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Abstract. In the Manhattan Sequence Consensus problem (MSC
problem) we are given k integer sequences, each of length �, and we are
to find an integer sequence x of length � (called a consensus sequence),
such that the maximum Manhattan distance of x from each of the input
sequences is minimized. For binary sequences Manhattan distance coin-
cides with Hamming distance, hence in this case the string consensus
problem (also called string center problem or closest string problem) is a
special case of MSC. Our main result is a practically efficient O(�)-time
algorithm solving MSC for k ≤ 5 sequences. Practicality of our algo-
rithms has been verified experimentally. It improves upon the quadratic
algorithm by Amir et al. (SPIRE 2012) for string consensus problem
for k = 5 binary strings. Similarly as in Amir’s algorithm we use a
column-based framework. We replace the implied general integer linear
programming by its easy special cases, due to combinatorial properties
of the MSC for k ≤ 5. We also show that for a general parameter k
any instance can be reduced in linear time to a kernel of size k!, so the
problem is fixed-parameter tractable. Nevertheless, for k ≥ 4 this is still
too much for any naive solution to be feasible in practice.

1 Introduction

In the sequence consensus problems, given a set of sequences of length � we are
searching for a new sequence of length � which minimizes the maximum distance
to all the given sequences in some particular metric. Finding the consensus se-
quence is a tool for many clustering algorithms and as such has applications
in unsupervised learning, classification, databases, spatial range searching, data
mining etc [4]. It is also one of popular methods for detecting data common-
alities of many strings (see [1]) and has a considerable number of applications
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in coding theory [6,8], data compression [11] and bioinformatics [12,16]. The
consensus problem has previously been studied mainly in R

� space with the Eu-
clidean distance and in Σ� (that is, the space of sequences over a finite alphabet
Σ) with the Hamming distance. Other metrics were considered in [2]. We study
the sequence consensus problem for Manhattan metric (�1 norm) in correlation
with the Hamming-metric variant of the problem.

The Euclidean variant of the sequence consensus problem is also known as
the bounding sphere, enclosing sphere or enclosing ball problem. It was initially
introduced in 2 dimensions (i.e., the smallest circle problem) by Sylvester in 1857
[22]. For an arbitrary number of dimensions, several approximation algorithms
[4,15,21] and practical exact algorithms [7,10] have been proposed.

The Hamming-distance variant of the sequence consensus problem is known
under the names of string consensus, center string or closest string problem. The
problem is known to be NP-complete even for binary alphabet [8]. The algorith-
mic study of Hamming string consensus (HSC) problem started in 1999 with the
first approximation algorithms [16]. Afterwards polynomial-time approximation
schemes (PTAS) with different running times were presented [3,19,20]. A number
of exact algorithms have also been proposed. Many of these consider a decision
version of the problem, in which we are to check if there is a solution to HSC
problem with distance at most d to the input sequences. Thus FPT algorithms
with time complexities O(k�+kdd+1) and O(k�+kd(16|Σ|)d) were presented in
[12] and [19], respectively.

An FPT algorithm parameterized only by k was given in [12]. It uses Lenstra’s
algorithm [17] for a solution of an integer linear program of size exponential in
k (which requires O(k!4.5k!�) operations on integers of magnitude O(k!2k!�), see
[1]) and due to extremely large constants is not feasible for k ≥ 4. This opened
a line of research with efficient algorithms for small constant k. A linear-time
algorithm for k = 3 was presented in [12], a linear-time algorithm for k = 4 and
binary alphabet was given in [5], and recently an O(�2)-time algorithm for k = 5
and also binary alphabet was developed in [1].

For two sequences x = (x1, . . . , x�) and y = (y1, . . . , y�) the Manhattan dis-
tance (also known as rectilinear or taxicab distance) between x and y is defined
as follows:

dist(x,y) =
�∑

j=1

|xj − yj |.

The Manhattan version of the consensus problem is formally defined as follows:
Manhattan Sequence Consensus problem

Input: A collection A of k integer sequences ai, each of length �;

Output: OPT(A) = minx max {dist(x, ai) : 1 ≤ i ≤ k},
and the corresponding integer consensus sequence x.

