
Relative Lempel-Ziv

with Constant-Time Random Access

Héctor Ferrada1,�, Travis Gagie2,��,
Simon Gog3,� � �, and Simon J. Puglisi2,†

1 Department of Computer Science
University of Chile, Chile

2 Department of Computer Science
University of Helsinki, Finland

3 Institute of Theoretical Informatics
Karlsruhe Institute of Technology, Germany

Abstract. Relative Lempel-Ziv (RLZ) is a variant of LZ77 that can
compress well collections of similar genomes while still allowing fast ran-
dom access to them. In theory, at the cost of using sublinear extra space,
accessing an arbitrary character takes constant time. We show that even
in practice this works quite well: e.g., we can compress 36 S. cerevisiae
genomes from a total of 464 MB to 11 MB and still support random
access to them in under 50 nanoseconds per character, even when the
accessed substrings are short. Our theoretical contribution is an opti-
mized representation of RLZ’s pointers.

1 Introduction

Advances in DNA sequencing have led to the creation of massive genomic
databases. In many cases these databases hold collections of genomes from in-
dividuals of the same species or closely related species. Such genomes tend to
be very similar, so referential compression schemes such as Ziv and Lempel’s
LZ77 [14] perform very well on them (see, e.g., [1,13]). Supporting fast ran-
dom access to LZ77-compressed texts is problematic [12] but several authors
have proposed variants of LZ77 on which random access is easier: e.g., Kreft
and Navarro’s LZ-End [7], Kuruppu, Puglisi and Zobel’s Relative Lempel-Ziv
(RLZ) [8,9] and Deorowicz and Grabowski’s GDC [2].

In theory RLZ implemented with compressed bitvectors offers constant-time
random access, which is faster than LZ-End, GDC or schemes such as block
graphs [4] or FOLCA [10] that are not based on LZ77. The main disadvantage of
using compressed bitvectors is their redundancy, which is nevertheless sublinear

� Supported by Fondecyt 1-140796, Chile.
�� Supported by Academy of Finland grant 268324.

� � � This work was carried out while the third author was employed at the University
of Melbourne, supported by ARC Grant DP110101743.

† Supported by Academy of Finland grant 258308.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 13–17, 2014.
c© Springer International Publishing Switzerland 2014

14 H. Ferrada et al.

in the length of the original file. As far as we are aware, such an implementation
has never been tried in practice. In this paper we describe an implementation
with which we can, e.g., compress 36 S. cerevisiae genomes from 464 MB to 11
MB and still support random access to them in under 50 nanoseconds per char-
acter, even when the accessed substrings are short. Our theoretical contribution
is a compressed representation of RLZ’s pointers that is optimized for genomic
databases.

2 Relative Lempel-Ziv

Given a collection of similar genomes, RLZ works by selecting or generating a
reference genome R, which it leaves uncompressed (or only entropy-compressed),
then compressing each of the remaining genomes relative to R. To compress
another genome S[0..n − 1] relative to R, our implementation of RLZ greedily
parses S into phrases such that each phrase consists of a substring of R followed
by a single character, called a mismatch character. When the alphabet size is
constant this can be done in O(n) time using, e.g., an FM-index [3] for R (see,
e.g., [6]).

Kuruppu et al. originally defined RLZ such that each phrase is either a sub-
string of R or a single character. Deorowicz and Grabowski pointed out, however,
that with this definition, single-nucleotide polymorphisms (SNPs) — the most
common kind of differences between individuals’ genomes — tend to cause two
phrase breaks each, instead of only one.

If we want only to compress S, we need only store a sequence (�0, p0, c0), . . . ,
(�z−1, pz−1, cz−1) of triples,where z is the number of phrases. Each triple (�r, pr, cr)
indicates that the corresponding phrase is R[pr..pr + �r − 1] cr, or just cr if �r = 0
(in which case pr is irrelevant). To decompressS later, we simply replace each triple
by its phrase.

