
Succinct Indexes for Reporting

Discriminating and Generic Words�

Sudip Biswas, Manish Patil, Rahul Shah, and Sharma V. Thankachan

Louisiana State University, USA
{sbiswas,mpatil,rahul,thanks}@csc.lsu.edu

Abstract. We consider the problem of indexing a collection D of D
strings (documents) of total n characters from an alphabet set of size σ,
such that whenever a pattern P (of p characters) and an integer τ ∈ [1, D]
comes as a query, we can efficiently report all (i) maximal generic words
and (ii) minimal discriminating words as defined below:

– maximal generic word is a maximal extension of P occurring in at
least τ documents..

– minimal discriminating word is a minimal extension of P occurring
in at most τ documents.

These problems were introduced by Kucherov et al. [8], and they pro-
posed linear space indexes occupying O(n log n) bits with query times
O(p+output) and O(p+log log n+output) for Problem (i) and Problem
(ii) respectively. In this paper, we describe succinct indexes of n log σ +
o(n log σ) + O(n) bits space with near optimal query times i.e., O(p +
log log n+ output) for both these problems.

1 Introduction and Related Work

Let D={d1, d2, d3, ..., dD} be a collection of D strings (which we call as docu-
ments) of total n characters from an alphabet set Σ of size σ. For simplicity
we assume, that every document ends with a special character $ which does not
appear any where else in the documents. Our task is to index D in order to
compute all (i) maximal generic words and (ii) minimal discriminating words
corresponding to the given query pattern P (of length p) and threshold τ . The
document frequency df(.) of a pattern P is defined as the number of distinct
documents in D containing P . Then, a generic word is an extension P̄ of P with
df(P̄) ≥ τ , and is maximal if df(P ′) < τ for all extensions P ′ of P̄ . Similarly,
a discriminating word is an extension P̄ of P with df(P̄) ≤ τ , and is called a
minimal discriminating word if df(P ′) > τ for any proper prefix P ′ of P̄ (i.e.,
P ′ �= P̄). These problems were introduced by Kucherov et al. [8], and they pro-
posed indexes of size O(n logn) bits or O(n) words. The query processing time
is optimal O(p + output) for reporting all maximal generic words, and is near
optimal O(p+log logn+output) for reporting all minimal discriminating words.

� This work is supported in part by National Science Foundation (NSF) Grants CCF–
1017623 and CCF–1218904.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 89–100, 2014.
c© Springer International Publishing Switzerland 2014

90 S. Biswas et al.

Later on Gawrychowski et al. [6] gave O(n) words space with optimal query time
index for minimal discriminating words problem. In this paper, we describe suc-
cinct indexes of n log σ+o(n logσ)+O(n) bits space with O(p+log logn+output)
query times for both these problems.

These problems are motivated from applications in computational biology.
For example, it is an interesting problem to identify words that are exclusive to
the genomic sequences of one species or family of species [3]. Such patterns that
appear in a small set of biologically related DNA sequences but do not appear
in other sequences the collection often carries a biological significance. Discrim-
inating and generic words also find applications in text mining and automated
text classification.

2 Preliminaries

2.1 Suffix Trees and Generalized Suffix Trees

For a text S[1...n], a substring S[i...n] with i ∈ [1, n] is called a suffix of T .
The suffix tree [13,9] of S is a lexicographic arrangement of all these n suffixes
in a compact trie structure of O(n) words space, where the i-th leftmost leaf
represents the i-th lexicographically smallest suffix of S. For a node i (i.e., node
with pre-order rank i), path(i) represents the text obtained by concatenating all
edge labels on the path from root to node i in a suffix tree. The locus node iP of
a pattern P is the node closest to the root such that the P is a prefix of path(iP).
The suffix range of a pattern P is given by the maximal range [sp, ep] such that
for sp ≤ j ≤ ep, P is a prefix of (lexicographically) j-th suffix of S. Therefore,
iP is the lowest common ancestor of sp-th and ep-th leaves. Using suffix tree,
the locus node as well as the suffix range of P can be computed in O(p) time,
where p denotes the length of P . Let T = d1d2...dD be the text obtained by
concatenating all documents in D. Recall that each document is assumed to end
with a special character $. The suffix tree of T is called the generalized suffix
tree (GST) of D.

