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Abstract. Intuitively, if two strings S1 and S2 are sufficiently similar
and we already have an FM-index for S1 then, by storing a little ex-
tra information, we should be able to reuse parts of that index in an
FM-index for S2. We formalize this intuition and show that it can lead
to significant space savings in practice, as well as to some interesting
theoretical problems.

1 Introduction

FM-indexes [4] are core components in most modern DNA aligners (e.g., [8–10])
and have thus played an important role in the genomics revolution. Medical
researchers are now producing databases of hundreds or even thousands of hu-
man genomes, so bioinformatics researchers are working to improve FM-indexes’
compression of sets of nearly duplicate strings. As far as we know, however, the
solutions proposed so far (e.g., [3, 11]) index the concatenation of the genomes,
so we can search the whole database easily but searching only in one specified
genome is more difficult. In this paper we consider how to index each of the
genomes individually while still using reasonable space and query time.

Our intuition is that if two strings S1 and S2 are sufficiently similar and we
already have an FM-index for S1 then, by storing a little extra information,
we should be able to reuse parts of that index in an FM-index for S2. More
specifically, it seems S1’s and S2’s Burrows-Wheelers Transforms [2] (BWTs)
should also be fairly similar. Since BWTs are the main component of FM-indexes,
it is natural to try to take advantage of such similarity to build an index for S2

that “reuses” information already available in S1’s FM-index.
Among the many possible similarities one can find and exploit in the BWTs, in

this paper we consider the longest common subsequence (LCS). The BWT sorts
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the characters of a string into the lexicographic order of the suffixes following
those characters. For example, if

S1 = GCACTTAGAGGTCAGT, S2 = GCACTAGACGTCAGT;

then

BWT(S1) = TCTGCGTAAAAGGTGC, BWT(S2) = TGCTCGTAAAACGCG;

whose LCS TCTCGTAAAAGG is nearly as long as either BWT.
We introduce the concept of BW-distance BWD(S1, S2) between S1 and S2

defined as |S1| + |S2| − 2|LCS(BWT(S1),BWT(S2))|. Note that this coincides
with the edit distance between BWT(S1) and BWT(S2) when only insertions and
deletions are allowed. We prove that, if we are willing to tolerate a slight increase
in query times, we can build an index for S2 using an unmodified FM-index for
S1 and additional data structures whose total space in words is asymptotically
bounded by BWD(S1, S2) (Theorem 1).

This first result is the starting point for our investigation as it generates many
challenging issues. First, since we are interested in indexing whole genomes, we
observe that finding the LCS of strings whose length is of the order of billions
is outside the capabilities of most computers. Thus, in Section 3.1 we show how
to approximate the LCS of two BWTs, using combinatorial properties of the
BWT to align the sequences. In the same section we also discuss and test several
practical alternatives for building the index for S2 given the one for S1 and we
analyze their time/space trade-offs.

If we need an index not only for counting queries but also for locating and ex-
tracting, we must enrich it with suffix array (SA) samples. Such samples usually
take significantly less space than the main index. However, we may still want
to take advantage of the similarities between S1 and S2 to “reuse” SA samples
from S1 for S2’s index. In Section 4 we show that this is indeed possible if, in-
stead of considering the LCS between the BWTs, we use a common subsequence
with the additional constraint of being BWT-invariant (Theorem 2). This re-
sult motivates the problem of finding the longest BWT-invariant subsequence,
which unfortunately turns out to be NP-hard (Theorem 3). We therefore devise
a heuristic to find a “long” BWT-invariant subsequence in O(|S1| log |S1|) time.