We assume that integers ai,j satisfy |ai,j | ≤ M , and all �, k,M fit in a machine
word, so that arithmetics on integers of magnitude O(�M) take constant time.
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For simplicity in this version of the paper we concentrate on computing
OPT(A) and omit the details of recovering the corresponding consensus sequence
x. Nevertheless, this step is included in the implementation provided.

Example 1. Let A = ((120, 0, 80), (20, 40, 130), (0, 100, 0)). Then OPT(A) =
150 and a consensus sequence is x = (30, 40, 60), see also Fig. 1.

Our results are the following:

– We show that Manhattan Sequence Consensus problem has a kernel
with � ≤ k! and give an algorithm which works in linear time for any fixed k.

– We present a practical linear-time algorithm for the Manhattan Sequence
Consensus problem for k = 5 (which obviously can be used for any k ≤ 5).

Note that binary HSC problem is a special case of MSC problem. Hence, the
latter problem is NP-complete. Moreover, the efficient linear-time algorithm pre-
sented here for MSC problem for k = 5 yields an equally efficient linear-time
algorithm for the binary HSC problem and thus improves the result of [1].

Organization of the Paper. Our approach is based on a reduction of the MSC
problem to instances of integer linear programming (ILP). For general constant
k we obtain a constant, though a very large, number of instances with a constant
number of variables that we solve using Lenstra’s algorithm [17] which works in
constant time (the constant coefficient of this algorithm is also very large). This
idea is similar to the one used in the FPT algorithm for HSC problem [12],
however for MSC it requires an additional combinatorial observation. For k ≤ 5
we obtain a more efficient reduction of MSC to at most 20 instances of very
special ILP which we solve efficiently without applying a general ILP solver.

In Section 2 we show the first steps of the reduction of MSC to ILP. In
Section 3 we show a kernel for the problem of O(k!) size. In Section 4 we perform
a combinatorial analysis of the case k = 5 which leaves 20 simple types of the
sequence x to be considered. This analysis is used in Section 5 to obtain 20
special ILP instances with only 4 variables. They could be solved using Lenstra’s
ILP solver. However, there exists an efficient algorithm tailored for this type of
special instances. Due to space constraints, it is omitted in this version; it can
be found in [14]. Finally we analyze the performance of a C++ implementation
of our algorithm in the Conclusions (Section 6).

2 From MSC Problem to ILP

Let us fix a collection A = (a1, . . . , ak) of the input sequences. The elements of ai
are denoted by ai,j (for 1 ≤ j ≤ �). We also denote dist(x,A)=max {dist(x, ai) :
1 ≤ i ≤ k}.

For j ∈ {1, . . . , n} let πj be a permutation of {1, . . . , k} such that aπj(1),j ≤
. . . ≤ aπj(k),j , i.e. πj is the ordering permutation of elements a1,j , . . . , ak,j . We
also set si,j = aπj(i),j , see Example 2. For some j there might be several possi-
bilities for πj (if ai,j = ai′,j for some i �= i′), we fix a single choice for each j.
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Example 2. Consider the following three sequences ai and sequences si obtained
by sorting columns:

[ai,j ] =

⎡

⎣
120 0 80
20 40 130
0 100 0

⎤

⎦ , [si,j ] =

⎡

⎣
0 0 0
20 40 80
120 100 130

⎤

⎦ .

The Manhattan consensus sequence is x = (30, 40, 60), see Fig. 1. In the figure,
the circled numbers in j-th column are πj(1), πj(2), . . . , πj(k) (top-down).
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Fig. 1. Illustration of Example 2; π1 = (3, 2, 1), π2 = (1, 2, 3), π3 = (3, 1, 2)

Definition 3. A basic interval is an interval of the form [i, i + 1] (for i =
1, . . . , k − 1) or [i, i] (for i = 1, . . . , k). The former is called proper, and the
latter degenerate. An interval system is a sequence I = (I1, . . . , I�) of basic
intervals Ij .