Encoding of GST with the goal of supporting navigation and other tree oper-
ations has been extensively studied in the literature. We use the data structure
by Sadakane and Navarro [12] with focus on following operations:

– lca(i, j): the lowest common ancestor of two nodes i, j
– child(i, k): k-th child of node i
– level-ancestor(i, d): ancestor j of i such that depth(j)=depth(i)-d
– subtree-size(i): number of nodes in the subtree of node i

Lemma 1. [12] An ordinal tree with m nodes can be encoded by 2m+O(m
polylog(m))

bits supporting lca, k-th child, level-ancestor, and subtree-size queries in constant
time.

Define count(i) = df(path(i)). Using the data structure by Sadakane [11] we
can answer count(i) query efficiently for any input node i. Following lemma
summarizes the result in [11].

Succinct Indexes for Reporting Discriminating and Generic Words 91

Lemma 2. [11] Generalized suffix tree (GST) with n leaves can be encoded by
2n+ o(n) bits, supporting count(i) query in constant time.

2.2 Marking Scheme in GST

Here we briefly explain the marking scheme introduced by Hon et al. [7] which
will be used later in the proposed succinct index. We identify certain nodes in the
GST as marked nodes and prime nodes with respect to a parameter g called the
grouping factor. The procedure starts by combining every g consecutive leaves
(from left to right) together as a group, and marking the lowest common ancestor
(LCA) of first and last leaf in each group. Further, we mark the LCA of all pairs
of marked nodes recursively. We also ensure that the root is always marked. At
the end of this procedure, the number of marked nodes in GST will be not more
than 2n/g. Hon et al. [7] showed that, given any node u with u∗ being its highest
marked descendent (if exists), number of leaves in GST (u\u∗) i.e., the number
of leaves in the subtree of u, but not in the subtree of u∗ is at most 2g.

Prime nodes are the children of marked nodes (illustrated in figure 1). Corre-
sponding to any marked node u∗ (except the root node), there is a unique prime
node u′, which is its closest prime ancestor. In case u∗’s parent is marked then
u′ = u∗. For every prime node u′, the corresponding closest marked descendant
u∗ (if it exists) is unique.

2.3 Segment Intersection Problem

In [8] authors have shown how the problem of identifying minimal discriminating
words can be reduced to orthogonal segment intersection problem. In this article,
we rely on this key insight for both the problems under consideration and use
the result summarized in lemma below for segment intersection.

Lemma 3. [2] A given set I of n vertical segments of the form (xi, [yi, y
′
i]),

where xi, yi, y
′
i ∈ [1, n] can be indexed in O(n)-word space (in Word RAM model),

such that whenever a horizontal segment sq = ([xq , x
′
q], yq) comes as a query, all

those vertical segments in I that intersect with sq can be reported in O(log logn+
output) time.

2.4 Range Maximum Query

Let A be an array of length n, a range maximum query (RMQ) asks for the
position of the maximum value between two specified array indices [i, j]. i.e., the
RMQ should return an index k such that i ≤ k ≤ j and A[k] ≥ A[x] for all
i ≤ x ≤ j. We use the result captured in following lemma for our purpose.

Lemma 4. [4,5] By maintaining a 2n + o(n) bits structure, range maximum
query (RMQ) can be answered in O(1) time (without accessing the array).

92 S. Biswas et al.

3 Computing Maximal Generic Words

In this section, we first review a linear space index, which is based on the ideas
from the previous results [8]. Later we show how to employ sampling techniques
to achieve a space efficient solution.

3.1 Linear Space Index

Let iP be the locus node of the query pattern P . Then, our task is to return all
those nodes j in the subtree of iP such that count(j) ≥ τ and count(.) of every
child node of j is less than τ . Note that corresponding to each such output j,
path(j) represents a maximal generic word with respect to the query (P, τ). The
mentioned task can be performed efficiently by reducing the original problem to
a segment intersection problem as follows. Each node i in GST is mapped to
a vertical segment (i, [count(imax) + 1, count(i)]), where imax is the child of i
with the highest count(.) value. If i is a leaf node, then we set count(imax) = 0.
Moreover, if count(i) = count(imax) we do not maintain such a segment as it
can not possibly lead to a generic word. The set I of these segments is then
indexed using a linear space structure as described in Section 2.3. Additionally
we maintain the GST of D as well.