We have tested our approach in practice by building an FM-index for the
genomes of two human individuals, “reusing” an FM-index of the human ref-
erence genome. The reference genome is 3096 million base pairs, the individual
genomes are 3002 million and 3036 million base pairs, and we found common
subsequences of 2935 million and 2992 million base pairs, respectively. Our index
is 3.8–5.0 times or 2.2–2.9 times smaller than a standard implementation of a
stand-alone FM-index, depending on the encoding of the stand-alone index. On
the other hand, queries to our index take about 11 times or 1.9 times longer,
respectively. Since our index is compressed relative to the underlying index for
the reference, we call it a relative FM-index.
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2 Review of the FM-Index Structure

The core component of an FM-index for a string S[1..n] is a data structure
supporting rank queries on the Burrows-Wheeler Transform BWT(S) of S. This
transform permutes the characters in S such that S[i] comes before S[j] in
BWT(S) if S[i+ 1..n] is lexicographically less than S[j + 1..n].

If the lexicographic range of suffixes of S starting with β is [i..j], then the
range of suffixes starting with aβ is

[
BWT(S).ranka(i− 1) + 1 +

∑
a′≺a

S.ranka′(n)..

BWT(S).ranka(j) +
∑
a′≺a

S.ranka′(n)

]

It follows that, if we have precomputed an array storing
∑

a′≺a S.ranka′(n) for
each distinct character a (i.e., the number of characters in S less than a), then
we can find the range of suffixes starting with a pattern P [1..m] — and, thus,
count its occurrences — using O(m) rank queries.

If the position of S[i] in BWT(S) is j, then the position of S[i− 1] is

BWT(S).rankS[i](j) +
∑

a≺S[i]

BWT(S).ranka(n) .

It follows that, if we have also precomputed a dictionary storing the position of
every rth character of S in BWT(S) with its position in S as satellite information,
then we can find a character’s position in S from its position in BWT(S) using
O(r) rank and membership queries. Therefore, once we know the lexicographic
range of suffixes starting with P , we can locate each of its occurrences using
O(r) rank queries.

Finally, if we have also precomputed an array storing the position of every
rth character of S in BWT(S), in order of appearance in S, then given i and j,
we can extract S[i..j] using O(r + j − i) rank queries.

3 BW-Distance and Relative FM-Indices

Given two strings S1[1..n1] and S2[1..n2] we define the BW-distance BWD(S1, S2)
between S1 and S2 as

BWD(S1, S2) = n1 + n2 − 2|LCS(BWT(S1),BWT(S2))|. (1)

Note that the BW-distance is nothing but the edit distance between BWT(S1)
and BWT(S2) when only insertions and deletions are allowed [13] (also known
as the shortest edit script or indel distance), and is thus at most twice their
normal edit distance. We now show how to support counting queries on S2 using
an FM-index for S1 and some auxiliary data structures taking O(BWD(S1, S2))
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words of space. Specifically, we consider how we can support rank queries on
BWT(S2) and partial-sum queries on the distinct characters’ frequencies.

Let C denote a LCS of BWT(S1) and BWT(S2) with |C| = m. Let C =
c1 · · · cm, and for i = 1, . . . ,m, let αi (resp. βi) be the position of ci in BWT(S1)
(resp. BWT(Ss)) with α1 < · · · < αm (resp. β1 < · · · < βm). Define

– bitvector B1[1..n1] with 0s in positions α1, . . . , αm,
– bitvector B2[1..n2] with 0s in positions of β1, . . . , βm,
– subsequence D1 of BWT(S1) marked by 1s in B1; D1 is the complement of

C in BWT(S1),
– subsequence D2 of BWT(S2) marked by 1s in B2; D2 is the complement of

C in BWT(S2).

We claim that if we can support fast rank queries on BWT(S1), B1, B2, D1

and D2 and fast select0 queries on B1, then we can support fast rank queries on
BWT(S2). To see why, notice that

BWT(S2).rankX(i) = C.rankX(B2.rank0(i))

+D2.rankX(B2.rank1(i))

and, by the same reasoning,

C.rankX(j) = BWT(S1).rankX(B1.select0(j))

−D1.rankX(B1.rank1(B1.select0(j))) .