2.1 Compressed Bitvectors

A bitvector B is a binary string that supports access, rank and select queries:
B.access(i) returns B[i] (and is often written simply B[i]); B.rank(i) returns
the number of 1s in B[0..i]; and B.select(i) returns the position of the ith 1
in B. The best theoretical bound is due to Pǎtraşcu [11], who showed how B
can be stored in |B|H0(B)+O(|B|/ loga |B|) bits, where H0(B) is the 0th-order
empirical entropy of B and a is any constant, such that all three kinds of queries
can be answered in O(1) time.

2.2 Absolute Pointers

If we want to support random access, then we can store a bitvector B1[0..n]
with 1s marking where phrases start in S; an array P [0..z − 1] = [p0, . . . , pz−1];
and an array C[0..z − 1] = [c0, . . . , cz−1]. We set B1[0] = 0 so that B1.rank(i)
is the index of the phrase containing S[i], and we set B1[n] = 1 so that S[i]

Relative Lempel-Ziv with Constant-Time Random Access 15

ACCTGA. . .

ACCTGA. . .

. . . ATA. AC AAT. . .

. . . AG AAT. . .

pr

hr i

pr + i− hr

. . . ATA. . .

Compressed:

Reference:

SNP

Fig. 1. We can use the relative pointer P ′[r] = pr − hr instead of the absolute pointer
P [r] = pr because P ′[r] + i = pr + i− hr = P [r] + i− hr

is a mismatch character if and only if B1[i + 1] = 1. For simplicity, we assume
B1.select(0) = 0.

To access S[i], we

1. find the index r = B1.rank(i) of the phrase containing S[i];
2. check whether B1[i + 1] = 1, to see if S[i] is a mismatch character;
3. if so, return C[r];
4. if not, find the starting position hr = B1.select(r) of the rth phrase;
5. return R[P [r] + i− hr].

We say this approach uses absolute pointers because each cell of P contains a
direct pointer to the starting position of the appropriate substring of R.

2.3 Relative Pointers

We can simplify our access procedure somewhat if we store relative pointers
instead of absolute pointers. That is, we store an array P ′[0..z − 1] = [p0 −
h0, . . . , pz−1 − hz−1], where hr is again the starting position in S of phrase r.
Notice that P ′[r] + i = pr + i− hr = P [r] + i − hr for any i — see Figure 1 —
so we no longer need select to access S. Specifically, to access S[i] we now

1. find the index r = B1.rank(i) of the phrase containing S[i];
2. check whether B1[i + 1] = 1, to see if S[i] is a mismatch character;
3. if so, return C[r];
4. if not, return R[P ′[r] + i].

2.4 Compressed Pointers

Another benefit of relative pointers is that we can compress P ′ more easily
than P . For example, Kuruppu et al. noted that the difference between phrases’
absolute pointers is often the total length of the phrases between them, and used

16 H. Ferrada et al.

Table 1. Random access time (for extraction lengths m = 8, 64, 512, 4096 characters)
for RLZ and GDC for a collection of 36 S. cerevisiae genomes, totalling 464 MB before
compression. The two GDC rows correspond to different settings for the R-block size
and D-block size (see [2]). Times are given in nanoseconds per extracted character
averaged over 10 million extractions.

Method Size (MB) m = 8 m = 64 m = 512 m = 4096

RLZ 11 50 7 3 2

GDC-ra-28-28 14 500 68 15 8
GDC-ra-212-212 10 750 102 19 8

that observation to achieve better compression by discarding pointers that can
be computed from earlier pointers and phrases’ lengths. They did not support
fast random access with that implementation, but they pointed out that it could
be reintroduced by sampling the missing pointers, creating a tradeoff between
compression and access time.

The most likely explanation for Kuruppu et al.’s observation is that, if phrase
r breaks because of an SNP, then usually pr+1 = pr + �r + 1, in which case
P ′[r + 1] = P ′[r]. To take advantage of this, we run-length compress P ′ as
follows: we store a bitvector B2[0..z − 1] with 1s marking the relevant pointers
in P ′ that differ from the preceding relevant pointers; we store an array P ′′

containing the pointers in B2; and then we discard P ′. (Recall that a pointer is
irrelevant if its phrase is only a mismatch character, and relevant otherwise.)