The maximal generic words corresponding to a query (P, τ) can be computed
by issuing an orthogonal segment intersection query on I with sq = ([iP , i

′
P], τ)

as the input, where iP is the locus node of pattern P and i′P represents the
rightmost leaf in the subtree of iP . It can be easily verified than path(j) corre-
sponding to each retrieved interval (j, [count(jmax) + 1, count(j)]) is a maximal
generic word. In conclusion, we have a linear space index of O(n) words with
O(log logn + output) query time. By combining with the space for GST , and
the initial O(p) time for pattern search where p is the size of pattern, we have
the following lemma.

Lemma 5. There exists an O(n) word data structure for reporting maximal
generic word queries in O(p+ log logn+ output) time. ��

3.2 Succinct Space Index

Our succinct space index for computing maximal generic words has the following
key components:

– For finding maximal generic words corresponding to the marked nodes, we
store a data structure similar to the one in [8] described above only for the
marked nodes, which takes space linear to the number of marked nodes.

– To capture the outputs falling in the path between two marked nodes, we
store a segment intersection index along with encoding of the path between
a marked node and its unique lowest prime ancestor.

– The remaining output fall in small subtrees which can be efficiently found
using bit encodings of subtrees and table structure.

Succinct Indexes for Reporting Discriminating and Generic Words 93

At first,, we begin by extending the marking scheme (illustrated in figure 1)
of Hon et al. [7] described earlier in Section 2.2 and then discuss our succinct
space index. We introduce the notion of orphan and maximal orphan nodes in
GST based on the marking scheme of Hon et al. [7] as follows:

1. Orphan node is a node with no marked node in its subtree. Note that the
number of leaves in the subtree of an orphan node is at most g.

2. maximal orphan is an orphan node with non-orphan parent. Therefore, every
orphan node has a unique maximal orphan ancestor. The number of leaves
in the subtree of any maximal orphan node is at most g and the number of
maximal orphan nodes can be ω(n/g).

Marked Nodes

Prime Nodes

Orphan Nodes

Maximal Orphan Nodes

Regular Nodes

g

Fig. 1. Marking Scheme

We now describe a structure to solve a variant of computing maximal generic
words summarized in lemma below that forms the basis of our final space-efficient
index. We choose g = � 1

8 logn	 as a grouping parameter in the marking scheme
of Hon et al. [7] and nodes in GST are identified by their pre-order rank.

Lemma 6. The collection D={d1, d2, d3, ..., dD} of strings of total n characters
can be indexed in (n log σ + O(n)) bits, such that given a query (P, τ), we can
identify all marked nodes j∗ satisfying either of the following condition in O(p+
log logn+ output) time.

– path(j∗) is a maximal generic word for input (P, τ)
– there is at least one node in N(j∗) = GST (j′/j∗) that corresponds to desired

maximal generic word, where j′ is a unique lowest prime ancestor of j∗

– j∗ is a highest marked descendant of locus node for pattern P

Proof. It can be noted that, N(j∗) is essentially a set of all nodes in the subtree
of j′ but not in the subtree of j∗ (N(j∗) does not include node j∗). To be
able to retrieve the required marked nodes in succinct space, we maintain index
consisting of following components:

94 S. Biswas et al.

– Instead of GST, we use its space efficient version i.e., a compressed suffix
array (CSA) of T . There are many versions of CSA’s available in litera-
ture, however for our purpose we use the one in [1] that occupies n log σ +
o(n log σ) + O(n) bits space and retrieves the suffix range of pattern P in
O(p) time.

– A 4n + o(n) bits encoding of GST structure (Lemma 1) to support the
(required) tree navigational operations in constant time.

– We keep a bit vector Bmark[1...2n], where Bmark[i] = 1 iff node i is a marked
node, with constant time rank-select supporting structures over it in O(n)
bits space [10]. This bit vector enables us to retrieve the unique highest
marked descendant of any given node in GST in constant time.

– We map each marked node i∗ to a vertical segment (i∗, [count(i∗max) +
1, count(i∗)]), where i∗max is the child of i∗ with the highest count(.) value.
The number of such segments can be bounded by O(n/g). The set I1 of
these segments is then indexed using a linear space structure as before in
O(n/g) = O(n/ logn) words or O(n) bits space. We note that segments
with count(i∗max) = count(i∗) are not included in set I1, as marked nodes
corresponding to those segments can not possibly lead to a generic word.

– We also maintain O(n) bit structure for set I2 of segments of the form
(i′, [count(i∗)+ 1, count(i′)]), where i∗ is a marked node and i′ is the unique
lowest prime ancestor of i∗. Once again the segments with count(i∗) =
count(i′) are not maintained.