Therefore,

BWT(S2).rankX(i) = BWT(S1).rankX(k)

−D1.rankX(B1.rank1(k))

+D2.rankX(B2.rank1(i))

where k = B1.select0(B2.rank0(i)).
For example, for the strings

S1 = GCACTTAGAGGTCAGT, S2 = GCACTAGACGTCAGT

given as an example in Section 1,

BWT(S1) = TCTGCGTAAAAGGTGC, BWT(S2) = TGCTCGTAAAACGCG;

and LCS(BWT(S1),BWT(S2)) = TCTCGTAAAAGG so

B1 = 0001000000000111 D1 = GTGC

B2 = 010000000001010 D2 = GCC .

Suppose we want to compute BWT(S2).rankC(13). Since
B1.select0(B2.rank0(13)) = 12,
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BWT(S2).rankC(13) = BWT(S1).rankC(12) − D1.rankC(B1.rank1(12))

+D2.rankC(B2.rank1(13)) = 3.

Observing that the number of 1s in B1 and B2 is O(max(n1, n2)−m) =
O(BWD(S1, S2)), we can store data structures for B1, B2, D1 and D2

in O(BWD(S1, S2)) space such that the desired rank/select queries take
O(logBWD(S1, S2)) time.

The only other component required for an FM-index for S2 for counting, is
a data structure for computing

∑
a′≺a S2.ranka′(n) for each character a. Notice

that BWD(S1, S2) is at least the number of distinct characters whose frequencies
in S1 and S2 differ. It follows that in O(BWD(S1, S2)) space we can store

– a O(logBWD(S1, S2))-time predecessor data structure storing those distinct
characters,

– an array storing
∑

a′≺a S2.ranka′(n2) for each such distinct character a.

For any distinct character b, we can find the preceding distinct character a whose
frequencies in S1 and S2 differ and compute∑
a′≺b

S2.ranka′(n2) =
∑
a′≺b

S1.ranka′(n1)−
∑
a′≺a

S1.ranka′(n1) +
∑
a′≺a

S2.ranka′(n2)

using O(logBWD(S1, S2)) time. Summing up:

Theorem 1. If we have an FM-index for S1, we can store a relative FM-index
for S2 using O(BWD(S1, S2)) words of extra space. Counting queries on the
relative FM-index take time an O(logBWD(S1, S2)) factor larger than on S1.

3.1 A Practical Implementation

A longest common sequence of BWT(S1) and BWT(S2) can be computed in
O(n1n2/w) time, where w is the word size [12]. Since we are mainly interested in
strings with a small BW-distance, a better alternative could be the algorithms
whose running times are bounded by the number of differences between the
input sequences (see eg [7, 13]). Unfortunately none of these algorithms is really
practical when working with such very large files as the complete genomes we
considered in our tests. Hence, to make the construction of a relative FM-index
practical, we approximate the LCS of the two Burrows-Wheeler transforms, using
the combinatorial properties of the BWT to align the sequences.

Let S1 be a random string of length n over alphabet Σ of size σ, and let string
S2 differ from it by s insertions, deletions, and substitutions. In the expected
case, the lexicographic rank of each suffix of S1 is determined by a prefix of
length O(logσ n) of that suffix. Thus, the s edit operations are expected to affect
the relative lexicographic order of O(s logσ n) suffixes [11], possibly causing the
characters immediately preceding those suffixes to appear in different positions



Relative FM-Indexes 57

in BWT(S1) and BWT(S2). The edits can also change the characters immediately
preceding at most s suffixes. If we remove the characters preceding the affected
suffixes from BWT(S1) and BWT(S2), we have a common subsequence of length
n−O(s logσ n) in the expected case.