For a basic interval Ij we say that a value xj is consistent with Ij if xj ∈
{si,j, . . . , si+1,j} when Ij = [i, i+ 1] is proper, and if xj = si,j when Ij = [i, i] is
degenerate. A sequence x is called consistent with an interval system I = (Ij)

�
j=1

if for each j the value xj is consistent with Ij .
For an interval system I we define OPT(A, I) as the minimum dist(x,A)

among all integer sequences x consistent with I. Due to the following trivial
observation, for every A there exists an interval system I such that OPT(A) =
OPT(A, I).

Observation 4. If x is a Manhattan consensus sequence then for each j, s1,j ≤
xj ≤ sk,j.

Transformation of the Input to an ILP. Note that for all sequences x
consistent with a fixed I, the Manhattan distances dist(x, ai) can be expressed
as di +

∑�
j=1 ei,jxj with ei,j = ±1. Thus, the problem of finding OPT(A, I)

can be formulated as an ILP, which we denote ILP(I). If Ij is a proper interval
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[i, i+1], we introduce a variable xj ∈ {si,j , . . . , si+1,j}. Otherwise we do not need
a variable xj . The i-th constraint of ILP(I) algebraically represents dist(x, ai),
see Example 6.

Observation 5. The optimal value of ILP(I) is equal to OPT(A, I).

Example 6. Consider the following 5 sequences of length 7:

[ai,j ] =

⎡

⎢⎢⎢⎢⎣

20 18 20 10 16 8 10
11 6 7 17 14 14 17
14 12 18 13 11 6 12
19 8 16 18 12 19 19
16 15 11 15 6 17 11

⎤

⎥⎥⎥⎥⎦

and an interval system I = ([2, 3], [2, 3], [2, 3], [3, 4], [3, 4], [3, 3], [3, 4]). An
illustration of both can be found in Fig. 2.
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Fig. 2. Illustration of Example 6: 5 sequences of length 7 together with an interval
system. Notice that I6 is a degenerate interval.

We obtain the following ILP(I), where x1 ∈ [14, 16], x2 ∈ [8, 12], x3 ∈ [11, 16],
x4 ∈ [15, 17], x5 ∈ [12, 14], x7 ∈ [12, 17] and the sequence x can be retrieved as
x = (x1, x2, x3, x4, x5, 14, x7):

min z
20− x1 + 18− x2 + 20− x3 + x4 − 10 + 16− x5 + 6 + x7 − 10 ≤ z
x1 − 11 + x2 − 6 + x3 − 7 + 17− x4 + 14− x5 + 0 + 17− x7 ≤ z
x1 − 14 + 12− x2 + 18− x3 + x4 − 13 + x5 − 11 + 8 + x7 − 12 ≤ z
19− x1 + x2 − 8 + 16− x3 + 18− x4 + x5 − 12 + 5 + 19− x7 ≤ z
16− x1 + 15− x2 + x3 − 11 + x4 − 15 + x5 − 6 + 3 + x7 − 11 ≤ z
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Note that P = ILP(I) has the following special form, which we call (±)ILP:

min z

di +
∑

j

xjei,j ≤ z

xj ∈ RP (xj)

where ei,j = ±1 and RP (xj) = {�j, . . . , rj} for integers �j ≤ rj . Whenever we
refer to variables, it does not apply to z, which is of auxiliary character. Also,
“xj ∈ RP (xj)” are called variable ranges rather than constraints. We say that
(e1,j , . . . , ek,j) is a coefficient vector of xj and denote it as EP (xj). If the program
P is apparent from the context, we omit the subscript.

Simplification of ILP. The following two facts are used to reduce the number
of variables of a (±)ILP. For A,B ⊆ Z we define −A = {−a : a ∈ A} and
A+B = {a+ b : a ∈ A, b ∈ B}.

Fact 7. Let P be a (±)ILP. Let P ′ be a program obtained from P by replacing a
variable xj with −xj, i.e. setting EP ′(xj) = −EP (xj) and RP ′(xj) = −RP (xj).
Then OPT(P ) = OPT(P ′).