Given an input (P, τ), we first retrieve the suffix range in O(p) time using
CSA and the locus node iP in another O(1) time using GST structure encoding.
Then we issue an orthogonal segment intersection query on I1 and I2 with
sq = ([iP , i

′
P], τ) as the input, i′P being the rightmost leaf in the subtree of iP .

Any marked node that corresponds to a maximal generic word for query (P, τ)
is thus retrieved by querying set I1. Instead of retrieving non-marked nodes
corresponding to the maximal generic word, the structure just described returns
their representative marked nodes instead.

For a segment in I2 that is reported as an answer, corresponding to a marked
node j∗ with j′ being its lowest prime ancestor, we have count(j′) ≥ τ and
count(j∗) < τ . Therefore, there must exist a parent-child node pair (u, v), on
the path from j′ to j∗ such that count(u) ≥ τ and count(v) < τ . As before,
let umax be the child of node u with the highest count(.) value. It can be easily
seen that if (v = umax) or (v �= umax with count(umax) < τ), then path(u) is
a maximal generic word with respect to (P, τ). Otherwise, consider the subtree
rooted at node umax. For this subtree count(umax) ≥ τ and count(.) = 1 for all
the leaves and hence it is guaranteed to contain at least one maximal generic
word for query (P, τ).

We highlight that the segment intersection query on set I2 will be able to
capture the node pairs (j∗, j′) where both j∗ and j′ are in the subtree of locus
node iP as the segments in I2 use (pre-order rank of) prime node as their
x coordinate. The case when both j∗, j′ are outside the subtree of iP can be
ignored as in this case none of the nodes in N(j∗) will be in the subtree of iP and

Succinct Indexes for Reporting Discriminating and Generic Words 95

hence can not lead to a desired output. Further we observe that for the remaining
scenario when locus node iP is on the path from j′ to j∗ (both exclusive), there
can be at-most one such pair (j∗, j′). This is true due to the way nodes are
marked in GST and moreover j∗ will be the highest marked descendant of iP (if
exists). Such j∗ can be obtained in constant time by first obtaining the marked
node using query select1(rank1(iP)+ 1) on Bmark and then evaluating if it is in
the subtree of iP . We note that in this case N(j∗) (j∗ being the highest marked
descendant of iP) may or may not result in a maximal generic word for query
(P, τ), however we can afford to verify it irrespective of the output due to its
uniqueness. ��

If a marked node j∗ reported by the data structure just described is retrieved
from set I1 then path(j∗) can be returned as an maximal generic word for query
(P, τ) directly. However, every other marked node retrieved needs to be decoded
to obtain the actual maximal generic word corresponding to one or more non-
marked nodes it represents. Before we describe the additional data structures
that enable such decoding, we classify the non-marked answers as orphan and
non-orphan outputs based on whether or not it has any marked node in its
subtree as defined earlier. Let j∗ be a marked node and j′ be its lowest prime
ancestor. A non-marked node that is an output is termed as orphan if it is not
on the path from j′ to j∗. Due to Lemma 6, every marked node retrieved from
I2 leads to either a orphan output or non-orphan outputs or both. Below, we
describe how to report all orphan and non-orphan outputs for a given query
(P, τ) and a marked node j∗. We first append the index in Lemma 6 by data
structure by Sadakane (Lemma 2) without affecting its space complexity to
answer count(.) query in constant time for any GST node.

Retrieving Non-orphan Outputs: To be able to report a non-orphan output of
query (P, τ) for a given marked node (if it exists), we maintain a collection of
bit vectors as follows:

– We associate a bit vector to each marked node i∗ that encodes count(.)
information of the nodes on the (top-down) path from i′ to i∗, i′ being
the (unique) lowest prime ancestor of i∗. Let x1, x2, ..., xr be the nodes on
this path inclusive of both i′ and i∗. Note that r ≤ g, δi = count(xi−1) −
count(xi) ≥ 0, and count(x1) − count(xr) ≤ 2g from the properties of
the marking scheme. Now we maintain a bit vector Bi∗ = 10δ110δ2 ...10δr

along with constant time rank-select supporting structures at marked node
i∗. Number of 0 in the bit-vector is count(x1) − count(x2) + count(x2) −
count(x3) + ... + count(xr−1) − count(xr) = count(x1) − count(xr). As
length of the bit vector is bounded by O(2g) and number of marked nodes
is bounded by O(n/g), total space required for these structures is O(n) bits.