Assume that we have partitioned the BWTs according to the first k characters
of the suffixes, for k ≥ 0. For all x ∈ Σk, let BWTx(S1) and BWTx(S2) be the
substrings of the BWTs corresponding to the suffixes starting with x. If we
remove the suffixes affected by the edit operations, as well as the suffixes where
string x covers an edit, we have a common subsequence BWT′

x of BWTx(S1) and
BWTx(S2). If we concatenate the sequences BWT′

x for all x, we get a common
subsequence of BWT(S1) and BWT(S2) of length n − O(s(k + logσ n)) in the
expected case. This suggests that we can find a long common subsequence of
BWT(S1) and BWT(S2) by partitioning the BWTs, finding an LCS for each
partition, and concatenating the results.

In practice, we partition the BWTs by variable-length strings. We use back-
ward searching on the BWTs to traverse the suffix trees of S1 and S2, selecting
a partition when either the length of BWTx(S1) or BWTx(S2) is at most 1024,
or the length of the pattern x reaches 32. For each partition, we use the greedy
LCS algorithm [13] to find the longest common subsequence of that partition.
To avoid hard cases, we stop the greedy algorithm if it would need diagonals
beyond ±50000, and match only the most common characters for that partition.
We also predict in advance the common cases where this happens (the difference
of the lengths of BWTx(S1) and BWTx(S2) is over 50000, or x = N32 for DNA
sequences, where N is the “any base” symbol), and match the most common
characters in that partition directly.

We implemented the counting structure of the relative FM-index using the
SDSL library [5], and compared its performance to a regular FM-index.1 To
encode the BWTs and sequences D1 and D2, we used Huffman-shaped wavelet
trees with either plain or entropy-compressed (RRR) [15] bitvectors. For marking
the positions of the LCS in BWT(S1) and BWT(S2), we used either entropy-
compressed or sparse [14] bitvectors.

The implementation was written in C++ and compiled on g++ version 4.7.3.
We used a system with 32 gigabyes of memory and two quad-core 2.53 GHz Intel
Xeon E5540 processors, running Ubuntu 12.04 with Linux kernel 3.2.0. Only one
CPU core was used in the experiments.

For our experiments, we used the 1000 Genomes Project assembly of the
human reference genome as sequence S1.

2 As sequence S2, we used the genome
of a Han Chinese male from the YanHuang project3, and the genome of the 1000
Genomes Project individual NA12878 (Utah female, maternal haplotype) [16].
The properties of the datasets can be seen in Table 1. As our pattern set, we

1 The implementation is available at http://jltsiren.kapsi.fi/relative-fm
2 GRCh37, ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/
reference/

3 ftp://public.genomics.org.cn/BGI/yanhuang/fa/

http://jltsiren.kapsi.fi/relative-fm
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
ftp://public.genomics.org.cn/BGI/yanhuang/fa/
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Table 1. Properties of the datasets. The length of the sequence and the common
subsequence of the BWTs; the number of matching patterns and the total number of
occurrences for those patterns.

Dataset Length LCS Matches Occurrences

Reference 3096M – – –
YanHuang 3002M 2935M 1.14M 5.49M
NA12878 3036M 2992M 1.21M 5.67M

Table 2. Experiments with human genomes. Dataset, bitvector used in the wavelet
trees (WT) and for the LCS; time and space requirements for building the relative
FM-index; time required for counting queries and index size for a regular FM-index
and a relative FM-index. The query times are averages over five runs.

Construction Regular Relative
Dataset WT LCS Time Space Time Size Time Size

[s] [MB] [s] [MB] [s] [MB]

YanHuang Plain RRR 708 9124 56.45 1090 621.47 288
YanHuang Plain Sparse 711 9124 56.45 1090 1162.47 290
YanHuang RRR RRR 5898 7823 328.86 628 1637.44 256
YanHuang RRR Sparse 5882 7823 328.86 628 1994.89 257

NA12878 Plain RRR 589 9124 57.31 1090 619.81 218
NA12878 Plain Sparse 575 9124 57.31 1090 1058.75 199
NA12878 RRR RRR 5454 7823 325.49 636 1614.56 192
NA12878 RRR Sparse 5412 7823 325.49 636 1921.92 173

used 3.68 million reads of length 108 from the 1000 Genomes Project individual
HG00122 (British female). The results of the experiments can be seen in Table 2.