Fact 8. Let P be a (±)ILP. Assume EP (xj) = EP (xj′ ) for j �= j′. Let P ′ be
a program obtained from P by removing the variable xj′ and replacing xj with
xj + xj′ , i.e. setting RP ′(xj) = RP (xj) +RP (xj′ ). Then OPT(P ) = OPT(P ′).

Proof. Let (z, x1, . . . , xn) be a feasible solution of P . Then setting xj := xj +xj′

and removing the variable xj′ we obtain a feasible solution of P ′. Therefore
OPT(P ′) ≤ OPT(P ). For the proof of the other inequality, take a feasible
solution (z, x1, . . . , xn) (with xj′ missing) of P ′. Note that xj ∈ RP ′(xj) =
RP (xj) +RP (xj′ ). Therefore one can split xj into xj + xj′ so that xj ∈ RP (xj)
and xj′ ∈ RP (xj′ ). This way we obtain a feasible solution of P and thus prove
that OPT(P ) ≤ OPT(P ′). ��

Corollary 9. For a (±)ILP with k constraints one can compute in linear time
an equivalent (±)ILP with k constraints and up to 2k−1 variables.

Proof. We apply Fact 7 to obtain e1,1 = e1,2 = . . . = e1,�, this leaves at most
2k−1 different coefficient vectors. Afterwards we apply Fact 8 as many times as
possible until there is exactly one variable with each coefficient vector. ��

Example 10. Consider the (±)ILP P from Example 6. Observe that EP (x4) =
EP (x7) = −EP (x2) and thus Facts 7 and 8 let us merge x2 and x7 into x4 with

RP ′(x4) = RP (x4)+RP (x7)−RP (x2) = [15, 17]+ [12, 17]+ [−12,−8] = [15, 26].
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Simplifying the constant terms we obtain the following (±)ILP P ′:

min z
−x1 − x3 + x4 − x5 + 60 ≤ z
+x1 + x3 − x4 − x5 + 24 ≤ z
+x1 − x3 + x4 + x5 − 12 ≤ z
−x1 − x3 − x4 + x5 + 57 ≤ z
−x1 + x3 + x4 + x5 − 9 ≤ z

3 Kernel of MSC for Arbitrary k

In this section we give a kernel for the MSC problem parameterized with k, which
we then apply to develop a linear-time FPT algorithm. To obtain the kernel we
need a combinatorial observation that if πj = πj′ then the j-th and the j′-th
column in A can be merged. This is stated formally in the following lemma.

Lemma 11. Let A = (a1, . . . , ak) be a collection of sequences of length �. As-
sume that πj = πj′ for some 1 ≤ j < j′ ≤ �. Let A′ = (a′1, . . . , a′k) be a collection
of sequences of length � − 1 obtained from A by removing the j′-th column and
setting a′i,j = ai,j + ai,j′ . Then OPT(A) = OPT(A′).

Proof. First, let us show that OPT(A′) ≤ OPT(A). Let x be a Manhattan
consensus sequence for A and let x′ be obtained from x by removing the j′-
th entry and setting x′

j = xj + xj′ . We claim that dist(x′,A′) ≤ dist(x,A).
Note that it suffices to show that |x′

j − a′i,j | ≤ |xj − ai,j |+ |xj′ − ai,j′ | for all i.
However, with x′

j = xj + xj′ and a′i,j = ai,j + ai,j′ , this is a direct consequence
of the triangle inequality.

It remains to prove that OPT(A) ≤ OPT(A′). Let x′ be a Manhattan con-
sensus sequence for A′. By Observation 4, x′

j is consistent with some proper
basic interval [i, i + 1]. Let d′i,j = x′

j − s′i,j and D′
i,j = s′i+1,j − s′i,j . Also,

let Di,j = si+1,j − si,j and Di,j′ = si+1,j′ − si,j′ . Note that, since πj = πj′ ,
D′

i,j = Di,j + Di,j′ . Thus, one can partition d′i,j = di,j + di,j′ so that both
di,j and di,j′ are non-negative integers not exceeding Di,j and Di,j′ respectively.
We set xj = si,j + di,j and xj′ = si,j′ + di,j′ . The remaining components of
x correspond to components of x′. Note that x′

j = xj + xj′ and that both xj

and xj′ are consistent with [i, i+ 1]. Consequently for any sequence am it holds
that dist(x, am) = dist(x′, am) and therefore dist(x,A) = dist(x′,A′), which
concludes the proof.

