε, thereby cancelling the error at x = 1, but it will imply
that the initial conditions will then be violated asymptotically negligibly. We
could next add a new series, prefactored by e−(F (x)−F (1))/ε but that, in turn,
makes an error in satisfying the terminal condition, unless we add a fifth
series with prefactor e−2F (1)/ε.

To exactly satisfy the boundary conditions, Howls uses a ladder of series,
viz.

utrans(x, ε) ∼
∞∑
p=0

e−pF (1)/ε
∞∑
r=0

apr(x)ε
r

+ e−F (x)/ε
∞∑
p=0

e−pF (1)/ε
∞∑
r=0

b(p)r (x)εr.

(6.162)

The differential equation requires that

a(p)r (x) =
1

2x+ 1

[
a
(p)
r−1,x(1)− 3b(p−1)

r (1)− a
(p)
r−1,x(x)

]

and

b(p)r,x(x) =
1

2x− 1
b
(p)
r−1,xx(x)

subject to the boundary conditions

a(p)r (0) + b(p)r (0) = δr0δp0α

and

a(p)r (1) + b(p−1)
r (1) = δr0δp0β.
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All coefficients are thereby determined. Using just O(1) terms, he gets

utrans(x, ε) =

{
3β

2x+ 1
− (α− 3β)

2x+ 1

∞∑
p=1

3pe−pF (1)/ε

+ e−
F (x)

ε (α− 3β)

∞∑
p=0

3pe−pF (1)/ε

}
(1 +O(ε)).

For 3e−F (1)/ε < 1, the p sums converge, so

utrans(x, ε) =

{
3

2x+ 1

(
β − αe−F (1)/ε

1− 3e−F (1)/ε

)

+ e−
F (x)

ε

(
α− 3β

1− 3e−F (1)/ε

)}
(1 +O(ε)).

(6.163)

This approximation satisfies the differential equation and both boundary con-
ditions (to lowest order). It can be carried out to higher-orders and can be
related to a multiple scales expansion. The computational results hold for
quite moderate values of ε.

In analogous fashion, we can solve the two-point problem for the linear
equation

εu′′ + c(x)u′ + d(x)u = 0

using the fundamental set of WKB solutions. Extensions to nonlinear prob-
lems remain difficult, but very much worthy of study. One might, for ex-
ample, consider asymptotically negligible corrections to the solutions of the
nonlinear Examples 10–12.

(c) Epilog

In summary, we have demonstrated asymptotic methods to solve a wide
variety of singular perturbation problems. There, however, still remains no
clear-cut universal technique. Approximating solutions through asymptotic
and numerical techniques remains a challenge, despite all the advances made
since Prandtl and Poincaré. Yet, significant progress is certainly occurring
steadily. Our study of many examples certainly suggests the appropriate
ansatz for asymptotic solutions to a wide variety of problems. We hope this
presentation improves your understanding and motivates and facilitates con-
tinued research and applications regarding singular perturbations.
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et en Contrôle Optimal, vol. 1973 of Lecture Notes in Math (Springer,
Berlin, 1973)

[296] J.E. Littlewood, A Mathematician’s Miscellany (Methuen, London,
1953)

[297] L.L. Lo, The meniscus on a needle–a lesson in matching. J. Fluid Mech.
132, 65–78 (1983)



REFERENCES 235

[298] S.A. Lomov, Introduction to the General Theory of Singular Pertur-
bations, vol. 112 of Translations of Mathematical Monographs (Amer.
Math. Soc., Providence, RI, 1992)

[299] J. Lorenz, Analysis of difference schemes for a stationary shock prob-
lem. SIAM J. Numer. Anal. 21, 1038–1053 (1984)

[300] R. Lutz, M. Goze, Nonstandard Analysis: A Practical guide with Ap-
plications, vol. 881 of Lecture Notes in Math (Springer, Berlin, 1981)

[301] J. Lützen, Joseph Liouville 1809–1882: Master of Pure and Applied
Mathematics (Springer, New York, 1990)

[302] A.D. MacGillivray, A method for incorporating transcendentally small
terms into the method of matched asymptotic expansions. Stud. Appl.
Math. 99, 285–310 (1997)

[303] A.D. MacGillivray, R.J. Braun, G. Tanoglu, Perturbation analysis of a
problem of Carrier’s. Stud. Appl. Math. 104, 293–311 (2000)

[304] S. MacLane, Saunders MacLane: A Mathematical Autobiography
(A. K. Peters, Wellesley, MA, 2005)

[305] J.J. Mahony, An expansion method for singular perturbation problems.
J. Aust. Math. Soc. 2, 440–463 (1961–1962)

[306] J.J. Mahony, J.J. Shepherd, Stiff systems of ordinary differential equa-
tions. II. boundary value problems for completely stiff systems. J. Aust.
Math. Soc. B 23, 136–172 (1981–1982)

[307] V.P. Maslov, The Complex WKB Method for Nonlinear Equations I:
Linear Theory (Birkhäuser, Basel, 1994)
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(Vieweg, Brunsweig, 2000)

[315] G.E.A. Meier, Prandtl’s boundary layer concept and the work in
Göttingen, in IUTAM Symposium on One Hundred Years of Boundary
Layer Research, ed. by G.E.A. Meier, K.R. Sreenivasan, H.-J. Heine-
man (Springer, Dordrecht, 2006)

[316] R.E. Meyer, A view of the triple deck. SIAM J. Appl. Math. 43, 639–663
(1983)

[317] J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Fitted Numerical Methods
for Singular Perturbation Problems: Error Estimates in the Maximum
Norm for Linear Problems in One and Two Dimensions, revised edn.
(World Scientific, Singapore, 2012)

[318] P.D. Miller, Applied Asymptotic Analysis (Amer. Math. Soc., Provi-
dence, RI, 2006)

[319] N. Minorsky, Introduction to Nonlinear Mechanics (J. W. Edwards,
Ann Arbor, MI, 1947)

[320] W.L. Miranker, Numerical Methods for Stiff Equations and Singular
Perturbation Methods (D. Reidel, Dordrecht, 1981)

[321] E.F. Mischenko, N.Kh. Rozov, Differential Equations with Small Par-
ameters and Relaxation Oscillations (Plenum, New York, 1980)

[322] R. von Mises, K.-O. Friedrichs, Fluid Dynamics (Brown University,
Providence, RI, 1942)

[323] E.F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov,
Asymptotic Methods in Singularly Perturbed Systems (Consultants
Bureau, New York, 1994)

[324] C. Moler, Wilkinson’s polynomials, MATLAB CENTRAL-Cleve’s cor-
ner: Cleve Moler on Mathematics and Computing (March 4, 2013)

[325] J.V. Moloney, A.C. Newell, Nonlinear Optics (Westview, Boulder, CO,
2004)

[326] C.S. Morawetz, Kurt-Otto Friedrichs Selecta (Birkhäuser, Boston,
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