The fastest variant of the relative FM-index uses plain bitvectors in the
wavelet trees and RRR bitvectors for the LCS. It is 3.8–5.0 times smaller and 11
times slower than a regular FM-index using plain bitvectors, and 2.2–2.9 times
smaller and 1.9 times slower than a regular index using RRR bitvectors. Switch-
ing to compressed bitvectors in the wavelet trees does not yield a good trade-off.
Using sparse bitvectors for the LCS is a slightly better option on the NA12878
dataset, making the relative index 1.1 times smaller and 1.7 times slower. On the
YanHuang dataset, sparse bitvectors require more space than RRR bitvectors,
because the sequence is too different from the reference.

Bitvectors B1 and B2 take 70% to 85% of the total size of the relative index,
so improving their compression may be the best way to make the index smaller.
Hybrid bitvectors using different encodings for different parts of the bitvector [6]
could be one option, but the existing implementation does not work with vectors
longer than 231 bits. It should be noted that the size difference between NA12878
and the reference is mostly due to the inclusion of chromosome Y (59 million
base pairs) in the reference. Therefore we can expect the relative FM-index to
work significantly better with male genomes than female genomes.
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Building a relative FM-index out of regular FM-indexes for two human
genomes takes 10–12 minutes. Using RRR bitvectors for the wavelet trees in-
creases this to 90–98 minutes, as extracting substrings from the wavelet trees
becomes the bottleneck. Decompressing the regular FM-index of S2 from the
regular index of S1 and the relative index of S2 should be even faster. As a
comparison, building BWT for a human genome takes 19–20 minutes and 25–26
gigabytes of memory using libdivsufsort 2.0.14, depending on the sequence. The
space usage of relative FM-index construction has not been optimized, and it
can probably be improved significantly.

4 Relative FM-Indices Supporting Locating and
Extracting

As mentioned in Section 2, an FM-index for S1 usually has an SA sample that
takes an only slightly sublinear number of bits. This sample has two parts: the
first consists of a bitvector R with 1s marking the positions in BWT(S1) of every
rth character in S1, and an array A storing a mapping from the ranks of those
characters’ positions in BWT(S1) to their positions in S1; the second is an array
storing a mapping from the ranks of those characters’ positions in S to their
positions in BWT(S1). With these, given the position of a sampled character in
BWT(S1), we can find its position in S1, and vice versa.

These parts are used for locating and extracting queries, respectively, and the
worst-case query times are proportional to r. On the other hand, the size of the
sample in words is proportional to the length of S divided by r. For details on how
the sample works, we direct the reader to the full description of FM-indexes [4].
We note only that if we sample irregularly, then the worst-case query times for
locating and extracting are proportional to the maximum distance in S between
two consecutive sampled characters. We leave consideration of extracting for the
full version of the paper — it is nearly symmetric to locating — so we do not
discuss the second part of the sample here.

Let G = S1[i1] · · · , S1[i�] denote a length-� common subsequence of S1

and S2 (not their BWTs). That is, we have i1 < · · · < i� and there exists
j1 < · · · < j� such that

S1[i1] = S2[j1], . . . , S1[i�] = S2[j�].

Since there is a one-to-one correspondence between the characters in a text and
in its BWT, we can define the indexes v1, . . . , v� (resp. w1, . . . , w�) such that
for k = 1, . . . , �, BWT(S1)[vk] is the character corresponding to S1[ik] (resp.
BWT(S2)[wk] is the character corresponding to S2[jk]). We say that the common
subsequence G is BWT-invariant if there exists a permutation π : {1, . . . , �} →
{1, . . . , �} such that we have simultaneously

vπ(1) < vπ(2) < · · · < vπ(�), and wπ(1) < wπ(2) < · · · < wπ(�). (2)

4 https://code.google.com/p/libdivsufsort/

https://code.google.com/p/libdivsufsort/


60 D. Belazzougui et al.

In other words, when we go from the texts to the BWTs the elements of G are
permuted in the same way in S1 and S2.