Finally, note that the procedures given above can be used to efficiently convert
between the optimum solutions x and x′. ��

By Lemma 11, to obtain the desired kernel we need to sort the elements in
columns of A and afterwards group by the resulting permutations πj .

Theorem 12. In O(�k log k) time one can reduce any instance of MSC to an
instance with k sequences of length �′, with �′ ≤ k!.
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Remark 13. For binary instances, if permutations πj are chosen appropriately,
we can achieve �′ ≤ 2k.

Theorem 14. For any integer k, the Manhattan Sequence Consensus
problem can be solved in O(�k log k + 2k! log k+O(k2k) logM) time.

Proof. We solve the kernel from Theorem 12 by considering all possible interval
systems I composed of proper intervals. The sequences in the kernel have length
at most k!, which gives (k − 1)k! (±)ILPs of the form ILP(I) to solve.

Each of the (±)ILPs initially has k constraints on k! variables but, due to
Corollary 9, the number of variables can be reduced to 2k−1. Lenstra’s al-
gorithm with further improvements [13,9,18] solves ILP with p variables in
O(p2.5p+o(p) logL) time, where L is the bound on the scope of variables. In
our case L = O(�M), which gives the time complexity of:

O
(
(k − 1)k! · 2(k−1)(2.5·2k−1+o(2k−1)) logM

)
= O

(
2k! log k+O(k2k) logM

)
.

This concludes the proof of the theorem. ��

4 Combinatorial Characterization of Solutions for k = 5

In this section we characterize those Manhattan consensus sequences x which
additionally minimize

∑
i dist(x, ai) among all Manhattan consensus sequences.

Such sequences are called here sum-MSC sequences. We show that one can de-
termine a collection of 20 interval systems, so that any sum-MSC sequence is
guaranteed to be consistent with one of them. We also prove some structural
properties of these systems, which are then useful to efficiently solve the corre-
sponding (±)ILPs.

We say that xj is in the center if xj = s3,j , i.e. xj is equal to the column
median. Note that if xj �= s3,j, then moving xj by one towards the center
decreases by one dist(x, ai) for at least three sequences ai.

Definition 15. We say that ai governs xj if xj is in the center or moving xj

towards the center increases dist(x, ai). The set of indices i such that ai governs
xj is denoted as Gj(x).

Observe that if xj is in the center, then |Gj(x)| = 5, and otherwise |Gj(x)| ≤
2; see Fig. 3. For k = 5 we have 4 proper basic intervals: [1, 2], [2, 3], [3, 4]
and [4, 5]. We call [1, 2] and [4, 5] border intervals, and the other two middle
intervals. We define Gj([1, 2]) = {πj(1)}, Gj([2, 3]) = {πj(1), πj(2)}, Gj([3, 4]) =
{πj(4), πj(5)} and Gj([4, 5])={πj(5)}. Note that if we know Gj(x) and |Gj(x)| ≤
2, then we are guaranteed that xj is consistent with the basic interval Ij for which
Gj(Ij) = Gj(x).

Observe that if x is a Manhattan consensus sequence, then Gj(x) �= ∅ for any
j. If we additionally assume that x is a sum-MSC sequence, we obtain a stronger
property.
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Fig. 3. Assume a1,j = 2, a2,j = 4, a3,j = 1, a4,j = 3, a5,j = 5. Then Gj(x) depends on
the interval of xj as shown in the figure; e.g., if 1 ≤ xj < 2 then Gj(x) = {3}.

Lemma 16. Let x be a sum-MSC sequence. Then Gj(x) ∩ Gj′ (x) �= ∅ for any
j, j′.