– Given a node i we would like to retrieve the node imax i.e., child of node i
with the highest count(.) value in constant time. To enable such a lookup
we maintain a bit vector B = 10δ110δ2 ...10δn , where child(i, δi) = imax. If i
is leaf then we assume δi = 0. As each node contributes exactly one bit with

96 S. Biswas et al.

value 1 and at most one bit with value 0, length of the bit vector B is also
bounded by 2g and subsequently occupies O(n) bits.

Given a marked node j∗ and a query (P, τ), we need to retrieve a parent-
child node pair (u, v) on the path from j′ to j∗ such that count(u) ≥ τ and
count(v) < τ . We can obtain the lowest prime ancestor j′ of j∗ in constant time
to begin with [7]. Then to obtain a node u, we probe bit vector Bj∗ by issuing a
query rank1(select0(count(j

′) − τ)). We note that these rank-select operations
only returns the distance of the node u from j∗ which can be then used along with
level-ancestor query on j∗ to obtain u. To verify if path(u) indeed corresponds to
a maximal generic word, we need to check if count(.) ≤ τ for all the child nodes of
u. To achieve this, we retrieve the jmax = child(u, select1(u+1)−select1(u)−1)
and obtain its count value count(jmax) using a data structure by Sadakane
(Lemma 2) in constant time. Finally, if count(jmax) < τ then u can be reported
as an maximal generic word for (P, τ) query. If the input node j∗ is highest
marked descendant of locus node iP then we need to verify if node u is within
the subtree of iP before it can be reported as an maximal generic word. Thus
overall time spent per marked node to output the associated maximal generic
word (if any) is O(1). We note that unsuccessfully querying the marked node
for non-orphan output does not hurt the overall objective of optimal query time
since, such a marked node is guaranteed to generate orphan outputs (possibly
except the highest marked ancestor of locus node iP).

Retrieving Orphan Outputs: In this part we take advantage of the smaller size
of the subtrees rooted at any maximal orphan node. We use bit encodings for
every possible combination of the subtrees rooted at any maximal orphan node
and table for storing all the answers for each possible subtree. Query procedure
follows efficiently finding the encoding of the subtree and retrieving the answers
from the table.

Instead of retrieving orphan outputs of the query based on the marked nodes
as we did for non-orphan outputs, we retrieve them based on maximal orphan
nodes by following two step query algorithm: (i) identify all maximal orphan
nodes i in the subtree of the locus node iP of P , with count(i) ≥ τ and (ii)
explore the subtree of each such i to find out the actual (orphan) outputs. If
count(i) ≥ τ , then there exists at least on output in the subtree of i, otherwise
there will not be any output in the subtree of i.

Since an exhaustive search in the subtree of a maximal orphan node is pro-
hibitively expensive, we rely on the following insight to achieve the optimal
query time. For a node i in the GST, let subtree-size(i), leaves-size(i) repre-
sents the number of nodes and number of leaves in the subtree rooted at node i
respectively. The subtree of i can be then encoded (simple balanced parenthesis
encoding) in 2subtree-size(i) bits. Also the count(.) values of all nodes in the
subtree of i in GST can be encoded in 2leaves-size(i) bits using the encoding
scheme by Sadakane [11]. Therefore 2subtree-size(i) + 2leaves-size(i) bits are
sufficient to encode the subtree of any node i along with the count(.) informa-
tion. Since subtree-size(i) < 2leaves-size(i) and there are less than g leaves in

Succinct Indexes for Reporting Discriminating and Generic Words 97

the subtree of a maximal orphan node, for a maximal orphan node i we have
2subtree-size(i) + 2leaves-size(i) < 6g = 3

4 logn. This implies the number of
distinct maximal orphan nodes possible with respect to the above encoding is

bounded by
∑ 3

4 log n

k=1 2k = Θ(n3/4).
To be able to efficiently execute the two step algorithm to retrieve all orphan

outputs we maintain following components:

– A bit vector Borph[1...2n], where Borph[i] = 1 iff node i is a maximal orphan
node, along with constant time rank-select supporting structures over it
occupying O(n) bits space.

– Define an array E[1...], where E[i] = count(select1(i)) with select operation
applied to a bit vector Borph (i.e., the count of i-th maximal orphan node).
Array E is not maintained explicitly, instead a 2n+o(n) bits RMQ structure
over it is maintained.