An immediate consequence of (2) is that the sequence

G′ = BWT(S1)[vπ(1)]BWT(S1)[vπ(2)] · · · BWT(S1)[vπ(�)]

is a common subsequence of BWT(S1) and BWT(S2). We can therefore general-
ize (1) and define

BWDG(S1, S2) = max(n1, n2)− |G|
and repeat the construction of Theorem 1 with BWD replaced by BWDG. How-
ever, since G is BWT-invariant it is now possible to reuse the the SA samples
from S1 relative to positions in G for the string S2 provided that we have

– bitvectorM1[1..n1] with 0s in positions i1, . . . , i�, supporting fast rank queries,
– bitvector M2[1..n2] with 0s in positions j1, . . . , j�, supporting fast select0

queries.

Summing up, we have (proof idea in the appendix):

Theorem 2. For any BWT-invariant subsequence G, if we already have an FM-
index for S1, then we can store O(BWDG(S1, S2)) extra words such that the time
bounds for locating and extracting queries on S2 are an O(logBWDG(S1, S2))
factor larger than on S1.

In view of the above theorem, it is certainly desirable to find the longest
common subsequence of S1 and S2 which is BWT-invariant. Unfortunately, this
problem is NP-hard as shown by the following result.

Theorem 3. It is NP-complete to determine whether there is an LCS of S1 and
S2 which is BWT-invariant, even when the strings are over a ternary alphabet.

Proof. Clearly we can check in polynomial time whether a given subsequence
of S1 and S2 has this property, so the problem is in NP. To show that it is
NP-complete, we reduce from the NP-complete problem of permutation pattern
matching [1], for which we are given two permutations π1 and π2 over n and m ≤
n elements, respectively, and asked to determine whether there is a subsequence
of π1 of length m such that the relative order of the elements in that subsequence
is the same as the relative order of the elements in π2. For example, if π1 =
6, 3, 2, 1, 4, 5 and π2 = 4, 2, 1, 3, then 6, 2, 1, 4 is such a subsequence. Specifically,
we set

S1 = ABπ1[1]ABπ1[2] · · ·ABπ1[n], S2 = ACπ2[1]ACπ2[2] · · ·ACπ2[m] ,

so the unique LCS of S1 and S2 is Am. For our example,

S1 = AB6AB3AB2ABAB5 = ABBBBBBABBBABBABABBBBB

S2 = AC4AC2ACAC3 = ACCCCACCACACCC .
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The BWT sorts the m copies of A in S2 according to π2 and sorts any subse-
quence of m copies of A in S1 according to the corresponding subsequence of
π1. Therefore, there is an LCS of S1 and S2 such that the relative order of its
characters is BWT(S1) and BWT(S2) is the same, if and only if there is a sub-
sequence of π1 of length m such that the relative order of the elements in that
subsequence is the same as the relative order of the elements in π2. ��

In view of the above result, for large inputs we cannot expect to find the
longest possible BWT-invariant subsequence, so, as for the LCS, we have devised
the following fast heuristic for computing a “long” BWT-invariant subsequence.

We first compute the suffix array SA12 for the concatenation S1#S2 and we
use it to define the array A of size n1 × 2 as follows

– A[i][1] = j iff S1[i] = S2[j] and suffix S2[j + 1, n2] immediately follows
suffix S1[i+ 1, n1] in SA12. If no such j exists A[i][1] is undefined.

– A[i][2] = j iff S1[i] = S2[j] and suffix S2[j + 1, n2] is the lexicographically
largest suffix of S2 preceding suffix S1[i+ 1, n1] in SA12. If no such j exists
A[i][2] is undefined.