We set P ′′[0] to be the first relevant pointer in P ′ but we do not mark it
in B2, so that B2.rank(r) is the index of the run in P containing the pointer
for phrase r. The last step in our access procedure now becomes “if not, return
R[P ′′[B2.rank(r)] + i]”.

3 Experiments

We implemented the above scheme in C++ using the Succinct Data Structure Li-
brary (SDSL) [5] version 2.0.1 (available at https://github.com/simongog/

sdsl-lite) for the bitvectors. As a baseline we also tested Deorowicz and
Grabowski’s GDC data structure, which is the best RLZ variant supporting
random access of which we are aware.

Setup. We performed experiments on a machine equipped with a 3.16GHz In-
tel Core 2 Duo CPU with 6144KiB L2 cache and 4GiB of main memory. The
machine had no other significant CPU tasks running and only a single thread
of execution was used. The OS was Linux (Ubuntu 12.04, 64bit) running ker-
nel 3.2.0. All programs were compiled using g++ version 4.8 with -O3 -static

-DNDEBUG options. All reported runtimes are recorded with the C clock function.

Data. We tested our implementation on a collection of 36 S. cerevisiae (yeast)
genomes, each about 12 MB long, and 464 MB in total.

https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite

Relative Lempel-Ziv with Constant-Time Random Access 17

Mismatch Characters. The genomes were over the alphabet {A,C,G,T,N} but
there were relatively few Ns in the array C of mismatch characters. Because of
this, we stored in a hash table the positions of all the Ns in C; replaced the Ns
by As; and packed the mismatch characters into two bits each. We considered C
blocks of 20 mismatch characters and stored a binary string in which the ith bit
indicated whether the ith block originally contained any Ns. Whenever we read
an A from C, we checked the binary string to see if the block containing that
A originally contained any Ns and, if so, checked the hash table to see if that
particular A was originally an N.

Results. Sizes and times for random access are shown in Table 1. Our implemen-
tation of RLZ had very fast extraction times for short substrings. For example,
it was over 10 times faster than GDC for substrings of length 8. For longer sub-
strings the gap between the speed of the two approaches narrowed, but even for
4KB substrings RLZ was still more than 4 times faster than GDC.

References

1. Deorowicz, S., Danek, A., Grabowski, S.: Genome compression: A novel approach
for large collections. Bioinformatics 29(20), 2572–2578 (2013)

2. Deorowicz, S., Grabowski, S.: Robust relative compression of genomes with random
access. Bioinformatics 27(21), 2979–2986 (2011)

3. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM52(4), 552–581 (2005)
4. Gagie, T., Gawrychowski, P., Puglisi, S.J.: Faster approximate pattern matching in

compressed repetitive texts. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe,
O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 653–662. Springer, Heidelberg (2011)

5. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Heidelberg (2014)

6. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight Lempel-Ziv parsing. In:
Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS,
vol. 7933, pp. 139–150. Springer, Heidelberg (2013)

7. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comp. Sci. 483, 115–133 (2013)

8. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010.
LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010)

9. Kuruppu, S., Puglisi, S.J., Zobel, J.: Optimized relative Lempel-Ziv compression
of genomes. In: Proc. ACSC, pp. 91–98 (2011)

10. Maruyama, S., Tabei, Y., Sakamoto, H., Sadakane, K.: Fully-online grammar com-
pression. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS,
vol. 8214, pp. 218–229. Springer, Heidelberg (2013)

11. Pǎtraşcu, M.: Succincter. In: Proc. FOCS, pp. 305–313 (2008)
12. Verbin, E., Yu, W.: Data structure lower bounds on random access to grammar-

compressed strings. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 247–258. Springer, Heidelberg (2013)

13. Wandelt, S., Leser, U.: FRESCO: Referential compression of highly-similar se-
quences. IEEE Trans. Comp. Bio. Bioinf. 10(5), 1275–1288 (2013)

14. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. 23(3), 337–343 (1977)

	Relative Lempel-Ziv with Constant-Time Random Access

	1
Introduction
	2
Relative Lempel-Ziv
	2.1
Compressed Bitvectors
	2.2
Absolute Pointers
	2.3
Relative Pointers
	2.4
Compressed Pointers

	3
Experiments