– For each distinct encoding of a maximal orphan node out of total Θ(n3/4)
of them, we shall maintain the list of top-g answers for τ = 1, 2, 3, ..., g.
Note that for each τ , number of answers is bounded by g. Overall space is
therefore O(n3/4g2) = o(n) bits.

– The total n3/4 distinct encodings of maximal orphan nodes can be thought
to be categorized into groups of size 2k for k = 1, ..., 34 logn. Encodings for
all possible distinct maximal orphan nodes i having k = 2subtree-size(i) +
2leaves-size(i) are grouped together and let Lk be this set. Then for a given
maximal orphan node i in GST with k = 2subtree-size(i) + count(i), we
maintain a pointer so as to enable the lookup of all answers (at most g)
corresponding to the encoding of subtree of i among all the encoding in
set Lk. With number of bits required to represent such a pointer being
proportional to the number leaves in the subtree of a maximal orphan node
i i.e. 2subtree-size(i)+ count(i), overall space can be bounded by O(n) bits.

Query processing can now be handled as follows. Begin by identifying the x-th
and y-th maximal orphan nodes, which are the first and last maximal orphan
nodes in the subtree of the locus node iP in O(1) time as x = 1+ rank1(iP − 1)
and y = rank1(i

′
P) using bit vector Borph, where i′P is the rightmost leaf of

the subtree rooted at iP . Then, all those z ∈ [x, y] where E[z] ≥ τ can be
obtained in constant time per z using recursive range maximum queries on E
as follows: obtain z = RMQE(x, y), and if E[z] < τ , then stop recursion, else
recurse the queries on intervals [x, z − 1] and [z + 1, y]. Recall that even if E[z]
is not maintained explicitly, it can be obtained in constant time using Borph

as E[z] = count(select1(z)). Further, the maximal orphan node corresponding
to each z can be obtained in constant time as select1(z). In conclusion, step
(i) of query algorithm can be performed in optimal time. Finally, for each of
these maximal orphan nodes we can find the list of pre-computed answers based
on given τ and report them in optimal time. It can be noted that, for a given
maximal orphan node i, we first obtain subtree-size(i) and count(i) in constant
time using Lemma 1 and 2 respectively and than use the pointer stored as in
index in the set Lk, with k = subtree-size(i) + count(i).

98 S. Biswas et al.

Combining all pieces together we achieve the result summarized in following
theorem.

Theorem 1. The collection D={d1, d2, d3, ..., dD} of strings of total n charac-
ters can be indexed in (n log σ + O(n)) bits, such that given a query (P, τ), all
maximal generic words can be reported in O(p+ log logn+ output) time.

4 Computing Minimal Discriminating Words

In the case of minimal discriminating words, given a query pattern P and a
threshold τ , the objective is to find all nodes i in the subtree of locus node iP
such that count(i) ≤ τ and count(iparent) > τ , where iparent is the parent of
a node i. Then each of these nodes represent a minimal discriminating word
given by path(iparent) concatenated with the first leading character on the edge
connecting nodes iparent and i. A linear space index with same query bounds
as summarized in Lemma 5 can be obtained for minimal discriminating word
queries by following the description in Section 3.1, except in this scenario, we
map each node i in GST to a vertical segment (i, [count(i), count(iparent) + 1]).
Similarly, the succinct space solution can be obtained by following the same
index framework as that of maximal generic words. Below we briefly describe
the changes required in the index and query algorithm described in Section 3.2
so as to retrieve minimal discriminating words instead of maximal generic words.

We need to maintain all the components of index listed in the proof
for Lemma 6 with a single modification. The set I1 consists of seg-
ments obtained by mapping each marked node i∗ to a vertical segment
(i∗, [count(i∗), count(i∗parent) + 1]). By following the same arguments as before,
we can rewrite the Lemma 6 as follows:

Lemma 7. The collection D={d1, d2, d3, ..., dD} of strings of total n characters
can be indexed in (n log σ + O(n)) bits, such that given a query (P, τ), we can
identify all marked nodes j∗ satisfying either of the following condition in O(p+
log logn+ output) time.