Next, we compute the longest subsequence 1 ≤ i1 < i2 < · · · < i� ≤ n1 such
that there exist b1, . . . , b�, with bk ∈ {1, 2} and the sequence

A[i1][b1] < A[i2][b2] < · · · < A[i�][b�]

is the longest possible (every A[ik][bk] must be defined). The values i1, . . . , i�
and b1, . . . , b� can be computed in O(n1 logn1) time using a straightforward
modification of the dynamic programming algorithm for the longest increasing
subsequence. Setting, for k = 1, . . . , �, jk = A[ik][bk] we get that

G = S1[i1]S1[i2] · · ·S1[i�] = S2[j1]S2[j2] · · ·S2[j�]

is a common subsequence of S1 and S2.

Lemma 1. The subsequence G is BWT-invariant.

Proof. Let v1, . . . , v� (resp. w1, . . . , w�) such that for k = 1, . . . , �, BWT(S1)[vk] is
the character corresponding to S1[ik] (resp. BWT(S2)[wk] corresponds to S2[jk]).
It suffices to prove that for any pair h, k, with 1 ≤ h, k ≤ �, the inequality vh < vk
implies wh < wk. Let ≺ denote the lexicographic order. By construction, and
by the properties of the BWT, we have vh < vk iff the suffix S1[ih + 1, n1] ≺
S1[ik +1, n1] and we must prove that this implies S2[jh +1, n2] ≺ S2[jk +1, n2].

Since jh = A[ih][bh] and jk = A[ik][bk], the proof follows considering the four
possible cases: bh, bk ∈ {1, 2}. We consider the case bh = 1, bk = 2 leaving
the others to the reader. If jh = A[ih][1] and jk = A[ik][2] then S2[jh + 1, n2]
immediately follows S1[ih +1, n1] in SA12. At same time S2[jk +1, n2] precedes
S1[ik+1, n1] but there are no other suffixes from S2 between them. Since jh 	= jk
the only possible ordering of the suffixes in SA12 is

S1[ih + 1, n1] ≺ S2[jh + 1, n2] ≺ S2[jk + 1, n2] ≺ S1[ik + 1, n1]

implying S2[jh + 1, n2] ≺ S2[jk + 1, n2] as claimed. ��
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Table 3. Comparison between |G| and |LCS|. The normalizing factor n is the length
of sequence 273614N.

322134S 378604X BC187 DBVPG1106

|LCS|/n 0.9341 0.9669 0.9521 0.9590

|G|/n 0.8694 0.8655 0.8798 0.8800

To evaluate whether the subsequence G derived from the above procedure
is still able to capture the similarity between S1 and S2, we have compared
the length of G with the LCS length for pairs of S.cerevisiae genomes from the
Saccharomyces Genome Resequencing Project.5 In particular we compared the
273614N sequence with sequences 322134S, 378604X, BC187, and DBVPG1106.
For each sequence we report in Table 3 the ratio between the length of G and
LCS(BWT(S1),BWT(S2)) and the length of sequence 273614N (roughly 11.9
MB). We see that in all cases more than 85% of BWT positions are in G which
roughly indicates that more than 85% of the SA samples from 273614N could
be reused as SA samples for the other sequences.

5 Conclusions

In this paper we have considered the problem of building an index for a string
S2 given an FM-index for a similar string S1. We have shown how to build such
a “relative” index using space bounded by the BW-distance between S1 and S2.
The BW-distance is simply the edit distance between BWT(S1) and BWT(S2)
when only insertions and deletions are allowed. We have also introduced the no-
tion of BWT-invariant subsequence and shown that it can be used to determine
a set of S1 suffix array samples that can be easily “reused” for an index for S2.