Proof. For a proof by contradiction assume Gj(x) and Gj′ (x) are disjoint. This
implies that neither xj nor xj′ is in the center and thus |Gj(x)|, |Gj′ (x)| ≤ 2.
Let us move both xj and xj′ by one towards the center. Then dist(x, ai) remains
unchanged for i ∈ Gj(x)∪Gj′ (x) (by disjointness), and decreases by two for the
remaining sequences ai. There must be at least one such remaining sequence,
which contradicts our choice of x. ��
Additionally, if a sum-MSC sequence x has a position j with |Gj(x)| = 1, the
structure of x needs to be even more regular.

Definition 17. A sequence x is called an i-border sequence if for each j it holds
that xj = ai,j or Gj(x) = {i}.
Lemma 18. Let x be a sum-MSC sequence. If Gj(x) = {i} for some j, then x
is an i-border sequence.

Proof. For a proof by contradiction assume Gj′ (x) �= {i} and xj′ �= ai,j′ for some
j′. Let us move xj towards the center and xj′ towards ai,j′ both by one. Then for
any i′ it holds that dist(x, ai′ ) does not increase. By Lemma 16 i ∈ Gj′ (x), so xj′

is moved away from the center. Moreover, xj is moved towards some ai′,j with
i′ �= i, since Gj′ (x) �= {i}. Consequently, dist(x, ai′ ) decreases by two, which
contradicts our choice of x. ��
Definition 19. A sequence x is called an i-middle sequence if for each j it holds
that i ∈ Gj(x) and |Gj(x)| ≥ 2.

Definition 20. For a 3-element set Δ ⊆ {1, . . . , 5} a sequence x is called a
Δ-triangle sequence if for each j it holds that |Δ ∩Gj(x)| ≥ 2.

Lemma 21. Let x be a sum-MSC sequence. Then x is a border sequence, a
middle sequence or a triangle sequence.

Proof. Recall that Gj(x) �= ∅ for each j. By Lemma 18, if Gj(x) = {i} for
some j, then x is an i-border sequence. This lets us assume |Gj(x)| ≥ 2, i.e.
|Gj(x)| ∈ {2, 5}, for each j. Let F be the family of 2-element sets among Gj(x).
By Lemma 16 every two of them intersect, so we can apply the following easy
set-theoretical claim.
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Claim. Let G be a family of 2-element sets such that every two sets in G intersect.
Then sets in G share a common element or G contains exactly three sets with
three elements in total.

If all sets in F share an element i, then x is clearly an i-middle sequence.
Otherwise x is a Δ-triangle sequence for Δ =

⋃
F . ��

Fact 22. There exist 20 interval systems Bi,Mi (for i ∈ {1, . . . , 5}) and TΔ
(for 3-element sets Δ ⊆ {1, . . . , 5}) such that:
(a) Bi is consistent with all i-border sequences, Gj(Bi,j) = {i} for proper Bi,j;
(b) Mi is consistent with all i-middle sequences and if Mi,j is proper then

|Gj(Mi,j)| = 2 and i ∈ Gj(Mi,j);
(c) TΔ is consistent with all Δ-triangle sequences and if TΔ,j is proper then

|Gj(TΔ,j )| = 2 and Gj(TΔ,j) ⊆ Δ.

Proof. (a) Let us fix a position j. For any i-border sequence x, we know that
xj = ai,j or Gj(x) = {i}. If either of the border intervals I satisfies Gj(I) = {i},
we set Bi,j := I (observe that ai,j is then consistent with I). Otherwise we choose
Bi,j so that it is degenerate and corresponds to xj = ai,j .
(b) Again fix j. For any i-middle sequence x, we know that xj is consistent with
at least one of the two middle intervals (both if xj is in the center). If either of
the middle intervals I satisfies i ∈ Gj(I), we choose Mi,j := I. (Note that this
condition cannot hold for both middle intervals). Otherwise we know that xj is
in the center and set Mi,j so that it is degenerate and corresponds to xj in the
center, i.e. Mi,j := [3, 3].
(c) We act as in (b), i.e. if either of the middle intervals I satisfies |Gj(I)∩Δ| = 2,
we choose TΔ,j := I (because sets Gj(I) are disjoint for both middle intervals,
this condition cannot hold for both of them). Otherwise, we set TΔ,j := [3, 3],
since xj is guaranteed to be in the center for any Δ-triangle sequence x. ��

5 Practical Algorithm for k ≤ 5

It suffices to consider k = 5. Using Fact 22 we reduce the number of interval
systems from (k−1)k! = 45! > 1072 to 20 compared to the algorithm of Section 3.
Moreover, for each of them ILP(I) admits structural properties, which lets us
compute OPT(A, I) much more efficiently than using a general ILP solver.

Definition 23. A (±)ILP is called easy if for each constraint the number of +1
coefficients is 0, 1 or n, where n is the number of variables.

Lemma 24. For each I being one of the 20 interval systems Bi,Mi and TΔ,
ILP(I) can be reduced to an equivalent easy (±)ILP with up to 4 variables.

Proof. Recall that for degenerate intervals Ij , we do not introduce variables. On
the other hand, if Ij is proper, possibly negating the variable xj (Fact 7), we
can make sure that the coefficient vector E(xj) has +1 entries corresponding to
i ∈ Gj(Ij) and −1 entries for the remaining i. Moreover, merging the variables
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(Fact 8), we end up with a single variable per possible value Gj(Ij). Now we use
structural properties stated in Fact 22 to claim that the (±)ILP we obtain this
way, possibly after further variable negations, becomes easy.
Border Sequences. By Fact 22(a), if Bi,j is proper, then Gj(Bi,j) = {i} and
thus the (±)ILP has at most 1 variable and consequently is easy.
Middle Sequences. By Fact 22(b), if Mi,j is proper, then Gj(Mi,j) = {i, i′}
for some i′ �= i. Thus there are up to 4 variables, the constraint corresponding to
i has only +1 coefficients, and the remaining constraints have at most one +1.
Triangle Sequences. By Fact 22(c), if TΔ,j is proper, then Gj(TΔ,j) is a 2-
element subset of Δ, and thus there are up to three variables. Any (±)ILP with
up to two variables is easy, and if we obtain three variables, then the constraints
corresponding to i ∈ Δ have exactly two +1 coefficients, while the constraints
corresponding to i /∈ Δ have just −1 coefficients. Now, negating each variable
(Fact 7), we get one +1 coefficient in constraints corresponding to i ∈ Δ and all
+1 coefficients for i /∈ Δ. ��
The algorithm of Lenstra [17] with further improvements [13,9,18], which runs
in roughly n2.5n+o(n) time, could perform reasonably well for n = 4. However,
there is a simple O(n2)-time algorithm designed for easy (±)ILP. Due to space
constraints, it is omitted in this paper. It can be found in the full version [14].

In conclusion, the algorithm for MSC problem first proceeds as described
in Fact 22 to obtain the interval systems Bi,Mi and TΔ. For each of them it
computes ILP(I), as described in Section 2, and converts it to an equivalent easy
(±)ILP following Lemma 24. Finally, it uses the efficient algorithm to solve each
of these 20 (±)ILPs. The final result is the minimum of the optima obtained.

6 Conclusions

We have presented an O(�k log k)-time kernelization algorithm, which for any
instance of the MSC problem computes an equivalent instance with �′ ≤ k!.
Although for k ≤ 5 this gives an instance with �′ ≤ 120, i.e. the kernel size is
constant, solving it in a practically feasible time remains challenging. Therefore
for k ≤ 5 we have designed an efficient linear-time algorithm.

We have implemented the algorithm,1 including retrieving the optimum con-
sensus sequence (omitted in the description above). For random input data with
� = 106 and k = 5, the algorithm without kernelization achieved the running
time of 1.48015s, which is roughly twice the time required to read the input file
(0.73443s, not included in the former). The algorithm pipelined with the kernel-
ization achieved 0.33415s. The experiments were conducted on a MacBook Pro
notebook (2.3 Ghz Intel Core i7, 8 GB RAM).
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