– path(j∗parent) appended with leading character on edge j∗parent-j∗ is a minimal
discriminating word for input (P, τ)

– there is at least one node in N(j∗) = GST (j′/j∗) that corresponds to desired
minimal discriminating word, j′ being the unique lowest prime ancestor of
marked node j∗

– j∗ is a highest marked descendant of iP

We append the components required in the above lemma by data structure
by Sadakane (Lemma 2) to answer count(.) query in constant time for any GST
node and retrieve the non-orphan, orphan outputs separately as before.

Though we maintain same collection of bit vectors as required for maximal
generic words to retrieve non-orphan outputs, query processing differs slightly
in this case. Let i∗ be the input marked node and i′ be its lowest prime ancestor.

Succinct Indexes for Reporting Discriminating and Generic Words 99

Then we can obtain parent-child node pair (u, v) on the path from i′ to i∗ such
that count(u) > τ and count(v) ≤ τ in constant time. Node v can now be
returned as an answer since concatenation of path(u) with first character on
edge u-v will correspond to a minimal discriminating word. Thus, every marked
node obtained by segment intersection query on set I2 produces a non-orphan
output in this case as opposed to the case of maximal generating words where
it may or may not produce a non-orphan output. Also if the input node i∗ is
highest marked descendant of locus node iP then we need to verify if node v is
within the subtree of iP before it can be reported as an output.

Data structures and query algorithm to retrieve the orphan outputs remain
the same described earlier in Section 3.2. It is to be noted that top-g answers
to be stored for τ = 1, 2, 3, ..., g corresponding to each of the distinct maximal
orphan node encoding now corresponds to the minimal discriminating word.

Based on the above description, following theorem can be easily obtained.

Theorem 2. The collection D={d1, d2, d3, ..., dD} of strings of total n charac-
ters can be indexed in (n log σ + O(n)) bits, such that given a query (P, τ), all
minimal discriminating words can be reported in O(p+ log logn+ output) time.

5 Concluding Remarks

In this paper, we revisited the maximal generic word and minimal discriminating
word problem and proposed a first succinct index for both the problems. It
would be interesting to see if succinct index can be obtained for these problems
achieving optimum query time.

References

1. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 748–759.
Springer, Heidelberg (2011)

2. Chan, T.M.: Persistent predecessor search and orthogonal point location on the
word ram. In: SODA, pp. 1131–1145 (2011)

3. Fadiel, A., Lithwick, S., Ganji, G., Scherer, S.W.: Remarkable sequence signatures
in archaeal genomes. Archaea 1(3), 185–190 (2003)

4. Fischer, J., Heun, V.: A New Succinct Representation of RMQ-Information and
Improvements in the Enhanced Suffix Array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

5. Fischer, J., Heun, V., Stühler, H.M.: Practical Entropy-Bounded Schemes for O(1)-
Range Minimum Queries. In: IEEE DCC, pp. 272–281 (2008)

6. Gawrychowski, P., Kucherov, G., Nekrich, Y., Starikovskaya, T.: Minimal discrim-
inating words problem revisited. In: Kurland, O., Lewenstein, M., Porat, E. (eds.)
SPIRE 2013. LNCS, vol. 8214, pp. 129–140. Springer, Heidelberg (2013)

7. Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string
retrieval problems. In: FOCS, pp. 713–722 (2009)

100 S. Biswas et al.

8. Kucherov, G., Nekrich, Y., Starikovskaya, T.: Computing discriminating and
generic words. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani,
N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 307–317. Springer, Heidelberg (2012)

9. McCreight, E.M.: A space-economical suffix tree construction algorithm. J.
ACM 23(2), 262–272 (1976)

10. Raman, R., Raman, V., Rao, S.S.: Succinct Indexable Dictionaries with Applica-
tions to Encoding k-ary Trees and Multisets. In: ACM-SIAM SODA, pp. 233–242
(2002)

11. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms 5(1), 12–22 (2007)

12. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: SODA, pp. 134–149
(2010)

13. Weiner, P.: Linear pattern matching algorithms. In: SWAT (FOCS), pp. 1–11
(1973)

	Succinct Indexes for Reporting Discriminating and Generic Words
	1Introduction and Related Work
	2Preliminaries
	2.1Suffix Trees and Generalized Suffix Trees
	2.2Marking Scheme in GST
	2.3Segment Intersection Problem
	2.4Range Maximum Query

	3Computing Maximal Generic Words
	3.1Linear Space Index
	3.2Succinct Space Index

	4Computing Minimal Discriminating Words
	5Concluding Remarks