We have tested our approach by building a relative index for a Han Chinese
individual and a 1000 Genomes Project individual with respect to an FM-index
of the human reference genome. We leave as a future work the development of
these ideas and the complete implementation of a relative FM-index supporting
locating and extracting. We also leave as future work proving bounds on the
BW-distance and the length of the longest BWT-invariant subsequence in terms
of the edit distance of the strings.
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Appendix: Reusing an SA Sample

Consider the strings S1, S2 used as example in Section 3, and the corresponding
LCS C = LCS(BWT(S1),BWT(S2)) and bitvectors B1 and B2. The characters of
BWT(S1)[1..16] and BWT(S2)[1..15] are mapped to their positions by the BWT
from

S1[16, 2, 6, 8, 13, 1, 12, 3, 7, 9, 14, 10, 15, 5, 11, 4]

S2[15, 7, 2, 5, 12, 1, 11, 8, 3, 6, 13, 9, 14, 4, 10]

respectively. Notice the lists of indices are just the SAs of S1$ and S2$ with each
value decremented by one. Therefore, if r = 3 then
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R = 1000110010010001, A[1..6] = [16, 13, 1, 7, 10, 4]

(see beginning of Section 4 for the definition of R and A).
Comparing R and B1 = 0001000000000111 we see that the sampled charac-

ters BWT(S1)[1, 5, 6, 9, 12] that are in C, are C’s 1st, 4th, 5th, 8th and 11th
characters. From B2 = 010000000001010 we see that the 1st, 4th, 5th, 8th and
11th characters in C in BWT(S2) are BWT(S2)[1, 5, 6, 9, 13], which are mapped
to their positions by the BWT from S2[15, 12, 1, 3, 14].

The relative order 5, 3, 1, 2, 4 of the positions 15, 12, 1, 3, 14 in S2 of these
characters, is almost the same as the relative order 5, 4, 1, 2, 3 of the positions
16, 13, 1, 7, 10 in S1 of the sampled characters in BWT(S1) that are in C.

We can get rid of the “almost” if instead of C we consider a subsequence G′

derived from a BWT-invariant sequence G. For example, we can choose

G′ = TCTCGTAAAGG

B′
1 = 0001000001010101 B′

2 = 010000010001010

D′
1 = GAGTC D′

2 = GACC

Clearly G′ is not an LCS of BWT(S1) and BWT(S2) and, thus, our data struc-
tures for supporting rank in BWT(S2) are slightly larger. However, now the char-
acters in BWT(S1) and BWT(S2) that are in G′, are mapped to their positions
by the BWT from

S1[16, 2, 6, 13, 1, 12, 3, 7, 14, 15, 11], S2[15, 2, 5, 12, 1, 11, 3, 6, 13, 14, 10]

and the relative order 11, 2, 4, 8, 1, 7, 3, 5, 9, 10, 6 of the indices in those two lists
is exactly the same. Now suppose we store yet another pair of bitvectors

M1 = 0001100111000000, M2 = 000100111000000

with 1s marking the positions in S1 and S2 of characters that are not mapped
into G′ in BWT(S1) and BWT(S2) (that is, the characters that are not in the
BWT-invariant subsequenceG). We claim that if we can support fast rank queries
on B′

2, R and M1, fast access to A and fast select0 queries on B′
1 and M2, then

we can support fast access to a (possibly irregular) SA sample for S2 with as
many sampled characters as there are in G′ in BWT(S1). More specifically, if
BWT(S2)[i] is in G′ and R[B′

1.select0(B
′
2.rank0(i))] = 1 — meaning the corre-

sponding character in G′ in BWT(S1) is sampled — then BWT(S2)[i] is mapped
to its position by the BWT from

S2

[
M2.select0

(
M1.rank0

(
A
[
R.rank1

(
B′

1.select0 (B
′
2.rank0(i))

)]))]
.

We leave a detailed explanation to the full version of this paper. We note, how-
ever, that this approach works for any sample rate r, and even if the SA sample
for S1 is irregular itself.

In our example, since BWT(S2)[10] is in G′, B′
1.select0(B

′
2.rank0(10)) = 9 and

R[9] = 1, we know BWT(S2)[10] is mapped to its position by the BWT from
position M2.select0

(
M1.rank0

(
A[R.rank1(9)]

))
= 6 in S2.
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